NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



-CMU-CS5-82-100

University Lihraries SR, S A
Carneogie Mallon University
Pittsburgh PA 15213-3890

Using Shadows in Finding Surface Orientations

4 January 1982

Steven A. Shafer
Takeo Kanade

Computer Science Department

Carnegie-Melton University

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-81-K-1539.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.



Table of Contents |

1. Introduction

1.1 The Shadow Geometry Problem
1.2 This Presentation ]
1.3 Introduction to Gradient Space and Line Labeling

2, The Basic Shadow Problem

2.1 Solution of the Problem
2.2 Relationships Among the Parameters Supplied in Advance
2.3 Occurrence of the Basic Shadow Problem

3. Variations in Lighting
3.1 Light Source In Front of the Camera
3.2 Light Source Behind and Below Camera -
3.3 Light Source Not Infinitely Distant

3.4 Line Labels and Light Source Position
3.5 Changing the Number of Light Sources

4. Shadows Falling On Polyhedra

4.1 Shadows Falling On Polyhedra With No Shadow Edge Discontinuities
4.2 Breaks In the Shadow Edge
4.3 Constraints in the General Case

5. Shadows Cast By Polyhedra

5.1 Polyhedra With Two Visible Surfaces

5.2 Adding a Self-Shadowed Surface

5.3 Adding an llluminated Surface

5.4 The General Solution For Polyhedral Shadow Geometry

6. Shadows Involving Curved Surfaces

6.1 Curvature in the Shaded Surface
6.2 Shadows Cast By Curved Surfaces

7. Shadow Geometry and Other Shape Inference Techmques

7.1 Other Gradient Space Techniques
7.2 Shape Recovery for Curved Surfaces
7.3 Shadow Geometry and Stereo

8. Conclusions

8.1 Future Work
8.2 Acknowledgements

9. Bibliography .
I. Solution to the Basic Shadow Problem

1.1 Gradient of the First lllumination Surface, GI1
1.2 Gradient of the Second Illumination Surface, G
1.3 Gradient of the Occluding Surface, Gy



Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 1-5:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:

List of Figures

Shadows Provide Information for 3-D Shape Recovery
The X-Y-Z Coordinate System

The Gradient Space

Line Labels and Surface Intersections

Line Labels and Gradient Space Relationships

The Basic Shadow Problem

Basic Shadow Problem -- Correspondences Labeled
Basic Shadow Problem -- lllumination Surface 1
Gradient Space Constraints from lllumination Surface 1
Basic Shadow Problem -- lllumination Surface 2
Gradient Space Constraints From lllumination Surface 2
Basic Shadow Problem -- llumination Vector

Gradient Space Constraints From lumination Vector
Solution to Basic Shadow Problem

Figure 2-10: Basic Shadow Problem -- Edge £,q Provided
Figure 2-11: Redundancy of £4g With E, and Eg,
Figure 2-12: Occurence of the Basic Shadow Problem

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:
Figure 7-1:
Figure 7-2:

Geometry With Light Source In Front of Camera, Infinitely Far Away
Gradient Space Canstraints With Light Saurce In Front of Camera
Light Source Behind and Below Camera, Infinitely Far Away

Point Light Source at Finite Distance’

Line Labels and Light Source Positions

Basic Shadow Problem With Multiple Light Sources

Two Surfaces With No Light Source

Shadow Falling On Two Surfaces .

Gradient Space Constraints From Two Shaded Surfaces

Shadow Falling On Many Surfaces

Shadow Edge With Discontinuites

Shadow Cast By Simple Polyhedron

Light Source In a Different Position

Polyhedron With Two Self-Shadowed Surfaces

Polyhedron With Two Numinated Surfaces

Additional Parameter Needed for Hidden Shadow-Making Surface
Additional Parameter Needed for Non-Trihedral Vertex
Polyhedron With Additional Invisible Surfaces

Curved Surfaces Intersecting Along an Arc

Shadow Cast On a Curved Surface

Gradient Space Constraint Between G, and G,

Gradient Space Constraints On Tangent Planes To Sg

Shadow Cast By a Curved Surface

Arcs of Extinction are Unrelated To Surface Orientation

Gradient Space Constraints on G

Using £, 510 Calculate the Gradient of Sg

Gradient Space Constraints From Vox For Computing GS

Shape From Shading :
Shadow Geometry and Shape From Shading

BLRRLSLBBNA

4
41

[ . N N



Figure 7-3:
Figure 7-4:
Figure 7.5;
Figure 8-1:
Figure 9-1:

ifi

Shadow Geometry and Skewed Symmetry

Shadow Geometry and Curved Surface Shape Recovery
Shadow Geometry and Stereo

Image of Cube: Interpretation is Over-Constrained

The Basic Shadow Problem

)
£

LI



Abstract

Given a line drawing from an image with shadow regions identified, the shapes of the shadows can be
used to generate constraints on the orientations of the surfaces invoived. This paper describes the
theory which governs those constraints under orthography.

A "Basic Shadow Problem” is first posed, in which there is a single light source, and a single surface
casts a shadow on another {background) surface. There are six parameters to determine: the
orientation (2 parameters) for each surface, and the direction of the vector (2 parameters) pointing at
the light source. If some set of 3 of these are given in advance, the remaining 3 can then be
determined geometrically. The solution method consists of identifying “illumination surfaces”
consisting of illumination vectors, assigning Huffman-Clowes line labels to their edges, and applying
the corresponding constraints in gradient space.

The analysis is extended to shadows cast by polyhedra and curved surfaces. In both cases, the
constraints provided by shadows can be analyzed in a manner analogous to the Basic Shadow
Problem. When the shadow falls upon a polyhedron or curved surface, similar techniques apply. The
consequences of varying the position and number of light sources are also discussed. Finally, some
methods are presented for combining shadow geometry with other gradient space techniques for 3D
shape inference. -



1. Introduction

1.1 The Shadow Geometry Problem

in many images, shadows are present (figure 1-1). When this is the case, the shadows provide

some information which is useful for determining the 3D shapes and orientations of the objects in the

S -

Figure 1-1: Shadows Provide Information for 3-D Shape Recovery

The interpretation of shadows in an image involves three distinct processes:
e Finding shadow regions in the image

¢ Solving the correspondence problem to determine which object has cast each shadow
region

» Geometrically deducing information about the objects and surfaces invalved on the basis
of the identified object/shadow pairs

To date, most researchers have performed each step in sequence, although the latter steps certainly



generate information which can be used to improve the former processes if they have been

incomplete or noisy.

Techniques for the first step, finding shadow regions, have been proposed by many researchers,
usually by looking for regions of low intensity with approximately the same hue as some neighboring
region [12, 14]. A close examination of region colors will reveal that shadows due to the sun will have
a slightly biver hue than illuminated portions of the same surface. Lowe and Bintord [9] proposed
criteria which should be satisfied b)—/ edges of shadow regions; these can be used to suggest or try to
confirm the hypothesis that a particular region is.a shadow Witkin [20] is also mvestngatmg shadow
edges. Waltz [18] developed a method for labeling Imes in line drawings as shadow edges based on

local geometric criteria at vertices.

The correspondence problem has been explored primarily by Lowe and Binford [9]. They describe
several properties of this correspondencé, and include descriptions of the special points of view from
which degenerate cases arise. '~ O'Gorman {13] proposed a heuristic method for finding
correspondences in the blocks world under orthography,

Geometlric interprération of shadows is also perform.ed by Lowe and Binford [9], who use shadows
to determine height in overhead views of airplanes, They measure the distance in the image between
the outline of an object and the outline of its shadow, and use similar triangles to conclude that this
distance is proportional to the height of the object’s edge above the ground. Quam [15] is also using
shadows to determine depth information: These technigues have been employed in manual photo-

interpretation of aerial photographs as well [17].

Waltz [18] used shadows to classify surfaces into several orientation categories depending upon
the geometry of the shadows in a line drawing. His categories were qualitative, such as “front left" for

an approximately vertical surface tipped to the left.

