NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-81-114

A Study of File Sizes and Lifetimes

M. Satyanarayanan

DEPARTMENT OF COMPUTER SCIENCE
CARNEGIE-MELLON UNIVERSITY

April 1981

Abstract

An investigation of the size and lifetime properties of files on the primary computing facility in the
Department of Computer Science at Carnegie-Mellon University is presented in this paper. Three key issues
are examined: the effect of migration on file characteristics, the effect of file type on file characteristics, and

Copyright © 1981 M. Satyanarayanan

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.
3597, monitored by the Air Force Avionics Laboratory Under Contract F 33615-78-C-1551.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

UNIVERSITY LIBRARIES
CARNEGYE-MELLON URIVIRSITY
PITISBURGH, PENNSYLVANIA 15213

Table of Contents

1. Introduction '
2. Data Collection

2.1. The Environment

2.2. The File System

2.3. The Collection Technique

2.4. The Quantities Measured
3. Data Interpretation

3.1. General Observations

3.2. Effect of Migration

3.3. Effect of File Type

34, Size/Lifetime Correlation
4. Analytic Approximation

4.1. General Discussion

4.2. The Moment Matching Method

4.3. A Heuristic Approach
5. Limitations and Extensions
6. Summary

1. Introduction

The performance of a file system depends strongly on the characteristics of the files stored in it. This paper
discusses the collection, analysis and interpretation of data pertaining to files in the computing environment
of the Computer Science Department at Carnegie-Mellon University {CMU-CSD). The information

gathered from this work will be used in a variety of ways:

L. As a data point in the body of information available on file systems.

2. As input to a simulation or anaIytic. model of a file system for a local network. being designed and
implemented at CMU [1]. .

3. As the basis of implementation decisions and parameters for the file system just mentioned.

4. As a step toward understanding how a user commupity creates, maintains and uses files,

2. Data Collection

2.1.The Environment

The data used in this papér was obtained on a Digial Equipment Comp. PDP-10 Model KL-10
processor [5] with 1 Mword of primary and eight 200 Mbyte disk drives, running the TOPS-10 operating
system [8]. This machine has been the main computational resource of the CMU-CSD for the past five years.
Towards the end of this period, a number of other machines were added to this environment. Though the
machine used for this study is now off-loaded by those machines, it continues to play a very important role
and is stll heavily used. Consequently, I believe that the data presented here is a good reflection of the file

usage characteristics of this community.

2.2. The File System

In the TOPS-10 operating system, every file has a 6-character file name and a 3-character file extension, and
is a member of exactly one directory. The file extension indicates the nature of the contents of a file. For
example, a Pascal program source would have the extension PAS, while its relocatable object module would
have the extension REL. An installation-dependent number of extensions are regarded as “standard”
extensions. Though system and user programs often make assumptions about a file based on its extension,
there is no mechanism for validating or guaranteeing these assumptions. In practice, it is extremely rare that a
standard extension is used for non-standard purposes. A quarter of the files examined had non-standard
extensions; such files were ignored for those parts of this study that discriminated on the basis of file type.

File names, unlike extensions, have no system-wide significance and were not examined,

A file consists of a'sequence of fixed-length blocks, which are the units of addressability on the disks. Each
block consists of 128 36-bit words. The last block in a file may be only partially written; such blocks were
regarded, in this study, as whole blocks. The size of a file is limited only by the amount of secondary storage
available. Uniike some file systems, such as OS/VS2 for the IBM 370 [4], a user does not have to specify the

maximurmn size of a file at the time of its creation.

The operating systemn maintains, for each file, information regarding its size, its owner, the date it was last
written, the date it was last accessed and its physical storage map. This information may be obtained by

queries from user programs to the operating system.

In the environment in which this study was done, a manual file migration scheme is used to relieve the
paucity of disk space. Every month, the operations staff runs a program which copies onto magaetic tape, and
deletes from fiisks, those files which have neither heen written nor read in the preceeding three months. Files
so migrated may be restored to disk at the request of their owners; in practice, very few such requests are
received. Each user has a file named MIGRAT.DIR to which the migration program appends details of every
file of that user it migrates. The union of a user’s current directory and his MIGRATDIR entries constitutes the |

set of all files created, but not deleted, by that user.

2.3. The Collection Technique

The files in this study fall into two classes: current files and migrated files. Data for both classes were
obtained without any modifications to the operating systerm. A vendor-supplied utility program which creates
a file containing details of every other file in the system was used to obtain data on current files. Data on
migrated files was obtained by examining the MIGRATDIR file of every user in the system. For both clases the
data extracted was organized as a 3-dimensional array with logarithmic age histogram buckets on one
gimension, logarithmic size histogram buckets on another dimension, and the set of standard file extensions
on the third. This array was created once each for current and migrated files, recorded in a file, and used as a
database for software written to answer questions such as “What is the distribution of file sizes for current
files with ages in a given range and with g given sel of extensions.” Table 6-1 shows an example of the output

for one such query.

It should be noted that the data gathered by this method is a snapshot of the file system at one point in
time. To examine the temporal behavior of the file properties described here, one would have 10 take

snapshots spaced apart in time and compare the data from each.

