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1 . Introduction 

The performance of a file system depends strongly on the characteristics of the files stored in it. This paper 

discusses the collection, analysis and interpretation of data pertaining to files in the computing environment 

of the Computer Science Department at Carnegie-Mellon University (CMU-CSD). The information 

gathered from this work will be used in a variety of ways: 

1. As a data point in the body of information available on file systems. 

2. As input to a simulation or analytic model of a file system for a local network, being designed and 
implemented at CMU [1], 

3. As the basis of implementation decisions and parameters for the file system just mentioned. 

4. As a step toward understanding how a user community creates, maintains and uses files. 

2. Data Collection 

2 . 1 . The Environment 

The data used in this paper was obtained on a Digital Equipment Corp. PDP-10 Model KL-10 

processor [5] with 1 Mword of primary and eight 200 Mbyte disk drives, running the TOPS-10 operating 

system [8]. This machine has been the main computational resource of the CMU-CSD for the past five years. 

Towards the end of this period, a number of other machines were added to this environment. Though the 

machine used for this study is now off-loaded by those machines, it continues to play a very important role 

and is still heavily used. Consequendy, I believe that the data presented here is a good reflection of the file 

usage characteristics of this community. 

2 . 2 . The File System 

In the TOPS-10 operating system, every file has a 6-character file name and a 3-character file extension, and 

is a member of exacdy one directory. The file extension indicates the nature of the contents of a file. For 

example, a Pascal program source would have the extension PAS, while its relocatable object module would 

have the extension REL. An installation-dependent number of extensions are regarded as "standard" 

extensions. Though system and user programs often make assumptions about a file based on its extension, 

there is no mechanism for validating or guaranteeing these assumptions. In practice, it is extremely rare that a 

standard extension is used for non-standard purposes. A quarter of the files examined had non-standard 

extensions; such files were ignored for those parts of this study that discriminated on the basis of file type. 

File names, unlike extensions, have no system-wide significance and were not examined. 
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A file consists of a sequence of fixed-length blocks, which are the units of addressability on the disks. Each 

block consists of 128 36-bit words. The last block in a file may be only partially written; such blocks were 

regarded, in this study, as whole blocks. The size of a file is limited only by the amount of secondary storage 

available. Unlike some file systems, such as OS/VS2 for the IBM 370 [4], a user does not have to specify the 

maximum size of a file at the time of its creation. 

The operating system, maintains, for each file, information regarding its size, its owner, the date it was last 

written, the date it was last accessed and its physical storage map. This information may be obtained by 

queries from user programs to the operating system. 

In the environment in which this study was done, a manual file migration scheme is used to relieve the 

paucity of disk space. Every month, the operations staff runs a program which copies onto magnetic tape, and 

deletes from disks, those files which have neither been written nor read in the preceeding three months. Files 

so migrated may be restored to disk at the request of their owners; in practice, very few such requests are 

received. Each user has a file named MIGRAT.DIR to which the migration program appends details of every 

file of that user it migrates. The union of a user's current directory and his MIGRAT.DIR entries constitutes the 

set of all files created, but not deleted, by that user. 

2 . 3 . The Collection Technique 

The files in this study fall into two classes: current files and migrated files. Data for both classes were 

obtained without any modifications to the operating system. A vendor-supplied utility program which creates 

a file containing details of every other file in the system was used to obtain data on current files. Data, on 

migrated files was obtained by examining the MIGRAT.DIR file of every user in the system. For both clases the 

data extracted was organized as a 3-dimensional array with logarithmic age histogram buckets on one 

dimension, logarithmic size histogram buckets on another dimension, and the set of standard file extensions 

on the third. This array was created once each for current and migrated files, recorded in a file, and used as a 

database for software written to answer questions such as "What is the distribution of file sizes for current 

files with ages in a given range and with a given set of extensions" Table 6-1 shows an example of the output 

for one such query. 

