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Abstract

In this paper we will investigate transformations that serve as toots in the design
of new data structures., Specifically, we study general methods for converting
static structures (in which all elements are known before any searches are
performed) to dynamic structures (in which insertions of new elements can be mixed -
with searches). We will exhibit three classes of such transformations, each based
on a different counting scheme for representing the integers, and then 'tse a
combinatorial model to show the optimality of many of the transformations. Issues
such as online data structures and deletion of elements are also examined. To
demonstrate the applicability of these tools, we will study six new data structures

that have been developed by applying the transformations.
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1. introduction

The design of efficient data structures for searching problems is an important and
difficuit problem. In this paper we will investigate a class of transformations that
aid in the design of such data structures, and illustrate the use of those
transformations by describing a number of new structures that have been designed

by applying the transformations.

Specifically, we will examine transformations that convert static stiugtures
(which are built once-for-ail before any queries are asked) into dynamic structures
(in which queries can be mixed with insertions, and perhaps deletions). These
transformations are applicable to a class of problems we call the decomposable
searching problems. The static-to-dynamic transformations discussed in this paper
are only a few of the known transformations on decomposable searching problems; a
complete paper describing all the transformations is currentlty being prepared
(Bentley and Saxe [1979]). The static-to-dynamic transformations shouid,

however, serve to illustrate many of the features of other transformations.

In Section 2 we will examine definitions and notations necessary for discussing
the transformations. The transformations are discussed in Section 3, and a proof of
their optimality is given in Section 4. Online data structures and deletion are the

subjects of Sections 5 and 6, and conclusions are offered in Section 7.

2. Definitions and Notation

In this section we will review a number of basic concepts that have to do with
searching problems and give a number of definitions that will be used throughout the
paper. The casual reader may therefore skim most of this section; the only part he

shouid read in detail is the definition of the decomposable searching problems.

We will use the term searching problem in a fairly restricted sense throughout
this paper. Specifically, we refer to maintaining a set F of objects so that queries

asking the relation of a new object x to set F can be answered quickly. The best
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known example of a query is what we call a Member Query: "is x a member of F?".
If F were a set of reals, we might be interested in the Nearest Ne/ighbor query of
"what is the distance from x to the point in F closest to it?". The general query is
that a question contlaining a variable of type T1 is asked of a set of elements of
type T2, with an answer that is of type T3. In a Member query, T1 and T2 are the
same, and T3 is boolean. In a Nearest Neighbor query, both T1 and T2 are real, and
T3 is a nonnegative real. In the general case, the query Q can be viewed as a
function mapping a 71 and a setof T2's to a T_B, or
Q:T1x 22 13,

Throughout this paper we will identify a searching problem by its query; a solution
to a searching problem is a data structure that ailows the query to be answered

quickly.

In this paper we will study data structures for a class of searching problems
called the decomposable searching problems. A searching problem with query
operation Q is decomposable if there exists an efficiently computable binary

operator O satisfying the condition
Q(x,AUB) = O[G(x.A), Q(x,B)].

{Note that this definition implies that OO is both associative and commutative.) For
example, the member searching probiem is decomposable because

Member{x,AUB) = v[Member(x,A), Membar(x,B}],
and {distance to) nearest neighbor searching is decomposable because

NN(x,AUB) = min[NN(x,A), NN(x,B}].
We wiil investigate a number of decomposabie searching problems throughout this
paper: a list of many of them can be found in Appendix |. All of the transformations
that we will see later in this paper are applicable for precisely the degcomposable
searching problems. They exploit decomposability by partitioning a set into subsets,
and answer a query by computing answers on the subsets and then using the O
operator to combine those subanswers to yield a solution to the entire problem.

Note that the [ operator is essential in this strategy.
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There are two subclasses of the decomposable searching problems that will be of
special interest later in the paper. The first subciass consists of those problems
whose O operator has a “zero" (or "sticky") element; that is, there exists some

element z such that for any element x,

O(z,x) = z.
For example, false is a zero for A, and true is a zero for V. A second class that will
be of interest consists of the problems for which the U operator has an inverse (for
example, if O is addition, its inverse is subtraction). We will examine both of these
subclasses of the general decomposable searching problems in detail later in the

paper.

We will make a distinction between two types of data structures for solving
searching probiems. A static structulre is built once and then searched many times;
insertions and deletions of elements are not allowed. To describe the performance
of the static structure A we give three functions of N, the number of elements in the
set represented by A;

PA(N) = the preprocessing time required to build A,
Qa(N) = the query time required to perform a search in A, and
SA(N) = the storage required to represent A.

(Unless explicitly noted otherwise, throughout this paper we will deal only with
worst-case cost fupctions.) A second type of data structure is the dynamic
structure. This structure is inilially empty, and the three operations available on it
are for inserting a new element, for deleting a current element, and for performing a
search. We analyze the performance of the dynamic structure 8 by giving the
functions

Ig(N) = the insertion time for B,

Dg(N) = the deletion time for B,

Qp{N) = the query time required to perform a search in B, and
Sg(N) = the storage required to represent B.

Later in this paper we will want{ to "mix apples and oranges" and compare the
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performance of the static structure A with that of the dynamic structure B. To
facilitate such comparisons we define the “insertion" time for the static structure A
as

Ia(N) = PA(N) / N,
which is the cost of building an N-eiement structure amortized over the N elements
it represents. Likewise we define the cost of "preprocessing" the dynamic

structure B to be

Pg(N) = 2 ig(i).

1<iSN

3. The Transformations

In this section we will investigate transformations that convert a sfatic data
structure for a decomposable searching problem Into a dynamic data structure. We
will restrict ourselves to the special case of dynamic structures that support only
the operations of inserting a new element and searching to answer a query; we will

return to the issue of deletion in Section 6.

3.1. The Binary Transformation

In this subsection we will examine a static-to-dynamic transformation that is
based on the binary representation of the integers. We will study the
transformation by first examining its application to the particuiar probiem of nearest

neighbor searching in the plane, and then discussing its more general properties.

In nearest neighbor searching we must organize a set of N points in the plane so
that subsequent gueries can tell the distance from the query point x to its nearest
neighbor in the set. Therefore, objects of type T"l and T2 are points in ]RZ, and
those of type T3 are positive reals. (For ease of discussion we consider only the
problem of finding the distance to the nearest neighbor and not the point reallizing
that distance.) Note that nearest neighbor searching is decompcsable because it

satisfies
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NN{x,AUB) = min[ NN(x,A), NN(x,B}].
Lipton and Tarjan [1977] have described an elegant static data structure for

nearest neighbor searching (which we will call LT) with performance

PLT(N) = O(N Ig N),
Qy 7(N) = O(lg N), and
Sy 7(N) = O(N).

Many applications, however, cali for dynamic nearest neighbor searching, and the
Lipton-Tarjan structure does not appear to be suitabie for a moaification that would
facilitate insertions. We will now investigate a new structure (called DNN for
dynamic nearest neighbor) that uses the Lipton-Tarjan static structure only as a
subroutine, rather than trying to modify the structure. The DNN structure that we
will describe is the best known structure for performing dynamic nearest neighbor

searching in the plane.

The DNN structure will consist of a set of LT's: that is, the elements (points)
currently stored in the DNN will be partitioned into subsets that are themselves
represented by LT's. When there is one element in the DNN, there is an LT
containing that single element. When the second element is inserted, that LT is
discarded and a new LT of size two is created. At the arrival of the third element, a
new LT of size one is created., This process continues so that when there are N
elements represented by the DNN, there are LT's corresponding to all of the one bits
in the binary representalion of N. For example, when there are 79 elements in the
DNN, there are LT's of size 64, 8, 4, 2 and 1. Wrhen the 80-th element iz inserted,
the four smallest structures arc discarded and a new structure of size 16 is built.
At any time in this process the distance to the nearest neighbor. of a guery point x
can be found by locating its nearest neighbors in each of the LT's (using the O(lg N)
algorithm) and taking the minimum of the distances; it is here that we make essential

use of decomposability.

This scheme is illustrated pictorially in Figure 3.1 by & diagram commonly used to
represent binary counting. The vertical axis in that figure denotes the number of

elements currently in the dynamic structure. Each rectangle {square) represents a
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particular static LT structure; for example, note the four by four square that comes
into existence at time four and is then replaced at time eight. The LT structures in
existence at time T can be found by drawing a horizontal line that intersects the
vertical axis at T; for example, at time seven there are three structures in
existence -- of sizes four, iwo and one. We will find later that this type of diagram

(which we cail a "history diagram") is a handy way of representing transformations.
_ —

|

|

1
Figure 3.1. The binary transform.

It is easy to analyze the performance of the DNN structure given that we know
the performance of the LT structure. Since the LT requires linear storage and the
DNN just partitions its zlements into LT's, the DNN will also require linear storage. A
DNN of N elements will keep at most lg(N+1) LT's (each of size not greater than N),
so the query time of a DNN is bounded above by Ig(N+1) times the cost of querying
an LT. The cost of inserting an element into a DNN is more difficuit to analyze; note
that whiie inserting the 1023-rd element is essentially free, the 1024-th element is
very expensive, since a new structure of size 1024 must be buiilt, We will
therefore count the cost of inserting the first N elements into an initially empty
structure, which is exactly Ppyn(N). We will perfarm this analysis onty for the case
that N = 2j-1. and discuss later the value of the function for other N. If we have
inserted 2j-1 elements, then we have built one LT structure of size 2j'1, two LY

2k-1

structures of size 23'2. and structures of size Zj'k. (This is a trivial property

of binary counting.} The total cost of inserting these elements is therefore
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Ponn(25-1) = 1P g2y » 2 12172 + s 207 Ve (1)
For N a power of two we can rewrite this as

PoNN(N-1) = 1P 7(N/2) + 2P 7(N/4) + ... + (N/2)P y(1).
We know that Py 1(N} = O(N Ig N), which implies that P 1{(N) £ cNig N, for some
positive constant ¢. Substituting this into the above equation yields

Ponn(N=1) € cT T(N/2 g N/2) + 2(N/4 Ig N/A) + .o +(N/2)(1 1g 1) ]
(cN/2) "[lgN/2+IgN/4 + ... +1g 1]

(c/2)N 1gZ N

(N 1gZ N).

n oA i

This completes our analysis of the DNN structure, establishing the following.

New Data Structure 1: {Dynamic Nearest Neighbor)
The DNN structure for dynamic nearest neighbor searching in the plane has

performances
Ponn(N) € PLr(N) “Ig(N+1) = O(N IgZ N),
Qpn(N) € QU T(N) " lg(N+1) = O(lgZ N), and
SDNN(N) < SLT(N) = O(N).

Note that the cost of doing N pairs of Insert, Query operations in the DNN structure
is proportional to N Ig2 N; all other known dynamic nearest neighbor structures

require Q(Nz) time for the task.

The binary transformation that we have just described for nearest neighbor
searching is applicable to any decomposabie searching probiem: given a static data
structure for a particular problem, a8 dynamic structure is achieved by keeping a set
of static structures, each representing a set whose cardinality is a power of two,
Insertion is accomplished by the same technigue of binary counting. A query can be
answered by querying all the static structures in existence at the time of the

query, and combining the answers by repeated application of the O operator.

