
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-81-106

The K-D-B-Tree:
A Search Structure for
Large Multidimensional

Dynamic Indexes

John T. Robinson

Depar tment of Computer Sc ience

Carnegie-Mel lon University

P i t tsburgh, Pennsylvania 1 5 2 1 3

February 1 9 8 1

ABSTRACT

The problem of retrieving multikey records via range queries from a large, dynamic index is

considered. By large it is meant that most of the index must be stored on secondary

memory. By dynamic it is meant that insertions and deletions are intermixed with queries, so

that the index cannot be built beforehand. A new data structure, the K-D-B-tree, is

presented as a solution to this problem. K-D-B-trees combine properties of K-D-trees and B-

trees. It is expected that the multidimensional search effieciency of balanced K-D-trees and

the I /O efficiency of B-trees should both be approximated in the K-D-B-tree. Preliminary

experimental results that tend to support this are reported.

This research is supported in part by the National Science Foundation under Grant MCS
78-236-76 and the Office of Naval Research under Contract N00014-76-C-0370.

UNIVERSITY L I BRARY
CARfi£G1E-MELLQN UMiVEu:,:;<

PITTSBURGH, PENNSYLVANIA

1. Introduction
Consider the following problem:

1. There are index records of the form

key0, keyv keyKmV location,

where keyj is an element of a finite totally ordered set domain^ K is a

constant, and location gives the location of a database record with these

keys.

2. It is desired to retrieve records based on queries of the form

min. < keyi < maxp 0 < / < K-1,

i.e., range queries.

3. Insertions and deletions of records are randomly intermixed with queries,

implying that whatever data structure is used to implement the index must

be built and maintained dynamically.

4. The number of records in the index is so large that it is necessary to store

most of the index on secondary memory (disk or drum) while it is being

used, due to limitations on the size of primary memory.

In the case that K = 1, the most efficient solution to this problem is probably the B-free (see

[Bayer and McCreight 72]), or one of its variants (see [Comer 79] for a survey). In the case

that (4) is omitted, or alternatively, (3) is omitted so that the data structure can be built

statically and then mapped onto pages (see [Bentley 79] for an example), there are a number

of solutions (see [Bentley and Friedman 79] for a survey), such as the K-D-free (see [Bentley

75]). Also, it should be mentioned that static solutions can often be converted to pseudo-

dynamic solutions by various techniques, such as using overflow areas for inserted records

and marking deleted records. In such cases, however, periodic reorganization of the index

will usually be necessary to maintain efficiency.

Here, a new data structure, the K-D-B-tree, is presented as a solution to the above problem.

K-D-B-trees, like B-trees, are multiway trees with fixed-size nodes that are always totally

1

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

balanced in the sense that the number of nodes accessed on a path from the root node to a

leaf node is the same for all leaf nodes. Each node is stored as a page so that efficient use

can be made of secondary memory with paging. Unlike B-trees, 50% utilization of pages

cannot be guaranteed, although it is expected that in practice the number of pages less than

half full should be small (as compared to the total number of pages). Preliminary

experimental results support this: as "random" records are inserted, storage utilization

seems to stay around 60% for cyclic 2-D-B-trees and 3-D-B-trees (see Section 4 for the

definition of cyclic, and Section 6 for details of the experiments). These percentages can

hopefully be increased if reorganization techniques discussed in Section 5 are used (none of

these techniques are currently implemented).

K-D-B-trees partition search spaces (subsets of domain0 x domain^ x ... x domainKA) in a

manner similar to K-D-trees: a search space is partitioned into two subspaces based on

comparison with some element of a single domain. Like K-D-trees, various strategies can be

used to select the domain and the element in the domain. Some of these are discussed in

Section 4.

In the next section the K-D-B-tree structure is defined. Algorithms for queries, insertions,

and deletions are presented in Sections 3, 4, and 5, respectively. Also discussed in Section

5 are reorganization techniques, analagous to catenations and underflows in B-tree

algorithms. The combination of B-tree properties and K-D-tree properties in the K-D-B-tree

leads one to expect that the I /O efficiency of B-trees and the multidimensional search

efficiency of K-D-trees might both be approximated in K-D-B-trees. Some preliminary

experimental results that tend to support this are reported in Section 6. Section 7 contains

conclusions and a discussion of further research.