2.4. The Quantities Measured
Probably the three most common questions asked about any file are:

1. “What does it contain?”
2. “How big is it?”

3. “How old 1s it?”

To the designer of a ﬁ]e system, the first question is probably only of marginal relevance. In any case, a
precise answer to it requires a complete specification of the contents of a file! Specifying the extension of a
file answers this question at one level of granularity. One outcome of this study is, therefore, a histogram of
file extensions for any cross-section of the set of files examined. Figure 6-1 shows such a histogram. The

integers on the abscissa are mappings from the set of extensions to integers, as defined by Tables 6-2 and 6-3.

The size distribution of files is a crucial factor in deciding many of the file system parameters. The size of a

file, measured in blocks, is one of the two Quantities of pi'imary interest in this study.

The other important quantity is the age of a file. “Age” is usually understood to mean the interval between
the creation of a file and the instant of data collection. However, the original date of creation of a file is not
maintained by TOPS-10; only the dates of last modification and last access are available. The difference
between these two dates is a measure of the usefulness of the current data in the file. This quantity, the useful
lifetime of a file, is the second Quantity of interest in this study, For brevity, “lifetime” will mean “useful
~ lifetime™ in the rest of this paper. Fortuitously, it is the lifetime of a file, not its chronological age, which is
important in the design of file migration algorithms. Further, the file system design descﬁbed in {1] and
referred to in Section 1 is predicated on the assumption that the lifetime of files is short — this study was

conducted, in part, to verify this assumption.

3. Data Interpretation

3.1. General Observations

A total of about 36,000 current files and 50,000 migrated files were examined in this study. About 99% of
the files examined had sizes less than 1000 blocks and lifetimes less than 2000 days. Both size and lifetime are
discrete variables, with minimum values of | block and 1 day respectively. However, for ease of data

interpretation and analytical approximation, both variables are treated as continuous variables,

Even a cursory examination of the data reveals some interesting facts. As Figure 6-2 indicates, the size

distribution is skewed towards small sizes: 50% of the files are less than 5 blocks long and 95% of them ar¢ less
than 100 blocks long. Figure 6-3 shows that the lifetime distribution is also skewed towards the low end,
though not as sharply as the size distribution. Nearly 30% of the files have lifetimes of one day and 50% of

themn have lifetimes less than 30 days. The rest of the data analysis discusses three questons:

1. Are the properties of migrated files different from those of current ones?
2. Does the type of a file affect its properties?

3. Does the size of a file influence its lifetime?

3.2. Effect of Migration

Figure 6-4 compares the size distributions of current and migrated files. Except at the very low end, there
is virtually no difference between the curves. At the low end, there ar¢ fewer migrated files than current files.
1 conjecture that this phenomenon is due to the following: alarge number of very short files are created by
system programs. Text editors and mail servers are two examples of programs which create short auxiliary
files which are used only once. These files are automatically deleted by the programs which created them
when they are run a second time, or by users when they run out of disk quotas. Such files are unlikely to
remain both unaitered and undeleted for a period of time long ehough to qualify them for migratiott.
Consequently, small files are likely to form a smaller fraction of the migrated population than the current

population.

Figure 6-5 shows that migrated files tend to have shorter lifetimes than current files. To see why this is so,
consider how a long-lifetime file gets migrated. It would have to get created, then read (but not written)
frequently for a long tme and then all accesses to it would have to stop for a period long enough for it to
qualify for migration. The only obvious files that meet these criteria are the successive versions of commonly
used systerm Or user programs. The infrequency of generation of such files leads to the fact that there are

fewer long-lifetime files in the migrated population than in the current population.

The rest of this paper discusses only current files. Unless otherwise specified, the comments about current

files also hold for migrated fles with, perhaps, slightly different absolute numbers.

3.3. Effect of File Type

Since it is located in a research-oriented, academic environment, the machine on which this study was
conducted is used primarily for two activities: documnent preparation and program development. Nearly half
the files examined were created in conjunction with one of these two activities: program SOUICES files,

program object files. document processor input files. and document Processor output files. This section

exarnines the characteristics of these four classes. The remaining half of the files was highly fragmented, with

no clearly identifiable, large classes. Detailed study, discriminating on the basis of file type, of that set of files
is unlikely to yield any fresh insights,

Figure 6-6 shows the effect of file type on file size. Object files and document processor output files tend to
have much larger sizes than source files and document processor input files. The size characteristics of the
entire population resembles that of source and document files.

Figure 6-7 shows the effect of file type on file lifetimes. Document processor files tend to have much
shorter lifetimes than program files. I believe that this is due to the fact that once a document is complete,
people tend to read the hard copy rather than the machine-readable copy. Important programs, on the other
hand, tend to be used many times after they are debugged. Certain program source files are read long after

they are debugged; for example, uséful macro definitions are often included in other programs.

Table 3-1 summarizes the important characteristics of different file types. Probably the most important
lesson to be learned in this section is that the type of activities engaged in by a user community strongly
influences the size and lifetime properties of the files created by it. Files in a commercial data processing

environment or a fusion research center can be expected to exhibit markedly different characteristics from
those reported here.