A computer program implementing the binary transform is sketched in Figure 3.2.
It assumes the existence of a static structure S with operations Queryg, Buildg and

Unbuildg (Unbuildg returns the eiements currently stored in the structure as a linked
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list)a. The code implements a dynamic structure D providing routines Initp (which
initializes the structure te be empty), insertp, and Queryp. It implements the binary
strategy by maintaining a one-way infinite array P with the invariant that P[i] is
either emply or contains a static structure of size 2. The variable High is an
integer that is one greater than the last nonempty structure; P[High] is aiways
empty. Initp initializes the structure to have this invariant. Queryp answers a query
by iterating through the structures and combining the answers by the [J operator.
Insertp can be understood most easily by considering incrementing a binary integer
by one; to do so, we scan from right to left, changing ones to zeros until we come to
the first zero (which we then make a one). An Alphard program very similar to the
code in Figure 3.2 has been given by Bentiey and Shaw [1979]; they also provide
both a precise specification of the transform and a proof that the program
accomplishes it.

The analysis of the general transformation is quite‘similar to the analysis of the
DNN structure.? Since at most Ig(N+1) static structures exist for an N-element
dynamic structure, if we assume the static query cost is monotone nondecreasing
we have

Qp(N) £ Qg(N) " Ig(N+1).
Td ahalyze the storage and processing costs we need the following definition: a
function F is said to grow at /east linearly if for every two positive integers, M and
N, where M (N,

F(M)/M £ F(N)/N.
A consequence of this definition is that if F is a function that grows at least linearly
and A and B are positive integers, then

F(A+B) = A[F(A+B)/(A+B)] + B{F(A+B)/(A+B)] 2 F(A} + F(B).

aThroughout this paper we will refrieve a set of T2's from a structure by unbuilding the structure. In some
applications it might be more efficient to siore the set along with the structure,

aln the analysis of the transformed siructure we will count only the costs incurred by operations on the ariginal
structure, Examination of the code in Figuro 3.2 shows that the overhead costs for both Insert and Query are a
smaltl constant times ig N.
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proc lnitD -
P[0O] « ¢; High« 0

prac Insertp(x) «

S « {x}

i0

while P[i] # ¢ do
S « S U Unbuildg(P[i]) ; P[i]« ¢
i« i+

Pi] « Buildg(S)

if i=High then
High « High+1; P[High] « ¢

func Queryp(x) «
A « Queryg(x,P[O])
for i« 1 to High-1 do
A « (A, Queryg(x, P[i]})
return A

Figure 3.2. Sketch of code for the binary transform.

Since the dynamic structure partitions its elements among static structures without

replication, if the storage cost Sg of the static structure grows at least linearly we

have the relation

Sp(N) £ Sg(N).

To analyze the processing cost we will first consider the case that N is a power of

two; the reasoning used in our analysis of DNN shows that

Pp(N-1} = Pg(N/2) + 2Pg(N/4) + ... + (N/2}Pg(1).

When Pg grows at least linearly, we know that Pg(2i) 2 2Pg(i} and we can use this

fact inductively to show that

Pp(N-1) s Pg(N/2) + Pg(N/2) + ... + Pg(N/2)
Ps(N/2) " lg N.

ntA
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We will now use a less accurate {(but more general) analytic technique to
establish the value of PD(N) for N not one less than a power of two. Note that after
N elements have been inserled, any particular element has been in at most ig(N+1)
distinct static structures. We will now show that for any transform, if every element
has been built into at most k structures, then the static and dypnamic processing
costs are related by

Pp(N) € Pg(N) " k.
(This immediately yields the corollary that

Pp{N) £ Pg(N) * Ig(N+1}
for the binary transform, for any positive N.) Consider the cost that any particular
element, E, contributes to Pp(N). Each time £ is built into a new static structure of
size M, we can assign it a share of that cost of Pg(M)/M. Because Ps grows at
least linearly and M is less than or equal to N, we know that

Pg(M)/M < Pg(N)/N,
and we can therefore assign £ lhis latter cost as an upper bound. Multiplying the
number of distinct elements (N} by the number of times each is built into a static

structure (less than k) by this cost yields the desired result,

To enable us to speak more precisely about transforms on data structures for

decomposahle searching problems, we need the following definition.

Definition 3.1: (Admissible transform)
A transformation on decomposable searching problems is said to be an
admissibie (F(N), G(N)) transform if it converts the static structure A to the

dynamic structure B assuming only the property of decomposability, and the

foifowing ralations hold between the cost functions:O

'5To simplify the apalysis, we will count only the costs of calls lo operations on the static structure, and not the
costs of bookkeeping operations nor the cost of combining the results of queries into different static structures.
Careful examination of cur algorilhms will show that lthese exira costs add only a small constant factor (which
does not depend on F or G) 1o the computs times. In most cases, this constant will approach unity as N increases.
Similariy, the only storage we charge 1o the dynamic slructire is that used for storing instances of the static
structure. Again, this is generally the dominant cost,



3 September 1979 Static-to-Dynamic Transforms -11 -

Qg(N) £ Qa(N) " F(N),
Pg(N) £ PA(N) * G(N), and
Sg(N) < Sp(N).

We assume here that Qp is monotone nondecreasing and that both Py and Sy

grow at jeast Iimaariy.6

We can now state precisely the fact that the binary transform efficiently

converts a static data structure to a dynamic structure as Theorem 3.1.

Theorem 3.1: (The binary transform)
The binary transform is an admissible (Ig{(N+1), Ig(N+1)) transform.

Proof:
Given in the preceding text. QED.

To illustrate some "tricks" available in using the binary transform, let us consider
its application to the member query problem using the data structure of a sorted
array. Precisely, consider the static data structure for member searching that
stores the eiements in increasing order in an array (buiit by sorting the set), and
answers a query by performing a binary search. The analysis of this structure
(which we call SA, for sorted array) shows

Pga = O(N ig N),
Sga = O(N), and
QSA = O(ig N).

Consider the dynamic member searching structure achieved by applying the binary
transformation to SA: we always maintain a set of sorted arrays, each of size a

power of two. A particularly efficient representation of this structure (which we will

6F«:n' cases where P,, Q,, and S, do not satisfy lhese criteria, we may choose funclions Pi,Qeand S that (a)
satisfy the criteria and {b) dominate P,. Q,, and S,, respectively. The relalions given above will then hold
between lhe dynamic cost functions and Pl Q.5
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call BL, for binomial list” )} is to store these sorted arrays sequentially in one large
array, with the largest sorted segment (which we call a run) leftmost in the array.
Two snapshots of a BL are shown in Figure 3.3; the vertical bars in the figure
separate the runs in the array. By the analysis of SA and the effect of the binary
transform, we can easily describe the complexity of the BL structure as follows

PgL = O(N Ig? N),

SpL O(N), and

Qny = O(lg2 N)
BL g .

Note that very little slorage is used by a BL: it requires only N array words for the

elements, pius Ig N bits to describe the the cardinality of the represented set.
|12 19 23 27 38 4} 43 47 |27 43|29 |

c 00

a.) An ll-element binomial list,

{12 19 283 27 33 41 43 4727 29 36 43|

o 00

b.) After inserting 36.

Figure 3.3. Snapshots of a binomial list.

There is a glaring deficiency in the cobvious implementation of this structure: the
obvious insertion routine inserts the 1024-th element by ignoring all the structure
currently in the array and re-sorting from scratch. A far superior strategy for any
insertion is to consider the inserted element as a one-element run, and merge that
with the rightmost one-element run giving a two-element run. We then merge that
with its neighbor, giving a four-element run, and so forth. The amount of work in
building a new run in this scheme is linear in the size of the run, and the cost of
inserting N elements is therefore O(NIg N). We have thus avoided paying the

logarithmic penalty factor inherent in the binary transform by observing that runs

7This structure was invented for this application by the use of the binary fransform, and was then studied in
detail by Bentley, Detig, Guibas and Saxe [1879]. The name is taken f-om its similarity to the binomial queue data
structure of Vuillemin [1978],
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can be efficiently merge(l.8

We can sometimes avoid paying the transform penalty of a logarithmic slowdown
in query time. Specifically, we will consider the average cost of performing a
successiul member search in a BL (that is, a search that finds the element it was
looking for). If we assume that each element in the array is equally likety to be
searched for, then the probability of finding the desired element in the first run is at
least one-half. Therefore, half the time we need never search the other runs.
Likewise, at least one-half of the remaining times we find the desired element in the
next structure, so the probability of searching the third run is less than one-fourth.
Summing the cost of searching each run times the prohabiiity of performing the
search; we find that a successful member search is expected to be at most twice

as expensive in the BL as in the SA,

The argumenis that we have just sketched have been given in detaii by Bentley,

Detig, Guibas and Saxe [1979], who describe the following data structure.

New Data Structure 2: (Binomial Lists)
The binomial list {(BL) structure for dynamic member searching has
performances

PpL(N) = O(N 1g N),
Qpp(N) = O(Iga N), and
SBL(N) = O(N).

The linear storage used by this structure consists of exactly N array words
and O(ig N) additional bits, which is minimal.

Bentley, Detig, Guibas and Saxe [1979] have investigated this structure in detail
and have shown that it is optimai In a certain model of minimum-storage dynamic
member searching. The BL structure provides an interesting point of comparison

with the minimum~storage structure described by Munro and Suwanda [1879]; this

aOﬂly constant extra space is required to merge consecutive runs in an array ~- see Knuth {1973, Exercise
5.2.0.18].
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structure performs substantially better than theirs by working in a different model of

computation,

There is yet ancther circumstance in which the logarithmic cost penaities of
applying the binary transform do not have to be paid: when the original cost
functions are fast growing. Consider, for exampie, a statlc data structure with N2
preprocessing time. Our previous analysis shows that for N a power of two, we will
have

Pp(N-1) = Pg(N/2) + 2Pg(N/4) + ... + (N/2)P(1)
= (N/2)2 + 2(N/4)2 + .. + (N/2)12
= (N2/2) " [1/2 + 174 + .. + 1/N]
= O(N®).

Similar analyses show that the logarithmic penalty In processing cost is not incurred
when the binary transform is applied to any static structure with preprocessing cost
of Q(N1 *“), for any positive ¢. Likewise, it can be shown that the logarithmic penalty
ih query time will not have to be paid for any static structure with query time of at

least SUNE).

The conciudes our study of the binary transform. in the next two subsections we
will see that this transform is but one of many possible ways of converting a static
structure to a dynamic structure, at the cost of penalty factors in the preprocessing
and query costs. As we study the other transforms and their performance, It is
important to keep in mind that the penalty factors need not always be paid. In this
subsection we have seen three ways of avoiding them: by merging structures

instead of rebuilding them from scratch, by counting the average search time

instead of the worst-case time {this Is appraopriate whenever the O operator has a

zero element), and by performing separate analyses for fast-growing functions.

3.2. Transformations with Fast Query Time

The binary transform of the last subsection provides us with an example of an
admissibie (Ig(N+1), Ig(N+1)) transform, and we might wonder if we can.do better. In

this subsection we will investigate a class of transforms that have faster query



3 Seplember 1979 Static-to-Dynamic Transforms -15 -

times than the hinary transform at the cost of slower insertion time., Specifically, we
will see that an admissible (k, (k!N)”k) transform exists for any positive integer k.
We will study this transform by first investigating the case k=2, and then move on to

the general case.

We will call the transform for the case k=2 the triangular transform, because it is
based on the triangular numbers (that is, numbers of the form (5)). The transform is
ilustrated i Figure 3.4. Note that when 5 eiements are in the dynamic structure,
there are static structures of size 3 and 2; when the 6-th element is inserted,
those structures are destroyed and a new struclure of size 6 is created. At any
point in the bhistory of the dynamic structure, there will be at most two static
structures in existence. The insertion algorithm creates a new "large" static
structure at every triangular number; otherwise it inserts an element by unbuilding
the smaller structure and builcding it into a new structure with one additional element.

A guery can be answered by searching the two static structures and combining the

; |

answers by the {0 operator.

15

10

T

L

Figure 3.4. The triangular transform.

