
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 8 0 - 1 2 4

An Inter-Process Communication
Facility for UNIX

February 4,1980

Revised: 11 June 1980

Richard F. Rashid

Department of Computer Science

Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract

An inter-process communication facility implemented at Carnegie-Mellon University for VAX/UNIX
version seven is described. This facility was designed to provided language, operating system and
machine independent communication between processes performing distributed computations. Its
relationships to previously existing UNIX facilities and other systems for distributed computing are
discussed.

Keywords : Inter-process commmunication, networking, UNIX, network operating systems,
distributed computation.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-78-C-1551.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing official policies, ether expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

UNIVERSITY LIBRARIES
CARNEGtE-MELLON UNIVERSITY

PITTSBURGH. PENNSYLVANIA 15213

Table of Contents
1. Introduction
2. Constraints on the design
3. Basic Definitions
4. Ports

4.1. Creating, accessing and destroying ports
4.2. Sending and receiving kernel messages
4.3. Queueing messages for a port
4.4. Flow control

5. Messages
5.1. Message structure
5.2. The message header
5.3. Message types
5.4. Waiting for messages
5.5. Messages and signals
5.6. Exceptional condition handling

6. Compatibility with UNIX
6.1. Uniform Reference: Ports, Pipes, Files, Devices
6.2. Directory Lookup
6.3. Fork and other things

7. Networking
8. An Example: A Simple Network File System
9. Discussion
10. Comparisons with other systems

10.1. Comparisons with RIG
10.2. Comparisions with previous systems
10.3. Comparisons with new or proposed systems

10.3.1. TRIX
10.3.2. Liskov's primitives for distributed computing

11. Current state of the IPC
12. Appendix: Structures and Calls

12.1. Structures
12.2. Calls

13. Acknowledgements

1

1. Introduction
This paper describes an inter-process communication facility which has been implemented at

Carnegie-Mellon University for VAX/UNIX Version 7. The ideas on which this facility were based

derived primarily from the author's experience with the design and implementation of the RIG system

at the University of Rochester. In addition, there have been a number of attempts to produce

resource-sharing or message-based UNIX or UNIX-like systems from which the author has liberally

appropriated ideas. Notable among these is the TRIX system currently being implemented at MIT.

A good inter-process communication facility is important because of the need to provide access to

resources distributed over local and national computer networks in a uniform manner independent of

language, network location, or host operating system. Traditional techniques for inter-process

communication in UNIX, such as shared files and pipes, are difficult to use for asynchronous

message-style communication, and difficult to generalize to a network environment. MPX (multiplexed

files), a facility new to UNIX in Version 7, solves many of the problems associated with shared files and

pipes, but fails to provide consistent, uniform access to both process- and kernel-supplied resources.

In addition, it places its emphasis on a particular kind of communication style, that of file-like data

access, to the detriment of more general inter-process cooperation.

The UNIX IPC described here attempts to overcome these problems. It provides a simple

mechanism for passing messages between processes on a single UNIX system. Moreover, the design

is such that transparent communication between processes on different UNIX systems or even on

different host operating systems connected via a network can be implemented without further

modification to the UNIX kernel.

Compatibility with older operating system concepts provided by UNIX (e.g. files, devices and pipes)

has been stressed in the IPC design. A flexible directory lookup mechanism is provided which allows

objects of all types to be uniformly named and referenced, even if they reside on external UNIX

systems or on systems running non-UNIX software.

2. Constraints on the design
From the outset, a number of constraints were placed on the design of the IPC facility. They were:

• Language independence. The IPC was designed specifically as a tool for interconnecting
distributed systems consisting of processes written in many different languages.
Individual language systems (such as Ada) might define for their own purposes
mechanisms for inter-process communication (e.g., tasks or remote procedure calls)
which would layer on top of the IPC facility, but it was considered important that the IPC
itself be defined in a language independent fashion. For this reason a loosely-coupled
message-passing approach to inter-process communication was adopted.

• Operating system independence. The UNIX implementation is but the first in a series of
planned implementations of the IPC (see below). It was assumed from the outset that the
IPC facility would link together a number of-different operating systems running on
machines with different process structures and virtual memory support. The net effect of
this constraint was the adoption a notion of communication which was inherently local to
a given operating system kernel and did not make assumptions about the process
structure or name space of a particular host operating system.

• Machine independence. The desire to use a single facility for communication between
machines with different instruction sets and word sizes and data representations led to
adoption of a standard but extensible protocol for the exchange of typed information.

