
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

THE INTRINSIC COMPLEXITY OF PARALLELISM
IN COMPARISON PROBLEMS

Leslie G. Valiant

Department of Computer Science
Carnegie-Melion University

Pittsburgh, Pennsylvania 15213

January 1974

ABSTRACT

The worst-case time complexity of algorithms for multi-processor com

puters with binary comparisons as the basic operations, is investigated.

It is shown that for the problems of finding the maximum, sorting, and

merging a pair of sorted lists, if n, the size of the input set, is not less

than k, the number of processors, speedups of at least O(k/loglogk) can be

achieved with respect to comparison operations. The algorithm for finding

the maximum is shown to be optimal for all values of k and n.

i

INTRODUCTION

We investigate the worst case complexity of parallel binary-comparison

algorithms for the classical problems of merging, sorting, and finding the

maximum. We do this for a model that in several senses can be regarded as

embodying the intrinsic difficulty of solving these problems on a multi-pro

cessor computer. Any lower bound on the time-complexity of a task for this

model will necessarily also be a bound for any other model of parallelism

that has binary comparisons as the basic operations. Furthermore the best

constructive upper bounds will correspond to the fastest algorithms for

independent processor machines, in the limit that the time taken to perform

a comparison is large in relation to the overheads.

For each problem the input consists of a set of elements on which there

is a linear ordering. The ordering relationship between any pair of elements

can be discovered by performing a comparison operation on them. In our model

there are k processors available, each one of which can do a comparison inde

pendently. The processors are synchronized so that within each time interval

each of them completes a comparison. At the end of the interval the algorithm

decides, by arbitrarily inspecting all the ordering relationships that have

already been established, which k (not necessarily disjoint) pairs of elements

are to be compared during the next interval, and assigns them to the processors.

The computation terminates when sufficient relationships have been discovered

to establish the solution to the given problem.

The time complexity of each problem will be expressed as a function of

the number of processors, and of the size of the input set. The function will

give the maximum number of time intervals taken by the comparison algorithm

-2-

that solves the problem the fastest in the worst case. Thus we define

Max^(n) to be this measure of complexity for the problem of finding the

maximum of n elements on a k processor machine. Sort^(n) is defined

analogously for putting n elements in order, and Merge^(m,n) for merging

two sorted lists of length m,n respectively.

-3-

DISCUSSION

The phenomena we exhibit for the three problems share certain quali

tative features. For a given size of input set, the more processors we have

available, the shorter the computation time. However, the price paid for

increased speed is increased total employment of processor time. Intuitively,

we can say that the larger k is, the larger the number of comparisons that at

each step we have to choose on the basis of fixed previous information, and

consequently the lower the "average quality11 of the choices made. For any

given task P, we can conveniently express this phenomenon as a speedup factor

P^/p^, where P^ is the worst case time complexity of P on i processors. The

success of parallelization can then be judged by comparing this speedup with k.

That there are mathematically degenerate extreme cases has been observed

before. All the problems can be solved in unit time if there are enough pro

cessors for every element to be compared with every other simultaneously.

The speedup then, however, is rather small (^/k). At the other extreme, as

the input set becomes very large in relation to k, then, as observed by

Borodin and Munro [3], optimal speedups can be approached. Furthermore, good

speedups can be attained by algorithms that use the processors largely inde

pendently, and that are therefore efficient even on machines for which inter-

processor communication is relatively expensive.

Here, however, we shall focus especially on the intermediate cases. As

the fastest parallel algorithms previously studied for the case k = n = m

are those that can be realized on sorting networks (Batcher [1], Knuth [5]),

it will be of interest to compare the results for these with our analysis.

-4-

Thus, to find the maximum of n elements on n processors can be done, and

requires T l c^nl steps on a network. It is natural to ask whether better

utilization of the available processors can be made if the network £estric- *

tion is removed. For merging two lists of n elements on n processors again

0(log2n) time is necessary and can be achieved. In this case it has, further

more, been proved (by R. W. Floyd [5]) that 0(n log2n) comparisons are nec

essary altogether and hence that, under the network constraint, near optimal use

of the processors is being made. The question is whether the log2n bound

represents the intrinsic complexity of the merging problem, or is a conse

quence only of the extra constraints.

Even if the network restriction is relaxed to allow arbitrary disjoint

comparisons, it is easy to see that the log 2n lower bound remains for both

problems. Our results will show, however, that if the disjointness condition

as well is removed, then we can break through this barrier.