It should be noted that the data gathered by this method is a snapshot of the file system at one point in 

time. To examine the temporal behavior of the file properties described here, one would have to take 

snapshots spaced apart in time and compare the data from each. 
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2 .4 . The Quant i t ies Measured 

Probably the three most common questions asked about any file are: 

1. "What does it contain?*' 

2. "How big is it?" 

3. "How old is it?" 

To the designer of a file system, the first question is probably only of marginal relevance. In any case, a 

precise answer to it requires a complete specification of the contents of a file! Specifying the extension of a 

file answers this question at one level of granularity. One outcome of this study is, therefore, a histogram of 

file extensions for any cross-section of the set of files examined. Figure 6-1 shows such a histogram. The 

integers on the abscissa are mappings from the set of extensions to integers, as defined by Tables 6-2 and 6-3. 

The size distribution of files is a crucial factor in deciding many of the file system parameters. The size of a 

file, measured in blocks, is one of the two quantities of primary interest in this study. 

The other important quantity is the age of a file. "Age" is usually understood to mean the interval between 

the creation of a file and the instant of data collection. However, the original date of creation of a file is not 

maintained by TOPS-10; only the dates of last modification and last access are available. The difference 

between these two dates is a measure of the usefulness of the current data in the file. This quantity, the useful 

lifetime of a file, is the second quantity of interest in this study. For brevity, "lifetime" will mean "useful 

lifetime" in the rest of this paper. Fortuitously, it is the lifetime of a file, not its chronological age, which is 

important in the design of file migration algorithms. Further, the file system design described in [1] and 

referred to in Section 1 is predicated on the assumption that the lifetime of files is short — this study was 

conducted, in part, to verify this assumption. 

3. Data Interpretation 

3 . 1 . Genera l Observat ions 

A total of about 36,000 current files and 50,000 migrated files were examined in this study. About 99% of 

the files examined had sizes less than 1000 blocks and lifetimes less than 2000 days. Both size and lifetime are 

discrete variables, with minimum values of 1 block and 1 day respectively. However, for ease of data 

interpretation and analytical approximation, both variables are treated as continuous variables. 

Even a cursory examination of the data reveals some interesting facts. As Figure 6-2 indicates, the size 
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distribution is skewed towards small sizes: 50% of the files are less than 5 blocks long and 95% of them are less 

than 100 blocks long. Figure 6-3 shows that the lifetime distribution is also skewed towards the low end, 

though not as sharply as the size distribution. Nearly 30% of the files have lifetimes of one day and 50% of 

them have lifetimes less than 30 days. The rest of the data analysis discusses three questions: 

1. Are the properties of migrated files different from those of current ones? 

2. Does the type of a file affect its properties? 

3. Does the size of a file influence its lifetime? 

3 . 2 . Effect of Migrat ion 

Figure 6-4 compares the size distributions of current and migrated files. Except at the very low end, there 

is virtually no difference between the curves. At the low end, there are fewer migrated files than current files. 

I conjecture that this phenomenon is due to the following: a large number of very short files are created by 

system programs. Text editors and mail servers are two examples of programs which create short auxiliary 

files which are used only once. These files are automatically deleted by the programs which created them 

when they are run a second time, or by users when they run out of disk quotas. Such files are unlikely to 

remain both unaltered and undeleted for a period of time long enough to qualify them for migration. 

Consequently, small files are likely to form a smaller fraction of the migrated population than the current 

population. 

Figure 6-5 shows that migrated files tend to have shorter lifetimes than current files. To see why this is so, 

consider how a long-lifetime file gets migrated. It would have to get created, then read (but not written) 

frequently for a long time and then all accesses to it would have to stop for a period long enough for it to 

qualify for migration. The only obvious files that meet these criteria are the successive versions of commonly 

used system or user programs. The in frequency of generation of such files leads to the fact that there are 

fewer long-lifetime files in the migrated population than in the current population. 

The rest of this paper discusses only current files. Unless otherwise specified, the comments about current 

files also hold for migrated files with, perhaps, slightly different absolute numbers. 