2

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

2. The K-D-B-Tree Structure
Define a point to be an element of domainQ x domain 1 x ... x domainKV and a region to

be the set of all points (xQ, xv xK1) satisfying

min. < xi < max{, 0 < / < K-1,

for some collection of m/n., max. € domain.^ Points can be represented most simply by

storing the xp and regions by storing the min. and maxr

Below, it will be required that certain regions be disjoint, and that their union be a region -

thus the strict inequality on the right hand side of the region definition above. However, it

will also be required that the union of certain regions be all of domainQ x domain^ x ... x

domainKV It is therefore necessary to create for each domain a special element oo., which

is greater than all elements of domainand to allow the max(to assume these values. It

is also convenient to define -oo. as the minimum of domain..

Like B-trees, K-D-B-trees consist of a collection of pages and a variable root ID that gives

the page ID of the root page. There are two types of pages in a K-D-B-tree.

1. Region pages: region pages contain a collection of (region, page ID) pairs.

2. Point pages: point pages contain a collection of {point, location) pairs,

where location gives the location of a database record. The

{point, location) pair is in fact an index record.

The following set of properties define the K-D-B-tree structure. The algorithm for range

queries given in the next section depends only on these properties, and the algorithms for

insertions and deletions are designed so as to preserve these properties.

1. Considering each page as a node and each page ID in a region page as a

node pointer, the resulting graph structure is a multi-way tree with root root

ID. Furthermore, no region page contains a null pointer, and no region

page is empty (note that this, together with the fact that point pages do not

contain page IDs, means that the point pages are the leaf nodes of the

tree).

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

4

2. The path length, in pages, from root page to leaf page is the same for all

leaf pages.

3. In every region page, the regions in the page are disjoint, and their union is

a region.

4. If the root page is a region page (it may not exist, or if there is only one

page in the tree it will be a point page), the union of its regions is domainQ

x domain^ x ... x domainKV

5. If (region, child ID) occurs in a region page, and the child page referred to

by child ID is a region page, then the union of the regions in the child page

is region.

6. Referring to (5), if the child page is a point page, then all the points in the

page must be in region.

Figure 1 illustrates an example 2-D-B-tree.

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

root ID

• •
•

\ ' « w A v ^

1; <->r-\ rf

1
1

•
KEY

all of K-space

i l l - region not in page

- point

• • more point pages

Figure 1 . Example 2 -D -B- t ree

5

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

6

3. Queries
A range query can be expressed by specifying a region, the query region. It is convenient to

think of regions as a cross-product of intervals / 0 x 1^ x ... x I K V If some of the intervals of

a query region are full domains, the query is a partial range query; if some of the intervals

are points and the rest are full domains, the query is a partial match query; if all of the

intervals are points, the query is an exact match query.

The algorithm to output all records satisfying a range query specified by query region is as

follows.

Q 1 . If root ID is the null page ID, terminate. Otherwise, let page be the root

page.

Q2. If page is a point page, then for each (point, location) pair in

page with point a member of query region, retrieve and output the

database record at location.

0 3 . Otherwise, for each (region, child ID) pair in page such that the

intersection of region and query region is non-empty, set page to be

the page referred to by child ID, and recurse from (Q2).

The experimentally observed performance of various queries is given in Section 6.

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

4. Insertions
First, it is necessary to define the splitting of a region along element x. of domainr Let the

region be IQ x ^ x ... x I K V If x. € / , the region is not changed by splitting. Otherwise, let

/. = [minj3 maxf)\ splitting the region results in two new regions:

1. IQx ... x [minj3x.)x ... x / K 1 ,

2. IQx ... x [x., max.) x ... x / K - r

Region (1) is called the left region and region (2) the right region. If xj £ /, since x. < minjt

the region is said to lie to the left of x.; if x. > max^ the region is said to lie to the right of

xr A point (y 0 , y v yKA) is said to lie to the left of x. if y ; < x / f and to the right

of x. otherwise.

A point page is split along x. by creating two new point pages, the left page and the right

page; then transferring all the (point, location) pairs in the page to either the left or right

page depending on whether point lies to the left or the right of x-\ and then deleting the old

page. See Figure 2.

splitting element

before:

af ter:

Figure 2. Splitt ing a point page
UNIVERSITY LIBRARIES

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH. PENNSYLVANIA 15213

7

The K-D-S-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

A region page is split along x. by creating two new region pages, again called the left page

and the right page; filling these pages with regions derived from the old region page; and

then deleting the old page. This procedure takes place as follows. For each

(region, page ID) in the old region page:

5 1 . If region lies to the left of x., add (region, page ID) to the left

page.