Type of File Number File Size File LifeTime
Mean Std Dey Mean Std Dey
Program Sources 4010 21.84 47.63 363.6 731.3
Chject Filas 3474 53.99 116.3 414.6 681.4
Doc. Proc. Inmput 7085 29.28 70.95 137.5 322.7
Doc. Proc. Qutput 872 61.6 111.04 45.2 207.8
Entire Population 35652 23.89 66.83 238.9 531.9

Table 3-1: Effect of File Type on File Sizes and Lifetimes

3.4. Size/Lifetime Correlation

How does the size of a file affect its lifetime? Intuitively, one would expect large files to exhibit longer
. lifetimes than small files. Since the environment contains no large, frequently-modified databases, the most

likely type of large files are infrequently-modified databases such as the one used in this study, or frequently-

used and rarely-modified system programs such as compilers and editors. Small files, on the other hand, are

likely to be temporary files of various sorts, or files associated with use-once-and-throw-away programs.

is, 1

distribution of files, with size as a parameterl. Suprisingly, the curves

t longer, lifetimes than small files. The largest average lifetime
e informaton in Figure 6-8. At this point in time, I
rvation. One possibility is, of course,

Figure 6-8 shows the fifetime
indicate that large files tend to have shorter, no
n fact, that of 1-block files! Table 3-2 summarizes th
ing explanation 10 offer for this counter-intuitive obse
in the system are modified far more frequently than I w
urely temporary phenomena, since the data is a snap
year will reveal whether this is indeed the case.

have no convinc
that the large databases
possibility is that the anomaly is a p

system. Repeating this study after a few months or a

as led to believe. Another
shot of the file

Size of File Number File LifeTime
i Mean Std Dev
1 block 8745 264.8 §33.1
10 blocks 762 231.4 512.8
99 to 100 blocks 207 170.6 308.8
401 to 500 blocks 101 123.1 344.5
901 to 1000 blocks 131 . 120.2 240.6

Table 3-2; Effect of Size on Lifetime

4. Analytic Approximation

4.1. General Discussion
My aim in investigating analytic approximations o the size and lifetime distributions was twofold:
size and lifetime

e To obtain a simple and computationally efficient means of generating random

_variables. _

o To sce if a model useful in analytic performation evaluations could be postulated for file sizes and

lifetimes.

most tractable [3]. Atleasttoa first approximation, the process of

A Markovian model is analytically the
lifetime of a file one creates is independent of the files

generating files seems Markovian: the size and one has

n the past. For these two reasons, this study restricted its attention to Markovian models.

created i

stribution [3]. If the size distribution is exponential

The simplest Markovian model is an exponential di
XM Both the mean

an X isgivenby 1-¢

the probability that a random file has a size less th
ely, almost all the size and lifetime

with mean M,

and standard deviation of such a distribution are equal to M. Unfortunat

l’I‘here are too few files of size 500 blocks or more w0 obtain a smooth cumulative distribution function; a discrete function is therefore

shown for such files.

- e TR T ey

RCs T

v g

T e

distributions observed have standard deviations between two and three times that of the corresponding

means. This implies that a simple exponential mode] is certain to be unsuitable,

A hyperexponential model is a Markovian model which can exhibit coefficients of variation (i.e., ratio of
standard deviation to mean) greater than unity. A k-stage hyperexporential consists of k simple exponentials
with means Ml, Mz- » M,, weighted so that they have probabilities L. e— «, of being chosen.
Figure 4-1 shows such a model,

Figure 4-1: A k-Stage Hypereprnentjal Server

To generate a value for the random varjable represented by this model, one proceeds in two steps:

1. With probability a,, select one of the k stages.

2. Generate one value from an €xponential distribution of mean Mi‘

one needs o determine the number of stages, k, the means Mi, and the probabilities a,. The next two sections
discuss two alternative approaches for estimating these parameters.

4.2. The Moment Matching Method

distribution.

The pth moment of a k-stage hypeiexponenﬁal is related to its parameters (a’s and M's) by the following
relationship:
ale’ + ‘12sz akMkp = (p® moment)/p!
This is easily derived using the moment generating function technique [3]. By using an iterative solution
technique on 2k-1 such equations and the constraint a; + &, + ..o ta = 1, one can solve for the 2k

unknowns, &, 10 oy and M1 to Mk. :

Figure 6-9 compar<s the empirical size distribution of current files with a 2-stage hyperexponential fit. The
first three moments of these two curves areé identical. The two CUIves differ by no more than 0.05 at all points
except at the very tow end. Figure 6-10 shows the distribution of tifetimes of current files versus a 2-stage
hyperexponemial fit. Clearly the fit is not as good as for file sizes, especially at the low end, where the

hyperexponential grossly underestimates the empirical distribution.

Adding more stages 10 the hyperexponential, thereby matching more moments, yielded negligible
improvements in the fit. Figure 6-11, for example, compares the empirical file size distribution with two and
three stage hyperexponential fits,. The latter two Curves are virtually indistinguishable! The moment‘
matching technique is thus only of limited usefulness in analytically approximating the empirical data

presented here.

