NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

Using Shadows in Finding Surface Orientations

4 January 1982
Steven A. Shafer
Takeo Kanade

Computer Science Department
Carnegie-Mellon University

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-81-K-1539.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the US Government.

Table of Contents

1. Introduction
1.1 The Shadow Geometry Problem
1.2 This Presentation
1.3 Introduction to Gradient Space and Line Labeling
2. The Basic Shadow Problem
2.1 Solution of the Problem
2.2 Relationships Among the Parameters Supplied in Advance
2.3 Occurrence of the Basic Shadow Problem
3. Variations in Lighting
3.1 Light Source In Front of the Camera
3.2 Light Source Behind and Below Camera .
3.3 Light Source Not Infinitely Distant
3.4 Line Labels and Light Source Position
3.5 Changing the Number of Light Sources
4. Shadows Falling On Polyhedra
4.1 Shadows Falling On Polyhedra With No Shadow Edge Discontinuities
4.2 Breaks In the Shadow Edge
4.3 Constraints in the General Case
5. Shadows Cast By Polyhedra
5.1 Polyhedra With Two Visible Surfaces
5.2 Adding a Self-Shadowed Surface
5.3 Adding an Illuminated Surface
5.4 The General Solution For Polyhedral Shadow Geometry
6. Shadows Involving Curved Surfaces
6.1 Curvature in the Shaded Surface
6.2 Shadows Cast By Curved Surfaces
7. Shadow Geometry and Other Shape Inference Techniques
7.1 Other Gradient Space Techniques
7.2 Shape Recovery for Curved Surfaces
7.3 Shadow Geometry and Stereo
8. Conclusions
8.1 Future Work
8.2 Acknowledgements
9. Bibliography
I. Solution to the Basic Shadow Problem
I.1 Gradient of the First Illumination Surface, G_{11}
1.2 Gradient of the Second Illumination Surface, G_{12}
1.3 Gradient of the Occluding Surface, G_{O}

List of Figures

Figure 1-1: Shadows Provide Information for 3-D Shape Recovery
2
Figure 1-2: The X-Y-Z Coordinate System
Figure 1-3: The Gradient Space
Figure 1-4: Line Labels and Surface Intersections
Figure 1-5: Line Labels and Gradient Space Relationships
Figure 2-1: The Basic Shadow Problem
Figure 2-2: Basic Shadow Problem .- Correspondences Labeled
Figure 2-3: Basic Shadow Problem .. Illumination Surface 1
Figure 2-4: Gradient Space Constraints from Illumination Surface 1
Figure 2-5: Basic Shadow Problem .- Illumination Surface 2
Figure 2-6: Gradient Space Constraints From Illumination Surface 2
Figure 2-7: Basic Shadow Problem .. Illumination Vector
Figure 2-8: Gradient Space Constraints From Illumination Vector
Figure 2-9: Solution to Basic Shadow Problem
Figure 2-10: Basic Shadow Problem .- Edge $E_{\text {OS }}$ Provided
Figure 2-11: Redundancy of E_{OS} With $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$
Figure 2-12: Occurence of the Basic Shadow Problem
Figure 3-1: Geometry With Light Source In Front of Camera, Infinitely Far Away
Figure 3-2: Gradient Space Constraints With Light-Source In Front of Camera
Figure 3-3: Light Source Behind and Below Camera, Infinitely Far Away
Figure 3-4: Point Light Source at Finite Distance
Figure 3-5: Line Labels and Light Source Positions
Figure 3-6: Basic Shadow Problem With Multiple Light Sources
Figure 3-7: Two Surfaces With No Light Source
Figure 4-1: Shadow Falling On Two Surfaces
Figure 4-2: Gradient Space Constraints From Two Shaded Surfaces
Figure 4-3: Shadow Falling On Many Surfaces
Figure 4-4: Shadow Edge With Discontinuites
Figure 5-1: Shadow Cast By Simple Polyhedron
Figure 5-2: Light Source In a Different Position
Figure 5-3: Polyhedron With Two Self-Shadowed Surfaces
Figure 5-4: Polyhedron With Two llluminated Surfaces
Figure 5-5: Additional Parameter Needed for Hidden Shadow-Making Surface
Figure 5-6: Additional Parameter Needed for Non-Trihedral Vertex
Figure 5-7: Polyhedron With Additional Invisible Surfaces
Figure 6.1: Curved Surfaces Intersecting Along an Arc
Figure 6-2: Shadow Cast On a Curved Surface
Figure 6-3: Gradient Space Constraint Between G_{X} and G_{11}
Figure 6-4: Gradient Space Constraints On Tangent Planes To S_{S}
Figure 6-5: Shadow Cast By a Curved Surface
Figure 6-6: Arcs of Extinction are Unrelated To Surface Orientation
Figure 6-7: Gradient Space Constraints on G_{x}
Figure 6-8: Using E_{10} to Calculate the Gradient of S_{S}
Figu re 6-9: Gradient Space Constraints From $V_{O X}$ For Computing G_{S}
Figure 7-1: Shape From Shading
Figure 7-2: Shadow Geometry and Shape From Shading

Figure 7-3: Shadow Geometry and Skewed Symmetry
Figure 7-4: Shadow Geometry and Curved Surface Shape Recovery 51
Figure 7-5: Shadow Geometry and Stereo 51
Figure 8-1: Image of Cube: Interpretation is Over-Constrained . . 52
Figure 9-1: The Basic Shadow Problem 54

Abstract

Given a line drawing from an image with shadow regions identified, the shapes of the shadows can be used to generate constraints on the orientations of the surfaces involved. This paper describes the theory which governs those constraints under orthography.

A "Basic Shadow Problem" is first posed, in which there is a single light source, and a single surface casts a shadow on another (background) surface. There are six parameters to determine: the orientation (2 parameters) for each surface, and the direction of the vector (2 parameters) pointing at the light source. If some set of 3 of these are given in advance, the remaining 3 can then be determined geometrically. The solution method consists of identifying "illumination surfaces" consisting of illumination vectors, assigning Huffman-Clowes line labels to their edges, and applying the corresponding constraints in gradient space.

The analysis is extended to shadows cast by polyhedra and curved surfaces. In both cases, the constraints provided by shadows can be analyzed in a manner analogous to the Basic Shadow Problem. When the shadow falls upon a polyhedron or curved surface, similar techniques apply. The consequences of varying the position and number of light sources are also discussed. Finally, some methods are presented for combining shadow geometry with other gradient space techniques for $3 D$ shape inference.

1. Introduction

1.1 The Shadow Geometry Problem

In many images, shadows are present (figure 1-1). When this is the case, the shadows provide some information which is useful for determining the 3D shapes and orientations of the objects in the scene.

Figure 1-1: Shadows Provide Information for 3-D Shape Recovery

The interpretation of shadows in an image involves three distinct processes:

- Finding shadow regions in the image
- Solving the correspondence problem to determine which object has cast each shadow region
- Geometrically deducing information about the objects and surfaces involved on the basis of the identified object/shadow pairs

To date, most researchers have performed each step in sequence, although the latter steps certainly
generate information which can be used to improve the former processes if they have been incomplete or noisy.

Techniques for the first step, finding shadow regions, have been proposed by many researchers, usually by looking for regions of low intensity with approximately the same hue as some neighboring region [12, 14]. A close examination of region colors will reveal that shadows due to the sun will have a slightly bluer hue than illuminated portions of the same surface. Lowe and Binford [9] proposed criteria which should be satisfied by edges of shadow regions; these can be used to suggest or try to confirm the hypothesis that a particular region is a shadow. Witkin [20] is also investigating shadow edges. Waltz [18] developed a method for labeling lines in line drawings as shadow edges, based on local geometric criteria at vertices.

The correspondence problem has been explored primarily by Lowe and Binford [9]. They describe several properties of this correspondence, and include descriptions of the special points of view from which degenerate cases arise. O'Gorman [13] proposed a heuristic method for finding correspondences in the blocks world under orthography.

Geometric interpretation of shadows is also performed by Lowe and Binford [9], who use shadows to determine height in overhead views of airplanes: They measure the distance in the image between the outline of an object and the outline of its shadow, and use similar triangles to conclude that this distance is proportional to the height of the object's edge above the ground. Quam [15] is also using shadows to determine depth information: These techniques have been employed in manual photointerpretation of aerial photographs as well [17].

Waltz [18] used shadows to classify surfaces into several orientation categories depending upon the geometry of the shadows in a line drawing. His categories were qualitative, such as "front left" for an approximately vertical surface tipped to the left.

This paper presents a theory describing the constraints that shadows provide between surface orientations in line drawings, using shadow and surface outlines under orthographic projection. This can be thought of as a method for achieving the same kind of results as Waltz, but computing exact surface orientations rather than simply categorizing the surfaces into classes with similar orientations. The theory presented here subsumes the "shadow-plane" idea suggested by Mackworth [10] as a means for generating gradient-space constraints from shadows.

Shadows cast by and upon curved surfaces have been described by Witkin [19], who derived
equations relating surface curvature to curvature of shadow edges in the image. The presentation in this paper is somewhat different, discussing surface gradient (local orientation) rather than curvature (rate of change of orientation).

1.2 This Presentation

This paper begins by defining the "Basic Shadow Problem", computing surface orientations from a line drawing depicting one surface casting a shadow on one other surface. The surfaces are assumed to be flat, the light source is assumed to be infinitely far away, and orthographic projection is used.

The consequences of varying the light source are then explored. These include changing the position to be in front of the camera instead of behind it, moving the light source to a point at a finite distance from the scene, and altering the number of light sources. The same Basic Shadow Problem occurs in all these cases, and the necessary modifications to the solution technique are presented.

The shaded surface .. the surface on which shadows appear .. is then generalized to be many planes (a polyhedron). The Basic Shadow Problem occurs within an algorithm to compute the orientations of each face intersecting the shadow edge.

The occluding surface -- the surface casting the shadow .. is generalized to be polyhedral. The Basic Shadow Problem is included in the shadow information available in this case, along with additional shadow-making edges.

The solution of shadow problems involving curved surfaces is then discussed. When curved surfaces are involved, additional information about the curvature is needed for an exact solution. The special case of a sphere is examined as an example in which knowledge about the surface curvature allows for the derivation of a unique solution with little a priori information required.

Some methods are presented for combining shadow geometry with other gradient space techniques, and with stereo image analysis.

Further plans include the elaboration of the above cases under perspective rather than orthography, and the construction of a program to perform the geometric reasoning outlined in this paper.

1.3 Introduction to Gradient Space and Line Labeling

This section presents an introduction to the gradient space and line labeling for readers who are not already familiar with these topics.

When constructing a 3D description of a scene from examination of an image, some coordinate system must be set up. The coordinate system used in this paper is illustrated in figure 1-2. Here, the x and y axes are aligned on the image plane in the horizontal and vertical directions, respectively, assigning the usual 2D Cartesian coordinate system to the image. The z axis points towards the viewer (or camera). This is the coordinate system used by Mackworth [10].

Figure 1-2: The $X \cdot Y-Z$ Coordinate System
In this paper, it will be presumed that the point (x, y, z) in the scene corresponds to the point (x, y) in the image. This is orthography. Perspective projection is not discussed in detail in this paper.

When describing the three-dimensional shape of an object, it is sufficient to specify the twodimensional image together with the orientation (in three-space) of each surface in the scene. The problem of three-dimensional shape recovery is therefore equivalent to finding the orientation of each surface in the image. These orientations can be represented by points in a plane called the gradient space (figure 1-3) [5]. If a surface is represented by the equation

$$
\cdot z=f(x, y)
$$

then its gradient is represented by the point:

$$
(\rho, q)=(\partial f / \partial x, \partial f / \partial y)
$$

This assigns a natural interpretation to points in gradient space: a surface which is "tipped" to the
right is represented to a point on the right side of the origin; a surface tipped left has a gradient to the left of the origin. Similarly, a surface which is tipped up (or down) has its gradient above (or below) the origin. In figure 1-3, the gradients G_{A} (etc.) are shown for the surfaces S_{A} (etc.) in the line drawing at the right.

