NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-80-102

Two Papers on Graph Embedding Problems

James B. Saxe

January 1980

Lot - g, Z0-iday

DEPARTMENT
of

COMPUTER SCIENCE

=i

Carneqie-MVlellon University

CarUniyerﬁity Libraries
arnegie Mellon Unijy
Pittsburgh PA 15213-?{;;0

CMU-CS-80-102

Two Papers on Graph Embedding Problems

James B. Saxe

January 1980

Abstract

This report contains two independent papers on problems concerned with graph
embedding—i.e., assignment of the vertices of a graph to points In a metric space
subject to specified constraints. The first paper In this report, "Embeddability of
weighted graphs in k-space is strongly NP-hard," examines the problem of assigning
the vertices of a weighted graph to points in a k-dimensional Euclidean space
subject to the constraint that any two vertices connected by an edge must be
assigned to points whose distance is the weight of that edge. We prove (by
reduction from 3-satisfiability) that it is NP-hard to determine whether such an
assignment exists, even when k=1 and the edge weights are restricted to take on
the values 1 and 2. The same reduction used in this proof forms the basis of proofs
of the NP-completeness of several varlants of the original problem. The second
paper, "Dynamic-programming algorithms for recognizing small-bandwidth graphs in
polynomial time," deals with the problem of bandwidth minimization, In which we are
given a graph, G, and a positive integer, k, and asked whether It is possible to
assign the vertices of G to distinct integers subject to the constraint that no edge
of G may have Its endpoints mapped to integers which differ by more than k.
Although the general problem has been proven (by C.H. Papadimitriou) to be
NP-complete, we show that it can be solved in polynomial time for any fixed value of
k. As In the first paper, the methods used to achieve the principal resuit are
extended to a number of related problems.

This research was supported In part by the Office of Naval Research under Contract
NO0014-76-C-0370.

Embeddability of Weighted Graphs in
k-Space is Strongly NP-Hard

James B. Saxe
Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

In this paper we investigate the complexity of embedding edge-weighted graphs
into Euclidean spaces: Given an (incomplete) edge-weighted graph, G, can the
vertices of G be mapped to points in Euclidean k-space in such a way that any two
vertices connected by an edge are mapped to points whose distance is equal to the
weight of the edge? We prove (by reduction from 3-satisfiabiiity) that this problem
is strongly NP-hard. Indeed, it is NP-complete even when k=1 and the edge weights
are restricted to take on the values 1 and 2. We also investigate the related
problems of approximate embeddability (in which G is accepted If its vertices can
be embedded in k-space so that the distances between connected vertices match
the corresponding edge weights within some small tolerance but G is rejected if
there is no mapping which meets some other, larger tolerance) and the problem of
ambiguous embedding (in which we are given both a graph, G, and an embedding for
G and asked whether a second embedding exists which is not congruent to the
first). We show that these related probiems are just as hard as the ordinary
embeddability problem,

This research was supported in part by the Office of Naval Research under Contract
NOO014-76-C-0370.

WEIGHTED GRAPH EMBEDDABILITY 1

1. Introduction

1 there arises the problem of

In many applications of distributed sensor networks
determining the -locatlons of sensors from Incomplete (and possibly errorful)
information about their distances from each other and from fixed landmarks. This
prompts us fo ask the following geometric questions:

- Given an incompletely specified distance matrix for a set of points in
k-space.2 when is the complete distance matrix uniquely determined?

- Assuming the distance matrix to be uniquely determined, what is the
computational complexity of actually finding the unspecified
distances? '

In this paper we consider the closely related problem of embeddabifity:

- Given a (purported) incompletely specified distance matrix for a set of
points in k-space, determine whether there can actually exist a set of
points satisfying that matrix. '

in Section 2 we Introduce definitions that will allow us to phrase several forms of
the embeddability broblem in terms of edge-weighted graphs. In Section 3, we give
a simple proof that a 1-dimensional version of the embeddabllity problem Is
NP-complete. In Section 4, we show the more difficult and surprising result that this
same 1-dimensional problem is strongly NP-complete in the sense of Garey and
Johnson [1979] and extend this result to higher dimensions. In Section 5 we
address some naturally-arising questions concerning the suitability of the Turing
Machine mode! for a problem that inherently involves real numbers, and show that
the proofs used in Section 4 have relevance to an “"approximate embeddability"
probiem on the reals. In Section 6 we discuss versions of the problem in which one
way to- compiete an incomplietely specified distance matrix is known and it is desired

to determine whether a second solution exists. We show that these versions are no

1505. for example, Distributed Sensor Nets [1978].

2FOI’ practical purposes the most interesting cases are k=2 and k=3.

2 WEIGHTED GRAPH EMBEDDABILITY

easier than corresponding versions studied earlier in the paper. Finally, the

contributions of the paper are summarized in Section 7.

2. Fundamental Concepts

We begin by introducing the concepts of weighted graph and embedding:

Definitions;
A weighted graph, G = {M,E\WD, is an ordered triple such that each element of

E is an unordered pair of distinct elements of V and W is a function mapping E
into [0,00). The elements of V are called the vertices of G. The elements of E
are called the edges of G. For each edge, e, of G, the real number W(e) is
called the weight of e In G (or simply the weight of e).

Definitions:
Let G = <V,E,W)> be a weighted graph, and let k be a positive integer. Then an
embedding of G in k-space Is a function, f, mapping V into the k-dimensional
Euclidean space, RK, such that, for each edge, e = {v.w}, of G, |fH{v)-f(w)| =
W(e). G Is said to be embeddable In k-space, or k-embeddable, iff there
. exlists an embedding of G in k-space.

For any positive integer, k, the problem of k-embeddability may now be stated as

follows:

Problem (k-Embeddability):
Given an arbitrary weighted graph, G, determine whether G Is k-embeddable.

In Sections 3 and 4 we will wish to restrict the class of welghted graphs under
consideration, so that the notion of NP-completeness {which is defined In terms of
Turing machines) will make sense in relation to Embeddabllity. We therefore

Introduce the following definition.

Definition:
Let S be any subset of [0,00). Then, an S-weighted graph is a weighted graph,
G, such that the weight of each edge of G is an element of S. We will
generally refer to Z*-weighted graphs as integer-welghted graphs.

WEIGHTED GRAPH EMBEDDABILITY 3

In Section 5 we will return to the question of graphs with real edge welghts.

3. The Weak NP-completeness of 1-Embeddability

In this section, we demonstrate the weak NP-completeness of the problem of
1-Embeddability of Iinteger-weighted graphs. To do this, we first show
constructively that 1-Embeddabllity is in NP. We then use a reduction from

Pﬂrtmon3 to show completeness.

Theorem 3.1:
1-Embeddability of integer-weighted graphs is in NP.

Proof: .
To check the 1-embeddability of any integer-weighted graph, a NDTM need
only

1. Partition the graph into disjoint connected subgraphs,

2. Guess the direction of each edge of the graph, and

3. Check the consistency of each disjoint connected subgraph.
These operations can clearly be carried out In (hondeterministic) polynomial
time. C1

Theorem 3.2:
1-Embeddability of integer-weighted graphs is NP-complete.

Proof:4
We will show the NP-completeness of 1-Embeddability by reduction from
Partition. Let S = {aq, a5, ..., an} be a multiset of positive integers. In

polynomia! time we may construct from S a description of the cyclic graph

3The Partition problem calls for partitioning a (multi-)set of integers into two subsets with equal sums, and is
known to be NP-complete; see Garey and Johnson [1979].

4The construction used in this theorem and that used in the proof of Lemma 4.4 were independently developed
by Yemini [1978], who used them to show the (weak) NP-compleleness of 2-Embeddability of integer-weighted

graphs.