4.3. A Heuristic Approach

The basis of this technique is that a simple exponential has its mean equal to its standard deviation.
Starting from the low end, one examines successively larger initial segments of the empirical distribution until
one finds a segment with its mean close. to its standard deviation. This segment is represented as one siage of
a hyperexponential. Its mean, M, is the mean of the segment and its probability of selection, a, is the fraction
of the total population in that segment. This initial segment is removed from the distribution, and the

procedure is repeated on the rest of the distribution. The procedure terminates when the entire distribution

has been approximated.

The above procedure is a heuristic rather than an algorithm because judgement has to be used in deciding
when the mean of a segment is close enough to its standard deviation. In practice, good results were obtained
when the mean and standard deviation were within 25% of each other. Closer examination of this procedure,

10 see if it can be used as the basis of an algorithm, is one possible extension of the wark presented here.

Figure 6-12 shows the fit of a J-stage hyperexponenﬂal ohtained by this method to the empirical

distribution of file sizes. The fit is indeed excellent throughout the range of the curves.

11

o The unit of allocation for file sizes is a track, which is about 25 times larger than the unit of
size used in this study.

e The definition of lifetime used here differs from the age-related quantities measured in their
study.

o Their observations span a year and their analysis includes an examination of the time
behavior of the file characteristics,

6. Summary

Keeping in mind the constraints discussed earlier, the results of this study may be summarized as follows:

¢ Most files are very small.
¢ Most files have short lifetimes. However, some files have significantly longer lifetimes.
® The type of a file class strongly affects the properties of that class.

e Larger files tend to have shorter lifetimes; i.e., the data within them tends to remain unaltered for
shorter lengths of time,

¢ A hyperexponential is a very good model of the file size distribution and a reasonable model of
the lifetime distribution, '

Acknowledgements

I would like to thank George Robertson for his advice and encouragement throughout the course of this
research, Louis Monier for helping me devise the iterative solution mentioned in Section 4.2, and Ivor
Durham, whose PLOT program enabled me to produce the graphs in this document with a minimum of

effort. Of course, 1 am also indebted to all the users, past and present, of the CMU-10A who unwittingly
contributed to the data presented here! '

10

Figure 6-13 shows the fit of a 3-stage hyfaerexponemjal' to the lifetime distribution. The fit is not as good as
the file size fit, but it is certainly better than that obtained by matching moments. At the very low end, near 1
day, the approximation grossly underestimates the actual curve. The only way to remove this anomaly was to
weat fles of age 1 as a class by themselves and assign a constant probability to them. This constant
distribution causes no problems in random variable generation, but it does violate the Markovian assumption
thereby making analytical solutions harder. One could get over this difficulty by viewing the constant
dist.ribut.ion as é distribution with mean 1 and extremely small standard deviation. Such a distribution couid
be realized using an Erlang distribution [3; 2], thus retaining the Markovian property of the model. Figure 6
14 shows the effect of this modification — as expected, the fit at the very low end is much better.

Below about 500 days, Figure 6-14 shows that the hyperexponential lifetime curve is consiste‘ntly above the
empirical curve. Whether this is merely an outcome of the curve fitting procedure or an observation of
significance is not clear. If it is of significance, the curves tell us that the lifetime of files is longer than that
predicted by a Markovian generation process. There are, in fact, certain processes that might give rise to such
a phenomenon. The most commonly used programming languages and document processor in this
environment support separatc compilation and inclusion of external sources files (called “require” files).
During the course of debugging, attention is typically focussed on one such file and modifications ar¢ made to
it However, each compilation results in all the related files being accessed, thereby lengthening their
lifetimes. The lifetime of such files is no longer independent of all other files, thus violating the Markovian

assumption.

5. Limitations and Extensions
In using the data and analysis presented in this paper, a file system designer ’should bear in mind the

" conditions under which they hold:

1. The data was gathered from one machine (the most heavily used one) in an environment with
many machines. It would be instructive to examine the file usage patterns on the other machines
and compare them with the one presented here. Such a comparison would have to take into
account the fact that both the hardware and software on those machines is different from that on
the machine discussed here.

2. The data is a profile of the file system at one point in time. The time-varying behavior of the
system remains to be studied.

3. The data was obtained in an academic environment and may not be directly extendable to other
environments. Stritter [7] and Smith [6] discuss the collection and analysis of data on IBM/370s at
the Stanford Linear Accelerator Center. Besides the obvious differences in environment and
machines, their work differs from mine in the following ways:

o They cxamine only text editor files.

Gy RSITY USRARES
CARN: GIE-BELADR UITLS
o TTSBURGH. PENHSTLVARIA L

-
i

£

J

i
21

3

[11

(2]

B3]

4l

[5]

[6]

7]

(8]

12

References

Accetta, M., Robertson, G., Satyanarayanan, M. and Thompson, M.

The Design of a Network- Based Central File System.

Technical Report CMU-CS$-80-134, Department of Computer Science, Carnegie-Mellon University,
August, 1980.

Allen, A.QO.
Probability, Statistics, and Queuemg Theory.
Academic Press, 1978.

Kleinrock, L.
Queueing Theory Vol 1: Theory.
John Wiley & Sons, 1975.

Internatignal Business Machines Corp.
08/VS2 MVS ICL.
Order No. GC28-0692-4, May 1979.

Digital Equipment Corp., Maynard, Mass.
DecSystem10 Hardware Reference Manual.
DEC-10-XSRMA-A-D.