52. If region lies to the right of x;., add (region, page ID) to the right

page.

53. Otherwise:

53 .1 . Split the page referenced by page ID along xj3 resulting in pages with IDs

left ID and right ID.

53.2. Split region along x / f resulting in regions left region and right region.

53.3. Add (left region, left ID) to the left page, and {right region, right ID) to the

right page.

Note that this procedure is recursive due to (S3.1). See Figure 3.

Figure 3 . Splitt ing a region page

8

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

The algorithm for inserting an index record {point, location) is as follows.

H . If root ID is null, create a point page containing (point, location), set

roof ID to the ID of this page, and terminate.

12. Otherwise, do an exact match query on point, which finds a point page

that point should be added to if the K-D-B-tree structure is to be

preserved. If point is already in the page, do something special (like

generating an error, or modifying link fields in database records), and

terminate.

13. Add (point, location) to the point page. If the page does not overflow,

terminate. Otherwise, let page be the point page.

14. Let the ID of page be old ID. Pick a domain, domainand an element

Xj in this domain, such that page split along x. will result in two pages

that are not overfull (since the number of points or regions in page

need only be decreased by one to avoid overflow, it is easy to see that

this is always possible). Split page along xn giving left and right pages

with IDs left ID and right ID.

15. If page was the root page, go to (16). Otherwise, let page be the parent

page of page (this parent page was found during the exact match

query step above). Replace (region, old ID) in page with

(left region, left ID) and (right region, right ID), where left region and

right region are obtained by splitting region along x.. If this causes

page to overflow, repeat from (14); otherwise terminate.

16. Create a new region page containing the regions

(domainQx ... x [•oO-.x-Jx ... x domain K 1 , left ID),

(domain^ x ... x [x ;., oo.) x ... x domainK1 , right ID) ,

and set root ID to its ID.

Variations of the above algorithm result from the way domain! and x. are chosen in (14). One

way of choosing domain! is to do so cyclically, as follows (this was the method used in the

experiments described in Section 6). Store in each page a variable splitting domain,

9

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

initialized to 0 in a root page when a new root page is created. When a page splits, an

element of domainspJiWng

domain ' s u s e c * ' a n c * the new pages have splitting domain set to

(splitting domain + 1) MOD K. This results in the regions that correspond to leaf pages

being arranged as in Figure 4, and similarly for other levels (there are exceptions to this

arrangement due to effects of step (S3) in splitting). This method is analagous to the cyclic

choice of domains in K-D-trees (see [Bentley 75]).

This cyclic method might be modified if something is known about queries. For example,

suppose K a 2, and that "most" queries are partial match queries or partial range queries

on domainQ only. In such a case it would be desirable to use domain0 several times in a row

before incrementing splitting domain, resulting in a splitting pattern like Figure 5.

Alternatively, suppose something about the distribution of index record points is known, so

that it is possible to give, for any interval in any domain^ the expected number of index

records (at some point) that have keyt values in this interval. Call this the length of the

interval. In such a case it would be desirable (if nothing is known about queries) to have

regions as "K-cubical" as possible. This means a region 7 0 x IA x ... x I K A would be split

using that domain^ such that I. is the longest of the K intervals, and the splitting point would

be selected so that the sub-intervals of I- that are produced are of equal length (assuming

this does not leave an overfull page).

In general, though, given the splitting domain, the splitting point should be chosen so as to

put approximately the same number of points or regions in each new page, and to minimize

the number of times step (S3) is performed. Some care is needed, however: in some cases,

the splitting domain may have to be re-chosen, as shown in Figure 6.

The observed efficiency of insertions, in terms of page accesses, is reported in Section 6,

along with storage utilization measurements for growing cyclic K-D-B-trees.

10

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

Figure 4 . Cycl ic split t ing pat tern

Figure 5. Domain 0 priority split t ing

identical key 0 values

point page region page

Figure 6 . Pages that can' t be split along domain 0

UNfWaSITT LIBRARIES
CARNEG1E-MELL0N UNiVEr -n?