3 . 3 . Effect of File Type 

Since it is located in a research-oriented, academic environment, the machine on which this study was 

conducted is used primarily for two activities: document preparation and program development. Nearly half 

the files examined were created in conjunction with one of these two activities: program sources files, 

program object files, document processor input files, and document processor output files. This section 
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examines the characteristics of these four classes. The remaining half of the files was highly fragmented, with 

no clearly identifiable, large classes. Detailed study, discriminating on the basis of file type, of that set of files 

is unlikely to yield any fresh insights. 

Figure 6-6 shows the effect of file type on file size. Object files and document processor output files tend to 

have much larger sizes than source files and document processor input files. The size characteristics of the 

entire population resembles that of source and document files. 

Figure 6-7 shows the effect of file type on file lifetimes. Document processor files tend to have much 

shorter lifetimes than program files. I believe that this is due to the fact that once a document is complete, 

people tend to read the hard copy rather than the machine-readable copy. Important programs, on the other 

hand, tend to be used many times after they are debugged. Certain program source files are read long after 

they are debugged; for example, useful macro definitions are often included in other programs. 

Table 3-1 summarizes the important characteristics of different file types. Probably the most important 

lesson to be learned in this section is that the type of activities engaged in by a user community strongly 

influences the size and lifetime properties of the files created by it. Files in a commercial data processing 

environment or a fusion research center can be expected to exhibit markedly different characteristics from 

those reported here. 

Type of File Number File J Size File LifeTime Type of File Number 
Mean Std Dev Mean Std Dev 

Program S o u r c e s 

Objec t F i l e s 

Doc. Proc . Input 

Doc. Proc . Output 

E n t i r e P o p u l a t i o n 

4010 

3474. 

7085 

872 

35652 

2 1 . 8 4 

5 3 . 9 9 

2 9 . 2 8 

6 1 . 6 

2 3 . 8 9 

4 7 . 6 3 

1 1 6 . 3 

7 0 . 9 5 

1 1 1 . 0 4 

6 6 . 8 3 

3 6 3 . 6 

4 1 4 . 6 

1 3 7 . 5 

4 5 . 2 

2 3 8 . 9 

7 3 1 . 3 

6 8 1 . 4 

3 2 2 . 7 

2 0 7 . 9 

5 3 1 . 9 

Table 3-1: Effect of File Type on File Sizes and Lifetimes 

3 .4 . S i z e / L i f e t i m e Correlat ion 

How does the size of a file affect its lifetime? Intuitively, one would expect large files to exhibit longer 

lifetimes than small files. Since the environment contains no large, frequently-modified databases, the most 

likely type of large files are infrequently-modified databases such as the one used in this study, or frequently-

used and rarely-modified system programs such as compilers and editors. Small files, on the other hand, are 

likely to be temporary files of various sorts, or files associated with use-once-and-throw-away programs. 



7 

Figure 6-8 shows the lifetime distribution of files, with size as a parameter 1. Suprisingly, the curves 

indicate that large files tend to have shorter, not longer, lifetimes than small files. The largest average lifetime 

is, in fact, that of 1-block files! Table 3-2 summarizes the information in Figure 6-8. At this point in time, I 

have no convincing explanation to offer for this counter-intuitive observation. One possibility is, of course, 

that the large databases in the system are modified far more frequently than I was led to believe. Another 

possibility is that the anomaly is a purely temporary phenomena, since the data is a snapshot of the file 

system. Repeating this study after a few months or a year will reveal whether this is indeed the case. 

Number 
File LifeTime 

Size of File Number Mean Std Dev 

1 b l o c k 

10 b l o c k s 

99 t o 100 b l o c k s 

401 t o 500 b l o c k s 

901 t o 1000 b l o c k s 

8745 

762 

207 

101 

13 

2 6 4 . 8 

2 3 1 . 4 

1 7 0 . 5 

1 2 3 . 1 

1 2 0 . 2 

6 3 3 . 1 

5 1 2 . 8 

3 0 8 . 8 

3 4 4 . 5 

2 4 0 . 6 

Table 3-2: Effect of Size on Lifetime 

4. Analytic Approximation 

4 . 1 . General Discussion 
My aim in investigating analytic approximations to the s i * and ufetime — o n s was twofold. 