4 WEIGHTED GRAPH EMBEDDABILITY

G = <V,E,W> whose edge weights are the a;, that is

V={vg,-:-41Vy-th
E = {{-Vi‘v(i+1 mod n)} I OSKH}, and
W = {({ViV(i+1 mod n)}-&)) | Oi<n}.

if fis an embedding of G in the line, then the multisets

51 = {ai I f(Vi) < f(V(i+1 mod ﬂ))} and

Sz = {ag | 7v) > V(149 mod)}
constitute a partition of S into two pieces whose sums are equal. Similarly,
any such partition of S yields a 1-Embedding of G.O

4. The Strong NP-completeness of 1-Embeddability

We now come to our key theorem, which asserts that the problem of determining
whether an integer-weighted graph is embeddable in the line remains NP-complete

even if the edge weights are restricted to be no greater than four.

Theorem 4_1_ _
1-Embeddability of {1,2,3,4}-weighted graphs is NP-compiete.

Proof:
Our proof consists of a reduction from 3-Satisfiability (which was shown to be
NP-complete by Cook [1971]) to 1-Embeddability of {1,2,3,4}-weighted
graphs. Let E be any Boolean expression in conjunctive normal form with three

literais in each clause. Our goal will be to construct a {1,2,3,4}-weighted
graph, G, which is embeddable iff E is satisfiable. We let n be the number of
variables occurring in £ and m be the number of clauses in E. Throughout this
proof, we will use the convention that the variables of E wili be indexed by "{"
(which will therefore range from 1 through n), the clauses of E will be indexed
by "J" (ranging from 1 thro_ugh m), and the literals within each clause wiil be
indexed by "k" (ranging from 1 through 3). Thus E has the form

E = 1_[C},
1€)<m

where each clause, CJ, has the form

Cj = z Lj,k'

1<k<3

WEIGHTED GRAPH EMBEDDABILITY 5

and each literal, Lj.k- has the form
Lj.k = X| or I‘J,k =)_(‘
for some i, 1<i€n. We will also use throughout the proof the convention that

"f" represents a hypothetical 1-embedding of G (or of the part of G we have
canstructed so far).

To construct G, we will use the "building blocks" shown in Figure 4.1. We
begin with the subgraph shown in Figure 4.1(a). We assume without loss of
generality that f(A) = O and f(B) = 2. This assumption constrains f to assign
each of the X, {which we identify with the variables of E) to 1 or -1 (which we
identify with the Boolean values TRUE and FALSE, respectively). Note that
each possible mapping of the X; into {1,-1} corresponds to some assignment of
truth values to the X;. In the remaining steps of the construction, we will add
edges which have precisely the effect of constraining f to map the X; to
{1,-1} In such a way that the corresponding assignment of the X; satisfies E.

The next step in our construction is to augment G by adding the edges shown
in Flgure 4.1(b) for each i, 15i€n. The heavy lines in that figure represent
already-existing edges. We now have vertices 7(! such that for each variable,
Xp, f maps X; to 1 (TRUE) iff it maps X! to -1 (FALSE), and vice-versa. The
possible mappings from {xi}u{ii} to {1,-1} under f now correspond precisely
to the possible (consistenf) truth assignments of the X; and 5(;, but still without
regard to whether those assignments satisfy E.

For the final step of our construction, we add the edges indicated in Figure
4.1(c) for each j, 12j<m. The vertices L\ are Identified with the X; and X;
precisely as the corresponding literals, LJ.k' are formally identical with the X
and X;. Once again, the heavy lines indicate edges which were present at
earlier stages of the construction. Careful study of the graph in Figure 4.1(c)
wiil reveal that it is impossible to embed it in the line in such a way that A Is
sent to 0, B is sent to 2, and all three of the Lj,k are sent to -1 (FALSE), but if
one or more of the Lj.k are to be sent to 1 (TRUE), then an embedding is
possible (in fact, exactly one such embedding is possible). Thus, for each |},
1<j<m, the effect of the edges in Figure 4.1(c} is precisely to constrain f to
map the X; to {1,-1} in such a way that the corresponding truth assignment for
the X, satisfies clause Cj.

The effect of all the edges of G is therefore to constrain f to map the X; to
{1,-1} in such a way that the corresponding assignment of truth values to the
X; satisfies E. If there Is no such assignment then G Is not 1-embeddable. If

WEIGHTED GRAPH EMBEDDABILITY

B, B

xl x2 xn

(a) Implementalion of variables. (b) Implementation of a negative titeral,

Lis

{¢) Implementalion of a disjunctive clauesa.

Figure 4.1 Building blocks for transforming an expression in 3-CNF to a graph.

there are any assignments satisfying E, then for each such assignment G can
be (uniquely) 1-embedded by a function sending A to O and B to 2 and
mapping the X, to {1,-1} in accordance with that assignment. Finally, it is
clear that the preceding construction can be carried out in polynomial time.
This completes the proof. 0

For future reference, we note that the construction used in the preceding proof Is

WEIGHTED GRAPH EMBEDDABILITY 7

such that the 1-embeddings of G are In one-to-one correspondence (up to
translation and reflection) with the truth assignments that satisfy E. We note also

that the preceding theorem immediately yields the following resutt:

Corollary 4.2:
i -Embeddability of integer-weighted graphs is strongly NP-complete.

Proof:2
It suffices to note that translation of a sequence of numbers in {1,2,3,4} from
hinary to unary can be accomplished in linear time and causes only a constant

. factor increase in the length of the input. O

We may aiso immediately derive:

Corollary 4.3:
1-Embeddability of {1,2}-weighted graphs is NP-complete.

Proof:
Consider the graphs shown in Figure 4.2. By replacing edges of welghts 3 and
4 with configurations T and T,, respectively, we can reduce any
{1,2,3,4}-weighted graph, G, to a {1,2)}-weighted graph, H, that Is
1-embeddable iff G is 1-embeddable. []

Figure 4.2. Building long "edges" from short edges.

in fact, for any positive integer, k, the graph H so constructed will be k-embeddable

5Another NP-complete problem involving a form of graph embedding is the Bandwidth Minimization Problem (see
Papadimitriou [1976]). In Appendix | we exhibit a reduction from Bandwidth Minimization to Embeddability. That
reduction suffices lo show the strong NP-completeness of 1-Embeddability of integer-weighted graphs, although it
is somewhat less economical than the construction given in Theorem 4.1. Also, it cannot be used as & basis for
deriving the results presented in Sections 5 and 6.

WEIGHTED GRAPH EMBEDDABILITY

iff G is k-embeddable. We may use this fact to prove our next lemma.

4 8
5 54 45

Rf 3| ¢ 3 Ry 3 3 3

q : 8

Figure 4.3. Gadgets for adding a dimension.

Lemma 4.4:

For every positive Integer, k, k-Embeddability of (1,2}-welghted- graphs is
NP-hard. '

Proof:

Consider the graphs shown in Figure 4.3. Given any {1,2}-weighted graph, G,
each edge of G having weight 1 may be replaced by the Ry and each edge of
weighf 2 by Ry, yielding a graph, H, which, for any positive integer, k, Is .
embeddable in (k+1)-space iff G Is embeddable in k-space. By the methods of
Theorem 4.3, H may be transformed into a {1,2}-weighted graph, J, that Is
embeddable in precisely those spaces In which H is embeddable. The
transformation from G to J inveolves only a constant factor increase in the
length of a specification of the graph and can clearly be accomplished In
polynomial time. It follows by mathematical induction that, for any positive
integer, k, 1-Embeddability is polynomial-time reducible to k-Embeddability for
{1,2}-weighted graphs. O

Once again, we note that the (k+1)-embeddings of J wili be in one-to-one

correspondence {(up to translation, rotation and reflection} with the k-embeddings of

G. Finally, Theorem 4.4 gives us the foilowing result.

Corollary 4.5:

Let k be any positive integer., Then k-Embeddability of integer-weighted
graphs is strongly NP-hard. '

Proof:

This result follows from Lemma 4.4 and the same reasoning used In the proof of

WEIGHTED GRAPH EMBEDDABILITY 9

Corollary 4.2, O

6. Graphs with Real-Valued Edge Weights

We will now discuss the applicability of NP-completeness to problems whose
inputs are real numbers in general, and to embedding problems in particular., A
number of reasons for doubting the relevance of the Turing Machine model seem

naturally to present themselves.