-5-

THE MAXIMUM

We now give a worst-case analysis of the problem of finding the maximum

of n elements using k processors. We consider the case of k = n first, and

later show how this yields solutions to all the others. The theorems are

stated in the form of asymptotic bounds. However, it will be apparent that

the analysis itself is complete in the sense that given any k and n, a prov-

ably optimal algorithm can be developed using the observations made in the

proofs. Although, for simplicity, we shall not explicitly refer to the pos

sibility of two elements being equal, our arguments apply to that case as

well, as long as just one of the maximal elements is being sought.

THEOREM 1. Max (n) ^ loglog n - const, n

PROOF. Consider the execution of an arbitrary n processor comparison algor

ithm for finding the maximum of n elements. Let be the set of elements

that after time i have not yet been shown to be less than any other element.

Call these the candidates at time i, and denote their number by c^.

Clearly at any one time, there is nothing to be gained from making compari

sons that involve elements that are no longer candidates. For, in any such

comparison, each non-candidate could equally be replaced by the candidate that

has been found to be larger than it. Furthermore it is easy to see that at

each step the only information that can be used advantageously is the identity

of the candidates. All other information about the relationships that have

been previously discovered is redundant.

To prove the theorem we have to show that given n and c^, the value of

e i + 1 can be bounded from below. The result can then be deduced by induction.

* Throughout log x will be taken to have value 0 for x ^ 1, and to be to the
base 2.

-6-

To obtain the bound we show that if n comparisons are made on c/ #

elements, then there must be a sufficiently large subset of these elements

in which no pair has been compared directly. In the worst case it is pos

sible that the elements of this subset happen each to be larger than each

of the elements outside the subset. In that case they will clearly all

still be candidates at time i+1.

Thus the inductive step is reduced to the following graph theoretic

formuation:

°i+1 ^ m ^ - n & I i a x ^ l ^ contains an h-clique}|

G is the complement of a graph with c^ nodes and

^ n arcs).

To obtain the bound we show that the "best 1 1 case (i.e c with the smallest

maximal clique in the complement) can be achieved by graphs (called optimal

graphs) of a certain simple form. We do this by proving that there is a

strategy which, given any graph with c^ nodes and ^ n arcs, extracts from

its complement a clique of size ^ og(c^,n). That this is the best bound fol

lows from the observation that the associated optimal graph has no cliques

larger than this in its complement (c.f. [6]).

Consider the following strategy for picking a large clique from the

complement graph: Pick a node with the fewest arcs incident to it, and

erase all its neighbours (and arcs incident to them) from the graph. Repeat

this procedure until the graph vanishes.

Suppose that at one step the node picked has x neighbors left. Then

the number of arcs that are erased at that step is at least x(x+1)/2, this

extreme case being realized only when the selected node together with its

-7-

neighbours form a clique that is disconnected from the rest of the graph.

Clearly this is also the best case, for if more arcs were erased and fewer

left, the maximal clique in the complement of the remaining graph would be made

no smaller. Since this argument holds at each step, it follows that a clique

can be selected from the complement with og(c_^,n) nodes, where this denotes

the smallest number of disjoint cliques that can be formed from c^ arcs and

no more than n nodes. Clearly such a union of disjoint cliques, by definition,

achieves this lower bound.

We now observe that if in such a best graph two cliques occur of size

x,y respectively where x-y > 1, then the arcs involved in these could be

redistributed to form two cliques of sizes x-1, and y+1, (with some arcs left

over). This new graph would clearly still be a best one. By repeating this

procedure we can derive a graph composed of the union of disjoint cliques

all of size z or z-1, for some z, The result we call an optimal graph.

To obtain c^ +^ it only remains to determine the number of disjoint

cliques in such an optimal graph. We can easily obtain a lower bound for

this from the two approximations

°i+l ' Z * C i a n d Ci+1 # (z - 0 (z-2)/2 £ n,

which signify the constraints on the number of nodes and arcs respectively.

Eliminating z, and observing that c^ ^ n, gives that for some constant greater

than two,

2 c.
l+l const.n

If c Q = n, by solving this inequality we get that, for some other constant,

c. > 1 as long as i < loglog n - const.

