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A b s t r a c t 

Given a line drawing from an image, with shadow regions identified, the shapes of the shadows can be 
used to generate constraints on the orientations of the surfaces involved. This paper describes the 
theory which governs those constraints under orthography. 

A "Basic Shadow Problem" is first posedt in which there is a single light source, and a single surface 
casts a shadow on another (background) surface. There are six parameters to determine: the 
orientation (2 parameters) for each surface, and the direction of the vector (2 parameters) pointing at 
the light source. If some set of 3 of these are given in advance, the remaining 3 can then be 
determined geometrically. The solution method consists of identifying "illumination surfaces" 
consisting of illumination vectors, assigning Huffman-Clowes line labels to their edges, and applying 
the corresponding constraints in gradient space. 

The analysis is extended to shadows cast by polyhedra and curved surfaces. In both cases, the 
constraints provided by shadows can be analyzed in a manner analogous to the Basic Shadow 
Problem. When the shadow falls upon a polyhedron or curved surface, similar techniques apply. The 
consequences of varying the position and number of light sources are also discussed. Finally, some 
methods are presented for combining shadow geometry with other gradient space techniques for 3D 
shape inference. 



2 

1. Introduction 

1 .1 The Shadow Geometry Problem 

In many images, shadows are present (figure 1-1). When this is the case, the shadows provide 

some information which is useful for determining the 3D shapes and orientations of the objects in the 

scene. 

F igure 1 -1 : Shadows Provide Information for 3-D Shape Recovery 

The interpretation of shadows in an image involves three distinct processes: 

• Finding shadow regions in the image 

• Solving the correspondence problem to determine which object has cast each shadow 
region 

• Geometrically deducing information about the objects and surfaces involved on the basis 
of the identified object/shadow pairs 

To date, most researchers have performed each step in sequence, although the latter steps certainly 
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generate information which can be used to improve thè former processes if they have been 

incomplete or noisy. 

Techniques for the first step, finding shadow regions, have been proposed by many researchers, 

usually by looking for regions of low intensity with approximately the same hue as some neighboring 

region [12,14]. A close examination of region colors will reveal that shadows due to the sun will have 

a slightly bluer hue than illuminated portions of the same surface. Lowe and Binford [9] proposed 

criteria which should be satisfied by edges of shadow regions; these can be used to suggest or try to 

confirm the hypothesis that a particular region is a shadow, Witkin [20] is also investigating shadow 

edges. Waltz [18] developed a method for labeling lines in line drawings as shadow edges, based on 

local geometric criteria at vertices. 

The correspondence problem has been explored primarily by Lowe and Binford [9]. They describe 

several properties of this correspondence*, and include descriptions of the special points of view from 

which degenerate cases arise. O'Gorman [13] proposed a heuristic method for finding 

correspondences in the blocks world under orthography. 

Geometric interpretation of shadows is also performed by Lowe and Binford [9], who use shadows 

to determine height in overhead views of airplanes. They measure the distance in the image between 

the outline of an object and the outline of its shadow, and use similar triangles to conclude that this 

distance is proportional to the height of the object's edge above the ground. Quam [15] is also using 

shadows to determine depth information: These techniques have been employed in manual photo-

interpretation of aerial photographs as well [17]. 

Waltz [18] used shadows to classify surfaces into several orientation categories depending upon 

the geometry of the shadows in a line drawing. His categories were qualitative, such as "front left" for 

an approximately vertical surface tipped to the left. 

This paper presents a theory describing the constraints that shadows provide between surface 

orientations in line drawings, using shadow and surface outlines under orthographic projection. This 

can be thought of as a method for achieving the same kind of results as Waltz, but computing exact 

surface orientations rather than simply categorizing the surfaces into classes with similar 

orientations. The theory presented here subsumes the "shadow-plane" idea suggested by 

Mackworth [10] as a means for generating gradient-space constraints from shadows. 

Shadows cast by and upon curved surfaces have been described by Witkin [19], who derived 
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equations relating surface curvature to curvature of shadow edges in the image. The presentation in 

this paper is somewhat different, discussing surface gradient (local orientation) rather than curvature 

(rate of change of orientation). 

1.2 This Presentation 

This paper begins by defining the "Basic Shadow Problem", computing surface orientations from a 

line drawing depicting one surface casting a shadow on one other surface. The surfaces are 

assumed to be flat, the light source is assumed to be infinitely far away, and orthographic projection is 

used. 

The consequences of varying the light source are then explored. These include changing the 

position to be in front of the camera instead of behind it, moving the light source to a point at a finite 

distance from the scene, and altering the number of light sources. The same Basic Shadow Problem 

occurs in all these cases, and the necessary modifications to the solution technique are presented. 

The shaded surface the surface on which shadows appear is then generalized to be many 

planes (a polyhedron). The Basic Shadow Problem occurs within an algorithm to compute the 

orientations of each face intersecting the shadow edge. 

The occluding surface -- the surface casting the shadow is generalized to be polyhedral. The 

Basic Shadow Problem is included in the shadow information available in this case, along with 

additional shadow-making edges. 

The solution of shadow problems involving curved surfaces is then discussed. When curved 

surfaces are involved, additional information about the curvature is needed for an exact solution. The 

special case of a sphere is examined as an example in which knowledge about the surface curvature 

allows for the derivation of a unique solution with little a priori information required. 

Some methods are presented for combining shadow geometry with other gradient space 

techniques, and with stereo image analysis. 

Further plans include the elaboration of the above cases under perspective rather than 

orthography, and the construction of a program to perform the geometric reasoning outlined in this 

paper. 
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1.3 Introduction to Gradient Space and Line Labeling 

This section presents an introduction to the gradient space and line labeling for readers who are 

not already familiar with these topics. 

When constructing a 3D description of a scene from examination of an image, some coordinate 

system must be set up. The coordinate system used in this paper is illustrated in figure 1-2. Here, the 

x and y axes are aligned on the image plane in the horizontal and vertical directions, respectively, 

assigning the usual 2D Cartesian coordinate system to the image. The z axis points towards the 

viewer (or camera). This is the coordinate system used by Mackworth [10]. 

Viewer Image 

Figure 1-2: The X -Y -Z Coordinate System 

In this paper, it will be presumed that the point (x,y,z) in the scene corresponds to the point (x,y) in 

the image. This is orthography. Perspective projection is not discussed in detail in this paper. 

When describing the three-dimensional shape of an object, it is sufficient to specify the two-

dimensional image together with the orientation (in three-space) of each surface in the scene. The 

problem of three-dimensional shape recovery is therefore equivalent to finding the orientation of each 

surface in the image. These orientations can be represented by points in a plane called the gradient 

space (figure 1 -3) [5]. If a surface is represented by the equation 

-z = f ( x , y ) 

then its gradient is represented by the point: 

(P,q) = (df/dx, df/dy) 

This assigns a natural interpretation to points in gradient space: a surface which is "tipped" to the 
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right is represented to a point on the right side of the origin; a surface tipped left has a gradient to the 

left of the origin. Similarly, a surface which is tipped up (or down) has its gradient above (or below) 

the origin. In figure 1-3, the gradients G A (etc.) are shown for the surfaces S A (etc.) in the line drawing 

at the right. 

q tipped up 

1 Ga = Gd 

tipped left 

Gb 

tipped right 

Gc 

tippped down 

Figure 1 - 3 : The Gradient Space 

Before computing surface orientations, it is common to attempt to produce a line drawing from an 

image, in which all the surfaces are outlined. Huffman and Clowes [5, 2] showed that the edges (line 

segments) in a line drawing do not all represent the same three-dimensional surface configuration. 

The four types of edges they discovered are shown in figure 1-4, along with the half-planes containing 

the surfaces which meet at each type of edge. At a convex edge, the surfaces recede from the viewer 

as you travel farther from the edge. At a concave edge, the surfaces approach the viewer as you 

travel farther from the edge. At an occluding edge, only one of the two surfaces involved is directly 

visible in the image. Waltz [18] developed an algorithm for assigning these labels to the edges in a 

line drawing. 

The convex and concave labels indicate relationships between the gradients of the surfaces which 

meet along an edge [10]. When two surfaces are joined along a convex edge, their gradients lie along 

a line in gradient space which is perpendicular to the edge in the image (figure 1-5). Furthermore, the 

relative positions of the surface gradients will be the same as the relative positions of the surfaces in 

the image. When two surfaces meet at a concave line, the gradients are still on a perpendicular line in 

gradient space, but the relative positions are reversed. 