This paper presents a theory describing the constraints that shadows provide between surface
orientations in line drawmgs using shadow and surface outlines under orthographlc projection. This
can be thought of as a method for achieving the same kind of resuits as Waltz, but computing exact
surface orientations rather than simply categorizing the surfaces into classes with similar
orientations. The theory presented here subsumes the "shadow-plane” idea suggested by

Mackworth [10] as a means for generating gradient-space constraints from shadows.

Shadows cast by and upon curved surfaces have been described by Witkin [19], who derived
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equations relating surface curvature to curvature of shadow edges in the image. The presentation in
this paper is somewhat different, discussing surface gradient (local orientation) rather than curvature

{rate of change of orientation).

1.2 This Presentation

This paper begins by defining the "Basic Shadow Problem™, computing surface orientations from a
line drawing depicting one surface casting a shadow on one other surface. The surfaces are
assumed to be flat, the light source is assumed to be infinitely far away, and orthographic projection is
used.

The consequences of varying the light source are then explored. These include changing the
position to be in front of the camera instead of behind it, moving the light source to a point at a finite
distance from the scene, and altering the number of light sources. The same Basic Shadow Problem
occurs in all these cases, and the necessary modifications to the solution technique are presented.

The shaded surface -- the surface on which shadows appear -- is then generalized to be many
planes (a polyhedron). The Basic Shadow Problem occurs within an algorithm to compute the

orientations of each face intersecting the shadow edge.

The occluding surface -- the surface casting the shadow -- is generalized to be polyhedral. The
Basic Shadow Problem is included in the shadow information available in this case, along with

additional shadow-making edges,

The solution of shadow problems involving curved surfaces is then discussed. When curved
surfaces are involved, additional information about the curvature is needed for an exact solution. The
special case of a sphere is examined as an exampie in which knowledge about the surface curvature

allows for the derivation of a unique solution with little a priori information required.

Some methods are presented for combining shadow geometry with other gradient space

techniques, and with stereo image analysis.

Further plans include the elaboration of the above cases under perspective rather than
orthography, and the construction of a program to perform the geometric reasoning outlined in this
paper.



1.3 Introduction to Gradient Space and Line Labeling

This section presents an introduction to the gradient space and line labeling for readers who are

not already familiar with these topics.’

When constructing a 3D description of ‘a scene from examination of an image, some coordinate
system must be set up. The coordinate system used in this paper is illustrated in figure 1-2. Here, the
X ahd y axes are aligned on the image plane in the horizontal and vertical directions, respectively,
assigning the usual 2D Cartesian coordinate system to the image. The z axis points towards the

viewer (or camera). This is the coordinate system used by Mackwaorth [10].

Viewer image Scene

Figure 1-2: The X-Y-Z Coordinate System

In this paper, it will be presumed that the point {x,y,2) in the scene corresponds to the point (x, y)in

the image. This is orthography. Perspective projection is not discussed in detail in this paper.

When describing the three-dimensional shape of an object, it is sufficient to specify the two-
dimensional image together with the orientation (in three-space) of each surface in the scene. The
problem of three-dimensional shape recovery is therefore equivalent to finding the orientation of each
surface in the image. These orientations can be represented by points in a plane called the gradient
space (figure 1-3) [5]. If asurfaceis represented by the equation

-z = f(x,y)
then its gradient is represented by the point:
(p,q) = (8f/3x, 0f/dy) ‘
This assigns a natural interpretation to points in gradient space: a surface which is "tipped" to the



rightis represented to a pbint on the right side of the origin; a surface tipped left has a gradient to the
left of the origin. Similarly, a surface which is tipped up {or down) has its gradient above {or below)

the origin. In figure 1-3, the gradients G, (etc.) are shown for the surfaces S, {etc.) in the line drawing

at the right.
a9 A\tppedup .
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Figure 1-3: The Gradient Space

Before computing surface orientations, it is common to attempt to produce a line drawing from an
image, in which all the surfaces are outlined. Huffman and Clowes [5, 2] showed that the edges (line
segments) in a line drawing do not all represeni the same three-dimensional surface configuration.
The four types of edges they discovered dre shown in figure 1-4, along with the haif-planes containing
the surfaces which meet at each type of edge. At aconvex edge, the surfaces recede from the viewer
as you travel farther from the edge. At a concave edge, the surfaces approach the viewer as you
travel farther from the edge. At an occluding edge, only one of the two surfaces involved is directly
visible in the image. Waitz [18] developed an algorithm for assigning these labels to the edges in a

line drawing.

The convex and concave labels indicate relationéhips between the'gradients of the surfaces which
meet along an edge [10]. When two surfaces are joined along a convex edge, their gradients lie along
a line in gradient space which is perpendicular to the edge in the image (figure 1-5). Furthermore, the
relative positions of the surface gradients will be the same as the relative positions of the surfaces in
the image. When two surfaces meet at a concave line, the gradients are still on a perpendicular line in

gradient space, but the relative positions are reversed.

In general, if an edge E = (Ax, Ay) is contained on a surface with gradient G =(p, g), then the edge

corresponds to the three-dimensional vector (Ax, Ay, Az) where
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Figure 1-5: Line Labels and Gradient Space Relationships

-az = G.E (1.1)



In this paper, a method is proposed for assigning Huffman-Clowes line labels to shadow-making
edges and shadow edges in a line drawing, and for using the resulting gradient space relationships to
determine surface orientations.
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2. The Basic Shadow Problem

The Basic Shadow Problem is:

Given a line drawing such as Figure 2-1, what constraints exist between the occluding
surface Sg and the shaded surface SS?

For simplicity, we will begin by assuming that the surfaces are both fiat, and that orthographic
projection is used. We will also, for the time being, presume that the light source is infinitely far away;

this means that all illurmination vectors (light rays emanating from the light source) are parallel.

QCccluding Surface
So

Shaded Surface

Figure 2-1: The Basic Shadow Problem

2.1 Solution of the Problem

To show the proper correspondences, the edges and vertices can be labeled as in figure 2-2, where
edge £, is the shadow edge corresponding to £, Eg, is the shadow of £ 4, and vertex Vg, is the

shadow of V012.

Consider the physical interpretation of edge Egy- Some light rays just graze past S, at Eoq: and
continue on to strike SS along Es1' This set of rays form a surface (a piece of a plane), in fact the

plane containing £, and Eg,. This is a surface consisting of "illumination vectors"; call it surface S

(Figure 2-3).

Suppose we were to cut a piece of cardboard and fit it into the space occupied by S”. Then, this
cardboard and .S would be joined along £,,, a convex edge. Using Huffman-Clowes line labeling
[5], this edge can be given the label +. Similarly, E¢, joins S and S, and is concave; it receives the

label —.
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Voi2 Eo2

Vs12

Eo1 So

Vos1

Figure 2-2: Basic Shadow Problem -- Correspondences Labeled

Si1

Figure 2-3: Basic Shadow Problem -- {llumination Surface 1

As Mackworth showed [10], these line labels can be mapped into constraints in the gradient space.
The gradient of So (Go) and the gradient of S (G|‘1) must be joined by a line perpendicular to Em;
“since the label of E01 is +, Go and Gn have the same relative positions as S0 and Sn' Similarly, G] ’
and GS are joined by a line perpendicular to Esv with relative positions reversed because of the -
label. These facts vield the relationship shown in figure 2-4 in the gradient space. However, we do
not yet know the position of this figure in gradient space, nor the distances involved; only the angles

are known.