- NP-completeness is defined for language recognition problems on
Turing Machines, which inherentiy can deal only with integers and not
with arbitrary reals. :

- Given a "random" embedding of an unweighted graph into a Euclidean
space, any two of the edge weights induced by the embedding will be
incommensurable with probability 1. Moreover, if the graph Is
overconstrained and the dimension of the space is at least two, then
rounding the induced edge-weights to multipies of some small distance
will aimost always produce a weighted graph that is not embeddable in
the space.

In order to deal with these issues, we introduce the notion of approximate

embeddings.

Definitions.

Let G be a weighted graph and ¢ be a non-negative real number. Then an

¢-approximate k-embedding of G is a function, f, that maps the vertices of G
into Euclidean k-space such that for every edge, ({uv}, of G,

1-¢ < [f(u)-f(v)|/W({u,v}) < 1+c. If such an embedding exists, then G is said to
be ¢-approximately k-embeddable.

Given a positive integer, k, and two reals, ¢ and ¢, such that O £ ¢4 £ ¢, we may

now define the following more "robust” embeddability problem:

Problem (¢4,6x-Approximate k-Embeddability):
Given a weighted graph, G, assert correctly either (1) that G is

€>-approximately k-embeddable (this is called accepting G) or (2) that G Is not
€4-approximately k-embeddable (this is calied rejecting G).

10 WEIGHTED GRAPH EMBEDDABILITY

Note that if the least ¢ for which G Is €-approximately k-Embeddable lies in the
Interval (eq ,(2]. then it is permissible either to accept or to reject G. In this problem
~ definition, we have attempted to capture, without introducing inordinately many
complexities of detail, the essential problem of embedding as It would apply to real

computers given inexact data.

We now wish to investigate the computational complexity of €4,5-Approximate
Embeddability problems. Is it possible, for example, to solve all such problems where

Ae1 is strictly less than ¢5 in time polynomial in the size of a specification of G (where
the degree of the polynomial, or even just the "constant" factor, depends on

(ep-€1)"1)?

It turns out that such polynomial solutions are not possible In the general case

(assuming that P # NP). In particular, we have the following resuit.

Theorem 5.1:
Let € and ¢, be real numbers such that 0 € ¢; < ¢ < 1/8. Then

61,e2-Approximnte-1—Embeddability of integer-weighted graphs is NP-complete.

Proof:
We note that the embeddability properties of the graphs used In the proof of
Theorem 4.1 depend only on cycles of length no greater than 16 having edges
whose lengths are muitiples of 1. It follows from this that, for any ¢ < 1/8, any
such graph is ¢-approximately 1-embeddable iff it Is (exactly) 1-embeddable,
and the desired result is at hand. O '

It is interesting to examine Theorem 5.1 to see Just what it Is saying in ferms of
language recognition. For each non-negative -real number, €, let L, be the language
consisting of all descriptions (in some agreed-upon form) of e¢-approximately
1-embeddable integer-weighted graphs. Far each € in the interval [0,1/8), the
fanguage L, is & superset of Ly and a strict subset of L4 5. There are also many
other languages which contain Ly and are contained In L, for some e < 1/8, but

which are not equal to L for any ¢. Theorem 5.1 says that every one of these

WEIGHTED GRAPH EMBEDDABILITY 11

languages is strongly NP-hard.

It is interesting to note that Approximate 1-Embeddability problems restricted to

graphs consisting of a single cycle (such as were used in the proof of Theorem 3.2)
are aiways solvable in polynomial time if e, is positl\le.6 This shows that the weak

NP-completeness result given in Section 3 does not say all there was to say about
the difficulty of the practical (i.e., with inexact data, etc,) form of the problem.
Loosely speaking, we could say that we have shown the nation of strong vs. weak
NP-completeness to be significant even for problems that naturally involve reals
rather than integers. It should be noted, however, that Theorem 5.1 followed not
from Theorem 4.4 but rather from the particuiar construction used In the proof of

Theorem 4.4.

The proof of Theorem 5.1 depended on the fact that, for sufficiently small ¢,

e-approximate 1-embeddability is equivalent to ordinary 1-embeddability for the
class of weighted graphs we constructed In our proof of Theorem 4.1. By making
this same observation regarding approximéte k-embeddability of the weighted

graphs constructed in the proof of Theorem 4.4, we arrive at the following result.

Theorem 5.2:
Let k be any positive integer. Then there exists a positive real number, ¢,
such that O,-Approximate k-Embeddabitity of integer-welghted graphs is
NP-hard.

Proof:
The argument Is outlined in the above text. Details are left to the reader. O

it has also been pointed out’ that €4.€p-Approximate k-Embeddabillity of

SThis follows from the existence of fast approximation algorithms for Partition. See, for example, Lawler
[1977].

7The author regretfully cannot recall which participant at the 1979 Alierton conference made this observation;
he is willing and eager to accep! reminders of ¢lues,

12 WEIGHTED GRAPH EMBEDDABILITY

integer-weighted graphs is in NP8 whenever €> > €4. This may be seen by
considering an algorithm which nondeterministically assigns vertices to polnts in

k-space whose coordinates must all be multiples of (£2—£1)/k”2.

6. Ambiguous Embedding Problems

Another variation on the embeddability problem that may arise in practical
applications is that of "ambiguity of solution." Given an incomplete weighted graph
and some embedding of that graph into a Euclidean space, we may wish to -know
whether the given' embedding Is unique. For example, are the nodes of our sensor
network really where we think they are, or might they be in some very different
configuration? To pose the problem more precisely, we Introduce the fot!owlng

definitions.

Definitions: _
Let G be a.weighted graph and k be a positive integer. Then two
k-embeddings, f and g, of G are said to be congruent Iff for each two vertices,
u and v, of G, [f(u)-f(v)] = Jg(u)-g(v)]. A k-embedding, f, of G is sald to be
unique (up to congruence) iff every k-embedding of G is congruent to f, and In
this case G is said to be unigquely k-embeddable, H G has two or more

‘non-congruent k-embeddings, then G Is ambiguously k-embeddable.

For 'any positive integer, k, we may now define the problem of Ambiguous

k-Embedding as follows:

Problem (Ambiguous k-Embedding):
Given a weighted graph, G, and a k-embedding, f, of G, determine whether G is
ambiguously k-embeddable (/.e., whether there exists a k-embedding of G
which is not congruent to f).

In this section, we will show that the Ambiguous Embedding problems defined

above are just as hard as the ordinary Embeddability problems we studled in

BShricily speaking, al least one language including ali descriptions of (rapproxirnaleiy k-embeddable

integer-weighted graphs and containing only descriptions of Gz-approximately k-embeddable integer-weighted
graphs is in NP,

WEIGHTED GRAFPH EMBEDDABILITY 13

Sections 2 through 4. The methods we will use are of general interest in that they
are potentially applicable to "ambiguous" versions of many other NP-complete

problems.

We will begin by formalizing the idea of "ambiguous"” versions of problems. Since
we hope that the methods of this section wili find more widespread application, we
will work in a more general setting than is necessary for the task at hand.. For this
same reason, our presentation of these ideas will be somewhat more formal and

more attentive to mathematical fine points than it would be otherwise.

For the purpose of relating a problem, X, to the language ctasses P and NP, we
normaily phrase X as a recognition problem; we identify X with a language, L, such
that we may ask whether any /nstance, |, of X is in L. We are concerned here with
cases in which the defining property of L is that | Is In L iff there exists some
object, O, such that P(1,0), for some fixed predicate, P, which we cail a defining
predicate for X2 Insucha case, we refer to an O such that P(1,0) as a solution
of I.