PITTSBURGH, PENNSYLVANIA - ^ n

11

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

5. Deletions and Reorganization
Since the K-D-B-tree structure, as defined in Section 2, does not preclude empty point

pages, and does not require anything about storage utilization, the basic deletion algorithm

is very simple: find the index record (point, location) with an exact match query, and remove

(point, location) from the point page.

Unless there are very few deletions, or by chance insertions take place that "fill in the holes"

left by deletions, this basic deletion algorithm will be unacceptable due to the resulting low

storage utilization. In B-tree algorithms, this problem is solved by what are here considered

to be reorganization techniques. Referring to Figure 7, if the pointers to pages B and C in

page A are adjacent, two types of reorganization may take place: catenation, in which the

information in pages B and C is combined into one page, and underflow, in which the

information in pages B and C is re-distributed between them.

This reorganization is local in that it involves only pages A and its children (reorganization

involving more than two child pages of A may also be desirable for B-trees - see

[Comer 79]). Exactly the same type of local reorganization may be performed for K-D-B-

trees, approximately, providing the union of the regions corresponding to the pointers to

pages S and C is also a region. "Approximately," because unless pages B and C are point

pages, redistributing the information they contain between them may involve splitting step

(S3).

Figure 7 . Three pages

12

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

If the union of two (or more) regions is a region, the regions are said to be joinable. This is

analagous to adjacency in B-trees. A problem is that cases may arise in which there is a

region that is not joinable to any other region in the page, as is the case with region A in

Figure 8 (because B-trees are one-dimensional, this problem never occurs for B-tree

reorganization). A solution is reorganization based on more than two regions. For example,

in Figure 8, all of the regions or points in the three pages corresponding to regions A, S, and

C could be combined into one page, and this page split once or twice if necessary to

prevent overflow. If no splitting is necessary, regions A, S, and C are replaced with their

union; if splitting occurs once, A, S, and C are replaced with two regions, etc.

A
C

A
C

A

B

Figure 8. Region A not joinable with another

13

The fC-D-B-Tree; A Search Structure for Large Multidimensional Dynamic Indexes

14

Generalizing, an outline of the algorithm to "reorganize page P" is as follows (P could be an

underfull point page produced by a deletion, or an underfull region page produced by

previous reorganization).

1. Let page be the parent page of P, containing (region, ID), where ID refers

to P.

2. Find (regionv /D 1) , (region2, ID2), in page such that region, regionv

region2, are joinable (this is always possible - in the worst case, this will

be all the regions of page).

3. Catenate the pages with IDs ID, IDV ID2, and then repeatedly split this

page and resulting pages until no page is overfull.

4. Replace (region, ID), (region v ID J, (region2, ID2), in page with the

resulting new regions and page IDs.

Another possible use of reorganization is during insertions, since step (S3) can leave empty

or near-empty point pages. This should probably be done only at the point page level, since

reorganization itself makes use of step (S3) when performed at higher levels. However,

almost all pages of a K-D-B-tree are point pages (see Tables 1 and 2 in Section 6 for

examples) - perhaps reorganizing only at the point page level during insertions would

significantly increase storage utilization. At the time of this writing, K-D-B-tree reorganization

was not yet implemented; the problem was still being studied.

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

UNIVERSITY LIBRARIES
CARNEG1E-MELL0N UNIVERSITY

PITTSBURGH. PENNSYLVANIA 15213

6. Preliminary Experiments
A major difference between K-D-B-trees and B-trees with respect to insertions is step (S3),

which forces pages at lower levels to split even though they are not overfull. An immediate

question is how badly step (S3) affects performance, in terms of storage utilization and page

accesses. Therefore, it was thought desirable to first gain some knowledge of the

performance of "basic" K-D-B-trees: K-D-B-trees without deletions and without

reorganization.

Statistics gathered from various experiments are given in Tables 1 and 2. The K-D-B-trees

were generated as follows.

1. Each domain was the set of floating point numbers in [0,1).

2. The index record points were pseudo-randomly generated, uniformly

distributed in K-space.

3. The splitting domain, domain^ was chosen cyclically, and the splitting

element was chosen as the median of the keyt for a point page and the

median of the /T7/n / for a region page.

4. Nine trees each were generated for K = 2, 3, by inserting 10,000 records,

with various page sizes and record sets (Table 1).

5. One tree each was generated for K = 2, 3, by inserting 100,000 records

(Table 2).

