NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CHMU-C3-82-1U4

- Search vs. Knowledge:
An Analysis from the Domain of Games'

Hans J. Berliner
Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pa. 15213
November, 1981

Abstract

We examine computer games in order to develop concepts of the relative roles 'of knowledge and
search. The paper concentrates on the relation between knowledge applied at leaf nodes of a search
and the depth of the search that is being conducted. Each knowledge cf an advantage has a
projection ability (time to convert to a more permanent advantage) associated with it. The best
programs appear to have the longest projection ability knowledge in them. If the application of
knowledge fqrces a single view of a terminal situation, this may at times be very wrong. We consider

the advantages of knowledge delivering a range as its output, a method for which some theory exists,
but which is as yet unproven.

This research was sponsored by the Defense Advanced Research Projects Agency (DCD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-78-C-1551.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

1F'resented at the NATC Symposium Human and Aritficial Intelligence, Lyon, France, Octaber, 1981

Introduction

This paper examines the relation of knowledge to search in the domain of adversary (2-person
game) searches. There are basically two different types of search, although in practice many hybrids
occur. The informed (knowledge-directed, or best-first} search expands next the nods that the
semantics of the position indicate will produce the maost useful contribution toward finding a solution.
This type of search has been confirmed to be the basis of human sclving of game type problems. On
the other hand, the full-width or brute-force search loaks at all possibilities (except those that can be

logically eliminated; i.e. alpha-beta cut-offs) as deeply as time aifows.

it is a fact that the best computer programs in the game playing domain (e. ¢. chess, checkers,
othello) all use the brute-force approach. Even though a great deal of competent effort has been
expended to try to make the knowledge-directed search work, no outstanding programs have
resulted. The best exemplars to date are CHAQS, ane of the top 4 chess programs in the Worlid,
developed at the University of Michigah. It uses a form of best-first search augmented by some brute-
force searching . The other exemplar would be my backgamman program, BKG 9.9, that does no
searching (the branching factor is about 400), but uses extensive knowledge to play a very good

game.

Existing work indicates that very large amounts of knowlecge are required to inuke knowledge-
directed search work properly. it is known that a sequential process, such as selecting moves in a
game playing environment, is as strong as its weakest link. The slightest failing of such a process has
dire consequences that can not be recovered by making a sequence of outstanding maves in a row.
This accounts for why CHAOS uses brute-force searches as part of the process of selecting the next
node to exantine.

There are two basic types of knowledge that interact with search:

1. Directing knowledge that is used to guide the knowledge-directed search, and alsg to a
very important extent affect the order in which descendants of a node are examined in
the brute-force search. This latter is particularly important as the efficiency of the alpha-
beta tree searching technigue is known to he highly dependent on the goodness of the
order of examining alternatives.

2. Terminal knowledge that is applied at the leaf nodes of the search to produce a measure
of the goodness of the leaf pasition. This is used both by knowledge-directed searches
and by brute-force searches.

In a knowledge-directed search, directing knowledge and terminal knowledge are very closely
related and may be identical. Such a program cannot function without such knowledge, and since the
number of nodes is small, all knowledge is welcome. Thus, the opportunities for analyzing trade-oifs

are very limited.

In brute-force searches cheap directing knowledge is very welcome, but the crux of the matter is
the utility of various items of terminal knowledge. Since a terminal evaluation function may be
executed millions of times in a single search, each item in such a funclion contributas haavily to the

cost of doing a search, and must justify its own existence. This tracie-off will be the major focus of this

paper.’

The Projection Ability of Knowledge

In a game, there are really only three outcomes possible; win, lose, ar draw. All evaluation
functions are thus an attempt to project the likelihood of these three cutcomes. Even very coarse
evaiuation functions, such as material count in chess, do a reasonable job at this, as the material
baiance is highly correlated with who fs winning. A material advantage of 2 pawns is almost always
decisive at the master level of play, and an advantage of a single pawn is decisive over one half of the

time, assuming there are no major compensations for the inferior side.