We sometimes wish to regard two solutions of (an instance of) a problem as
essentlally the same even if they are not actually identical. We may do this by
introducing an equivalence relation, 5, on the space of potential sclutions. Note that
= must be such that if O 2 O' then for any prablem instance, |, P(1,0) iff P(1,0'); such
an equivalence relation is said to respect the predicate P. Given a problem, X,
defined by a p.redicate, P, and given an equivatence relation, &, which respects P,

we may define an "ambiguous" version of X as follows:
Problem (Ambiguous X up to £):
Given an Instance, |, of X and a solution, 0, of I, determine whether there

exists a solution, 0, of | such that O'# O,

Note that the problem of Ambiguous k-Embedding defined above may now be

gFc:nr exampfe, if X is the problem of 1-Embeddabilily of integer-weigited graphs, then an instance, |, of X is a
description of an integer-weighted graph; the language, L, consists of all descriptions of 1-embeddable
integer-weighted graphs; and the predicate, P, might be defined so that P(,0) is TRUE iff O is a 1-embedding of
the integer-weighted graph described by |,

14 WEIGHTED GRAPH EMBEDDABILITY

described as "Ambiguous k-Embeddability up to congruence.” A subtle point which
may have escaped the reader's attention is that different predicates may define
the same Ianguage.1° and the definition of "Ambiguous X up to =" depends on the
defining predicate, P, as well as on 2. In the text below, the intended P shouid

always be clear from context.

When we speak of "Ambiguous X" (without mentlon of any =), for some previously
defined X, we will mean "Ambiguous X with respect to equality." Following this
convention, we can embark on the path to showing the NP-hardness of Ambiguous
k-Embedding probiems, by defining the problems of Amblguous 3-Satisflability and
Ambiguous 4-Satisfiability as follows:

Problems (Ambiguous 3-(4-)Satisfiability):
Given an expression, E, in 3~CNF {resp. 4-CNF) and an assignment of truth
values for the variables of E which satisfies E, determine whether there exists
any other assignment which satisfies E.

Lemma 6.1:
Ambiguous 4-Satisfiability is NP-complete.

Proof:
We will proceed by reduction from 3-Satisfiability. Consider an expression, E,
in 3-CNF with variables Xq,...Xy and clauses Cy,...Cpy. We introduce a new
variable, Y, and define a function, F, on Y and the X, as follows:

F=(YA Y
(1Jle,) v (YAE)

Yv X;) A (YVE
(JEN,) (YVE)

(YVX) A (YVCy).
1;11«1 | 1ijM Y

1°This fact is used to greal advantage in the recenl work on fast probabilistic tests for primality (see, for
example, Rabin [1976]). Briefly, the usual defining predicate for the problem of Compositeness (given a positive
integer, 1, is | composite?) is given by P(1,0) = O is an integer divisor of | such that 1<(Q<l. Unfortunately, by this
definition solutions for a given instance may be very rare and hard 1o find, as in the case wherse | is the product of
two large primes. The fast probabilistic lests rely on other "defining” predicates for Compositeness for which
solutions (called "witnesses” in the lilerature) are guaranteed to be common,

. WEIGHTED GRAPH EMBEDDABILITY 156

Note that F may be satisfied by assigning the value TRUE to Y and to all the X;.
Any other assignment can satisfy F iff it makes Y FALSE and assigns truth
values to the X; in a way that satisfies E. Finally, It is clear that a 4-CNF
expression for F can be constructed from E in polynomial time. O

Lemma 6.2:
Ambiguous 3-Satisfiability is NP-complete.

Proof:

We will show a polynomial-time reduction from Ambiguous 4-Satisfiability to
Ambiguous 3-Satisfiability. Consider any expression, E, in 4-CNF. For each
ciause, Cj = Lj'1+LJ,2+Lj.3+Lj'4 (where LJJ' '—1,2- Lj.a' and Lj,4 are literals of
E), of £ we introduce a new variable, Qj, and define Cj as the following
conjunction of clauses:

Cj = (Lj|1 VL}"2VQ}) A (LJ'3V[1'4VQJ) A (Ej,3VLJ,4VQj) A
(E].GV[J.4VQJ) A (LJ'GVLj'avaj).

Note that for each assignment of truth vaiues to Lj,1. Lj,2- '-j..'J' and LJ.4 such
that Cj is satisfied there is exactly one assignment for Q_I such that Cj is
satisfied.’! We define E' as the conjunction of all the C]. It follows. that for
each assignment, A, to the variables, X;, of £ which satisfies E there is exactly
one assignment, B, of the Q; such that E' is satisfied by AUB. Finally, it is
clear that.E' and B can be computed in polynomial time from E and A. O

In the previous proof, we reduced Ambiguous 4-Satisfiability to Ambiguous
3-Satisfiability by exhibiting a reduction from ordinary 4-Satisfiability to ordinary
3-Satisfiability in such a way that there exists a polynomial-time-computable 1-1
correspondence between the solutions (/.e., satisfying assignments) of instance of
A-Satisfiability (/.e., an expression in 4-CNF) and the solutions of the instance of

3-Satisfiability to which it is reduced. We may generalize this technique by defining

"1brawing a 5-variable Karnaugh map for the terms of Cj (with Q; as the fifth variable) will make the truth of
this assertion immediately cleat.

16 WEIGHTED GRAPH EMBEDDABILITY

the concept of a solution-preserving reduction:

Definitions:

Let X and Y be probiems defined by predicates Py and Py, respectively, and
let =x and =y be equivalence relations respecting Py and Py respectively.
Then a reduction from X to Y is a polynomial-time function from Instances of X
to instances of Y such that for any Instance, iy of X, solutions for f(lx) exist
iff solutions for Iy exist. A reduction is said to be solution-preserving from =y
up to £y if there exists a 1-1 function, G, sending equivalence classes under
=y to equivalence classes under =y and having the following properties:

1. For any instance, ly, of X, the restriction of G to the set of all
equivalence classes whose elements are solutions to Ix Is onto
the set of al! equivalence classes whose elements are solutions
to f(Ix).

2. There exists a polynomial-time computable function, g, such that,
for any instance, ly, of X and any12 solution, O, of |y,

g(1,0} € G([0]),

where [0] is the equivalence class (under Ex) of which O Is a
representative.

We may now state a lemma which wili be of use in proving the NP-hardness of the

"ambiguous" versions of various problems.

Lemma 6.3: _
Let X and Y be problems defined by predicates Py and Py, respectively, and
fet =y and =y be equivalence relations which res'pect Px and Py, respectively.
Let f be a reduction from X to Y which is solution-preserving from Ey up to &y,
Suppose that Ambigucus Y up to Sy is NP-hard. Then Ambiguous X up to 2y Is

NP-hard.

12Please go back and finish reading the definition before looking at this footnote. There is a subtle point being
glossed over here. The function g must operate on representations of solutions rather than actual solutions, and
not all solutions will necessarily be representable (for example, any weighted graph of three vertices and two
edges has uncountably many 2-embeddings which are distinct with respect to congruence). Note that the definition
of "Ambiguous X up to =" depends on the selection of some scheme for representing solutions 1o instances of X.
We only require g(1,0) to be defined in the case that O is representable under the chosen schems.

WEIGHTED GRAPH EMBEDDABILITY 17

Proof:
Produce functions G and g as given by the preceding definition. We note that

any instance, (Ix,0x) of Ambiguous X up to =y can be reduced in polynomial
time to (ly,Oy), where Iy = f(lyx) and Oy = g(lx,Ox). Moreover |y has solutions
which are not equivalent to Oy under =y iff |y has solutions which are not
equivalent to Oy under =x. O

Observe that our proof of Lemma 6.2 depends simply on the fact that the
transformation from E to E' is a reduction from 4-Satisfiability to 3-Satisfiability
which is solution-preserving from equality up to equality. We now employ Lemma 6.3

to show the results claimed at the beginning of this section.

Theorem 6.4:
Ambiguous 1-Embedding of {1,2}-weighted graphs is NP-complete and
Ambiguous k-Embedding of {1,2}-weighted graphs ts NP-hard for any positive
integer k.

