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Abstract 

Th is r e p o r t contains two Independent papers on problems concerned w i th graph 
embedding—I.e., assignment of the vert ices of a graph to points In a metric s p a c e 
s u b j e c t t o s p e c i f i e d constraints. The first paper in this report , "Embeddabtl l ty o f 
w e i g h t e d g raphs in k - space is strongly NP-hard," examines the problem of ass igning 
t h e v e r t i c e s of a weighted graph to points in a k-dimensional Eucl idean s p a c e 
s u b j e c t t o the constraint that any two ver t ices connected b y an e d g e must b e 
a s s i g n e d to points whose distance is the weight of that edge . W e p r o v e ( b y 
r e d u c t i o n from 3-sat isf iabi l i ty ) that it is NP-hard to determine whether s u c h an 
a s s i g n m e n t e x i s t s , e v e n when k=1 and the edge weights are res t r i c ted t o t a k e on 
t h e v a l u e s 1 and 2. The same reduction used in this proof forms the basis o f p roofs 
o f t h e N P - c o m p l e t e n e s s of several variants of the original problem. T h e s e c o n d 
p a p e r , "Dynamic-programming algorithms for recognizing small -bandwidth graphs In 
polynomial t ime," deals with the problem of bandwidth minimization, in wh ich w e a r e 
g i v e n a g r a p h , G, and a positive integer, k, and asked whether it Is poss ib le t o 
a s s i g n t h e v e r t i c e s of G to distinct integers subject to the constraint that no e d g e 
o f G may h a v e Its endpoints mapped to Integers which differ b y more than k. 
A l though t h e general problem has been proven ( b y C. H. Papadimitriou) t o b e 
N P - c o m p l e t e , w e show that it can be solved in polynomial time for any f i x e d v a l u e o f 
k. As in the f i rs t paper, the methods used to achieve the principal resu l t a re 
e x t e n d e d t o a number of related problems. 

T h i s r e s e a r c h w a s supported in part by the Off ice of Naval Research under C o n t r a c t 
N 0 0 0 1 4 - 7 6 - C - 0 3 7 0 . 



Embeddability of Weighted Graphs in 
k-Space is Strongly NP-Hard 

James B. S a x e 
Computer Science Department 

Carnegie-Mellon Universi ty 
Pittsburgh, Pennsylvania 15213 

Abstract 

In this paper w e invest igate the complexity of embedding e d g e - w e i g h t e d graphs 
Into Eucl idean s p a c e s : Given an (incomplete) e d g e - w e i g h t e d graph, G, can the 
v e r t i c e s o f G be mapped to points in Euclidean k - space in such a w a y that any t w o 
v e r t i c e s c o n n e c t e d by an edge are mapped to points whose distance is equal to the 
w e i g h t o f the e d g e ? We prove (by reduction from 3-sat isf iabi l i ty ) that this problem 
is s t r o n g l y N P - h a r d , Indeed, it is NP-complete e v e n when k=1 and the e d g e we igh ts 
a r e r e s t r i c t e d to take on the values 1 and 2. We also invest igate the re la ted 
problems of approximate embeddability (in which G is a c c e p t e d If its v e r t i c e s can 
b e embedded in k - s p a c e so that the distances b e t w e e n connected v e r t i c e s match 
t h e cor responding edge weights within some small tolerance but G is r e j e c t e d if 
t h e r e is no mapping which meets some other, larger to lerance) and the problem of 
ambiguous embedding (in which we are given both a graph, G, and an embedding for 
G and a s k e d w h e t h e r a second embedding e x i s t s which is not congruent to the 
f i r s t ) . W e show that these related problems are just as hard as the ordinary 
embeddabi l i ty problem. 

Th is r e s e a r c h w a s supported in part by the Off ice of Naval Research under C o n t r a c t 
N 0 0 0 1 4 - 7 6 - C - 0 3 7 0 . 
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1. Introduction 

In many applications of distr ibuted sensor networks 1 there arises the problem o f 

determining the locations of sensors from incomplete (and possibly errorful ) 

information about their d is tances from each other and from f i x e d landmarks* This 

p rompts us to ask the following geometric questions: 

- G i v e n an incompletely speci f ied distance matrix for a s e t of points in 
k - s p a c e , 2 when is the complete distance matrix uniquely determined? 

- Assuming the d istance matrix to be uniquely determined, what is the 
computational complexi ty of actually finding the unspec i f ied 
d i s t a n c e s ? 

In th is paper w e consider the c losely related problem of embeddability: 

- G i v e n a (purpor ted) incompletely specif ied distance matrix for a s e t of 
points in k - s p a c e , determine whether there can actually e x i s t a s e t of 
points sat is fy ing that matrix. 

In S e c t i o n 2 w e introduce definitions that will allow us to phrase s e v e r a l forms o f 

t h e embeddabi l i ty problem in terms of edge-weighted graphs. In Sect ion 3 , we g i v e 

a simple proof that a 1-dimensional version of the embeddability problem Is 

NP -complete. In Sect ion 4, w e show the more difficult and surprising resu l t that this 

s a m e 1-dimensional problem is strongly NP-complete in the s e n s e of G a r e y and 

J o h n s o n [ 1 9 7 9 ] and e x t e n d this result to higher dimensions. In Sect ion 5 we 

a d d r e s s some natural ly -ar is ing questions concerning the suitability o f the Turing 

M a c h i n e model for a problem that inherently involves real numbers, and show t h a t 

t h e p roofs u s e d in Sect ion 4 have relevance to an "approximate embeddabi l i ty" 

problem on the reals . In Sect ion 6 w e discuss versions of the problem in which one 

w a y to complete an incompletely specif ied distance matrix is known and it is des i red 

t o determine w h e t h e r a s e c o n d solution ex is ts . We show that these vers ions are no 

See , for example, Distributed Sensor Nets [1978], 

'For practical purposes the most interesting cases are k=2 and k=3. 
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e a s i e r than corresponding versions studied earlier in the paper . Finally, the 

c o n t r i b u t i o n s of the paper are summarized in Section 7. 

2 . F u n d a m e n t a l C o n c e p t s 

W e b e g i n b y introducing the concepts of weighted graph and embedding: 

D e f i n i t i o n s : 

A w e i g h t e d graph, G = <V,E,W>, is an ordered triple such that e a c h element o f 

E is an unordered pair of distinct elements of V and W is a funct ion mapping E 

into [0 ,oo) # The elements of V are called the ve r t i ces of G. T h e e lements of E 

a r e ca l led the edges of G. For each edge, e, of G, the real number W ( e ) Is 

c a l l e d the we ight of e in G (or simply the weight of e ) . 

D e f i n i t i o n s : 

L e t G = <V,E,W> be a weighted graph, and let k be a posi t ive in teger . T h e n an 

embedding of G in k - space is a function, f, mapping V into the k-dimensional 

E u c l i d e a n s p a c e , IR^, such that, for each edge, e = { v , w } , of G, | f ( v ) - f ( w ) | = 

W ( e ) . G is said to be embeddable in k - space , or k -embeddable , i f f t h e r e 

e x i s t s an embedding of G in k - space . 

F o r a n y p o s i t i v e integer , k, the problem of k-embeddabil ity may now be s t a t e d as 

f o l l o w s : 

P r o b l e m ( k - E m b e d d a b i l i t y ) : 

G i v e n an arb i t rary weighted graph, G, determine whether G Is k - e m b e d d a b l e . 

In S e c t i o n s 3 and 4 w e will wish to restr ict the class of w e i g h t e d graphs under 

c o n s i d e r a t i o n , s o that the notion of NP-completeness (which is de f ined in terms o f 

T u r i n g mach ines ) will make sense in relation to Embeddabil ity. W e t h e r e f o r e 

i n t r o d u c e the fol lowing definition. 

D e f i n i t i o n : 

L e t S be any s u b s e t of [0,oo). Then, an S - w e i g h t e d graph is a w e i g h t e d g raph , 

G , s u c h tha t the weight of each edge of G is an element of S . W e wil l 

g e n e r a l l y r e f e r to Z + - w e i g h t e d graphs as in teger -we ighted g raphs . 
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In S e c t i o n 5 w e will return to the question of graphs with real edge we ights . 

3. The Weak NP-completeness of 1 -Embeddability 

In th is s e c t i o n , w e demonstrate the weak NP-completeness of the problem of 

1-Embeddabi l i t y of in teger -weighted graphs. To do this, we f i rs t show 

c o n s t r u c t i v e l y that 1-Embeddability Is in NP. We then use a reduct ion from 

Par t i t i on^ to s h o w completeness. 

Theorem 3.1: 

1 -Embeddabi l i t y of in teger -weighted graphs is in NP. 

P roof : 

T o c h e c k the 1-embeddability of any in teger -weighted graph, a NDTM need 
only 

1. Partit ion the graph into disjoint connected subgraphs, 
2 . G u e s s the direction of each edge of the graph, and 
3 . C h e c k the cons istency of each disjoint connected subgraph. 

T h e s e operat ions can clearly be carried out in (nondeterministic) polynomial 

t ime. • 

T h e o r e m 3 .2 : 

1 -Embeddabi l i t y of in teger -weighted graphs is NP-complete. 

P r o o f : 4 

W e will show the NP-completeness of 1-Embeddability by reduct ion from 

Part i t ion. Let S = ( a - j , a 2 , . . . » a n } be a multiset of posit ive In tegers . In 

polynomial time w e may construct from S a description of the cyc l i c g raph 

3 T h e Partition problem calls for partitioning a (multi-)set of integers into two subsets with equal sums, and is 
known to be NP-complete; see Garey and Johnson [1979], 

^The construction used in this theorem and that used in the proof of Lemma 4.4 were independently developed 
by Yemini [1978] , who used them to show the (weak) NP-completeness of 2-Embeddability of integer-weighted 
graphs. 
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G = <V,E ,W> w h o s e edge weights are the 8 j , that is 

V = { v 0
 v n - 1 > ' 

E = U v r V ( i + 1 m o d n ) } | 0<i<n}, and 
W = { ( { V j , v ( i + 1 m o d n ) } , a , ) | 0<i<n}. 