3. Basic Definitions
A UNIX system consists of a host machine, a sytem kernel, and a collection of processes. The

function of the system kernel is to provide an execution environment for processes running on its host

machine. This includes virtual memory management, the allocation of computational resources, and

inter-process communication. It may, in addition, provide other services such as file system access

and primitives for manipulating processes (e.g. process creation, suspension and destruction). In this

latter role the kernel can be considered a server process much like other server processes discussed

in this paper.

Processes are the basic functional units. They perform computations and manage resources.

Typically, processes communicate via messages. A message is a collection of typed data objects,

constructed by a process, passed to the system kernel via a message kernel call and managed by the

system until delivery to its final destination. The contents of a message are primarily determined by

the sending process, but a message header containing certain system related information may be

supplied by the system kernel.

The services and facilities provided by a process are made available to other processes through

one or more ports. A port is a protected kernel object into which messages may be placed by

processes and from which messages may be removed. Ports are intended to be used by processes to

represent specific services. For example, a file system process might associate a separate port with

each open file, or a virtual terminal handling process might allocate a port to represent each virtual

terminal. However, no restriction is placed on their use. Ports may be used by processes to

communicate information in any mutually convenient way.

Logically associated with each port is a FIFO queue of finite length on which reside messages

which have been sent to that port but which have not yet been removed from it by a process. The

ability to remove messages from a port is called receive access. Only one process may have receive

access to a port at a time. Receive access to a port may be transferred to another process in a

message.

Ports cannot be directly manipulated or named by a process. Instead, processes are provided by

the kernel with a secure capability to send a message to a port and/or extract (receive) a message

from it. This capability is a local name for a system object just as a UNIX file descriptor is a local name

for a system maintained file, pipe, or device. Port capabilities may be passed in messages, handed

down to process children, or destroyed. A given port may have only one local name for a given

process at a time. Whenever a port name is passed in a message the system kernel must map that

name from the local name space of the sending process into the name space of the receiving process.

The ability to manipulate access to ports allows for the redirection of communication from one

process to another and the explicit management of communication between two processes by a third

process. It also allows a port to be used to refer to a specific service or process-provided object even

in situations in which that service or object is handled by different servers at different times. Neither

the address (i.e. its location) or the name of a process can be determined from a capability to send a

message to one of its ports.

See Figure 1.

4. Ports
A port is a FIFO queue of messages. Messages may be added to this queue by any process which

can refer to the port via a local name (or capability). Messages may be removed from the queue only

by the single process with receive access to the port.

4.1. Creating, accessing and destroying ports

A port is created by a process through an AllocatePort system call. It is a system object, distinct

from the process which created it, but is initially owned by the creating process. The result of the

AllocatePort call is a local port name which refers to the created port. This name is logically an index

into a correspondence table maintained by the kernel for each process. It has meaning only when

used by that process.

Initially the owner of a port also has receive access to it. Ownership of a port and receive access

are, however, logically distinct. Ownership of a port may be passed in a message from one process to

another, but not shared. Receive access to a port may also be passed in a message but not shared.

These restrictions prevent multiple servers from managing the same queue, and are necessary to

avoid serious problems which occur when access to a single queue is shared by processes on

different machines.

4

If a single process both owns and has receive access to a port, that process may destroy the port

by performing a DeallocatePori system call. A process with a capability (local name) to a port may

release the capability via the same system call.

A port is automatically destroyed when its owner and the process with receive access to it both die.

In either case, all processes with access to that port are notified via emergency messages (see

below). If the same process does not both own and have receive access to a port, then the

deallocation of the port name by either process results in an emergency message being sent to the

other accompanied by full access rights to that port (i.e., both ownership and receive rights).

The purpose of distinguishing receive access from ownership is to allow a process to take over

services or functions provided by other processes in the event those processes should die or

malfunction. This is particularly important when writing fail-soft software and can also be used to

provide orderly shut-down of services after catastrophic failures.

Port names may be explicitly managed by taking advantage of a use count field provided by the

kernel for each local name. Upon creation the use count for a local name is zero. A DeallocatePort

call on a port name with zero use count releases the name. It is possible, however, for a process to

perform an IncrementUseCount call with an existing local port name as an argument. This increases

by one the use count field for that name. Likewise, a DecrementUseCount call is provided to reduce

the use count of a port name by one. A DeallocatePort on a port name with a non-zero use count has

no effect. This feature is designed to allow a process, which may be performing several distinct tasks,

to store away a port name without worrying about the possibility that the name could be accidentally

deallocated in the course of performing a different task.

4.2. Sending and receiving kernel messages

For the purpose of sending and receiving messages the kernel can be viewed as a process. This

allows services which are normally regarded as process-provided to be optionally performed by the

system kernel to increase efficiency. An example of a function which is logically process-provided but

can be (and normally is) performed by the system kernel is the UNIX file system.