Proof:
This result is a consequence by Lemma 6.3 of the following easily verifled
facts:

1. The reduction used In the proof of Theocrem 4.1 s
solution-preserving from equality up to congruence in 1-space,

2. For any positive integer, k, the reduction used in the proof of
Corollary 4.3 is solution preserving from congruence in k-space
up to congruence in k-space,

3. For any positive integer, k, the reduction used in the proof of
Lemma 4.4 is solution preserving from congruence in k-space up
to congruence in (k+1)-space. ‘

O

Corollary 6.5:
Ambiguous 1-Embedding of integer-weighted graphs is strongly NP-complete
and Ambiguous k-Embedding of integer-weighted graphs is strongly NP-hard for
any positive integer, k.

18 ' WEIGHTED GRAPH EMBEDDABILITY

Proof:

Trivial from Theorem 6.4, O

7. Conclusions

The results of this paper fall into two classes, those of interest to persons
concerned with embedding problems (such as the sensor positioning problem) and
those that are of more general theoretical interest. To those concerned with finding
efficlent solutions to the Embedding problem (given a weighted graph, find "the"
embedding), these results say what all NP-completeness results say: "You are
trying to solve the wrong problem." Rather than looking for an efficient worst-case
algorithm, it would be more promising to seek an algorithm that gives good
performance in cases which arise in practice (for example, cases in which the graph
is highly overconstrained). Pursuing this topic, we present in Appendix Il a
linear-time algorithm for determining whether any complete graph is k-embeddable

(for any fixed k). Some other positive resuits are given by Yemini [1979].

The most specific result of theoretical interest is our discovery of some new
strongly NP-hard geometric problems, and our use of some interesting gadgets to
carry out the proofs of NP-hardness. Of more general interest are the two new
classes of problems introduced in Sections § and 6. The "61,¢2-—approxlmate"
problems introduced in Section 5 offer a new way of looking at the notion of
NP-completeness in the context of problems involving continuous variables. As we
have seen, weak NP-completeness may not say all there is to say In this context.
"Ambiguous solution" problems address the question of determining whether a known
solution to a problem is in fact the unique solution. In Section 6, we exhibited a
fundamental NP-complete problem, 3-Satisfiability, whose ambiguous version is also
NP-complete, and exhibited a method for obtaining new NP-completeness results for
"ambiguous"” versions of other problems, namely the use of reductions that preserve

uniqueness of solution.

Acknowledgements

The author would like to thank Steven E. Saunders for leading him to study the

WEIGHTED GRAPH EMBEDDABILITY 19

problem of Embeddabliity, Michael 1. Shamos for helpful discussions, and Jon
L. Bentley for his encouragement and advice during the preparation of thfs

document.

References

Cook, S. A. "The complexity of theorem proving procedures.” Proceedings of the
3rd Annual ACM Symposium on Theory of Computing. Assoclation for
Computing Machinery, New York (1971). pp. 151-158.

Distributed Sensor Nets. Proceedings of a conference sponsored by the information
Processing Techniques Office, Defense Advanced Research Projects Agency
and hosted by Carnegie-Mellon University, December, 1978.

Garey, M. R. and D. S. Johnson. Computers, Complexity, and Intractability. Freeman,
San Francisco (1979).

Lawler, E. L. "Fast approximation algorithms for knapsack problems." Proceedings
of the 18th Annual Symposium on Foundations of Computer Sclence. |EEE
Computer Society, Long Beach, CA (1977). pp. 206-213.

Papadimitriou, C. H, "The NP-completeness of the bandwidth minimization problem."
Computing 16 (1976). pp. 263-270.

Rabin, Michael 0. "Probabilistic Algorithms." In Algorithms and Complexity: New
Directions and Recent Results, J. F. Traub, Ed. Academic Press. New York
(1976). pp. 21-39.

Shamos, M. i. Personal communication (1978).

Yemini, Y. "On some theoretical aspects of position-location problems.”
Proceedings of the 20th Annual Symposium on Foundations of Computer
Sclence. |EEE. October 29-31, 1979, pp. 1-8.

Yemini, Y. "The positioning problem--A draft of an intermediate summary." In
Distributed Sensor Nets [1978].

Appendix I: Reduction from Bandwidth Minimization

In this appendix we give a second proof of Theorem 4.2, using a reduction from

the probiem of Bandwidth Minimization.

Definitions:
Let G be a graph with vertex set V, and let N = |[V|. A layout of G is a
one-to-one mapping, f, from V onto {1,...N}. The bandwidth of f is defined as
the maximum distance between the images under f of any two vertices that

20

WEIGHTED GRAPH EMBEDDABILITY

are connected by an edge of G. That is,
bandwidth(f) = max{|f(u)-f(v)| | {u,v} is an edge of G}.

The bandwidth of G is defined as the least possible bandwidth for any layout
of G. Thus,

Bandwidth(G) = min{bandwidth(f) | f is a layout of G}.

Problem (Bandwidth Minimization):

Given an arbitrary graph, G, and a positive integer, k, determine whether
Bandwidth(G) £ k.

Bandwidth Minimization was shown to be NP-complete by Papadimitriou [1976].

Using this result, we can give a second proof of the following theorem:

Theorem 1.1 (Corollary 4.2):

1-Embeddability of integer-welghted graphs is strongly NP-complete.

(Second) Proof:

We will proceed by reduction from Bandwidth Minimization. Let G be a graph of
N vertices, and let k be a positive integer. We assume without loss of
generality that k < N.We now construct an edge-weighted graph, G, as
follows:

1 For each vertex, v, of G, let there be a distinct vertex, v/, of G,
G’ will also have some additional vertices as required by the
remaining steps of the construction.

2. For each edge, {u,v}, of G, connect u' and v' by a chain of k
edges, one (it doesn't matter which) having weight (k+1)/2 and
the rest having weight 1/2.

3. For each two vertices, u and v, of G which are not connected by
an edge of G, connect u’' and v' by a chain of N-1 edges, one
having weight N/2 and the rest having weight 1/2.

Note that for any bandwidth £ k layout, f, of G, there exists at least one
1-embedding, ', of G’ such that f'(v') = f(v) for every vertex, v, of G. Similarly
from every 1-embedding of G' we can derive a bandwidth £ k layout of G. If
we now double the weights of all the edges of G, we get an Integer-weighted

WEIGHTED GRAPH EMBEDDABILITY 21

graph, G", having the following properties:

1. G"” is 1-embeddable iff G has a layout of bandwidth < k and

2. A representation of G" with all edge weights given in unary has
size polynomial in the size of a representation of G, and can be
computed from a representation of G in polynomial time.

This complétes the proof. O

It is interesting to note that this construction can not be used as a basis for the
results of Sections 5 and 6. This underscores our earlier remark that the proof of
Theorem 5.1 relies not simply on the strong NP-completeness of 1-Embeddabllity of
integer-weighted graphs, but on the particular construction used in the proof of

Theorem 4.1.

Appendix il: Embeddability of Complete Graphs

fn this appendix, we exhibit a class of polynomial-time algorithms due to Shamos
[1978] for testing the k-embeddability of complete weighted graphs. For purposes
of eprsition, we assume a model In which real nhumbers are primitive data objects
on which exact arithmetic operations (including comparisons and extraction of
square roots) can be performed in constant time. Within this model, we have the

following result.

Theorem |1.1:
Let k be any positive integer. Then there exists an algorithm for testing the
k-Embeddability of complete weighted graphs which runs in time linear In the
number of edges (or, equivalently, quadratic in the number of vertices) of the
graph being tested.

Proof:
Let G = <V,E,W> be a complete weighted graph with N vertices, X4,...,.XN. To
test the embeddability of G, we will attempt to position successively the
vertices of G in a (k+1)-dimensional coordinate space. Without loss of
generality, we may send X4 to the origin and X5 to (W({X1,X2}).0.,...0). For
each M, 1<M<N, we define

22

WEIGHTED GRAPH EMBEDDABILITY

D(M) = min {j | the complete weighted graph on {X;|1£i<M} induced
from G is j~embeddable}.