In general, if an edge E = (Ax, Ay) is contained on a surface with gradient G = (p, g) , then the edge 

corresponds to the three-dimensional vector (Ay, Ay, Az) where 
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Two surfaces joined along an edge 

convex concave 

occluding edges 

Figure 1 - 4 : Line Labels and Surface Intersections 

Ga = Gd 

Figure 1 -5 : Line Labels and Gradient Space Relationships 

-\z = G . E (1.1) 
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In this paper, a method is proposed for assigning Huffman-Clowes line labels to shadow-making 

edges and shadow edges in a line drawing, and for using the resulting gradient space relationships to 

determine surface orientations. 
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2. The Basic Shadow Problem 
The Basic Shadow Problem is: 

Given a line drawing such as Figure 2-1, what constraints exist between the occluding 
surface SQ and the shaded surface S s ? 

For simplicity, we will begin by assuming that the surfaces are both flat, and that orthographic 

projection is used. We will also, for the time being, presume that the light source is infinitely far away; 

this means that all illumination vectors (light rays emanating from the light source) are parallel., 

Shaded Surface 

Ss 

Occluding Surface 

So 

Figu re 2 -1 : The Basic Shadow Problem 

2.1 Solution of the Problem 

To show the proper correspondences, the edges and vertices can be labeled as in figure 2-2, where 

edge E S 1 is the shadow edge corresponding to E Q V E § 2 is the shadow of E Q 2 , and vertex V S 1 2 is the 

shadow of V Q 1 2 . 

Consider the physical interpretation of edge E s r Some light rays just graze past SQ at E Q V and 

continue on to strike S s along E s r This set of rays form a surface (a piece of a plane), in fact the 

plane containing E Q 1 and E s r This is a surface consisting of "illumination vectors"; call it surface S h 

(Figure 2-3). 

Suppose we were to cut a piece of cardboard and fit it into the space occupied by S | V Then, this 

cardboard a n d - S Q would be joined along E Q 1 , a convex edge. Using Huffman-Clowes line labeling 

[5], this edge can be given the label + . Similarly, E S 1 joins S s and S | r and is concave] it receives the 

label - . 
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Vol2 Eo2 

Es2 

Vosi 

Figure 2-2: Basic Shadow Problem - Correspondences Labeled 

F igure 2-3: Basic Shadow Problem -- Illumination Surface 1 

As Mackworth showed [10], these line labels can be mapped into constraints in the gradient space. 

The gradient of SQ (GQ) and the gradient of S f 1 ( G M ) must be joined by a line perpendicular to E Q 1 ; 

since the label of E Q 1 is + , GQ and G ( 1 have the same relative positions as SQ and S j r Similarly, G h 

and G g are joined by a line perpendicular to E S 1 , with relative positions reversed because of the -

label. These facts yield the relationship shown in figure 2-4 in the gradient space. However, we do 

not yet know the position of this figure in gradient space, nor the distances involved; only the angles 

are known. 

S M is not the only illumination surface in the Basic Shadow Problem: the illumination surface S | 2 

joins edges E Q 2 and E S 2 (Figure 2-5). Along E S 2 , the - label is assigned; along E Q 2 , the - label 

refers to the junction of S n and the upper half-plane of S l 2 . The gradient space constraints are shown 
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J.Es1 

> - j E o 1 

Figure 2-4: Gradient Space Constraints from Illumination Surface 1 

in figure 2-6. Note that it is possible for EQ2 and E S 2 to be parallel, in which case the two rays shown 

in gradient space are coincident. 

F igure 2-5: Basic Shadow Problem - Illumination Surface 2 

A third constraint in the gradient space arises from the fact that an edge E h can be drawn joining 

^012 a n c l ^S12 ( F i 9 u r e 2 " 7 ) - T h i s l i e s , n a l i n e w h i c h passes through the light source, since V S 1 2 

is the shadow of V Q 1 2 . The vector I pointing at the light source can be represented in gradient space 

by a point G | f which represents the intersection of a vector / from the origin with the plane z = 1. 

Since E n lies in the projection of this vector onto the image plane, the point G ( must lie along a line in 

gradient space, passing through the origin, and parallel to E h (Figure 2-8). It is not known, however, 

how far this point G, is from the origin; suppose this is determined somehow (as described below), 

and call the distance k. It should be noted that k represents the relative change in z with a change in 

x or y along the illumination vector. It is defined by this equation: 
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_LEs2 J.E02 

Gi2 

Figure 2-6: Gradient Space Constraints From Illumination Surface 2 

* = sqrt (ax2 + Ay2) / az = ||£h|| / Az (2.1) 

F igure 2-7: Basic Shadow Problem Illumination Vector 

The line L.n perpendicular to £ n , and located at a distance 1//V from the origin, represents the 

locus of the gradients of all planes which contain the illumination vector /. This is the set of all 

illumination planes, and in particular contains both S h and S | 2 ; thus, G M and G j 2 are points on the line 

L j | j u m . This property subsumes the property of G h and G | 2 that they must be joined by a line 

perpendicular to E M , since E M can be given the label + or - (depending on which half-planes the line 

label refers to). 
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y 

Lillum 

contains Gi1,Gi2 

Figure 2-8: Gradient Space Constraints From Illumination Vector 

The line L j H is the same as the terminator described by Horn in [4]. It separates the gradient 

space into two half-planes; the half-plane containing G, represents the gradients of all planes that will 

receive illumination, while the other half-plane contains the gradients of self-shadowed surfaces 

(facing away from the light source). 

This is the extent of the information available from the line drawing in figure 2-1. Since each 

gradient is an ordered pair (p, qr), the problem has six parameters to be computed: 

• (2 parameters) G Q , the gradient of SQ 

• (2 parameters) G s , the gradient of S s 

• (2 parameters) G | f the direction of the light source. 

From the Basic Shadow Problem geometry, three constraints are provided: 

• The angle G
0 - G

M - G s ' w h i c h comes from the angle E 0 1 - £ S 1 

• The angle G Q - G | 2 - G S , which comes from the angle between EQ2 and £ g 2 
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• The direction of the line L.|( m (containing G ( 1 and G | 2 ) , which comes from the direction of 
f n-

We would therefore expect that three parameters must be given in advance, and the other three can 

be computed from the geometry. 

Let us suppose, for example, that the value k is given (the relative depth component of the direction 

of the light source), and that G s is known (the relative orientation of the background with respect to 

the camera). The construction in the gradient space for computing GQ proceeds as follows (Figure 2-

9): 

x E s 2 x E o 2 

Figure 2-9: Solution to Basic Shadow Problem 
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1. Draw the line parallel to £ n through the origin. Since k is known, G. and L | H can be 
found. 

2. Plot G s , which was given. Through this point, draw a line perpendicular to f s r Where it 
intersects L n | must be G | r Through G | r draw a line perpendicular to E Q r G Q must lie 
on this line. 

3. From G s , draw a line perpendicular to E S 2 . Where it intersects L j | I u m will be G | 2 . From 
there, draw a line perpendicular to E Q 2 . Since G Q must lie on this line, the intersection of 
this line with the final line from step (2) above must be GQ. 

In Appendix I, the closed form solution for the Basic Shadow Problem is presented, using a vector 

formulation of the problem. 

2.2 Relationships Among the Parameters Supplied in Advance 

In the example above, G s and k were needed before the construction could take place. In practice,. 

a program for a specific application may not be able to compute these particular parameters. 

It is possible to begin the construction with any three of the six pieces of information specified in 

advance, as long as none are redundant with each other, and none are redundant with the direction 

o f £ M . 

It is possible, or perhaps likely, that a given line drawing will include the edge E Q S between SQ and 

S s , as in figure 2-10. An interesting question arises as to whether this provides some additional 

constraint, which might perhaps relax the requirement that three pieces of information be provided in 

advance. 

The edge £ Q S turns out to be redundant with EQ2 and E S 2 , in the sense that given the latter, the 

former can be constructed, and vice versa. Suppose we are given E Q 2 and E S 2 . These represent the 

intersections (in the scene) of planes S Q and S | 2 , and S s and S | 2 , respectively. Now, either these two 

lines intersect or they do not. Suppose they intersect in a point. Call it V 0 S 2 » since it is contained in 

surfaces S Q , S s , and S j 2 . This point is contained in both SQ and S s , as is point V Q S 1 which is given in 

the line drawing. Therefore, the line EQS must pass through these points. On the line drawing, find 

the intersection of E Q 2 and E S 2 . Draw the line joining this point to V Q S 1 : this is EQS (Figure 2-11). 