Figure 1-3: The Gradient Space

Before computing surface orientations, it is common to attempt to produce a line drawing from an image, in which all the surfaces are outlined. Huffman and Clowes [5, 2] showed that the edges (line segments) in a line drawing do not all represent the same three-dimensional surface configuration. The four types of edges they discovered are shown in figure 1-4, along with the half-planes containing the surfaces which meet at each type of edge. At a convex edge, the surfaces recede from the viewer as you travel farther from the edge. At a concave edge, the surfaces approach the viewer as you travel farther from the edge. At an occluding edge, only one of the two surfaces involved is directly visible in the image. Waltz [18] developed an algorithm for assigning these labels to the edges in a line drawing.

The convex and concave labels indicate relationships between the gradients of the surfaces which meet along an edge [10]. When two surfaces are joined along a convex edge, their gradients lie along a line in gradient space which is perpendicular to the edge in the image (figure 1-5). Furthermore, the relative positions of the șurface gradients will be the same as the relative positions of the surfaces in the image. When two surfaces meet at a concave line, the gradients are still on a perpendicular line in gradient space, but the relative positions are reversed.

In general, if an edge $E=(\Delta x, \Delta y)$ is contained on a surface with gradient $G=(p, q)$, then the edge corresponds to the three-dimensional vector $(\Delta x, \Delta y, \Delta z)$ where

occluding edges
Figure 1-4: Line Labels and Surface Intersections

Figure 1-5: Line Labels and Gradient Space Relationships

$$
\begin{equation*}
-\Delta z=G \cdot E \tag{1.1}
\end{equation*}
$$

In this paper, a method is proposed for assigning Huffman-Clowes line labels to shadow-making edges and shadow edges in a line drawing, and for using the resulting gradient space relationships to determine surface orientations.

2. The Basic Shadow Problem

The Basic Shadow Problem is:

Given a line drawing such as Figure 2-1, what constraints exist between the occluding surface S_{O} and the shaded surface S_{S} ?
For simplicity, we will begin by assuming that the surfaces are both flat, and that orthographic projection is used. We will also, for the time being, presume that the light source is infinitely far away; this means that all illumination vectors (light rays emanating from the light source) are parallel.

Figure 2-1: The Basic Shadow Problem

2.1 Solution of the Problem

To show the proper correspondences, the edges and vertices can be labeled as in figure 2-2, where edge $E_{\mathrm{S} 1}$ is the shadow edge corresponding to $E_{\mathrm{O} 1}, E_{\mathrm{S} 2}$ is the shadow of $E_{\mathrm{O} 2}$, and vertex $V_{\mathrm{S} 12}$ is the shadow of $V_{\mathrm{O} 12}$.

Consider the physical interpretation of edge $E_{\mathrm{S} 1}$. Some light rays just graze past S_{O} at $E_{\mathrm{O} 1}$, and continue on to strike S_{S} along $E_{\mathrm{S} 1}$. This set of rays form a surface (a piece of a plane), in fact the plane containing $E_{\mathrm{O} 1}$ and $E_{\mathrm{S} 1}$. This is a surface consisting of "illumination vectors"; call it surface S_{11} (Figure 2-3).

Suppose we were to cut a piece of cardboard and fit it into the space occupied by S_{11}. Then, this cardboard and S_{O} would be joined along $E_{\mathrm{O} 1}$, a convex edge. Using Huffman-Clowes line labeling [5], this edge can be given the label + . Similarly, $E_{S 1}$ ioins S_{S} and S_{11}, and is concave; it receives the label -.

Figure 2-2: Basic Shadow Problem .. Correspondences Labeled

Figure 2-3: Basic Shadow Problem -- Illumination Surface 1

As Mackworth showed [10], these line labels can be mapped into constraints in the gradient space. The gradient of $S_{O}\left(G_{O}\right)$ and the gradient of $S_{11}\left(G_{11}\right)$ must be joined by a line perpendicular to $E_{O 1}$; since the label of $E_{\mathrm{O} 1}$ is,$+ G_{\mathrm{O}}$ and G_{11} have the same relative positions as S_{O} and S_{11}. Similarly, G_{11} and G_{S} are joined by a line perpendicular to $E_{S 1}$, with relative positions reversed because of the label. These facts yield the relationship shown in figure 2.4 in the gradient space. However, we do not yet know the position of this figure in gradient space, nor the distances involved; only the angles are known.
S_{11} is not the only illumination surface in the Basic Shadow Problem: the illumination surface S_{12} joins edges $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$ (Figure 2-5). Along $E_{\mathrm{S} 2}$ the - label is assigned; along $E_{\mathrm{O} 2}$, the - label refers to the junction of S_{0} and the upper half-plane of S_{12}. The gradient space constraints are shown

Figure 2-4: Gradient Space Constraints from Illumination Surface 1
in figure 2-6. Note that it is possible for $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$ to be parallel, in which case the two rays shown in gradient space are coincident.

Figure 2.5: Basic Shadow Problem -- Illumination Surface 2
A third constraint in the gradient space arises from the fact that an edge E_{11} can be drawn joining $V_{\mathrm{O} 12}$ and $V_{\mathrm{S} 12}$ (Figure 2-7). This edge lies in a line which passes through the light source, since $V_{\mathrm{S} 12}$ is the shadow of $V_{\mathrm{O} 12}$. The vector I pointing at the light source can be represented in gradient space by a point G_{p}, which represents the intersection of a vector I from the origin with the plane $z=1$. Since E_{11} lies in the projection of this vector onto the image plane, the point G_{1} must lie along a line in gradient space, passing through the origin, and parallel to E_{11} (Figure 2-8). It is not known, however, how far this point G_{1} is from the origin; suppose this is determined somehow (as described below), and call the distance k. It should be noted that k represents the relative change in z with a change in x or y along the illumination vector. It is defined by this equation:

Figure 2-6: Gradient Space Constraints From Illumination Surface 2

$$
\begin{equation*}
k=\operatorname{sqrt}\left(\Delta x^{2}+\Delta y^{2}\right) / \Delta z \dot{=}\left\|E_{11}\right\| / \Delta z \tag{2.1}
\end{equation*}
$$

Figure 2.7: Basic Shadow Problem -. llumination Vector

The line $L_{\text {illum }}$ perpendicular to E_{11}, and located at a distance $1 / k$ from the origin, represents the locus of the gradients of all planes which contain the illumination vector I. This is the set of all illumination planes, and in particular contains both S_{11} and S_{12}; thus, G_{11} and G_{12} are points on the line $L_{\text {illum }}$. This property subsumes the property of G_{11} and G_{12} that they must be joined by a line perpendicular to E_{11}, since E_{11} can be given the label + or - (depending on which half-planes the line label refers to).

Figure 2-8: Gradient Space Constraints From Illumination Vector

The line $L_{\text {illum }}$ is the same as the terminator described by Horn in [4]. It separates the gradient space into two half-planes; the half-plane containing G_{1} represents the gradients of all planes that will receive illumination, while the other half-plane contains the gradients of self-shadowed surfaces (facing away from the light source).

This is the extent of the information available from the line drawing in figure 2-1. Since each gradient is an ordered pair (p, q), the problem has six parameters to be computed:

- (2 parameters) G_{O}, the gradient of S_{O}
- (2 parameters) G_{S}, the gradient of S_{S}
- (2 parameters) G_{1}, the direction of the light source.

From the Basic Shadow Problem geometry, three constraints are provided:

- The angle $G_{O} \cdot G_{11} \cdot G_{S}$, which comes from the angle $E_{O 1} \cdot E_{S 1}$
- The angle $G_{0} \cdot G_{12} \cdot G_{\mathrm{S}}$, which comes from the angle between $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$
- The direction of the line $L_{\text {illum }}$ (containing G_{11} and G_{12}), which comes from the direction of E_{11}.

We would therefore expect that three parameters must be given in advance, and the other three can be computed from the geometry.

Let us suppose, for example, that the value k is given (the relative depth component of the direction of the light source), and that G_{S} is known (the relative orientation of the background with respect to the camera). The construction in the gradient space for computing G_{o} proceeds as follows (Figure 2 9):

Figure 2-9: Solution to Basic Shadow Problem

1. Draw the line parallel to E_{11} through the origin. Since k is known, G_{i} and $L_{\text {illum }}$ can be found.
2. Plot G_{S}, which was given. Through this point, draw a line perpendicular to $E_{S 1}$. Where it intersects $L_{\text {illum }}$ must be G_{11}. Through G_{11}, draw a line perpendicular to $E_{\mathrm{O} 1} \cdot G_{\mathrm{O}}$ must lie on this line.
3. From G_{S}, draw a line perpendicular to $E_{S 2}$. Where it intersects $L_{i l l}$ will be G_{12}. From there, draw a line perpendicular to $E_{\mathrm{O} 2}$. Since G_{O} must lie on this line, the intersection of this line with the final line from step (2) above must be G_{O}.

In Appendix I, the closed form solution for the Basic Shadow Problem is presented, using a vector formulation of the problem.

2.2 Relationships Among the Parameters Supplied in Advance

In the example above, G_{S} and k were needed before the construction could take place. In practice, a program for a specific application may not be able to compute these particular parameters.

It is possible to begin the construction with any three of the six pieces of information specified in advance, as long as none are redundant with each other, and none are redundant with the direction of E_{11}.

It is possible, or perhaps likely, that a given line drawing will include the edge E_{OS} between S_{O} and S_{S}, as in figure 2-10. An interesting question arises as to whether this provides some additional constraint, which might perhaps relax the requirement that three pieces of information be provided in advance.

The edge E_{OS} turns out to be redundant with $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$, in the sense that given the latter, the former can be constructed, and vice versa. Suppose we are given $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$. These represent the intersections (in the scene) of planes S_{O} and S_{12}, and S_{S} and S_{12}, respectively. Now, either these two lines intersect or they do not. Suppose they intersect in a point. Calf it $V_{\text {Os2 }}$, since it is contained in surfaces $S_{\mathrm{O}}, S_{S^{\prime}}$, and S_{12}. This point is contained in both S_{O} and $S_{S^{\prime}}$ as is point $V_{\mathrm{OS} 1}$ which is given in the line drawing. Therefore, the line $E_{O S}$ must pass through these points. On the line drawing, find the intersection of $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$. Draw the line joining this point to $V_{\mathrm{OS} 1}$: this is E_{OS} (Figure 2-11).

Now, suppose that the two lines $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$ do not intersect anywhere. Then there is no point $V_{\mathrm{OS} 2}$ contained in all three surfaces $S_{\mathrm{O}}, S_{\mathrm{S}}$, and S_{12}. So, E_{OS} cannot intersect either $E_{\mathrm{O} 2}$ or $E_{\mathrm{S} 2}$. Since it is coplanar with these (on surfaces S_{O} and S_{S}, respectively), it must be parallel to both. Edge E_{OS} can therefore be drawn through $V_{\mathrm{OS} 1}$, parallel to $E_{\mathrm{O} 2}$ (and $E_{\mathrm{S} 2}$).

Figure 2.10: Basic Shadow Problem .- Edge $E_{\text {OS }}$ Provided

Figure 2-11: Redundancy of E_{OS} With $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$

By this reasoning, E_{OS} can be constructed from $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$. Similarly, if E_{OS} is given, either of $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$ can be calculated from the other, to provide the geometric constraint described above for the solution of the Basic Shadow Problem. Of course, the solution can also proceed directly using the label - on $E_{\text {OS }}$, with identical results.