If f is an embedding of G in the line, then the multisets 

S t = (a ) | f ( V j ) < f ( v ( | + 1 m o d n ) ) } and 
S 2 = { a , | f ( v , ) > f ( v 0 + 1 m o d n ) ) } 

c o n s t i t u t e a part it ion of S into two pieces whose sums are equal . Similarly, 

a n y s u c h part i t ion of S yields a 1-Embedding of G. • 

4. The S t r o n g N P - c o m p l e t e n e s s o f 1 - E m b e d d a b i l i t y 

W e now come to our k e y theorem, which asserts that the problem of determining 

w h e t h e r an i n t e g e r - w e i g h t e d graph is embeddable in the line remains N P - c o m p l e t e 

e v e n if the e d g e w e i g h t s are restr ic ted to be no greater than four. 

T h e o r e m 4.1 

1 -Embeddab i l i t y of { 1 , 2 , 3 , 4 } - w e i g h t e d graphs is NP-complete . 

P r o o f : 

Our proof c o n s i s t s of a reduction from 3-Satisf iabi l i ty (which w a s s h o w n to be 

N P - c o m p l e t e b y Cook [ 1 9 7 1 ] ) to 1-Embeddability of { 1 , 2 , 3 , 4 } - w e i g h t e d 

g r a p h s . L e t E be any Boolean expression in conjunct ive normal form wi th t h r e e 

l i terals in e a c h c lause . Our goal will be to construct a { 1 , 2 , 3 , 4 } - w e i g h t e d 

g r a p h , G , w h i c h is embeddable iff E is satisf iable. W e let n be the number o f 

v a r i a b l e s occur r ing in E and m be the number of c lauses in E. Throughout th is 

p roof , w e wil l use the convention that the variables of E will be i n d e x e d b y " I " 

( w h i c h wil l t h e r e f o r e range from 1 through n), the c lauses of E will be i n d e x e d 

b y " J M ( rang ing from 1 through m), and the literals within e a c h c lause will be 

i n d e x e d b y " k " (ranging from 1 through 3) . Thus E has the form 

e = n c j , 
1<J<m 

w h e r e e a c h c lause , C j , has the form 

C j = Z Lj ,k. 
1<k<3 



W E I G H T E D GRAPH E M B E D D A B I L I T Y 5 

and e a c h l iteral, L j ^ . has the form 

L j , k = X| or L J $ k = X, 

for some i, 1<i<n. We will also use throughout the proof the convent ion tha t 

" f " r e p r e s e n t s a hypothetical 1-embedding of G (or of the part of G w e h a v e 

c o n s t r u c t e d so far ) . 

T o cons t ruc t G, we will use the "building blocks" shown in Figure 4.1. W e 

beg in with the subgraph shown in Figure 4.1(a) . We assume without loss o f 

genera l i t y that f ( A ) = 0 and f (B) = 2. This assumption constrains f to ass ign 

e a c h of the Xj (which w e identify with the variables of E) to 1 or -1 (wh ich we 

i dent i f y wi th the Boolean values TRUE and FALSE, r e s p e c t i v e l y ) . Note that 

e a c h possible mapping of the Xj into { 1 , - 1 } corresponds to some assignment o f 

t ru th va lues to the X ( . In the remaining s teps of the construct ion , we will a d d 

e d g e s which have precisely the e f fec t of constraining f to map the Xj t o 

{ 1 , - 1 } in such a w a y that the corresponding assignment of the X| sat i s f ies E. 

T h e n e x t s t e p in our construction is to augment G by adding the e d g e s s h o w n 

in F igure 4 .1(b) for each i, 1<i<n. The heavy lines in that f igure r e p r e s e n t 

a l r e a d y - e x i s t i n g edges . We now have ver t ices Xj such that for e a c h var iab le , 

X j , f maps Xj to 1 (TRUE) iff it maps Xj to -1 (FALSE) , and v i c e - v e r s a . T h e 

poss ib le mappings from { X j } U { X j } to { 1 , - 1 } under f now cor respond p r e c i s e l y 

t o the possible (consistent ) truth assignments of the Xj and Xj , but still wi thout 

r e g a r d to whether those assignments sat is fy E. 

For the final s tep of our construction, we add the edges indicated in Figure 

4 . 1 ( c ) for each j , 1<j<m. The vert ices Lj ^ are identified with the Xj and Xj 

p r e c i s e l y as the corresponding literals, L j ^ , are formally Identical wi th the Xj 

and X j . Once again, the heavy lines indicate edges which w e r e p r e s e n t at 

ear l ier s t a g e s of the construction. Careful s tudy of the graph in Figure 4 . 1 ( c ) 

will r e v e a l that it is impossible to embed it in the line In such a w a y that A Is 

s e n t to 0, B is sent to 2, and all three of the L j k are sent to -1 (FALSE) , but if 

one or more of the Lj ^ are to be sent to 1 (TRUE) , then an embedding is 

poss ib le (in fac t , e x a c t l y one such embedding is possible) . Thus , for e a c h j , 

1<j<m, the e f f e c t of the edges in Figure 4.1(c) is prec ise ly to constra in f t o 

map the Xj to { 1 , - 1 } in such a way that the corresponding truth assignment for 

t h e Xj sat is f ies clause C j . 

T h e e f f e c t of ail the edges of G is therefore to constrain f to map the Xj t o 

{ 1 , - 1 } in such a w a y that the corresponding assignment of t ruth va lues to the 

Xj sa t i s f ies E. If there is no such assignment then G is not 1-embeddable* If 
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x{ x 2 

(a) Implementation of variables, (b) Implementation of a negative literal. 

(c) Implementation of a disjunctive clause. 

F igure 4.1 Building blocks for transforming an express ion in 3 -CNF to a g r a p h . 

t h e r e are any assignments sat isfy ing E, then for each such assignment G c a n 

b e (un ique ly ) 1 -embedded by a function sending A to 0 and B to 2 and 

mapping the Xj to { 1 , - 1 } in accordance with that assignment. Finally, it is 

c l e a r that the preceding construct ion can be carried out In polynomial t ime. 

Th is completes the proof . • 

For fu tu re r e f e r e n c e , w e note that the construction used in the preced ing proof Is 
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s u c h t h a t the 1-embeddings of G are in one - to -one cor respondence (up to 

t rans la t ion and ref lect ion) with the truth assignments that sat is fy E. W e note also 
t h a t t h e p r e c e d i n g theorem immediately yields the following result : 

C o r o l l a r y 4 .2 : 

1 -Embeddab i l i t y of integer -weighted graphs is strongly NP-complete. 

P r o o f : 5 

It s u f f i c e s to note that translation of a sequence of numbers In { 1 , 2 , 3 , 4 } from 

b inary to unary can be accomplished in linear time and causes only a c o n s t a n t 

f a c t o r i n c r e a s e in the length of the input. • 

W e may a lso Immediately der ive : 

C o r o l l a r y 4 . 3 : 

1 -Embeddabi l i t y of { 1 , 2 } - w e i g h t e d graphs is NP-complete. 

P r o o f : 

C o n s i d e r the graphs shown in Figure 4.2. By replacing edges of we igh ts 3 and 

4 w i t h configurations T 3 and T 4 , respect ive ly , w e can r e d u c e any 

{ 1 , 2 , 3 , 4 } - w e i g h t e d graph, G, to a { 1 , 2 } - w e i g h t e d graph, H, tha t Is 

1 -embeddab le iff G is 1 -embeddable. • 2 2 

2 2 2 

Figure 4.2. Building long "edges" from short edges . 

In f a c t , fo r any pos i t ive integer, k, the graph H so constructed will be k -embeddable 

Another NP-complete problem involving a form of graph embedding is the Bandwidth Minimization Problem ( s e e 
Papadimitriou [1976] ) . In Appendix I we exhibit a reduction from Bandwidth Minimization to Embeddability. That 
reduction suff ices to show the strong NP-completeness of 1-Embeddability of integer-weighted graphs, although it 
is somewhat less economical than the construction given in Theorem 4.1. Also, it cannot be used as a basis for 
deriving the results presented in Sections 5 and 6. 
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I f f G is k -embeddab le . W e may use this fact to prove our n e x t lemma. 

4 8 

4 8 

Figure 4.3. Gadgets for adding a dimension. 

Lemma 4.4: 

For e v e r y pos i t i ve integer , k, k-Embeddability of { 1 , 2 } - w e i g h t e d graphs Is 

N P - h a r d . 

P r o o f ; 

Cons ide r the graphs shown in Figure 4.3. Given any { 1 , 2 } - w e i g h t e d graph , G , 

e a c h e d g e of G having weight 1 may be replaced by the R-j and e a c h e d g e o f 

w e i g h t 2 b y R 2 , y ielding a graph, H, which, for any posit ive integer , k, Is 

embeddable in ( k + 1 ) - s p a c e iff G is embeddable in k - s p a c e . By the methods o f 

Theorem 4 .3 , H may be transformed into a { 1 , 2 } - w e i g h t e d graph, J , tha t Is 

embeddable in p r e c i s e l y those spaces in which H Is embeddable. T h e 

t ransformat ion from G to J involves only a constant factor inc rease in t h e 

length of a spec i f i cat ion of the graph and can c lear ly be accompl ished in 

polynomial t ime. It fol lows by mathematical induction that , for any pos i t i ve 

in teger , k, 1 -Embeddabi l i ty is polynomial-time reducible to k -Embeddabi l l ty fo r 

{ 1 , 2 } - w e i g h t e d graphs . • 

O n c e again , w e note that the (k+1 ) -embeddings of J will be in o n e - t o - o n e 

c o r r e s p o n d e n c e (up to translat ion, rotation and ref lect ion) with the k -embeddings o f 

G . Final ly , Theorem 4.4 g i ves us the following result . 