Now, suppose that the two lines E Q 2 and E S 2 do not intersect anywhere. Then there is no point 

V Q S 2 contained in all three surfaces S Q , S s , and S j 2 . So, E Q S cannot intersect either EQ2 or E S 2 . 

Since it is coplanar with these (on surfaces SQ and S s , respectively), it must be parallel to both. Edge 

E n q can therefore be drawn through V Q S 1 , parallel to EQ2 (and E S 2 ) . 
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Eo2 Vos2 

Ss 

Vosi 

Figu re 2-11: Redundancy of EQS With E Q 2 and E ^ 

By this reasoning, EQS can be constructed from EQ2 and E S 2 . Similarly, if EQS is given, either of EQ2 

and E S 2 can be calculated from the other, to provide the geometric constraint described above for the 

solution of the Basic Shadow Problem. Of course, the solution can also proceed directly using the 

label - on E Q S , with identical results. 

The solution of this problem should be compared with the solution to the problem if there are no 

shadows - if just SQ is given, joined to S s along edge EQS. Here, there are four parameters (GQ and 

G s ) to compute, and one constraint from the image ( E Q S ) , so three pieces of information are still 

needed in advance. With shadows, the same number of a priori parameters are needed, but one of 
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them can be a description of the light source position instead of a description of a surface orientation. 

The significance of shadows is that they allow information about the light source to be used to solve 

the problem as a substitute for information about the surface orientations themselves. 

2.3 Occurrence of the Basic Shadow Problem 

It has not been assumed in this discussion that surfaces S Q and S s must touch. In practice, the 

Basic Shadow Problem arises any time there are two surfaces which provide two shadow edge pairs 

and an enclosed illumination vector. Any additional shadow edge pairs on these two surfaces will be 

redundant, as will any visible edges along which these two surfaces intersect directly. 

Figu re 2 -12: Occurence of the Basic Shadow Problem 
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3. Variations in Lighting 

When the light source is not infinitely far away and behind and above the camera, the shadow 

geometry is slightly different 

3.1 Light Source In Front of the Camera 

When the light source is in front of the camera (i.e. in the scene, where it might even appear in the 

image) and infinitely far away, the Basic Shadow Problem takes the form shown in figure 3-1. In this 

case, the first illumination surface S M joins edges E Q 1 and E S 1 , giving both of these edges - labels. 

Illumination surface S | 2 joins EQ2 and E S 2 . At E S 2 , the label is clearly - . To label E Q 2 , it is necessary 

to extend S j 2 above this edge, and apply the label to SQ and the upper half-plane of S | 2 . The label will 

then be + . 

Eo2 + 

/ 
/ 

Es2 - Ss 

Figure 3-1: Geometry With Light Source In Front of Camera, Infinitely Far Away 

The vector pointing toward the light source does not intersect the plane z = 1, but the vector 

pointing away from the light source (toward the camera) does. This has the effect of placing the point 

G, in the gradient space on a line parallel to edge E M passing through the origin as before, but on the 

half-line towards surface S s instead of towards surface S Q . This is related to the fact that the gradient 

space can only represent half of all possible surface orientations. The Gaussian Sphere [8] might be 

used to overcome this problem, although it is difficult to represent in a computer. 
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±Es2 

Go 

XEo1 < ^ • 

HEM 
J.E02 

Figure 3 -2 : Gradient Space Constraints With Light Source In Front of Camera 

All of the above gradient space constraints are shown in figure 3-2. The solution technique and 

parameterization are exactly the same as previously presented for the Basic Shadow Problem. The 

closed-form solution is that of Appendix I, with the convention that k<0 since S Q is self-shadowed (as 

explained in the Appendix). 

The redundancy of edge EQS is also the same: if EQ2 and £ S 2 are parallel, then EQS is parallel to 

them; if they intersect at a point, then EQS intersects them both at that point. In this situation, if edges 

E Q 3 and are present, they are redundant with edges EQ2 and £ S 2 . This can be easily seen, since 

edge £ Q S can be calculated from the intersection of £ Q 1 and E S 1 and the intersection of E Q 3 and E ^ ; 

since edge E Q S is known to be redundant with EQ2 and E S 2 , so must be £ Q 3 and E ^ . 

3.2 Light Source Behind and Below Camera 

If the light source is behind the camera but below it, and infinitely far away, then the geometry is as 

shown in figure 3-3. In this case, the only difference from the Basic Shadow Problem is that edge EQ2 

receives the label + instead of - ; the labels of edges E Q V E g 1 , E S 2 , and £ Q S (if present) will be the 

same as previously described. 

While the solution technique is the same as before, it should be noted that the point Gv pointing 
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Es2 

Ss 

Es1 

Es3 

Eo3 

Eos 

Figure 3 -3 : Light Source Behind and Below Camera, Infinitely Far Away, 

towards the light source, will be in the lower half-plane of the gradient space instead of the upper 

In this situation, edge £ Q S is still redundant with the pair of edges EQ2 and E S 2 ; the pair of edges 

EQ3 and E ^ is interchangeable with either of these. 

3.3 Light Source Not Infinitely Distant 

If the light source is a point not infinitely far away, then all illumination vectors will converge at the 

light source instead of being parallel (Figure 3-4). 

Only two of the preceding arguments need to be changed in this case. The first difference is that 

the value k is dependent upon the particular illumination vector used, and each illumination vector will 

have its own value of k and its own line of illumination surface gradients L a | . 

The second change is that edges E Q 3 and E ^ are no longer interchangeable with E Q S or with E Q 2 

and E S 2 . The new information is actually provided not by the angle between the edges E Q 3 and E ^ , 

but by the new illumination vector E j 2 seen between vertices V Q 2 3 and V S 2 3 . This is shown in figure 3-

4 for one case (light source below and behind camera); similar line labels and reasoning hold for the 

other cases presented previously. 

plane. 

In this arrangement, the exact position of the light source can be calculated. The lines E M and £ | 2 
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Es2 

Figure 3 -4 : Point Light Source at Finite Distance 

must intersect (in the scene); the light source is located at the point of intersection. Under 

orthography, as we are assuming here, the x and y coordinates of the light source will be the same as 

the x-y coordinates of the intersection of the lines in the image. So, these coordinates can easily be 

found. The relative z coordinate is then found using the k value for either of these vectors ( E h or E | 2 ) , 

using the definition of k presented above in equation (2.1): if (Ax, Ay, Az) is an illumination vector from 

an object vertex to the light source (such as E M or E | 2 ) , then Ax and Ay can be measured in the image, 

and 

Az s sqrt(Ax 2 + Ay 2) / k 

This shadow problem has seven parameters: 

• (2 parameters each) Gradients GQ and G s of surfaces SQ and S s . 

• (3 parameters) Coordinates of light source position 

Six of these (all except the relative z coordinate of the light source) can be calculated by exactly the 

same method used in the Basic Shadow Problem. To calculate the z coordinate of the light source, 

one additional piece of information must be utilized from the line drawing: the line E | 2 . Since the 

number of a priori pieces of data needed does not change when the light source is at a finite distance, 

the remainder of this paper will omit further discussion of the extra parameter needed in this case. It 

will be indicated when the extra image constraint is available. 
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It can be determined from the line drawing whether the light source is in fact infinitely far away: if 

two illumination vectors (such as £ n and E | 2 ) intersect, then the light source is at a finite distance, and 

all illumination vectors in the image must intersect at the same point. If any two illumination vectors 

are parallel, then all illumination vectors are parallel and the light source is infinitely far away. These 

observations can be used to arrive at constraints between various simple shadow problems that arise 

in different parts of the same image, involving different objects and surfaces. 

3.4 Line Labels and Light Source Position 

We are now in a position to describe how to compute the line labels to be assigned to the various 

edges of SQ and S s , relating object surfaces to illumination surfaces. Each edge of SQ corresponds 

to a shadow edge on S g . The line labels depend upon the relative position of the edge of SQ and the 

light source, and on whether S Q is illuminated (facing towards the light source) or self-shadowed 

(facing away from the light source). 

In the discussion of cases below, note that each edge defines a line which cuts the image plane 

into two half-planes. Only one of these half-planes is occupied by the surface containing the edge. 

Similarly, only one half-plane is occupied by the light source; if the light source is infinitely far away, it 

can be classified as being in whichever half-plane the illumination vector / is pointing towards (as in 

Figure 2-7). 

• Case /; SQ illuminated; surface and light source in opposite half-planes. In this case, the 
occluding edge and shadow edge both receive the label - (Figure 3-5(a)). This case 
corresponds to edges EQ2 and E S 2 in the Basic Shadow Problem (Figure 2-5). 