The solution of this problem should be compared with the solution to the problem if there are no shadows .- if just S_{O} is given, joined to S_{S} along edge E_{OS}. Here, there are four parameters (G_{O} and G_{S}) to compute, and one constraint from the image (E_{OS}), so three pieces of information are still needed in advance. With shadows, the same number of a priori parameters are needed, but one of
them can be a description of the light source position instead of a description of a surface orientation. The significance of shadows is that they allow information about the light source to be used to solve the problem as a substitute for information about the surface orientations themselves.

2.3 Occurrence of the Basic Shadow Problem

It has not been assumed in this discussion that surfaces S_{O} and S_{S} must touch. In practice, the Basic Shadow Problem arises any time there are two surfaces which provide two shadow edge pairs and an enclosed illumination vector. Any additional shadow edge pairs on these two surfaces will be redundant, as will any visible edges along which these two surfaces intersect directly.

Figure 2-12: Occurence of the Basic Shadow Problem

3. Variations in Lighting

When the light source is not infinitely far away and behind and above the camera, the shadow geometry is slightly different.

3.1 Light Source In Front of the Camera

When the light source is in front of the camera (i.e. in the scene, where it might even appear in the image) and infinitely far away, the Basic Shadow Problem takes the form shown in figure 3-1. In this case, the first illumination surface S_{11} joins edges $E_{\mathrm{O} 1}$ and $E_{\mathrm{S} 1}$, giving both of these edges - labels. Illumination surface S_{12} joins $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$. At $E_{\mathrm{S} 2}$, the label is clearly -. To label $E_{\mathrm{O} 2}$, it is necessary to extend S_{12} above this edge, and apply the label to S_{O} and the upper half-plane of S_{12}. The label will then be + .

Figure 3-1: Geometry With Light Source In Front of Camera, Infinitely Far Away

The vector pointing toward the light source does not intersect the plane $z=1$, but the vector pointing away from the light source (toward the camera) does. This has the effect of placing the point G_{1} in the gradient space on a line parallel to edge E_{11} passing through the origin as before, but on the half-line towards surface S_{S} instead of towards surface S_{O}. This is related to the fact that the gradient space can only represent half of all possible surface orientations. The Gaussian Sphere [8] might be used to overcome this problem, although it is difficult to represent in a computer.

Figure 3-2: Gradient Space Constraints With Light Source In Front of Camera

All of the above gradient space constraints are shown in figure 3-2. The solution technique and parameterization are exactly the same as previously presented for the Basic Shadow Problem. The closed-form solution is that of Appendix I, with the convention that $k<0$ since S_{O} is self-shadowed (as explained in the Appendix).

The redundancy of edge E_{OS} is also the same: if $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$ are parallel, then E_{OS} is parallel to them; if they intersect at a point, then $E_{O S}$ intersects them both at that point. In this situation, if edges $E_{\mathrm{O} 3}$ and $E_{\mathrm{S} 3}$ are present, they are redundant with edges $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$. This can be easily seen, since edge E_{OS} can be calculated from the intersection of $E_{\mathrm{O} 1}$ and $E_{\mathrm{S} 1}$ and the intersection of $E_{\mathrm{O} 3}$ and $E_{\mathrm{S} 3}$; since edge E_{OS} is known to be redundant with $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$, so must be $E_{\mathrm{O} 3}$ and E_{S3}.

3.2 Light Source Behind and Below Camera

If the light source is behind the camera but below it, and infinitely far away, then the geometry is as shown in figure 3-3. In this case, the only difference from the Basic Shadow Problem is that edge $E_{\mathrm{O} 2}$ receives the label + instead of - ; the labels of edges $E_{\mathrm{O} 1}, E_{\mathrm{S} 1}, E_{\mathrm{S} 2}$, and E_{OS} (if present) will be the same as previously described.

While the solution technique is the same as before, it should be noted that the point G_{1}, pointing

Figure 3-3: Light Source Behind and Below Camera, Infinitely Far Away.
towards the light source, will be in the lower half-plane of the gradient space instead of the upper halfplane.

In this situation, edge E_{OS} is still redundant with the pair of edges $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$; the pair of edges $E_{\mathrm{O} 3}$ and $E_{\mathrm{S} 3}$ is interchangeable with either of these.

3.3 Light Source Not Infinitely Distant

If the light source is a point not infinitely far away, then all illumination vectors will converge at the light source instead of being parallel (Figure 3-4).

Only two of the preceding arguments need to be changed in this case. The first difference is that the value k is dependent upon the particular illumination vector used, and each illumination vector will have its own value of k and its own line of illumination surface gradients $L_{\text {illum }}$.

The second change is that edges $E_{\mathrm{O} 3}$ and E_{S3} are no longer interchangeable with E_{OS} or with $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$. The new information is actually provided not by the angle between the edges $E_{\mathrm{O} 3}$ and $E_{\mathrm{S} 3}$, but by the new illumination vector E_{12} seen between vertices $V_{\mathrm{O} 23}$ and $V_{\mathrm{S} 23}$. This is shown in figure 3 . 4 for one case (light source below and behind camera); similar line labels and reasoning hold for the other cases presented previously.

In this arrangement, the exact position of the light source can be calculated. The lines E_{11} and E_{12}

Figure 3-4: Point Light Source at Finite Distance
must intersect (in the scene); the light source is located at the point of intersection. Under orthography, as we are assuming here, the x and y coordinates of the light source will be the same as the $x-y$ coordinates of the intersection of the lines in the image. So, these coordinates can easily be found. The relative z coordinate is then found using the k value for either of these vectors (E_{11} or E_{12}), using the definition of k presented above in equation (2.1): if ($\Delta x, \Delta y, \Delta z$) is an illumination vector from an object vertex to the light source (such as E_{14} or E_{12}), then Δx and Δy can be measured in the image, and

$$
\Delta z=\operatorname{sqrt}\left(\Delta x^{2}+\Delta y^{2}\right) / k
$$

This shadow problem has seven parameters:

- (2 parameters each) Gradients G_{O} and G_{S} of surfaces S_{O} and S_{S}.
- (3 parameters) Coordinates of light source position

Six of these (all except the relative z coordinate of the light source) can be calculated by exactly the same method used in the Basic Shadow Problem. To calculate the z coordinate of the light source, one additional piece of information must be utilized from the line drawing: the line E_{12}. Since the number of a priori pieces of data needed does not change when the light source is at a finite distance, the remainder of this paper will omit further discussion of the extra parameter needed in this case. It will be indicated when the extra image constraint is available.

It can be determined from the line drawing whether the light source is in fact infinitely far away: if two illumination vectors (such as E_{11} and E_{12}) intersect, then the light source is at a finite distance, and all illumination vectors in the image must intersect at the same point. If any two illumination vectors are parallel, then all illumination vectors are parallel and the light source is infinitely far away. These observations can be used to arrive at constraints between various simple shadow problems that arise in different parts of the same image, involving different objects and surfaces.

3.4 Line Labels and Light Source Position

We are now in a position to describe how to compute the line labels to be assigned to the various edges of S_{O} and S_{S}, relating object surfaces to illumination surfaces. Each edge of S_{O} corresponds to a shadow edge on S_{S}. The line labels depend upon the relative position of the edge of S_{O} and the light source, and on whether S_{O} is illuminated (facing towards the light source) or self-shadowed (facing away from the light source).

In the discussion of cases below, note that each edge defines a line which cuts the image plane into two half-planes. Only one of these half-planes is occupied by the surface containing the edge. Similarly, only one half-plane is occupied by the light source; if the light source is infinitely far away, it can be classified as being in whichever half-plane the illumination vector l is pointing towards (as in Figure 2-7).

- Case I: S_{O} illuminated; surface and light source in opposite half-planes. In this case, the occluding edge and shadow edge both receive the label - (Figure 3.5(a)). This case corresponds to edges $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$ in the Basic Shadow Problem (Figure 2-5).
- Case II: S_{0} illuminated; same half-plane. The occluding edge receives the label + ; the shadow edge is labeled - (Figure 3-5(b)). This corresponds to edges $E_{\mathrm{O} 1}$ and $E_{\mathrm{S} 1}$ in the Basic Shadow Problem (Figure 2-3).
- Case III: S_{O} self-shadowed; opposite half-planes. The occluding edge is labeled + , referring to the upper half-plane of the illumination; the shadow edge is labeled -, referring to the lower half-plane of surface S_{S}. The reference marks in figure 3-5(c) indicate the half-planes involved.
- Case IV: S_{O} self-shadowed; same half-plane. Both edges receive the label - as shown in figure 3 -5(d).

It is important to keep in mind that classical line-labeling methods such as that of Waltz [18] apply labels that refer to the real (object) surfaces which are bounded by a given edge. The line labels derived in this section apply to the relationships between one real surface and one hypothesized (illumination) surface along an edge.

(a)So illuminated Opposite half plane

(c) So seif-shadowed

Opposite half-plane

(b) So illuminated Same half-plane

(d) So self-shadowed Same half-plane

Figure 3-5: Line Labels and Light Source Positions

3.5 Changing the Number of Light Sources

It is possible that several light sources will be present, as in figure 3-6. In this case, each light source produces two parameters in the problem (the direction of illumination), and adds two image constraints (an illumination vector and one non-redundant shadow edge pair). The number of a priori parameters needed will be the same, regardless of how many light sources are present.

However, for each light source, one of the a priori parameters may be the value k for that light source, based on knowledge of the three-dimensional direction of illumination. In general, if n light

- edges are redundant with Eos

Figure 3-6: Basic Shadow Problem With Multiple Light Sources
sources are present and the value of k is known for each, the problem has $2 n+4$ parameters, the image provides $3 n+1$ constraints, and $3-n$ parameters are needed in advance. Thus, shadows allow you to use a priori knowledge about light source positions instead of a priori knowledge about surface orientations when computing the gradients of the visible surfaces.

In figure 3-7, there are no light sources or shadows. There are 4 parameters to compute (the gradients of the two surfaces). An image constraint will be provided in this case only if the two surfaces S_{O} and S_{S} touch along edge $E_{O S}$; if they do not, then an extra a priori parameter will be needed (i.e. 4 instead of 3).

Figure 3-7: Two Surfaces With No Light Source

4. Shadows Falling On Polyhedra

When the shadow of S_{O} falls on several planes, it is possible to determine the surface orientations of all of them.

4.1 Shadows Falling On Polyhedra With No Shadow Edge Discontinuities

The shadow of S_{O} may fall on two surfaces, S_{S} and S_{T} (Figure 4-1). In this case, the first illumination surface S_{11} contains edges $E_{\mathrm{O} 1}, E_{\mathrm{S} 1}$, and $E_{\mathrm{T} 1}$. illumination surface S_{12} contains edges $E_{\mathrm{O} 2}$ and $E_{\mathrm{S} 2}$. Edge $E_{\mathrm{H} 1}$ is an illumination vector, joining vertices $V_{\mathrm{O} 12}$ and $V_{\mathrm{S} 12}$.

st
Figure 4-1: Shadow Falling On Two Surfaces
In this figure, a Basic Shadow Problem can be solved using surfaces S_{O} and S_{S}. The gradient space constraints are shown in figure 4-2. Parts (a) and (b) of this figure show constraints that are identical to those of the Basic Shadow Problem. In part (c), edge $E_{T 1}$ has provided a constraint on G_{T} in addition to the relation between G_{O}, G_{S}, and G_{11}. Part (d) shows another constraint between G_{S} and G_{T}, from edge E_{ST}. Taken together, these two new constraints ((c) and (d)) can be used to compute G_{T} after the Basic Shadow Problem has been solved involving G_{O} and G_{S}. All of these constraints are derived from the line labels assigned to the figure as previously described in section 3.4. The edge E_{ST} is labeled - if the shadow edge $E_{\mathrm{S} 1}$ bends toward $E_{\mathrm{O} 1}$ from $E_{\mathrm{t} 1}$, and + if it bends away from E_{01}.