-8-

Returning to the terminology of the comparison problem, we conclude

that for any algorithm there is a worst case input for which the solution

will not be found before time loglog n - const. •

COROLLARY 1. When k £ n,

Max k(n) ^ loglog n - loglog(k/n) - const.

PROOF. The argument above now gives the inequality

2 c.
c * 1

i+1 const.k

For CQ 5 3 n this gives the claimed solution. •

THEOREM 2. Max (n) ^ loglog n + const, n

PROOF. Using the same terminology as in the previous theorem we now observe

that an algorithm for finding the maximum can be developed using the above

described optimal graphs.

At step i+1, the algorithm calls on the optimal graph with c^ nodes that

has the largest number of arcs no more than n. Sets of z and z-1 elements are

allocated accordingly to the processors, so that within each set every element

will be compared with every other at the next step. For each set, the element

that is found to be larger than all the others will be the only one to be a

candidate at the next step.

The constraints on the total number of nodes and arcs now give the in

equalities

c,.̂ , • (z-1) £ c. and c ^ , • z(z-1)/2 ^ n .

from which the relation

2 c. 1 (c. > 1) n.const.

can be deduced. Solving for c^ = n gives that c^ = 1 for some i ^ loglog n +

COROLLARY 2. For k ^ n,

PROOF. The algorithm is essentially the same except that it starts with

CQ b n, which may be already smaller than k. •

The remaining case, that of k < n, can be dealt with by the following

observations: Clearly with just k comparisons we can reduce c^ by at most k

at each step. However, as long as c^ ^ 2k, we can achieve this reduction by

having k disjoint pairs from C^ compared at each time interval. This there

fore gives an algorithm that reduces c^ optimally at each step until it be

comes less than 2k. Since the algorithm of Theorem 2 can then take over, we

conclude the following.

COROLLARY 3. For k < n, upper and lower bounds for Max^(n) can be obtained,

both of the form

For each case we have therefore arrived at upper and lower bounds that

differ only by additive constants. Furthermore the method of deriving a

provably optimal algorithm for any given values of k and n is implicit in

the analysis. We would need to construct the optimal graphs that are to be

M a x ^ n) £ loglog n - loglog (k/n) + const.

n> L/k + loglog k 4- const.

-10-

used at the successive steps of the algorithm. This can be done by examin

ing the constraints used above to obtain the main inequalities and gives that

c i + 1 = min{x|tc i/xj.(c i- x + c mod x)/2 £ k},and

2 = r c i / c ± + 1 1 -

For the special case of k a n we can express the exact result that is

implied as follows.

COROLLARY 4. The sequence S Q , S ^ , . . . such that s^ is the largest integer s.t.

Max (s.) « i
S i 1

is defined by

s . + 1 = (2. 1+1)8 1

where s Q = 1. There is a real number K such that for i £ 1,

2 1

s t - LK /2J.

PROOF. The case when cliques of equal size are produced at each step, with

no arcs left over, is given by s^ = t^(t^-l)/2 where

i-1
t. = 2 n t. + i

1 j - 0 J

and tg • !• D. E. Knuth has pointed out to the author that this reduces to

the given recurrence, and that the form of the solution of the latter can

be explicitly expressed, as shown, using the analysis of Aho and Sloane [7]. •

-IT-

MERGING

We now give an algorithm for merging that is much faster than the cor

responding ones previously known.

THEOREM 3. For k = \J (mn)J and n ^ m,

Merge, (n,m) ^ 21oglog n + const.
K

PROOF. We proceed inductively, by showing how, given L>/ (n in)J processors, we

can, in two time intervals, reduce the problem of merging two lists of length

n,m respectively, to one of merging a number of pairs of lists, the shorter

of each of which has length less than Jn . The pairs of lists are so created

that we can distribute the L>/Cnan) J processors amongst them at the next stage

in such a way as to ensure that for each pair there will be enough processors

allocated to satisfy the inductive assumption.

Con&.vJur the following algorithm for the sorted lists X - (x^ ,x^,. • .x^) ,

Y = (y i ' y 2 " * ' y m) '

(a) Mark the elements of X that are subscripted by t\Jn"\ and those of Y

subscripted by iC/m] for i = 1,2,.... There are at most \Jn\ and

LymJ of these respectively. The sublists between successive marked

elements, and after the last marked element in each list we call segments.

(b) Compare each marked element of X with each marked element of Y. This

requires no more than L/(nm)J comparisons and can be done in unit time.