Howevar, for sophisticated play a program must be able to recognize many of the more delicate
advantages thal can be accrued by eilher side. Some of these advantages, such as an unbreakaiie
pin, will be able to be detected by a search that goes deep enough to find the winning of the pinned
man. Other advantages, such as defects in pawn structure, may take a search of 30 or mare ply to
convert into some material gain. Let us define the projection ability of an item of knowledge as the
average number of ply the game must proceed before it leads to the win of at least a pawn. Game
playing terminclogy speaks of tactical, positional, and strategic advantages. For chess the respective
projection ability of these advantages are approximately 3 to 19 ply, 15 to 40 ply, and 30 to 80 ply.
These boundaries are rather arbitrary, but it is not unreasonable to consider the projection ahilities of
the three types of knowledge to be 9, 25, and 45. In general, it is important to be able to accurately
deal with those advantages that are closest at hand, as failure to do this has immediate
repércussions. A full-width-search does this, but the more it understands at leaf nodes, the better it
will play. We now examine a few examples of the projection ability of several kinds of knowledge in

chess.

1 , . . , . .
We assume herein that the knowledge function will be executed serially. With the advent of special purpose hardware, this
may no longer be a completely valid assumption.

”/// % %
/7% A;g/
7 4 7
Y W W W
////////////%

5 Y _4//4_//

Figure 1
Black to play

A very simple kind of knowledge appears in Figure 1. Here, even though Biack is two pawns ahead
in material, White has a clear win because he has the tactical advantage of an unstoppable QRP. This
can be detected by the rule of the square (see dark tine in Figure 1), which states that in order to
prevent a passed pawn from queening, the defending king must be within the square when it is the
pawn’s turn to move. [the present case, the rule of the square is equivaient to what would be
discovered in a 10 ply search. The projection ability of this item depends on the degree of
advancement of the pawn, and can vary hetween 2 and 10. It is only applicable in pawn endings, but

this is a decisive advantage when it occurs, and the ability to detect it is of considerable value.

7. W %, 0
% W, % %
/A//// /// 3¢
///,;// = / »
/f W, % ji
% %, /,//
7 W % %
Y % 7 %

Figure 2
White to play

in Figure 2 we see a more subtle type of knowledge in action. White wins easily because Black's

extra pawn on the queen side cannot be advanced effectively. The win would become apparent with
a search of about 12 ply in this case. The noting of this type of pawn structure (the so-called
backward QBP) is a strategic advantage that is applicable at aill stages of the game and has a

projecticn ability of 30 to 50 ply.

Figure 3
Black to play

Our final example, in Figure 3, shows a much more difficult advantage to encode. Here Black has a
rook plus pawn versus bishop, but his king's position is very unsafe. In fact, a good player will
immediately understand that White's positional advantage is wbrth much more {han his material
deficit. Yet, how good players perceive this is not completely clear. If Black could somehow survive,
his material advantage would be decisive. But to a good player, this seems very unlikely. Most, if not
all chess programs would judge this position as favorable for Black, a signal failing in their knowledge
apparatus, because they err toward the conservative in making such advantage trade-off decisions.
The projection ability of knowledge of this kind is on the order of 20 to 30 ply. in the actual game

(Fischer- Najdorf, 1962), Black resigned 18 ply later, when he was still ahead in material.

Data from Actual Programs

Some information on the knowledge/search trade-off is available from actual programs. In
practice, there is usually only a small range. of choices in any implementation. For instance, if a game
is not completély solved by either search or knowledge, then some amount of each will be required.
Usually, the question comes down to how much evaluation of terminal nodes is done, since each
instruction used in this process, is multiplied by the number of terminal nodes examined. Thus,
opting for large scale evaluations may produce good judgements, but will radically cut down the
search effort. So, evaluation is done with an eye on the effort required, and reduced to what can be

done quickiy and be of considerable use.

The knowledge on this trade-off comes mainly from computer chess. - During the 1970Q's CHESS 3.0
thru 4.9, the Northwestern University Chess Program, was the best around. it was a model of
searching efficiency; in fact, the basic. searching techniques now used by all the top chess programs
were developed by Slate and Atkin during their work an this program [10]. However, its evaluating
ability was even more outstanding. For instance, it understood many of the strategic advantages
relating to pawn structure, such as the example in Figure 2. ft also had much positional knowiedge
relating to the placement of pieces with respect to the pawn structure. During this decade, CHESS
x.x playad a number of games against TECH, TECH-! and other programs that szarched about one
ply more deeply than it, but tiad no strategic and only very little positional knowledge. In every case

CHESS, the program with the better terminal knowledge, won the game.