Figure 4-2: Gradient Space Constraints From Two Shaded Surfaces

In this problem, there are two additional parameters to compute $\left(G_{T}\right)$ compared with the Basic Shadow Problem; there are also two additional pieces of information from the image (edges E_{ST} and $E_{\mathrm{T} 1}$). The relationships are those of Appendix I, with these additional relations involving G_{T} :

$$
\begin{aligned}
& E_{\mathrm{ST}} \in S_{\mathrm{T}}, S_{\mathrm{S}} \quad \cdot \Delta z_{\mathrm{ST}}=G_{\mathrm{T}} \cdot E_{\mathrm{ST}}=G_{\mathrm{S}} \cdot E_{\mathrm{ST}} \\
& E_{\mathrm{T} 1} \in S_{\mathrm{T}}, S_{11} \quad \cdot \Delta z_{\mathrm{T} 1}=G_{\mathrm{T}} \cdot E_{\mathrm{T} 1}=G_{11} \cdot E_{\mathrm{T} 1} \\
& {\left[\begin{array}{c}
-\Delta z_{\mathrm{ST}} \\
-\Delta z_{\mathrm{T} 1}
\end{array}\right]=\left[\begin{array}{c}
E_{\mathrm{ST}}^{T} \\
E_{\mathrm{T} 1}
\end{array}\right] G_{\mathrm{T}}} \\
& G_{\mathrm{T}}=\left[\begin{array}{c}
E_{\mathrm{ST}}^{\mathrm{T}} \\
E_{\mathrm{T} 1}
\end{array}\right]-1\left[\begin{array}{c}
G_{\mathrm{S}} \cdot E_{\mathrm{ST}} \\
G_{11} \cdot E_{\mathrm{T} 1}
\end{array}\right]
\end{aligned}
$$

This problem, like the basic problem, requires that three pieces of information be supplied in advance.

This solution technique can be generalized to cases such as figure 4-3, in which there are several

Figure 4-3: Shadow Falling On Many Surfaces
shaded surfaces. If there are n shaded surfaces which intersect the shadow edge with no discontinuities in the shadow edge, the problem will have a total of $2 n+4$ parameters: $2 n$ for the gradients of the shaded surfaces, 2 for G_{O}, and 2 for G_{1}. The image will supply $2 n+1$ constraints; three parameters must be given in advance.

4.2 Breaks In the Shadow Edge

It is possible for the shadow edge to exhibit discontinuities when the shadow edge falls across occluding edges, as in figure 4.4.

The solution method is exactly as before, but this time there will be no constraint between surfaces S_{S} and S_{T}, since edge $E_{S T}$ has been replaced by edge $E_{T X}$ which provides no constraint between S_{S} and S_{T}. Therefore, the image provides one less constraint, and one additional non-redundant parameter must be supplied in advance in order to compute all the șurface orientations. Of course, the gradient of surface S_{x} cannot be computed, since S_{x} is not visible in this image.

4.3 Constraints in the General Case

Suppose a shadow is cast by a single surface S_{O}, onto n shaded surfaces, and exhibiting d discontinuities.

- The problem has a total of $2 n+4$ parameters to be computed:

Figure 4-4: Shadow Edge With Discontinuites
$\circ 2 n$ for the gradients of the n shaded surfaces
$\circ 2$ for the gradient of the occluding surface S_{0}
-2 for the direction G_{1} of the illumination

- The image provides $2 n+1-\alpha$ constraints:
$\circ n+1$ shadow edge segments $E_{\mathrm{S} 1}, E_{\mathrm{T} 1}, E_{\mathrm{S} 2^{\prime}}$ etc.
- 1 from the illumination vector E_{11}
- $n-d-1$ from the intersections of the n shaded surfaces ($E_{S T}$, etc.)
- It is therefore required to supply $3+d$ non-redundant parameters in advance:
- 3 for the solution of the Basic Shadow Problem at the vertex
$\circ d$ to compensate for the d discontinuities

It is also the case that the edge E_{OT} (between the occluding surface and one shaded surface) is non-redundant if there are any discontinuities along the shadow edge caused by illumination surface S_{11} (as in figure 4-4). Therefore, if this edge is present, the image provides an additional constraint, and only $2+d$ parameters are needed in advance.

If the same figure is drawn without shadows (and including edge E_{OT}), then:

- The problem has $2 n+2$ parameters
- The image supplies $n-d$ constraints
- $n+d+2$ parameters must be supplied in. advance

The improvement when shadows are present is that only $d+2$ parameters are needed in advance, a
difference of n parameters. This can.be a very significant improvement when n is large, as when a shadow is cast on a convex polyhedron.

5. Shadows Cast By Polyhedra

When a shadow is cast by a polyhedron onto a single surface, three parameters must always be given in advance.

5.1 Polyhedra With Two Visible Surfaces

When a shadow is cast by a polyhedron as in figure 5-1, each shadow-making edge ($E_{\mathrm{PX}}, E_{\mathrm{OP}}$) must be the intersection of an illuminated surface and a self-shadowed surface of the polyhedron. In the figure, S_{O} is illuminated and S_{P} is self-shadowed. The edge $E_{O P}$ between them is a shadow-making edge, and corresponds to shadow edge $E_{S 1}$. Illumination surface S_{11} contains these two edges. Similarly, it can be concluded that edge E_{PX} is a shadow-making edge, and must correspond to shadow edge $E_{\mathrm{S} 2}$ (via illumination surface S_{12}).

Figure 5-1: Shadow Cast By Simple Polyhedron
It can be deduced from the above observations that whatever surface intersects S_{p} along edge $E_{P X}$ must be illuminated. It cannot, however, be concluded that the surface containing edge $E_{P X}$ also contains edge E_{OX}. For this reason, no strong statements can be made about the surfaces that are not visible in the image.

In the figure, a Basic Shadow Problem exists involving surfaces S_{P} and S_{S}. The edge $E_{E p s}$ is therefore redundant with the two shadow edge pairs $\left(E_{\mathrm{OP}}\right.$ and $E_{\mathrm{S} 1}, E_{\mathrm{PX}}$ and $E_{\mathrm{S} 2}$). This is important, since it is typically difficult to resolve details such as edge E_{PS} within shaded portions of the image [9].

When the basic problem has been solved, the gradients of surfaces S_{p} and S_{S} will be known. The gradient of S_{O} can then be calculated by using the constraints provided by edges E_{OP} (with surface S_{p}) and E_{OS} (with surface S_{S}).

Little useful information is provided by edge E_{Ox}, since it borders on only one visible or constructible surface $\left(S_{O}\right)$. Edge E_{PX}, on the other hand, is very important, since it borders on two surfaces (visible surface S_{p} and the illumination surface S_{12}).

In this problem, there are eight parameters to be computed (the gradients of surfaces S_{O}, S_{p}, and S_{S}, and the direction of the light source G_{j}). The image provides five constraints (two from the shadow edge pairs $E_{\mathrm{OP}}-E_{\mathrm{S} 1}$ and $E_{\mathrm{PX}}-E_{\mathrm{S} 2}$, one from the illumination edge E_{11}, and two from the edges E_{OP} and E_{OS}). Therefore, three parameters must be provided in advance in order to perform the computation.

If the figure were drawn with no shadows, there would be six parameters altogether (the gradients of the three surfaces), and three constraints in the image (from edges $E_{\mathrm{OP}}, E_{\mathrm{OS}}$, and E_{PS}). Three parameters would be required in this case, also. As in the Basic Shadow Problem itself, the shadow of a polyhedron does not provide additional constraints; it merely allows you to substitute information about the light source for a priori information about the surface orientations themselves, and allows you to utilize easy-to-find shadow edges instead of hard-to-find details within shaded areas of the image.

The above method of solution also applies when the light source is in a different position as in figure 5-2, which illustrates two illuminated surfaces of a polyhedron.

5.2 Adding a Self-Shadowed Surface

Suppose we add an additional self-shadowed surface to figure 5-1, as in figure 5-3. In this figure, both S_{A} and S_{P} are self-shadowed. We will suppose that the new surface S_{A} adjoins a shadowmaking edge $E_{A O}$. (If the new surface S_{A} does not adjoin a shadow-making edge, it will be buried in the middle of the shaded area and will have no effect on the shape of the shadow.)

Two new parameters are present in the system: the gradient G_{A} of the new surface S_{A}. The image provides two new constraints that can be used to solve for these two parameters: the shadow edge pair $E_{\mathrm{AX}} \cdot E_{\mathrm{S}^{\prime}}$ and the edge E_{AO} between surfaces S_{A} and S_{O}. So, three parameters are still required in advance to solve the system completely.

Figure 5-2: Light Source In a Different Position

Figure 5-3: Polyhedron With Two Self-Shadowed Surfaces

If the figure is drawn without shadows, the same two parameters are required $\left(G_{A}\right)$, and the two new constraints come from edges E_{AO} and E_{AS}.

The edge E_{AS} is redundant with the shadow edge pair $E_{\mathrm{AO}} \cdot E_{\mathrm{S} 2}$ when shadows are present. One of the two edges E_{AP} and E_{PS} is needed, along with E_{OP}, to determine the gradient of surface S_{P}. Thus, two of the edges $E_{\mathrm{SP}}, E_{\mathrm{AS}}$, and E_{PS} are redundant, and only one is needed. Since these edges all lie in the shadowed area of the image, they will be difficult to extract reliably [13]. Shadows reduce the need to find edges within shadowed areas of the image.

It should also be noted that in this figure, the additional illumination edge E_{12} can be used with E_{11} to determine the exact location of the light source. This was not possible in the simple case (figure 5-1), because onty one illumination edge was present. .

5.3 Adding an Illuminated Surface

When the basic figure (Figure 5-1) is modified by adding an illuminated surface instead of a selfshadowed surface, a line drawing such as figure $5-4$ is the result. In this figure, surfaces S_{A} and S_{O} are illuminated, while S_{P} is self-shadowed. (Again, if the surface does not adjoin a shadow-making edge, there will be no effect on the shape of the shadow and the consequent inferences to be made from shadow geometry. Therefore, we will assume that the new surface S_{A} does adjoin a shadowmaking edge E_{AP}.)

The reasoning here is analogous to the case of an additional self-shadowed surface: two new parameters are needed $\left(G_{A}\right)$, and there are two new constraints with shadows (the pair $E_{\mathrm{PX}} \cdot E_{\mathrm{S} 3}$ and the edge $E_{A O}$), and two new constraints with no shadows (edges $E_{A O}$ and $E_{A P}$). In any case, three parameters will be required in advance. As in the previous case, the new illumination vector E_{12} can be used with E_{11} to determine the exact location of the light source.

The shadow edge pair $E_{A O} \cdot E_{\mathrm{S} 2}$ from figure 5-3 has been replaced by the pair $E_{\mathrm{AP}} \cdot E_{\mathrm{S} 2}$ in figure 5-4.
It is possible that additional a priori parameters will be needed in pathological cases. Figure 5-5 depicts an object with a surface adjoining the shadow-making edge which is not visible in the image (at $E_{P X}$). Here, an additional a priori parameter will be needed to determine the gradient of surface S_{R}. The additional parameter is needed because edge $E_{Q x}$ provides no constraint between surfaces S_{Q} and S_{R}. This situation is analogous to the discontinuities in the shadow edge discussed previously.