. To O b * a staple and computationally efficient means of generating random size and lifetime 

variables. 

. To see if a model useful I . anaiyuc performauon evaluations could be postulated for ffle sizes and 

A Markovian model is analytically the most tractable [3]. At least to a first approximation, the process of 

generating files seems Markovian: the size and lifetime of a file one creates is independent of the files one has 

created in the past For these two reasons, this study restricted its attention to Markovian models. 

The simplest Markovian model is an exponential distribution [3]. If the size distribution is exponential 

with mean M, the probability that a random file has a size less than X is given by 1 - e " x / M . Both the mean 

and standard deviation of such a distribution are equal to M. Unfortunately, almost all the size and lifetime 

shown for such files. 
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distributions observed have standard deviations between two and three times .that of the corresponding 

means. This implies that a simple exponential model is certain to be unsuitable. 

A hyperexponential model is a Markovian model which can exhibit coefficients of variation (i.e., ratio of 

standard deviation to mean) greater than unity. A k-stage hyperexponential consists of k simple exponentials 

with means M p M y M k , weighted so that they have probabilities av aT a k of being chosen. 
Figure 4-1 shows such a model. 

Figure 4-1: A k-Stage Hyperexponential Server 

To generate a value for the random variable represented by this model, one proceeds in two steps: 

1. With probability a., select one of the k stages. 

2. Generate one value from an exponential distribution of mean M.. 

Further details on hyperexponential distributions can be found in [3,2]. Each of the k stages can be viewed as 

being one population class with a simple exponential distribution. There is no guarantee, however, that such 

classes correspond to any clearly identifiable types of files. To fit a hyperexponential model to empirical data 

one needs to determine the number of stages, k, the means M., and the probabilities a f The next two sections 

discuss two alternative approaches for estimating these parameters. 

4 . 2 . The Moment Matching Method 

In this method we try to find a hyperexponential model whose first few moments match the corresponding 
moments of the empirical distribution. If the empirical distribution was truly hyperexponential, one could 
find a model with all its moments matching. Otherwise the model is only an approximation to the empirical 
distribution. 



The p m moment of a k-stage hyperexponential is related to its parameters (a 's and M's) by the following 

relationship: 
a^* + a 2 M 2

p a k M k

p = (p*1 moment)/p! 

This is easily derived using the moment generating function technique [3]. By using an iterative solution 

technique on 2k-l such equations and the constraint <xl + a2 + ... + a k = 1, one can solve for the 2k 

unknowns, a 1 to and M1 to M^. 

Figure 6-9 compares the empirical size distribution of current files with a 2-stage hyperexponential fit. The 

first three moments of these two curves are identical. The two curves differ by no more than 0.05 at all points 

except at the very low end. Figure 6-10 shows the distribution of lifetimes of current files versus a 2-stage 

hyperexponential fit. Clearly the fit is not as good as for file sizes, especially at the low end, where the 

hyperexponential grossly underestimates the empirical distribution. 

Adding more stages to the hyperexponential, thereby matching more moments, yielded negligible 

improvements in the fit. Figure 6-11, for example, compares the empirical file size distribution with two and 

three stage hyperexponential fits. The latter two curves are virtually indistinguishable! The moment 

matching technique is thus only of limited usefulness in analytically approximating the empirical data 

presented here. 

4 . 3 . A Heurist ic Approach 

The basis of this technique is that a simple exponential has its mean equal to its standard deviation. 