The results of the insertion experiments may be summarized by noting that storage utilization

was 60% ± 10%, the average number of pages written per insertion was slightly over one,

and the average number of pages read per insertion was close to the height of the tree.

15

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

PAGES
PAGE PAGES AT EACH STORAGE ACCESSED/

К S1ZES
A RUN LEVEL

6 UTILIZATION INSERTION
0

2 12,21 1 1,11,96,756 0.62 1.18,3.85

2 1,11,100,783 0.59 1.19,3.86

3 1,12, 95,773 0.60 1.28,3.85

2 25,42 1 1,19,360

2 1,22,373

3 1,20,361

0.66 1.13,2.93

0.63 1.12,2.93

0.65 1.12,2.93

2 51,85 1 1, 4,164

2 1,5,179

3 1,5,177

0.72 1.04,2.72

0.65 1.05,2.70

0.66 1.05,2.72

3 9,15 1 1,6,30,188,1179 0.53 1.33,4.61

2 1,6,33,196.1206 0.51 1.34,4.71

3 1,5,32,192,1166 0.53 1.33,4.63

3 18,31 1, 4,45,576

1, 4,51,564

1, 3,43,557

0.54

Ò.55

0.56

1.16,3.53

1.16,3.59

1.16,3.58

3 36,63 1,11,275

1,11,265

1,10,242

0.57

0.59

0.65

1.07,2.83

1.06, 2.85

1.06,2.85

A Page sizes = R, P, where R is maximum number of regions in a

region page, P is maximum number of points in a point page.
B For example, "1,4,164" means 1 page at level 1 (root page), 4

pages at level 2, and 164 pages at level 3 (point pages).
0 Pages accessed = W, R, where W is pages written, R is pages read,

averaged over 10,000 insertions.

Tab le 1 . K-D-B-Trees of Size 1 0 , 0 0 0

16

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

PAGES
PAGE PAGES AT EACH STORAGE ACCESSED/

K SIZES A SIZE LEVEL 8 UTILIZATION INSERTION*

CM
 25,42 20.000 1, 2, 40, 714 0.66 1.09, 3.36

40,000 1, 4, 80,1458 0.65 1.09,4.00

60,000 1, 7,122,2187 0.65 1.13, 4.00

80,000 1, 9,165,2904 0.65 1.18, 4.00

100,000 1,12,209,3662 0.64 1.18, 4.00

3 36,63 20,000 1, 20, 514 0.61 1.15, 2.92

40,000 1, 2, 45,1060 0.59 1.16, 3.30

60,000 1, 2, 63,1547 0.61 1.15, 4.01

80,000 1, 4, 89,2084 0.60 1.16, 4.01

100,000 1, 4,108,2594 0.60 1.15, 4.00

M ' D As in Table 1.
p

As in Table 1, averaged over last 20,000 insertions.

T a b l e 2 . K-D-B-Trees of Size 1 0 0 , 0 0 0

Query experiments were also performed, on four of the trees produced for Table 1, by

specifying various ranges, and then randomly generating 100 queries with the given ranges.

The average number of pages read for queries with the same ranges was computed, but this

number is fairly meaningless taken by itself; it really should be compared with the total

number of pages in the tree, and with the "size" of the query. Therefore, the query

efficiency of a query was defined to be

(RQ / RT)XPT ,

where RQ is the number of records found by the query, RT is the total number of records in

the tree, PQ is the number of pages accessed by the query, and PT is the total number of

pages in the tree. The idea behind this definition is that a query that retrieves RQ records

out of RT records accesses a fraction RQ/RT of the database; if the database is stored as PT

pages, {RQ/RT)xPT should be the ideal number of page accesses. This definition ignores

storage utilization considerations (to get query efficiency as compared to queries on the

"perfect" K-D-B-tree, multiply the above by storage utilization). Average query efficiency, as

defined above, is usually quite a bit lower than 1.0 for obvious reasons (always accessing the

17

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

full root page, rather than RQ/RT of the page; partial intersection of the query region with

page regions).

The results of the query experiments are given in Table 3. Note that exact match queries

were not included, since the number of page accesses in this case is just the height of the

tree (available from Table 1). Also note that the number of records found by partial match

queries was zero (making query efficiency zero), since domains were floating point numbers,

and the random number generator did not repeat.