C o r o l l a r y 4.5: 

L e t k be any pos i t i ve integer. Then k-Embeddabil ity of i n t e g e r - w e i g h t e d 

graphs is s t rong ly N P - h a r d . 

P r o o f : 

Th is resul t fo l lows from Lemma 4.4 and the same reasoning used In the proof o f 
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Corol lary 4 .2 . • 

5. Graphs with Real-Valued Edge Weights 

W e will now d iscuss the applicability of NP-completeness to problems w h o s e 

Inputs are real numbers in general , and to embedding problems in part icular . A 

number of reasons for doubting the relevance of the Turing Machine model seem 

natura l l y to p r e s e n t themselves . 

- NP -comple teness is def ined for language recognition problems on 
Turing Machines, which inherently can deal only with integers and not 
with arbi t rary reals . 

- G i ven a "random" embedding of an unweighted graph into a Eucl idean 
s p a c e , any t w o of the edge weights Induced by the embedding will be 
Incommensurable with probability 1. Moreover, if the graph Is 
o v e r c o n s t r a i n e d and the dimension of the space is at least two , then 
rounding the induced edge -we ights to multiples of some small d is tance 
will almost a lways produce a weighted graph that is not embeddable in 
the s p a c e . 

In o r d e r to deal with these issues, we introduce the notion of approx imate 

e m b e d d i n g s . 

Def in i t ions . 

L e t G be a we ighted graph and € be a non-negative real number. T h e n an 

c -approx imate k-embedding of G is a function, f, that maps the v e r t i c e s of G 
into Eucl idean k - s p a c e such that for e v e r y edge , { u , v } , of G f 

1-c < | f ( u ) - f ( v ) | / W ( { u , v } ) < If such an embedding e x i s t s , then G Is sa id to 

b e e -approx imately k-embeddable. 

G i v e n a pos i t i ve integer , k, and two reals, c<| and *2» such that 0 < €-j < € 2 i w e m a y 

n o w def ine the following more " robust" embeddability problem: 

Problem (e-j ^ - A p p r o x i m a t e k-Embeddabil ity): 
G i v e n a we ighted graph, G, assert correct ly either ( 1 ) that G Is 

€ 2 - a p p r o x i m a t e l y k-embeddable (this is called accepting G) or ( 2 ) that G Is not 

e-j - approx imate l y k-embeddable (this is called rejecting G ) . 
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N o t e t h a t if the least i for which G is c-approximately k-Embeddable l ies in t h e 

i n t e r v a l ( c -| ,£ 2 ] , then it is permissible either to accept or to r e j e c t G. In this problem 

d e f i n i t i o n , w e h a v e attempted to capture, without introducing inordinately many 

c o m p l e x i t i e s of detai l , the essential problem of embedding as It would app ly to rea l 

c o m p u t e r s g i v e n i n e x a c t data . 

W e n o w wish to invest igate the computational complexity of iy^-Approximate 

E m b e d d a b i l i t y problems. Is it possible, for example, to solve all such problems w h e r e 

c-j Is s t r i c t l y less than € 2 ' n t , m e polynomial in the size of a speci f icat ion of G ( w h e r e 
t h e d e g r e e of the polynomial, or e v e n just the "constant" fac tor , d e p e n d s o n 

(c 2 ^ 1 r 1 )? 

It t u r n s out that such polynomial solutions are not possible in the g e n e r a l c a s e 

( a s s u m i n g that P ^ NP). In particular, w e have the following result . 

T h e o r e m 5.1: 

L e t c-j and € 2
 b e r e a l numbers such that 0 < c<| < c 2 < 1/8. T h e n 

€«j , c 2 - A p p r o x i m a t e 1-Embeddability of in teger -weighted graphs is N P - c o m p l e t e . 

P r o o f : 

W e note that the embeddability propert ies of the graphs used In t h e p roof o f 

T h e o r e m 4.1 depend only on cyc les of length no greater than 16 hav ing e d g e s 

w h o s e lengths are multiples of 1. It follows from this that , for a n y € < 1/8, a n y 

s u c h graph is c -approximately 1-embeddable iff it is ( e x a c t l y ) 1 - e m b e d d a b l e . 

a n d the d e s i r e d result is at hand. • 

It Is in te res t ing to examine Theorem 5.1 to see just what it Is say ing In terms o f 

l a n g u a g e recogni t ion . For each non-negat ive real number, e, let L ( be the l a n g u a g e 

c o n s i s t i n g of all descr ipt ions (in some agreed-upon form) of c - a p p r o x i m a t e l y 

1 - e m b e d d a b l e i n t e g e r - w e i g h t e d graphs. For each € in the interval [ 0 , 1 / 8 ) , t h e 

l a n g u a g e L ( is a s u p e r s e t of Lg and a str ict subset of L ^ Q . There are a lso many 

o t h e r l a n g u a g e s which contain Lg and are contained In L ( , for some € < 1/8, b u t 

w h i c h a r e not equal to L € for any c. Theorem 5.1 says that e v e r y one o f t h e s e 
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l a n g u a g e s Is s t rong ly NP-hard. 

It is in terest ing to note that Approximate 1-Embeddability problems r e s t r i c t e d t o 

g r a p h s consist ing of a single cyc le (such as were used in the proof of Theorem 3 .2 ) 

a re a l w a y s so lvable in polynomial time if e 2 is positive.® This shows that the w e a k 

N P - c o m p l e t e n e s s result given in Section 3 does not s a y all there was to s a y about 

t h e d i f f i cu l ty of the practical (/.e., with inexact data, etc . ) form of the problem. 

L o o s e l y speaking , w e could say that we have shown the notion of strong vs. w e a k 

N P - c o m p l e t e n e s s to be significant even for problems that naturally involve rea ls 

r a t h e r than in tegers . It should be noted, however , that Theorem 5.1 fo l lowed not 

from Theorem 4.4 but rather from the particular construction used in the proof o f 

T h e o r e m 4.4. 

T h e proof of Theorem 5.1 depended on the fac t that, for suff ic ient ly small €, 

c -approx imate 1-embeddabil i ty is equivalent to ordinary 1-embeddabil ity for the 

c l a s s of w e i g h t e d graphs w e constructed In our proof of Theorem 4.1. By making 

th is same observat ion regarding approximate k-embeddabil ity of the w e i g h t e d 

g raphs c o n s t r u c t e d in the proof of Theorem 4.4, w e arrive at the following resul t . 

Theorem 5.2 : 

L e t k be any posit ive integer. Then there e x i s t s a posit ive real number, €, 

s u c h that O,c-Approximate k-Embeddability of in teger -weighted graphs is 

N P - h a r d . 

P roof : 

T h e argument Is outlined in the above t e x t . Details are left to the reader . • 

It has also b e e n pointed out ' ' that ^ ^ " A p p r o x i m a t e k-Embeddabil i ty o f 

6 T h i s fo l lows from the existence of fast approximation algorithms for Partition. See, for example, Lawler 
[1977] . 

7 T h e author regretfully cannot recall which participant at the 1979 Allerton conference made this observation; 
he is willing and eager to accept reminders or clues. 
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I n t e g e r - w e i g h t e d graphs is in NP° whenever € 2 * C V T h i s m a y b e s e e n b y 

c o n s i d e r i n g an algorithm which nondeterministically assigns v e r t i c e s to points In 

k - s p a c e w h o s e coord inates must all be multiples of (*2~€1 ) / k ^ ^ . 

6 , A m b i g u o u s E m b e d d i n g P r o b l e m s 

A n o t h e r var iat ion on the embeddability problem that may arise In p rac t i ca l 

app l i ca t ions is that of "ambiguity of solution." Given an incomplete w e i g h t e d g raph 

a n d some embedding of that graph into a Euclidean space , w e may wish to know 

w h e t h e r the g i v e n embedding is unique. For example, are the nodes of our s e n s o r 

n e t w o r k real ly w h e r e w e think they are, or might they be in some v e r y d i f f e r e n t 

c o n f i g u r a t i o n ? T o pose the problem more precisely , w e introduce the fol lowing 

d e f i n i t i o n s . 

De f in i t i ons : 

L e t G be a . w e i g h t e d graph and k be a posit ive integer . T h e n t w o 

k - e m b e d d i n g s , f and g, of G are said to be congruent Iff for each t w o v e r t i c e s , 

u and v , o f G, | f ( u ) - f ( v ) | = |g(u)-g(v)|. A k-embedding, f , of G is sa id t o b e 

unique (up t o c o n g r u e n c e ) iff eve ry k-embedding of G is congruent to f , and in 

th is c a s e G is sa id to be uniquely k-embeddable. If G has t w o or more 

n o n - c o n g r u e n t k -embeddings , then G is ambiguously k -embeddable. 

For a n y pos i t i ve in teger , k, w e may now define the problem of Ambiguous 

k - E m b e d d i n g as fo l lows : 

Prob lem (Ambiguous k -Embedding) : 

G i v e n a w e i g h t e d graph , G, and a k-embedding, f , of G, determine w h e t h e r G Is 

ambiguously k -embeddable (/.e., whether there e x i s t s a k-embedding of G 

w h i c h is not congruent to f ) . 

