
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Search vs. Knowledge:
An Analysis from the Domain of Games 1

Hans J . Berl iner
Computer Sc ience Depar tment

Carnegie-Mel lon University
Pi t tsburgh, Pa. 15213

November, 1981

Abstract

We examine computer games in order to develop concepts of the relative roles of knowledge and

search. The paper concentra tes on the relat ion between knowledge appl ied at leaf nodes of a search

and the depth of the search that is being conduc ted . Each knowledge of an advantage has a

project ion abil ity (t ime to conver t to a more permanent advantage) associated with it. The best

programs appear to have the longest pro ject ion abil i ty knowledge in them. If the appl icat ion of

knowledge forces a s ingle view of a terminal s i tuat ion, this may at t imes be very w rong . We cons ider

the advantages of knowledge del iver ing a range as its output , a method for wh ich some theory exists,

but wh ich is as yet unproven.

This research was sponsored by the Defense Advanced Research Projects Agency (DCD), ARPA
Order No. 3597, moni tored by the Air Force Avionics Laboratory Under Contract F33615-78-C-1551.

The views and conc lus ions conta ined in this document are those of the authors and shou ld not be
interpreted as represent ing the off icial pol ic ies, either expressed or impl ied, of the Defense Advanced
Research Projects Agency or the US Government .

Presented at the NATO Symposium Human and Artificial Intelligence, Lyon, France, October, 1981

Introduction

This paper examines the relation of knowledge to search in the domain of adversary (2-person

game) searches. There are basically two different types of search, a l though in pract ice many hybrids

occur. The informed (knowledge-directed, or best-first) search expands next the node that the

semant ics of the posit ion indicate wil l p roduce the most useful contr ibut ion toward f inding a solut ion.

This type of search has been conf i rmed to be the basis of human solving of game type problems. On

the other hand, the ful l-width or brute-force search looks at ail possibil i t ies (except those that can be

logically e l iminated; i.e. alpha-beta cut-offs) as deeply as time al lows.

It is a fact that the best computer programs in the game playing domain (e. g. chess, checkers,

Othello) all use the brute-force approach. Even though a great deal of competent effort has been

expended to try to make the knowledge-di rected search work, no outstanding programs have

resulted. The best exemplars to date are CHAOS, one of the top 4 chess programs in the Wor ld,

developed at the University of Michigan. It uses a form of best-first search augmented by some brute-

force search ing . The other exemplar would be my backgammon program, BKG 9.9, that does no

searching (the branching factor is about 400), but uses extensive knowledge to play a very good

game.

Existing work indicates that very large amounts of knowledge are required to make knowledge-

directed search work properly. It is known that a sequential process, such as select ing moves in a

game playing environment, is as strong as its weakest link. The sl ightest fai l ing of such a process has

di re consequences that can not be recovered by making a sequence of outstanding moves in a row.

This accounts for why CHAOS uses brute-force searches as part of the process of select ing the next

node to examine.

There are two basic types of knowledge that interact wi th search:

1. Directing knowledge that is used to guide the knowledge-directed search, and also to a
very important extent affect the order in wh ich descendants of a node are examined in
the brute- force search. This latter is part icularly important as the eff iciency of the alpha-
beta tree searching technique is known to be highly dependent on the goodness of the
order of examining alternatives.

2. Terminal knowledge that is appl ied at the leaf nodes of the search to produce a measure
of the goodness of the leaf posi t ion. This is used both by knowledge-directed searches
and by brute- force searches.

1

In a knowledge-d i rec ted search, d i rect ing knowledge and terminal knowledge are very closely

re lated and may be ident ica l . Such a p rogram canno t func t ion w i thout such knowledge, and s ince the

number of nodes is smal l , all knowledge is we lcome. Thus , the oppor tun i t ies for analyzing trade-offs

are very l imi ted.