Starting from the low end, one examines successively larger initial segments of the empirical distribution until 

one finds a segment with its mean close, to its standard deviation. This segment is represented as one stage of 

a hyperexponential. Its mean, M, is the mean of the segment and its probability of selection, a, is the fraction 

of the total population in that segment. This initial segment is removed from the distribution, and the 

procedure is repeated on the rest of the distribution. The procedure terminates when the entire distribution 

has been approximated. 

The above procedure is a heuristic rather than an algorithm because judgement has to be used in deciding 

when the mean of a segment is close enough to its standard deviation. In practice, good results were obtained 

when the mean and standard deviation were within 25% of each other. Closer examination of this procedure, 

to see if it can be used as the basis of an algorithm, is one possible extension of the work presented here. 

Figure 6-12 shows the fit of a 3-stage hyperexponential obtained by this method to the empirical 

distribution of file sizes. The fit is indeed excellent throughout the range of the curves. 
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• The unit of allocation for file sizes is a track, which is about 25 times larger than the unit of 
size used in this study. 

• The definition of lifetime used here differs from the age-related quantities measured in their 
study. 

• Their observations span a year and their analysis includes an examination of the time 
behavior of the file characteristics. 

6. Summary 

Keeping in mind the constraints discussed earlier, the results of this study may be summarized as follows: 

• Most files are very small. 

• Most files have short lifetimes. However, some files have significantly longer lifetimes. 

• The type of a file class strongly affects the properties of that class. 

• Larger files tend to have shorter lifetimes; i.e., the data within them tends to remain unaltered for 
shorter lengths of time. 

• A hyperexponential is a very good model of the file size distribution and a reasonable model of 
the lifetime distribution. 
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Figure 6-13 shows the fit of a 3-stage hyperexponential to the lifetime distribution. The fit is not as good as 

the file size fit, but it is certainly better than that obtained by matching moments. At the very low end, near 1 

day, the approximation grossly underestimates the actual curve. The only way to remove this anomaly was to 

treat files of age 1 as a class by themselves and assign a constant probability to them. This constant 

distribution causes no problems in random variable generation, but it does violate the Markovian assumption 

thereby making analytical solutions harder. One could get over this difficulty by viewing the constant 

distribution as a distribution with mean 1 and extremely small standard deviation. Such a distribution could 

be realized using an Erlang distribution [3; 2], thus retaining the Markovian property of the model. Figure 6-

14 shows the effect of this modification — as expected, the fit at the very low end is much better. 

Below about 500 days, Figure 6-14 shows that the hyperexponential lifetime curve is consistently above the 

empirical curve. Whether this is merely an outcome of the curve fitting procedure or an observation of 

significance is not clear. If it is of significance, the curves tell us that the lifetime of files is longer than that 

predicted by a Markovian generation process. There are, in fact, certain processes that might give rise to such 

a phenomenon. The most commonly used programming languages and document processor in this 

environment support separate compilation and inclusion of external sources files (called "require" files). 

During the course of debugging, attention is typically focussed on one such file and modifications are made to 

it. However, each compilation results in all the related files being accessed, thereby lengthening their 

lifetimes. The lifetime of such files is no longer independent of all other files, thus violating the Markovian 

assumption. 

5. Limitations and Extensions 
In using the data and analysis presented in this paper, a file system designer should bear in mind the 

conditions under which they hold: 

1. The data was gathered from one machine (the most heavily used one) in an environment with 
many machines. It would be instructive to examine the file usage patterns on the other machines 
and compare them with the one presented here. Such a comparison would have to take into 
account the fact that both the hardware and software on those machines is different from that on 
the machine discussed here. 

2. The data is a profile of the file system at one point in time. The time-varying behavior of the 

system remains to be studied. 

3. The data was obtained in an academic environment and may not be directly extendable to other 
environments. Stritter [7] and Smith [6] discuss the collection and analysis of data on IBM/370s at 
the Stanford Linear Accelerator Center. Besides the obvious differences in environment and 
machines, their work differs from mine in the following ways: 

• They examine only text editor files. 