4.3. Queueing messages for a port

A message is sent from a process to a port. Although the kernel may append to the message

header information describing the sending process (e.g., for the purpose of debugging), messages

are essentially anonymous. All messages sent by the same process to a particular port are

guaranteed to arrive in the order in which they were sent. There is no other guaranteed order of

message events (see below).

Messages to a port are normally queued in FIFO order. However, an emergency message can be

sent to a port and receives special treatment with regard to queueing, flow control, and the generation

of signals or software interrupts (see below).

4.4. Flow control

The message queues attached to ports have a finite length. This prevents a sending process from

queueing more messages to a receiving process than can be absorbed by the system and provides a

means for controlling the flow of data between processes of mismatched processing speed.

Subject to implementation restrictions on maximum port size, the process owning a port is allowed

to specify its backlog - the maximum number of messages which may be queued for that port at one

time. Should a process attempt to send a message to a full port, one of three things may happen

depending on options specified by the sender:

1. The process is suspended until the message can be placed in the queue.

2. The process is notified of an error condition (after perhaps allowing itself to be
suspended for up to a specific period of time wiating for the message to be sent).

3. The message is accepted and the kernel sends a message to the sending process when
that message can actually be placed in the queue. A maximum of one message per
sending process per receiving port may be outstanding in this fashion.

These three options correspond to three different programming situations:

1. The first option is the one most likely to be used by a 'user process5 when communicating
with a 'server process'. In this situation the user process does not care if it is suspended
for some time waiting for a message to be delivered to the server (as in the case of a
remote procedure call).

2. The second option is used when a process does not care whether a particular message is
sent to a destination, but is using the message only to wake up a dormant partner. The
fact that other messages are in the queue for the partner's port indicates that the partner
is already scheduled to be activated.

3. The third option is the one most likely to be used by a service process when dealing with a
user process. The server probably cannot afford to be suspended waiting on a user to
clear its queue. It may also not want to just throw away the message or poll the user
explicitly until the message can be sent. The system provides an explicit message event
corresponding to the unblocking of the user's port queue.

The flow control scheme described here is not the only reasonable technique for restricting the

flow of messages between processes. Other possible mechanisms include limiting the total number

of messages which may be outstanding from a given process (as in Brinch Hansen's RC4000 system

or CMU's Hydra) or limiting the outstanding messages from a given process to a particular port.

6

Experience with RIG, however, has shown that the exact flow control policy is much less important to

overall system performance than the higher level communication protocols devised to solve individual

problems. Even more important to the functioning of the system is the provision for events to indicate

when ports become unblocked. This prevents needless and expensive polling in server processes.

5. Messages

5.1. Message st ructure

What structure, if any, should be imposed upon messages is a sensitive issue. Ideally, a message

should be considered a collection of program objects the structure of which is preserved by

transmission from one process address space to another. This goal is difficult to attain, however,

because the system kernel cannot make assumptions about the allocation and deallocation of free

storage in a process's address space.

The use of completely unstructured messages which are then interpreted as needed by user

processes also has problems. Some parts of a message (e.g., local port names) must be interpreted

by the kernel because they require translation to be meaningful to another process. Moreover, in a

heterogenous network where processors of different word sizes and storage conventions are

communicating, only typed information allows the transparent transfer of data items such as integers,

reals, and strings. Different rules for byte packing (as, for example, on a PDP-10 and a VAX-11/780)

make even simple byte streams difficult to generalize to a heterogenous network without some

knowledge of the information contained in the byte stream.

Efficiency considerations also favor structured messages. Most information communicated

between processes is structured in that it represents data items of different types. The use of

unstructured messages for such data is can be expensive because the packing and unpacking of

structured messages into an unstructured linear form adds a layer of overhead which, although not

strictly kernel overhead, serves to increase the cost of communication. In a heavily message oriented

system such as RIG, this has been shown to add as much as a factor of two to communication costs.

In defining the IPC, the decision has been made to provide a message representation which has

structure while at the same time preserving the ability to send and receive raw data. Messages are

defined by a header which contains a descriptor for the message data to be sent (see Figure 2). A

descriptor is of the form <Type ,NumberO f Elements ,Data>.

Type can either be system defined or user defined. System defined types are:

• TypeUnstructuredbata

• TypePortCapability

• TypePortOwnership

• TypePortReceiveRights

• TypePortAIIRights

• TypeDataDescriptor

• TypeLinearStructure

NumberOfElements is the number of objects in the data portion of the descriptor and the nature of

the data portion is defined by its Type. The data portion of a descriptor may contain more than one

object of the kind specified by the descriptor's Type. In particular, if the Type is

TypeUnstructuredData then NumberOfElements is the number of bits of unstructured data. If the

Type is TypeDataDescriptor then the message structure represents a tree, where the nonterminal

nodes are data descriptors and the terminal nodes represent the actual data.