S,, is not the only illumination surface in the Basic Shadow Problem: the illumination surface S,
joins edges £, and Eg, {Figure 2-5). Aion(j Eg, the - label is assigned; along Eq, the — label

refers to the junction of So and the upper half-plane of S|2' The gradient space constraints are shown
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1 Est
Gs

Git *—> ot
Go

Figure 2-4: Gradient Space Constraints from Illumination Surface 1

in figure 2-8. Note that it is possible for Eno and Eg, to he parallel, in which case the two rays shown
in gradient space are coincident.
Si2

Eo2 —

Es2 —

Figure 2-5: Basic Shadow Problem -- llumination Surface 2

A third constraint in the gradient space arises from the fact that an edge E , can he drawn joining
Vorz and Vs12 (Figure 2-7). This edge lies in a line which passes through the light source, since Vs12
is the shadow of Voior The vector ! pointing at the light source can be represented in gradient space
by a point G‘. which represents the intersection of a vector / from the origin with the plane z = 1.
Since £, lies in the projection of this vector onto the image plane, the point G, must lie along aline in
gradient space, passing through the origin, and paraliel to El ] (Figure 2-8). Itis not known, however,
how far this point G, is from the origin; suppose this is determined somehow (as described below),
and call the distance k. It should be noted that & represents the relative change in z with a change in

x or y along the illumination vector. 1tis defined by this equation:
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1Es2 1Eo2

Gs TGo

Gi2

Figure 2-6: Gradient Space Constraints From lllumination Surface 2

k = sart (ax? + ay?)/ az = ||E,|| / Az . (2.1)
‘ |
Voi2
Ei1
Vs12
Ss So

Figure 2.7: Basic Shadow Problem -- Hlumination Vector

The line L. and located at a distance 1/k from the origin, represents the

ithum 1’
locus of the gradients of all planes which contain the illumination vector I. This is the set of ail

perpendicular to £

ilumination planes, and in particular contains both S,, and §
L

120 thus, Gn and G|2 are points on the line

dum® This property subsumes the property of GI1 and GI2 that they must be joined by a line
perpendicular to E”, since E|1 can be given the label + or - (depending on which half-planes the line

label refers to).
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e

17k

Lillum
contains Gil, Gi2

Figure 2-8: Gradient Space Constraints From lllumination Vector

The line L,  is the same as the terminator described by Horn in [4]. 1t separates the gradient
space into two half-planes; the half-plane containing G, represents the gradients of all planes that will
receive illumination, while the other half-plane contains the gradients of self-shadowed surfaces

{facing away from the light source).

This is the extent of the information available from the line drawing in figure 2-1. Since each

gradient is an ordered pair (p, g}, the problem has six parameters to be computed:
¢ (2 parameters) Gy the gradient of So
e (2 parameters) GS. the gradient of Ss
¢ {2 parameters) GI. the direction of the light source.
From the Basic Shadow Praoblem geometry, three constraints are provided:
e The angle Go'Gn'Gs' which comes fron? the angle E01~I:‘$1

e The angle G 4-G|,-G4, which comes from the angle between £, and E,
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e The direction of the line Liom {containing G, and Glz)’ which comes from the direction of .
Ey
We would therefore expect that three parameters must be given in advance, and the other three can

be computed from the geometry.

Let us suppose, for example, that the value & is given (the relative depth component of the direction
of the light source), and that GS is known (the relative orientation of the background with respect to
the camera). The construction in the gradient space for computing G, proceeds as follows (Figure 2-
K

| Es2 | Eo2
\ AN
LEs1
Liltum |~ '
Gs Ei1
\
~
\ >
Go Gi
Gi1 5 —— _i_E°1
\ T
\ e =
~
P ~
- \
\

\

\
@ \

Figure 2-9: Solution to Basic Shadow Problem
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1. Draw the fine paraliel to E,, through the origin. Since k is known, G, and L can be

lum
found.

2. Plot GS, which was given. Through this point, draw a line perpendicular to E 5 Where it
intersects Ligum Must be G,. Through G,,, draw a line perpendicular to Egy G must lie

g 1’
on this line.

3. From Gg, draw a line perpendicular to Eg,. Where it intersects Lijum Will be G,. From
there, draw a line perpendicular to EO . Since G must lie on this line, the intersection of
this line with the final line from step (2) above must be GO.' )

In Appendix |, the closed form solution for the Basic Shadow Problem is presented, using a vector

formulation of the problem.

2.2 Relationships Among the Parameters Supplied in Advance

In the example above, Gg and k were needed befare the construction could take place. In practice,.

a program for a specific application may not be able to compute these particular parameters.

It is possible to begin the construction with any three of the six pieces of information specified in
advance, as long as none are redundant with each other, and none are redundant with the direction
of Ey

1t is possible, or perhaps likely, that a given lineé drawing will include the edge Eqs between S, and
Sgr as in figure 2-10. An interesting question arises as to whether this provides some additional
constraint, which might perhaps relax the requirement that three pieces of information be provided in

advance.

The edge Eos turns out to be redundant with E02 and Esz' in the sense that given the latter, the
former can be construcied, and vice versa. Suppose we are given EO2 and Esz‘ These represent the
intersections (in the scene) of planes S0 and S, and SS and S|2' respectively. Now, either these two
lines intersect or they C_iO not. Suppose they intersect in a point. Cali it Vaso! since it is contained in
surfaces SO. SS, and 812. This point is contained in both S0 and Ss' as ié poiﬁt Vast which is given in
the line drawing. Therefore, the line EOS must pass through these points. On the line drawing, find

the intersection of Eqn ar.md Egp Draw the line joining this point to V! this is £y {Figure 2-11).

Now, suppose that the two lines Eoz and Esz do not intersect anywhere. Then there is no point
Vosp contained in all three surfaces S, Sg, and S, So, Eq cannot intersect either £, or £g,.
Since it is coplanar with these (on surfaces So and Sgr respectively), it must be parallel to bpth. Edge

E

og an therefore be drawn through Vost: parallel to EO2 {and Esz)'
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Eo2

Es2

Vos1 Eos

Figure 2-10: Basic Shadow Problem -- Edge E g Provided

Eo2 ' Vos2

Es2 —_——

Eos

Vos1

Figure 2-11: Redundancy of Eos With Eoz and Esa

By this reasoning, E g can be constructed from £y, and Egy- Similarly, if Eos is given, either of Eqp
and Esz can be calculated from the other, to provide the geometric constraint described above for the
solution of the Basic Shadow Problem. Of course, the solution can also proceed directly using the
label - on £ g+ With identical results.

The solution of this problem should be compared with the solution to the prablem if there are no
shadows -- if just Sg Is given, joined to S along edge Eng Here, there are four parameters (GO and
GS) to compute, and one constraint from the image (EOS). so three pieces of information are still

needed in advance. With shadows, the same number of a priori parameters are needed, but one of
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them can be a description of the light source position instead of a description of a surface orientation.
The significance of shadows is that they allow information about the light source to be used to solve
the problem as a substitute for information about the surface orientations themselves.

2.3 Occurrence of the Basic Shadow Probiem

It has not been assumed in this discussion that surfaces S, and Sg must touch. In practice, the
Basic Shadow Problem arises any time there are two surfaces which provide two shadow edge pairs
and an enclosed illumination vector. Any additional shadow edge pairs on these two surfaces will be

redundant, as will any visible edges along which these two surfaces intersect directly.

PES
-~
=
-~
~
-~
Ss So

Figure 2-12: Occurence of the Basic Shadow Problem



3. Variations in Lighting

When the light source is not infinitely far away and behind and above the camera, the shadow

geometry is slightly different.

3.1 Light Source In Front of the Camera

When the light source is in front bf the camera {i.e. in the scene, where it might even appear in the
image) and infinitely far away, the Basic Shadow Probiem takes the form shown in figure 3-1. In this
case, the first illumination surface S, joins edges £, and £, giving both of these edgeé - labels.
Hlumination surface SI2 joins Eoz and Esz' At Esa' the lapel is clearly -. To label Eoz' it is necessary
to extend S, above this edge, and apply the label to S, and the upper half-plane of S, The label will

then be +.

_ Eo2 +
/| ——=
—_— 5 —
/
Eil / — | Eoi Eo3
/ —— Eos
/et
- [
/ ’
Es2 .-- Ss

Figure 3-1: Geometry With Light Source In Front of Camera, Infinitely Far Away

The vector pointing toward the light source does not intersect the plane z = 1, but the vector
pointing away from the light source (toward the camera) does. This has the effect of placing the point
G, in the gradient space on a line parallel to edge £, passing through the origin as before, but on the
half-line towards surface .‘3S instead of towards surface Sq- This is related to the fact that the gradient
space can only represent half of all possible surface orientations. The Gaussian Sphere [8] might be

used to overcome this problem, although it is difficult to represent in a computer.
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1 Es2
JLEs1
Lillum

1/k

l Gi2 ~
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LEot <—e Git K

Gi

Go
q/ {[=1

1 Ea2

Figure 3-2: Gradient Space Constraints With Light Source In Front of Camera

All of the above gradient space constraints are shown in figure 3-2. The solution technique and
parameterization are exactly the same as previously presented for the Basic Shadow Problem. The
closed-form solution is that of Appendix I, with the convention that k<0 since S is self-shadowed (as

explained in the Appendix).