WIVFRSM LIBRARY 
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Data Source I d e n t i f i c a t i o n : Combined histogram for OSKB. DSKC and TEMP on CMUA on U .X5 -JAN-81 . 

The f i l e s contained no Migrated f i l e s 
Population Select ion Parameters: 

LoSizeValue * 1 HiSizeValue * 
LoSizelndex * 1 HisSizelndex -
LoAgeValue » 1 HiAgeValue » 
LoAgelndex « 1 HisAgelndex » 

Extension mode spec i f ied was ALLBUTUFO 
Total number of relevant f i l e s • 35652 

1000 
28 

5000 
32 

Moment 1 of Size 
Moment 2 of Size 
Moment 3 of Size 
Moment 4 of Size 
Moment 5 of Size 

Moment 1 of Age 
Moment 2 of Age 
Moment 3 of Age 
Moment 4 of Age 
Moment 5 of Age 

2.3889931E+01 
5.0366638E+03 
2.4054326E+06 
1.5510999E+09 
1.6628644E+12 

2.2819419E+02 
3.3500745E+05 
9.6468970E+08 
3.6899178E+12 
3.6545613E+16 

Data po in ts : Size L i m i t . Cumulative Fract ion 

1 , 2.4528778E-01 
2, 3.5052731E-01 
3, 4.2118254E-01 
4, 4.7523280E-01 
5. * 5.1828789E-01 
6, 5.5808930E-01 
7, 5.9045776E-01 
8. 6.1805789E-01 
9. 6.4330192E-01 

10, 6.6467519E-01 
20, 7.8256478E-01 
30, 8.3689553E-01 
40, 8.7445304E-01 
50, 8.9950071E-01 
60, 9.1683495E-01 
70, 9.2861549E-01 
80 , 9.3851677E-01 
90 , 9.4625827E-01 

100, 9.5206439E-01 
200, 9.7983281E-01 
300, 9.8816335E-01 
400, 9.9276337E-01 
500. 9.9559632E-01 
600, 9.9725120E-01 
700. 9.9806462E-01 
800, 9.9868170E-01 
900, 9.9963537E-01 

1000, 1.0000000 

Table 6-1: Sample Output: Size Distribution of Current Files 
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Extension Purpose 

A68 Algol -68 source f i l e 
A8S Nonrelocatable program; output from PDP-11 assemblers/compilers 
ADA ADA source f i l e f o r In termetr ices semantic analyzer 
ALG Algol -10 source f i l e 
APL Saved APL workspace 
ASM Output from the PQCC TCOL assemblers, ASM or SPASM 
ATR Simula a t t r i b u t e f i l e (companion to .REL f i l e ) 
AUX Aux i l i a ry f i l e from Scribe 
BAI Composite .SMI f i l e s created by BAIL 
BAK Backup f i l e from TECO or FINE 
BAS BASIC source f i l 
BBD A b u l l e t i n board fo r BBOARD 
BH Input f i l e to BH 
BIB Use bibl iography input to Scribe 
BIN . PDP-11 binary f i l e " ( e x e c u t a b l e ) 
BLI BLISS-10, - 1 1 , - 1 6 , -32 and -36 source f i l e s 
BOX Mail.Box and {MAILS.BOX are the only known appearances 
CBL COBOL input f i l e 
CCL Stored commands fo r lo ts of d i f f e r e n t kinds of programs 
CFL Concept Font Load f i l e (BILOS) 
CHK Renamed nnnCHK.TMP f i l e from SOS 
CMD Stored command l i n e for COMPILE, LOAD, EXECUTE, e t c . 
CNG SHEPHERD change log 
CRF Output from an assembler or compiler fo r Input to CREF program 
CTR ISP simulator COUNTER f i l e 
DAT FORTRAN data f i l e 
DEB Trace output from /DEBUG switch in BH 
DFN Input to PQCC TCOL assembler (data s t ructure d e f i n i t i o n f i l e s ) 
DFS require f i l e fo r PUB 
DIC 