The specification of a user type includes the bit size and packing characteristics of its elements.

Although not logically necessary, certain user type codes will have meanings understood by network

servers and programming language runtimes and will therefore be redefined at the peril of the user.

The list of such reserved user types may vary for particular installations. An example of possible

reserved types would be:

• Typelnteger(8,16,32,36)

• TypeReal(16,32,48,64)

• TypeUnsignedlnteger(8,16,32)

• TypeCharacter(8)

• TypeBoolean(l)

A data descriptor may reference the actual message data in one of three ways:

I . The data may be stored in the same block of storage as the descriptor, immediately
following the NumberOfElements. (Figures 2 and 3)

2. The data is in a block pointed to by the word immediately following the
NumberOfElements. (Figures 3 and 4)

3. Immediately following the NumberOfElements is an array of pointers (NumberOfElements
long), each of which points to a separate data element.

The ability to manipulate data via either pointers or direct reference allows data to be gathered

8

from a number of different sources or constructed in a single buffer. For those applications with a

need for greater structuring, a tree structure may be constructed using either system or user defined

types. System defined types, in particular local port names, can be converted by the kernel as

necessary.

The internal form of a message is composed of three parts: the header information and linearized

forms of the structure information and the raw data. When receiving a message a process may use

the Type field of the message header to specify the form desired for the received data. By specifying

the type LinearStructure, a process requests to explicitly receive the structured and unstructured

information content of a message in two preallocated blocks of storage. Prior to performing the

receive, the process must specify the sizes and pointers to the two blocks in the data portion of the

message.

By specifying other types, the receiving process may direct information directly into specific

locations in its address space. For example, a file system may send a 4-word header together with a

disk page of data as a single block of storage. The receiving process, on the other hand, may specify

that the 4-word header and data are to be stored into separate areas of storage. The use of identical

message structures for sending and receiving a message result in the complete preservation of

structure across a message transmission. An attempt to receive a message into an incompatible

message structure results in an error.

One effect of this scheme is to allow simple unstructured information to be sent with a minimum of

overhead. Thus processes which wish to be unaware of message structuring need not pay a price for

its support by the kernel.

5.2. The message header

The message header contains a small amount of system required message information and is used

to form an anchor for the structured part of a message. At minimum it contains a capability for the

destination port of a message and a field for a capability to be used for a reply (which may be empty).

The destination and reply ports will more commonly be referred to as the remote and local ports,

respectively. The header also contains an ID field to be used for descriminating messages and the

Type, NumberOfElements and Data of the message.

The header may be checked without actually receiving the data portion of a message by calling

Preview (see below). The purpose of this facility is to allow a process to check on the ID of the

message received and select an appropriate message structure for receiving it.

9

5.3. Message types

The type of a message contains information which determines the kind of service it requires of the

IPC. The following service classes are provided:

• Flow control

Normally messages are flow controlled according to the above procedure. The message
type can specify, however, that a larger flow control backlog should apply to this
message. This allows special high priority messages to be sent to otherwise full ports.

• Priority

A range of message priorities is provided. Messages waiting at the same port with
different priorities will be received according to the order of their priorities.

• Sequentiality

Messages from the same process to a particular port with the same priority are normally
guaranteed to arrive in the order they were sent (FIFO). It is possible to relax this
constraint by noting in the message type that the order of reception of a particular
message is unimportant.

• Reliability

Messages are guaranteed to arrive at their destination reliably, as long as the destination
exists long enough for the message to be received. A message could simply be advisory,
however, and it may be unimportant that it arrive at its destination. A message may
therefore contain in its message type an indication that it may be delivered unreliably.

• Maximum age

A message could become out of date after a certain length of time has passed. A
message may therefore be marked as having a maximum age after which it may be
destroyed rather than delivered.

• Security

A message may be marked as requiring special procedures for ensuring the security of its
data. Messages containing password information would fall into this class. Messages
marked as 'secure' are encrypted when transmitted on a network or placed on a storage
medium which may not be secure.

Two message types have been given special names and play a dominate role in communication:

1. Normal messages

A 'normal' message is flow controlled, sequential, reliable, not secure, of lowest priority
and has no maximum age. This is the default message type and is assumed to satisfy
most communication requirements.