Another data point comes from some studies on TECH [5]. Its terminal evaluation only counted
material on the board, and was thus as simple as possible. Apart from this, TECH applied knowledge
of the location of the pieces to each of the immediate descendants of the root node. These nodes
were thus ordered with respect to "desirability”. When the brute-force search operated, it would
choose the best move from the material point of view, and if there were several, the above ordering
would select the best "positional” move among these. This unusual form of knowledge application is
no longer being used. Nowadays, most chess programs that do little terminaf evaluation at least apply
piece location knowledge incrementally on the way down a branch, so that itis avatlable at the leaf

nodes where it has more permanency.

Various versions of the TECH program, with and without root knowledge, and running at different
searching depths, were played against each other. The overall result was that the root knowledge
was worth approx_imately 1 ply of search. Such knowledge must have some value, as it provides the
pieces with some sense of direction. However, such direction is of very limited value, as a piece couid
move to a promising location on its move at the root, only to be attacked and sent back in the next few
ply. Thus a projection ability of 1 ply appears about right. Ancther noteworthy datum from this
research is the fact that_the quiescence search (the pursuit of all captures and recaptures in terminal
positions) is worth at least 4 ply of search. At first glance this appears excessive. However, when one
considers that without a quiescence search, a program cannot tell the ditference between a bona fide
capture of material at the last ply, and a move that merely initiates an exchange, fhen it becomes clear

how important such information really is.

Another data point comes from Othello, a game that has recently risen to prominence both in
human and computer competition. A program at Carnegie-Mellon University, IAGO, authored by Paul

Rosenbloom [9] is now the best program in the World and very likely the best player too. It achieved a

perfect score against an international field in a recent tournament of all the best Cthello prcgrams,
and the current human champion politely declined a challenge maich offer. This program won its
decisive victory by virtue of its superior knowledge. It frequently was opposed by programs that
searched one to two ply deeper, but in each case its superior understanding produced lop-sided
contests. In fact, the only close games were with the programs that had the best evaluation functions.
So here is a clear case favoring knowledge. Actually, the best humans probably know somewhat
more about Othelio than IAGO does; however, its ability to look ahead € ply at all possiblities during
the midd!e game, and all the way to the end of the game wihen only 14 moves are Ieit, more than make

up for the small superiority in the human's understanding.

JAGO has extensive tables of compiled infarmation relating to the worth of edge configurations {the
most stable parts of any Othello position), and also the ability to understand impeitant factors such as
the mobility for each side. The projection ability of mobility is such that it produces advantages that
tast the whole game long (up to 50 ply at times), while correct understanding of edge configurations is
worth at least 20 ply. Rosenbloom estimates that {AGQO would defeat a program not having such

knowledge, even if it searched 20 ply deeper.

In backgammon there has not been any direct comparison, partly because the branching factor is
so large as 1o make it impossible to search more than two or three ply from the root node. Such a
search could hardly afford to do very much evaluation; possibly just two or three of tt?; most
important, easily computable features. In backgammon, major advantages relale to blockading,
preparing to blockade, and avoiding being blockaded. These factors require complicated
computations. The projection ability of blockading information is at least 8 ply. It is unlixely that a
program that did not understand much about blockading would do well against my program BKG 9.9,
which does not search at all, but has very comprehensive knowiedge of all phases of the game. | am
sure the searching program would at times make a better mave than BKG 9.9, however, this should be

outweighed by the number of times it would not be abie to rely on its superficial evaluation function.

From the above, it appears that the most successful programs have the longest projection abiiity
knowledge. However, this says nothing about how well matched inferior programs are with respect to
knowledge with shorter projection ability, though one would have to assume that the match wouid

have to be fairly good to prevent more immediate disasters.

it appears that some balance between depth of search and goodness of terminal knowledge may
be required. One indication of this comes from the performance of the chess program/machine

BELLE [4]. BELLE searches to a depth of at least 8 ply plus quiescence in all positions, and deeper

once material starts to disappear off the board in large quantities. BELLE uses an evaluation method
similar to the one used in the Narthwestern program. While this was very good during the time that
CHESS x.x moved up from Class "C" to Expert level chess player, it does not seem to be adequate for
the Master level performance that BELLE is otherwise extremely well equipped for. At tactics (the
precise calculation of variations), BELLE would undoubtedly be a welcome consultant to any chess
player in the World. However, in positional deerstanding it has at times made mistakes that no
human Master would possibly make. Itis quite possible that there is a delicate balance between the
amount of search and the amount of knowledge required in a game playing program, and here il has

tipped too far toward search.