In bru te- force searches cheap d i rec t ing knowledge is very we lcome, but the crux of the matter is

the uti l i ty of var ious i tems of terminal knowledge. S ince a terminal evaluat ion funct ion may be

execu ted mil l ions of t imes in a single search , each i tem in such a funct ion contr ibutes heavily to the

cost of do ing a search, and must just i fy its own existence. This trade-off wil l be the major focus of this

paper . 1

The Projection Ability of Knowledge

In a game, there are really only three ou tcomes possib le; w in , lose, or draw. All evaluat ion

func t ions are thus an at tempt to pro ject the l ikel ihood of these three ou tcomes. Even very coarse

evaluat ion funct ions, such as material coun t in chess, do a reasonable j ob at this, as the mater ial

ba lance is highly cor re la ted with w h o is w inn ing . A mater ial advantage of 2 pawns is almost a lways

dec is ive at the master level of play, and an advantage of a s ingle pawn is decis ive over one half of the

t ime, assuming there are no major compensat ions for the infer ior s ide.

However, for sophis t icated play a program must be able to recognize many of the more"<3eIicate

advantages that can be accrued by either side. Some of these advantages, such as an unbreakable

p in , wi l l be able to be detec ted by a search that goes deep enough to f ind the winn ing of the p inned

man . Other advantages, such as defects in pawn s t ruc ture , may take a search of 30 or more ply to

conver t into some mater ial ga in. Let us def ine the pro ject ion abil i ty of an i tem of knowledge as the

average number of ply the game must p roceed before it leads to the win of at least a pawn. Game

play ing terminology speaks of tact ica l , posi t ional , and strategic advantages. For chess the respect ive

pro jec t ion abil i ty of these advantages are approximately 3 to 19 ply, 15 to 40 ply, and 30 to 80 ply.

These boundar ies are rather arbitrary, but it is not unreasonable to cons ider the pro ject ion abil i t ies of

the three types of know ledge to be 9, 25, and 45. In genera l , it is impor tant to be able to accurate ly

deal wi th those advantages that are closest at hand , as fai lure to do this has immediate

repercuss ions. A fu l l -width-search does this, but the more it understands at leaf nodes, the better it

wil l play. We now examine a few examples of the pro ject ion abil i ty of several k inds of knowledge in

chess .

We assume herein that the knowledge function will be executed serially. With the advent of special purpose hardware, this
may no longer be a completely valid assumption.

2

Figure 1
Black to play

A very simple kind of knowledge appears in Figure 1. Here, even though Black is two pawns ahead

in material, White has a'clear win because he has the tactical advantage of an unstoppable QRP. This

can be detected by the rule of the square (see dark line in Figure 1), wh ich states that in order to

prevent a passed pawn from queening, the defending king must be within the square when it is the

pawn's turn to move. In the present case, the rule of the square is equivalent to what would be

discovered in a 10 ply search. The projection ability of this item depends on the degree of

advancement of the pawn, and can vary between 2 and 10. It is only applicable in pawn endings, but

this is a decisive advantage when it occurs, and the ability to detect it is of considerable value.

M.i.̂ lt m M.
m m mm

W, W, w,

Figure 2
White to play

In Figure 2 we see a more
subtle type of knowledge in act ion. White wins easily because Black's

3

extra pawn on the queen side cannot be advanced effectively. The win would become apparent with

a search of about 12 ply in this case. The noting of this type of pawn structure (the so-called

backward QBP) is a strategic advantage that is appl icable at all stages of the game and has a

project ion ability of 30 to 50 ply.

pad; tekftf ^

*\ /. '////, / -d / '/////

mif 'm^m,,,, ililil m
« w, if flu

^ n i
Figure 3

Black to play

Our final example, in Figure 3, shows a much more diff icult advantage to encode. Here Black has a

rook plus pawn versus bishop, but his king's posit ion is very unsafe. In fact, a good player will

immediately understand that White's posit ional advantage is worth much more than his material

deficit. Yet, how good players perceive this is not completely clear. If Black could somehow survive,

his material advantage would be decisive. But to a good player, this seems very unlikely. Most, if not

all chess programs would judge this posit ion as favorable for Black, a signal fail ing in their knowledge

apparatus, because they err toward the conservative in making such advantage trade-off decisions.