• Case II: SQ illuminated; same half-plane. The occluding edge receives the label + ; the 
shadow edge is labeled - (Figure 3-5(b)). This corresponds to edges £ Q 1 and E S 1 in the 
Basic Shadow Problem (Figure 2-3). 

• Case III: SQ self-shadowed; opposite half-planes. The occluding edge is labeled + , 
referring to the upper half-plane of the illumination; the shadow edge is labeled - , 
referring to the lower half-plane of surface S g . The reference marks in figure 3-5(c) 
indicate the half-planes involved. 

• Case IV: SQ self-shadowed; same half-plane. Both edges receive the label - as shown in 
figure 35(d) . 

It is important to keep in mind that classical line-labeling methods such as that of Waltz [18] apply 

labels that refer to the real (object) surfaces, which are bounded by a given edge. The line labels 

derived in this section apply to the relationships between one real surface and one hypothesized 

(illumination) surface along an edge. 
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(c) So seif-shadowed 
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(b) So illuminated 
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(d) So self-shadowed 

Same half-plane 

Figure 3-5: Line Labels and Light Source Positions 

3.5 Changing the Number of Light Sources 

It is possible that several light sources will be present, as in figure 3-6. In this case, each light 

source produces two parameters in the problem (the direction of illumination), and adds two image 

constraints (an illumination vector and one non-redundant shadow edge pair). The number of a priori 

parameters needed will be the same, regardless of how many light sources are present. 

However, for each light source, one of the a priori parameters may be the value k for that light 

source, based on knowledge of the three-dimensional direction of illumination. In general, if n light 
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* edges are redundant with Eos 

Figure 3 -6 : Basic Shadow Problem With Multiple Light Sources 

sources are present* and the value of k is known for each, the problem has 2n + 4 parameters, the 

image provides 3n +1 constraints, and 3-n parameters are needed in advance. Thus, shadows allow 

you to use a priori knowledge about light source positions instead of a priori knowledge about surface 

orientations when computing the gradients of the visible surfaces. 

In figure 3-7, there are no light sources or shadows. There are 4 parameters to compute (the 

gradients of the two surfaces). An image constraint will be provided in this case only if the two 

surfaces SQ and S s touch along edge £ Q S ; if they do not, then an extra a priori parameter will be 

needed (i.e. 4 instead of 3). 

Ss So 

Eos 

Figure 3 -7 : Two Surfaces With No Light Source 
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4. Shadows Falling On Polyhedra 

When the shadow of SQ falls on several planes, it is possible to determine the surface orientations 

of all of them. 

4.1 Shadows Falling On Polyhedra With No Shadow Edge Discontinuities 

The shadow of SQ may fall on two surfaces, S s and S T (Figure 4-1). In this case, the first 

illumination surface S n contains edges E Q V E S 1 , and E j r Illumination surface S j 2 contains edges E Q 2 

and E S 2 . Edge E M is an illumination vector, joining vertices V Q 1 2 and V S 1 2 . 

Ss 

Est 

Voti 

st 

Figure 4-1: Shadow Falling On Two Surfaces 

In this figure, a Basic Shadow Problem can be solved using surfaces SQ and S s . The gradient 

space constraints are shown in figure 4-2. Parts (a) and (b) of this figure show constraints that are 

identical to those of the Basic Shadow Problem. In part (c), edge E T 1 has provided a constraint on G T 

in addition to the relation between G Q , G s , and G | V Part (d) shows another constraint between G s 

and G T , from edge E s r Taken together, these two new constraints ((c) and (d)) pan be used to 

compute Gj after the Basic Shadow Problem has been solved involving GQ and G s . Ail of these 

constraints are derived from the line labels assigned to the figure as previously described in section 

3.4. The edge E g T is labeled - if the shadow edge E S 1 bends toward E Q 1 from E t 1 , and + if it bends 

away from E Q 1 . 
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*Et1 

Gi1 

(c) From Si1 

Figure 4 -2 : Gradient Space Constraints From Two Shaded Surfaces 

In this problem, there are two additional parameters to compute ( G T ) compared with the Basic 

Shadow Problem; there are also two additional pieces of information from the image (edges EST and 

E T 1 ) . The relationships are those of Appendix I, with these additional relations involving G T : 

£ S T € sv ss 
E T 1 € S r S M -Az 

' ^ S T = G T ' E S T = G S ' E S T 
T1 = G T ' E T 1 = G I1 °£T1 

-AZ ST 
-AZ T1 L T1 

L f cT1 

-1 G S ' E S T 

L G I 1 ' E T 1 

This problem, like the basic problem, requires that three pieces of information be supplied in advance. 

This solution technique can be generalized to cases such as figure 4-3, in which there are several 
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Figure 4 -3 : Shadow Falling On Many Surfaces 

shaded surfaces. If there are n shaded surfaces which intersect the shadow edge with no 

discontinuities in the shadow edge, the problem will have a total of 2n + 4 parameters: 2n for the 

gradients of the shaded surfaces, 2 for G Q , and 2 for Gy The image will supply 2n +1 constraints; 

three parameters must be given in advance. 

4.2 Breaks In the Shadow Edge 

It is possible for the shadow edge to exhibit discontinuities when the shadow edge falls across 

occluding edges, as in figure 4-4. 

The solution method is exactly as before, but this time there will be no constraint between surfaces 

S s and S T , since edge £ S T has been replaced by edge EJX which provides no constraint between S s 

and S r Therefore, the image provides one less constraint, and one additional non-redundant 

parameter must be supplied in advance in order to. compute all the surface orientations. Of course, 

the gradient of surface S x cannot be computed, since S y is not visible in this image. 

4.3 Constraints in the General Case 

Suppose a shadow is cast by a single surface S Q , onto n shaded surfaces, and exhibiting d 

discontinuities. 

• The problem has a total of 2n + 4 parameters to be computed: 
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St 

(a) Image (b) Side View 

Figure 4 -4 : Shadow Edge With Discontinuités 

o 2n for the gradients of the n shaded surfaces 
o 2 for the gradient of the OGCluding surface SQ 

o 2 for the direction G{ of the illumination 

• The image provides 2n +1 -d constraints: 

o n + 1 shadow edge segments E S 1 , E T 1 , E ^ , etc. 
o 1 from the illumination vector E M 

o H-GM from the intersections of the n shaded surfaces ( E S T , etc.) 

• It is therefore required to supply 3+ of non-redundant parameters in advance: 

o 3 for the solution of the Basic Shadow Problem at the vertex 
o d to compensate for the d discontinuities 

It is also the case that the edge E'QJ (between the occluding surface and one shaded surface) is 

non-redundant if there are any discontinuities along the shadow edge caused by illumination surface 

S n (as in figure 4-4). Therefore, if this edge is present, the image provides an additional constraint, 

and only 2 + d parameters are needed in advance. 

If the same figure is drawn without shadows (and including edge E Q T ) , then: 

• The problem has 2n + 2 parameters 

• The image supplies n-d constraints 

• n + d + 2 parameters must be supplied in.advance 

The improvement when shadows are present is that only d + 2 parameters are needed in advance, a 
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difference of n parameters. This can.be a very significant improvement when n is large, as when a 

shadow is cast on a convex polyhedron. 

http://can.be
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When a shadow is cast by a polyhedron onto a single surface, three parameters must always be 

given in advance. 

5.1 Polyhedra With Two Visible Surfaces 

When a shadow is cast by a polyhedron as in figure 5-1, each shadow-making edge ( E p x , EQp) must 

be the intersection of an illuminated surface and.a self-shadowed surface of the polyhedron. In the 

figure, S Q is illuminated and S p is self-shadowed. The edge EQp between them is a shadow-making 

edge, and corresponds to shadow edge £ s r Illumination surface S M contains these two edges. 

Similarly, it can be concluded that edge E p x is a shadow-making edge, and must correspond to 

shadow edge E ^ (via illumination surface S | 2 ) . 

\ / 

/ \ 

Figu re 5-1: Shadow Cast By Simple Polyhedron 

It can be deduced from the above observations that whatever surface intersects S p along edge E p x 

must be illuminated. It cannot, however, be concluded that the surface containing edge E p x also 

contains edge £ Q X . For this reason, no strong statements can be made about the surfaces that are 

not visible in the image. 

In the figure, a Basic Shadow Problem exists involving surfaces S p and S g . The edge E is 

therefore redundant with the two shadow edge pairs ( £ Q p and E S 1 , E p x and E S 2 ) . This is. important, 

since it is typically difficult to resolve details such as edge E p s within shaded portions of the image {9]. 