10

2. Emergency messages

Emergency messages are specially flow controlled, sequential, reliable, not secure, of
highest priority, and no maximun age. Emergency messages play an important role in
error handling. Because of their high priority, they are guaranteed to be received before
any normal messages sent to a port. Their purpose is to allow urgent information to be
delivered to a process regardless of that process' current message backlog or message
queue. They are used for error notification, special event processing, and debugging.

The notion of message type allows the programmer the ability to specify the exact requirements of

his IPC use. This gives the underlying system more information about a message and thus makes

possible optimizations in the delivery and management of messages.

The service classes associated with sequentiality, reliability, maximum age, and security are

considered advisory. The system may choose, for example* to deliver a message reliably which has

been marked as unreliable without affecting the correctness of the programs which use unreliable

messages. For the most part they have a direct effect only on the management of message traffic by

network servers and other intermediary processes. Priority and flow control, however, may be

important to program correctness and cannot be changed without possibly introducing deadlocks.

5.4. Waiting for messages

Although particular protocols may specify sychronous behaviour, the receipt of a message is

inherently an asynchronous event. In a network environment in particular it becomes possible for

error conditions to cause messages to be sent to a process at almost any time. Mechanisms must

therefore be provided for a process to to check the state of its ports, to wait for activity on one or more

of its ports, and to receive messages selectively. It should also be possible for a process to specify a

maximum amount of time to wait for a message before reawakening (see below).

Four basic primitives are provided for accomplishing this task.

Receive(SetOfPorts,Message,Timeout) waits for at most Timeout milliseconds and if a message is

available during that time from any of the ports designated by SetOfPorts then the message is read

into Message and a boolean value of true is returned. MessageWait(SetOfPortsJimeout) performs a

similar function, but does not receive the pending message. It returns the capability of the port from

which the next message would be received. Preview(SetOfPorts,Message,Timeout) is again similar to

Receive, but it reads only the header of the next waiting message and does not actually dequeue that

message from the port queue. PortsWithMessagesWaitingfSetOf Ports) is an informational routine

which checks the status of all ports and returns the set of ports with messages waiting.

11

5.5. Messages and signals

In the case where a process does not wish to wait for messages explicitly, it is possible to enable a

signal (i.e. software interrupt) which will be triggered upon message reception. The signal service

routine can then receive the incomming message and process it or notify the main program of the

event in a user defined manner. A mechanism such as this can allow processes which are inherently

compute bound to react quickly to incoming messages without using some form of message polling.

4

A separate signal is used to indicate the arrival of emergency messages and trigger error recovery

procedures.

5.6. Exceptional condition handling

Distributed programming imposes a heavy responsibility to handle a multitude of error conditions.

Message activity can be pipelined or multiplexed, and the relationships between incoming and

outgoing messages can be much richer than in a conventional programming environment (i.e., one in

which subroutines are used as the primary structuring mechanism). A faulty process could

conceivably crash many processes by sending illegal messages, making it very hard to identify the

source of the problem. As a practical matter, it is difficult to ensure complete compatibility between

similar programs written by different individuals in different languages. Supposedly interchangable

processes may differ in subtle ways. A failure in a message-based system can quickly lead to

finger-pointing.

A variety of facilities for protection, error detection and error handling have been built into the IPC.

Illegal process addresses are noted within the send and receive primitives, and the appropriate error

returned to the offending process. In addition, processes are protected from accidental or malicious

access through the use of port capabilities rather than global port or process identifiers. Whenever a

port is destroyed the kernel notifies all processes which still have access to that port via an

emergency message. Emergency messages themselves are important because the give processes a

a way to reliably communicate errors in situations where normal communication channels are

blocked. Software interrupts allow processes to handle error conditions without interferring with

normal execution.

6. Compatibility with UNIX
In the previous sections the IPC facility has been defined in a manner largely independent of UNIX.

This is consistent with the design criterion that the underlying facility should be operating system

independent. In the UNIX implementation of the IPC, however, code has been written to allow a

mapping between facilities which can be made available by processes through the IPC and existing

kernel functions.

12

6.1. Uniform Reference: Ports, Pipes, Fi les, Devices

A number of services performed by the UNIX kernel, such as file and device input/output, are no

different in kind than similar services which could be provided by a UNIX process and made available

through messages. The act of performing a Read, Write, LSeek, or lOControl system call can be

equated with the act of sending of a ReadMessage, WriteMessage, SeekMessage or

lOControlMessage to a port and waiting for a reply on a different port belonging to the requester. The

kernel can thus be viewed as a process in its own right providing services through messages. A file

descriptor for a kernel service such as an open file acts analogously to a pair of ports, one local to the

requesting process and one owned by the kernel, which can be used to send and receive messages

conforming to a standard protocol understood by the kernel.