The triangwar structure is very easy to analyze. Because at most two static
structures exist at any time, the dynamic query cost is given by

QD(N) < ZQs(N).
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If we assume that the static storage requirements grow at least linearly, we know
that the dynamic structure does not use more storage. To analyze the Insertion
time, consider the case that a total of (g) elements have been inserted. It is easy
to prove by induction that no element has been built into more than M structures
(the proof is based on the recurrence for the triangular numbers). In general, if N
eiements have been inserted, no single element has been built into more than
(2N)1 /2 static structures. By the arguments in the previous subsection, this implies
Pp(N) < Pg(N) " (28)1/2,

These arguments together establish the following theorem.

Theorem 3.2: (The triangular transform)
The triangular transform is an admissibie (2, (2N)1 ,2) transform.

Proof:
Given in the preceding text. QED.

Just as the binary transform is isomorphic to the binary representation of the
integers, so is t_he triangular transform isomorphic toc a representation of the
integers based on triangular numbers. (This system is called the "binomial number
system" by Knuth [1968, Exercise 1.2.6.56].) Specifically, an integer N is
represented by a pair of integers i and } {with i>j) by the expression

n=(5) ().

Note that both i and j are less than twice the square root of N; this explains the
processing cost of the transform. The general transform, which we will call the
k-binomial transform, is based on a straightforward generalization of this scheme, in
which an integer is (uniquely) represented as the sum of k binomial coefficients,
whose lower parts are the integers 1 through k. This counting scheme is illustrated
for the cases k=2 and k=3 in Figure 3.5. Row 15 of the table is interpreted as
follows: in the 2-binomial representation, 15 is tihe sum of 15 and 0, or (g) and (?)
In the 3-binomial representation, 15 is the sum of 10, 3 and 2, or (g), (%) and (%)
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Integer () (p Integer (3) (2) (1)
0 = (40 1 0 0= 04040 2 1 0
1 = 1+0 2 0 1= 14040 3 1 0
2 = 1+1 2 1 2= 1+4i+0 3 2 0
3 = 340 3 0 3= 1+i+¢1 3 2 1
4 = 3+1 3 1 4= 44040 4 1 -0
5= 342 3 2 5= 4+1+0 4 2 0
8 = B+0 q 0 6 = 441+1 4 2 1
7 = B+l q 1 7= 44340 4 3 0
8= B+2 4 2 8= 44+43+1 4 3 1
9 = B+3 4 3 9= 44342 4 38 2
10 = 10+0 5 0 10 = 104040 5 1 0
11 = 10+1 5 1 11 = 10+140 5 2 0O
12 = 10+2 S5 2 12 = 10+141 5 2 1
13 = 10+3 5 3 13 =1043+0 S5 3 O
14 = 10+4 5 4 14 =2 104341 5 3 1
1% = 15+0 § 0 15 = 104342 5 3 2
16 = 15+1 6 1 16 = 10+640 S 4 0
17 = 15+2 6 2 17 =10+6+41 5 4 1
18 = 15+3 8 3 18 = 10+46+42 5 4 2
12 = 1544 8 4 19 = 10+643 S5 4 3
20 = 15+5 6 S 20 = 204040 6 1 O
21 = 21+0 7 0 21 = 204140 6 2 O
22 = 21+1 7 1 22 = 204141 6 2 1

Figure 3.5. 2~binomial and 3-binomial counting.

With the example of Figure 3.5 as background, we can now describe k-binomial
counting more precisely. We will use an array D[1.k] to store the upper parts of
the binomial coetfficients. The invariant of this counting scheme has two pafts: first,
the represented integer Is given by

n=CED o (P83 + e (O01D)
and secondly, each coefficient D[i] satisfies the condition

D[i] > DLi-1]
for 2<i€k. We can initialize the array to represent zero by assigning each D{i] to
have the value i=1; we will also find it handy to assume that the value of D[k+1] is

"infinity®. The code for incrementing an integer by one is then as follows.
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D[1] « D[1]+1
i« 1
while D[i] = D[i+1] do
D{i+1] « D[i+1] + 1
D[i] « i=-1
i« i+
It is easy to prove by induction that this code correctly implements the above

counting scheme.

It is straightforward to modify the above counting scheme to yield an admissible
transform. To do so we will retain the array D (with the same invariant as above),
and add an array P[1.k] of static structures. The number of elements in P[i] is
always (t%[i})_ The code for this k-binomial transform is given in Figure 3.6, and

Figure 3.7 illustrates the 3-binomial transform.

iy

20

=

10

iz

—

I

Figure 3.7 The 3-binomial transform.

The correctness of the code can be proven by Induction, and its analysis

establishes the following theorem.

Theorem 3.3: (The k-binomial transform)
The k-binomial transform is an admissible (k, (k!N)1 ’k) transform.
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proc lnitp «
fori+« 1 tok do
D[i]«i-1; Plile¢
Dik+1] ¢ w

proc Insertp(x) «

D{1] « D[1]+1; S « Unbuildg(P[1D U {x}; P[1]« ¢

i« 1

while D[i] = D[i+1] do
Dli+1] « D[i+1] + 1; S « S U Unbuildg(P[i])
D[i]«i-1; P[i]« ¢
i«i+l

P[i] « Buildg(S)

func Queryp(x) «
A « Queryg(x, P[1])
forie 2 tok do
A « 0(A, Queryg(x, P[i]))
return A

Figure 3.6. Code for the k-binomial transfaorm.

Proof:

Since atl most k structures exist at any one time, we have

Qp(N) £ Qg(N) * k.

-19 -

Since the space requirement for the static structure grows at least linearly

with the number of elements, the dynamic structure can be no more expensive.

To bound the processing time of the dynamic structure, we will iInvestigate the
maximum number of structures into which any eiement may be built during the

first N insertions. Note that after N insertions, we have

N2 (PRe])

>(D[k]-k+1)%/kL,
implying
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Dik] < (ki) Kek-1.

This, together with the invariant that
D[k} > D{k-1]>..>D[1]2 1
implies that each D[i] satisfies
0 < D[i}-i ¢ (k!N) /K4

for 1<ick. Finally, we note that whenever a structure is discarded and its
elements rebuilt into a new structure, the difference between the upper and
lower parts of the binomial coefficient giving the size of the structure
increases by one; that is, a structure of size

(M

is always replaced by a structure of size

(1)
or of size

(5%,

This implies that no element is ever built intoc more than (k!N)”k static
structures, from which it follows that

Po(N) < Pg(N) * (ktN) 17K,
QED.

117k 9

Note that for all positive k, k
kMK~ e,

<{ k. For large k, Stirling's approximation gives

To illustrate the application of the binomial transforms, we will consider the
problem of range searching. In this probiem, the stored set contains points in a
d~dimensional space, and a query asks for all points with each dimension in a

specified range. (Note that this problem is decomposable with the [] operator

%we use the notation, "A ~ B" as a shorthand for *|A-B| = o(B)".
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interpretecd as U.10) Bentley and Maurer [1978] give a structure for static range
searching (SRS) with performances

Qgps(N) = O(ig N),

Psps(N) = O(N'*%) and

Ssrs(N) = O(N1*%)
for any fixed & > 0. By choosing, for example, k = [2/¢l and & = ¢/2, we can apply

the k-binomial transform to achieve the following structure,

New Data Structure 3: (Dynamic Range Searching)
A dynamic range searching (DRS) structure supporting insertions and queries
for point sets in d-space with performance

Qprs(N) = O(ig N),
Pprs(N) = O(N1*9), and
Sprs(N) = 0(N1+£)

can be achieved for any fixed ¢ > G and positive integer d.

Such a structure is useful for range searching in a situation in which the number of
queries is known to exceed greatly the number of insertions. Specifically, if the
number of insertions in a set of N insertions and queries were known to be O(NP) for
some p < 1, then this structure would allow the operations to be processed in
8(N ig N) time. The best performance for this task prior to this structure was

achieved by Lueker [1078]; his structure required §(N lgd N} time.

It is important to observe that the penalties incurred by the k-binomial transform
need not always be paid. Just as in the binomial transform, they can occasionally be
avoided by merging static structures, by counting the expected query cost, or by

performing separate analyses for fast-growing functions.

1°1n order to implement {multiset) union as 3 constant-time operation, we ask that a query return a tree whose

leaves are the points within the specified range. Two such trees can be combined in constant time by allocating a
new root node containing pointers o the two trees.
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3.3, Transformations with Fast Insertion Time

In the last subsection we investigated a set of transforms that only stightly
increase the query time at the cost of greatly increasing the processing time. In
this subsection we will study a class of structures duval to those, which onty slightly
increase the processing time and greatly increase the query time. Specifically, we
will see that there exists an admissible (k(k!N)”k. k) transform for any positive
integer k. As before, we will first investigate the case that k=2, and then turn to

the general case,

The dual triangular transform is illustrated pictorially in Figure 3.8(a). At time 9,
there are 6 structures (of sizes 1, 2, 3, 1, 1, and 1); when the 10-th element is
inserted it is combined with the last three structures to create a new static
structure of size 4. In general, when the (g)-th element is inserted, M etements are
combined together to form a static structure of size M; other elements are kept in
singleton structures as they are inserted. Since each eiement is built into only two
static structures (the large and the singleton), we know that

PD(N) < 2P5(N).
It is easy to show that at most 2(2N)”2 static structures exist at any time, so we
have

Qp(N) $ Qg(N) * 2(2M) 172,

These facts together imply the following theorem.

Theorem 3.4: (The dual triangular transform)
The dual triangular transform is an admissible (2(2N)1/2, 2) transform,

Proof:
Given in the preceding text. QED.

That this transform is dual to the triangular transform of Subsection 3.2 is

intuitively clear from Figure 3.8(a). To make the duality more precise we will study
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{a) The dual triangular transform. (b} The dual 3-binomial transfarm.

Figure 3.8. Dual binomial transforms.

the dual triangular transform from the wviewpoint of the triangular-number counting
scheme of the last subsection. The history of the dynamic structure is shown in a
tabular form in Figure 3.8. The eighth row shows that when 8 elements are in the
dynamic structure, there are 5 static structures: three "large" structures (of size 1,
2, and 3) and two “"small* structures (each of only one element). In general, if the
number in the "large" column is (“2"). then there are large structures of size
1, 2, 3, .... M-1, The number in the "smail" column gives the number of unit-sized
static structures. Nole that the entries in the number column are identical to the

2-bhinomial counting depicted in Figure 3.5,
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Structures Number
Large Small Large Small
O 0 0 0
(1) 0 1 0
(1) (1) 1 1
(1,2) 0 3 0
(1,2) (1) 3 i
(1,2) (1,1) 3 2
(1,2,3) 0 6 0
(1,2,3) (1) 6 1
(1,2,3) (1,1) 6 2
(1,2,3) (1,1,%) 6 3
(1,2,3,4) O 10 0
(1,2,3,4) (1) 10 1
(1,2,3,4) (1,1) 10 2

Figure 3.9. History of the dual triangular transform.

This duality carries through to the k-binomial transform. For the case of the dual
3-binomial transform, each element will be built Into at most three static structures
(which we call smail, medium and large). All small structures have exactly one
element, medium structures have an integer number of elements, and large
structures contain a triangular number of elements. At any point in the histoty of
the transform, each set of existing small, medium and large structures contains
structures of adjacent sizes. The following table shows the history of the dual
3-binomial transform from the insertion of the fourth through the tenth elements; a

history diagram of the dual 3-binomial transform appears in Figure 3.8(b).
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N Structures Populations
Large Med Small Large Med Small

q (1,3) O 0 4 0 0
5 (1,3) (1) 0 4 1 0
6 (1,3) (1) (1) 4 1 1
7 (1,3) (1,2) 0O 4 3 o
8 {1,3) (1,2) (1) 4 3 1
9 (1,3) (1,2) (1.1 4 3 2
10 (1,3,6) O 0 10 0 0

The extension of this strategy from the dual 3-binomial transform to the dual
k-binomial transform is straighlforward. The code of Figure 3.6 is modified so that
instead of containing a static structure of (Di[‘]) elements, P[i] now contains a list

of structures of sizes
bofil-1 D[il-2 i-1
(PR, (PR3, (29D,
Note that the sum of the sizes of the structures is ({%{i}). This aliows us to

establish the following theorem.