5. Shadows Cast By Polyhedra 
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When the basic problem has been solved, the gradients of surfaces S p and S s will be known. The 

gradient of SQ can then be calculated by using the constraints provided by edges EQp (with surface 

S p ) and £ Q S (with surface S s ) . 

Little useful information is provided by edge E Q X , since it borders on only one visible or 

constructible surface ( S Q ) . Edge E p x , on the other hand, is very important, since it borders on two 

surfaces (visible surface S p and the illumination surface S]2). 

In this problem, there are eight parameters to be computed (the gradients of surfaces S Q , S p l and 

S s , and the direction of the light source G{). The image provides five constraints (two from the 

shadow edge pairs E Q p - E s 1 and E p x - E S 2 , one from the illumination edge E | v and two from the edges 

E Q p and E Q S ) . Therefore, three parameters must be provided in advance in order to perform the 

computation. 

If the figure were drawn with no shadows, there would be six parameters altogether (the gradients 

of the three surfaces), and three constraints in the image (from edges E Q p , E Q S , and E^). Three 

parameters would be required in this case, also. As in the Basic Shadow Problem itself, the shadow 

of a polyhedron does not provide additional constraints; it merely allows you to substitute information 

about the light source for a priori information about the surface orientations themselves, and allows 

you to utilize easy-to-find shadow edges instead of hard-to-find details within shaded areas of the 

image. 

The above method of solution also applies when the light source is in a different position as in 

figure 5-2, which illustrates two illuminated surfaces of a polyhedron. 

5.2 Adding a Self-Shadowed Surface 

Suppose we add an additional self-shadowed surface to figure 5-1, as in figure 5-3. In this figure, 

both S A and S p are self-shadowed. We will suppose that the new surface S A adjoins a shadow-

making edge E A Q . (If the new surface S A does not adjoin a shadow-making edge, it will be buried in 

the middle of the shaded area and will have no effect on the shape of the shadow.) 

Two new parameters are present in the system: the gradient G A of the new surface S A . The image 

provides two new constraints that can be used to solve for these two parameters: the shadow edge 

pair E A X - E S 3 , and the edge E A Q between surfaces S A and S Q . So, three parameters are still required 

in advance to solve the system completely. 
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Ss 

Figure 5 -2 : Light Source In a Different Position 

F igure 5-3: Polyhedron With Two Self-Shadowed Surfaces 

If the figure is drawn without shadows, the same two parameters are required ( G A ) , and the two 

new constraints come from edges E n and E A Q . 
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The edge £ A S is redundant with the shadow edge pair £ A O - £ S 2 when shadows are present. One of 

the two edges E A p and E p s is needed, along with E Q p , to determine the gradient of surface S p . Thus, 

two of the edges E s p , E A S , and E p s are redundant, and only one is needed. Since these edges all-lie 

in the shadowed area of the image, they will be difficult to extract reliably [13]. Shadows reduce the 

need to find edges within shadowed areas of the image. 

It should also be noted that in this figure, the additional illumination edge E | 2 can be used with E h to 

determine the exact location of the light source. This was not possible in the simple case (figure 5-1), 

because only one illumination edge was present. 

5.3 Adding an Illuminated Surface 

When the basic figure (Figure 5-1) is modified by adding an illuminated surface instead of a self-

shadowed surface, a line drawing such as figure 5-4 is the result. In this figure, surfaces S A and SQ 

are illuminated, while S p is self-shadowed. (Again, if the surface does not adjoin a shadow-making 

edge, there will be no effect on the shape of the shadow and the consequent inferences to be made 

from shadow geometry. Therefore, we will assume that the new surface S A does adjoin a shadow-

making edge E A p . ) 

The reasoning here is analogous to the case of an additional self-shadowed surface: two new 

parameters are needed ( G A ) , and there are two new constraints with shadows (the pair E ^ - E ^ and 

the edge E A Q ) , and two new constraints .with no shadows (edges E A Q and E A p ) . In any case, three 

parameters will be required in advance. As in the previous case, the new illumination vector E j 2 can 

be used with E n to determine the exact location of the light source. 

The shadow edge pair £ A O - E S 2 from figure 5-3 has been replaced by the pair E ^ - E ^ in figure 5-4. 

It is possible that additional a priori parameters will be needed in pathological cases. Figure 5-5 

depicts an object with a surface adjoining the shadow-making edge which is not visible in the image 

(at E p x ) . Here, an additional a priori parameter will be needed to determine the gradient of surface 

S R . The additional parameter is needed because edge E Q X provides no constraint between surfaces 

S~ and S D . This situation is analogous to the discontinuities in the shadow edge discussed 
Q R 

previously. 

Another circumstance requiring additional a priori parameters is shown in figure 5-6. Here, vertex 

V Q p Q R is not trihedral - there are four surfaces meeting at that point ( S Q , S p , S Q , and S R ) . This adds 
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Es1 

Figure 5-4: Polyhedron With Two Illuminated Surfaces 

one degree of uncertainty involving the gradients of surfaces S Q and S R : one additional a priori 

parameter is needed to solve this problem. 

5.4 The General Solution For Polyhedral Shadow Geometry 

The results of the two previous extensions can be directly combined. In these arguments, it has 

never been assumed that the shadow edge E ^ and the corresponding shadow-making edge ( E A X or 

E p x ) meet at a vertex. Therefore, the results apply without change to line drawings with additional 

hidden surfaces, such as figure 5-7. In this figure, there is no strong information to be obtained from 

shadow edge E ^ . 

In the combined case, a line drawing may depict / illuminated and s self-shadowed surfaces 

adjoining shadow-making edges, casting a shadow on one surface, with h hidden shadow-making 

surfaces and t non-trihedral vertices. The problem contains 2/ +2s+ 4 parameters (gradients of the 

shadow-making surfaces, G s , and Gj). The image supplies 2/ + 2s-ft-f +1 parameters (i + s shadow-

making edges, i + s-h-t nonredundant edges between two visible surfaces, and 1 illumination edge). 

For solution, 3 + h + / additional parameters are therefore needed. 
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Figure 5-5: Additional Parameter Needed for Hidden Shadow-Making Surface 

If no shadows are present, 3 + h +1 parameters are still needed. 

If />1 or s>1, an additional illumination edge can be used to determine the exact position of the light 

source. 

The above results can be composed with the results from the previous chapter for shadows cast 

upon polyhedra. 

Suppose the image depicts / illuminated surfaces and s self-shadowed surfaces along the shadow-

making edges of a polyhedron, casting a shadow whose corresponding edge intersects n surfaces of 

another polyhedron exhibiting d discontinuities, with h hidden shadow-making surfaces and t non-

trihedral vertices. 

• The problem has 2/ + 2s + 2n + 2 parameters: 

o 2/ for the gradients of the /' illuminated surfaces 
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/ / 
/ / 

Figure 5-6: Additional Parameter Needed for Non-Trihedral Vertex 

o 2s for the gradients of the s self-shadowed surfaces 
o 2n for the gradients of the n background surfaces 
o 2 for the direction of illumination, G{ 

The image provides 2/ + 2s + 2n-d -h -M constraints: 

o 1 from the illumination vector 
o 2 shadow-making/shadow edge pairs used to solve the Basic Shadow Problem at 

one vertex 
o / + s-2 additional shadow-making edges 
o n-1 additional shadow edges 
o / + s - h - M non-redundant edges between visible surfaces of the polyhedron casting 

the shadow 
o 1 non-redundant edge between the shadow-making polyhedron and the shaded 

polyhedron 

o n-d-1 edges at intersections of visible shaded surfaces 

Therefore, 3 + d + h +1 parameters must be provided a priori: 

o 3 for the solution of the Basic Shadow Problem 
o d to compensate for the d discontinuities in the shadow edge due to invisible 

shaded surfaces 
o h to compensate for the h hidden shadow-making surfaces 
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Figure 5 -7 : Polyhedron With Additional Invisible Surfaces 

o t to compensate for the t non-trihedral vertices 

Without shadows, the problem contains 2/ + 2s + 2n parameters, the image supplies 2/ + 2s + n-d-h-

f-2 parameters, and n + d + r? + f + 2 parameters must be supplied before the computation. 

If />1 or s>1, an additional illumination vector can be used to determine the exact position of the 

light source. 

The contribution of shadows for computing surface orientations from line drawings is thus made 

clear: 

• Shadows provide an increasing amount of information when the shadow edge intersects 
many visible, differently oriented surfaces of the background. 

• Shadows allow you to substitute one parameter describing the direction of illumination to 
replace one parameter describing a surface orientation before performing the required 
calculations. 