This correspondence between kernel calls on file descriptors and message interactions using a

pair of ports provides the fundamental link between the older UNIX notions of files, devices and pipes

and the UNIX IPC facility. A file descriptor may be constructed from a <local,remote> pair of port

capabilities and all the normal UNIX system calls relating to file descriptors may be applied to it.

Whenever a UNIX call such as Read or Write is applied to a descriptor constructed in this fashion, a

message is sent to the remote port describing the request and the requesting process then waits for a

reply on its local port.

Complete uniformity of reference is provided by allowing 'real' file descriptors (i.e., file descriptors

provided by the kernel for kernel maintained objects) to act like a <local,remote> pair of ports to which

messages can be sent and from which message can be received. Thus a ReadMessage can be sent

using a file descriptor as a remote port argument even if that file descriptor describes a kernel

maintained file. A process need not know whether a particular service referenced by a file descriptor

is implemented by the kernel directly or by a process. Use of incorrect message protocol when

dealing with kernel objects results in an error message in just the way that an error message would be

sent by a process providing the service.

The ability to view system kernel defined objects as accessible via messages provides a syntax

through which asynchronous file and device input/output can be provided. Assuming that kernel

device drivers are modified to allow asynchronous I/O, a process can initiate a request by sending a

ReadMessage or WriteMessage using an appropriate file descriptor and then at some later time

receive the reply. An important reason for adopting messages as the fundamental unit of

communication is the ease with which it allows the specification and handling of asychrony.

6.2. Directory Lookup

A capability to a port may be obtained through the standard file lookup mechanisms of UNIX and

access to it is governed by the UNIX file access control mechanisms. An AssertName kernel call

13

allows a process to associate a name in a directory with a capability for one of its ports. This

correspondence exists until that capability is destroyed (either explicitly or by process death) or until

it is removed explicity by that creating process (using a RemoveName call).

This facility may be used directly as a name lookup mechanism for message communication

through the use of the Lookup call which takes as its argument a string name and returns the

corresponding portln addition, name loookup can serve to provide a means for processes to make

file-like or device-like services accessible through the UNIX Open system call. In standard UNIX

systems, whenever a UNIX process issues an Open the UNIX file directory is searched. If that search

is successful, a file descriptor is returned which may refer either to an actual file, a multiplex file

channel, or a device. With the addition of the IPC facility, a file descriptor corresponding to a

<local,remote> pair of ports may also be returned by the Open request. If the pathname specified by

the Open contains the name of a special capability file then further processing of the search is halted,

a local port is created for receiving a reply, and an OpenMessage containing the unparsed pathname

and local capability is sent to the port described by the special file. If the process to which this port

belongs wishes to honor the request, it replies with an OpenReply message containing a port

capability to use for further communication. This capability is matched with the local port to form a

file descriptor which is then returned as the result of the Open. See Figure 5.

The way in which the matching capability for an Open is obtained is completely up to the process

which intercepts the request. The pathname requested by the calling process is supplied as part of

the OpenMessage. The process receiving the OpenMessage may chose to parse and use this

information, or it may chose not to handle the request but instead to pass it on to another process for

final resolution.

6.3. Fork and other things

The UNIX call Fork is the only way new processes can be created. The definition of Fork is such

that all files open before a Fork will be shared by both parent and child processes after it. The IPC

facility preserves the semantics of the call. For file descriptors which are <local,remote> pairs of ports

the child process is provided with a copy of the remote port capability and a new port owned by the

child is created to serve as the local port. If the remote port capability of the file descriptor belongs to

the parent, only the right to send messages to the remote port is transferred (not ownership!).

The newly created process can use these file descriptors (which of course have the same values as

they had for the parent) in the same way the parent uses its version of them. The protocol for reading,

writing, etc. objects referred to by such file descriptors requires that all messages use the local port of

the file descriptor as their own local port. Thus should the child process perform a Read or Write the

request message would be sent to the same port as for the parent and the reply would be sent back to

14

the child. The semantics are exactly equivalent to those for shared files.

No port capabilities other than those used in file descriptors are transferred from parent to child.

However, the child is given capabilities to certain ports which can handle for it such things as name

lookup and file access. These ports may belong to a system kernel (possibly on a remote machine!) or

may belong to processes.

Whenever a new process is created, two ports, one owned by the new process and one owned by

the system kernel, are also created. These ports are the made accessible to the parent process via a

ChildPorts call. The first of these is intended to be used for initial communication to the child process

by the parent. The latter is a control port designed to receive messages requesting termination,

suspension or status information. The control port belongs to the kernel (viewed as a process) just as

UNIX files are really represented as ports belonging to the kernel.