Smith, A.J.
Long Term File Reference Patterns and Their Application to File Migration Algorithms.
Technical Report, University of California, Berkeley, 1978.

Stritter, E.P.
File Migration.
PhD thesis, Department of Computer Science, Stanford University, January, 1977.

Digital Equipment Corp., Maynard, Mass. |
DecSystem10 Operating Systems Command Manual, DEC-10-OSCMA-A-D.
May 1974.

Data Source Identification: Combined histogram for DSKB, DSKC and TEMP on CHUA on 14,15-JAN-81.

The files contained no Migratad files
Population Selection Parameters:
LostzeValue = 1 HiSizeValue = ip00

LoSizelndax = 1 HisSizelndex = - 28
LoAgaValue * 1 HiAgevalve = 5000
LoAgeIndex = 1 HisAgelndex = 32

Extansion mode specified was ALLBUTUFD

Total number of ralevant Tiles = 36652

Mowent 1 of Size = 2.3889931E+01

Moment 2 of Size = G.036683BE+03

Moment 3 of Size = 2.4054326E+06

Moment 4 of Size = 1.5510999E+09

Moment 5 of Size =+ 1.66Z8644E+12

Momgnt 1 of Age = 2.2B19419E+02

Momeat 2 of Age = 3.3500745E+05

Moment 3 of Aga = §. 64G8970E+08

Moment 4 of Age = 3.6899178E+12

Momant 5 of Age * 3.B5548513E+18

Data points: Size Limit, Cumulative Fraction

2.452B778E-01
3.5062731E-01
4.2118264E-01
4.71523280E-01
5.1328739E-01
5.5808930E-01
5.9045778E-01
6.1805789E-01
9. 6.4330192E-01
10, f_6467519E-01
20, 7.8256478E-01
3o, &.36B9653E-01
490, £.7445304E-01
50, 8.9950071E-01
50, 9.1683495E~01
70, 9.2861549E-01
80, 9.3851677E-01
90, 9.4625827E-01
100, 5, 5206435E-01
200, 9. 7983281E-01
300, 9.5816335E-01
400, 9.9276337E-01
500, 9.95669632E-01
509, 9.9725120E-01
700, 9.9806462E-01
800, 9.9868170E-01
200, 9.9963537E-01
1000, 1.0000000

[R NN RS

Table 6-1: Sample Output: Size Distribution of Current Files

Fraction of Files

Fraction of Files

0.25,
0.20%
O. 15¢
0.10}
0.05|
;_Dﬂ_ﬂ.n]“ﬂ_n_n_uihﬂ.&_ﬂ__ﬂ_n._‘_anﬂ:—&sm
o 10 20 30 40 50 60 70 80
Index of Extension

Histogram of File Extensions

0.25,
0.20}
0.15}
0.10}

0.05¢

o_oonurh_m_ﬂr‘ﬂ nﬂlﬂqﬂan. .|-|-LL’.H-|J1.—.._ m_ »

70 80 90 100 110 120 130 140 150
Index of Extension

Histogram of File Extensions

Figure 6-1: Histogram of Current File Extensions

Index

OO DD D

Extension

ABB
ABS
ADA
ALG
APL
ASM
ATR
Aux
8Al
BAX
BAS
BBD
BH

BIB
BIN
BLY
BOX
o 18
CCL
CFL
CHK
™MD
CNG
CRF
CTR
DAT
DEB
OFN
DFS
) 14

Purposs

-Alge1-58 source file

Nonrelocatable program; output from PDP-11 assemblers/compilers
ADA source Tile for Intermetrices semantic analyzer
Algol1-10 source Tile

Saved APL workspace

Qutput from the PQCC TCOL assembiers, ASM or SPASM
Simyla attribute fila (companion to .REL file}
Auxiltary fite from Scribe

Composite .SMI files created by BAIL

Backup Tile from TECO or FINE

BASIC source fil

A bulletin board for BEOARD

Input file to BH

Use-bibliography input to Scribe

PDP-11 binary file [executzble)

BLISS-10, -11, -1B6, -32 and -36 source Tiles

Mail.Box and $MAILS.BOX are the anly known appearances
COBOL input fila

Stared commands for lots of different kinds af programs
Concept Font Load file (BILOS)

Renamed nnnCHK.THP file from 503

Stored command line for COMPILE, LOAD, EXECUTE, etc.
SHEPHERD change log

Dutput from an assemblar or compilar for input to CREF program
1SP simuliator COUNTER file

FORTRAN data file

Trace output from /DEBUG switch in BH

Input to PQCC TCOL assembler {data structure detinition files)
requira file for PUB

output Tile from BLSDIC, ar dictionary of SPELL

IC package definitions far 5UDS

As in MIGRAT.DIR, 1tst af files migratad by CMU failsafe
Distributign file for MAIL or RDMAIL

Documentation file

Attarnate form of DIS; ROMAIL distributien file

error log Tile from Scribe

$ingle exacutable file (.SAV, JHGH/ .LOW or _SHR/, LOW)
FORTRAN source (D1d DEC Fartran)

FAIL assamber source Tile

FASLAP file, output of MACLisp compiler

Tamporary file created by FINE (editor)