Theorem 3.5: (The dual k-binomial transform)
The dual k-binomial transform is an admissibie (k(kiN)' "k, k) transform.

Proof:
Because each element is built into at most k static structures, it is clear that
the processing cost increases by at most a factor of k. The analysis used in
the proof of Theorem 3.3 shows that each of the k classes of structures
contains at most (k!N)”k distinct structures at any point. Therefore at most
k(k!N)1 Ik static structures exist at any time, providing the upper bound on the
query time penalty. QED.

To illustrate the application of this transformation we will again consider the
probiem of range searching in a d-dimensional point set. Bentley and Maurer [1978]
describe a second structure for range searching (which we will call SRS') with

properties
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asps(M) = o),
Psrs(N) = O(N Ig N), and
Ssrsr(N) = O(N),
for any fixed § > 0. By choosing, for example, k = [2/¢l and § = ¢/2, we can apply

the dual k-binomial transform to achieve the following structure.

New Data Structure 4: (Dual Dynamic Range Searching)
A dynamic range searching (DRS') structure supporting insertions and queries
for point sets in d-space with performance

QprsHN) = O(N®),
PpRrs(N) = O(N ig N), and
SpRrs'(N) = O(N)

can be achieved for any fixed € > 0 and positive integer d.

Note that this structure is appropriate when there are many more Iinsertions than
queries; it reduces the cost of the computation of certain sequences of N insert and
query operations (analogous to those discussed at the end of Subsection 3.2) from

the O(N Igd N} time required by Lueker’s [1978] method to O(N Ig N).

3.4, Summary of the Transformations

in this section we have seen a number of different static-to-dynamic
transformations on data structures for decomposable searching problems. We will
now spend just a moment reviewing these transformations. The transformations

themselves are summarized in Figure 3.10.

Transformation Query Factor Processing Factor
k-binomial k (I-dl‘d)1 /k

Binary Ig(N+1) Ig(N+1)

Dual k-binomiai  k(k!N)1/K k

Figure 3.10. Summary of transformations.
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There are many other transformations besides those that we have asiready
investigated. A simple way of achieving a new transformation is by isomorphism to a
particular number system (counting scheme). This is iltlustrated in Figure 3.11 for
the radix-3 number system (lernary counting). Part (a) of that figure shows the
ternary transform: each static structure is of size either a power of three or twice a
power of three, and corresponds to either a one or a two in the ternary
representation of the number of elements in the dynamic structure. This transform
is an admissible (rloga N, 2(!0(13 N tl‘ansform.11 its dual is shown in part (b) of the
figure; every structure in the dual is of size a power of three, and there are G, 1 or
2 structures for any power aof three, corresponding to the appropriate digit in the
ternary expression of the integer size of the structure. This is an admissible
(2“093 N1, floga N1) transform. This scheme can be extended to radix-k counting to
yieid a primary (fiogk NI, (l-c-i)flog;< N]) transform and a dual ((k-1)flogk NT, [Iogk NT)
transform. An interesting open problem is to examine other counting schemes (such

as Fibonacci counting) for their properties as transforms.

= T
T | [
|= [T

(a) The ternary transform, {b) The dual ternary transform.

Figure 3.11. Radix-3 transformations.

It is now easy to state formally the relationship of the primary and dual
transforms derived from a particular counting scheme. In the primary transform,

there is a single siructure corresponding to each digit, whereas in the dual

! 1"I‘his and the following claims about radix-k transforms assume N> 1.
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transform each digit corresponds to a set of structures that are the "carries” from

its right neighbor (the units digit is a set of structures of size one).

The transformations of this section together provide a powerful set of toois for
designing new data structures for both particular applications and as a component in
larger algorithms. To design a dynamic structure in a given context, the algorithm
designer first designs a static structure (which is usually much easier than
designing a dynamic structure)}, and then applies one of the transformations to
achieve an efficient dynamic structure. Which transformation he uses depends on
the relative efficiency of the static preprocessing and query costs and on the

expected frequency of insertions and queries.

As we mentioned before, the cost penalties of the transformations need not
always bhe paid. One can often avoid them by merging static structures, by
analyzing the average query time, or by performing separate analyses for

fast-growing cost functions.

4. Lower Bounds on Transformations

Our main goal in this section is to prove the optimality, in a certain sense, of some
of the transformations discussed in Section 3. Our path to this goal will have many
steps, and the reasons for each step might not be clear in advance. To aid the

reader, we now briefly sketch the contents of this section.

in Subsection 4.1 we define the model of computation which we will use
throughout the rest of the section. We also advise the reader that the use of this
model implies certain limitations on the applicability of the resuits we will obtain. In
Subsections 4.2 through 4.4 we show a method for representing an initial sequence
of insertions under some transform as a binary tree, and show how the efficiencies
of transformations are related to properties of the corresponding trees. To achieve
the correspondence bhetween transforms and trees, we restrict our attention to a
class of transforms which we call the arboreal transforms. In Subsection 4.5 we

state and solve a recurrence relating the various tree' properties defined in
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Subsection 4.4, and interpret 1lhis result as it applies to the k-binomial
transformations. We then extend the basic result to answer guestions about other
transformations (including the binary transformation) in Subsection 4.6. In
Subsection 4.7 we discuss the justification of the restriction to arboreal strategies,
and in Subsection 4.8 we return to explore the limitations (implied by our model) of
the preceding results, showing a number of cases in which our "lower bounds" can

be beaten by going ocutside the model.

4.1, The Model of Computation

The most important assumption of our model is that the transformations under
consideration are not ailowed to use any specific knowledge about the original
problem or static structure except for the fact that the probiem is decomposable. It
therefore remains plausible for any particular decomposable searching problem, P,
that there exists a dynamic data structure for P having performance better than
that produced by applying any optimal static-to-dynamic transform to any static
structure for P. For example, AVL trees (see Knuth [1973]) proyide a dynamic data
structure for member searching with

SAVL C(N), and
QAVL = Of{lg N).

W

The resuits of this section imply that no dynamic structure with this efficiency can
be obtained (in the worst case) by applying & general transform to & static
structure for member searching; the efficiency of AVL trees depends on particular
properties of the member searching problem other than decomposability (in

particular, the ability to maintain the structural invariant under rotation),

Our model! of computation is that we have three operations, Build, Query, and 0O,
whose inner workings we may not examine. B8uild works with performance Pg to
create static structures. Query works with performance Qg to search the

structures created by Build. The [J operator is guaranteed to have the property

O{Query(x.Build(A)),Query(x,Build(B)) = Query(Build(A U B))
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The onily way to answer a query is by appiying Query one or more times to
structures created by Build and then combining the resuits using {J. It is assumed

that Pg grows at least linearly and that Qg is monotone non-decreasing.

To measure the computation costs (Pp and Qp) associated with a dynamic
structure, we will charge oniy for the computation time of calls to Build and Query. It
should be noted that these costs will generally be the dominant parts of the total
costs of the dynamic algorithms. In any case, this approximation is certainly
acceptable for the purpose of establishing /fower bounds on the costs of dynamic

algorithms.

" Qur goal in the search for efficient transformations is to minimize simultaneousty

the penaity functions

F(N) = Max Qp(i)/Qg(i) and
1<i<N

G(N)

Pp{N}/Pg(N).

The bulk of this section will be devoted to showing limits on just how far this
process may be carried in the worst case. Our interpretation of the term "worst
case" in this context is a bit tricky. We have aiready menticned that we may
assume no specific knowiedge about the problem or the original static structure
except for decomposability. It is also important to note that we do not allow
ourselves to assume any specific knowledge about the efficiency of the underlying
static structure, except that P is at least linear and Q is monotone non-decreasing.
(Note, for example, that the improvements in F and G which occur for fast-growing P
and Q are not examples of worst-case behavior, so there ts no contradiction in the
fact that our lower bounds deny the possibility of such improvements in the general

case.)

The reader may find it heipful to think of the worst case as that In which P is
linear and Q is constant, the intuition being that it is hardest for the dynamic
structure’s costs to approach the static structure’s costs when the latter are as

small as possible. Since we may not use any specific knowledge about the original
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static problem or data structure, any solution to the dynamic problem must work by
maintaining a collection of static structures. Whenever an element is inserted, a
new structure must be created containing that element12 and possibly some other
elements. Also, some exisiing static structures may be thrown away. When a query
is made to the dypamic structure, it is necessary to search some set of static

structures which together contain all the elements inserted so far,

For the following analysis, we will place a few restrictions on the nature of the
dynamic structures we will consider. We will return later to the problem of justifying

these restrictions. Qur first restriclion is as follows:

Restriction 4.1: (Dynamic structures partition elements into static structures)
We assume that at any time there exists exactly one static structure
containing each element which has been inserted so far. That is, the static
structures partilion the set of elements represented by the dynamic structure.

With the precetding assumptions in mind, we are now ready to move on to the first

steps of our analysis.

4.2, Computing F and G

We now give some rules for determining the worst-case values of the penalty

functions I and G associated with a particular strategy.

Definitions: (f and g)
Consider the history of a dynamic structure over the course of any number of
insertions starting when the structure is empty. We define f(N) as the
maximum number of static structures existing after one of the first N
insertions. We define g(N) as the sum of the cardinaiities of all sets of
elements huilt into static structures created over the course of the first N
insertions.

12‘.4'W';iie we may conceive of strategies in which new static structures are created by queries into the dynamic

structure, we need nat consider this possibibty -for this werst-case analysis, since PS could grow much more
rapudly than Qg.
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Note that, while the definitions of f and g actually depend on the specific
transform used, the identity of the transform under consideration will always be

clear from context. We may now bound F and G as follows:

Theorem 4,.1: (f bounds F)
For any positive integer N, F(N) £ f(N).

Proof:
After any of the first N insertions (say the i-th), at most f(N) static structures
exist. To compute the cost of answering a query, we charge precisely for
querying these structures. Since each of these structures has cardinality no
larger than i, and since Qg is monotone non-decreasing, the total cost is at
most f(N)Qg(i). QED.

Theorem 4.2: (g/N bounds G)
For any pasitive integer, N, G(N) £ g(N)/N.

Proof: ,
We note that any static structure built during the first N Insertions will have
cardinality no larger than N. Consider such a structure, S, having cardinality |I.
By the fact that Pg grows at least linearly, we may bound the cost of building
S by the inequality

Pg(i) £ iPg(N)/N

Summing over ail static structure, we get
Pp(N) £ g(N)Pg(N)/N,

implying
G(N) = Pp(N}/Pg(N} < g(N)/N.

QED.

By the assumptions: in Subsection 4.1, the preceding bounds are the tightest

possible for the general case. We will therefore concern ourselves henceforth with
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the problem of minimizing f and g rather than F and G.

4.3. Transforming History Diagrams to Trees

The transforins we discussed in Section 3 are all representabie by history
diagrams, such as those in Figures 3.1, 3.4, 3.7, 3.8, and 3.11. it is not the case,
however, that all transforms are so representable; in order for a static structure to
be represented as a (contiguous) rectangle in a history diagram, it is necessary that
it he built from a set of elements which were inserted consecutively during the
history of the structure. We now impose our second restriction on the c¢lass of

dynamic structures to be considered:

Restriction 4.2: (Contiguity of static structures)
We will restrict our attention {o transforms whose histories are representable
by history diagrams.