The projection ability of knowledge of this kind is on the order of 20 to 30 ply. In the actual game

(Fischer- Najdorf, 1962), Black resigned 18 ply later, when he was still ahead in material.

Data from Actual Programs

Some information on the knowledge/search trade-off is available from actual programs. In

practice, there is usually only a small range of choices in any implementat ion. For instance, if a game

is not completely solved by either search or knowledge, then some amount of each will be required.

Usually, the question comes down to how much evaluation of terminal nodes is done, since each

instruction used in this process, is multipl ied by the number of terminal nodes examined. Thus,

opting for large scale evaluations may produce good judgements, but will radically cut down the

search effort. So, evaluation is done with an eye on the effort required, and reduced to what can be

done quickly and be of considerable use.

The knowledge on this trade-off comes mainly from computer chess. During the 1970's CHESS 3.0

thru 4.9, the Northwestern University Chess Program, was the best around. It was a model of

searching efficiency; in fact, the basic, searching techniques now used by all the top chess programs

were developed by Slate and Atkin dur ing their work on this program [10]. However, its evaluating

ability was even more outstanding. For instance, it understood many of the strategic advantages

relating to pawn structure, such as the example in Figure 2. It also had much positional knowledge

relating to the placement of pieces with respect to the pawn structure. During this decade, CHESS

x.x played a number of games against TECH, TECH-II and other programs that searched about one

ply more deeply than it, but had no strategic and only very little positional knowledge. In every case

CHESS, the program with the better terminal knowledge, won the game.

Another data point comes from some studies on TECH [5]. Its terminal evaluation only counted

material on the board, and was thus as simple as possible. Apart from this, TECH applied knowledge

of the location of the pieces to each of the immediate descendants of the root node. These nodes

were thus ordered with respect to "desirabi l i ty". When the brute-force search operated, it would

choose the best move from the material point of view, and if there were several, the above ordering

would select the best "pos i t iona l " move among these. This unusual form of knowledge application is

no longer being used. Nowadays, most chess programs that do little terminal evaluation at least apply

piece location knowledge incrementally on the way down a branch, so that it is available at the leaf

nodes where it has more permanency.

Various versions of the TECH program, with and wi thout root knowledge, and running at different

searching depths, were played against each other. The overall result was that the root knowledge

was worth approximately 1 ply of search. Such knowledge must have some value, as it provides the

pieces with some sense of direct ion. However, such direct ion is of very limited value, as a piece could

move to a promising location on its move at the root, only to be attacked and sent back in the next few

ply. Thus a projection ability of 1 ply appears about right. Another noteworthy datum from this

research is the fact that the quiescence search (the pursuit of all captures and recaptures in terminal

positions) is worth at least 4 ply of search. At first glance this appears excessive. However, when one

considers that without a quiescence search, a program cannot tell the dif ference between a bona fide

capture of material at the last ply, and a move that merely initiates an exchange, then it becomes clear

how important such information really is.

Another data point comes from Othello, a game that has recently risen to prominence both in

human and computer competi t ion. A program at Carnegie-Mellon University, IAGO, authored by Paul

Rosenbloom [9] is now the best program in the World and very likely the best player too. It achieved a

5

perfect score against an in ternat ional f ield in a recent tournament of all the best Cthel lo programs,

and the cur rent human champ ion pol i tely dec l ined a cha l lenge match offer. This program won its

dec is ive v ictory by v i r tue of its super io r knowledge. It f requent ly was opposed by programs that

searched one to two ply deeper , but in each case its super ior unders tand ing p roduced lop-sided

contes ts . In fact , the only c lose games were wi th the programs that had the best evaluat ion funct ions.