GDB 
GRD 
GSI 

IMG 
I N I 
ISP 
KSL 

output f i l e from BLSDIC, or d ic t ionary of SPELL 
W*W r 

DIP IC package d e f i n i t i o n s fo r SUDS 
DIR As in MIGRAT.DIR, l i s t of f i l e s migrated by CMU f a i l s a f e 
DIS D i s t r i b u t i o n f i l e for MAIL or RDMAIL 
DOC Documentation f i l e 
DST Al ternate form of DIS; RDMAIL d i s t r i b u t i o n f i l e 
ERR er ror log f i l e from Scribe 
EXE Single executable f i l e (.SAV, .HGH/.LOW or .SHR/.LOW) 
F4 FORTRAN source (Old OEC Fortran) 
FAI FAIL assember source f i l e 
FAS FASLAP f i l e , output of MACLisp compiler 
FIN Temporary f i l e created by FINE ( e d i t o r ) 
FON Font descr ipt ion for Scribe 
FTN FORTRAN source (new DEC Fortran) 

ISP Parse Tree 
Grade input f i l e s to the grader program 
Scribe output to the GSI photocomposer 

GST Graphics (GDP- I I ) Character set 
HGH High segment of non-sharable two-segment program 
HLP Help f i l e 
HYP Scribe hyphenation d ic t ionary 
ICX ISP Simulator ICONNECT f i l e 

B i t map (Image mode) f i l e for XGP 
As in SWITCH.INI, user conf igurat ion f i l e f o r programs 
ISPS or ISPL source f i l e 
Text representat ion of character set fo r XGP 

KST Character set f o r XGP 
LAP Output from LISP compiler (CMU/UCI Lisp) 
LBK Backup of overwr i t ten .LSP f i l e ( w r i t t e n by LISP) 
LBL L ibrar ies f o r B l i s s - 1 6 , -32 . -36 
LCK SHEPHERD f i l e lock f i l e 
LDA LINK11 binary output f i l e (a l leged wierd format) 
LEX Lexicographic output from Scribe 
LIB Scribe database d e f i n i t i o n f i l e 
LIS L is t ing f i l e from Bl iss -32 
LMD Stored commands for the Hydra l i n k e r 
LNK Output from PDP-11 l inkers 
LOG Log f i l e (output f i l e ) from BATCH 
LOW Low segment of sharable or non-sharable two-segment program 
LPT l i n e p r i n t e r f i l e (from lots of programs, including Scr ibe) 
LRC Control f i l e fo r AT 
LSD Pr in tab le l i s t i n g of DIP d e f i n i t i o n s for SUDS drawing program. 
LSP LISP source (CMU/UCI Lisp) 
LST Reserved fo r l i s t i n g s produced by compilers 
MOO CROSS assembler input f i l e s M 1 1 Macro-11 source 