In th is s e c t i o n , w e will show that the Ambiguous Embedding problems d e f i n e d 

a b o v e are jus t as hard as the ordinary Embeddability problems w e s t u d i e d In 

^St r ic t l y speaking, at least one language including ail descriptions of €^-approximately k-embeddable 

integer -weighted graphs and containing only descriptions of € 2 ~ a P P r o x ' m a * e ' y k-embeddable integer-weighted 

graphs is in NP. 
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S e c t i o n s 2 through 4. The methods we will use are of general in terest in that t h e y 

a r e potent ia l ly applicable to "ambiguous" versions of many other NP-complete 

p rob lems . 

W e will begin by formalizing the idea of "ambiguous" vers ions of problems. S ince 

w e h o p e that the methods of this sect ion will find more w idespread appl icat ion, w e 

wi l l w o r k in a more general sett ing than is necessary for the task at hand. For this 

s a m e r e a s o n , our presentation of these ideas will be somewhat more formal and 

more a t t e n t i v e to mathematical fine points than it would be o therwise . 

For the purpose of relating a problem, X, to the language c lasses P and NP, w e 

normal ly phrase X as a recognition problem; we identify X with a language, L, s u c h 

t h a t w e may ask whether any instance, I, of X is in L. We are concerned here w i th 

c a s e s In which the defining property of L is that I is in L iff there e x i s t s some 

o b j e c t . 0 , such that P( l ,0) , for some f i xed predicate, P, which w e call a defining 

predicate for X . 9 In such a case , we refer to an 0 such that P(I .O) as a solution 

o f I. 

W e sometimes wish to regard two solutions of (an instance o f ) a problem as 

e s s e n t i a l l y the same even if they are not actually identical. W e may do this b y 

in t roduc ing an equivalence relation, =, on the space of potential solutions. Note that 

s must b e such that if 0 s 0' then for any problem instance, I, P ( l ,0 ) i ff PO.O ' ) ; s u c h 

an e q u i v a l e n c e relation is said to respect the predicate P. G iven a problem, X , 

d e f i n e d b y a pred icate , P, and given an equivalence relation, s 9 which r e s p e c t s P, 

w e may def ine an "ambiguous" version of X as follows: 

Problem (Ambiguous X up to s ) : 

G i v e n an instance, I, of X and a solution, 0, of I, determine w h e t h e r t h e r e 

e x i s t s a solution, 0', of I such that 0' i 0. 

N o t e t h a t the problem of Ambiguous k-Embedding defined above may now be 

9 F o r example, if X is the problem of 1-Embeddability of integer-weighted graphs, then an instance, I, of X is a 
description of an integer-weighted graph; the language, L, consists of all descriptions of 1-embeddable 
integer -weighted graphs; and the predicate, P, might be defined so that P(l,0) is TRUE iff 0 is a 1-embedding of 
the integer-weighted graph described by I. 



14 WEIGHTED GRAPH E M B E D D A B I L I T Y 

d e s c r i b e d as "Ambiguous k-Embeddability up to congruence." A subtle point w h i c h 

may h a v e e s c a p e d the reader 's attention is that different predicates may def ine 

t h e same l a n g u a g e , 1 0 and the definition of "Ambiguous X up to a1 1 depends on t h e 

def in ing p r e d i c a t e , P, as well as on =. In the t e x t below, the intended P should 

a l w a y s be c lear from c o n t e x t . 

W h e n w e speak of "Ambiguous X" (without mention of any s ) , for some p rev ious l y 

d e f i n e d X, w e will mean "Ambiguous X with respect to equality." Following th is 

c o n v e n t i o n , w e can embark on the path to showing the NP-hardness of Ambiguous 

k -Embedding problems, by defining the problems of Ambiguous 3-Sat is f labi l i ty and 

Ambiguous 4-Sat is f iabi l i ty as follows: 

Problems (Ambiguous 3 - (4 - )Sat i s f iab i l i t y ) : 

G i v e n an e x p r e s s i o n , E, In 3-CIMF ( resp . 4 -CNF) and an assignment of t ru th 

v a l u e s for the variables of E which satisf ies E, determine whether the re e x i s t s 

a n y o ther assignment which sat isf ies E. 

Lemma 6.1: 

Ambiguous 4-Sat isf iabi l i ty is NP-complete. 

P r o o f ; 

W e will p r o c e e d by reduction from 3-Satisf iabi l i ty . Consider an e x p r e s s i o n , E, 

in 3 - C N F wi th variables X^, . . . ,X^ and clauses C<|,...,C|y|. We introduce a n e w 

va r iab le , Y, and define a function, F, on Y and the Xj as follows: 

F s ( Y A I] X, ) V ( Y A E ) 
1<i<N 

• < Y V IT X,) A ( Y V E ) 
1<i<N 

1 ^ T h i s fact is used to great advantage in the recent work on fast probabilistic tests for primality ( see , for 
example, Rabin [1976]) . Briefly, the usual defining predicate for the problem of Compositeness (given a positive 
integer, I, is I composite?) is given by P(l,0) = 0 is an integer divisor of I such that 1<0<l. Unfortunately, by this 
definition solutions for a given instance may be very rare and hard to find, as in the case where I is the product of 
t w o large primes. The fast probabilistic tests rely on other "defining" predicates for Compositeness for which 
solutions (called "witnesses" in the literature) are guaranteed to be common. 
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Note that F may be sat isf ied by assigning the value TRUE to Y and to all the X|. 

A n y o ther assignment can sat isfy F iff it makes Y FALSE and ass igns t r u t h 

v a l u e s to the X| in a w a y that satisfies E. Finally, it Is c lear that a 4 - C N F 

e x p r e s s i o n for F can be constructed from E in polynomial time. • 

Lemma 6 . 2 : 

Ambiguous 3 -Sat is f iab i l i t y is NP-complete. 

P r o o f : 

W e will s h o w a polynomial-time reduction from Ambiguous 4 -Sat i s f iab i l i t y t o 

Ambiguous 3 -Sat is f lab i l i t y . Consider any express ion , E, in 4 - C N F . For e a c h 

c l a u s e , C j = L J J +Lj 2
+ L j 3 + L j 4 (where L J J , L j 2 t Lj 3 , and L j ^ are l i terals o f 

E ) , o f E w e introduce a new variable, Qj , and define C j as the fol lowing 

con junc t ion of c lauses : 

C i = ( L j , 1 V L j , 2 V Q j ) A < L j , 3 v L j T 4 v Q j > A •(Cj.aVLj^VQj) A 

( L j , 3 v L j , 4 V Q j ) A ( L j , 3 v L j , 4 v Q j ) -

Note that for each assignment of truth values to L j j , L J ^ I Lj T 3* and L j ^ s u c h 

t h a t C j is sat is f ied there is exact l y one assignment for Q j such that C j Is 

s a t i s f i e d . ^ W e define E' as the conjunction of all the C j . It fol lows that fo r 

e a c h assignment , A, to the variables, Xj, of E which satisf ies E there is e x a c t l y 

one ass ignment , B, of the Qj such that E f is sat isf ied by A U B . Finally, it Is 

c l e a r that E' and B can be computed in polynomial time from E and A. • 

In t h e p rev ious proof, we reduced Ambiguous 4-Sat isf iabi l i ty to Ambiguous 

3 - S a t i s f i a b i l i t y b y exhibiting a reduction from ordinary 4 -Sat is f iabi l i ty to o rd inary 

3 - S a t i s f i a b i l i t y in such a w a y that there ex is ts a polynomial-t ime-computable 1-1 

c o r r e s p o n d e n c e b e t w e e n the solutions (/.e., satisfying assignments) of ins tance o f 

4 - S a t i s f i a b i l i t y (/.e., an express ion in 4 - C N F ) and the solutions of the ins tance o f 

3 - S a t i s f i a b i l i t y to which it is reduced. We may generalize this technique b y def in ing 

1 1 Drawing a 5-variable Karnaugh map for the terms of Cj (with Qj as the fifth variable) will make the truth of 
this assertion immediately clear. 
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t h e c o n c e p t of a solution-preserving reduction: 

Def in i t ions : 

L e t X and Y be problems defined by predicates P^ and Py, r e s p e c t i v e l y , and 

let and S y be equivalence relations respect ing P^ and Py r e s p e c t i v e l y . 

T h e n a reduction from X to Y is a polynomial-time function from instances o f X 

to ins tances of Y such that for any instance, l x of X, solutions for f ( l ^ ) e x i s t 

i f f solutions for l x e x i s t . A reduction is said to be solut ion-preserv ing from 

up to =y if there e x i s t s a 1-1 function, G, sending equivalence c l a s s e s under 

to equiva lence c lasses under Sy and having the following propert ies : 

1. For any instance, l^ , of X, the restriction of G to the s e t of all 
equiva lence c lasses whose elements are solutions to l^ Is onto 
the s e t of all equivalence classes whose elements are solutions 
to f ( l x ) . 

2. There e x i s t s a polynomial-time computable function, g, such that , 
for any instance, l x , of X and a n y 1 2 solution, 0, of l^ , 

g ( l ,0 ) * G ( [ 0 ] ) , 

w h e r e [ 0 ] is the equivalence class (under s ^ ) of which 0 is a 
r e p r e s e n t a t i v e . 

W e may now s t a t e a lemma which will be of use in proving the NP-hardness of the 

"ambiguous" vers ions of various problems. 

Lemma 6.3 : 

L e t X and Y be problems defined by predicates P^ and Py, r e s p e c t i v e l y , and 

let =x and S y be equivalence relations which respec t P^ and Py, r e s p e c t i v e l y . 

Le t f be a reduction from X to Y which is solut ion-preserving from * x up to S y . 

Suppose that Ambiguous Y up to ^y is NP-hard. Then Ambiguous X up to is 

N P - h a r d . 