Every knowledge item contemplated for inclusion in an evaluation function has a definite cost
associated with it. For each, a study must te made to see if the cost of including it pays its way, a
process that is tedious and fraught with difficulties since sometimes a single knowledge item will not
produce much of a change, while in combination with some as yet untried item, it would be very
valuable. However, it appears clear that in all the above domains, knowledge is extremely important

and the effort should be to get as much in as possible, rather than to get along on as little as possible.

What can be Done with Very Little Knowledge

\\‘-cf o

23y AU
,%_% @i%
7, /%

n 9// //
7, /@ Dy

75 Q/,ﬁ/ﬁ/
;

&'@%%KW

\

NN

Figure 4
Black to play
However, thé value of the search alone should not be underestimated. An example of the power of
a deep searching program can ke seen in Figure 4, from a game BLITZ - BELLE, North-American
Computer Chess Championships, 1979. Here Black to play won brilliantly by 10.-- RxP!, 11. KxR, Q-
R5ch, 12. K-R1, N-N&ti, 13. Q-R5 {a typical delay when the worst has been discovered), PxQ, 14.
PxNch, N-B6 mate a combination encompassing 7 ply. Another variation would be 11. NxN, Q-RS5, 12.

N-N3, QxN!t, 13. PxQch, N-B6 mate, also 7 ply long.

By any standards, human or machine, this is a brilliant performance. However, any program that
searches to a depth of 7 ply, and has only knowledge of the value of material would play this position
correctly. It only needs to see that the initial move results in the gain of material (White can stave off
the mate by some delaying sacrifices). This combination would also be fairly easy for any human
Expert. However, his mode of discovering the combination would be quite different. He would almost
certainly see a standard sacrificial pattern relating to the initial move and the follow-up Q-RS.
However, everything must be calculated in detail. Further, there is the possibility that the Expert may
be put off the track by the fact that just before the mate White will make a capture with check, and he
may not see that the reply is a check-blocking double check that is mate. Such maoves are very, very
rare except in composed problems and good players have been known to overlock such things.
However, a brute-force searching program makes such combinations wth ease. never gven realizing
that it is making a "sacrifice”, because from its materialistic view thz "sacrifice” leads to material

gain.

A fufther indication of the strength _c;f the search alone is BELLE’s performance on a set of 300
chess problems that have been used for a decade now to evaluate chess programs {8]. It only got
19.5 wrang (.5 credit is given when the correct move is tendered but the supporting analysis is not all
present) out of the set. According to the compiler of the volume, a master could expect to get about
30 wrong. However, the most surprising thing was that BELLE discovered 9 errors in the solutions
presented by the author, only 2 of which were previously known. This dramatically shows certain
limitations of the human pattern recognition and analysis apparatus. However, such combinations
are possible against good opposition only when a great deal of groundwork has been laid by the
previous play; something that even World Computer Champion BELLE has ncot been able to do

consistently. Additional examples of the performance of brute-force programs may be found in [3].

The Incompleteness of Aimost All Knowledge

In any interesting domain it will not be possible to have a complete catalog of states of the domain.
Thus, it will be necessary to have a method for aggregating states into classes. Then a single
measure can stand for a class. This measure is the result of evaluation based on commgonalily of
features throughout the class. In [2] we discussed the problems that can arise when artificial
boundaries between such classes exist. Two domain elements an either side of such a boundary
could receive quite disparate evaluations when, in fact, they should be quite close. To circumvent
this problem, it was found useful to develop evaluation functions that were smooth. These functions
were non-linear to aliow the major differences that could be expected to be associated with different

classes. However, domain elements did not just belong or not belong to a class (boolean

relationship}. Instead, they had a degree "of membership in any given class specified by an
application coefficient (similar to a characteristic function in fuzzy set theory}. By controlling set
membership through stowly varying application coeflicients that understood global context, it was

possible to avoid such boundary problems.