• Shadows allow you to substitute (usually) highly visible shadow edges and shadow-
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making edges for many of the unreliable edges within shaded portions of the image, while 
providing the same amount of information. 

In addition, when several shadow problems appear in different portions of the same image, they 

share some constraints. For example, suppose several polyhedral blocks are scattered over a single 

surface. If the gradient of the surface and the direction of illumination are known, then three 

constraints are provided for each of the shadow problems. This will allow the exact solutions to be 

found for all the problems, if no shadow edge discontinuities or non-trihedral vertices are present. 
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6. Shadows Involving Curved Surfaces 

In this chapter, the involvement of curved surfaces in shadow geometry will be explored. Whether 

the curvature lies in the occluding surface (object) or the shaded surface, additional information is 

required to determine the exact surface orientation along the shadow-making arc or the shadow edge 

arc. 

Witkin[19] has also used shadows to determine curved surface orientation. He developed a 

relation between the curvature of a shadow edge in the scene and the curvature of the shadow edge 

in the image, then derived surface orientations, using surface texture gradients to provide the 

additional constraint necessary. The discussion below differs from Witkin's in that surface orientation 

rather than curvature (rate of change of orientation) is the basis of the theory. 

For discussing curved surfaces, it is necessary to generalize the relation between line labels and 

surface gradients. Suppose two (possibly curved) surfaces S A and S B intersect along arc E A B (Figure 

6-1). 

F igure 6-1: Curved Surfaces Intersecting Along an Arc 

The surfaces are defined by 

S A : - z = f A (x, y) S B : - z = f Q (x, y) 

At a point V A B on E A B , 

-z =" f A (x, y) = fB (x, y) 

Differentiating by x using the rule 
df(x,y) df dy df 

dx 3x dx dy 
we have 
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dx 3x dx 9y 3x dx 9y 

If G A is the gradient of S A at V A B , and G B is the gradient of S B at V A B , then 

G A - ( P A . « A > - ("gf • if) G B - K>«B> - ("gf.if) 

Substituting, 

dz dy dy dy dy 
= P a + — < 7 a = P r + T - < 7 R = G A ( 1 , — ~ ) = G B ( 1 , — ) 

dx " "A * "dV̂ A - B ^ 4 B ~ - A v - d x ' " " B d x . 

If E = (Ax, Ay) is a vector tangent to EAB at V A B in the image, corresponding to the three-dimensional 

vector (Ax, Ay, AZ) in the scene, then the above equation can be multiplied by Ax: 

dz dy dy 
— = A x G A - ( 1 , — ) = A x G B ' ( 1 , — ; 
dx A dx a dx 

Since 

dz dy 
Az = Ax and Ay = Ax , 

dx dx 

we have 
- A z = G A - ( A x , A y ) = G B ' ( A x , A y ) = GA'E = GB'E 

This is the curved-surface analogue of the relation -Az = G * E described earlier for planar 

surfaces: the planar-surface edge E is replaced by the tangent vector E to the arc of intersection of 

two curved surfaces. As a consequence, G A and G B lie along a line in gradient space perpendicular 

to the tangent to the arc of intersection in the image. 

6.1 Curvature in the Shaded Surface 

Suppose a flat surface is casting a shadow on a curved surface, as in figure 6-2. Here, vertex V S 1 2 

is the shadow of vertex V Q 1 2 . Surface S h , the first illumination surface, casts the shadow of edge E Q 1 

on arc E S 1 of the curved surface S s . Surface S | 2 similarly casts the shadow of edge EQ2 on arc E S 2 . 

Suppose V s x is an arbitrary point on the arc E s r Can we determine the gradient G x of S s at this 

point? 

Arc E S 1 is the arc of intersection between the curved surface S s and the illumination surface S M 

(defined by edge E Q 1 of surface S Q ) . Therefore, as previously explained, gradients G x (of S s at V s x ) 
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Figure 6 -2 : Shadow Cast On a Curved Surface 

and G M (of S n ) must lie along a line in gradient space perpendicular to the tangent line E X 1 to E S 1 at 

V o v . This constraint is illustrated in figure 6-3. 
OA 

J j E x l 

Figure 6-3: Gradient Space Constraint Between G x and G n 

This reasoning can be used to find the two tangent lines at vertex V S 1 2 , and use them in a Basic 
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Shadow Problem with edges E Q 1 and E Q 2 of the occluding surface S Q . If S v is the plane tangent to S s 

at V S 1 2 , the Basic Shadow Problem actually involves surfaces Sy and SQ. For this computation, three 

a priori parameters will be required, and the gradients G Q , G v , G n , G | 2 , and G{ will be computed. 

It is not possible to compute the gradients G x (and G y , etc.) without additional information. 

However, it is possible to establish a one-dimensional constraint on each such gradient. Since the 

gradient G n of illumination surface S M was computed as part of the Basic Shadow Problem at vertex 

V S 1 2 , the constraints provided by the tangent lines E X 1 and E Y 1 cause gradient space constraints as 

shown in figure 6-4. Similar reasoning allows constraints on the gradients at points along arc E S 2 to 

be computed, using the gradient G | 2 of illumination surface S | 2 . 

For an investment of three parameters given in advance, then, the gradients of S Q and S v can be 

computed, as well as a one-dimensional constraint on the gradient for each point along arcs E S 1 and 

E S 2 . Additional constraint for the gradients along these arcs might come from another source such 

as Horn's "shape from shading" technique [4] or a priori knowledge of the shape of the object 

bounded by surface S g . 

In this shadow problem, if another illumination vector is available (possibly from the shadow of 

another vertex of S Q ) , the exact position of the light source can then be determined. 

The information available from using shadows in this problem is not redundant with information 

available from the same line drawing without shadows. 
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6.2 Shadows Cast By Curved Surfaces 

When a curved object casts a shadow on a flat surface as in figure 6-5, the shadow edge E J S 

corresponds to the shadow of the "arc of extinction" E]Q which divides surface SQ into an illuminated 

part and a self-shadowed part. There exists a curved illumination surface S | t composed of 

illumination vectors, tangent to S Q along E | Q and intersecting the shaded surface S g along E | S . S { is a 

cylinder, whose axis is parallel to the direction of illumination. 

Figu re 6-5: Shadow Cast By a Curved Surface 

There is a special significance to the line in the image tangent to both E | S and the outline of SQ: it is 

an illumination vector, such as E M in figure 6-5/ If two such tangent lines are visible (as with E M and 

E J 2 in figure 6-5) or some other feature is visible in both E J O and E | S , then a second illumination vector 

can be found. From two illumination vectors, the exact position of the light source can be computed 

and the shadow point V s x can be determined for each point V o x on arc E | Q . 
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The surface Sj is composed entirely of illumination vectors; its gradient at each point must 

therefore lie along the line L H | in gradient space. To determine this line, the value k for the light 

source position must be given. 

If the light source is not infinitely far away, each illumination vector such as £ | X , has a different 

value of k and determines a different line £- n| u m in gradient space. However, all the values of k can be 

computed from the position of the light source, given a single value of k such as that for E | r We will 

therefore assume, for simplicity, that the light source is infinitely far away, and that a single line L i I l n m 

Unfortunately, no stronger statements can be made about the gradient of SQ from examination of 

the arc E[Q. In particular, the direction of the tangent line £ Q X bears no relationship to the gradient of 

S Q . This is illustrated in figure 6-6, which depicts two cylinders tangent to the same illumination 

plane. The arcs of extinction (dotted lines) have completely unrelated directions in the image. 

However, it is possible to use the shadow E | S to compute the gradients of the tangent surfaces 

exists. 

Illumination 

Cylinders in the same plane 

Figure 6-6: Arcs of Extinction are Unrelated To Surface Orientation 
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So, suppose we are given three parameters - k and the gradient G^ of surface S s . From these, it is 

possible to compute the gradient G x of the tangent plane to SQ for each point \ZQ X along the arc of 

extinction E l o : 

1. In gradient space, draw *- n , u m from E h and k. 

2. In the image, find the shadow Vsx of VQX by following an illumination vector from VQX to 
its intersection with the shadow arc E | S . Draw the tangent line E s x through Vsx% 

3. In gradient space, draw the line perpendicular to E s x through G s . This line intersects 
L J | u m at G x , as illustrated in figure 6-7. 

along E I Q . The gradient G x of SQ at VQX is the same as the gradient of S, at V o x , since S, is tangent to 

SQ at that point. We have two constraints on G x from properties of S{: 

1. Sj is an illumination surface, so G x lies on L m . 

2. The gradient ( G x ) of S, at V o x is the same as the gradient of S, at V s x (the shadow of VQX), 
since Sj is a cylinder. As previously shown, G x and G s (the gradient of the shaded 
surface S s ) must lie along a line in the gradient space which is perpendicular to E s x , the 
line tangent to E | S at V s x . 