The redundancy of edge Eos is also the same: if £ 02 and ES2 are parallel, then Ens is parallel to
them; if they intersect at a point, then Eos intersects them both at that point. In this situation, if edges
Eqa and Eg, are present, they are redundant with edges E02 and Egp- This can be easily seen, since
edge £, can be calculated from the intersection of Eoq and Eg, and the intersection of £ ,, and Eg,;

since edge £ g is known to be redundant with £, and Eg,, SO must be E,, and Eg,.

3.2 Light Source Behind and Below Camera

if the light source is behind the camera but below it, and infinitely far away, then the geometry is as
shown in figure 3-3. In this case, the only difference from the Basic Shadow Problem is that edge £,
receives the label + instead of -; the labels of edges E,,, Egy Esz' and £ 4 (if present) will be the

same as previously described.

While the solution technique is the same as before, it should be noted that the point G, pointing



Es2
\ Es3
Eo2
So
Eol Eocd
Eos

Figure 3-3: Light Source Behind and Below Camera, Infinitely Far Away.

towards the light source, will be in the lower half-plane of the gradient space instead of the upper half-

plane.

In this situation, edge E ¢ is still redundant with the pair of edges £, and Eg,; the pair of edges

E

03 and Eg, is interchangeable with either of these.

3.3 Light Source Not infinitely Distant

If the light source is a point not infinitely far away, then all ilumination vectors will converge at the

light source instead of being parallel (Figure 34).

Only two of the preceding arguments need to be changed in this case. The first difference is that
the value k is dependent upon the particular illumination vector used, and each iilumination vector will

have its own value of k and its own line of illumination surface gradients Li"um.

The second change is that edges an and Eyy areno longer interchangeable with £ os °F with 502
and E,. The new information is actually provided not by the angle between the edges £, and Eg,,
but by the nev;r ilumination vector £, seen between vertices Voo and V. This is shown in figure 3-
4 for one case (light source below and behind camera); similar line labels and reasoning hold for the

other cases presented previously.

In this arrangement, the exact position of the light source can be calculated. The lines £, and £,
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Figure 3-4: Point Light Source at Finite Distance

must intersect (in the scene); the light source is located at the point of intersection. Under
orthography, as we are assuming here, the x and y coordinates of the light source will be the same as
the x-y coordinates of the intersection of the lings in the image. So, these coordinates can easily be
found. The relative z coordinate is then found using the & value for either of these vectors (E\q or E 5},
using the definition of k presented above in equation (2.1): if (ax, ay, A:_{) is an illumination vector from
an object vertex to the light source (such as E,, or E,;), then ax and Ay can be measured in the image,
and

AZ = sqrt(Ax2 + Ay2) lk

This shadow problem has seven parameters:

¢ (2 parameters each) Gradients Gyand Gg of surfaces So'and S-S

¢ (3 parameters) Coordinates of light source position

Six of these (all except the relative z coordinate of the light source) can bé caiculated by exactly the
same method used in thé Basic Shadow Problem. To calculate the z coordinate of the light source,
one additional piece of information must be utilized from the line drawing: the line Eo Since the
number of a priori pieces of data needed does not change when the light source is at a finite distance,
the remainder of this paper will omit further discussion of the extra parameter needed in this case. It

will be indicated when the extra image constraint is available.
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It can be determined from the line drawing whether the light source is in fact infinitely far away: if
fwo illumination vectors (such as EI1 and £ I2) intersect, then the light source is at a finite distance, and
all llumination vectors in the imagé must intersect at the same point. If any two illumination vectors
are parallel, then all illumination vectors are parallel and the light source is infinitely far away. These
observations can be used to arrive at constraints between various simple shadow problems that arise

in different parts of the same image, involving different objects and surfaces.

3.4 Line Labels and Light Source Position

We are now in a position to describe how to compute the line labels to be assigned to the various
edges of S and Sg, relating object surfaces to ilumination surfaces. Each edge of S corresponds
to a shadow edge on SS. The line labels depend upon the relative position of the edge of SO and the
light source, and on whether So is iluminated (facing towards the light source) or self-shadowed
(facing away from the light source).

In the discussion of cases below, note that each edge defines a line which cuts the image plane
into two half-planes. Only one of these half-planes is occupied by the surface containing the edge.
Similarly, only one halif-plane is occupied by the light source: if the fight source is infinitely far away, it
can be classified as being in whichever half-plane the illumination vector / is pointing towards (as in
Figure 2-7).

e Case I Sg flluminated; surface and light source in opposite half-planes. In this case, the

occluding edge and shadow edge both receive the label — (Figure 3-5(a)). This case
corresponds to edges E02 and E32 in the Basic Shadow Problem {Figure 2-5).

e Case /I So flluminated; same half-plane. The occluding edge receives the label + ; the
shadow edge is labeled - (Figure 3-5(b)). This corresponds to edges Eqq and ES1 in the
Basic Shadow Problem (Figure 2-3). .

e Case [l SO self-shadowed; opposite half-planes. The occluding edge is labeled +,
referring to the upper half-plane of the illumination; the shadow edge is labeled -,
referring to the /ower half-plane of surface Sg. The reference marks in figure 3-5(c)
indicate the half-planes invoived.

o Case IV: 8, self-shadowed; same half-plane. Both edges receive the label ~ as shown in
figure 3-5(d).

it is important to keep in mind that classical line-labeling methods such as that of Waltz (18] apply
labels that refer to the rea/ (object) surfaces which are bounded by a given edge. The line labels
derived in this section apply to the relationships between one real surface and ane hypothesized
(illumination) surface along an edge. '
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Figure 3-5: Line Labels and Light Source Positions

3.5 Changing the Number of Light Sources

It is possible that several light sources will be present, as in figure 3-6. In this case, each light
source produces two parameters in the problem (the direction of illumination}, and adds two image
constraints (an illumination vector and one non-redundaﬁt shadow edge pair}). The number of a priori

parameters needed will be the same, regardless of how many light sources are present.

However, for each light source, one of the a priori parameters may be the value k for that light

source, based on knowledge of the three-dimensional direction of illumination. In general, if n light
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Figure 3-6: Basic Shadow Problem With Multiple Light Sources

sources are present-and the value of k is known for each, the 'problem has 2n + 4 parameters, the
image provides 3n + 1 constraints, and 3-n parameters are needed in advance. Thus, shadows allow
you to use a priori knowledge about light source positions instead of a priori knowledge about surface
orientations when ¢computing the gradients of the visible surfaces.

in figure 3-7, there are no light sources or shadows.. There are 4 parameters to compute (the
gradients of the two surfaces). An image constraint will be provided in this case on'ly if the two
surfaces Sg and Sg touch along edge E.q; if they do not, then an extra a priori parameter will be
needed (i.e. 4 instead of 3}.

/

Eos

Figure 3-7: Two Surfaces With No Light Source l
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4. Shadows Falling On Polyhedra

When the shadow of SO falls on several planes, it iS possibie to determine the surface orientations
of all of them.