L s o A A A
i s, 7 i, i, A, A
3 7 / ‘7// //// » % 7

Y o Y P s o

// //

%

. e

////

4

Figure 5 Figure 6

However, there are considerabie problems in maost domains in deciding what a class should
inciude. The descriptions of the positions of Figure 5 and Figure 6 are very nearly the same. Thus
they could easily end up in tho same class even though in Figure 5 whoever moves loses, while in
Figure 6 no matter who moves, Black will lose his pawn but still be able to draw. In both cases,
anything except a very knowledgeable evaluation function would probably consider the position even.
However, if this is a terminal judgement on one branch of a tree, then a considerable errar will
propagate upward in the case of Figure 5. Of course, it is possible to create functions that correctly
analyze such situations. For such simple situations this has been done [7]. However, as complexity

increases, it will become harder and harder {0 create such knowledge functions.

The obvious "solution” is to invoke pattern recognition, but this technique has definite limitations
also. Caonsider the position in Figure 6. Here, White to play can win by executing the wel known
maneuver 1. P-N6, BPxP, 2. P-R6, NPxP, 3. P-B6 and this pawn will queen. Now, this pawn formation
is worth remembering as this break-thru is always possible. However, it would be a mistake to believe
that this is always an advantage in King and Pawn endings. Consider Figure 8, which is Figure 7 with
the kings each shifted 2 squares to the left. Now, White to play loses hecause the black king is too

close for the above maneuver to succeed, and White will lose at least 2 pawn with a resultant losing

position.

7

e Vs /‘///; .y - P L

% 7 7. % 7 % Y%

//;,m/%/ ,,/%//,/,/4,,) | »

;7"/"/_/ L 7 ///,; :// /'_fz,’/ ‘ 3‘5”//’/ 7}5; ,,./’

» 23 /,5’//?, g 7% 2 " L

o L Zn e /:/ 7 L /,.//;’, e

7 7 7 7 75

Figure 7 Figure 8

White to play White to play

For this example, it would be harder to define a knowledge function that would appraise the
situation correctly. If such a function were created, it would undoubtedly have a very narrow range of
applicability; this implying that a very large number of functions would be required to adequately

cover any domain.

Instead, it would seem that the correct method is to refuse to statically evaluate positions. where
there are counter-indications (in the above example the break-thru formation exists favering White,
while the black king in the vicinity of the pawns favors Black). This wouid suggest that it is wisest not

to make a final decision here, but instead require more searching to resolve the problem.

The B* Search

There is a searching method that works ideally in such an environment. itis the B* search [1]. One
of the features of this search is that nodes may be assigned a value range instead of a point value.
The endpoints of this range represent the optimistic and pessimistic bounds bf the real value. Ranges
can be backed up in a way that is very similar to the backing up of values in a search with point-valued
nodes. The search terminates whetj the pessimistic value of the best descendant of the root is no
worse that the optimistic value of the rest of its sibling nodes. Two strategies may be invoked in the
search. The Provebest strategy tries to raise the pessimistic bound of the best node at the root, while
the Disproverest strategy tries to lower the optimistic bound of one of its sibling competitors. This
search strategy embodies the essentials of the arguments in the previous section, and has been
found by simulation to be better than other knowledge based searches [1]. We are implementing B*

in a problem solving chess program where it is showing great promise of paying attention to issues

10

that need to be resolved. Present research indicates that augmenting the notian of bounds with
probability density functions, over the range from optimistic to pessimistic, does a better job of
preserving useful information from lower in the tree, and thus resuits in more rapid convergence of

the search.

A Knowledge/Search Paradox

The standard search technique used by today’s brute-force game playing programs requires the
use of iterative deepening. This search technique dictates that a compiate search to depth N be done
before a search to depth N+ 1 be undertaken. This apparently wasteful procedure, actually produces
some major savings. A large hash table is used to enter positions at the time they are quitted in the
search, together with their backed-up value and the most successful move at that point. This
information is of great future use, as it allows the pursuit of known successful moves at future
iterations, and also turns the tree into a graph since identical positions in the current iteration need
not be searched again. Good ordering of moves also results in being able to avoid searching some
sub-trees. These savings are both exponential, and depend upon how near the root avoided sub-

trees are anchored.