Font description for Scriba

FORTRAN source (new DEC Fartran)

ISP Parse Tree

Grade input files to the grader program

scribe output to the GSI photocompasar

Graphics (GDP-1I) Character set

High segment of non-sharahle two-segment program

Help file

S¢ribe hyphenation dictionary

ISP Simulator ICOMNECT file

Bit map (Image mode) file for XGP

As $n SWITCH_INI, user configuration file for programs

ISPS or ISPL source file

Text representation of character set tor XGP

Character st for AGP

putput Trom LISP compiler (CMU/UCT Lisp) *

Backup of overwritten LSP file (written by LISP)

Libraries for Biiss-16, -32, -36 :

SHEPHERD file lock Tila

LINK11 binary output file {alleged wisrd format)
Lexicographic outiput from Scriba

Scribe database definttion file

Listing file from Bliss-32

Stored commands for the Hydra limker

Dutput Trom PDP-11 linkars

Log file (output Tile) from BATCH

Low segment of sharable or non-sharable two-segment program
line printer file (from lots of programs, inciuding Scribe)
fantrol file for AT

Printable listing of DIP definitions for $UDS drawing program.
LISP source {(CMU/UCT Lisp)

Reserved for listings produced by compilers

CROSS assembler input files

Macro-1ii sourca

Table 6-2: Mappings of Extensions 0 to 74

149

Extension

MAC
MAK
MAP

512

SAV
SEL
SHP
SHR
SIN
5M1
540
$PX
SRT
sus
5UD
SWF
55
oL
TEL
TFO
TIM
P
ST
TYP
UFD
UNF
UNR
USR
160
xxy
11z

Pu I‘EO 58

Macro-10 input Tils

Scriba database for document type (}

Link map from various linkers, includimg LINK, LINKER, LINK11
MASTER file, many little files in one big one (SUBFIL)
Backup MCL files created by SLURP

MACLisp source fila

List of modules in SHEPHERD tres

As in DELETE.ME, tha default file name FINE starts up with
Medusa executable fite

MIC control file

source fita for MIDAS, MIT assembler

MLISP source

ROMAIL Tarmat file (RD file.MSG or RD file)

snput file to Scribe

WUMBLE source Tile (high level language for K.map microcods)
As 1in ¥.NAM, Yist of paopls for the N program Lo
SHEPHERD News file

kRelocatable PDP-11 program

ISP Simulator OCORNECT file

_PFrevious .LRC file from AT

Installation finstructions for & program ar system
outtine file from Scribe
Intermediate cutput from Bliss-11. MEVER use as a source file
OQutput from Hydra linker; binary page images
Pascal source file
“Picture”™ sutput camtrol file for BH
“Plan” files, read by FINGER if you are not logged in.
Diablo output file from Scribe
Dover {(Prass} filas
BH intarmediate (PReSort) files
SUDS parts-tist fTile
source file teor PUB
As in FTP.Q, the 1ist of SMLFL commands to the QNET asiler
A Queued mail messagé to he sent by the QNET mailer
A LESP.INI file for QACLSP, the Quick-Loading MALLSP
REMIND queue entry ftile (written on REMIND server area)
Dutput file Trom SMECO; 1ist of new wires to wrap
Output from tha Ada parser (read by Ada semantic analyzer)
Scribe refarsace environment description
relocatable cutput from assembler, compiler, etc.
require file for Bliss-10 and/or Bliss-11
require files or Bliss-16, -32, and -38
ISP Simulator REPORT file
REMHIND reply file (written on REMIND server arfea)
Require Summary (REQUIR program}
Dutput Tile from SMECD; 1ist of wirs runs: input to WW machine
Binary or text file from SIXi2 SAVE/LOAD or STORE/RECALL
SAIL compiler source fila
Single-segment executable cora image
Selection control file for BH
uCode output from CMICRO assembler
High segment of two-segment sharable program
Simula source fTile i
BAIL output from SAIL compiler
SNOBOL or SITBOL input file
A drawing created by the SPACS drawing program
intermediate file from BH
SHEPHERD 14st of submodules within a modula
RANDOM FILES ASSOCIATED WITH SuDS
Simulated virtual memory file written by PMMLIB
System control file. root of SHEPHERD tres
TCOL ocutput from Ada semantic analyzer: &lso, other kinds of
In PROFIL.TEC, the Taco initializatiaon f1le read for a user.
Scribe typewritar-fonat description file
Qutput file from the BYiss Timar Package
Innumerable xinds of temporary fTiles of all sorts
Random text file not. created by document production system
Quiput file from TYPER program
User File Directory (always found on [1.17)
UnFasl file; commentary produced by MACLisp comptler
Quiput file from SMECO; list of old wirgs to unwrap
List of users of a system for SHEPHERD
XGP output file from PUB, Scribe, othars
Uninteresting standard extensions
Non-standard extensions

Table 6-3: Mappings of Extensions 75 to 149

ftp://FTP.Q

Fraction of Relevant Files

1.0,

0.7}
0.5
0.5
0.4

Fraction of Releva_nl Files

0.3}

0.1}

1.0,
0.9%
0.8¢

0.6}
0.5¢

0.3}
0.2}
0.1}

Current Files Lifetime:1-5000
) 200 300 600 800 7000
: File Size in Blocks
Cum. Dist. Fn. of File Sizes
Current Files Litetime:1-5000
o) 20 40 60 80 700