4.1 Shadows Falling On Polyhedra With No Shadow Edge Discontinuities

The shadow of S, may fall on two surfaces, Sg and S, (Figure 4-1). in this case, the first
illumination surface Sl1 contains edges £ o1’ ES1, and Eﬁ. illumination surtace 312 contains edges E02

and Esz' Edge E11 is an illumination vectaor, joining vertices v012 and Vs1 Py

-
Vo12/ ~
Ei1
Eo2
Vs12 T Eer —
Ss Es1 So
- . Eo1
Est - Eot
Et1 /
Vot1
St

Figure 4-1: Shadow Falling On Two Surfaces

In this figure, a Basic Shadow Problem can be solved using surfaces S, and Sg. The gradient
space constraints are shown in figure 4-2. Parts {(a) and (b) of this figure show constrainis that are
identical to those of the Basic Shadow Problem. In part (c), edge £, has provided a constrainton G,
in addition to the relation between G o GS, and G“. Part {d) shows another constraint between GS
and G, from edge Egq. Taken together, these two new constraints ((c) and (d}) can be used to
compute G, after the Basic Shadow Problem has been solved involving G, and Gg. AR of these
constraints are derived from the line labels assigned to the figure as previously described in section
3.4. The edge £ is labeled - if the shadow edge Eq, bends toward Eo1 from E.,, and + if it bends

'
away from E,.
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Figure 4-2: Gradient Space Constraints From Two Shaded Surfaces

In this problem, there are two additional parameters to compute (GT)' compared with the Basic
Shadow Problem; there are also two additional pieces of information from the image (edges EST and

Eqy)- The relationships are those of Appendix |, with these additional relations involving Gy

Egr€Sp Sy A2gp =Gy b = Gy Eqp
Ep €SS,y azpy = Gy By = Gy "Eqy

T
“AZp ET1

- T .
Erq Gy "By
This problem, like the basic problem, requires that three pieces of information be supplied in advance.

This solution technique can be generalized to cases such as figure 4-3, in which there are several



Figure 4-3: Shadow Falling On Many Surfaces
shaded surfaces. If there are n shaded surfaces which intersect the shadow edge with no
discontinuities in the shadow edge,. the problem will have a total of 2n+ 4 parameters: 2n for the

gradients of the shaded surfaces, 2 for GO, and 2 for'Gl. The image will supply 2n + 1 constraints;

three parameters must be given in advance.

4.2 Breaks In the Shadow Edge

it is possible for the shadow edge to exhibit discontinuities when the shadow edge fails across
occluding edges, as in figure 4-4. |

The solution method is exactly as before, but this time there will be no constraint between surfaces
SS and St since edge EST has been replaced by edge ETX which pravides no constraint between SS
and S Therefore, the image provides one less constraint, and one additional non-redundant
parameter must be supplied in advance in order to. compute all the surface orientations. Of course,

the gradient of surface'S, cannot be computed, since S, is not visible in this image.

4.3 Constraints in the General Case

Suppose a shadow is cast by a single surface So' onto n shaded surfaces, and exhibiting d

discontinuities.

e The problem has a total of 2n + 4 parameters to be computed:
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Figure 4-4: Shadow Edge With Discontinuites
o 2n for the gradients of the n shaded surfaces

o 2 for the gradient of the occluding surface So
o 2 for the direction G, of the ilumination

¢ The image provides 2n + 1-d constraints:
on+1 shadow edge segments Egy E Ego €tC.

T
o 1 from the illumination vector En
o n-d-1 from the intersections of the n shaded surfaces (ES . etc.)

e [t is therefore required to supply 3+ d non-redundant parameters in advance:

o 3 for the solution of the Basic Shadow Problem at the vertex
o d to compensate for the d discontinuities

It is also the case that the edge Egt (between the occluding surface and one shaded surface) is
non-redundant if there are any discontinuities along the shadow edge caused by illumination surface
SI1 (as in figure 4-4), Therefore, if this edge is present, the image provides an additional constraint,

and only 2 + d parameters are needed in advance.

If the same figure is drawn without shadows (and including edge EOT), then:

e The problem has 2n + 2 parameters
» The image supplies n-d constraints

® 11 + d + 2 parameters must be supplied in.advance

The improvement when shadows are present is that only g+ 2 parameters are needed in advance, a
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difference of n parameters. This can.be a very significant improvement when n is large, as when a

shadow is cast on a convex polyhedron,
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5. Shadows Cast By Polyhedra

When a shadow is cast by a polyhedron onto a single surface, three parameters must always be

given in advance.

5.1 Polyhedra With Two Visible Surfaces

When a shadow is cast by a polyﬁedron as in figure 5-1, each shadow-n;uaking edge (pr, EOP) must
be the intersection of an illuminated surface and.a self-shadowed surface of the polyhedron. In the
figure, SO is illuminated and SP is self-shadowed. Tﬁe edge Ep between them is a shaddw-making
edge, and corresponds to shadow edge Egy- Illumingtion surface S11 contains these two edges.
Similarly, it can be concluded that edge Eoy is a shadow-making edge, and must correspond to

shadow edge Egy (via ilumination surface 8‘2).

- ~
/
g1~ /)
/
Epx -
& - -
= : Eox
€2/~ | sp_/[eop
_.,.._‘:‘ — So
S Eps| __
— | Eos
Es1 -

Figure 5-1: Shadow Cast By Simple Polyhedron

It can be deduced from the above observations that whatever surface intersects Sp along edge Eoy
must be illuminated. It cannot, however, be concluded that the surface containing edge £, also
contains edge £ ox' For‘this reason, no strong statemenis can be made about the surfaces that are

not visible in the image.

In the figure, a Basic Shadow Problem exists involving surfaces S, and SS. The edge EEps is
therefore redundant with the two shadow edge pairs (EOP and ES1. pr and Esz)' This is important,
since it is typically difficult to resolve details such as edge Epg Within shaded portions of the image {9].
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When the basic problem has been solved,the gradients of surfaces‘SP and SS will be known. The
gradient of Sy can then be caiculated by using the constraints provided by edges £, (with surface
SP) and £ g (with surface SS). ' '

Little useful information is provided by edge on, since it borders on only cne visible or
constructible surface (SO). Edge Epy ON the other hand, is very important, since it borders on two

surfaces (visible surface S and the illumination surface S ).

In this problem, there are eight parameters to be computed (the gradients of surfaces S, S, and
Ss’ and the direction of the light source G,). The image provides five constraints (two from the
shadow edge pairs .':'OP-ES1 and £ -Eg,, ON€ from the illumination edge £, and two from the edges

Eap and £ Therefore, three parameters must be provided in advance in order to perform the

os
computation.

If the figure were drawn with no shadows, there would be six parameters altogether (the gradients
of the three surfaces), and three constraints in the image {from edges EOP, Eos' and EPS). Three
parameters would be required in this case, also. Asin the Basic Shadow Problem itself, the shadow
of a polyhedron does not provide additional constraints; it merely allows you to substitute information
about the light source for a priori information about the surface crientations themselves, and allows
you to utilize easy-to-find shadow edges instead of hard-to-find details within shaded areas of the

image.

The above method of solution also applies when the light source is in a different position as in

figure 5-2, which illustrates two illuminated surfaces of a polyhedron.

5.2 Adding a Seif-Shadowed Surface

Suppose we add an additional self-shadowed surface to figure 5-1, as in figure 5-3. In this figure,
both S A and Sp are self-shadowed. We will suppose that the new surface S, adjoins a shadow-
making edge £, (i the new surface S, does not adjoin a shadow-making edge, it will be buried in

the middle of the shaded area and will have no effect on the shape of the shadow.)

Two new parameters are present in the system: the gradient G A of the new surface S A The image
provides two new constraints that can be used to solve for these two parameters: the shadow edge
pair £,y -Eqa and the edge £, between surfaces S, and 5. So, three parameters are still required

in advance to solve the system completely.
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Figure 5-2: Light Source In a Different Position

Figure 5-3: Polyhedron With Two Self-Shadowed Surfaces

If the figure is drawn without shadows, the same two parameters are required (G a): and the two
new constraints come from edges £ A0 and £ AS'
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The edge E ¢ is redundant with the shadow edge pair £ ao-Esa when shadows are present. One of
the two edges £, and £ is needed, along with £, to determine the gradient of surface Sp. Thus,
two of the edges Esp, Eg and Epg are redundant, and only one is needed. Since these edges all lie
in the shadowed area of the image, they wilt be difficult to extract reliably [13]. Shadows reduce the
need to find edges within shadowed areas of the image.

It should also be noted that in this figure, the additional illumination edge E |, can be used with £, to
determine the exact location of the light source. This was not possible in the simple case (figure 5-1 )s

because only one illumination edge was present. .