1 2 P l e a s e go back and finish reading the definition before looking at this footnote. There is a subtle point being 
glossed over here. The function g must operate on representations of solutions rather than actual solutions, and 
not all solutions will necessarily be representable (for example, any weighted graph of three vertices and t w o 
edges has uncountably many 2-embeddings which are distinct with respect to congruence). Note that the definition 
of "Ambiguous X up to depends on the selection of some scheme for representing solutions to instances of X. 
W e only require g( l ,0) to be defined in the case that 0 is representable under the chosen scheme. 
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P r o o f : 

P roduce funct ions G and g as given by the preceding definition. W e note that 

a n y ins tance , Ox»°x) o f Ambiguous X up to s x can be reduced in polynomial 

time to 0 Y , O Y ) , where l Y = f ( l x ) and 0 Y = g(lx»°x^ Moreover l Y has solut ions 

w h i c h are not equivalent to 0 Y under Sy iff |^ has solutions wh ich are not 

equ iva lent to 0 ^ under s x - • 

O b s e r v e that our proof of Lemma 6.2 depends simply on the f a c t that the 

t ransformat ion from E to E' is a reduction from 4-Satisfiabil ity to 3 -Sat is f lab i l i t y 

w h i c h is so lut ion -preserv ing from equality up to equality. We now employ Lemma 6.3 

t o s h o w the resul ts claimed at the beginning of this sect ion. 

T h e o r e m 6.4: 

Ambiguous 1-Embedding of { 1 , 2 } - w e i g h t e d graphs is NP-complete and 

Ambiguous k-Embedding of { 1 , 2 } - w e i g h t e d graphs is NP-hard for a n y pos i t i ve 

in teger k. 

P r o o f : 

Th is resul t is a consequence by Lemma 6.3 of the following eas i ly v e r i f i e d 

f a c t s : 

I . T h e reduction used in the proof of Theorem 4.1 is 
so lut ion -preserv ing from equality up to congruence in 1 - s p a c e . 

2 . For any posit ive integer, k, the reduction used In the proof of 
Corol lary 4.3 is solution preserving from congruence in k - s p a c e 
up to congruence in k - space . 

3 . For any posit ive integer, k, the reduction used in the proof o f 
Lemma 4.4 is solution preserving from congruence in k - s p a c e up 
to congruence in ( k + 1 ) - s p a c e . 

• 

C o r o l l a r y 6.5: 

Ambiguous 1-Embedding of integer -weighted graphs is strongly NP-complete 

and Ambiguous k-Embedding of integer -weighted graphs is strongly NP -hard for 

a n y pos i t i ve integer , k. 
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P r o o f : 

T r i v ia l from Theorem 6.4. • 

7. Conclusions 

T h e resu l t s of this paper fall into two c lasses, those of interest t o p e r s o n s 

c o n c e r n e d wi th embedding problems (such as the sensor positioning problem) and 

t h o s e t h a t are of more general theoretical interest . To those concerned w i t h f inding 

e f f i c i e n t solut ions to the Embedding problem (given a weighted graph, f ind " t h e " 

e m b e d d i n g ) , t h e s e results say what all NP-completeness results s a y : "You a re 

t r y i n g t o s o l v e the wrong problem.1 1 Rather than looking for an ef f ic ient w o r s t - c a s e 

a lgor i thm, it would be more promising to seek an algorithm that g i v e s good 

p e r f o r m a n c e in c a s e s which arise in practice (for example, cases in which the g raph 

is h igh ly overcons t ra ined ) . Pursuing this topic, we present In Appendix II a 

l i n e a r - t i m e algorithm for determining whether any complete graph is k -embeddab le 

( f o r a n y f i x e d k ) . Some other positive results are given by Yemlnl [ 1 9 7 9 ] . 

T h e most spec i f i c result of theoretical interest is our d iscovery of some n e w 

strongly N P - h a r d geometric problems, and our use of some interesting g a d g e t s t o 

c a r r y o u t the proofs of NP-hardness. Of more general interest are the t w o n e w 

c l a s s e s o f problems introduced in Sections 5 and 6. The " ^ ^ - a p p r o x i m a t e " 

p rob lems int roduced in Section 5 offer a new w a y of looking at the notion o f 

N P - c o m p l e t e n e s s in the contex t of problems involving continuous var iab les . As w e 

h a v e s e e n , w e a k NP-completeness may not say all there is to s a y In this c o n t e x t . 

"Ambiguous solut ion" problems address the question of determining whe the r a known 

so lu t ion t o a problem is in fact the unique solution. In Sect ion 6, w e e x h i b i t e d a 

fundamenta l NP-complete problem, 3-Satisfiabil ity, whose ambiguous ve rs ion is a lso 

N P - c o m p l e t e , and exhib i ted a method for obtaining new NP-completeness resu l ts fo r 

" a m b i g u o u s " vers ions of other problems, namely the use of reductions that p r e s e r v e 

u n i q u e n e s s of solution. 
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Appendix I: Reduction from Bandwidth Minimization 

In this append ix w e give a second proof of Theorem 4.2, using a reduct ion from 

t h e problem of Bandwidth Minimization. 

Def in i t ions : 

Le t G be a graph with v e r t e x set V, and let N = |V|. A layout of G Is a 

o n e - t o - o n e mapping, f, from V onto {1, . . . ,N} . The bandwidth of f is def ined as 

the maximum distance between the images under f of any two v e r t i c e s that 
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are c o n n e c t e d by an edge of G. That is, 

bandwidth ( f ) = max{| f (u ) - f ( v )| | { u , v } is an edge of G } . 

T h e bandwidth of G is def ined as the least possible bandwidth for any layout 

o f G . Thus , 

Bandwidth(G) = min{bandwidth(f) | f is a layout of G } . 

Problem (Bandwidth Minimization): 

G i v e n an arbi t rary graph, G, and a positive integer, k, determine w h e t h e r 

Bandwid th (G ) < k. 

Bandwid th Minimization w a s shown to be NP-complete by Papadimitriou [ 1 9 7 6 ] . 

Us ing th is resul t , w e can g ive a second proof of the following theorem: 

T h e o r e m 1.1 (Corol lary 4 .2) : 

1 -Embeddabi l i ty of in teger -weighted graphs is strongly NP-complete. 

( S e c o n d ) Proof : 

W e will p r o c e e d by reduction from Bandwidth Minimization. Let G be a graph of 

N v e r t i c e s , and let k be a positive integer. We assume without loss o f 

genera l i t y that k < N. We now construct an edge -we igh ted graph, G 1 , as 

fo l lows : 

1. For e a c h v e r t e x , v , of G, let there be a distinct v e r t e x , v ' , of G\ 
G' will also have some additional ver t ices as required b y the 
remaining s t e p s of the construction. 

2 . For e a c h e d g e , { u , v } , of G, connect u' and v ' by a chain of k 
e d g e s , one ( i t doesn't matter which) having weight (k+1)/2 and 
the r e s t having weight 1/2. 

3 . For e a c h t w o ve r t i ces , u and v , of G which are not connected b y 
an e d g e of G, connect u' and v ' by a chain of N-1 edges , one 
having weight N/2 and the rest having weight 1/2. 

Note that for any bandwidth < k layout, f, of G, there e x i s t s at least one 

1 -embedd ing , f , of G' such that f ' (v ' ) = f ( v ) for e v e r y v e r t e x , v , of G. Similarly 

from e v e r y 1-embedding of G' we can derive a bandwidth < k layout of G . If 

w e now double the weights of all the edges of G\ w e get an i n t e g e r - w e i g h t e d 
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g r a p h . G" , having the following properties: 

1. G " is 1 -embeddable iff G has a layout of bandwidth < k and 

2 . A representat ion of G " with all edge weights given in unary has 
s ize polynomial in the size of a representation of G, and c a n be 
computed from a representation of G in polynomial time. 

Th is completes the proof. • 

It is interest ing to note that this construction can not be used as a bas is for the 

r e s u l t s o f Sect ions 5 and 6. This underscores our earlier remark that the proof of 

T h e o r e m 5.1 rel ies not simply on the strong NP-completeness of 1-Embeddabi l i ty of 

i n t e g e r - w e i g h t e d graphs, but on the particular construction used in the proof of 

T h e o r e m 4.1. 

Appendix II: Embeddability of Complete Graphs 

In th is append ix , w e exhibit a class of polynomial-time algorithms due t o Shamos 

[ 1 9 7 8 ] for test ing the k-embeddability of complete weighted graphs. For pu rposes 

of e x p o s i t i o n , w e assume a model in which real numbers are primitive data o b j e c t s 

o n w h i c h e x a c t arithmetic operations (including comparisons and e x t r a c t i o n of 

s q u a r e roo ts ) can be performed in constant time. Within this model, we h a v e t h e 

fo l lowing resu l t . 

T h e o r e m 11.1: 

L e t k be any posit ive integer. Then there ex i s ts an algorithm for tes t ing the 

k -Embeddabi l i ty of complete weighted graphs which runs in time linear in t h e 

number of edges (or, equivalently, quadratic in the number of v e r t i c e s ) o f the 

g raph being t e s t e d . 

P r o o f : 

L e t G = <V,E,W> be a complete weighted graph with N v e r t i c e s , X| , . . . ,X f j . T o 

t e s t the embeddability of G, we will attempt to position s u c c e s s i v e l y the 

v e r t i c e s of G in a (k+1 )-dimensional coordinate s p a c e . Without loss o f 

genera l i t y , w e may send X 1 to the origin and X 2 to (W( {X -| , X 2 } ) f 0 , . . . , 0 ) . For 

e a c h M, 1<M<N, we define 
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D(M) = min { j | the complete weighted graph on {Xj|1<i<M} induced 
from G is j - embeddab le } . 

If the induced weighted graph on {X^ , . . . , X M } is not J -embeddable for a n y j , 

t h e n D(M) is undef ined. For each j , 0<j<k, w e define 

P ( j ) = min { M | D(M) = j ) . 