Another circumstance requiring additional a priori parameters is shown in figure 5-6. Here, vertex $V_{\text {OPQR }}$ is not trihedral -. there are four surfaces meeting at that point $\left(S_{O}, S_{P}, S_{Q}\right.$, and $\left.S_{R}\right)$. This adds

Figure 5-4: Polyhedron With Two Illuminated Surfaces
one degree of uncertainty involving the gradients of surfaces S_{Q} and S_{R} : one additional a priori parameter is needed to solve this problem.

5.4 The General Solution For Polyhedral Shadow Geometry

The results of the two previous extensions can be directly combined. In these arguments, it has never been assumed that the shadow edge $E_{S 3}$ and the corresponding shadow-making edge (E_{AX} or E_{PX}) meet at a vertex. Therefore, the results apply without change to line drawings with additional hidden surfaces, such as figure 5.7. In this figure, there is no strong information to be obtained from shadow edge $E_{S 4}$.

In the combined case, a line drawing may depict i illuminated and s self-shadowed surfaces adjoining shadow-making edges, casting a shadow on one surface, with h hidden shadow-making surfaces and t non-trihedral vertices. The problem contains $2 i+2 s+4$ parameters (gradients of the shadow-making surfaces, $G_{S^{\prime}}$ and G_{1}). The image supplies $2 i+2 s-h \cdot t+1$ parameters ($i+s$ shadowmaking edges, $i+s-h-t$ nonredundant edges between two visible surfaces, and 1 illumination edge). For solution, $3+h+t$ additional parameters are therefore neecicd.

Figure 5-5: Additional Parameter Needed for Hidden Shadow-Making Surface

If no shadows are present, $3+h+t$ parameters are still needed.

If $i>1$ or $s>1$, an additional illumination edge can be used to determine the exact position of the light source.

The above results can be composed with the results from the previous chapter for shadows cast upon polyhedra.

Suppose the image depicts i illuminated surfaces and s self-shadowed surfaces along the shadowmaking edges of a polyhedron, casting a shadow whose corresponding edge intersects n surfaces of another polyhedron exhibiting α discontinuities, with h hidden shadow-making surfaces and t nontrihedral vertices.

- The problem has $2 i+2 s+2 n+2$ parameters:
- $2 i$ for the gradients of the i illuminated surfaces

Figure 5-6: Additional Parameter Needed for Non-Trihedral Vertex

- $2 s$ for the gradients of the s self-shadowed surfaces
- $2 n$ for the gradients of the n background surfaces
- 2 for the direction of illumination, G_{1}
- The image provides $2 i+2 s+2 n-d-h \cdot t \cdot 1$ constraints:
- 1 from the illumination vector
- 2 shadow-making/shadow edge pairs used to solve the Basic Shadow Problem at one vertex
$0 i+s-2$ additional shadow-making edges
- $n-1$ additional shadow edges
oits-h-t-1 non-redundant edges between visible surfaces of the polyhedron casting the shadow
$\circ 1$ non-redundant edge between the shadow-making polyhedron and the shaded polyhedron
- $n \cdot d \cdot 1$ edges at intersections of visible shaded surfaces
- Therefore, $3+d+h+t$ parameters must be provided a priori:
- 3 for the solution of the Basic Shadow Problem
$\circ d$ to compensate for the d discontinuities in the shadow edge due to invisible shaded surfaces
$\circ h$ to compensate for the h hidden shadow-making surfaces

Figure 5-7: Polyhedron With Additional Invisible Surfaces
o t to compensate for the t non-trihedral vertices

Without shadows, the problem contains $2 i+2 s+2 n$ parameters, the image supplies $2 i+2 s+n-d-h-$ $t-2$ parameters, and $n+d+h+t+2$ parameters must be supplied before the computation.

If >1 or $s>1$, an additional illumination vector can be used to determine the exact position of the light source.

The contribution of shadows for computing surface orientations from line drawings is thus made clear:

- Shadows provide an increasing amount of information when the shadow edge intersects many visible, differently oriented surfaces of the background.
- Shadows allow you to substitute one parameter describing the direction of illumination to replace one parameter describing a surface orientation before performing the required calculations.
- Shadows allow you to substitute (usually) highly visible shadow edges and shadow.
making edges for many of the unreliable edges within shaded portions of the image, while providing the same amount of information.

In addition, when several shadow problems appear in different portions of the same image, they share some constraints. For example, suppose several polyhedral blocks are scattered over a single surface. If the gradient of the surface and the direction of illumination are known, then three constraints are provided for each of the shadow problems. This will aliow the exact solutions to be found for all the problems, if no shadow edge discontinuities or non-trihedral vertices are present.

6. Shadows Involving Curved Surfaces

In this chapter, the involvement of curved surfaces in shadow geometry will be explored. Whether the curvature lies in the occluding surface (object) or the shaded surface, additional information is required to determine the exact surface orientation along the shadow-making arc or the shadow edge arc.

Witkin [19] has also used shadows to determine curved surface orientation. He developed a relation between the curvature of a shadow edge in the scene and the curvature of the shadow edge in the image, then derived surface orientations, using surface texture gradients to provide the additional constraint necessary. The discussion below differs from Witkin's in that surface orientation rather than curvature (rate of change of orientation) is the basis of the theory.

For discussing curved surfaces, it is necessary to generalize the relation between line labels and surface gradients. Suppose two (possibly curved) surfaces S_{A} and S_{B} intersect along arc $E_{A B}$ (Figure 6-1).

Figure 6-1: Curved Surfaces Intersecting Along an Arc

The surfaces are defined by

$$
S_{A}:-z=f_{A}(x, y) \quad S_{B}:-z=f_{B}(x, y)
$$

At a point $V_{A B}$ on $E_{A B}$. .

$$
-z=f_{A}(x, y)=f_{B}(x, y)
$$

Differentiating by x using the rule

$$
\frac{d f(x, y)}{d x}=\frac{\partial f}{\partial x}+\frac{d y}{d x} \frac{\partial f}{\partial y}
$$

we have

$$
-\frac{d z}{d x}=\frac{\partial f_{\mathrm{A}}}{\partial x}+\frac{d y}{d x} \frac{\partial f_{\mathrm{A}}}{\partial y}=\frac{\partial f_{\mathrm{B}}}{\partial x}+\frac{d y}{d x} \frac{\partial f_{\mathrm{B}}}{\partial y}
$$

If G_{A} is the gradient of S_{A} at $V_{A B}$, and G_{B} is the gradient of S_{B} at $V_{A B}$, then

$$
G_{\mathrm{A}}=\left(\rho_{\mathrm{A}}, q_{\mathrm{A}}\right)=\left(\frac{\partial f_{\mathrm{A}}}{\partial x}, \frac{\partial f_{\mathrm{A}}}{\partial y}\right) \text { and } G_{\mathrm{B}}=\left(\rho_{\mathrm{B}}, q_{\mathrm{B}}\right)=\left(\frac{\partial f_{\mathrm{B}}}{\partial x}, \frac{\partial f_{\mathrm{B}}}{\partial y}\right)
$$

Substituting,

$$
-\frac{d z}{d x}=p_{A}+\frac{d y}{d x} q_{A}=\rho_{B}+\frac{d y}{d x} q_{B}=G_{A} \cdot\left(1, \frac{d y}{d x}\right)=G_{B} \cdot\left(1, \frac{d y}{d x}\right)
$$

If $E=(\Delta x, \Delta y)$ is a vector tangent to $E_{A B}$ at $V_{A B}$ in the image, corresponding to the three-dimensional vector ($\Delta x, \Delta y, \Delta z$) in the scene, then the above equation can be multiplied by Δx :

$$
-\Delta x \frac{d z}{d x}=\Delta x G_{A} \cdot\left(1, \frac{d y}{d x}\right)=\Delta x G_{B} \cdot\left(1, \frac{d y}{d x}\right)
$$

Since

$$
\Delta z=\Delta x \frac{d z}{d x} \text { and } \Delta y=\Delta x \frac{d y}{d x}
$$

we have

$$
-\Delta z=G_{A} \cdot(\Delta x, \Delta y)=G_{B} \cdot(\Delta x, \Delta y)=G_{A} \cdot E=G_{B} \cdot E
$$

This is the curved-surface analogue of the relation $-\Delta z=G \cdot E$ described earlier for planar surfaces: the planar-surface edge E is replaced by the tangent vector E to the arc of intersection of two curved surfaces. As a consequence, G_{A} and G_{B} lie along a line in gradient space perpendicular to the tangent to the arc of intersection in the image.

6.1 Curvature in the Shaded Surface

Suppose a flat surface is casting a shadow on a curved surface, as in figure 6-2. Here, vertex $V_{\mathrm{S} 12}$ is the shadow of vertex $V_{O 12}$. Surface S_{11}, the first illumination surface, casts the shadow of edge $E_{O 1}$ on $\operatorname{arc} E_{\mathrm{S} 1}$ of the curved surface S_{S}. Surface S_{12} similarly casts the shadow of edge $E_{\mathrm{O} 2}$ on $\operatorname{arc} E_{\mathrm{S} 2}$.

Suppose $V_{S X}$ is an arbitrary point on the arc $E_{S 1}$. Can we determine the gradient G_{X} of S_{S} at this point?

Arc $E_{S 1}$ is the arc of intersection between the curved surface S_{S} and the illumination surface S_{11} (defined by edge $E_{\mathrm{O} 1}$ of surface S_{O}). Therefore, as previously explained; gradients G_{X} (of S_{S} at V_{SX})

Figure 6-2: Shadow Cast On a Curved Surface
and G_{11} (of S_{11}) must lie along a line in gradient space perpendicular to the tangent line $E_{X 1}$ to $E_{S 1}$ at V_{SX}. This constraint is illustrated in figure 6-3.

Figure 6-3: Gradient Space Constraint Between G_{X} and G_{11}

This reasoning can be used to find the two tangent lines at vertex $V_{S 12}$, and use them in a Basic

Shadow Problem with edges $E_{\mathrm{O} 1}$ and $E_{\mathrm{O} 2}$ of the occluding surface S_{O}. If S_{V} is the plane tangent to S_{S} at $V_{S 12}$, the Basic Shadow Problem actually involves surfaces S_{V} and S_{O}. For this computation, three a priori parameters will be required, and the gradients $G_{0}, G_{V}, G_{11}, G_{12}$, and G_{1} will be computed.

It is not possible to compute the gradients G_{X} (and G_{Y}, etc.) without additional information. However, it is possible to establish a one-dimensional constraint on each such gradient. Since the gradient G_{11} of illumination surface S_{11} was computed as part of the Basic Shadow Problem at vertex $V_{S 12}$, the constraints provided by the tangent lines $E_{X 1}$ and $E_{Y 1}$ cause gradient space constraints as shown in figure 6-4. Similar reasoning allows constraints on the gradients at points along arc $E_{\mathrm{S} 2}$ to be computed, using the gradient G_{12} of illumination surface S_{12}.

Figure 6-4: Gradient Space Constraints On Tangent Planes To S_{S}

For an investment of three parameters given in advance, then, the gradients of S_{O} and S_{V} can be computed, as well as a one-dimensional constraint on the gradient for each point along arcs $E_{\mathrm{S} 1}$ and $E_{\mathrm{S} 2}$. Additional constraint for the gradients along these arcs might come from another source such as Horn's "shape from shading" technique [4] or a priori knowledge of the shape of the object bounded by surface S_{S}.

In this shadow problem, if another illumination vector is available (possibly from the shadow of another vertex of S_{O}), the exact position of the light source can then be determined.

The information available from using shadows in this problem is not redundant with information available from the same line drawing without shadows.