5.3 Adding an llluminated Surface

When the basic figure (Figure 5-1) is modified by adding an illuminated surface instead of a self-
shadowed surface, a line drawing such as figure 5-4 is the result. In Fhis figure, surfaces S A and S(J
are illuminated, while SP is self-shadowed. (Again, if the surface does not adjoin a shadow-making
edge, there will be no effect on the shape of the shadow and the consequent inferences to be made
from shadow geometry. Therefore, 'we will assume thai the new surface S, does adjoin a shadow-

making edge £ AI:,.)

The reasoning here is analogous to the case 6f an additional self-shadowed surface: two new
parameters are needed (G ), ‘and there are two new constraints with shadows (the pair £, -Eq, and
the edge £,,), and two new constraints .with no shadows (edges £, and £ ap) N any case, three
parameters will be required in advance. As in the previous case, the new illumination vector El2 can

be used with £, to determine the exact location of the light source.
The shadow edge pair £, 4-Eg, from figure 5-3 has been replaced by the pair £ ,, Esz in figure 5-4.

it is possible that additional a priori parameters will be needed in pathological cases. Figure 5-5
depicts an abject with a surface adjoining the shadow-making edge which is not visible in the image
(at Egy)- Here, an additional a priori parameter will be needed to determine the gradient of surface
Sg- The additional parameter is needed because edge £, provides no constramt between surfaces

Q and Sp. This situation is analogous to the discontinuities in the’ shadow edge discussed

previously.

Another circumstance requiring additional a priori parameters is shown in figure 5-6. Here, vertex

v

oPaR is not trihedral -- there are four surfaces meeting at that point (SO, S, S . and Sp). This adds



Figure 5-4: Polyhedron With Two illuminated Surfaces

one degree of uncertainty involving the gradients of surfaces SQ and Sp: one additional a priori

parameter is needed to solve this problem.

5.4 The General Solution For Polyhedral Shadow Geometry

The results of the two previous extensions can be directly combined. In these arguments, it has
never been assumed that the shadow edge £, and the corresponding shadow-making edge (£,, or
EPX) meet at a vertex. Therefore, the results apply without change to line drawings with additional
hidden surfaces, such as figure 5-7. In this figure, there is no strong information to be obtained from

shadow edge ES4.

In the combined case, a line drawing may depict i illuminated and s self-shadowed surfaces
adjoining shadow-making edges, casting a shadow on one surface, with h hidden shadow-making
surfaces and t non-trihedral vertices. The problem contains 2j + 2s + 4 parameters (gradients of the
shadow-making surfaces, Gs' and G). The image supplies 2i + 2s-h-t + 1 parameters (i + s shadow-
making edges, i/ + s-h-t nonredundant edges between two visible surfaces, and 1 illumination edge).

For solution, 3+ h + t additional parameters are therefore needcd.



Figure 5-5: Additional Parameter Needed for Hidden Shadow-Making Surface
If no shadows are present, 3+ h +t parameters are still needed.

If 71 or s>1, an additional illumination edge can be used to determine the exact position of the light
source.

The above results can be composed with the results from the previous chapter for shadows cast

upon polyhedra.

Suppose the image depicts i illuminated surfaces and s self-shadowed surfaces alang the shadow-
making edges of a polyhedron, casting a shadow whose corresponding edge intersects n surfaces of
another polyhedron exhibiting d discontinuities, with # hidden shadow-making surfaces and t non-

trihedral vertices.
¢ The problem has 2i + 2s + 2n + 2 parameters:

o 2i for the gradients of the / illuminated surfaces



Figure 5-6: Additional Parameter Needed for Non-Trihedral Vertex

o 2s for the gradients of the s seif-shadowed surfaces
o 2n for the gradients of the n background surfaces
o 2 for the direction of illumination, G1 :

o The image provides 2i + 2s + 2n-d-h-t-1 constraints:

o 1 from the illumination vector

o 2 shadow-making/shadow edge pairs used to solve the Basic Shadow Problem at
one vertex

o i + s-2 additional shadow-making edges

o n-1 additional shadow edges

o i+ s-h-t-1 non-redundant edges between visible surfaces of the polyhedron casting
the shadow . ' .

o 1 non-redundant edge between the shadow-making polyhédr_on and the shaded
polyhedron

e n-d-1 edges at intersections of visible shaded surfaces

e Therefore, 3+ d + h + t parameters must be provided a priori:

o 3 for the solution of the Basic Shadow Probiem

o d to compensate for the o discontinuities in the shadow edge due to invisibie
shaded surfaces ‘

o h to compensate for the h hidden shadow-making surfaces
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Figure 5-7: Polyhedron With Additional Invisible Surfaces

o t to compensate for the t non-trihedral vertices

Without shadows, the problem contains 2/ + 25 + 2 parameters, the image supplies 2/ + 2s + n-d-h-

t-2 parameters, and n + d + h + t + 2 parameters must be supplied before the computation.

if D1 or s>1, an additional illumination vector can be used to determine the exact position of the

light source.

The contribution of shadows for computing surface orientations from line drawings is thus made

clear:

» Shadows provide an increasing amount of information when the shadow edge intersects
many visible, differently oriented surfaces of the background.

» Shadows allow you to substitute one parameter describing the direction of illumination to
replace one parameter describing a surface orientation before performing the required
calculations, .

e Shadows allow you to substitute (usually) highly visible shadow edges and shadow-
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making edges for many of the unreliable edges within shaded portions of the image, while .
providing the same amount of information. :

in addition, when several shadow problems appear in different portions of the same image, they
share some constraints. For example, suppose several polyhedral biocks are scattered over a single
surface. If the gradient of the surface and the direction of illumination are known, then three
constraints are provided for each of the shadow problems. This will allow the exact solutions to be

found for all the problems, if no shadow edge discontinuities or non-trihedral vertices are present.



6. Shadows Involving Curved Surfaces

in this chapter, the involvement of curved surfaces in shadow geometry will be explored. Whether
the curvature lies in the occluding surface (object) or the shaded surface, additional information is

required to determine the exact surface orientation along the shadow-making arc or the shadow edge

arc.

Witkin [19] has also used shadows to determine curved surface orientation. He developed a
relation between the curvature of .a shadow edgein the scene and the curvature of the sha_dow edge
in the image, then derived surface orientations, using surface texture gradients to provide the
additional constraint necessary. The discussion below differs from Witkin’s in that surface orientation

rather than curvature (rate of change of orientation) is the basis of the theory.

For discussing curved surfaces, it is necessary to generalize the relation between line labels and

surface gradients. Suppose two (possibly curved) surfaces S A and SB intersect along arc £ AB {Figure

6-1).

Figure 6-1: Curved Surfaces Iintersecting Along an Arc

The surfaces are defined by
S

At a point VAB on EAB, .
-z =.fA (xr Y) = fB (X, y)

Differentiating by x using the rule
df{x,y) of dy of

+ ——— ——
dx ox dx 9y

we have

Al —z=fA(x,y) S.:

39

-z = {B (X, y)
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dz _ of +_d_y_ BfA ) ofg +ﬂ“§i&
dx Ox dx ay‘ ox dx Oy

I G, is the gradient of S,atV,q, and Gy is the gradient of SB at Vg then

of, of of, of
= =(—A —Ayand G. = , = (—B, -8
Ga=(ppa,) =t P ay) an g = Pgiag) = ( ™ ay)
Substituting,
dz dy y dy dy
—_— g = — g, =G, (1,—) =G, (1, —
dx Pa dqu Pe * dqu Al dx) B ( dx)

£ = (ax, ay) is a vector tangentto £, at V. o in the image, corresponding to the three-dimensional

vector (Ax, Ay, Az) in the scene, then the above egquation can be multiplied by Ax:

wZ e, 0, - we, 1.2
=AX — = AX (1, —} = AX (1, —
dx A dx _ B dx

Since
dz dy
AZ = Ax —— and Ay = Ax —,

dx dx

we have
-AZ = GA'(Ax,Ay) = GB'(Ax,Ay) = GA'E = GB’E

This is the curved-surface analogue of the relation -2z = G * E described earlier for planar
surfaces: the planar-surface edge E is replaced by the tangent vector £ to the arc of intersection of
two curved surfaces. As a consequence, G A and GB lie along a line in gradient space perpendicular

to the tangent to the arc of intersection in the image.