File Size in Blocks
Cum. Dist. Fn. of File Sizes

Figure 6-2: Size Distribution of Current Files

Fraction of Relevant Files

Fraction of Relevant Files

1.0,
0.9}
0.8}
0.7}
0.6¢

0.5

0.4}
0.3}
0.2}
0.1}

1.0

0.9

0.8}
0.7t
0.6%
0.5}

0.4

0.31
0.2}
O.1}

Current Files . Size:1-1000

7000 2000 3000 4000 5000
File Lifetime in Days
Cum. Dist. Fn. of File Lifetimes

CurrentFiles Size:1-1000

40 30 120 760 200
File Lifetime in Days

Cum. Dist. Fn. of File Lifetimes

Figure 6-3: LifeTime Distribution of Current Files

Fraction of Relevant Files

Fraction of Relevant Files

0.5
0.4

0.3t
0.2t
O.1}

Current Files Lifetime:1-5000
- - - - Migrated Files Lifetime:1-5000

200 200 600 800 7000
File Size in Blocks
Cum. Dist. Fn. of File Sizes

—— CurrentfFiles Lifetime:1-5000
. == = Migrated Files Lifetime:1-5000

20 40 60 80 700
File Size in Blocks
Cum. Dist. Fn. of File Sizes

Figure 6-4: Effect of Migration on File Size

Fraction of Relevant Files

'Fracu'on of Relevant Files

0.4}

0.3

0.21
0.1}

1.0,
0.9}
0.8}
0.7}
0.6}
0.5}
0.4}
0.3}

0.2

0.7¢

Current Files Size:1-1000
Migrated Files Size:1-1000

7000 2000 3000 2000 5000
File Lifetime in Days
Cum. Dist. Fn. of File Lifetimes

- CurrentFiles Size:1-1000

- -~ - Migrated Files Size:1-1000

Jd

40 80 120 160 200
File Lifetime in Days
Cum. Dist. Fn. of File Lifetimes

Figure 6-5; Effect of Migration on File Lifetime

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UN!VEP:S_ITY
PITISBURGH, PENNSYLVANIA 15213

Fraction of Relevant Files

Fraction of Relevant Files

1.0

0.9
0.8 _
0.1}
0.6

—— Program Sources Lifetime:1-5000
0.3 - - - QbjectFiles Lifetime:1-5000
-———- Document Processor input ~ Lifetime:1-5000

0.2 -—-~ Document Processor Qutput Lifetime:1-5000
o1y v Entire Population Lifetime:1-5000

0 200 400 800 800 1000

File Size in Blocks
Cum. Dist. Fn. of File Sizes
1.0,
0.9¢
0.5}
0.7%
0.6}
0.5}
0.4 _:‘;' I',,/ — Program Sources Lifetime:1-5000
o.alif /! .- -- ObjectFiles Lifetime:1-5000
) / -~~~ Document Pracessor Input Lifetime:1-5000
0.2t § ." —-—- Document Processor Qutput Lifetime:1-5000
o.1}l" !’, ---------- Entire Population Lifetime:1-5000
| £ ,
o] 20 40 60 80 100

File Size in Blocks
Cum. Dist. Fn. of File Sizes

Figure 6-6: Effect of File Type on Size

Fraction of Relevant Files

Fraction of Relevant Files

0.9}
o.gf

0.6
0.5
0.4

0.3
0.2;
0.1}

1.0,
0.9
0.8}
0.7

0.6

0.5

0.4}
0.3t

0.2t
0.1}

0-7 | .

TR T
ey

o e oy T ST ATt e Ty

—— Program Sources Sizes:1-1000

- - - Ohject Files Sizes:1-1000

——- Document Processor Input Sizes:1-1000

-— -~ Deocument Processor Qutput Sizes:1-1000
- Entire Population Sizes:1-1000

7000 2000 3000 4000 5000
File Lifetime in Days
Cum. Dist. Fn. of File Lifetimes

o . —

-
- —

s
i
I eaeeer
. e L L)
—
-
i
e
e
i

-

- Program Sources Sizes:1-1000
- = =~ OhbjectFiles Sizes:1-1000
------- Document Processor input Sizes:1-1000

~ - —- Document Processor Output Sizes:1-1000 .
---------- Entire Population Sizes:1-1000

A

40 80 120 160 200
File Lifetime in Days
Cum. Dist. Fn. of File Lifetimes

Figure 6-7: Effect of File Type on Lifetime

Fraction of Relevant Files

_Fracrion of Relevant Files

1.0

0.9

0.8l :;