6.2 Shadows Cast By Curved Surfaces

When a curved object casts a shadow on a flat surface as in figure $6-5$, the shadow edge $E_{\text {Is }}$ corresponds to the shadow of the "arc of extinction" E_{10} which divides surface S_{0} into an illuminated part and a self-shadowed part. There exists a curved illumination surface S_{1}, composed of illumination vectors, tangent to S_{O} along E_{10} and intersecting the shaded surface S_{S} along $E_{\text {IS }} S_{1}$ is a cylinder, whose axis is parallel to the direction of illumination.

Figure 6-5: Shadow Cast By a Curved Surface

There is a special significance to the line in the image tangent to both $E_{1 S}$ and the outline of S_{0} : it is an illumination vector, such as E_{11} in figure 6-5. 'If two such tangent lines are visible (as with E_{11} and E_{12} in figure 6-5) or some other feature is visible in both E_{10} and $E_{1 S}$, then a second illumination vector can be found. From two illumination vectors, the exact position of the light source can be computed and the shadow point V_{SX} can be determined for each point V_{OX} on $\operatorname{arc} E_{10^{\circ}}$.

The surface S_{1} is composed entirely of illumination vectors; its gradient at each point must therefore lie along the line $L_{\text {illum }}$ in gradient space. To determine this line, the value k for the light source position must be given.

If the light source is not infinitely far away, each illumination vector such as $E_{1 \mathrm{X}}$, has a different value of k and determines a different line $L_{\text {illum }}$ in gradient space. However, all the values of k can be computed from the position of the light source, given a single value of k such as that for E_{11}. We will therefore assume, for simplicity, that the light source is infinitely far away, and that a single line $L_{\text {illum }}$ exists.

Unfortunately, no stronger statements can be made about the gradient of S_{O} from examination of the $\operatorname{arc} E_{10}$. In particular, the direction of the tangent line $E_{0 x}$ bears no relationship to the gradient of S_{0}. This is illustrated in figure 6-6, which depicts two cylinders tangent to the same illumination plane. The arcs of extinction (dotted lines) have completely unrelated directions in the image.

Cylinders in the same plane
Figure 6-6: Arcs of Extinction are Unrelated To Surface Orientation

However, it is possible to use the shadow $E_{\text {IS }}$ to compute the gradients of the tangent surfaces
along E_{10}. The gradient G_{X} of S_{O} at $V_{O X}$ is the same as the gradient of S_{1} at $V_{O X}$, since S_{1} is tangent to S_{O} at that point. We have two constraints on G_{x} from properties of S_{1} :

1. S_{i} is an illumination surface, so G_{X} lies on $L_{\text {illum }}$.
2. The gradient $\left(G_{X}\right)$ of S_{1} at $V_{O X}$ is the same as the gradient of S_{1} at $V_{S X}$ (the shadow of $V_{O X}$), since S_{1} is a cylinder. As previously shown, G_{X} and G_{S} (the gradient of the shaded surface S_{S}) must lie along a line in the gradient space which is perpendicular to $E_{S X}$, the line tangent to $E_{\text {IS }}$ at $V_{S X}$.

The constraints on G_{x} are illustrated in figure 6-7.

Figure 6-7: Gradient Space Constraints on G_{x}
So, suppose we are given three parameters $-k$ and the gradient $G_{\dot{S}}$ of surface S_{S}. From these, it is possible to compute the gradient G_{X} of the tangent plane to S_{O} for each point $V_{O X}$ along the arc of extinction E_{10} :

1. In gradient space, draw $L_{\text {illum }}$ from E_{11} and k.
2. In the image, find the shadow $V_{S X}$ of $V_{O x}$ by following an illumination vector from $V_{O x}$ to its intersection with the shadow $\operatorname{arc} E_{\text {IS }}$. Draw the tangent line $E_{S X}$ through $V_{S X}$.
3. In gradient space, draw the line perpendicular to $E_{S X}$ through G_{S}. This line intersects $L_{\text {illum }}$ at G_{X}, as illustrated in figure 6.7.

This can also be presented in a closed form solution for G_{x}. Using the definition of k,

$$
\Delta z_{\mathrm{IX}}=\left\|E_{1 \mathrm{x}}\right\| / k
$$

Since $E_{1 X}$ is contained in S_{1},

$$
-\Delta z_{\mathrm{IX}}=G_{\mathrm{x}} \cdot E_{\mathrm{IX}}
$$

Also, if $E_{S X}$ is a vector tangent to $E_{I S}$ at $V_{S X}$,

$$
-\Delta z_{\mathrm{SX}}=G_{\mathrm{X}} \cdot E_{\mathrm{SX}}=G_{\mathrm{S}} \cdot E_{\mathrm{SX}}
$$

Combining these,

$$
\begin{aligned}
& {\left[\begin{array}{l}
-\Delta z_{1 \mathrm{X}} \\
-\Delta z_{\mathrm{SX}}
\end{array}\right]=\left[\begin{array}{l}
E_{1 \mathrm{X}}{ }^{\top}{ }^{\top} \\
E_{\mathrm{SX}}
\end{array}\right] G_{\mathrm{X}}} \\
& G_{\mathrm{X}}=\left[\begin{array}{l}
E_{1 \mathrm{X}}{ }^{\top}{ }^{\top}{ }^{\top} \\
E_{\mathrm{SX}}
\end{array}\right]^{-1}\left[\begin{array}{l}
-\Delta z_{1 \mathrm{X}} \\
-\Delta z_{\mathrm{SX}}
\end{array}\right]=\left[\begin{array}{c}
E_{1 \mathrm{X}}{ }^{\top}{ }^{\top}{ }^{\top} \cdot{ }^{-1}\left[\begin{array}{c}
-\left\|E_{1 \mathrm{x}}\right\| / k \\
E_{\mathrm{SX}}
\end{array}\right] .{ }_{\mathrm{S}} \cdot E_{\mathrm{SX}}
\end{array}\right]
\end{aligned}
$$

Figure 6.8: Using E_{10} to Calculate the Gradient of S_{S}

It is also possible to use knowledge about the shape of the curved object S_{O} when G_{S} is not known in advance. Suppose that two vectors E_{Ox} and E_{OY} tangent to the arc of extinction E_{10} at points V_{OX} and $V_{O Y}$ are known. Let points $V_{S X}$ and $V_{S Y}$ be the shadows of $V_{O X}$ and $V_{O Y}$, let $E_{I X}$ and $E_{I Y}$ be the illumination vectors joining $V_{O X}$ to $V_{S X}$ and $V_{O Y}$ to $V_{S Y}$, and let $E_{S X}$ and $E_{S Y}$ be vectors tangent to the shadow edge $E_{\text {IS }}$ at $V_{S X}$ and $V_{S Y}$ (Figure 6-8).

Figure 6-9: Gradient Space Constraints From $V_{O X}$ For Computing G_{S}
If ($\Delta x_{\mathrm{OX}}, \Delta y_{\mathrm{OX}}, \Delta z_{\mathrm{OX}}$) is the three-dimensional vector corresponding to E_{OX}, with similar definitions for the other vectors, then $\Delta z_{O X}$ and $\Delta z_{O Y}$ are known in advance. As previously shown, if G_{X} is the gradient of S_{1} (and S_{O}) at $V_{O X}$, then

$$
-\Delta z_{\mathrm{OX}}=G_{\mathrm{x}} \cdot E_{\mathrm{OX}}
$$

Since E_{IX} is an illumination vector,

$$
\Delta z_{\mathrm{IX}}=\left\|E_{\mathrm{Ix}}\right\| / k
$$

and, since $E_{1 \mathrm{I}}$ is contained in S_{1} at $V_{\text {OX }}$,

$$
-\Delta z_{\mathrm{IX}}=G_{\mathrm{x}} \cdot E_{\mathrm{IX}}
$$

Combining $\left[\begin{array}{l}-\Delta z_{\mathrm{OX}} \\ -\Delta z_{\mathrm{IX}}\end{array}\right]=\left[\begin{array}{l}E_{\mathrm{OX}}^{\top} \\ E_{\mathrm{IX}}\end{array}\right] G_{X}$

$$
G_{X}=\left[\begin{array}{l}
E_{\mathrm{OX}}^{\top} \\
E_{\mathrm{IX}}
\end{array}\right]-1\left[\begin{array}{c}
-\Delta z_{\mathrm{OX}} \\
-\left\|E_{\mathrm{IX}}\right\| / k
\end{array}\right]
$$

So, G_{X} (and, similarly, G_{Y}, the gradient of S_{1} at $V_{O Y}$), can be determined exactly.

Now, since S_{1} and S_{S} intersect at $V_{S X}$ along $E_{S X}$,

$$
-\Delta z_{S X}=G_{X} \cdot E_{S X}=G_{S} \cdot E_{S X}
$$

Similarly,

$$
-\Delta Z_{S Y}=G_{Y} \cdot E_{S Y}=G_{S} \cdot E_{S Y}
$$

So,

$$
\begin{aligned}
& {\left[\begin{array}{c}
-\Delta z_{S X} \\
-\Delta z_{S Y}
\end{array}\right]=\left[\begin{array}{c}
E_{S X}{ }^{\top} \\
E_{S Y}
\end{array}\right] G_{S}} \\
& G_{S}=\left[\begin{array}{c}
E_{S X}{ }_{S X} \\
E_{S Y}
\end{array}\right]-1\left[\begin{array}{l}
-\Delta Z_{S X} \\
-\Delta Z_{S Y}
\end{array}\right]=\left[\begin{array}{c}
E_{S X}{ }^{T} \\
E_{S Y}
\end{array}\right] \cdot 1\left[\begin{array}{c}
G_{X}{ }^{\circ} E_{S X} \\
G_{Y} E_{S Y}
\end{array}\right]
\end{aligned}
$$

and therefore, G_{S} can be determined exactly. Now, G_{S} can be used as previously shown to determine the gradient of S_{0} at each point on the arc of extinction E_{10}. Here, knowledge of k and the direction tangent to E_{10} at two points has sufficed to determine the gradient of S_{S} and the gradient of S_{O} at all points along E_{10}

In the special case that S_{0} is spherical, for example, the entire arc of extinction E_{10} lies in a plane S_{p} whose surface normal is an illumination vector. Therefore, the gradient $G_{p}=G_{\rho}$. In this case, the entire problem can be solved with only one parameter (k) given in advance, since Δz_{Ox} and Δz_{or} can be calclated directly:

$$
\begin{aligned}
& \quad G_{1}=E_{11} \frac{k}{\left\|E_{11}\right\|} \\
& -\Delta z_{\mathrm{OX}}=E_{\mathrm{OX}} \cdot G_{1}=\frac{k\left(E_{\mathrm{OX}} \cdot E_{11}\right)}{\left\|E_{11}\right\|} \\
& \text { and }-\Delta z_{\mathrm{OY}}=\frac{k\left(E_{\mathrm{OY}} \cdot E_{11}\right)}{\left\|E_{11}\right\|}
\end{aligned}
$$

The shadow information just described is not redundant with information available in the same line drawings when no shadows are present.

7. Shadow Geometry and Other Shape Inference Techniques

Shadow geometry can be combined with other techniques for determining 3D interpretations from images.

7.1 Other Gradient Space Techniques

In Appendix I, the closed-form solution for the Basic Shadow Problem is presented. The solution is stated in the form:

$$
G_{O}=f\left(G_{S}, k\right)
$$

When k is given in advance, G_{O} is shown to be an affine transform (two-dimensional linear transform) of $G_{\mathbf{S}}$.