So here is a c lear case favor ing knowledge . Actual ly, the best humans probably know somewhat

more abou t Othel lo than IAGO does ; however , its abil ity to look ahead 6 ply at all possibl i t ies dur ing

the midd le game, and all the way to the end of the game when only 14 moves are left, more than make

up for the small super ior i ty in the human 's unders tanding.

IAGO has extensive tables of compi led informat ion relat ing to the wor th of edge conf igura t ions (the

most stable parts of any Othel lo posi t ion) , and also the abil ity to unders tand impor tant factors such as

the mobi l i ty for each s ide. The pro jec t ion abil ity of mobi l i ty is such that it p roduces advantages that

last the who le game long (up to 50 ply at t imes), whi le cor rect unders tand ing of edge conf igurat ions is

wor th at least 20 ply. Rosenb loom est imates that IAGO wou ld defeat a p rogram not having such

know ledge , even if it searched 20 ply deeper .

In b a c k g a m m o n there has not been any d i rect compar ison , part ly because the b ranch ing factor is

so large as to make it imposs ib le to search more than two or three ply f rom the root node. Such a

search cou ld hardly af ford to do very much evaluat ion; possibly just two or three of the most

imponan t , easily compu tab le features. In backgammon , major advantages relate to b lockad ing ,

prepar ing to b lockade , and avoid ing being b lockaded. These factors require compl ica ted

computa t ions . The pro jec t ion abil i ty of b lockading in format ion is at least 8 ply. It is unl ikely that a

p rog ram that d id not unders tand much about b lockad ing wou ld do well against my program BKG 9.9,

wh ich does not search at al l , but has very comprehens ive knowledge of all phases of the game. I am

sure the search ing p rog ram wou ld at t imes make a better move than BKG 9.9, however, this should be

ou twe ighed by the number of t imes it wou ld not be able to rely on its superf ic ia l evaluat ion func t ion .

From the above, it appears that the most successfu l p rograms have the longest pro ject ion abil ity

knowledge . However, this says noth ing about how wel l matched infer ior p rograms are wi th respect to

know ledge with shor ter pro ject ion abil i ty, though one wou ld have to assume that the match would

have to be fairly g o o d to prevent more immediate disasters.

It appears that some ba lance between depth of search and goodness of terminal knowledge may

be requ i red . One ind icat ion of this comes f rom the per fo rmance of the chess p rog ram/mach ine

BELLE [4] . BELLE searches to a dep th of at least 8 ply plus qu iescence in all posi t ions, and deeper

once material starts to disappear off the board in large quantit ies. BELLE uses an evaluation method

similar to the one used in the Northwestern program. While this was very good dur ing the t ime that

CHESS x.x moved up from Class " C " to Expert level chess player, it does not seem to be adequate for

the Master level performance that BELLE is otherwise extremely well equipped for. At tact ics (the

precise calculat ion of variations), BELLE would undoubtedly be a welcome consultant to any chess

player in the World. However, in posit ional understanding it has at t imes made mistakes that no

human Master would possibly make. It is quite possible that there is a delicate balance between the

amount of search and the amount of knowledge required in a game playing program, and here It has

t ipped too far toward search.

Every knowledge item contemplated for inclusion in an evaluation function has a definite cost

associated with it. For each, a study must be made to see if the cost of including it pays its way, a

process that is tedious and fraught with diff icult ies since sometimes a single knowledge item will not

produce much of a change, while in combinat ion with some as yet untried item, it would be very

valuable. However, it appears clear that in all the above domains, knowledge is extremely important

and the effort should be to get as much in as possible, rather than to get along on as little as possible.

What can be Done with Very Little Knowledge

''L\'

W fjL'. 0% VOYs

m wmw.m
Figure 4

Black to play

However, the value of the search alone should not be underest imated. An example of the power of

a deep searching program can be seen in Figure 4, from a game BLITZ - BELLE, North-American

Computer Chess Championships, 1979. Here Black to play won brilliantly by 10.-- RxP!!, 11 . KxR, Q-

R5ch, 12. K-R1, N-N6!!, 13. Q-R5 (a typical delay when the worst has been discovered), PxQ, 14.