7. Networking
Given the UNIX IPC outlined in the previous sections, it is possible to describe the implementation

of a transparent network IPC which does not require further kernel modification. In fact, the kernel

requires no knowledge of networking or networks for such a mechanism to be provided.

Assume the existence of a network server process running under UNIX and providing reliable, flow

controlled communication paths to other machines on a network. A communication path for

messages to a port on another machine on the network may be identified with a port which belongs

the network server and to which processes may send message to be forwarded across the network.

In other words, a process A on machine X can possess a capability for a port to which messages can

be sent destined for a process B on machine Y. This capability is in fact a capability for a port owned

by a network server on X, but this is both unknowable and unimportant to A. The exact nature of the

connection, the protocols used, the topology of the network, or even the existence of multiple

competing networks linking X and Y is hidden from process A. It would even be possible for B to

migrate from one machine to another on the network without process A being aware of the change as

long as the network servers involved could handle the transfer of the logical communication channel

between A and B. See Figure 6.

One requirement of this scheme is that there be a way for network servers to know when a

message contains a port capability. Along with each such capability sent in a message goes an

implicit network connection which would be needed should a message be sent to that port. It would

therefore be the responsibility of the network server to convert any references to capabilities found in

messages forwarded over a network into capabilities local to its host machine.

15

There is no requirement however, that there should be only a single network server or that all

network servers should use the same communication protocols or even that 'network servers' actually

implement communication on a physical communication link. This allows multiple competing

versions of network software to be written and debugged or multiple network links to be provided

without affecting the system kernel or existing software.

Where efficiency is critical, the fact that the kernel can act like a process allows the implementation

of the network server in the UNIX kernel.

Message structuring is important not only for handling the transmission of port capabilities across

networks but also for data conversion in networks with machines which have widely varing data

representations for integers, reals, characters, etc. As stated above, it would be appropriate in such

networks to reserve certain 'user types' which would to have network understood meanings. In this

way network servers could provide for data conversion across machine boundaries. Specifically,

process A on machine X is communicating with process B on machine Y. A sends B a message

containing arbitrary data. The kernel on X packages-the data into a host-dependent linearized form

and delivers it to the network server, which then delivers the data across the network in a manner

which Y can understand. The network server on Y unpacks the data into the host-dependent

linearized form for Y and delivers the message to its kernel. If word-size mismatches may occur, B

can specify in its receive that the data should either be truncated or expanded.

8. An Example: A Simple Network File System
As example of the power of expression provided by UNIX IPC, a simple network file system for UNIX

can be described. Assume that each UNIX host machine on a network has a running remote file

server process. The function of this process would be to provide kernel-like access to files via Open,

Read, Write, LSeek, etc. messages. Assume also the existence of network server processes

providing network IPC as described in the previous section. The ability to perfcm Open requests on

files on another machine is then provided by simply placing a capability for the remote file system

process for that machine in the directory structure of the local host (through the auspices of the

network server). From that point on, all file opens which use the name of the root node of that file

system are trapped and sent across the network to the appropriate remote file server. File access

provided in this way need be no different than file access provided by the local host's kernel. Access

may even be provided directly to remote devices.

16

9. Discussion
Ports simplify the problems of network communication and protection by decoupling networking

from intra-machine communication and providing an abstraction of function which does not depend

upon a particular implementation of processes. A port can be used to represent a function

independent of how that function is implemented. They can be used to specify kernel objects (such

as files or process management functions) or objects maintained by processes. All access to the

outside world is mediated through ports with the notion of system call reduced to the notion of

sending and receiving messages.

Protection derives from the fact that ports are protected kernel objects to which processes only

have a local reference. The right to send a message to a port cannot be forged or accidentally

created. This prevents processes which are either buggy or malevolent from gaining fraudulent

access to resources and it allows the writer of a process to make a positive statement about the

correctness of his program based on precise knowledge of which other processes are allowed to

communicate with it.

The existence of access lists also provides the kernel with complete knowledge of the

communication rights of processes. It is not possible for a process to hide a reference to another

process's port in its private address space. The system can know who is talking with whom and notify

processes which have access to a port when that port is destroyed. Knowledge of inter-process

communication paths can also be used as an aid in intelligently scheduling systems with tightly

coupled communicating processes.

Moreover, the location of a port can change at will as can the nature of the process serving it,

without affecting the processes using the port. This feature is critical for process migration and

fail-soft performance.

10. Comparisons with other systems
The IPC facility described here can be compared with other facilities for distributed computing

constructed or proposed during the last decade.