18

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

RECORDS PAGES
PAGE FOUND/ READ/ QUERY

K SIZES A R U N 8 RANGE 0 QUERY 0 QUERY 0 EFFICIENCY6

CM
 25, 42 1 0 X 1 0 22 0

.1 X.1 100 11 0.34

.01 X1 99 25 0.15

.3X.3 908 52 0.66

.1 X.9 905 56 0.61

2 25,42 2 0 X 1 0

.1X.1 98

.01 X 1 100

.3 X .3 903

.1 X .9 900

22 0

12 0.33

26 0.15

55 0.65

59 0.61

3 18,31

3 18,31

0 X 1 X 1 0 73 0

0 X 0 X 1 0 12 0

. 2X .2X .2 80 27 0.19

.02 X .4 X 1 79 47 0.11

.008 X 1 X 1 79 75 0.07

.5 X .5 X .5 1270 170 0.47

.25 X .5 X 1 1262 152 0.52

.125X1 X1 1263 149 0.53

0 X 1 X 1 0 74 0

0 X 0 X 1 0 13 0

.2 X .2 X .2 81 28 0.18

.02 X .4 X 1 79 46 0.11

.008 X 1 X 1 79 78 0.06

.5 X .5 X .5 1252 170 0.46

.25 X .5 X 1 1259 149 0.52

.125X1 X1 1243 146 0.53

A As in Table 1. 8 Refers to K-D-B-tree produced for Table 1.
w Ranges of 0x1, 0x1x1, 0x0x1 are partial match queries.
0 Average of 100 queries. E As defined in text.

Table 3. Queries on K-D-B-trees of Size 10,000

C A R N E G 1 E - M E U 0 N UNIVERSITY
P I T T S B U R G H , P E N N S Y L V A N I A 1 5 2 «

19

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

20

7. Conclusions
Preliminary experimental results tend to support the expectation that the K-D-B-tree is an

efficient search structure for large multidimensional dynamic indexes, at least for K = 2, 3,

and providing storage utilization of around 60% is acceptable. One could not hope for much

better than the page access statistics of Tables 1 and 2. Furthermore, the query efficiency

for full range queries seems quite good.

If partial match or partial range queries are more important than full range queries, though,

other search structures might be better. For example, suppose all queries are partial match

or partial range queries in which one key is specified. In such a case a collection of K B-

trees, one for each domain, would in general be far better: informally, one would expect

0(log N) performance for any partial match query with one key specified on the collection of

B-trees as compared to something like 0(NK'A/K) performance on the K-D-B-tree. But if

queries are full range queries, one would in many cases expect these to be reversed.

Clearly much work remains, notably implementation of and experimentation with

reorganization. Also important is the investigation of point distributions other than uniform in

K-space. Two limiting cases might be mentioned. First, if the points are highly linearly

correlated, the resulting K-D-B-tree will essentially be a B-tree (on any one of the domains).

Second, if the cardinality of one of the domains, say cardidomain^ is extremely small, the

resulting K-D-B-tree will essentially be a collection of card(domain) (K-l)-D-B-trees. But

there are many other cases that need to be investigated.

The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes

References
[Bayer a n d McCre ight 72] Bayer, R. and McCreight, E. Organization and maintenance of

large ordered indexes. Acta Informatica 7, 3 (1972), 173-189.

[Bent ley 75] Bentley, J. L. Multidimensional binary search tress used for

associative searching. Comm. ACM 78, 9 (1975), 509-517.

[Bent ley 79] Bentley, J. L. Multidimensional binary search trees in

database applications. IEEE Trans. Software Eng. SE-5, 4

(1979), 333-340.

[Bent ley and Fr iedman 79] Bentley, J. L. and Friedman, J. H. Data structures for range

searching. Computing Surverys 11, 4 (1979), 397-409.

[Comer 7 9] Comer, D. The ubiquitous B-tree. Computing Surveys 7 7, 2

(1979), 121-138.

21

U K C L A S S Ï F T T O
S E C U R I T Y C L A S S I F I C A T I O N О

 r T H Î S Р А Г. £ ''ЛЪ»п Dm* a E n t e r e d)

f O R M E O l T t O M O F t N O V 6 5 I S O O S O L E T E

1 J A N 7 3 o l 0 2 . O M . 6 6 o i i
S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A C E (Wh«* D*t* Kn<9r*d)