PxNch, N-B6 mate a combinat ion encompassing 7 ply. Another variation would be 11. NxN, Q-R5, 12.

N-N3, QxN!!, 13. PxQch, N-B6 mate, also 7 ply long.

7

By any standards, human or machine, this is a bri l l iant performance. However, any program that

searches to a depth of 7 ply, and has only knowledge of the value of material would play this posit ion

correct ly. It only needs to see that the initial move results in the gain of material (White can stave off

the mate by some delaying sacrif ices). This combinat ion would also be fairly easy for any human

Expert. However, his mode of discovering the combinat ion would be quite different. He would almost

certainly see a standard sacrif icial pattern relating to the initial move and the fol low-up Q-R5.

However, everything must be calculated in detai l . Further, there is the possibil ity that the Expert may

be put off the track by the fact that just before the mate White will make a capture with check, and he

may not see that the reply is a check-blocking double check that is mate. Such moves are very, very

rare except in composed problems and good players have been known to overlook such things.

However, a brute-force searching program makes such combinat ions wth ease, never even realizing

that it is making a "sacr i f ice" , because from its materialistic view the "sacr i f ice" leads to material

gain.

A further indication of the strength of the search alone is BELLE 'S performance on a set of 300

chess problems that have been used for a decade now to evaluate chess programs [8]. It only got

19.5 wrong (.5 credit is given when the correct move is tendered but the support ing analysis is not all

present) out of the set. Accord ing to the compi ler of the volume, a master could expect to get about

30 wrong. However, the most surprising thing was that BELLE discovered 9 errors in the solut ions

presented by the author, only 2 of which were previously known. This dramatical ly shows certain

l imitations of the human pattern recognit ion and analysis apparatus. However, such combinat ions

are possible against good opposit ion only when a great deal of groundwork has been laid by the

previous play; something that even World Computer Champion BELLE has not been able to do

consistently. Addit ional examples of the performance of brute-force programs may be found in [3] .

The Incompleteness of Almost All Knowledge

In any interesting domain it will not be possible to have a complete catalog of states of the domain.

Thus, it will be necessary to have a method for aggregating states into classes. Then a single

measure can stand for a class. This measure is the result of evaluation based on commonal i ty of

features throughout the class. In [2] we discussed the problems that can arise when artif icial

boundaries between such classes exist. Two domain elements on either side of such a boundary

could receive quite disparate evaluations when, in fact, they should be quite close. To c i rcumvent

this problem, it was found useful to develop evaluation funct ions that were smooth. These funct ions

were non-l inear to allow the major dif ferences that could be expected to be associated with different

classes. However, domain elements did not just belong or not belong to a class (boolean

8

relationship). Instead, they had a degree of membership in any given class specif ied by an

application coeff icient (similar to a characteristic function in fuzzy set theory). By control l ing set

membership through slowly varying appl icat ion coeff icients that understood global context, it was

possible to avoid such boundary problems.

V/,
V///, W'. y////' ^

m If m,
/////.

'////.
YM

YY m m w
••'••Y/// Y//// '///// /'//'•

V///^ '///// W// W/y

w. w. «
/Y'VY 1 /////.

Y/y

YY.
YY,

l m YYY W,

F i g u r e 5 F i g u r e 6

However, there are considerable problems in most domains in deciding what a class should

include. The descript ions of the posit ions of Figure 5 and Figure 6 are very nearly the same. Thus

they could easily end up in the same class even though in Figure 5 whoever moves loses, while in

Figure 6 no matter who moves, Black will lose his pawn but still be able to draw. In both cases,

anything except a very knowledgeable evaluation funct ion would probably consider the posit ion even.