% / // /7
f/é/ff.

L .
'/,/,//,r ’ x/, /‘ P

.53///7/4&/@///%
// // 7
@v %/ Wy

\\E
™

~
\\

Figure 9
White to play

Consider the pawn endgame in Figure 9. Here White to play can win through a ong and involved
series of king maneuvers resulting in breaking through at either KNS or QNS. The principal variation
takes about 30 ply. This prompted Newborn {6] to estimate that to solve this position on a high speed

digital machine woulid require about 25,000 hours of CPU time.

At first glance this seems a reasonable analysis of the problem. However, when it is noted that until

11

a pawn is captured only king moves can be made for both sides, the situation is given a dramatic turn,
There are less than 4000 positions that can result from merely moving the kings, and these can be
accommodated in a moderately sized hash table. This will result in progressively quicker searches,
and progressively better understanding as the nodes in the hash table proceed toward their correct
value, as the search deepens. Programs with such hash tables have now solved this position in a few

minutes of CPU lime.

While this is an extreme example-cf the utility of the hash table, it is interesting to concidar its role.
Whereas usually it acts merely to facilitate the search by providing directing knowledge and making it
possible to avoid duplicating effort, here it is the actual repositary of terminal knowledge. Assume in
such a search, a position is encountered that is to be searched to a depth of N additional ply.
However, the hash table entry indicates that the position has already been searched to a depth of
N+ M additional ply. This not only aborts the search at this point, but provides a more informed
estimate of the node’s value than would be found by doing the search to N further ply. It is this action
of the hash table that is a remarkable_paradox. Clearly, the deeper the searches the more fikely it is

that such action is possible.

Conclusions

Knowledge without search has fimited utility as has search without knowledge. For each domain, a
certain balance appears to exist; however, 4 to 8 ply worth of searching appear to adequately
duplicate the non-knowiedge portion of human performance. Each item of knowledge has a
projection ability. Programs with long projection ability knowledge appear to be the best. However,
short projection ability knowledge must clearly also be accommodated if the longer projection
knowledge is to gat a chance to exert an effect. Further, the frequency of occurence of each

knowledge item also bears on its utility. The latter has not been studied yet.

In brute-force searches knowledge must be applied willy-nilly at the maximum depth to produce a
point value. Thus itis forced to take a "view” on any subject. This can result in very skewsad views of
what is going on. Because of this, it may be that a flexible search such as B* will ultimately still prove

better than the brute-force approach, but evidence for such a conclusion is lacking at present.

References

[1] Berliner, H., "The B* Tree Search Algorithm: A Best-First Proof Praocedura”, bArtificial
Intelligence, Vol. 12, No. 1, 1979, pp. 23-40.

[2] Berliner, H. J., "Backgammon Computer Program Beats World Champion", Artifical intefligence,
Vol. 14, No. 2, September, 1980, pps. 205:220.

12

[3] Berliner, H.J., "An Examination of - Brute Force Intelligence", Proceedings of the 7th

international Joint Conference on Artificial Intelligence, Vancouver, B.C., Canada, August, 1981.

[4] Condon, J. & Thompson, K., "Belle Chess Hardware", to appear in Advances in Computer

Chess-ifl, University of Edinburgh Press, 1982.

{5] Giliogly, J. J., Performance Analysis of the Technalogy Chess Program, Ph. D. Dissertation,

Computer Science Dept,, Carnegie-Melion University, March, 1978.

[6] Newborn, M., "PEASANT: An endgame program for kings and pawns", in Chess Skill in Man
and Machine, P. Frey (Ed.), Springer-Verlag, 1977.

[7] Perdue, C. & Berliner, H. J,, "EG - A Program that Plays Fawn Endgames”, Proceedings of the

5th International Joint Conference on Artificial Intelligence, Cambridge, Mass., 1977.
[8] Reinfeld, F.,Win at Chess, Dover Books, 1958.

[9] Rosenbioom, P. 8., "A World-Championship Level Othello Program", Computer Science Dept.,
Carnegie-Mellon Univ., Technical Report, August, 1981. '

[10] State. D. J., and Atkin, L. F., "GHESS 4.5 -- The Northwestern University Chess Program"”, in

Chess Skill in Man and Machine, F. Frey (Ed.), Springer-Vertag, 1977.