The constraints on G x are illustrated in figure 6-7. 
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This can also be presented in a closed form solution for G x . Using the definition of k, 

az1x = ||£1x||//c 
Since £ j X is contained in Sv 

- A z | X = G x * E | X 

Also, if E s x is a vector tangent to E | S at V s x , 

E s x = ( 

these, 

" ^ I X 

. - ^ s x - E T 

G x = 
-1 " - ^ i x [£'xTrl -1 ~-\\Ej'k' 

L c s x J . - ^ s x . E T 

- G S £ S X -

Figure 6-8: Using E]Q to Calculate the Gradient of S s 
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It is also possible to use knowledgeabout the shape of the curved object SQ when G s is not known 

in advance. Suppose that two vectors EQX and EQy tangent to the arc of extinction E j Q at points VQX 

and VQV are known. Let points V s x and V S Y be the shadows of VQX and V Q Y , let E | X and E | Y be the 

illumination vectors joining VQX to V s x and VQy to V S Y , and let E s x and E S Y be vectors tangent to the 

shadow edge E i q at V„Y and V<>Y (Figure 6-8). 

Gx 

- L E S X 

llB1 

Gs 

" * - ^ j E o x 

\ y i / k 
Gp 

>w Lillum 

Figure 6-9: Gradient Space Constraints From VQX For Computing G s 

If ( A x Q X , A y Q X , A z Q X ) is the three-dimensional vector corresponding to E Q X , with similar definitions 

for the other vectors, then A z Q X and A z Q Y are known in advance. As previously shown, if G x is the 

gradient of S] (and S Q ) at VQX, then 

~ A z o x = G x ' E o x 
Since E | X is an illumination vector, 

A2 | X = ||E|X||//C 

and, since E | x is contained in S{ at V o x , 

- A z i x = G x ' E i x 
Combining, 

-Az 
-Az 

ox 
ix - •ix 
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G x = 
So, G x (and, simi" - Ilf ,yl|/* IX J L 11 IX" J 

any, G y , the gradient of S, at VQy), can be determined exactly. 

Now, since S, and S s intersect at along E ^ , 

Similarly, 

So, 

£ s x = 

G Y £ S Y = 

"̂ SX csx. 
L-^SY J 

F T 

LCSY J 

"SX 

" F 
3S C S Y 

G s = 
-1 -AZ SX G X ° E S X 

Gy * E r 

S 
" Lfcsv' J L"AZSY J Iesy' J L G Y' £ SY J 

and therefore, G s can be determined exactfy. NOW , G s can be used as previously shown to determine 

the gradient of SQ at each point on the arc of extinction E|Q. Here, knowledge of k and the direction 

tangent to E|Q at two points has sufficed to determine the gradient of Ss and the gradient of SQ at all 

points along EjQ. 

In the special case that SQ is spherical, for example, the entire arc of extinction E|Q lies in a plane 

S p whose surface normal is an illumination vector. Therefore, the gradient G p = Gy In this case, the 

entire problem can be solved with only one parameter (k) given in advance, since A z Q X and A z Q Y can 

be calclated directly: 

k 

G | = e,11ieT 
- A z o x = £ _ - G , = — i l l - ox « I 

and - A z ^ v = 2 ^ — 

OY HE. « 
-11« 

-h' 
The shadow information just described is not redundant with information available in the same line 

drawings when no shadows are present. 



49 

7. Shadow Geometry and Other Shape Inference 
Techniques 

Shadow geometry can be combined with other techniques for determining 3D interpretations from 

images. 

7.1 Other Gradient Space Techniques 

In Appendix I, the closed-form solution for the Basic Shadow Problem is presented. The solution is 

stated in the form: 

G 0 = f[Gs,k) 

When k is given in advance, GQ is shown to be an affine transform (two-dimensional linear transform) 

0 f G s . 

Stated in this form, it is very convenient to use shadow geometry in conjunction with other 

techniques for determining surface gradients. For example, in figure 7-1, a line drawing is shown in 

which the intensities of the surfaces are known. If the surfaces are Lambertian or have known 

reflectance functions, Horn's "shape from shading" technique [4] can be used to determine a 

contour in gradient space along which G s must lie, and a similar contour for G Q . Now, if the contour 

for G s is transformed in its entirety by the function f provided by shadow geometry (as discussed 

above), a new contour for GQ is provided in gradient space (figure 7-2). Since GQ must lie along two 

contours, it must lie at one of the points of intersection of these contours. Now, for each such point, 

the corresponding point G s can be determined using the inverse of transform f. 

Shadow geometry can similarly be combined with Kanade and Kender's "skewed symmetry" [7], as 

in figure 7-3. Here, skewed symmetry provides a hyperbolic contour for each of the two surface 

gradients GQ and G $ ; shadow geometry can be used to transform the contour for G s into an 

additional contour for G Q . The points of intersection of the contours for GQ are then the possible 

values of G Q , and the corresponding values of G s can be found as above. 

7.2 Shape Recovery for Curved Surfaces 

Some techniques have appeared in the literature for reconstructing the orientation of a curved 

surface at every point, using relaxation techniques [1,6]. These techniques typically begin with the 

surface orientation at every point along the outline of the surface (SQ in figure 7-4). These values 

form a boundary condition which drives the relaxation process. 
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F igure 7-1 : Shape From Shading 

P 

Figure 7-2: Shadow Geometry and Shape From Shading 

In this paper, we have seen that it is possible to determine the surface orientation for the tangent 

planes at each point along the arc of extinction E | Q , using three a priori parameters (such as the k 

value for the light source and the orientation of the surface on which the shadow appears). These 

values can be used to provide stronger boundary conditions for relaxation techniques. 

Surface orientations along the arc of extinction are valuable for another reason. Relaxation 

techniques must make some presumptions about the curvature of the surface (e.g. surface of 
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Figure 7-3: Shadow Geometry and Skewed Symmetry 

F igure 7-4: Shadow Geometry and Curved Surface Shape Recovery 

minimum curvature, cubic or other surface of revolution). Since all of these models of curvature are 

consistent with the tangent gradients along the outline of So, it is not possible to decide which model 

is appropriate when the only boundary condition comes from the outline of S Q . However, when the 

arc of extinction is also used, it may be possible to select one from several possible models of surface 

curvature, or to measure systematic deviation from a particular model for a specific object. 
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7.3 Shadow Geometry and Stereo 

It is known that, when a stereo pair of images is available but the camera positions are unknown, 

five pairs of corresponding points in the two images can be used to compute the three-dimensional 

description within a single unknown scaling factor [3]. 

With shadow geometry, it is possible to compute this scaling factor, thus solving the system 

uniquely, when the value of k for the light source is known. It is only necessary to find a single 

shadow-making point VQ1 and its shadow point V s , as in figure 7-5. In this figure, d is the distance (on 

the x-y image plane) between Vn and 

F igure 7-5: Shadow Geometry and Stereo 

As we have seen in equation (2.1), k has the value: 

k = sqrt(Ax 2 + Ay 2) / Az = d / Az 

So, AZ can be computed for the line segment joining VQ and Vs; from this, the value of the unknown 

scaling factor can be calculated. This is the same idea that underlies light striping [16]. 

In this technique, a priori knowledge about the light source position (in 3D) is used to provide the 

additional constraint needed for unique interpretation of images in a stereo pair. Shadow geometry 

has provided the means for converting knowledge about illumination direction into an absolute 

distance, as required for the solution of the stereo problem. In essence, the shadows provide the 

image of the occluding surface from an additional point of view (located at the light source) [9]. 
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8. Conclusions 
This paper has presented a theory describing relationships among surface orientations in line 

drawings with shadows. The relationships arise from hypothesizing the existence of "illumination 

surfaces" connecting shadow edge pairs, assigning appropriate line labels to shadow and shadow-

making edges, and applying the resulting constraints in the gradient space. 

This technique falls short of providing exact solutions to shadow geometry problems. The line 

drawing must be augmented with information such as the orientations or curvature of specific 

surfaces or the position of the light source if exact surface orientations are to be found. 

It has been shown, however, that shadow geometry provides important benefits for image 

understanding: 

• Shadows allow you to subsitute information about the light source position instead of a 
priori knowledge about surface orientations. 