If the induced weighted graph on {Xq,..Xp} is not |-embeddable for any },
then D(M) is undefined. For each j, 0£j<k, we define
P(j) = min {M | D(M) = j}.

If there is no M such that D(M) = j, then P(j) is undefined. Note that if P(}) is
well defined, then P(0),....P(}) are all defined and distinct. As we locate each
vertex, we enforce the restriction that at most the first D(M) coordinates of
Xpm Mmay be non-zero. By following this rule, we guarantee that after the Xy
has been located (if this is possible), we will know the vaiue of D(M) and of

P(0),...,P(D(M)). The procedure for locating the Xpm.q (for 1SM<N) s as
follows:

1. Note that there is at most one possible location for Xp,.1 which
will satisfy the following criteria:

- The correct weights are induced for the D(M)+1 edges
{Xp(j),XM+1}, 0<j<D{M).

- At most the first D{M)+1 coordinates of the ilocation are
non-zero.

- The (D(M)+1)-st coordinate of the Ilocation s
non-negative.

This tocation, if it exists, may be discovered in constant time,
since we will always have B(M) £ k.

2. If there are no such logations, or if the (k+1)-st coordinate of the
unique location satisfying the criteria is non-zero, halt asserting
that G is not k-embeddable, Otherwise, without loss of
generality, assign Xp,q to the unique location satisfying the
criteria.

3. Check that the weights induced for the remaining {X%;,Xm4+1}
(where 1<i<M and i#P(j) for any j) are correct. If any are not,
then halt asserting that G is not k-embeddable. Note that the
time for this step is O(N), since we always have M C(N.

If we manage to place all the vertices without discovering that G Is not
k-embeddabie, then we will have found a k-embedding for G (and this
embedding Is unique up to congruence). In any case, the time required Is linear

WEIGHTED GRAPH EMBEDDABILITY 23

in the number of edges and the space will be linear in the number of vertices.
O

it may be noted that the algorithm given here will not only work for complete
weighted graphs, but may be generalized to apply to a large class of incomplete
weilghted graphs as well; it is only necessary that it be possible to order the
vertices such that, when we attempt to locate the vertices in order, each vertex is
connected to sufficiently many previousiy-located vertices that the new vertex can
be assigned a unique location without loss of generality. To see the limits of this
generalization, however, we need only consider the graph shown in Figure 1.1, If
the vertices of this graph are assigned to points in the plane in such a way that no
three are colinear, then a set of edge weights will be induced which make the graph
uniquely 2-embeddable. But if any vertex is removed, the welghted subgreph
induced on the remaining five vertices will have infinitely many non-congruent

2-embeddings.

Figure 1.1 A uniquely embeddable graph with no triangles.

Further explorations in this direction would take us beyond the scope of this
paper. Yemini [1978] exhibits a number of interesting "counterexamples" of the
flavor of Figure 1l.1. We also leave untouched the issues of numerical stability
which arise Awhen the preceding aigorithm is performed with inexact arithmetic, and

possibly on inexact data.

Dynamic-Programming Algorithms for Recognizing
Small-Bandwidth Graphs in Polynomial Time

James B. Saxe
Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

in this paper we Investigate the problem of testing the bandwidth of a graph:
Given a graph, G, can the vertices of G be mapped to distinct positive Integers so
that no edge of G has its endpoints mapped to integers which differ by more than
some fixed constant, k? We exhibit an algorithm to solve this problem in
O(f(k)NkH) time, where N is the number of vertices of G and f(k) depends only on k.
This result implies that the ”Bandwidth:_t,k“ problem is not NP-Complete (unless
P = NP) for any fixed k, answering an open question of Garey, Graham, Johnson, and
Knuth. We also show how the algorithm can be maodified to solve some other
problems closely related to the "Bandwidth 2 k" problem.

This work was supported by the Office of Naval Research under Contract
NOOO14-76-C-0370.

GRAPH BANDWIDTH RECOGNITION 1

1 Introduction

The subject of this paper is the computationai complexity of a problem on graphs.
To speak precisely of the problem, we will need the following notation and

definitions.

Notation: ‘
Let u and v be vertices of a graph G. We will say "u—v in G" to denote that
{u,v} Is an edge of G. Where G is clear from context, we will write simply
LY ey [

Definitions:
Let G be a graph with vertex set V, and let N = |[Vl. A layout of G is a
one-to-one mapping, f, from V onto {1,..,.N}. The bandwidth of f is defined as
the maximum distance between the images under f of any two vertices that
are connected by an edge of G. That s,

bandwidth(f) = max{f(u)-f(v) | u—v}.

The bandwidth of G Is defined as the least possible bandwidth for any layout
of G. Thus, '

Bandwidth(G) = min{bandwidth(f) | f is a layout of G}).

Problem (Bandwidth Minimization):
Given an arbitrary graph, G, and a positive integer, k, determine whether
Bandwidth(G) £ k.

Note that the notion of graph bandwidth is equivalent to the more familiar notlon
of matrix bandwidth in that Bandwidth(G) £ k iff there exists a permutation matrix P
such that (PCP'1)U = 0 whenever [i-j| > k, where C is G's connection matrix. For
any particular positive integer k, we can define a restricted version of the

bandwidth minimization problem as follows:

Problem (Bandwidth Z k):
Given a graph, G, determine whether Bandwidth(G) £ k.

2 GRAPH BANDWIDTH RECOGNITION

Papadimitriou [1976] has shown that the general bandwidth minimizatlon problem,
in which k is specified in the input, Is NP-Complete. The problem was later studied
by Garey, Graham, Johnson, and Knuth [1978], who found a linear-time algorithm for
the the problem "BandwidchZ", and also improved on Papidimitriou’s result by
showing the problem for general k to be NP-Complete even when G s restricted to
be a tree with no vertex of degree greater than three. A number of questions are
left open by their work, however. One sﬁch question is whether there exists a
polynomial-time algorithm for the problem "Bandwidthz 3". In this paper, we will

1 which solves the

answer this question affirmatively by exhibiting an algorithm
problem "Bandwidth Z k" in polynomial time for any fixed k. Section 2 of this paper
introduces the fundamental concepts and assumptions we will use in describing our
algorithm. In Section 3 the algorithm is described and its performance is analyzed.
In Section 4 we discuss some modifications of the algorithm to solve related

problems. Finally, in Section 5, we discuss some remaining open problems.

2 Fundamental Concepts and Assumptions

Throughout the following we will assume that G denotes a graph with vertex set V

2 and that we wish to

and edge set E, that k denotes a particular positive integer,
determine whether G has any layout of bandwidth$ k. We let N denote the
cardinality of V. Note that if G is not connected then G has a layout of bandwidth £
k iff each of its components has such a layout. Also, it Is clearly impossible for G to
have such a layout if G has any vertex of degree 2k or greater. We therefore
assume, without loss of generality, that G is a connected graph having no vertex of
degree greater than or equal to 2k. Note that an arbitrary graph can be partitlloned
Into its connected components by depth-first search in O(max(n,e)) time, where n is

the number of vertices and e is the number of edges.‘3 and that this is O(n) if a

1Moro correctly, a class of atgorithms, one for each value of k.
2Whel'u using the "big-oh® notation, we will regard k as tixed and therefors omit factors that depend onty en k.

3See. for example, Aho, Hoperoft, and Ullman [1974, Chapter 5],

GRAPH BANDWIDTH RECOGNITION 3

fixed bound is given on the degree of any vertex. Moreover, an obvious
modification to the depth-first search algorithm allows it to detect the presence of a
vertex with degree greater than a fixed bound in time which is proportional only to

the number of vertices and not to the number of edges.
We now Introduce the key notion of a partial layout.

Definitions:
A partial layout of G Is a one-to-one function, f, from some subset of V onto
{1,...,M}, for some M such that 0 < M < N. We say that f Is feasible if it can be
extended to a (total) layout, g, such that bandwidth(g) € k. The bandwidth of
f Is the maximum distance between the images of any two edge-connected
“vertices of G which are in the domain of f. If u—v and u is in the domain of
and g is not, then the edge {u,v} is sald to be dangling from f.