If t h e r e is no M such that D(M) = j , then P( j ) is undefined. Note that if P(J ) Is 

w e l l de f ined , then P(0), . . . ,P( j ) are all defined and distinct. As w e locate e a c h 

v e r t e x , w e enforce the restriction that at most the first D(M) coord inates o f 

* M m a y b e non -zero . By following this rule, we guarantee that a f ter the Xjyj 

has b e e n located (if this is possible) , w e will know the value of D(M) and o f 

P (0 ) , . . . ,P (D (M) ) . The procedure for locating the X M + 1 ( for 1<M<N) Is as 

fo l l ows : 

1. Note that there is at most one possible location for X w + 1 which 
will s a t i s f y the following criteria: 

- The cor rec t weights are induced for the D(M)+1 e d g e s 
{ X P ( J ) , X M + 1 > , 0 < j < D ( M ) . 

- At most the first D(M)+1 coordinates of the location are 
non -zero . 

- T h e ( D ( M ) + 1 ) - s t coordinate of the location is 
non -negat ive . 

This location, if it ex i s t s , may be d iscovered in constant time, 
s ince w e will a lways have D(M) < k. 

2. If there are no such locations, or if the ( k + 1 ) - s t coordinate of the 
unique location satisfying the criteria is non-zero, halt assert ing 
that G is not k-embeddable. Otherwise, without loss of 
general i ty , assign X M + 1 to the unique location sat isfy ing the 
cr i ter ia . 

3 . C h e c k that the weights induced for the remaining { X | I X | V I + I } 
( w h e r e 1<i<M and i^P(j) for any j ) are correct . If any are not, 
then halt assert ing that G is not k-embeddable. Note that the 
time for this s tep is O(N), since w e always have M < N. 

If w e manage to place all the ver t i ces without discovering that G Is not 

k -embeddab le , then w e will have found a k-embedding for G (and this 

embedding is unique up to congruence) . In any case , the time required Is l inear 
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in the number of edges and the space will be linear In the number of v e r t i c e s . 

• 

It may b e no ted that the algorithm given here will not only work for complete 

w e i g h t e d g raphs , but may be generalized to apply to a large class of incomplete 

w e i g h t e d graphs as wel l ; it is only necessary that it be possible to order t h e 

v e r t i c e s s u c h that , when w e attempt to locate the ver t i ces in order, each v e r t e x Is 

c o n n e c t e d to suf f i c ient l y many previously- located ver t i ces that the new v e r t e x c a n 

b e a s s i g n e d a unique location without loss of generality. To s e e the limits of th is 

genera l i za t ion , h o w e v e r , w e need only consider the graph shown in Figure 11.1. If 

t h e v e r t i c e s of this graph are assigned to points in the plane in such a w a y that no 

t h r e e are col inear , then a se t of edge weights will be induced which make the graph 

un ique ly 2 - e m b e d d a b l e . But if any v e r t e x is removed, the weighted subgraph 

i n d u c e d on the remaining f ive vert ices will have infinitely many n o n - c o n g r u e n t 

2 - e m b e d d i n g s . 

F igure 11.1 A uniquely embeddable graph with no tr iangles. 

Fu r the r exp lorat ions in this direction would take us beyond the s c o p e of this 

p a p e r . Yemini [ 1 9 7 8 ] exhibits a number of interesting "counterexamples" o f t h e 

f l a v o r o f F igure 11.1. We also leave untouched the issues of numerical s tab i l i t y 

w h i c h ar ise w h e n the preceding algorithm is performed with inexact arithmetic, and 

p o s s i b l y on i n e x a c t data . 
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Abstract 

In this paper w e invest igate the problem of testing the bandwidth of a g raph : 
G i v e n a graph, G, can the ve r t i ces of G be mapped to dist inct posit ive integers s o 
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Th is resu l t implies that the "Bandwidth < k" problem is not NP-Complete (un less 
P « NP) for any f i x e d k, answering an open question of Garey , Graham, Johnson , and 
K n u t h . W e also show how the algorithm can be modified to so lve some other 
problems c lose ly re lated to the "Bandwidth 2 k" problem. 
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1 Introduction 

T h e s u b j e c t of this paper is the computational complexity of a problem on g raphs . 

T o s p e a k p rec i se l y of the problem, we will need the following notation and 

def in i t ions . 

Nota t ion : 

L e t u and v be ve r t i ces of a graph G. We will say " u — v In G M to denote that 

{ u , v } is an edge of G. Where G Is clear from contex t , w e will w r i te simply 
M u — v " . 

Def in i t ions : 

L e t G be a graph with v e r t e x se t V, and let N = |V|. A layout o f G is a 

o n e - t o - o n e mapping, f , from V onto {1, . . . ,N} . The bandwidth of f Is de f ined as 

t h e maximum distance b e t w e e n the images under f of any two v e r t i c e s tha t 

a re c o n n e c t e d by an edge of G. That is, 

bandwidth ( f ) = m a x { f ( u ) - f ( v ) | u — v } . 

T h e bandwidth of G is def ined as the least possible bandwidth for a n y layout 

o f G . Thus , 

Bandwidth(G) = min{bandwidth(f) | f is a layout of G } . 

Problem (Bandwidth Minimization): 

G i v e n an arbitrary graph, G, and a positive integer, k, determine w h e t h e r 

Bandwidth (G) < k. 

N o t e that the notion of graph bandwidth is equivalent to the more familiar notion 

o f matr ix bandwidth in that Bandwidth(G) < k iff there ex is ts a permutation matrix P 

s u c h t h a t ( P C P ~ ^ ) | j = 0 w h e n e v e r |i-j| > k, where C is G's connection matr ix . For 

a n y part icular posi t ive integer k, w e can define a restr icted vers ion o f the 

b a n d w i d t h minimization problem as follows: 

Problem (Bandwidth < k) : 

G i v e n a graph, G, determine whether Bandwidth(G) 5 k. 
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Papadlmitr iou [ 1 9 7 6 ] has shown that the general bandwidth minimization problem, 

In w h i c h k is s p e c i f i e d in the input, is NP-Complete. The problem w a s later s t u d i e d 

b y G a r e y , Graham, Johnson, and Knuth [ 1 9 7 8 ] , who found a linear-time algorithm fo r 

t h e t h e problem "Bandwidth < 2", and also improved on Papidimitriou's resu l t b y 

s h o w i n g t h e problem for general k to be NP-Complete even when G Is r e s t r i c t e d t o 

b e a t r e e w i th no v e r t e x of degree greater than three. A number of quest ions a re 

l e f t o p e n b y their work, however . One such question is whether there e x i s t s a 

polynomial - t ime algorithm for the problem "Bandwidth < 3" . In this paper , w e wil l 

a n s w e r this quest ion affirmatively by exhibiting an algorithm^ which s o l v e s t h e 

problem "Bandwidth < k" in polynomial time for any f i xed k. Sect ion 2 of this p a p e r 

i n t r o d u c e s the fundamental concepts and assumptions we will use In descr ib ing our 

a lgor i thm. In Sect ion 3 the algorithm is descr ibed and its performance is a n a l y z e d . 

In S e c t i o n 4 w e discuss some modifications of the algorithm to so l ve r e l a t e d 

p rob lems . Finally, in Sect ion 5, we discuss some remaining open problems. 

2 Fundamental Concepts and Assumptions 

T h r o u g h o u t the following we will assume that G denotes a graph with v e r t e x s e t V 

a n d e d g e s e t E, that k denotes a particular positive integer, and that w e w i s h t o 

d e t e r m i n e w h e t h e r G has any layout of bandwidth < k. We let N denote t h e 

c a r d i n a l i t y o f V . Note that if G is not connected then G has a layout of bandwidth £ 

k i f f e a c h of its components has such a layout. Also, it is clearly impossible for G t o 

h a v e s u c h a layout if G has any ve r tex of degree 2k or greater . W e t h e r e f o r e 

a s s u m e , w i thout loss of generality, that G is a connected graph having no v e r t e x o f 

d e g r e e g r e a t e r than or equal to 2k. Note that an arbitrary graph can be par t i t ioned 

into i ts c o n n e c t e d components by depth-f i rst search in 0 (max(n ,e ) ) time, w h e r e n Is 

t h e number of v e r t i c e s and e is the number of edges , and that this is 0(n) If a 

More correct ly , a class of algorithms, one for each value of k. 

'When using the "big-oh" notation, we will regard k as fixed and therefore omit factors that depend only on k. 

^See, for example, Aho, Hopcroft, and Ullman [1974, Chapter 5] . 
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f i x e d bound is g iven on the degree of any v e r t e x . Moreover , an obv ious 

modif icat ion to the depth - f i r s t search algorithm allows it to de tec t the p r e s e n c e of a 

v e r t e x w i th d e g r e e greater than a f i xed bound in time which is proportional only to 

t h e number of v e r t i c e s and not to the number of edges . 

W e now introduce the key notion of a partial layout. 

Def in i t ions : 

A partial layout of G is a one - to -one function, f , from some subset of V onto 

{1 , . . . ,M} , for some M such that 0 < M < N. We s a y that f Is feasible if it can be 

e x t e n d e d to a ( total ) layout, g, such that bandwidth(g) < k. The bandwidth o f 

f Is the maximum distance between the images of any two e d g e - c o n n e c t e d 

v e r t i c e s of G which are in the domain of f . If u — v and u is In the domain o f f 

and g is not, then the edge { u , v } is said to be dangling from f . 

C o n s i d e r a partial layout, f, of size M. Clearly, f cannot possibly be feas ib le 

u n l e s s 

1. bandwid th ( f ) < k, and 

2 . w h e n e v e r u and v are ver t ices of G such that f ( u ) < M-k and u — v , v is 
a lso in the domain of f . 