• Shadows allow you to determine geometric information from highly visible shadow edge 
pairs instead of using many of the unreliable edges within shaded portions of an image. 

• An increasing amount of information is provided by the shadow edge when the shadow 
falls on many visible, differently oriented surfaces. 

• Shadows provide some constraint when curved surfaces are involved. 

• Shadows provide constraint between surfaces even when they do not touch in the scene 
(or image). 

• Shadows allow the solution to one shadow problem to be used in the solution of other 
shadow problems, since typical shadow problems are mutually constrained (e.g. same 
light source, same background surface). 

In addition, some observations have been made about the solution of the correspondence problem 

for shadows, which must be solved before surface orientations can be inferred. 

8.1 Future Work 

Work remains to be done on the following topics: 

• Generalization of the entire method for images under perspective. 

• Complex interactions between multiple light sources, polyhedra, and curved surfaces. 
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• Relationships between shadow geometry and other gradient space constraints, such as 
Horn's "shape from shading" [4], Kanade's "skewed symmetry" [7], and tender's 
"shape from texture" paradigm [7]. 

• Finding shadow edges and solving the correspondence problem for shadow edge pairs. 

A program should be written to employ the techniques presented here. The first application might 

be in conjunction with an interactive photo-interpretation program [11], in which the segmentation 

and correspondence problems will be solved by the human operator. 

Additional questions have been raised in the course of this research concerning the more general 

problem of determining surface orientations from (or using) a line drawing. In an image such as 8-1, 

only three a priori pieces of information are needed besides the line drawing itself to determine the 

surface orientations uniquely. However, constraints can be found by all of these techniques: 

• Shape from shading [4] 

• Skewed symmetry and gravity [7] 

• Shadow geometry 

This problem is actually over-constrained. It should be possible to find a method for using the 

redundant information to improve erroneous segmentation and reduce the overall uncertainty in the 

shape recovery process;however, this topic has not yet been explored. 

Figu re 8-1 : Image of Cube: Interpretation is Over-Constrained 

The line drawing itself provides many constraints, but the following questions remain to be 

addressed: 
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• Given a line drawing with labeled edges, how many pieces of additional a priori 
information are required to determine all of the surface orientations? 

• If additional information is needed, where can it be obtained? (Shape from Shading? 
Skewed Symmetry? Shadow Geometry? Other techniques?) Can this question be 
answered during the actual process of image analysis, or must the answer be known 
when the program is written? 

• If the required amount of information is present, it may have been obtained from diverse 
sources. How can it all be combined algorithmically to determine the surface 
orientations? 

• If too much information is present, the solution is over-constrained. In this case, the 
redundant information should be useful for correcting errorful segmentation or for 
improving the reliability of the solution. How can this be done? 
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I. Solution to the Basic Shadow Problem 

The Basic Shadow Problem can be formulated in terms of vector relationships, for development of 

a closed-form analytic solution. Here, we will describe the gradient G Q of the occluding surface SQ in 

terms of the gradient G s of the shaded surface S s and the relative z-component of the direction of 

illumination, /c. 

Eo2 

Ss Eoi So 

Figu re 9-1 : The Basic Shadow Problem 

In figure 9-1, let edge £ M = (Ax n , Ay M ) correspond to the three-dimensional scene vector (Ax M , 

A y | V A z n ) . Three-dimensional counterparts can similarly be defined for the other vectors £ Q 1 , E Q 2 , 

E s 1 , a n d £ S 2 . 

The following relations hold: 

1. By the definition of *, k = ||£M|j / A z j r It should be noted that k is positive (or zero) if SQ 

is illuminated, and negative if SQ is self-shadowed. With this definition, all the equations 
presented here hold for any direction of illumination. 

2 ' £ I1 € S I 1 ' S I 2 ' S 0 = G.r E .1 = G I 2 ' £ . 1 

3. E S 1 e S M , S S , so 
- ^ 8 1 = G . 1 = G S ' £ S 1 

4. E S 2 € S , 2 , S S , so - ^ S 2 = G . 2 • E S 2 = G S ' £ S 2 

5 - E o i € S n , s o , s o " ^ O l = G . 1 • f o i = G 0 ' £ 01 

6 - E 0 2 6 S I 2 ' S 0 * S 0 " ^ 0 2 = G . 2 • £ 0 2 = G 0 ' £ 0 2 
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1.1 Gradient of the First illumination Surface, G M 

The constraints on G h are expressed by (1) and (2) above: 

- A Z M . - | | E | l | | / * - Q | 1 - E | l 

and by (3): 

" ^ s i = G h ' E s i = G s ' E s i 
These can be combined into a single equation using matrices. The top row of the computation 

represents the first equation, and the bottom row represents the second equation: 

II II 

L - ^ s i J L̂ SiTJ '11 

G . 1 = 
-1 -1 

k,TJ L 
-II*. 

*S1 J 
This equation defines G M in terms of G s , k, and several edges (measurable in the image). 

It is possible to compute the coordinates of Gj in terms of the coordinates of the various vectors. 

To begin, we can use the fact that 

" a b " -1 _ d - b " / a b 

c d - c a / c d 

to give the equation 

where 

D = 

A y s / D - A y , / D 
- A X S / D Ax ,/D 

-\\Ej/k 

Then, •si 
" ^ 1 1 ^ 8 1 - ^ 1 1 ^ 8 1 

G M = 

' - p s A x s 1 A y M / D - q s A y s 1 A K M / D - \\EjHys/kD 
P s A X s 1 A x h / D + QgAy^AXj/D + ||Eh||Axs1//(D 

where 

Aps + Bqs + C/k 
Eps + FqQ + G/k 

A = - A x s 1 A y h / 0 
8 = - A y s 1 A y M / 0 
C = - A y s 1 sqr t (Ax h

2 + Ay,, 2 ) / D 
E = A x s 1 A x h / D 
F = A y s 1 A X M /D 
G = A x S l sqrt (Ax M

2 + Ay ( 1
2 ) / 0 

' ABC' II 

EFG 
Ps 
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and 
D = A X M A y s 1 . A y | 1 A X S 1 

Here, the assumption has been made that D * 0, i.e. that E M ft £ s r 

L2 Gradient of the Second Illumination Surface, G, 12 

G | 2 is determined in a manner analogous to the determination of G M presented above: 

G i 2 = 
Hps + lqs + J/k 
Lps + Mqs + N/k 

H 1 J 
_L M N _ 

Ps 

•Uk 

where 

and 

H = - A x S 2 A y ( 1 / P 
/ = - A y S 2 A y M / P 
J ~ ~AyS2 S q r t ( A X N

2 + A / H
2 ) / P 

L = A X S 2 A X | 1 / P 

M = Ay S 2 Ax ( 1 / P 
N = A X ^ sqrtfAx,.,2 + A y n

2 ) / P 

with the assumption that P * 0, i.e. £ ( 1 ft E^. 

L3 Gradient of the Occluding Surface, G Q 

To determine GQ, we use relations (5) and (6) presented above: 

- A z o i = G n " E o i * G o ' f o i 
- A z 0 2 = G | 2 • E 0 2 = G 0 • E 0 2 

In combined form, 

" - ^ 0 1 
- A Z ™ 

°"[e« T] ' 1[ -^«]" 
Ay Q 2 / lV - A y Q / W 

"Ol -1 V f o i * 

LG.2 ' E02-

- A X 0 2 / W A x Q / W 
P|1A*01 + «11^01 
_ p | 2 A x 0 2 + q ( 2 A y 0 2 

where 

w =. 
"02 

= A X 0 1 A ^ 0 2 " A ^ 0 1 A X 0 2 

The terms p h , 9 M . P,2» a n d Q, 2
 c a n b e expanded in terms of p s , qs, and k, to yield: * 



61 

OPg + RqQ + S/k " 0 RS ' 
J p s + Uqs + V/k _ TUV _ 

where 

~QRS ] _ à 
TU V J ~ w 

1//f 

A x Q 1 A y 0 2 A y Q 1 A y 0 2 - A y 0 1 A y Q 2 - A y 0 1 A y Q 2 

- A X 0 1 A X Q 2 - A y 0 1 A X Q 2 A X 0 1 A X Q 2 A X Q 1 A y 0 2 

and 

ABC 
EFG 
H I J 
LMN 

A through N are defined as before 
W = A x Q 1 A y 0 2 - A y Q l A x 0 2 

Expansion of the coefficients A through N does not yield additional simplification in the above 

equation. 

Here, the assumption has been made that W *0, i.e. EQ1 |f E Q 2 . 