However, if this is a terminal judgement on one. branch of a tree, then a considerable error will

propagate upward in the case of Figure 5. Of course, it is possible to create funct ions that correct ly

analyze such situations. For such simple situations this has been done [7] . However, as complexi ty

increases, it will become harder and harder to create such knowledge funct ions.

The obvious "so lu t ion" is to invoke pattern recognit ion, but this technique has definite l imitations

also. Consider the position in Figure 6. Here, White to play can win by executing the well known

maneuver 1. P-N6, BPxP, 2. P-R6, NPxP, 3. P-B6 and this pawn will queen. Now, this pawn formation

is worth remembering as this break-thru is always possible. However, it would be a mistake to believe

that this is always an advantage in King and Pawn endings. Consider Figure 8, which is Figure 7 with

the kings each shifted 2 squares to the left. Now, White to play loses because the black king is too

close for the above maneuver to succeed, and White will lose at least a pawn with a resultant losing

posit ion.

9

F i g u r e 7
W h i t e t o p l a y

F i g u r e 8
Wh i te t o p l a y

For this example, it wou ld be harder to def ine a knowledge funct ion that would appraise the

si tuat ion correct ly. If such a funct ion were created, it would undoubtedly have a very narrow range of

appl icabi l i ty; this implying that a very large number of funct ions would be required to adequately

cover any domain .

Instead, it would seem that the correct method is to refuse to statically evaluate posi t ions.where

there are counter- indicat ions (in the above example the break-thru format ion exists favor ing White,

whi le the black king in the vicinity of the pawns favors Black). This would suggest that it is wisest not

to make a final decis ion here, but instead require more searching to resolve the problem.

The B* Search

There is a searching method that works ideally in such an environment. It is the B* search [1] . One

of the features of this search is that nodes may be assigned a value range instead of a point value.

The endpoints of this range represent the optimist ic and pessimistic bounds of the real value. Ranges

can be backed up in a way that is very similar to the backing up of values in a search with point-valued

nodes. The search terminates when the pessimistic value of the best descendant of the root is no

worse that the opt imist ic value of the rest of its sibl ing nodes. Two strategies may be invoked in the

search: The Provebest strategy tries to raise the pessimistic bound of the best node at the root, whi le

the Disproverest strategy tr ies to lower the optimist ic bound of one of its sibl ing compet i tors . This

search strategy embodies the essentials of the arguments in the previous sect ion, and has been

found by simulat ion to be better than other knowledge based searches [1]. We are implement ing B*

in a problem solving chess program where it is showing great promise of paying attent ion to issues

10

that need to be resolved. Present research indicates that augmenting the notion of bounds with

probabil i ty density funct ions, over the range from optimistic to pessimistic, does a better job of

preserving useful information from lower in the tree, and thus results in more rapid convergence of

the search.

A Knowledge/Search Paradox
The standard search technique used by today's brute-force game playing programs requires the

use of iterative deepening. This search technique dictates that a complete search to depth N be done

before a search to depth N + 1 be undertaken. This apparently wasteful procedure, actually produces

some major savings. A large hash table is used to enter posit ions at the t ime they are quit ted in the

search, together with their backed-up value and the most successful move at that point. This

information is of great future use, as it al lows the pursuit of known successful moves at future

iterations, and also turns the tree into a graph since identical posit ions in the current iteration need

not be searched again. Good order ing of moves also results in being able to avoid searching some

sub-trees. These savings are both exponent ia l , and depend upon how near the root avoided sub

trees are anchored.

V/A ^ H w\
' / / / / / - < - ^ v

'////, '////s

? i i F i P

Figure 9
White to play

Consider the pawn endgame in Figure 9. Here White to play can win through a long and involved

series of king maneuvers result ing in breaking through at either KN5 or QN5. The principal variation

takes about 30 ply. This prompted Newborn [6] to estimate that to solve this posit ion on a high speed

digital machine would require about 25,000 hours of CPU t ime.