Indeed, we will further restrict our attention to those history diagrams (such as the
ones in Section 3) in which every rectangle reaches to the "diagonal" of the

diagram. We may state this otherwise as

Restriction 4.3: (Eagerness of static structures)
We will restrict our attention to transforms in which each static structure is
built as soon as all its elements have heen inserted, and in which the elements
of any discarded static structure are always built into a single new static
structure (along with some additional elements). |

Strategies which satisfy Restriclions 4.1, 4.2, and 4.3 will be called arboreal

strategies for a reason that will soon become obvious.

Consider the history diagram for the first N insertions into a dynamic structure
which is maintained by an arboreal strategy. Any such diagram induces a binary
tree, as shown in Figure 4.1. We may draw this tree by tracing the left and upper
edges of each rectangle in the diagram. The internal nodes of the tree will thus be

at the upper left corners of the various rectangles; each internal node of the tree
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corresponds to a (unique) static structure. We will now go on to study some
relationships between the efficiencies of arboreal strategies and properties of their

induced trees.

| rson{a) I
Hson(a)} 1/

15 a1~ ™,
I i
[rson(a}|
10 _
Lp_) Ison{a) | I |
6
3
T

s

{a) A partial history diagram {b) The induced tree

Figure 4.1. A history diagram and its induced tree.

4.4, Tree Properties and their Relation to Performance

We now introduce some basic: vocabulary for discussing properties of binary

trees.

Definitions: (Tree properties)

Let T be a binary tree. Then leaves(T) denotes the set of all leaves of T and
nodes(T) denotes the set of all internal nodes of T. The weight of T, denoted
|T|, is defined as the cardinality of leaves(T). For any internal node, a, of T the
ieft and right sons of a are denoted ison(a) and rson(a}, respectively. If als a
ieaf of T, then the right depth of a, written rd(a), is defined as the number of
right branches along the path from the root of T to a. The right height of T,
rh(T), is the maximum right depth of any leaf of T. The right path length of T,
R(T), is defined os the sum of the right depths of all leaves of T. Left depth,
ieft height, and ieft path length are defined anaiogously.
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We will sometimes identify a (not necessarily internal) node, x, of a tree with the
subtree rooted at x. For example, we may write |x| to indicate the number of

leaves which are descendants of x.

We now make the following observation:

Theorem 4.3: (Alternate characterization of left path tength)
Let T be a tree. Then,

LTY = 2 Jison(n)]
n € nodes(T)

Proof:
Consider any leaf, x, of T. We need only note that the left branches along the
path from the root of T to x emanate precisely from those nodes of T whose
{eft sons contain x. QED,

With this characterization of left path length in mind, we may now relate the trees
induced by arboreal strategies to the penalty functions assoclated with those

sirategies.

Consider the tree in Figure 4.1(b). To each static structure created during the
partiai history represented by that tree, there corresponds a right (horizontal in the
diagram) branch whose length (in the diagram) is propartional to the cardinality of
that statlic structure. Moreover, for any internal node, n, of the tree, the length (in
the diagram) of the right branch from n corresponds precisely to the number of
leaves in the jeft son of n, By summing over al internal nodes of the tree, we

establish the following result;

Theorem 4.4: (Relation of g to left path length)
Let N be a positive integer and let T be the tree induced from the history
diagram representing the first N insertions inte a dynamic structure maintained
by some arboreal strategy. Then, L(T) = g{N).

Proof:
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Given in the preceding text, QED,

We may also characterize N and f in terms of tree properties:

Theorenﬁ 4.5: {(Relation of N anc f to tree properties)
Let N be a positive integer and let T be the tree induced from the history
diagram representing the first N insertions into a dynamic structure maintained
by some arboreal strategy. Then,

iTI =N+ 1 and
rh(T) = f(N).

Proof:
Inspection of Figure 4.1 will reveal that these resuits are obvious. QED.

The theorems proven so far in this section allow us to address the problem of
"simultaneously minimizing" F and G by investigating a closely related problem about
trees, namely that of "simultaneously minimizing" the right height and left path
length of a tree with a fixed number of nodes. To discuss this more precisely, we

make the following definition:

Definition: (Minimal left path length)
Let n and k be posilive infegers. We define

Li(n) = Min {L{T) | T is a tree such that {T] = n and rh(T) < k}.

Since the only lree with zero right height is the tree of one node (which also
has zero ieft path length), we also define

Lo(1) = 0.
By convention, we will regard Lp(n) as "positive infinity" whenever n>1. A tree

with n leaves, right path length k, and left path length Ly (n) will be called an
economical tree.

In the next few pages, we will investigate the behavior of Ly (n) as k and n vary,

and then restate our findings in terms of lower bounds on worst-case penalty
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functions,

4.5. The Behavior of L (n)

Consider a binary tree, T, with root node t. Let A and B be the subtrees rooted at
a=ison(t) and b=rson(T), respectively. The weight, right height, and left path length
of T may be recursively computed from properties of A and B by the relations

IT} = Al + 1B,
rh(T) = max(rh(A), rh(B)+1), and
L(T) = L(A) + |A] + L(DB).

From this, we abtain the foilowing recurrence for Ly (n):

Theorem 4.,6: (Recurrence for Li(n})
Let n and k be any positive integers. Then,

o] n=1
L(n) = {n=1+L1(n=1) = (%5 1) k=1, n>1
Min [L () + i + L4 (n-i)] kK>1, n>1
1%ign-1

Proof:

The results for k=1 follow by considering the unique binary tree of any weight
which has right height £ 1. For the case k> 1, we consider a tree, T {with root
1) having weight n>1 and height k. Let t be the root of T. And let A and B be
the sublrees rooted at azison{(t) and b=rson(t), respectively. Then we must
have:

1<|AlEn,

|Al + 18] = n,

riv{A) < k, and

thi(B} < k-1.
Moreover, if the left path iength of T is to be minimal, the left path lengths of A
and B must be minimal. That is, we must have

L(A) = Ly (JAD and

L(B) = Li-1(|B.
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These requirements are precisely captured by our recurrence. QED.

We now come to the principal theorem of this section, wherein the behavior of

Lk(n) is precisely characterized in terms of hinomiai coefficients.

Theorem 4.7: (Characterization of L{n)}
Let k and m be non-negative integers such that k £ m, and let n be a positive
integer satisfying

(M <as (%)

Then,
L(n) = k(J04) + (m-k-1)N, [
where
N=n- (rkn)
Proof:

Our proof will proceed by induction on k and, for each fixed positive value of k,
by induction on n.

Base Step: (k = 0)
In this case, we have

(R =1=(%7).
This implies that n = 1, so the right hand side of [}] reduces to

o{ ™) + (m-0-1)(n-(I") = 0 + (m-1)(1-1).
=0
= Lg(1)

Inductive Step: (k > 0)
We now must show that the theorem holds for any k>0 assuming it holds
for all smaller k. We proceed by induction on n, In doing this, we must
take note of the interaction between m and n. Since Kk is positive, (E')
increases monotonically with m. Thus, the minimum possible value of n is
(‘é) = 1, and for any positive value of n, there is at least one possible
value for m (and occasionaily there will be two).
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Base Step: (n = 1)
in this case, we must have m = k, so the right hand side of [i]
reduces lo

k(i k) + kek-1[1-(8)] = k(0) + (-1)(1-1)
20
= Lk(1).

Inductlive Step: (n > 1)
We first show that the right hand side of [I] gives an upper bound
on Ly {n). Note that

(N« @) =@ << () = (@) + (29)-

We now pick a and b such that

(e <as(R) 1]
(P Y << (™), and
a+b=n
By Theorem 4.6, we have
Li(n) S L(a) + a + L1 (b}
= k{5 9) + ((m=1)-k=1)(A) +
(n'1<—1) + A+
k=D + ((m-1)-(k=1)-1)(B)
(R + (mek-1)(a+8)
k(k”l1) + (m=k=-7)N,

where,
A=a-(T0),
B=b-(I")) and
N=n -( ET)

This establishes that our expression is an upper bound on Lk(n). To
estabiish that this is also a lower bound, we must show that ho
other way of expressing n as the sum of two positive numbers, a
and b, will give a smaller vaiue for

Le(a) +a+ L_¢(b) g
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QED.

To show this, we consider the effect on the value of expression
[11] of increasing or decreasing a by steps of one.13 Suppose we
start with a and b chosen to satisfy [li], and then start
incrementing a and decrementing b by steps of 1. So lona as a
remains less than (E’) and b remains greater than (?:11 ), the effect
of each increment will be to increase L {a)+a by
f{m-1)-k=-1) + 1 = m-k-1 and to- decrease Lk-1(b) by
(m-1)-{k-1)-1 = m~k-1, leaving the total value of [liI] unchanged.1 4
However, as soon as either a or b exceeds the stated bound, one or
more of the following things will happen:

1. The incremental growth of Ly (a) will increase while the
incremental shrinkage of Ly_41(b) decreases or remains
the same,

2. The incremental shrinkage of L _q(b) will decrease
while the incremental growth of Ly (a) increases or
remains the same, or

3. b will diminish to O.

in any case, a smaller value for [Ii1] wiil not be obtained. Similarly,
if we start with a and b as in [H] and decrease the value of a while
increansing b, then we will have zero or more steps at which [I1i]
remains unchanged, zero or more steps where the increase in
Lg-4{b) exceeds lhe decrease in L (a) + a, and finailly the step at
which a diminishes to zero. Thus, the ruies given in [II] give an
optimal partitioning of n into a and b. This completes the induction
step and the proof.

13
Lo(b) defined.
14

In the following, we assume that k > 1, If k = 1 wo must always take b = 1 (and a = n-1), since only then is

The incremental changes given here are found by substitution into the second term of the right hand side of

[11, under the induction hypothesis,
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The use of the auxiliary variable, m, in expression [I] makes it a bit difficult to
grasp intuitively what is being said about the effects of n and k on Li(n). To make
the picture clearer, we will briefly study the asymptotic behavior of Li(n) as k
remains fixed and n grows without bound. Consider first what happens as n ranges

only over binomial coefficients of the form (L") We note that

n=(P) > mk+1 < (/K< m,
So,
Lt = k(39
=kn{m-k)/(k+1)
“‘[k/(k+1)]k!1/kn1+”k.
Since the growth of Ly(n} is very weil behaved.15 the preceding may be extended

to cover all values of n.

Theorem 4.8: (Asymptotic behavior of Ly(n)})
Let kK be any positive integer. Then,

Lin) ~ [k/(k+ 1)1 ion 1+ 17K,

Proof:
The resuit foliows directly from the preceding text. QED.

By precisely characterizing Ly(n), Theorem 4.7 gives us a bound on the
efficiencies of arboreal static-to-dynamic transforms. Any such strategy which has
f{N) £ k for all N must always have g{N) 2 L (N+1). The asymptotic behavior of L,(n)
given by Theorem 4.8, and our knowledge that Theorems 4.1 and 4.2 are the best
possibie within our model, tell us that whenever we have

F(N) < k

156iven the values where n is of the form "m choose k", we can find the exact values at all other n by linear

interpotatien.
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for any positive integer k, we must also have
G(N) 2 Li(N+1)/N ~ (ki) 7K,

This is the precisely behavior achieved by the k-binomial transforms, up to lower
order terms. Note, however, that the exact lower bound is not always achievable,
The reason for this is the consideration of immutability of history. f we know in
advance that there will be exactly N insertions, then an optimal strategy can be
devised by working backwards from an economical tree of weight N+1 and right
height k. But if the total number of insertions to be made turns out to be larger,
then a different strategy for the first N insertions may have been called for.
Fortunately, the results of this restriction turn out not to be too severe, since the
k-binomial strategies have efficiency very close to this theoretical limit. The
following theorem shows that, for any k, the G(N) achieved by the k-binomial
transform is optimal (for F(N) £ k) not only to within lower order terms but actualiy to

within an addive constant of 1.