Stated in this form, it is very convenient to use shadow geometry in conjunction with other techniques for determining surface gradients. For example, in figure 7-1, a line drawing is shown in which the intensities of the surfaces are known. If the surfaces are Lambertian or have known reflectance functions, Horn's "shape from shading" technique [4] can be used to determine a contour in gradient space along which G_{S} must lie, and a similar contour for G_{O}. Now, if the contour for G_{S} is transformed in its entirety by the function f provided by shadow geometry (as discussed above), a new contour for G_{O} is provided in gradient space (figure 7-2). Since G_{O} must lie along two contours, it must lie at one of the points of intersection of these contours. Now, for each such point, the corresponding point G_{S} can be determined using the inverse of transform f.

Shadow geometry can similarly be combined with Kanade and Kender's "skewed symmetry" [7], as in figure 7-3. Here, skewed symmetry provides a hyperbolic contour for each of the two surface gradients G_{O} and G_{S}; shadow geometry can be used to transform the contour for G_{S} into an additional contour for G_{O}. The points of intersection of the contours for G_{O} are then the possible values of G_{O}, and the corresponding values of G_{S} can be found as above.

7.2 Shape Recovery for Curved Surfaces

Some techniques have appeared in the literature for reconstructing the orientation of a curved surface at every point, using relaxation techniques [1,6]. These techniques typically begin with the surface orientation at every point along the outline of the surface (S_{O} in figure 7-4). These values form a boundary condition which drives the relaxation process.

Figure 7-1: Shape From Shading

Figure 7-2: Shadow Geometry and Shape From Shading

In this paper, we have seen that it is possible to determine the surface orientation for the tangent planes at each point along the arc of extinction E_{10}, using three a priori parameters (such as the k value for the light source and the orientation of the surface on which the shadow appears). These values can be used to provide stronger boundary conditions for relaxation techniques.

Surface orientations along the arc of extinction are valuable for another reason. Relaxation techniques must make some presumptions about the curvature of the surface (e.g. surface of

Figure 7-3: Shadow Geometry and Skewed Symmetry

Figure 7.4: Shadow Geometry and Curved Surface Shape Recovery
minimum curvature, cubic or other surface of revolution). Since all of these models of curvature are consistent with the tangent gradients along the outline of So, it is not possible to decide which model is appropriate when the only boundary condition comes from the outline of S_{O}. However, when the arc of extinction is also used, it may be possible to select one from several possible models of surface curvature, or to measure systematic deviation from a particular model for a specific object.

7.3 Shadow Geometry and Stereo

It is known that, when a stereo pair of images is available but the camera positions are unknown, five pairs of corresponding points in the two images can be used to compute the three-dimensional description within a single unknown scaling factor [3].

With shadow geometry, it is possible to compute this scaling factor, thus solving the system uniquely, when the value of k for the light source is known. It is only necessary to find a single shadow-making point V_{0}, and its shadow point V_{S}, as in figure 7-5. In this figure, d is the distance (on the x - y image plane) between V_{0} and V_{S}.

Figure 7-5: Shadow Geometry and Stereo

As we have seen in equation (2.1), k has the value:

$$
k=\operatorname{sqrt}\left(\Delta x^{2}+\Delta y^{2}\right) / \Delta z=d / \Delta z
$$

So, Δz can be computed for the line segment joining V_{O} and v_{S}; from this, the value of the unknown scaling factor can be calculated. This is the same idea that underlies light striping [16].

In this technique, a priori knowledge about the light source position (in 3D) is used to provide the additional constraint needed for unique interpretation of images in a stereo pair. Shadow geometry has provided the means for converting knowledge about illumination direction into an absolute distance, as required for the solution of the stereo problem. In essence, the shadows provide the image of the occluding surface from an additional point of view (located at the light source) [9].

8. Conclusions

This paper has presented a theory describing relationships among surface orientations in line drawings with shadows. The relationships arise from hypothesizing the existence of "illumination surfaces" connecting shadow edge pairs, assigning appropriate line labels to shadow and shadowmaking edges, and applying the resulting constraints in the gradient space.

This technique falls short of providing exact solutions to shadow geometry problems. The line drawing must be augmented with information such as the orientations or curvature of specific surfaces or the position of the light source if exact surface orientations are to be found.

It has been shown, however, that shadow geometry provides important benefits for image understanding:

- Shadows allow you to subsitute information about the light source position instead of a priori knowledge about surface orientations.
- Shadows allow you to determine geometric information from highly visible shadow edge pairs instead of using many of the unreliable edges within shaded portions of an image.
- An increasing amount of information is provided by the shadow edge when the shadow falls on many visible, differently oriented surfaces.
- Shadows provide some constraint when curved surfaces are involved.
- Shadows provide constraint between surfaces even when they do not touch in the scene (or image).
- Shadows allow the solution to one shadow problem to be used in the solution of other shadow problems, since typical shadow problems are mutually constrained (e.g. same light source, same background surface).

In addition, some observations have been made about the solution of the correspondence problem for shadows, which must be solved before surface orientations can be inferred.

8.1 Future Work

Work remains to be done on the following topics:

- Generalization of the entire method for images under perspective.
- Complex interactions between multiple light sources, polyhedra, and curved surfaces.
- Relationships between shadow geometry and other gradient space constraints, such as Horn's "shape from shading" [4], Kanade's "skewed symmetry" [7], and Kender's "shape from texture" paradigm [7].
- Finding shadow edges and solving the correspondence problem for shadow edge pairs.

A program should be written to employ the techniques presented here. The first application might be in conjunction with an interactive photo-interpretation program [11], in which the segmentation and correspondence problems will be solved by the human operator.

Additional questions have been raised in the course of this research concerning the more general problem of determining surface orientations from (or using) a line drawing. In an image such as 8-1, only three a priori pieces of information are needed besides the line drawing itself to determine the surface orientations uniquely. However, constraints can be found by all of these techniques:

- Shape from shading [4]
- Skewed symmetry and gravity [7]
- Shadow geometry

This problem is actually over-constrained. It should be possible to find a method for using the redundant information to improve erroneous segmentation and reduce the overall uncertainty in the shape recovery process;however, this topic has not yet been explored.

Figure 8-1: Image of Cube: Interpretation is Over-Constrained

The line drawing itself provides many constraints, but the following questions remain to be addressed:

- Given a line drawing with labeled edges, how many pieces of additional a priori information are required to determine all of the surface orientations?
- If additional information is needed, where can it be obtained? (Shape from Shading? Skewed Symmetry? Shadow Geometry? Other techniques?) Can this question be answered during the actual process of image analysis, or must the answer be known when the program is written?
- If the required amount of information is present, it may have been obtained from diverse sources. How can it all be combined algorithmically to determine the surface orientations?
- If too much information is present, the solution is over-constrained. In this case, the redundant information should be useful for correcting errorful segmentation or for improving the reliability of the solution. How can this be done?

8.2 Acknowledgements

John Kender, at Columbia University, provided suggestions which led to several of the generalizations in this paper. His observations regarding curved surfaces provided the starting point for the ideas described in this paper regarding shadows cast by curved surfaces.

In addition, this paper has benefited from review and suggestions by Marty Herman, Dave McKeown, Raj Reddy, and David Smith, all members of the Image Understanding project at CMU.

9. Bibliography

[1] Barrow, H. G. and Tenenbaum, J. M.
Reconstructing Smooth Surfaces From Partial, Noisy Information.
In Baumann, L. S. (editor), ARPA IUS Workshop, pages 76-86. November, 1979.
[2] Clowes, M. B.
On Seeing Things.
Artificial Intelligence 2:79-116, 1971.
[3] Gennery, D. B.
Stereo-Camera Calibration.
In Baumann, L. S. (editor), ARPA IUS Workshop, pages 101-107. November, 1979.
[4] Horn, B. K. P.
Understanding Image Intensities.
Artificial Intelligence 8:201-231, 1977.
[5] Huffman, D. A.
Impossible Objects as Nonsense Sentences.
In Meltzer, B. and Michie, D. (editor), Machine Intelligence 6, chapter 19pages 295-323. American Elsevier Pub. Co., New York, 1971.
[6] Ikeuchi, K.
Numerical Shape From Shading and Occluding Contours in a Single View.
AIM 566, MIT, November, 1979.
[7] Kanade, T. and Kender, J.
Mapping Image Properties into Shape Constraints: Skewed Symmetry, Affine-Transformable Patterns, and the Shape-from-Texture Paradigm.
Technical Report, Carnegie-Mellon University, Computer Science Department, July, 1980.
[8] Kender, J. R.
The Gaussian Sphere: A Unifying Representation of Surface Orientation. In Baumann, L. S. (editor), ARPA IUS Workshop, pages 157-160. April, 1980.
[9] Lowe, D. G. and Binford, T. O.
The Interpretation of Geometric Structure from Image Boundaries.
in Baumann, L. S. (editor), ARPA IUS Workshop, pages 39-46. April, 1981.
[10] Mackworth, A. K.
Interpreting Pictures of Polyhedral Scenes.
Artificial Intelligence 4:121-137, 1973.
[11] McKeown, D. M. and Kanade, T.
Database Support for Automated Photo-Interpretation.
In Baumann, L. S. (editor), ARPA IUS Workshop, pages 7-13. April, 1981.
[12] Nagao, M., Matsuyama, T., and Ikeda, Y.
Region Extraction and Shape Analysis in Aerial Photographs.
Computer Graphics and Image Processing 10:195-223, 1979.
[13] O'Gorman, F.
Light Lines and Shadows.
Technical Report, School of Social Sciences, U. of Sussex, December, 1975.
[14] Ohlander, R. B.
Analysis of Natural Scenes.
PhD thesis, Carnegie-Mellon University, April, 1975.
[15] Quam, L.
Work in progress at SRI. Technical report expected.
[16] Shirai, Y. and Suwa, M.
Recognition of Polyhedrons With a Range Finder.
In IJCAI-71, pages 80-87. Imperial College, London, September, 1971.
[17] Smith, H. T. U.
Aerial Photographs and Their Applications.
D. Appleton-Century Co., New York, 1943.
[18] Waltz, D.
Understanding Line Drawings of Scenes with Shadows.
In Winston, P. H. (editor), The Psychology of Computer Vision, chapter 2pages 19-91. McGraw-Hill, 1975.
[19] Witkin, A.
Shape From Contour.
AI-TR 589, MIT, November, 1980. .
[20] Witkin, A.
Work in progress at SRI. Technical report expected.

I. Solution to the Basic Shadow Problem

The Basic Shadow Problem can be formulated in terms of vector relationships, for development of a closed-form analytic solution. Here, we will describe the gradient G_{0} of the occluding surface S_{0} in terms of the gradient G_{S} of the shaded surface S_{S} and the relative z-component of the direction of illumination, k.

Figure 9-1: The Basic Shadow Problem

In figure $9-1$, let edge $E_{11}=\left(\Delta x_{11}, \Delta y_{11}\right)$ correspond to the three-dimensional scene vector (Δx_{11}, $\Delta y_{11}, \Delta z_{11}$). Three-dimensional counterparts can similarly be defined for the other vectors $E_{\mathrm{O} 1}, E_{\mathrm{O} 2}$ $E_{S 1}$, and $E_{S 2}$.