I f f sa t i s f i es both these conditions, then f is said to be a plausible partial layout . 

T h e s e q u e n c e ( f " 1 ( m a x ( M - k + 1 , 1 ) , . . . , f 1 ( M ) ) , taken together with the s e t of dangling 

e d g e s of f , is cal led the act ive region of f. We now come to the theorem on wh ich 

our pr incipal algorithm depends. 

T h e o r e m 2.1: 

L e t f and g be two plausible partial layouts of G having identical a c t i v e 

reg ions . T h e n , 

1. f and g have identical domains, and 

2. f Is feasib le iff g is feasible. 

P roo f : 

S ince G is connec ted , the domains of f and g must each consist p rec ise l y o f 

t h o s e v e r t i c e s which are path -connected to ve r t i ces in the ac t i ve region b y 
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paths not including any dangling edges. Thus, (1) holds. To s e e that ( 2 ) holds, 

w e n e e d only note that any assignment of the remaining v e r t i c e s w h i c h 

e x t e n d s ei ther f or g to a total layout of bandwidth < k must also e x t e n d the 

o t h e r to s u c h a layout . • 

Final ly , w e def ine the notion of a successor of a plausible partial layout (or a c t i v e 

r e g i o n ) , wh ich will be n e c e s s a r y to explain our algorithms. 

Def in i t ion : 

L e t f be a plausible partial layout of G. Then a successor of f is a plausible 

part ia l layout , g, which e x t e n d s f by precisely one element. In this c a s e , t h e 

a c t i v e region of g is also said to be a successor of the act i ve region o f f . W e 

also s a y that ( the a c t i v e region of) f is a predecessor of ( the a c t i v e region o f ) 

3 The Algorithm 

Theorem 2.1 allows us to s a y that two plausible partial layouts are equivalent If 

t h e y h a v e identical ac t i ve regions. The algorithm we present Is essent ia l l y a 

b r e a d t h - f i r s t s e a r c h o v e r the space of all the induced equivalence c l a s s e s o f 

p lausib le partial layouts , where each such equivalence c lass is uniquely 

c h a r a c t e r i z e d by ac t i ve region of its representat ives. Alternatively, w e may think 

o f the algorithm as a dynamic-programming search over the plausible partial l a y o u t s . 

E a c h a c t i v e region cons is ts of at most k vert ices and each v e r t e x has no more than 

2k e d g e s , e a c h of which may or may not be dangling. Thus the number o f 

e q u i v a l e n c e c l a s s e s is bounded above b y 4 

Z ( ? ) ( 2 2 k ) ' = 0 ( N k ) . 
0<i<k 

Our algorithm uses the following two data structures: 

1. A ( f i fo ) queue , Q, whose elements are act ive regions. 

As w e wil l mention in Section 5, the coefficient on this bound is quite loose. 
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2 . An ar ray , A, which contains one element for each possible a c t i v e 
reg ion . Each element, A [ r ] , of A consists of a Boolean f lag, 
A [ r ] . e x a m i n e d , telling whether the act ive region r has al ready b e e n 
c o n s i d e r e d in the search and a list, A[r] .unplaced, of ve r t i ces wh ich Is 
in tended to list all ver t ices NOT in the domain of each plausible part ial 
layout wi th act ive region r. 

A t t h e s t a r t of our algorithm, Q is initialized to contain the single element 

r e p r e s e n t i n g the act ive region (henceforward denoted f ) of the empty part ial 

l a y o u t , <£. T h e flag A[$] .examined is se t to TRUE and A[$] .unplaced Is init ial ized t o 

l is t all the elements of V. The remaining A[r] .examined are initially FALSE, and the 

remaining A[ r ] .unp laced are uninitialized. The algorithm now proceeds as fo l lows : 

Algor i thm B (Bandwidth test ing) : 

1. E x t r a c t an act ive region, r, from the head of Q. 

2 . From A[r ] .unplaced, determine the successors of r. 

3 . For e a c h successor , s , of r such that A[s] .examined is FALSE, perform 
the following s t e p s : 

a . S e t A[s] .examined to TRUE. 

b. Compute A[s] .unplaced by deleting the last v e r t e x of s from 
A[r ] .unplaced. 

c . If A[r ] .unplaced is the empty set , then halt assert ing tha t 
Bandwidth(G) < k. 

d . Insert s at the end of Q. 

4 . If Q is empty, then halt asserting that Bandwidth(G) > k. O therwise , go 
t o S t e p 1. 

k+1 
T h e s p a c e required by this algorithm is clearly 0(N ). To determine the running 

t ime, w e note f i rst that since there are 0(N ) possible act ive regions, e a c h o f S t e p s 
k 

1 t h r o u g h 4 will be e x e c u t e d 0(N ) times. The individual execut ions of S t e p s 1 and 

4 e a c h take only constant time, so the contribution of these s t e p s to the tota l 

running time of the algorithm is 0(N ). Since any act ive region, r, has a t most N 

s u c c e s s o r s ( z e r o or one for each element of A[r] .unplaced), each e x e c u t i o n o f S t e p 

2 t a k e s O(N) time. The contribution of Step 2 to the total e x e c u t i o n time Is 
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t h e r e f o r e 0 ( N ) . Determining the contribution of S tep 3 is (a l i t t le) t r i ck ie r . 

During a s ing le e x e c u t i o n of S tep 3, S teps 3.a through 3.d may be e x e c u t e d as 

many as N t imes , and the amount of computation in Step 3.b may be 0(N) . T h u s it 

a p p e a r s p o s s i b l e t h a t S t e p 3 may contr ibute 0(N ) to the total e x e c u t i o n t ime. I f 

w e look more c a r e f u l l y , h o w e v e r , w e see that 3.a through 3.d are e x e c u t e d at most 

o n c e fo r e a c h a c t i v e reg ion . Thus the total contribution of S tep 3 is 0 ( N ) . 

Add ing t h e cont r ibut ions of all the s t e p s g ives us the following resul t . 

T h e o r e m 3 . 1 : 

L e t k b e a n y pos i t i ve integer . Then there is an algorithm which s o l v e s t h e 

problem " B a n d w i d t h < k" using 0 ( N k + 1 ) time and O f N * * 1 ) s p a c e . 

P r o o f ; 

T o t e s t t h e b a n d w i d t h of G, w e first perform an 0(N)-t?me depth f i rs t s e a r c h 

w h i c h e i t h e r 

( 1 ) d e t e r m i n e s that G has some v e r t e x of degree greater than 2k, or 

( 2 ) par t i t ions G into c o n n e c t e d components none of wh ich h a v e any 
v e r t e x of d e g r e e g reater than 2k. 

In c a s e ( 1 ) , w e know immediately that Bandwidth(G) > k. In c a s e ( 2 ) , w e a p p l y 

Algor i thm B t o the c o n n e c t e d components of G. • 

Whi le Algori thm B wil l tel l us whether G has a layout of bandwidth < k, It d o e s not 

a c t u a l l y p r o d u c e s u c h a layout . In order to allow such a layout to be r e c o v e r e d , w e 

may a s s o c i a t e w i t h e a c h a c t i v e region, s , an additional f ie ld, A [ s ] . p r e d e c e s s o r . 

W h e n s is a p p e n d e d t o Q in S t e p 3.f. , w e make A [ s ] . p r e d e c e s s o r point t o a 

p r e d e c e s s o r o f s (namely the r w e chose in Step 1). If the algorithm f inds an 

a c t i v e r e g i o n , t , s u c h that A [ t ] .unp jaced is empty, it is a simple matter to r e c o v e r a • 

l a y o u t b y t r a c i n g back through the p r e d e c e s s o r f ie lds. 

Note that this pointer need only name the single vertex (if any) which is contained in r but not m s. 
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4 M o d i f i c a t i o n s f o r R e l a t e d Problems 

Another quest ion left open by Garey, Graham, Johnson, and Knuth [ 1 9 7 8 ] is 

w h e t h e r the re e x i s t s a polynomial-time algorithm to count the layouts o f a g raph 

hav ing bandwidth < k, e v e n for k = 2. We now give an affirmative a n s w e r to a 

c l o s e l y r e l a t e d quest ion by exhibiting a class of polynomial-time algorithms (one fo r 

e a c h pos i t i ve in teger k) for determining the number of bandwidth !S k layouts o f a n y 

connected g r a p h . 

Our algorithm for enumerating layouts of bandwidth < k is a slightly modified form 

o f Algorithm B. T h e data st ructures are the same as those for Algorithm B, w i th t h e 

fo l lowing addit ions: 

1. E a c h e n t r y , A [ r ] , of A has a third field, A[r] .count, which will hold the 
number of ( s o far d iscovered) plausible partial layouts whose a c t i v e 
reg ion is r. 

2. T h e r e is a var iable, Total , which will hold the number of ( s o far 
d i s c o v e r e d ) layouts of bandwidth < k. 

At t h e s t a r t of the algorithm, Total and all the A[r] .count are initialized to z e r o , 

e x c e p t for A [ $ ] , which is initialized to 1. The remaining variables are initialized a s 

fo r Algorithm B. W e then proceed as follows: 

Algorithm E (Enumerate layouts) : 

1 • E x t r a c t an ac t i ve region, r, from the head of Q. 

2 . From A[ r ] .unp laced , determine the successors of r. 

3 . For e a c h s u c c e s s o r , s , of r, perform the following s teps : 

a. If A [s ] .examined is TRUE, go to f. 

b. S e t A [s ] .examined to TRUE. 

c . Compute A[s] .unplaced by deleting the last v e r t e x of s from 

Note that the number of bandwidth < k layouts of an arbitrary graph is not uniquely determined by the numbers 
of bandwidth < k layouts of its connected components because the topologies of the components impose 
constraints on how the various layouts may overlap. The algorithms cannot be applied directly to non-connected 
graphs because they depend on Theorem 2.1. 
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A [ r ] . unp laced . 

d . If A [ r ] ,unp laced is the empty se t , then increase Tota l b y 
A [ r ] . c o u n t . 

e . Inser t s at the end of Q. 

f . I n c r e a s e A [ s ] . c o u n t by A[r ] .count . 