Theorem 4.9: (Optimality of k-binomial transforms)
For any positive integer, k, the k-binomial transform achieves

f(N) £ k and
g(N) € Li(N+1) + N

for all positive N,

Proof:
Examination of the optimal construction given in the proof of Theorem 4.7
shows that the k-binomial strategy achieves the optimal value of
f{N) = Lk(N+1)

when N is of the form

N= () -1
- for some mzk. For intermediate values of N, we need only note that, after the
first N insertions under the k-binomial strategy, the sum of the cardinalities of
all structures formed so far except those in existence after tha N-th insertion
(note that these latter must have a total cardinality of N) will never be greater
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than Lk(n). This fact may be established by induction on k, using the fact that
values of Li(n) are given exaclly by linear interpolation between paoints at
which the k-binomial transform gives absolutely minimal values of f(N). QED.

4.5, Allowing the Number of Static Structures to Grow

So far in this section we have only considered minimizing g(N) where f(N) is
bounded by a constant. In other words, we have considered only strategies which
allow some fixed maximum number of static structures to exist at one time. In
Section 3, however, we also investigated strategies (the binary and the dual
k-binomial transforms) which allow the the number of static structures to grow
without Jimit as the lotal number of eiements in the dypamic structure increases.
We will now, therefore, briefly investigate transforms which allow f(n) to grow

without bound.

To study the efficiency of transforms in which f(N) is unbounded, we may
consider the behavior of L {n), where k is ailowed to vary with n.16 We must be
aware of two possibie consequences of ailowing k to grow:

(1) For any particular k, n may never grow large enough for L (n) to
approach the asymptolic behavior given by Theorem 4.9.

{2) Our previous caveat about the immutability of history may become mare
significant,

Since the asymi totic approach aof Ly (n) / Lk/(kﬂ)]k!1 fkpi+1/k

to unity (as n grows
and k remains constant) is from below, (1) may be ignored for the purpose of
investigating upper bounds. Since the immutability of history can never make it
easiér to devise efficient transforms, this consideration may be ignored for the
investigation of lower bounds. Because of these complicating factors, our resuits

for transforms with unbounded f are less precise than those for bounded f. A few

16!71 accordance wilh the notational conventions of this seclion, we have k = f{n) = #{N+1), since the first N
insertions always give a history diagram which induces a tree of weight N+1.
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results are nonetheiess worth noting. The first of these is the following.
Theorem 4.10a: (Optimality of the binary transform)

For any arboreal transform such that f(N) = O(lg N), g(N) = (N ig N).

Proof:
Since constraining the growth of f can only increase and never decrease the
necessary growlh of g, we need only consider the case where f(N) = &(lg N).
We must show that Lgy)(N+1) = (N Ig N). We define the function M by

M(n,k) = Max {m | () < n}.
From the fact that {(N) = &(Ig N), it follows that M(N,f(N)) - f(n} = &(lg N). This
gives us

GIN) 2 Ly(n)(N+1)

2 Len)N)

(M)
[FONYZCIND=1)J[MUON,E(ND)-f(N) IN
= g(N Ig N) = §2(N Ig N).

v

QED.

This resuit telis us that the binary transform is optimai in the sense that any
trahsfcrm that pays as small a penalty in search cost (within a constant factor)
~ must pay at least as large a penalty in insertion (again within a constant factor);
any arboreal transform which achieves F(N) = O(lg N) in the worst case must also
pay G(N) = Q(lg N).1? The binary transform is also optimal in the sense that any
transform which is actually cheaper (by more than a constant factor) for searches
must be strictly more expensive (again by more than a constant factor) for

insertions. We state this result more formally in the following theorem.

Theorem 4.10b: (Optimality of the binary transform)

17'!'his follows from the fact that Theorems 4.1 and 4.2 are the tightest resuits possible within our model.
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For any arboreal transform such that f(N} = o(ig N), g(N) = w(N Ig N).

Proof:
Let the function h be defined by

h(N) = (ig N}/f(N).

From the hypothesis that f(N) = o(lg N), it folows that h(N) = w(1). Moreover,
since M(N,f(N)) £ ig N, we have f(N) = o(M(N,f(N)), which means that the
approximation in Theorem 4.8 remains valid.18 This gives us
g(Nj) 2 Lf(N)(NH)

2 Lf(N)(N)

~ [FN)/(F(N)+1 )]f(N)!Hf(N)NHUf(N)

~ [17CN) )N Ny

= (g N)/(e n(vy) 12Ny

= w(N ig N).
QED.

This implies that any arboreal transform which achieves F(N) = o(lg N) in the worst

case must also pay G(N) = w{ig N).

In the preceding proof, we saw that the approximation given in Theorem 4.8 still
serves to provide a lower bound on the growth of g even when f is allowed to grow
without bound, provided that f(N) = o(lg N). The next naturai yuestion is whether
this bound can always be achieved. It turns out that this is not always possible. |f
f grows in a very irreguiar manner, having sudden spurts of growth separated by
intervais of almost no change, then the immutability of history wiil cause g(N) to be
much larger than L;(NH)(NH) for values of N immediately foliowing the sudden
increases. If f grows "smoolhly" (the precise meaning of this term is implicit in the
following theorem), however, this fower bound for g{N) is very nearly obtainable. We

state this result formally as follows.

18Th:n is, consideration (1) may be disregarded,
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Theorem 4.11 (Optimizing g for slowly growing f)
Let h be a differentiable function such that

hix) = w(1) and
h'(x) = o{1/x).

Then, there exists a transform having
f(N) < Th(N)] and [
g(N) ~ (h(N)7e)NT+1/h(N), : [l

Moreover, given [1], [11] is optimal up to lower order terms.

Proof:
A structure having the performance described may be formed by a process of
"cutting and pasting" from the history diagrams of the various k-binomial
strategies. We omit the details for brevity and for the sake of keeping the
reader awake. The optimality of {il], given [l], is implicit in the proof of
Theorem 4.10b. QED.

Our results for transforms in which f(N) = w(ig N) are much less compiete. In
particular, we know that the performance of the dual k-binomial transforms falls
substantially short of the bound given by the inequality

g(N) 2 Lecn)(N+1).
We conjecture that this is an inevitable penalty of the immutability of history, and
that the dual binomial transforms are in fact optimal in some strong sense, similar to
that of Theorem 4.8 for the ordinary binomial transforms. The problem of finding
optimal transforms in which f(N) grows faster than Ilg N but slower than nG for any

positive € remains open.19

19Wo may view equivalontly view this as the problem of optimizing 1 when g(N) grows asymptotically faster
than N but siower than N Ig N.
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4.7. Justification of the Restriction to Arboreal Transforms

In Subsections 4.1 and 4.3, we Introduced three restrictions which together
constrained our investigation to arboreal transforms. While we conjecture that
arboreal strategies are optimal, in the sense that for any non-arboreal transform
there exists an arboreal transform which is at ieast as good (given the "biack box"
mode! described in Subsection 4.1), we have not yet found a rigorous proof. In this
subsection, we will summarize our reasons for considering each of the restrictions

reasonable.

Restriction 4.1 forbids the existence of muiltiple structures containing the same
element. Qur intuition is that any strategy which perrﬁits such overlapping
structures can be improved by omitting the shared elements from all but cne of the
overlapping structures. To justify this intuition would require careful examination of
the consequences of this omission when that one structure is finally destroyed. We
may also forbid overlapping structures on the grounds that transformations which
allow them cannot be optimal for space in the worst case. An even more serious
ohjection is that there are a number of probiems which satisfy the definition of

decomposability only when the unions invoived are of disjoint sets.

Our Intuitive justification for Restriction 4.2 (contiguity of static structures) is the
belief that a partial history which does not satisfy this restriction can be turned into
one. that does, at no cost in f(N) or g{N), by a kind of "permutation of the names of
ithe elements.” To show this would justify the restriction at least for the cases
where f is bounded or grows slowly and smoothly, so that the immutability of history

is not a significant problem.

For Restriction 4.3, we can actually give a rigorous justification, at least over the
class of transforms which already satisfy Restrictions 4.1 and 4.2. We express this

in the following theorem:

Theorem 4.12: (Optimality of eager strategies)
Let N be a positive integer. For any partiai history consisting of the first N
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insertions and satisfying Restrictions 4.1 and 4.2, there exist a partial history
which also satisfies Restriclion 4.3 and which has f(N) and g(N) no greater
than those for the original partial history.

Proof:
Any partial history which satisfies the first two restrictions may be
represented by a history diagram. We may insure that the rectangle in the
upper left corner of the diagram represents a structure which is formed as
soon as all its elements hecome available, for any diagram which does not have
this property can be transformed at no cost into one that does. The
construction is as follows:
Let B be the upper left rectangle in the diagram. Consider the leftmost
rectangle immediately below R. If it is wider than R, then we extend it
upwards to the top of the diagram, obliterating R; if it is narrower than R,
then we extend R downwards by one step. This process is repeated
untii ihe property holds. _
But now the rest of the diagram {(excluding the upper-left rectangle) must
consist of zero, one, or two staircase-shaped pieces to which the same
process may be applied recursively, finally yielding a diagram saiis-fying
Restriction 4.3. No step in this process increases either the total
preprocessing cost or the maximum number of simultaneously existing
structures, so Restriction 4.3 has been formally justified. QED.

4.8. Limitations on the Significance of the Lower Bounds

The lower bounds we have derived in this section are based on the mode! of
computation given in Subsection 4.1, Before concluding the section, we will mention

some of the limitations which this implies for the applicability of our resuits.

We have already mentioned that it is often possible to obtain superior dynamic
data structures for individual decomposable problems (e.g.,, Member) by using
specific properties of those problems. Another assumption on which our lower
bounds depend is that Theorems 4.1 and 4.2 are the strongest possible results of
their kind, because we assume no knowledge about the performance of the original

static algorithm. As we saw at the end of Subsection 3.1 the penalty factors, F(N)



3 September 1079 Static-to-Dynamic Transforms -49 -

and G(N), may be greally reduced (from 8()g N) to O(1) in the example of Subsection
3.1 if the cost functions of the static structure are already fast-growing. We now
present some resuils concerning a siightly different way of lowering the penalty

functions given fast-growing cost functions for the original static structure.

Suppose we are given a static structure for a decomposable searching problem
having preprocessing cost Pg(N) and query cost Qg{N). We will make only the usual
assumption about 05-—thnt it is monotone non-decreasing. We will, however, make
the assumption that Pg(N) not only grows at least linearly with N, but is actually
9(N2). i we apply lhe 2-binomial (triangular) transform, will obtain a dynamic
structure having cost functions, Pp and Qp, which satisfy

QD(N) < 203(N) and
Pp(N) = 0(NS/2),
The reader is advised to go through the exercise of verifying the latter assertion.

The penalty factor in preprocessing is given by

G(N) = Pp(N)/Pg(N) = 8(n1/?),
which is at most a constant factor improvement over the worst-case resuit given in
Theorem 3.2. We appear to get negligible compensation for the fact that the
preprocessing cost is already much more than linear. If we look a little more

carefuily, however, we may notice an interesting phenomenon.