6.1 Curvature in the Shaded Surface

Suppose a flat surface is casting a shadow on a curved surface, as in figure 6-2. Here, vertex Vs12

is the shadow of vertex V Surface S

o1z’ "'
onarc £, of the curved surface S;. Surface S, similarly casts the shadow of edge £, on arc £,

the first illumination surface, casts the shadow of edge £,

Suppose st is an arbitrary point on the arc ES1. Can we determine the gradient Gx of SS at this
point?

Arc ES1 is the arc of intersection between the curved surface Ss and the illumination surface S”

(defined by edge Enq of surface So)- Therefore, as previously explained, gradients Gy {of Sg at Vg, )
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Figure 6-2: Shadow Cast On a Curved Surface

and G, (of S,,) must lie along a line in gradient space perpendicular to the tangent line E,toEg, at

Vgx- This constraint is illustrated in figure 6-3.

Figure 6-3: Gradient Space Constraint Between Gx and GI 1

This reasoning can be used to find the two tangent lines at vertex Vg, and use them in a Basic



42

Shadow Problem with edgés E01 and Eoz of the occluding surface SO. ¢ Sv is the plane tangent to SS

at Vv the Basic Shadow Problem actually involves surfaces S,, and S . For this computation, three

512!

a priori parameters will be required, and the gradients Go' G G”. GI2’ and GI will be computed.

it is not possible to compute the gradients Gx (and GY, etc.) without additional information.
However, it is possible to establish a one-dimensional constraint on each such gradient. Since the
gradient G of illumination surface S|, was computed as part of the Basig Shadow Problem at vertex
Vo the constralnts provided by the tangent lines £, and £, cause gradient space constraints as
shown in figure 6-4, Slmllar reasoning allows constramts on the gradients at points along arc E

be computed, using the gradient Gl2 of illumination surface S0

Git T “é LEn
Gy

Figure 6-4: Gradient Space Constraints On Tangent Planes To Sg

For an investment of three parameters given iﬁ advance, then, the gradients of So and S,, can be
computed, as well as a one-dimensional constraint on the gradient for each point along arcs £, and
Esz' Additional constraint for the gradients along these arcs might come from another source such
as Horn's "shape from shading” technique {4] or a priori knowiedge of the shape of the object

bounded by surface Ss.

In this shadow probiem, if another illumination vector is available (possibly from the shadow of

another vertex of SO). the exact position of the light source can then be determined.

The information available from using shadows in this problem is not redundant with information

available from the same line drawing without shadows.
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6.2 Shadows Cast By Curved Surfaces

When a curved object casts a shadow on a fat gurface as in figure 6-5, the shadow edge E 4
corresponds to the shadow of the "arc of extinction” £, which divides surface Sginto an illuminated
part and a self-shadowed part. There exists a curved illumination surface Sy composed of
illumination vectors, tangent to So along Elo and intersecting the shaded surface Ss along EIS. S, isa

cylinder, whose axis is parallel to the direction of illumination.

Figure 6-5: Shadow Cast By a Curved Surface

There is a special significance to the line in the image tangent to both £, and the outline of Sy itis
an illumination vector, such as £, in figure 6-5.7 If two such tangent lines are visible (as with E‘1 and
E,, in figure 6-5} or some other feature is visible in both Enand Eg then a second illumination vector
can be found. From two illumination vectors, the exact position of the light source can be computed

and the shadow point Vgx can be determined for each point V,, on arc E
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The surface S, is composed entirely of illumination vectors; its gradient at each point must

therefore lie along the line Lotum

source position must be given.

in gradient space. To determine this line, the value k for the light

1f the light source is not infinitely far away, each illumination vector such as £, has a different

X

value of k and determines a different line L in gradient space. However, all the values of k¥ can be

illum
computed from the position of the light source, given a single value of k such as that for E,. We wil
therefore assume, for simplicity, that the light source is infinitely far away, and that a single line Liom

exists.

Unfortunately, no stronger statements can be made about the gradient of So from examination of
the arc E o Inparticular, the direction of the tangent line E ox Dears no relationship to the gradient of
So. This is illustrated in figure 6-8, which depicts two cylinders tangent to the same illumination
plane. The arcs of extinction (dotted lines) have completely unrelated directions in the image.

ilumination

&

Cylinders in the same plane

Figure 6-6: Arcs of Extinction are Unrelated To Surface Orientation

However, it is possible to use the shadow E,g to compute the gradients of the tangent surfaces
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along Eo The gradient Gy of Spat Vox is the same as the gradient of S, at Vox since S, is tangent to
Sg at that point. We have two constraints on Gy from properties of Sy

1. S is an illumination surface, so G lies on LlIl um'

2. The gradient (G ) of S, at V,, is the same as the gradient of S, at Vg, (the shadow of Vox)s
since S is a cyhnder As prev:ously shown, G and G (the gradient of the shaded
surface S g) must lie along a line in the gradient space whlch is perpendicular to Egy the
line tangent to E at V

The constraints on Gx are illustrated in figure 6-7.
[=§

N

Gx

_L-&K 1/k

Lillum

Figure 6-7: Gradient Space Constraints on G,

So, suppose we are given three parameters -- k and the gradient G 3 of surface SS. From these, it is

possible o compute the gradient Gx of the tangent plane to SO for eadh point Vox along the arc of

extinction EIo

1. In gradient space, draw Lillum from E|1 and k.

2. In the image, find the shadow V, of V, by following an illumination vector from Vox o
its intersection with the shadow arc Eg Draw the tangent line Egy through Vax

3. In gradient space, draw the line perpendicular to Esx through GS. This line intersects -

Loum 8t G, asillustrated in ﬁgqre 6-7.
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This can also be presented in a closed form solution for Gy- Using the definition of k,
azy = EN /&
Since Eix is contained in Sl,
-4z) = Gy "By
Also, if Esx is a vector tangent to Els at st,
-AZgy = Gy "Egy = Gg gy

Combining these,

T T
Gy = [EEX T]-‘ ['Azix ] = [Elx T]-1 [' "EIXH/R]
ESX -8Zgy ESX GS ESX

Figure 6-8: Using EIO to Calculate the Gradient of'SS
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It is also possible to use knowledge .about the shape of the curved object So when GS is not known
in advance. Suppose that two vectors Eox and Eov tangent to the arc of extinction !:‘10 at points Vox
and Voy are known. Let points Vax and Vsy be the shadows of Vox and Voy: let £, and £, be the
illumination vectors joining Vox to st and VOY to VS , and let Esx and ESY be vectors tangent to the
shadow edge £ g at Vg, and Vg, {Figure 6-8).

H=F

Gx "‘9.‘-on

Lilium

Figure 6-9: Gradient Space Constraints From V,,,, For Computing GS

If (Axox, &Y o Azox) is the three-dimensional vector corresponding to Enx with similar definitions
for the other vectors, then Az, and Az are known in advance. As previously shown, if G, is the
gradient of S, {and So) at vox, then
-8z5y = Gy "Epoy

Since EIX is an illumination vector,
azy = HEll /7 k

and, since EIX is contained in SI at Vox’
-8z, = Gy "Ex

Combining[



.
G, = | fox || ~Aox

X Ex - liEI [}/ k
So, Gy (and, simi ar!y, G, the gra(ﬁent of S, at VOY), can be determined exactly.