At first g lance this seems a reasonable analysis of the problem. However, when it is noted that unti l

11

a pawn is captured only king moves can be made for both sides, the situation is given a dramat ic turn.

There are less than 4000 posit ions that can result f rom merely moving the kings, and these can be

accommodated in a moderately sized hash table. This will result in progressively quicker searches,

and progressively better understanding as the nodes in the hash table proceed toward their correct

value, as the search deepens. Programs with such hash tables have now solved this posit ion in a few

minutes of CPU t ime.

Whi le this is an extreme example of the utility of the hash table, it is interesting to consider its role.

Whereas usually it acts merely to facil i tate the search by providing direct ing knowledge and making it

possible to avoid dupl icat ing effort, here it is the actual repository of terminal knowledge. Assume in

such a search, a posit ion is encountered that is to be searched to a depth of N addit ional ply.

However, the hash table entry indicates that the posi t ion has already been searched to a depth of

N + M addit ional ply. This not only aborts the search at this point, but provides a more informed

estimate of the node 's value than would be found by do ing the search to N further ply. It is this act ion

of the hash table that is a remarkable paradox. Clearly, the deeper the searches the more likely it is

that such act ion is possible.

Conclusions

Knowledge wi thout search has l imited utility as has search without knowledge. For each domain, a

certain balance appears to exist; however, 4 to 8 ply worth of searching appear to adequately

dupl icate the non-knowledge port ion of human performance. Each item of knowledge has a

project ion ability. Programs with long project ion abil ity knowledge appear to be the best. However,

short project ion abil ity knowledge must clearly also be accommodated if the longer project ion

knowledge is to get a chance to exert an effect. Further, the frequency of occurence of each

knowledge item also bears on its utility. The latter has not been studied yet.

In brute- force searches knowledge must be appl ied willy-nilly at the maximum depth to produce a

point value. Thus it is forced to take a "v iew" on any subject. This can result in very skewed views of

what is going on . Because of this, it may be that a f lexible search such as B* will ult imately still prove

better than the brute- force approach, but evidence for such a conclus ion is lacking at present.

References

[1] Berl iner, H., "The B* Tree Search Algor i thm: A Best-First Proof Procedure" , bArtificial

Intelligence, Vol . 12, No. 1,1979, pp. 23-40.

[2] Berl iner, H. J . , "Backgammon Computer Program Beats World Champ ion" , Artifical Intelligence,

Vol. 14, No. 2, September, 1980, pps. 205:220.

12

[3] Berl iner, H. J . , "An Examination of Brute Force Inte l l igence", Proceedings of the 7th

International Joint Conference on Artificial Intelligence, Vancouver, B.C., Canada, August, 1981.

[4] Condon, J . & Thompson, K., "Bel le Chess Hardware" , to appear in Advances in Computer

Chess-Ill, University of Edinburgh Press, 1982.

[5] Giilogiy, J . J . , Performance Analysis of the Technology Chess Program, Ph. D. Dissertat ion,

Computer Science Dept., Carnegie-Mellon University, March, 1978.

[6] Newborn, M., "PEASANT: An endgame program for k ings and pawns" , in Chess Skill in Man

and Machine, P. Frey (Ed.), Spr inger-Verlag, 1977.

[7] Perdue, C. & Berliner, H. J . , "EG - A Program that Plays Pawn Endgames" , Proceedings of the

5th International Joint Conference on Artificial Intelligence, Cambridge, Mass., 1977.

[8] Reinfeld, F.,Win at Chess, Dover Books, 1958.

[9] Rosenbloom, P. S., "A Wor ld-Championship Level Othel lo P rogram" , Computer Science Dept.,

Carnegie-Mel lon Univ., Technical Report, August, 1981.

[10] Slate, D. J. , and Atkin, L. R., "CHESS 4.5 -- The Northwestern University Chess Program" , in

Chess Skill in Man and Machine, P. Frey (Ed.), Springer-Verlag, 1977.