In the trianqular strateqy, we maintain two structures, a large one, having

N1/2).

cardinality O(N), and a small one, having cardinality O( If we break down

Pp(N) into the cost of forming all the large structures built during the first N
insertions and the cost of forming all the small structures built during the first N
insertions, we find that the large structures have a total cost of H(NSIZ), while the
%)

total cost of the small structures is only (N tf Pg had been iinear, then the

costs of the two families of structures would have been equal within a constant

factor, each being 0(N3/2).

The present disparity suggests that it might be better
to merge the small structures into the large ones less frequently. And, indeed, if we

adopt the strategy of rebuilding all the elements into a single structure only when
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the size of the small structure would exceed MZ/:3

, we achieve a dynamic structure
having

Qp{N) £ 2Gp(N} and

Pp(N) = 8(N7/3) = o(n '/ Bpy)
(as the reader may again wish to verify), the total preprocessing cost being split
evenly (within a constant factor) between the two families of structures. The
preceding resuits may be generalized to arbitrary polynomial preprocessing costs
and arbitrary binomial transforms, as shown in the following theorem.

Theorem 4.13: (Shift-of-strategy speed-ups)

20

Let k be an arbitrary positive integer and let r be a real humber greater than

1. Suppose that we are given a static structure for a decomposable searching
probiem with cost functions satisfying the following criteria:

Qg(N) is monotone non-decreasing,
PS(N) grows at least linearly, and

Pg(N) = w(N").
Then, a dynamic data structure can be constructed such that

Qp(N) € kQg(N) and
Pp(N) = O(N"Pg(N)),

where

R = (r-1)/(rK-1).
Proof:
We maintain a set of structures satisfying the following invariants:

(1) After any insertion there are at most k static structures.

(2) Let j be a positive integer. After the N-th insertion, the
cardinality, Cj, of the j-th largest structure (if there are at least

ZoThe nit-picking reader will delight in noting that it is not quite correct to allow r to be an arbitrary real number,
in order for the deosired transfoarm o be implementable, ¢ must be Turing computabie. Even then, if r is very
expensive to compute, the bookkeeping cesls may kill us. Similar considerations apply te the function h in
Theorem 4.11.
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j structures in e.xistence) satisfies
c; < (re-rhzak-1).

When an element is inserted, we see how many structures aiready exist., If
there are fewer than k, we simpiy build the new element into a static structure
of cardinality one. |[f k structures aiready exist, we rebuild the smallest
structure to include the new element. We then repeatedly (zero or more
times) merge the smailest two structures until (2) is satisfied. We leave it to
the reader to verify that this strategy achieves the advertised performance.
QED.

In any strategy based on the construction in the previous proof, the total
preprocessing will be divided evenly (up to constant factors) among k families of
structures. We conjecture that this gives optimal Pp within a constant factor
(which may depend on r and k). Neediess to say, similar improvements are available,
both in preprocessing time and in query time, for a number of other transformations,
given sufficiently fast-growing cost functions. Only a small fraction of the

possibilities have been explored.

5. Online Transformations

All of the transforms in Section 3 have the property that some insertions are very
cheap while others are very expensive. For example, in the binary transform the
1023-rd insertion is much iess costly than the 1024-th. While this situation Is quite
acceptable in certain applicalions (such as when the total cost of accessing a
structure throughout an entire algorithm is counted), it is prohibitive in others (such
as online data bases). in this section we will show how the transforms in Section 3
can be modified to amortize the cost of building static structures over the time of

many insertions.

in Section 4, we worked on the principle that any static structure might as well
be formed as soon as all its elements became available, since the cost of building it

would eventually have to be paid anyway. While this is reasonable if we are
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concerned only with the total cost of ail insertions, it is inappropriate if we wish to
make sure that no individual insertion is inordinately expensive. Figure 5.1 shows a
strategy which is similar to the binary strat'egy of Subsection 3.1, except that each
structure of cardinality C is completed at the end of the C-th insertion that all its
etements are available, rather than at the end of the first such insertion. A
structure, s, is said to be pending during the N-th insertion If the all elements of s
become available at or before the beginning of the N-th insertion and s is completed
during the N-th insertion or later. (The x's in Figure 5.1 denote the structures that
are pending during the eighth insertion). A structure of cardinality C will therefore
be pending during exactly C insertions.

20 T ]ﬁ:
19

18 o

lx

NN N D

Iy

Figure 5.1. The online binary transform.

To limit the work done In any insertion step, we require that 1/C of the work
- required to build any structure of size C be performed during each of the C steps In

which that structure is pending.21 We call the resulting transformation the online

21The exact means by which this is insured are left unspecified. We may modify the static algorithm to include
appropriate breakpoints {generally an easier {ask than totally reworking the algorithm into a dynamic algorithm by
ad hoc methods), or we could assume thal we can determine the required computation time in advance (at
negligible cost) and set a hardware interrupt. For otr present purposes, we will assume that the ability to partition
the compute lime of a call to Insert is available by magic. It should aiso be noted that the partitioning of the work
into equal parts will not be exaclt in in practice; this will lead to stightly greater insertion times than those we ara
about to advertise.
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binary transformation. Analysis of this transform's performance yields the following

theorem.

Theorem 5.1: (The on-line binary transformation)
Suppose we are given a static structure, S, for a decomposable problem such
that

(1) Qg(N) is monotone non-decreasing,

(2) A structure of cardinality N may be built by N calls, each of cost
Is(N) (recail that ig(N) is defined as Pg{N)/N),

(3) ig(N) is monotone non-decreasing,

(4) The space used at any point during the formation of a static
structure is at most Sg(N), and

(5) Sg(N) grows at least linearly.

Then, there exists a dynamic structure, D, such that

Qp(M) < 2liaiN+1)]agN),

tp(N) £ Tig Nhg(N), and

Sp(N) £ 35g(N)
(recall that Ip(N) is the worst-case time to insert the N-th element in a
dynamic structure).

Proof:
By assumption (2}, application of the online binary transform is weli-defined.
We will now show that the resulting dynamic algorithm has the stated
performance. We first note that all structures which are either active
(completed but not yet discarded) after the N-th insertion or pending during
the N-lh insertion have cardinalities which are exact powers of two and which
are £ N. Moreover, there are never more than two active structures of any
given cardinality. This and assumption (1)} justify the claim about Qp. Similarly,
assumption {3) and the fact that there is never more than one pending
structure of any cardinality together justify the claim about Ip. Finally, we
note that the sum of the cardinalities of all structures active and pending after
the N-th insertion is no more than 3N (N for the active structures and no more
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than 2N for the pending structures). Together with assumptions (4) and (5),
this fact justifies the claim ahout Sp. QED.

To illustrate the application of the online binary transformation, we will consider
the problem of d-dimensional maxima searching. A vector is said to be maximal with
respect to a set of vectors if no vector in the set is greater than the given vector
in all coordinates. Preparata [1978] has given a data structure SMS for
d-dimensional maxima searching with performances

Psms(N) = O(N 1g972 N,
Ssms(N) = O(N 16972 N), and
Qgms(N) = O(Igd—z N),

for any d23. Applying the online binary transform to this structure yields the

following.

New Data Structure 5: (Dynamic Maxima Searching)
For any fixed d 2 8 there exists a dynamic data structure DMS for

d-dimensional maxima searching with performance

Ioms(N) = o(lg®™ N,

Opms(N) = 0igd™1 ), and
Spms(N) = O(N 1g972 N).

This structure has the same performance as Lueker's [1879], but is substantially
easier to code and prove correct; his structure, however, also supports deletions.

(The two structures were discovered independently.)

The other transforms we have studied may aiso be modified to give oniine
versions, as shown by the examples in Figure 5.2. The online triangular transform,

shown in Figure 5.2(a), gives the performance

Ip(N) € (28) /21Ny,
Qp(N) € 3Qg(N), and
Sp(N) $ 2S5(N).

Similarly, the online dual triangular transform, shown in Figure 5.2(b), achieves
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Figure 5.2. Online triangular transforms,

Ip(N) < 2i5(N),
Qp(N) < 3(2N) 1/ 2qg(N), and
SpiN) ~ Sg(N).

Determination of good lower bounds for the penalty factors associated with online

transformations remains an open problem.

6. Deletion

So far in this paper we have considered dynamic data structures that support
only insertions and queries. In this section we will present two results dealing with
data structures that support deletions and their realization by decomposable
tfansforms. In Subsection 6.1 we presen{ a negative resuit ihat says that, in
general, it is impossibie to achieve by a transform a data structure that efficientty
supports deletions, In Subsection 6.2 we will examine a transformation that
efficiently achieves deietion, but is applicable only to a subset of the decomposable

searching problems.
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6.1. A Lower Bound

In this subsection we will study a lower bound on the efficiency of performing
deletion in a structure achieved by a decomposable transformation. As with all
lower bound proofs, it is important that we accurately define our model of
computation, which is very similar to that used in Section 4. We assume that there
is a static structure S with operations Build and Query, which have performances Pg
and Qg, respectively. The function Pg grows at least linearly, and Qg is positive
and monotone nondecreasing., There is no way (o answer a query other than by
using the Query subroutine (on a structure buiit by Build) and the O operator. The

only costs that we will count are those of Pg, Qg, and a constant cost for computing

0.

To state the lower bound precisely, we need some definitions. For a dynamic
structure with deletions (which we call DD) we will define the functions IBD(N),
DBD(N), and OBD(N) for the insertion, deletion and query costs, respectively. To
strengthen our result, we let these costs denote not the woarst-case times, but
rather the average cost (over a distribution that we will make precise in the proof of
the theorem). We are now ready to state and prove the primary theorem of this

subsection.

Theorem G.1: (Expense of deletion)
For any dynamic structure with deletions (which we call DD} obtained by a
transformation applicable to all decomposable searching problems, there exists
a sequence of insertions, deletions and queries for which

[QpE(N)] * [IHpIN) + DPR(N) + Qfg(N)] = QUN).
Note that this implies that at least one of the insertion, deletion and query
costs requires at least Q(N”z) time.

Proof:
We wiil prove this theorem by considering a "steady state" in which there is a
structure of size N, and a sufficiently long string of repeated query, delete,
and insert operations is performed. After M repetitions of these operations,
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the structure wili still be of size N, and a total of M queries will have been
performed. Each query that is performed must examine some coilection of
static structures whose total size is at least N (so that each element of the
set is represented in the query); assume that C*(N) such structures are
examined on the average. We therefore know that at least half the gueries
examine no more than 2C*(N) static structures each (if more were examined,
then the average would be too high), and in these cases the largest structure
examined must contain at least N/(2C*(N)) elements.

Consider now an adversary who causes each deletion in the sequence to be
deleted from the largest existing static structure -- because of our model of
computation, this structure must now bhe discarded. For sufficiently long
sequences of operations, static structures must be created as often as they
are deleted. The costs of building the static structure must therefore be paid .
in insertion, deletion, and query costs, yielding

IDDIN) + DHRINY + QHPINY 2 (1/2) P5IN/2C*(N)).

(The right hand side is from the fact that at ieast one-half of the queries
access a structure of size N/2C*(N), and the adversary always deletes that
structure.) We also know that

QHpN) = RCH(NY),

because each structure queried costs at least some constant. Multiplying
these two inequalities yields
[QPR(NT * [IHpN) + DPGIN) + Qfp(N)]
= RUCHN) * Pg(N/2C*(N)) )
Q(Ps(N))
§2(N).

The last two inequalities both follow from the fact that Ps grows at least

L1

linearly. QED.

Maurer and Ottmann [1979] describe a static-to-dynamic transformation with
deletion that comes close to achieving this lower bound by always keeping

N”2 static structures, each of size approximately N”z.

approximately
Fortunately, however, additional information can often be used to achieve more rapid

deletion outside the model for which this lower bound holds. {Any such transform,
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however, is not applicabie to all decomposable searching problems.)