Consider a partial layout, f, of size M. Clearly, f cannot possibly be feasible

uniess

1. bandwidth{f) £ k, and

2. whenever u and v are vertices of G such that f(u) < M-k and u-v, v is
also in the domain of f.

if f satisfies both these conditions, then f is said to be a plausible partial layout.
The sequence (f"(max(M-kH ,1),...,f'1(M)), taken together with the set of dangling
edges of f, Is called the active region of f. We now come to the theorem on which

our principal algorithm depends.

Theorem 2.1:
Let f and g be two plausible partial layouts of G having identical active
regions. Then,

1. f and g have identical domains, and

2. fis feasible iff g is feasible.

Proof:
Since G is connected, the domains of f and g must each consist precisely of

those vertices which are path-connected to vertices in the active region by

4 | GRAPH BANDWIDTH RECOGNITION

paths not including any dangling edges. Thus, (1) holds. To see that (2) holds,
we need only note that any assignment of the remaining vertices which
extends either f or g to a total layout of bandwidth £ k must also extend the
other to such a layout. O

Finally, we define the notion of a successor of a plausible bartlal layout (or active

region), which wili be necessary to explain our algorithms.

- Definition:
Let f be a plausible partial layout of G. Then a successor of f is a plausible
partial layout, g, which extends f by precisely one element. In this case, the
active region of g is also said to be a successor of the active region of f. We
also say that (the active region of) f is a predecessor of (the active region of)

g.

3 The Algorithm

Theorem 2.1 allows us to say that two plausible partial iayouts are equivalent If
they have Identical active regions. The algorithm we present |s essentlally a
breadth-first search over the space of all the Induced equivalence classes of
plausible partial layouts, where each such equivaience class Is uniquely
characterized by active region of its representatives. Alternatively, we may think
of the algorithm as a dynamic-programming search over the ptausible partial layouts.
Each active region consists of at most k vertices and each vertex has no more than
2k edges, each of which may or may not be dangling. Thus the number of

equivalence classes is bounded above by4

2 (M2 = ok,
0<i<k

Our algorithm uses the following two data structures:

1. A (fifo) queue, Q, whose elements are active regions.

qu we will mention in Section &, the coefficient on this bound is quite loose.

GRAPH BANDWIDTH RECOGNITION 5

2. An array, A, which contains one element for each possible active
region. Each element, A[r], of A consists of a Boolean flag,
A[r].examined, telling whether the active region r has already been
considered in the search and a list, A{r].unplaced, of vertices which Is
intended to list all vertices NOT in the domain of each plausible partial
layout with active regionr.

At the start of our algorithm, Q is Initlalized to contaln the single element
representing the active region (henceforward denoted §) of the empty partial
layout, ¢. The flag Al$l.examined Is set to TRUE and Al$].unplaced Is initialized to
list all the elements of V. The remaining A[r].examined are initially FALSE, and the

remaining A[r].unplaced are uninitialized. The aigorithm now proceeds as follows:

Algorithm B (Bandwidth testing):

1. Extract an active region, r, from the head of Q.
- 2. From A[r].unplaced, determine the successors of r.

3. For each successor, s, of r such that A[s].examin'ed is FALSE, perform
the following steps:

a. Set A[s].examined to TRUE.

b. Compute A[s].unplaced by deleting the last vertex of s from
Alr].unplaced.

c. If Alr].unplaced is the empty set, then halt asserting that
Bandwidth(G) £ k. :

d. Insert s at the end of Q.

4. If Q is empty, then halt asserting that Bandwidth(G) > k. Otherwise, go
to Step 1,

. The space required by this algorithm is clearly O(Nk”). To determine the running
time, we note first that since there are O(Nk) possible active regions, each of Steps
1 through 4 will be executed O(Nk) times. The individual executions of Steps 1 and
4 each take only constant time, so the contribution of these steps to the total
running time of the ealgorithm is O(Nk). Since any active region, r, has at most N
successors (zero or one for each element of A[r].unplaced), each execution of Step

2 takes O(N) time. The contribution of Step 2 to the total execution time is

6 GRAPH BANDWIDTH RECOGNITION

therefore O(NkH). Determining the contribution of Step 3 is (a little)} trickler.
During a single execulion of Step 3, Steps 3.a through 3.d may be executed as
many as N times, and the amount of computalion in Step 3.b may be 8(N). Thus it
appears possible that Step 3 may contribute B(Nk+2) to the total execution time. If
we look more carefully, however, we seé that 3.a through 3.d are executed at most
once for each actlve region. Thus the total contribution of Step.a is O(Nk+1).

Adding the contributions of all the steps gives us the following result.

Theorem 3.1:
Let k be any positive integer. Then there is an algorithm which solves the
problem "Bandwidth € k" using O(N**1) time and 0(Nk*1) space.

Proof:
To test the bandwidth of G, we first perform an O(N)-time depth first search

which either

(1) determines that G has some vertex of degree greater than 2k, or

(2} partitions G into connected components none of which have any
vertex of degree greater than 2k.

In case (1), we know immediately that Bandwidth(G) 2 k. In case (2), we apply
Algorithm B to the connected components of G. [J

While Algorlthm B will tell us whether G has a layout of bandwidth < k, It does not
actually produce such a layout. In order to aliow such a layout to be recovered, we
may assoclate with each active region, s, an additional field, A[s].predecessor.
When s Is appended to Q in Step 3.f,, we make A[s].predécessor point to a
predecessor of s (namely the r we chose in Step 1).5 If the algorithm finds an
active region, t, such that A[t].unplaced is empty, it is a simple matter to recover a -

layout by tracing back thl‘rough the predecessor fields.

5Noie that this pointer noed only name the single vertex (it any} which is coplained inr bul not in 8.

GRAPH BANDWIDTH RECOGNITION 7

4 Modifications for Related Problems

Another question left open by Garey, Graham, Johnson, and Knuth {1978] Is
whether there exists a polynomial-time algorithm to count the layouts of a graph
having bandwidth < k, even for k = 2, We now give an affirmative answer to a
closely related question by exhibiting a class of polynomial-time algorithms {one for
each positive integer k) for determining the number of bandwidth £ k layouts of any

connected graph.6

Our algorithm for enumerating layouts of bandwidth £ k Is a slightly modified form
of Algorithm B. The data structures are the same as those for Algorithm B, with the

following additions:

1. Each entry, A[r], of A has a third field, A[r].count, which will hold the
number of (so far discovered) plausible partia! layouts whose active
region is r.

2. There is a variable, Total, which will hold the number of (so far
discovered) layouts of bandwidth £ k.

At the start of the algorithm, Total and ail the A[r].count are Initialized to zero,
except for AL®], which is inHtialized to 1. The remaining variables are Initialized as

for Algorithm B. We then proceed as foliows:

Algorithm E (Enumerate layouts):
1. Extract an active region, r, from the head of Q.
2. From A[r].unplaced, determine the successors of r.
3. For each successor, s, of r, perform the following steps:
a. If A[s].examined is TRUE, go to f,

b. Set A[s].examined to TRUE.

c. Compute Afs].unplaced by deleting the last vertex of s from

8Nt::le that the number of bandwidth ¢ k layouts of an arbitrary graph is nol uniquely determined by the rumbers

of bandwidth ¢ k layouts of its connected componemis because the topolegies of the components impose
constraints on how the various layouts may overlap. The algorithms cannot be applied directly to non-connecled
graphs because they depend on Theorem 2.1. -

4.,

GRAPH BANDWIDTH RECOGNITION

Alr].unplaced.

d. If A[lr].unplaced is the empty set, then increase Total by
A[r].count.

e. Insert s at the end of Q.

f. Increase A[s].count by A[r].count.

If Q is empty, then halt. Otherwise, go to Step 1.

Study of this algorithm gives us the following result:

Theorem 4.1:

Let k be any positive integer. Then there exists an O(Nk+1)-tlme,
O(Nk+1)-space algorithm which, given any connected graph, G, computes the
number of layouts of G having bandwidth < k.