4 . If Q is empty , then halt . Otherwise, go to Step 1. 

S t u d y of this algorithm g ives us the following result : 

T h e o r e m 4.1: 
L e t k be any pos i t i ve integer. Then there e x i s t s an 0 ( N ) - t ime , 

k +1 
0 ( N ) - s p a c e algorithm which, given any connected graph, G, computes t h e 

number of layouts of G having bandwidth < k. 

P r o o f : 

W e claim that Algorithm E (p receded by a depth - f i r s t s e a r c h to ensure that no 

v e r t e x of G has d e g r e e greater than 2k) has the des i red p roper t ies . By an 

ana lys is similar to that for Algorithm B, Algorithm E will run in ( X N ^ * ^ ) t ime. W e 

must now show that it cor rect ly counts the layouts of bandwidth < k. T o d o 

th is , it s u f f i c e s to show that by the time that any plausible partial layout , r, Is 

s e l e c t e d in S t e p 1, A[ r ] .count contains the total number of plausible part ial 

l ayou ts w h o s e a c t i v e region is r. This in turn may be shown induct i ve ly if w e 

c a n only s h o w that no act i ve region, r, is chosen in S tep 1 until e v e r y 

p r e d e c e s s o r of r has been chosen. This last follows at once from the f a c t 

( w h i c h may be estab l ished by induction) that the ac t i ve regions p r o c e e d 

th rough the queue in non-decreasing order of their lengths, w h e r e the length 

o f an a c t i v e region, r, is def ined to be the number of v e r t i c e s in the domain o f 

a n y plausible partial layout whose act ive region is r. • 

W e may v i e w Bandwidth Minimization as the problem of finding a layout w i t h 

minimax e d g e length . W e will now look at the corresponding minisum problem. 

Def in i t ion : 

L e t G be a graph wi th edge se t E, and let f be a layout of G . T h e n the to ta l  

e d g e length of f is g i ven by the sum 
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£ | f (u ) - f ( v )| 

{ u , v } € E 

w h e r e e a c h edge , { u , v } , contributes precisely once to the sum ( ra ther than 

o n c e as u — v and once as v — u ) . 

Prob lem: (Optimal Linear Arrangement) 

G i v e n a graph, G, and an integer, t, determine whether there is a layout of G 

having total edge less than or equal to t. 

T h e Optimal Linear Arrangement (O.L.A.) problem was found to be NP-Complete b y 

G a r e y , Johnson , and Stockmeyer [ 1 9 7 6 ] . However , Shamos [ 1 9 7 9 ] has pointed out 

t h a t t h e methods of the present work can be used to provide polynomial-t ime 

algor i thms for a c lass of rest r ic ted versions of O.L.A. For e v e r y posit ive in teger , k f 

w e d e f i n e a restr ict ion of O.L.A. a s follows: 

Prob lem: (O.L.A. for bandwidth < k) 

G i v e n a graph, G, determine the minimal total edge length of any layout of G 

having bandwidth £ k or determine that no such layout e x i s t s . 

App ly ing the methods used above, w e obtain the following result. 

T h e o r e m 4 .2 : 

L e t k be any posit ive integer. Then there ex is ts an algorithm which s o l v e s 

O.L.A. for bandwidth < k in 0 ( N k + 1 ) time and 0 ( N k * 1 ) space . 

P r o o f : 

An algorithm haying the desired properties when applied to connec ted graphs 

w i t h no v e r t e x having degree greater than 2k may be const ructed b y a sl ight 

modif ication of Algorithm E: instead of maintaining with each ac t i ve region a 

count of the partial layouts having that act ive region, we maintain an indication 

o f the minimum sum of the lengths of all edges whose endpolnts h a v e are In 

t h e domains of all plausible partial layouts having that act ive region. T h e 

deta i l s are lef t to the reader. For arbitrary graphs w e f i rs t perform a 

d e p t h - f i r s t search which either detec ts the presence of a v e r t e x wi th d e g r e e 

g r e a t e r than 2k (implying that Bandwidth(G) £ k) or partitions G into its 
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c o n n e c t e d components, taking linear time in either case . W e then compute t h e 

minimal to ta l e d g e length for G by finding and summing the minimal to ta l e d g e 

leng ths for the c o n n e c t e d components. • 

W e n o t e that the prev ious result remains valid if we consider edge w e i g h t e d g r a p h s 

a n d t h e " t o t a l e d g e length" is taken as a weighted sum. For c o n n e c t e d g r a p h s , w e 

c a n a lso u s e the method of Algorithm E to obtain a count of the layouts w i th minimal 

t o t a l e d g e length for bandwidth < k. 

F inal ly , all the prev ious results e x t e n d to "d i rec ted" vers ions o f B a n d w i d t h 

Minimizat ion and O.L.A., In which G is a d i rected graph and a layout , f , Is a c c e p t a b l e 

o n l y if f ( u ) < f ( v ) w h e n e v e r (u ,v ) is an edge of G.7 

5 O p e n P r o b l e m s 

T h e most obv ious problem left open by this work is tha t of improving t h e 

p e r f o r m a n c e of Algorithm B. Although the e x p e n s e of this algorithm Is " o n l y 

po lynomia l " in the s i ze of the examined graph it is still su f f i c ient l y e x p e n s i v e 

( p a r t i c u l a r l y in terms of s p a c e ) to render it impractical for all but the smal lest c a s e s 

( c o n s i d e r , for example , determining whether Bandwidth(G) < 5, where G is a g r a p h o f 

f o r t y v e r t i c e s ) . The f a c t that Garey, Graham, Johnson, and Knuth [ 1 9 7 8 ] h a v e a 
9 

l i n e a r - t i m e algorithm for "Bandwidth(G) < 2" , while Algorithm B takes cub ic time f o r 

t h e same problem o f fe rs some hope that the degree of the polynomial c a n b e 

r e d u c e d fo r h igher va lues of k as wel l . Indeed, it is conceivable ( e v e n if P ^ NP) 

t h a t t h e r e are linear algorithms for all values of k, with coe f f i c ien ts g r o w i n g 

e x p o n e n t i a l l y in k. . 

O n e a p p r o a c h to improving the performance is to attempt to reduce the number o f 

a c t i v e reg ions examined , and this can indeed be done to some e x t e n t . For e x a m p l e , 

w e may prune the s e a r c h by noting that, while a plausible partial layout may h a v e 

0 (k ) dangl ing e d g e s , such a partial layout cannot actually be feas ib le if t h o s e 

e d g e s lead to more than k distinct ve r t i ces . Unfortunately, graphs of the form 

A good starting point for the reader who is interested in learning more about Bandwidth, O.L.A. , and their 
variat ions is Appendix A1 of Garey and Johnson [1979]. 
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v 1 - v 2 - . . . - v N . 1 — v N 

s u p p l y an e x i s t e n c e proof that the number of equivalence c lasses of plausible 

part ia l layouts of bandwidth < k can in fact be 0(N ) . 

In Algorithm B, w e reduce the search space from the s e t of all plausible partial 

l a y o u t s to the much smaller set of equivalence c lasses of partial layouts . To look at 

It another w a y , g iven two partial layouts, f and g, if w e recognize ( b y equal i ty o f 

a c t i v e reg ions) that f is feasible iff g is feasible, then w e fee l f ree to s e a r c h for 

complet ions of only one of the partial layouts. The algorithm of Garey , Graham, 

J o h n s o n , and Knuth cuts down the search space by methods which are similar but 

more s o p h i s t i c a t e d . In particular, they can avoid searching for completions o f a 
a 

part ia l layout , f , b y choosing to search for completions of a layout, g, such that g Is 

f e a s i b l e w h e n e v e r f is feasible, but not necessari ly only when f Is feas ib le . 

It is interest ing to note that " w o r s t - c a s e " numbers of feasible ac t i ve regions 

s e e m to ar ise p rec ise ly in circumstances where large p ieces of the graph can be 

laid out in bandwidth much less than k. We define a maximal graph of s i ze N and 

b a n d w i d t h k as a graph whose edge set is { { v j , V j } | |i-j|<k}, where { V j | 1<i<N} Is the 
q 

e d g e s e t . The algorithm of Garey, Graham, Johnson, and Knuth relies heavi ly on the 

f a c t that if all the e v e n numbered vert ices or all the odd numbered v e r t i c e s are 

d e l e t e d from a maximal graph of bandwidth 2 , the induced graph on the remaining 

v e r t i c e s is a maximal graph of bandwidth 1. For test ing higher bandwidths It is 

poss ib le that similar use may be made of the fact that deleting e v e r y k - th v e r t e x 

from a maximal graph of bandwidth k leaves a maximal graph of bandwidth k -1 . 

Another potent ial ly fruitful course of investigation would be to look for e f f i c ient 

algorithms for approximate bandwidth minimization. For example, g iven a graph, G, 

w e may w ish to produce a layout for G whose bandwidth Is no more than, s a y , t w i c e 

In their terminology, a partial layout of G is a map from a subset of the vertices of G to an arbitrary set of 
integers. 

Q 

Note that a graph of N vertices has bandwidth < k iff it is isomorphic to a subgraph of a maximal graph of size 
N and bandwidth k. 
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t h e minimum poss ib le . To the author's knowlclge it has not y e t been determined 

w h e t h e r this problem ( w h e n phrased as a language recognit ion problem) is 

N P - C o m p I e t e . 
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