-6.,2. A Fast Special Case

Theorem 6.1 shows that any search for an efficient deletion transformation for all
decomposable searching problems must be in vain. In this section we will see a
transformalion that does in fact efficiently support deletions as well as insertions,
but is not applicable to ail decomposable searching problems. We will investigate
this transform by first studying a particular example, and then turn to the generat

case,

The particutar problem that we will study is that of counting the number of times a
given element occurs in a multiset. A suitable static structure for this problem is the
sorted array, which we discussed in Subsection 3.1, it has performances

pSA(N) = O(N Ig N).
Sga(N) = O(N), and
QSA(N) = O(lg N).

We saw in that subsection that this structure can be transformed to yield the
binomial list data structure that efficiently supports both insertions and member
queries. It is a trivial modification to have it support count queries as well; the O

operator is now plus rather than or.

Binomial lists can be modified to support deletion by keeping two binomial lists at
all times, which we will call the real and the ghost structures. Each time an element
is inserted, it is inserted into the real structure. When an element is deleted, we
insert it into the ghost structure. To count the number of times an element occurs in
the set, we count the number of times it occurs in the reai structure and subtract
from that the number of times it occurs in the ghost structure. We maintain the
further invariant that the ghost structure always holds less than haif as many
elements as the real structure; when deletion of an element violates this invariant
we destroy the ghost structure, unbuild the set of elements in the real structure
and subtract all deleted elements from it, and finally rebuild that set into a new real

structure (giving an empty ghost structure).
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We must now anailyze the performance of binomial lists with deietions. The cost
of inserting an element and of performing a count search remain the same; they are
respectively O(lg N) and O(Ig2 N}. The "immediate" cost of deleting an element is
O(lg N) (for performing the insertion into the ghost structure}; we must also count,
however, the cost of rebuilding the s'tructure. The cost of rebuilding an
M/2-element real structure is incurred anly after M/2 elements have been deleted;
since the total cost is O(M ig M), we can assign each element a share proportional

to Ig M. Thus the cost of deletion in an N-eiement set can be amortized to O(lg N).

The strategy of using real and ghost structures can be generalized to glve a
dynamic structure supporting deletions for any decomposable searching problem
whose OO operator has an inverse. The most common case is when [ is E'_”_E' for
which D'1 is minus. If ] is and or or, then one can often transform the probiem to
involve plus instead (Tor instance, we could transform member queries to count

queries, whose [0 operator is invertible). if [0 is multiset union, then this scheme

works only when the size of the answer set for the ghost structure is much smaller
than the size of the total answer set (and this is often not the case). Finally, if O is

min or max, this scheme is usually impossible to apply.

To describe the slrateyy more precisely we will need some notation to describe
the efficiency of structures with deletions. If DD is a dynamic structure supporting
deletions, we let PDU(M,N) denote the total insertion cost involved in a sequence of
N insertions and M deletions in an initially empty structure. The function Qp(M,N)
denotes the cost of answering a query in a structure built by N insertions and M
delietions. Finally, Dpp{M,N) denotes the total time spent in processing deletions in
a series of N insertions and M deletions, and Spp(M,N) denotes the maximum space
required by the structure during the sequence. With this background we can

describe the transformation supporting deletions precisely in the following theorem.

Theorem 6.2: {Transformations supporting deletions)
Assume that there exists an admissible (F(N), G(N)) transformation. Then,
given any static structure S for a decomposable searching probiem P such that
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the inverse of the O operator for P is computable in constant time, it is
possible to achieve a new structure DD with performances

Spp(M.N) £ Sg(2(N-M)) + Sg(N-M),

Ppop(M,N) £ G(N) " Pg(N),

Qpp(M,N) £ F(2(N-M)) " Qg(2(N-M)) + F(N-M) 'QS(N—M). and

Dpp(M.N} £ G(M) " Pg(M) + Pg(2M).
We assume here that Qg is monotone nondecreasing and that both Pg and Sg
grow at least linearly.

Proof:

The DD structure maintains two dynamic structures (each achieved by applying
the admissible (F(N),G(N)) transform to S): the real structure and the ghost
structure. Both structures are initially empty. To insert a new element intc DD,
insert it into the real structure. To answer a query, answer it on the real
structure and subtract {rom that the answer on the ghost structure (using
D'1). To delete an element, insert it into the ghost structure. [f the ghost
structure ever becomes haif the size of the real structure, rebuild the real
structure with only undeleted elements, and discard the current ghost
structure.

The storage requirements of DD follow immediately from the superiinear growth
of 5g. If a total of N insertions and M deletions have been performed, then at
mos{ N-M elements are "really” stored in the structure. The ghost structure
can therefore contain at most N-M elements, and the real structure contains at
most twice that number. The time spent on insertion is straightforward, and so
is the guery time. The time spent on deletion is at most that for inserting M
elements into the ghost structure and then rebuilkding the real structure; this
jatter action is never carried out on more than 2M elements. These facts
together establish the theorem, QED.

There are two important things to note about the transformation of Theorem 6.2.
The first is that it is not online in the sense of Section 5; as it stands, the expense
of rebuilding the real structure and discarding the ghost structure must occasionally
be paid in a single block of time. The second interesting thing to note is the fact

that there is nothing magic about insisting that the ghost structure be one-half the
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size of the real structure: we could just as well use any constant A in the range
{0,1). For small A, the query lime decreases and the storage utilization is higher; for

large A, the deletion time decreases.

As an application of this transformation, we will consider the probiem of Empirical
Cumulative Distribution Function (ECDF) searching in a set of N d-dimensional
vectors. One vector is said to dominate another if it is greater than it in all
components; an ECDF query asks for the number of vectors a given wvector
dominates. Bentley and Shamos [1977] describe a data structure for d-dimensional
ECDF searching (lfor d22) with performances

Peepr(N) = O(N 19971 ),
Sgcpr(N) = O(N 169 N), and
Qgepr(N) = 0(g? N).

We can apply the binary transform of Section 3.1 and the transform of Theorem 6.2

to their structure to achieve the following.

New Data Structure 6: (Dynamic ECDF Searching)
it is possible to achieve a data structure for dynamic ECDF searching in which
performing a sequence of N inserlions and deletions requires O(N lgd N) time.
When containing N elements, the structure requires O(N lgd"1 N) space, and an
ECDF qguery can be answered in O(J(JC“'1 N) time.

Lueker [1979] later used a different transformation on decomposable searching
problems to achieve an (online) structure with performance identical to this, but with
a logarithmic factor removed from the query time; his structure is more difficutt to

code and to prove correct, however.

7. Conclusions

We will now briefly review the contributions of this paper. The subject
throughout has been general methods for converting static data structures to
dynamic data structures, in Section 3 we saw three distinct classes of
transformations, each based on a combinatorial representation of the integers. ' In

Section 4 we saw that many of those transformations are optimal, in a very strong
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sense. In Section 5 we considered structures in which each insertion must be
handled very quickly; this is important in "online" applications. Our study of dynamic
structures up to this point concentrated on structures that supported only insertions
and queries; in Section 6 we investigated structures that also support deietions.
We saw that although it is impossibie to achieve efficient deletions in the general
case, they can be achieved for an important subclass of the decomposable

searching problems.

The contributions of this paper can be classified on three distinct levels. On the
first level are the new data structures that we have seen. Each one Is currently
the best known structure for its task (with the exception of New Data Structure 6),
and each was discovered by conscious application of the transforms described in
this paper. On a second level are the transformations themselves; they are very
interesting from a combinatorial viewpoint, and provide a useful addition to the
algorithm designer's tool bag. On the third and final level is the new kind of resuit
represented by the transformations: they are not just a single solution to a single

problem, but rather a set of solutions to a broad class of problems.
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l. A List of Decomposable Searching Probloms

Throughout the body of this paper we have examined a number of operaticns on
decomposable searching problems. In this appendix we will list some (twenty-three)
searching probiems that have the property of decomposabillty} For: ‘ea'ch prabiem we

will note its O operator in square brackets.

The most comman kind of searching probiems are those defined on totally-ordered
sets. We already saw that Member searching (which asks "is x an element of F?")
is decomposable with [J operator V. Other examples are Successor (what is the
least element in F greater than x?) [min], Predecessor [max], Rank {how many
elements in F are less than x7?) [+], and Count (how many elements in multiset F
have value x7) [+]. Two queries on ordered sets that have no query etement are
the priority queue operations Min [min] and Max [max]. These problems, their
applications, and data structures for their solutions are discussed' in depth by Knuth

[1973].

Many of the nrobiems that arise in database applications are decomposable. In
-this context, the set of elements is usually a file of records, each of which contains
certain keys. An Exact Match query calls for a list of ail records that have ail keys
equal to specified values [U]. A Partiai Match query asks for all records that match
on some subset of the keys [U]. Range queries ask for all records that have each
key in a specified range of values [VU]. Intersection queries specify a subset of the

key space and ask for a list of all records in that subset (thus asking for the
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intersection of the query space and the record set) {U]. Finaily, Best Match queries
specify an "ideal" record and a distance function {often the Hamming distance), and
ask for the record in the set closest to the ideal [min]. These queries and data

structures for answering them are discussed by Rivest [1976].

We saw in the boady of the paper two decomposable searching problems that
arise in statistics. Both of the probiems are defined in terms of vectors domination
{one vector is said to dominate another if it is greater in all coordinates). A Maxima
query asks whether the query vector is.dominated by any in the set [v]. The
Empirical Cumulative Distribution Function (ECDF) query asks how many vectors a

given vector dominates [+].

Examples of decomposable searching problems abound in computational geometry.
Many queries are asked of sets of points in the piane or Euclidean k-space,
including Nearest Neighbor (which point in the set is nearest the query point?) [min],
Furthest Neighbor [max], and Near Neighbor (list all points within distance d of the
query point) [U] queries. Other queries deai with more complicated objects. For
exampile, we might wish to know whether a given point is in the intersection of a set
of half-planes (this problem arises in linear programming); Feasible Region queries
are decomposable with the A operator. Other queries inciude Rectangle Intersection
(what rectangles in the set does this rectangle intersect?) [U] and Circle
intersection {U]. These queries and many others have been discussed in detail by
Shamos [1978]. Dobkin and Lipton [1976] investigate a number ot decomposable
searching probiems in multidimensional space; these include such queries as "is this
point on any of the lines" [V] and "is this point on any of the hyperplanes" [V].
Many of the other problems that we have aiready mentioned can be cast in

gecmetric terms; these include ECDF, Maxima and Range searching.

Convex Hull searching is a very interesting problem from the viewpocint of
decomposability. In its simplest form--"Is point x within the 6onvex hull of point set
F?Y-«it is simpie to prove that it is not decomposable, since whenever F contains at

least two points we can partition F and specify x s¢ that x is naot in the hull of
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either part but either is or is not in the hull of the union. If we ask instead the
query "what does the hall of the set look like from here?" (the answer being either
an assertion that the query point is within the hull or a pair of angles giving the
extremal points of the hull as nviewed" from the query point), the problem is now
decomposable. Thg transforms described in this paper are therefore applicable to
any data struclure for Convex liuil searching, provided that that structure can be
cheaply modified to answer the more complicated query. While this result is not of
partiétsiar interest in itself (since it is easy to develop a fast ad hoc algorithm for
dynamic Convex Hull searching), it indicates a possibly fruitful technique for
extending the domain of applicability of the transforms, namely the Identification of
any searching problem P such that (1) P may be made decomposable by having the
query provide some cxtra information and (2) known static algorithms for P can be
altered to yield that extra information at low cost. The identification of other such
"pseudo-decomposable® problems (and other decomposable probiems in general)

remains a open problem.
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