(c) The comparisons of (b) will decide for each marked element the seg

ment of the other list into which it needs to be merged. Now

-12-

compare each marked element of X with every element of the seg

ment of Y that has thus been found for it. This requires at most

Lv/nJ . a/ml - 1) < U ^ S]

comparisons altogether, and can also be done in unit time.

On the completion of (a), (b), and (c) we have identified where each of

the marked elements of X belongs in Y. Thus there remain to be merged the

disjoint pairs of sublists (X^,Yp, (X^jY^),... where each X_̂ is a segment of

X and therefore of length fxj £ l_/nj. Furthermore S|x | < n and s| Y | < m

since the sublists are disjoint. But by Cauchy fs inequality [4],

s V d x J.lYj) W c e I X J . S I Y J) .

It follows that

S L v / (| x . | . | Y I |) J £ S v / (| x I | . | Y I |) * [7(mn)J.

There are therefore enough processors altogether that we can assign

[./(| x j • | Y |) J to merge (X^Y^) for each i simultaneously.

We have therefore established that the inductive process of successively

splitting a pair of lists into a set of pairs of sublists can continue with

the given number of processors. Furthermore the length of the shorter com

ponent of each sublist pair is inductively bounded by the square root of the

shorter component of the list pair. Thus at time 2i, each pair of lists pro

duced has a component of length X^, where

x i * l A ^ J .

1/2 1

and \ Q - n. Solving \ ± ^ v A ^ j gives \^ < n 1 . The merging process clearly

-13-

terminates locally whenever a pair of sublists with a null component is pro

duced. Thus merging must be complete before X = 0. This gives that

Merge^(n,m) ^ 2floglog n + const.1

where the constant is less than unity if the logarithms are to the base 2.

COROLLARY 5. For k = Lr^^mJ where n ^ m and r ^ 1,

Merge^(n,m) ^ 2(loglog n - loglog r) + const.

PROOF. We use the same algorithm as above, except that at step (a) the ob

jects marked are those subscripted by i[/(n/r)l in X and by ir/(m/r)l in Y

for i = 1,2,... . It is easily verified that steps (b) and (c) then each re

quire no more than k comparisons, and can thus be done in unit time. Nov/

X^ < /(X^ from which the result follows. •

COROLLARY 6. For L £ n £ m,

Merge^(n,m) ^ (n+m)/k + log(mlogk/k) + const.

PROOF. Mark k-1 elements in each list so as to induce k segments of about

uniform size (i.e. n/k and m/k) in each one. ilerge the two lists of marked

elements as in the above theorem. Insert each of the 2(k-1) marked elements

into the segment to which it belongs in the other list. If done independently

on separate processors, this will require time log(m/k). This leaves 2k pairs

of disjoint sublists to be merged, in which no pair contains more than (n+m)/k

elements. It only remains to schedule how this merging is to be done on the

k processors in time (n+m)/k &s opposed to time 2(n+m)/k).

-14-

The first observation is that the problem of merging a given pair of

lists by the standard sequential algorithm (Knuth [5], p. 160) can be split

arbitrarily into two independent subproblems with no loss of efficiency. If

the two lists have x elements altogether, then for any y we can divide the

task into processes that take y and x-y-1 steps respectively. The two pro

cesses simply execute the first y and x-y-1 steps respectively of the standard

merging algorithm, but start from different ends of the list.

With this freedom to break up the merging of a pair arbitrarily, we can

schedule the whole task optimally as follows. We symbolically assign the

ith processor jointly to the ith segments of the two lists. These segments

have (m+n)/k elements between them. To any sublist pair which has say z

elements in common with this pair of segments, we assign z steps of the ith

processor. Then clearly we are assigning no more than (m+n)/k steps alto

gether to each processor. Furthermore, since, by construction, each sublist

is totally contained in some segment, each sublist pair will be assigned to

at most two processors. With this scheduling we can therefore carry out the

remainder of the computation optimally. •

This last corollary is an improvement on one described in [3] (and at

tributed to Kirkpatrick) for the case k « n = m. Asymptotically a speedup

of k is clearly achieved, since it is known [5] that the merging of two lists

of length n requires 2n-1 comparisons in the worst case. In [3] the method

suggested for alleviating the scheduling problem is that of initially marking

not k but some function of n (say ^n) elements. Though this will be slower

than our algorithm, asymptotically it still has optimal speedup. Furthermore

it enables one to deduce that even in the general case of m ^ n, optimal asympt

otic speedup can be theoretically attained if use is made of optimal sequential

merging algorithms yet unknown.