Table 6-2: Mappings of Extensions 0 to 74 



Index Extension Purdose 

75 MAC Macro-10 Input f i l e 
76 MAK Scribe database for document type ( ) 
77 MAP Link map from various l i n k e r s , including LINK, LINKER, LINK11 
78 MAS MASTER f i l e , many l i t t l e f i l e s in one big one (SUBFIL) 
79 M8K Backup MCL f i l e s created by SLURP 
80 MCL MACLisp source f i l e 
81 MOU List of modules in SHEPHERD t ree 
82 ME As in DELETE.ME. the de fau l t f i l e name FINE s t a r t s up with 
83 MEX Medusa executable f i l e 
84 MIC MIC control f i l e 
85 MID Source f i l e fo r MIDAS, MIT assembler 
86 ML I MLISP source 
87 MSG RDMAIL format f i l e (RD f i le.MSG or RD f i l e ) 
88 MSS input f i l e to Scribe 
89 MUM MUMBLE source f i l e (high leve l language f o r K.map microcode) 
90 NAM As in N.NAM, l i s t of people fo r the N program 
91 NWS SHEPHERD News f i l e 
92 OBJ Relocatable PDP-11 program 
93 OCX ISP Simulator OCONNECT f i l e 
94 OLR Previous .LRC f i l e from AT 
95 OPR I n s t a l l a t i o n inst ruct ions for a program or system 
96 OTL ou t l ine f i l e from Scribe 
97 P l l Intermediate output from B l i s s - 1 1 . NEVER use as a source f i l e 
98 PAS Output from Hydra l i n k e r ; binary page images 
99 PIC Pascal source f i l e 
100 PLN "Picture" output control f i l e fo r BH 
101 PNT "Plan" f i l e s , read by FINGER I f you are not logged 1n. 
102 POD Diablo output f i l e from Scribe 
103 PRE Dover (Press) f i l e s 
104 PRS BH intermediate (PReSort) f i l e s 
105 PRT SUDS p a r t s - l i s t f i l e 
106 PUB source f i l e fo r PUB 
107- Q As in FTP.Q, the l i s t of SMLFL commands to the QNET mai ler 
108 QED A Queued mail message to be sent by the QNET mai ler 
109 QNI A L ISP. IN I f i l e fo r QACLSP, the Quick-Loading MACLSP 
110 QNT REMIND queue entry f i l e ( w r i t t e n on REMIND server area) 
111 RAP Output f i l e from SMECO; l i s t of new wires to wrap 
112 RDP Output from the Ada parser (read by Ada semantic analyzer) 
113 REF Scribe reference environment descr ipt ion 
114 REL re locatable output from assembler, compiler, e t c . 
115 REQ require f i l e for B l iss -10 and/or B l i s s - 1 1 
116 RLS require f i l e s or B l i s s - 1 6 , - 3 2 , and -36 
117 RPT ISP Simulator REPORT f i l e 
118 RPY REMIND reply f i l e ( w r i t t e n on REMIND server area) 
119 RSM Require Summary (REQUIR program) 
120 RUN Output f i l e from SMECO; l i s t of wire runs; input to WW machine 
121 S12 Binary or t ex t f i l e from SIX12 SAVE/LOAD or STORE/RECALL 
122 SAI SAIL compiler source f i l e 
123 SAV Single-segment executable core image 
124 SEL Select ion control f i l e fo r BH 
125 SHP uCode output from CMICRO assembler 
126 SHR High segment of two-segment sharable program 
127 SIM Simula source f i l e 
128 SMI BAIL output from SAIL compiler 
129 SNO SNOBOL or SITBOL input f i l e 
130 SPX A drawing created by the SPACS drawing program 
131 SRT intermediate f i l e from BH 
132 SUB SHEPHERD l i s t of submodules w i th in a module 
133 SUD RANDOM FILES ASSOCIATED WITH SUDS 
134 SWF Simulated v i r t u a l memory f i l e w r i t t e n by PMMLIB 
135 SYS System control f i l e , root of SHEPHERD t ree 
136 TCL TCOL output from Ada semantic analyzer; a lso , other kinds of 
137 TEC In PROFIL.TEC, the Teco i n i t i a l i z a t i o n f i l e read for a user. 
138 TFO Scribe t y p e w r i t e r - f o n t descr ipt ion f i l e 
139 TIM Output f i l e from the Bl iss Timer Package 
140 TMP Innumerable kinds of temporary f i l e s of a l l sorts 
141 TXT Random tex t f i l e not. created by document production system 
142 TYP Output f i l e from TYPER program 
143 UFD User F i l e Di rectory (always found on [ 1 , 1 ] ) 
144 UNF UnFasl f i l e ; commentary produced by MACLisp compiler 
145 UNR Output f i l e from SMECO; 11st of old wires to unwrap 
146 USR List of users of a system for SHEPHERD 
147 XGO XGP output f i l e from PUB, Scr ibe, others 
148 XXY Uninterest ing standard extensions 
149 ZZZ Non-standard extensions 

Table 6-3: Mappings of Extensions 75 to 149 
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