Proof:

We claim that Algorithm E (preceded by a depth-first search to ensure that no
vertex of G has degree greater than 2k) has the desired properties. By an
analysis similar to that for Algorithm B, Algorithm E will run in O(Nk”) time. We
must now show that it correctly counts the layouts of bandwidth € k. To do
this, it suffices to show that by the time that any plausible partial layout, r, is

. selected in Step 1, A[r].count contains the total number of plausible partial

layouts whose active region is r. This in turn may be shown inductively if we
can only show that no active region, r, is chosen In Step 1 until every
predecessor of r has been chosen. This last follows at once from the fact
(which may be established by induction) that the active regions proceed
through the queue in non-decreasing order of their lengths, where the length
of an active region, r, is defined to be the number of vertices in the domain of
any plausible partial layout whose active regionis r. [

We may view Bandwidth Minimization as the problem of finding a layout with

minimax edge length. We will now look at-the corresponding minisum problem.

Definition:

Let G be a graph with edge set E, and let f be a layout of G. Then the total
edge length of f is given by the sum

GRAPH BANDWIDTH RECOGNITION B

D W)V
{uwVv}€E

where each edge, {u,v}, contributes precisely once to the sum (rather than
once as u—v and once as v-—u),

Probiem: (Optimal Linear Arrangement)
Given a graph, G, and an integer, t, determine whether there is a layout of G
having total edge less than or equal to t. '

The Optimal Linear Arrangement (O.L.A.) probiem was found to be NP-Complete by
Garey, Johnson, and Stockmeyer [1976]. However, Shamas [1979] has pointed out
that the methods of the present work can be used to provide polynomial-time
algorithms for a class of restricted versions of O.L.A. For every positive integer, k,

we define a restriction of O.L.A. as follows:

Problem: (O.L.A. for bandwidth £ k)
Given a graph, G, determine the minimal total edge length of any layout of G
having bandwidth < k or determine that no such layout exists.

Applying the methods used above, we obtain the following result.
Theorem 4.2:
Let k be any positive integer. Then there exists an algorithm which solves

O.L.A. for bandwidth < k in O(N¥*1) time and O(Nk*1) space.

Proof:

An algorithm having the desired properties when applied to connected graphs
with no vertex having degree greater than 2k may be constructed by a slight
modification of Algorithm E: instead of maintaining with each active region a
count of the partial layouts having that active region, we maintain an indication
of the minimum sum of the fengths of all edges whose endpoints have are In
the domains of all plausible partial layouts having that active region. The
details are left to the reader. For arbitrary graphs we first perform a
depth-first search which either detects the presence of a vertex with degree
greater than 2k (implying that Bandwidth(G) 2 k) or partitions G into its

10 GRAPH BANDWIDTH RECOGNITION

connected components, taking linear time in either case. We then compute the
minimal tolal edge length for G by finding and summing the minimal total edge
lengths for the connected components. O

We note that the previous resuit remains valid if we consider edge weighted graphs
and the "total edge length" is taken as a weighted sum. For connected graphs, we
can also use the method of Algorithm E to obtain a count of the layouts with minimal

total edge length for bandwidth £ k.

Finally, ait the previous results extend to "directed" versions of Bandwidth
Minimization and O.L.A.. In which G is a directed graph and a layout, f, Is acceptable

only if f(u) < f(v) whenever (u,v) is an edge of 6.}

5 Open Problems

The most obvious problem left open by this work is 5_that of improving the
performance of Algorithm B. Although the expense of this algorithm Iis “only
polynomial” in the size of the examined graph it is still ﬁufficiently expensive
(particularty in terms of space) to render it impractical for all but the smallest cases
(consider, for exampie, determining whether Bandwidth(G) £ 5, where G Is a graph of
forty vertices). The fact that Garey, Graham, Johnson, and Knuth {1978] have a
linear-time algorithm for "Bandwidth{G) :_:? 2", while Algorithm B takes cubic time for
the same problem offers some hope that the degree of the polynomial can be
reduced for higher values of k as well. indeed, It Is conceivable (even if P # NP)
that there are linear algorithms for all values of k, with coefficients growing

exponentially in k, .

One approach to improving the performance is to attempt to reduce the number of
activerregions examined, and this can indeed be done to some extent. For example,
we may prune the search by noting that, while a plausible partial layout mdy have
o(kz) dangling edges, such a partial layout cannot actually be feasible If those

edges iead to more than k distinct vertices. Unfortunately, graphs of the form

7A goo'd starting point for the reader who is interested in learning more about Bandwidth, O.L.A., and their
variations is Appendix A1 of Garey and Johnson [1879].

GRAPH BANDWIDTH RECOGNITION 11

V-| _VZ—‘“_VN-'l —VN

supply an existence proof that the numher of equivalence classes of plausible

partial layouts of bandwidth £ k can in fact be G(Nk).

In Aigorithm B, we reduce the search space from the set of all plausible partial
layouts to the much smaller set of equivalence classes of partial layouts. To look at
it another way, given two partial layouts, f and g, if we recognize (by equality of
active regions) that f is feasible iff g is feasible, then we feel free to search for
complietions of only one of the partial layouts. The algorithm of Garey, Graham,
Johnson, and Knuth cuts down the search space by methods which are similar but
more sophlsticated. In particular, they can avoid searching for completions of a
partial Iayout.8 f, by choosing to search for compietions of a layout, g, such that g is

feasible whenever f is feasible, but not necessarily only when f is feasible.

It is Interesting to note that "worst-case" numbers of feasible active regions
seem to arise precisely in circumstances where large pieces of the graph can be
laid out in bandwidth much less than k. We define a maximal graph of size N and
bandwidth k as a graph whose edge set is {{vjv;}|[i-]I<k}, where {v;| 12i<N} is the
edge set.g The algorithm of Garey, Graham, Johnson, and Knuth relles heavily on the
fact that if all the even numbered vertices or. all the odd numbered vertices are
deleted from a maximal graph of bandwidth 2, the induced graph on the rema.lnlng
vertices is a maximal graph of bandwidth 1. For testing higher bandwidths it is
possible that similar use may be made of the fact that deleting every k-th vertex

~from a maximal graph of bandwidth k leaves a maximai graph of bandwidth k-1.

Another potentially fruitful course of investigation would be to look for efficient
algorithms for approximate bandwidth minimization. For example, given a graph, G,

we may wish to produce a layout for G whose bandwidth is no more than, say, twice

Bfn their terminoiogy, a partial layout of G is a map from a subset of the verlices of G to an arblirary set of
integers.

gl\lote thatl a graph of N vertices has bandwidlh ¢ k iff it is isomorphic to a subgraph of a maximal graph of size
N and bandwidth k.

12 GRAPH BANOWIDTH RECOGNITION

the minimum possible. To the author's knowldge it has not yet been determined
whether this problem (when phrased as a language recognition problem) Is

NP-Complete.

Acknowledgements

The author gratefully acknowledges the helpful comments of Jon L. Bentley,

Michael R. Garey, Christos H. Papadimitriou, and Michael {. Shamos.

References

Aho, A. V., J. E. Hopcroft, and J.D. Uliman. The Design and Analysis of Computer
Algorithms. Addison-Wesley. Reading, Massachusetts (1974).

Garey, M. R., B. L. Graham, D. 8. Johnson, and D. E. Knuth., "Complexity Results for
Bandwidth Minimization." SI/AM Journal on Applied Mathematics 34 (1978). pp.
477-495,

Garey, M. R. and D. S. Johnson. Computers and Intractibility: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company. San Francisco (1978).

Garey, M. R., D. S. Johnson, and L. Stockmeyer. "Some Simplified NP-Complete Graph
Problems." Theor. Comput. Sci. 1 (1976). pp. 237-267.

Papadimitriou, C. H. "The NP-Completeness of the Bandwidth Minimization Problem.”
Computing 16 (1976). pp. 263-270.

Shamos, M. |. Private communication (1979).