Now, since S, and Sgintersect at Vax along Esx'

-AZSX = GX'ESX = GS.ESX
Similarly, )
~Azgy = Gy "Egy = Gg Egy
So,
-Az E.T
SX | = er GS
“AZgy ) Egy
T T :
Gg = [Esxr ]-1 ['Msx - [‘Esxr 1 [Gx Esx
Esy -Az E Gy 'Egy

and therefore, GS can be determsiﬁed exacf?}(. ow, Gs can be used as previously shown to determine
the gradient of S0 at each point on the arc of extinction EIO. Here, knowledge of k and the direction
tangent to £, at two points has sufficed to determine the gradient of SS and the gradient of Sg at all
points along £ o

In the special case that So is spherical, for example, the entire arc of extinction £, lies in a plane
Sp whose surface normal is an illumination vector.” Therefore, the gradient Gy = G|. In this case, the
entire problem can be solved with only one parameter (k) given in advance, since AZ and Az can

be calclated directly:

K

G, = E
ET e e
-Az._.=E. "G = —@X "11*
(0) 4 OX I
AN N
and -6Zoy = 2
H

The shadow information just described is not redundant with information available in the same line

drawings when no shadows are present.
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7. Shadow Geometry and Other Shape Inference
Techniques

Shadow geometry can be combined with other techniques for determining 3D interpretations from

images.

7.1 Other Gradient Space Techniques

in Appendix |, the closed-form solution for the Basic Shadow Problem is presented. The solution is
stated in the form:
Gy = f(GS,k}
When k is given in advance, G0 is shown to be an affine transform (two-dimensional linear transform)
of Gg.

Stated in this form, it is very comvenient to use shadow geometry in conjunction with other
techniques for determining surface gradients. For example, in figure 7-1, a line drawing is shown in
which the intensities of the surfaces are known. If the surfaces are Lambertian or have known
reflectance functions, Horn's “shape from shading” technique [4] can be used to determine a
contour in gradient space atlong which G must lie, and a similar contour for G . Now, if the contour
for G is transformed in its entirety by the function f provided by shadow geometry (as discussed
above), a new contour for G is provnded in gradient space (figure 7-2). Since G must fie along two
contours, it must lie at one of the pomts of intersection of these contours. Now, for each such point,

the corresponding point Gs can be determined using the inverse of transform f.

Shadow geometry can similarly be combined with Kanade and Kender’s "skewed symmetry” [7], as
in figure 7-3. Here, skewed symmetry provides a hyperbolic contour for each of the two surface
gradients G, and Gg; shadow geometry can be used to transform the contour for Gg into an
additional contour for Go The points of intersection of the contours for G are then the possible

values of GO, and the corresponding values of GS can be found as above.

7.2 Shape Recovery for Curved Surfaces

Some techniques have appeared in the literature for reconstructing the orientation of a curved
surface at every point, using relaxation techniques [1, 6]. These techniques typically begin with the
surface orientation at every point along the outline of the surface (Sq in figure 7-4). These values

form a boundary condition which drives the relaxation process.
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Figure 7-1: Shape From Shading
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Figure 7-2: Shadow Gecmetry and Shape From Shading

In this paper, we have seen that it is possible to determine the surface orientation for the tangent
planes at each point along the arc of extinction EIO' using three a priori parameters (such as the k
value for the iight source and the orientation of the surface on which the shadow appears). These

values can be used o provide stronger boundary conditions for relaxation techniques.

Surface orientations along the arc of extinction are valuable for another reason. Relaxation

techniques must make some presumptions about the curvature of the surface (e.g. surface of
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Go P

Figure 7-3: Shadow Geometry and Skewed Symmetry

Figure 7-4: Shadow Geometry and Curved Surface Shape Recovery

minimum curvature, cubic or other surface of revoiution). Since all of these models of curvature are
consistent with the tangent gradients along the outline of So, it is not possible to decide which model
is appropriate when the_only boundary condition comes from the outline of So- However, when the
arc of extinction is also used, it may be possible to select ane from several possible models of surface

curvature, or to measure systematic deviation from a particular model for a specific object.
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7.3 Shadow Geometry and Stereo

It is known that, when a stereo pair of images is available but the camera positions are unknown,
five pairs of corresponding points in the two images can be used to compute the three-dimensional

description within a single unknown scaling factor [3].

With shadow geometry, it is possible to compute this scaling factor, thus solving the system
uniquely, when the value of k for the light source is known. It is only necessary to find a single
shadow-making point Vo and its shadow point Vg as in figure 7-5, In this figure, d is the distance (on

the x-y image plane) between Vo and VS.

Vs

Figure 7-5: Shadow Geometry and Stereo

As we have seen in equation (2.1), & has the value:
k= sqrt(Ax2+Ay2)/Az =d/Az
So, 4z can be computed for the line segment joining Vo and Vg from this, the value of the unknown
scaling factor can be calculated. This is the same idea that underiies light striping [16].

In this technique, a priori knowledge about the light source position (in 3D) is used to provide the
additional constraint needed for unique interpretation of images in a stereo pair. Shadow geometry
has provided the means for converting knowfedge about illumination direction into an absolute
distance, as required for the solution of the stereo problem. In essence, the shadows provide the

image of the occluding surface from an additional point of view (located at the light source) [8].



8. Conclusions

This paper has presented a theory describing relationships among surface orientations in line
drawings with shadows. The relationships arise from hypothesizing the existence of "illuminaition
surfaces" connecting shadow edge pairs, -assigning appropriate line labels to shadow and shadow-
making edges, and applying the resulting constraints in the gradient space.

This technique falls short of providing exact solutions to shadow geometry problems. The line
drawing must be augmented with information such as the orientations or curvature of specific

surfaces or the position of the light source if exact surface orientations are to be found.

it has been shown, however, that shadow geometry provides important benefits for image

understanding:

» Shadows allow you to subsitute information about the light source pesition instead of a
priori knowledge about surface orientations.

o Shadows allow you to determine geometric information from highly visible shadow edge
pairs instead of using many of the unreliable edges within shaded portions of an image.

¢ An increasing amount of information is provided by the shadow edge when the shadow
falls on many visible, differently oriented surfaces.

« Shadows pravide some constraint when curved surfaces are involved.

» Shadows provide constraint between surfaces even when they do not touch in the scene
(or image).

¢ Shadows aillow the solution to one shadow'problem to be used in the solution of other
shadow problems, since typical shadow problems are mutually constrained (e.g. same
light source, same background surface). ‘

In addition, some observations have been made about the solution of the correspondence problem

for shadows, which must be solved before surface orientations can be inferred.

8.1 Future Work
Work remains to be done on the following topics:

« Generalization of the entire method for images under perspective.

« Complex interactions between multiple light sources, polyhedra, and curved surfaces.
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e Relationships between shadow geometry and other gradient space constraints, such as
Horn's "shape from shading” [4], Kanade's "skewed symmetry" [7], and Kender's
"shape from texture" paradigm [7].

e Finding shadow edges and solving the correspondence problem for shadow edge pairs.

A program should be written to employ the techniques presented here. The first application might
be in conjunction with an interac:tiw1 photo-interpretation program [11], in which the segmentation

and correspondence problems will be solved by the huran operator.

Additional questions have been raised in the cbursa of this research concerning the more general
problem of determining surface orientations from (or using) a line drawing. In an image such as 8-1,
only three a priori pieces of information are needed besides the line drawing itself to determine the
surface orientations uniquely. However, constraints can be found by all of these techniques:

e Shape from shading [4]
e Skewed symmetry and gravity [7]

¢ Shadow geometry

This problem is actually over-constrained. !t should be possible to find a method for using the
redundant information to improve erroneous segmentation and reduce the overali uncertainty in the

shape recovery process;however, this topic has not yet been explored.

Figure 8-1: Image of Cube: Interpretation is QOver-Constrained

The line drawing itself provides many constraints, but the following questions remain to be
addressed:
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e Given a line drawing with labeled edges, how many pieceé of additional a priori
information are required to determine all of the surface arientations?

o If additional information is needed, where can’it be obtained? (Shape from Shading?
Skewed Symmetry? Shadow Geometry? Other techniques?) Can this question be
answered during the actual process of image analysis, or must the answer be known
when the program is written?

o If the required amount of information is present, it may have been obtained from diverse
sources. How can it all be combined algorithmically to determine the surface
orientations? .

» |[f too much information is present, the solution is over-constrained. In this case, the
redundant information should be useful for correcting errorful segmentation or for
improving the reliability of the solution. How can this be done?
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