-15-

SORTING

The well known information theoretic argument gives that the sorting

of n elements requires, in the worst case, n log n - 0(n) comparisons. This

immediately gives the following lower bound for sorting on n processors:

Sort (n) ^ log n - const, n

We now derive a corresponding upper bound.

THEOREM 4. Sort / o (n) ^ 21og n loglog n + O(log n) . n/2

PROOF. We show that the binary-merge sorting algorithm requires only this

time if merging is done fast, as in Theorem 3.

We first consider the case n = 2^ for some j. We assume inductively
t

that after the ith stage we have 2^ 1 disjoint sorted lists each of length

2 1 . By assigning 2 1 processors to each such pair and using the fast merging

algorithm, we clearly arrive at the inductive assumption of the following

stage after time 21og i + const. But sorting of the whole list will be

complete when i - j. The total time needed is therefore no more than

log n
Z (21og i + const.) £ 21og n loglog n + O(log n) .

i=1

In the general case, when n is not a power of two, there may be a frag

mentary sorted list left over at each stage. However, the above argument

clearly applies in that case as well. •

COROLLARY 6. For k :> n,

Sort k(n) £ 2(log n - log(k/n))(loglog n - loglog(k/n) + const.).

-16-

PROOF. With k processors we can split the input into sets of size [k/n]

and sort each such set completely in one step. We then need log n ^ log(k/n)

stages of merging in the manner of Corollary 5. •

COROLLARY 7. For k < n,

Sort f c(n) <: (n log n + 0(n))/k.

PROOF. As in [3] we split the input into k equal sets and sort each of these

sequentially in time (n/k)log(n/k). We then successively merge pairs of

these, in log k stages, using the algorithm of Corollary 6. At each stage

there will clearly be twice as many processors available per merge as at the

previous one, and if we always use these, then the time taken for each stage

will be about n/k. •

-17-

CONCLUSION

We have shown that for the most basic model of parallelism for compari

son problems, algorithms for merging, sorting, and finding the maximum exist

that are much more efficient than any previously known. Our analysis of

complexity bounds for this model we suggest as part of the theoretical back

ground against which parallelism for these problems can be studied and exploit

ed. In practice, to derive good algorithms suitable for a specific multi

processor machine, additional considerations have, of course, to be taken

into account. In particular the tradeoffs between optimizing the sequencing

of the comparisons (which is what our analysis attempts), and minimizing the

overheads (e.g. inter-processor communication), have to be weighed.

Of the many further questions implied, theoretically the most tantalizing

is perhaps that of parallelism in the problem of finding the median. Since

this can be done in linear time sequentially [2], but cannot be solved in less

than time loglog n on n processors (by implication, Theorem 1), it follows

that for the case k = n, O(k/loglog k) is an upper bound on the attainable

speedup. Since we have shown that for merging, sorting, and finding the max

imum, a speedup of that order is attainable, any substantial lowering of this

upper bound for the median would put this problem in a class of its own. It

would confirm that near optimal sequential algorithms for the median problem

need to be "more carefully sequenced11 than those for any of the others, and

would go some way to explaining why they have proved more difficult to find.

-18-

REFERENCES

1. BATCHER, K. E., Sorting networks and their applications, 1968 Proc.
AFIPS SJCC, 32, 307-314.

2. BLUM, M., FLOYD, R # W., PRATT, V., RIVEST, R. L., and TARJAN, R. E.,
Time bounds for selection, JCSS 7, 448-461 (1973).

3. BORODIN, A. B., and MUNRO, I., Notes on "Efficient and Optimal Algor
ithms," (1972).

re
4. CAUCHY, A. L., Cours d'analyse de L'Ecole Royale Polytechnique, 1

partie, Analyse algebrique, Note II, Paris 1821. (Oeuvres completes,
II serie, III).

5. KNUTH, D # W., The art of computer programming, vol. 3, Addison-Wesley
(1973).

6. TURAN, P., On the theory of graphs, Colloq. Math., 3, 19-34 (1954).

7. AHO, A.V. and SLOANE, N.J.A., Some doubly exponential sequences,
Fibonacci Quarterly, 11:4, 429-437 (1973).