0.7.;‘ i

0.6f

0.5

0.4 sizen

0.3, --- Size:10

—— Size:91-100

0.2y .. Size:401-500

o1l -—- Size:801-1000
0 7000 2000 3000 4000 5000

File Lifetime in Days
Cum. Dist. Fn. of File Lifetimes

1.0,
o.9}
0.8
0.7
0.6
o.51T

0.4% . : s

0.3 ' -- -~ Size:t0

’ —-———e Size:91-100
0.2} avenee Size:401-500
0.1l --we- Size:901-1000

) 30 80 720 160 200
File Lifetime in Days

Cum. Dist. Fn. of File Lifetimes

Figure 6-8: Effect of Size on Lifetime

Fraction of Relevant Files

Fraction of Relevant Files

0.4
0.3

0.2
o.1}

0.4}
0.3t
0.2t
0.14

v

— EmpiricaiData Lifetime:1-5000 7
- -~ - . 2.Stage HyperExponential Fit by Moment Matching

200 300 600 800 1000
File Size in Blocks
Cum. Dist. Fn. of File Sizes

; —— Empiricat Data Lifetime:1-5000
; . - - — 2-Stage HyperExponential Fit by Moment Matching

20 40 60 80 700
File Size in Blocks
Cum. Dist. Fn. of File Sizes

Figure 6-9: 2-Stage HyperExponential Fit for File Size

Fraction of Relevant Files

Fraction of Relevant Files

1.0

0.9¢
0.8}
0.7}
0.6t

0.5
0.4
0.3
0.2
0.1

1.0;

0.9
0.8

0.7}

0.6
0.5

0.4}

0.3

0.2t

0.1

h
i
[
'
!
t
h
1
[
t
1
y
,.

3

— -

e Empirical Data Size:1-1000
-=--- Z-Stage HyperExponential Fit by Moment Matching

7000 2000 3000 3000 5000
File Lifetime in Days

Cum. Dist. Fn. of File Lifetimes

. —— Empirical Data Size:1-1000
L e ’ - - = 2-Stage HyperExponential Fit by Moment Matching
L e
’ s i L A J
40 80 120 160 200

File Lifetime in Days
Cum. Dist. Fn. of File Lifetimes

Figure 6-10: 2-Stage HyperExponential Fit for File Size

Fraction of Relevant Files

‘Fracu'on of Relevant Files

0.4
0.3}
0.2}
0.1}

—— Empirical Data Lifetime:1-5000
- - - . 2-Stage HyperExponential Fit by Moment Matching
.em— 3-Stage HyperExponential Fit by Moment Matching

1.0
0.9}
0.8}
0.7}
0.6}
0.51
0.41
0.3
0.2

0.1}

200 400 600 300 1000
' File Size in Blocks
Cum. Dist. Fn. of File Sizes

o EmpiricalData Lifetime:1-5000
A 2-Stage HyperExponentiai Fit by Moment Matching
{ 3-Stage HyperExponential Fit by Moment Matching

20 40 50 80 700
File Size in Blocks
Cum. Dist. Fn. of File Sizes

Figure 6-11: 2- and 3-Stage HyperExponential Fits for File Size

CaRnEGi-asliun bt

PLTTSBURGH, PENNST LVANIA 15215

Fraction of Relevant Files

Fraction of Relevant Files

0.1}

0.4}
0.3}

0.2

o.1¢

0.4}
0.3}
0.2}

—— EmpiricalData Lifetime:1.5000 _
- -- 3-Stage HyperExponential Fit by Heuristic Method

200 400 600 800 1000
File Size in Blocks
Cum. Dist. Fn. of File Sizes

—— Empirical Data Lifetime:1-5000
- - = 3-Stage HyperExponential Fit by Heuristic Method

20 40 60 80 700
File Size in Blocks
Cum. Dist. Fn. of File Sizes

Figure 6-;12: Heuristic 3-Stage HyperEx'ponential Fit for File Size

Fraction of Relevant Files

Fraction of Relevant Files

0.4}

———— Empirical Data Size:1-1000

0.3} ---- 3-Stage HyperExponential Fit by Heuristic Method

0.2}
0.1}

1.0,
0.9}
0.8}
0.7}

0.5¢
0.41
0.3
0.2
0.1}

0 7000 2000 3000 2000 5000

File Lifetime in Days
Cum. Dist. Fn. of File Lifetimes

——- Empirical Data Size:1-1000
- — - - 3-Stage HyperExponential Fit by Heuristic Method

L

0 40 80 120 760 200

File Lifetime in Days
Cum. Dist. Fn. of File Lifetimes

Figure 6-13: Heuristic 3-Stage HyperExponential Fit for File Lifetime

Ol

i‘deRbH P ﬁ’.l Stubvesa a

Ve L

1.0

0.9
0.8
0.7
0.6
0.5
0.4}

Fraction of Relevant Files

——— Empirical Data Size:1-1000
0.3 --- initial Constant + 3-Stage HyperExponential Fit by Heuristic Method

0.2}
o.1f

0 7000 2000 3000 4000 5000
File Lifetime in Days

Cum. Dist. Fn. of File Lifetimes
1.0,
0.9}
0.8}
o.7}
0.6}
0.5

C.4}1

Fraction of Relevant Files

— Empirical Data " Size:1-1000
0.3t - - = = Initial Constant + 3-Stage HyperExponential Fit by Heuristic Method

0.2}
0.1}

o 40 80 720 160 200
File Lifetime in Days
Cum. Dist. Fn. of File Lifetimes

Figure 6-14: Heuristic Constant + 3-Stage HyperExponential Fit for File Lifetime