The following relations hold:

1. By the definition of $k, k=\left\|E_{11}\right\| / \Delta z_{11}$. It should be noted that k is positive (or zero) if S_{O} is illuminated, and negative if S_{O} is self-shadowed. With this definition, all the equations presented here hold for any direction of illumination.
2. $E_{11} \in S_{11}, S_{12}$ so $-\Delta z_{11}=G_{11} \cdot E_{11}=G_{12} \cdot E_{11}$
3. $E_{S 1} \in S_{11}, S_{S}$, so $-\Delta z_{S 1}=G_{11} \cdot E_{S 1}=G_{S} \cdot E_{S 1}$
4. $E_{\mathrm{S} 2} \in S_{12}, S_{\mathrm{S}}$, so $-\Delta z_{\mathrm{S} 2}=G_{12} \cdot E_{\mathrm{S} 2}=G_{\mathrm{S}} \cdot E_{\mathrm{S} 2}$
5. $E_{O 1} \in S_{11}, S_{O}$, so $-\Delta z_{O 1}=G_{11} \cdot E_{O 1}=G_{O} \cdot E_{O 1}$
6. $E_{\mathrm{O} 2} \in S_{12}, S_{\mathrm{O}}$, SO $-\Delta z_{\mathrm{O} 2}=G_{12} \cdot E_{\mathrm{O} 2}=G_{\mathrm{O}} \cdot E_{\mathrm{O} 2}$

1.1 Gradient of the First Illumination Surface, \mathbf{G}_{11}

The constraints on G_{11} are expressed by (1) and (2) above:

$$
-\Delta z_{11}=-\left\|E_{11}\right\| / k=G_{11} \cdot E_{11}
$$

and by (3):

$$
-\Delta z_{\mathrm{S} 1}=G_{11} \cdot E_{\mathrm{S} 1}=G_{\mathrm{S}} \cdot E_{\mathrm{S} 1}
$$

These can be combined into a single equation using matrices. The top row of the computation represents the first equation, and the bottom row represents the second equation:

$$
\begin{aligned}
& {\left[\begin{array}{l}
-\Delta z_{11} \\
-\Delta z_{\mathrm{S} 1}
\end{array}\right]=\left[\begin{array}{l}
G_{11} \cdot E_{11} \\
G_{11} \cdot E_{\mathrm{S} 1}
\end{array}\right]=\left[\begin{array}{l}
E_{11}^{\top}{ }^{\top} \\
E_{\mathrm{S} 1}{ }^{\top}
\end{array}\right] G_{11}} \\
& G_{11}=\left[\begin{array}{l}
E_{11}^{\top}{ }^{\top} \\
E_{\mathrm{S} 1}{ }^{\top}
\end{array}\right]^{-1}\left[\begin{array}{l}
-\Delta z_{11} \\
-\Delta z_{\mathrm{S} 1}
\end{array}\right]=\left[\begin{array}{l}
E_{11}^{\top} \\
E_{\mathrm{S} 1}^{\top}
\end{array}\right] \cdot-1\left[\begin{array}{c}
-\left\|E_{11}\right\| / k \\
G_{\mathrm{S}} \cdot E_{\mathrm{S} 1}
\end{array}\right]
\end{aligned}
$$

This equation defines G_{19} in terms of G_{S}, k, and several edges (measurable in the image).

It is possible to compute the coordinates of G_{1} in terms of the coordinates of the various vectors. To begin, we can use the fact that

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] /\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

to give the equation

$$
G_{11}=\left[\begin{array}{cc}
\Delta y_{\mathrm{S} 1} / D & -\Delta y_{11} / D \\
-\Delta x_{\mathrm{S} 1} / D & \Delta x_{11} / D
\end{array}\right]\left[\begin{array}{c}
-\left\|E_{11}\right\| / k \\
p_{\mathrm{s}} \Delta x_{\mathrm{S} 1}+q_{\mathrm{s}} \Delta y_{\mathrm{S} 1}
\end{array}\right]
$$

where

$$
D=\left|\begin{array}{l}
E_{11}^{\top} \\
E_{\mathrm{S} 1}
\end{array}\right|=\Delta x_{11} \Delta y_{\mathrm{S} 1}-\Delta y_{11} \Delta x_{\mathrm{S} 1}
$$

Then,

$$
\begin{aligned}
G_{11} & =\left[\begin{array}{l}
-p_{\mathrm{S}} \Delta x_{\mathrm{S} 1} \Delta y_{11} / D-q_{\mathrm{S}} \Delta y_{\mathrm{S} 1} \Delta y_{11} / D-\left\|E_{11}\right\| \Delta y_{\mathrm{S} 1} / k D \\
p_{\mathrm{S}} \Delta x_{\mathrm{S} 1} \Delta x_{11} / D+q_{\mathrm{S}} \Delta y_{\mathrm{S} 1} \Delta x_{11} / D+\left\|E_{11}\right\| \Delta x_{\mathrm{S} 1} / k D
\end{array}\right] \\
& =\left[\begin{array}{c}
A p_{\mathrm{S}}+B q_{\mathrm{S}}+C / k \\
E \rho_{\mathrm{S}}+F q_{\mathrm{S}}+G / k
\end{array}\right]=\left[\begin{array}{c}
A B C \\
E F G
\end{array}\right]\left[\begin{array}{c}
\rho_{\mathrm{S}} \\
q_{\mathrm{S}} \\
1 / k
\end{array}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& A=-\Delta x_{S 1} \Delta y_{11} / D \\
& B=-\Delta y_{S 1} \Delta y_{11} / D \\
& C=-\Delta y_{S 1} \text { sqtt }\left(\Delta x_{11}{ }^{2}+\Delta y_{11}{ }^{2}\right) / D \\
& E=\Delta x_{S 1^{1} x_{11} / D} \\
& F=\Delta y_{S 1}{ }^{\Delta x_{11} / D} \\
& \left.G=\Delta x_{S 1} \text { sqrt(} \Delta x_{11}{ }^{2}+\Delta y_{11}{ }^{2}\right) / D
\end{aligned}
$$

and

$$
D=\Delta x_{11} \Delta y_{S 1} \cdot \Delta y_{11} \Delta x_{S 1}
$$

Here, the assumption has been made that $D \neq 0$, i.e. that $E_{11} \forall E_{\mathrm{S} 1}$.

I.2 Gradient of the Second Illumination Surface, \mathbf{G}_{12}

G_{12} is determined in a manner analogous to the determination of G_{11} presented above:

$$
G_{12}=\left[\begin{array}{l}
H p_{S}+l q_{S}+J / k \\
L p_{S}+M q_{S}+N / k
\end{array}\right]=\left[\begin{array}{lll}
H & I & J \\
L M & M
\end{array}\right]\left[\begin{array}{c}
p_{S} \\
q_{S} \\
1 / k
\end{array}\right]
$$

where

$$
\begin{aligned}
& H=-\Delta x_{\mathrm{S} 2} \Delta y_{11} / P \\
& I=-\Delta y_{\mathrm{S} 2} \Delta y_{11} / P \\
& \left.J=-\Delta y_{\mathrm{S} 2} \operatorname{sqrt(\Delta x_{11}}{ }^{2}+\Delta y_{11}{ }^{2}\right) / P \\
& L=\Delta x_{\mathrm{S} 2} \Delta x_{14} / P \\
& M=\Delta y_{\mathrm{S} 2} \Delta x_{11} / P \\
& N=\Delta x_{\mathrm{S} 2} \operatorname{sqrt}\left(\Delta x_{11}{ }^{2}+\Delta y_{11}{ }^{2}\right) / P \\
& P=\Delta x_{11} \Delta y_{\mathrm{S} 2}-\Delta y_{11} \Delta x_{\mathrm{S} 2}
\end{aligned}
$$

and
with the assumption that $P \neq 0$, i.e. $E_{11} \forall E_{\mathbf{S} 2}$.

I.3 Gradient of the Occluding Surface, \mathbf{G}_{o}

To determine G_{0}, we use relations (5) and (6) presented above:

$$
\begin{aligned}
& -\Delta z_{\mathrm{O} 1}=G_{11} \cdot E_{\mathrm{O} 1}=G_{\mathrm{O}} \cdot E_{\mathrm{O} 1} \\
& -\Delta z_{\mathrm{O} 2}=G_{12} \cdot E_{\mathrm{O} 2}=G_{\mathrm{O}} \cdot E_{\mathrm{O} 2}
\end{aligned}
$$

In combined form,

$$
\begin{aligned}
& {\left[\begin{array}{c}
-\Delta z_{\mathrm{O} 1} \\
-\Delta z_{\mathrm{O} 2}
\end{array}\right]=\left[\begin{array}{c}
E_{\mathrm{O} 1}^{\top}{ }^{\top} \\
E_{\mathrm{O} 2}{ }^{\top}
\end{array}\right] G_{\mathrm{O}}} \\
& G_{\mathrm{O}} \\
& =\left[\begin{array}{c}
E_{\mathrm{O} 1}^{\top}{ }^{\top}{ }^{\top} \\
E_{\mathrm{O} 2}
\end{array}\right] \cdot-1\left[\begin{array}{c}
-\Delta z_{\mathrm{O} 1} \\
-\Delta z_{\mathrm{O} 2}
\end{array}\right]=\left[\begin{array}{c}
E_{\mathrm{O} 1}{ }^{\top} \mathrm{T} \\
E_{\mathrm{O} 2}{ }^{\top}
\end{array}\right]-1\left[\begin{array}{c}
G_{11} \cdot E_{\mathrm{O} 1} \\
G_{12} \cdot E_{\mathrm{O} 2}
\end{array}\right] \\
& \\
& \\
& =\left[\begin{array}{cc}
\Delta y_{\mathrm{O} 2} / W & -\Delta y_{\mathrm{O} 1} / W \\
-\Delta x_{\mathrm{O} 2} / W & \Delta x_{\mathrm{O} 1} / W
\end{array}\right]\left[\begin{array}{c}
p_{11} \Delta x_{\mathrm{O} 1}+q_{11} \Delta y_{\mathrm{O} 1} \\
p_{12} \Delta x_{\mathrm{O} 2}+q_{12} \Delta y_{\mathrm{O} 2}
\end{array}\right]
\end{aligned}
$$

where

$$
w=\left|\begin{array}{c}
E_{\mathrm{O} T_{T}}^{\top} \\
E_{\mathrm{O} 2}
\end{array}\right|=\Delta x_{\mathrm{O} 1}^{\Delta y_{\mathrm{O} 2}}-\Delta y_{\mathrm{O} 1} \Delta x_{\mathrm{O} 2}
$$

The terms p_{11}, q_{11}, p_{12}, and a_{12} can be expanded in terms of $p_{S^{\prime}} q_{S^{\prime}}$, and k, to yield:

$$
G_{\mathrm{O}}=\left[\begin{array}{c}
Q p_{\mathrm{S}}+R q_{\mathrm{S}}+S / k \\
T p_{\mathrm{S}}+U q_{\mathrm{S}}+V / k
\end{array}\right]=\left[\begin{array}{c}
Q R \ddot{S} \\
T U V
\end{array}\right] \cdot\left[\begin{array}{c}
p_{\mathrm{S}} \\
q_{\mathrm{S}} \\
1 / k
\end{array}\right]
$$

where
and

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
Q R S \\
T U V
\end{array}\right]=\frac{1}{W}\left[\begin{array}{ccc}
\Delta x_{\mathrm{O} 1} \Delta y_{\mathrm{O} 2} & \Delta y_{\mathrm{O} 1} \Delta y_{\mathrm{O} 2} & -\Delta y_{\mathrm{O} 1} \Delta y_{\mathrm{O} 2} \\
-\Delta y_{\mathrm{O} 1} \Delta y_{\mathrm{O} 2} & -\Delta y_{\mathrm{O} 1} x_{\mathrm{O} 2} & \Delta x_{\mathrm{O} 1} \Delta x_{\mathrm{O} 2}
\end{array}\right.} \\
-x_{\mathrm{O} 1} \Delta y_{\mathrm{O} 2}
\end{array}\right]\left[\begin{array}{c}
A B C \\
E F G \\
\text { HIJ } \\
\text { LMN }
\end{array}\right] .
$$

Expansion of the coefficients A through N does not yield additional simplification in the above equation.

Here, the assumption has been made that $W=0$, i.e. $E_{\mathrm{O} 1} \forall E_{\mathrm{O} 2}$.