10.1. Comparisons with RIG

The IPC facility is a lineal descendent of the message-based communication mechanisms provided

in R I G 1 , 2 . RIG represented a substantial effort in the design and implementation of a network

oriented operating system. As of September, 1979 some 90,000 lines of code had been written for

that system including facilities for network file access, a virtual terminal facility3 which allowed a

single display to be used to monitor simultaneously executing tasks on a number of different

17

machines (both local and on the Arpanet) and a sophisticated process management facility.

The IPC facility builds upon the accumulated experience represented by RIG. It incorporates the

best features of the RIG system and at the same time attempts to provided solutions to some of the

many problems encountered in the design and implementation of distributed software in RIG.

Specifically, the IPC differs from the RIG notion of message-passing in that:

• The notion of process as part of a communication address has been dropped. In RIG, a
message was addressed to a port identified explicitly by the process which owned it.
Each process could have up to 255 ports and a port name consisted of a process/port
pair. This identification of port with process prevented the transfer of a service from one
process to another. This restriction impacted on a programmer's ability to hide the
process structure of an implemention of a service from the user of that service.

• No globai name space. In RIG, the space of process and port names was global across all
machines in the system. Possession of a process/port name was all that was required for
communication with that process. Process/port names could be stored away in the
address space of a user process without the knowledge of the underlying system or even
fabricated with good or malicious intent.

In the CMU IPC facility a process accesses a port through a local name which has
meaning only in the context of that process. The conversion from local to system port
name is performed by the operating system kernel through the use of a protected access
list. Conversion of a system port name to a network connection is performed by a
network server. A port name can be placed in the name space of a process either
through receipt of a message containing the right to access that name or through the use
of a string name and an explicit name lookup mechansism (which would provided the
same kind of protection accorded to file name lookup).

Their are two advantages to this approach. The first is that port names cannot be
fabricated, simplifying considerably the task of writing 'correct' distributed programs.
The second is that information about the communications structure of the system is
explicitly represented in the system (in the kernel access lists) and the network server (in
the connection data structures). This allows the system to notify dependent processes
when error conditions (such a process death) are detected.

• Structured messages. RIG incorporated a primitive mechanism for typing the contents of
messages. As long as the only machines on the network had the same word size,
instruction set, and data representation this mechanism sufficed. The introduction of the
PDP-10 to the message-passing environment presented considerable problems, however.

A standard protocol for data structuring and typing is part of the IPC facility. Just as it is
important that information about the communication structure of the system be
represented explicitly to allow for error handling and recovery, it is also important that the
type of data in a message be explicitly defined to allow for transparent conversion of data
types between processes written in languages with different conventions for the storage
of data (e.g. Lisp and C) or between processes on different machines (e.g. PDP-10 and
VAX).

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

P I T T S B U R G H . PENNSYLVANIA 1 5 2 1 3

18

10.2. Comparisions with previous systems
Several other systems provide facilities similar to some of those provided by the IPC. Name

service, or generic addressing, is provided by DCS 4 , D C N 5 , and M S G 6 . The Distributed Processing

System 7 and recent work by Watson and Fletcher8 supports the use of communication protocols

similar to full hand-shake connections (i.e., procedure calls). DEMOS 9 , Roscoe 1 0 , and Thoth 1 1 are

examples of systems built entirely on the use of processes communicating via messages.

The IPC is somewhat unique in incorporating all of these facilities in a relatively coherent manner.

MSG, for example, provides three primitives modes of inter-process communications - messages,

connections, and alarms - together with asynchronous signaling mechanisms and the ability to

dictate the sequencing of messages. IPC provides a more uniform message interface: Emergency

messages are software interrupts; connections are built on top of messages; sequencing is

guaranteed by the reliable transmission protocols.

DEMOS and Thoth rely heavily on messages for process synchronization and communication.

Both systems, however, use explicitly shared memory as the primary tool for communicating blocks of

storage. Thoth messages, for example, are limited to eight sixteen bit words.

The IPC and Thoth also differ in the style of access to basic system resources. Thoth distinguishes

between access to its file system (through kernel calls) and inter-process communication.

10.3. Comparisons with new or proposed systems

10.3.1. TRIX

T R I X 1 2 represents another system in the general flavor of RIG, Thoth, and DEMOS. The concept of

a data stream is reminiscient of a RIG port with the added notion of that a stream descriptor is a

capability. TRIX streams are considered full-duplex channels, with messages passing in both

directions, but are inherently asymmetric. Requests flow from a requester to a handler and replies are

returned on the same stream. Messages are of fixed length, but a request contains a pointer to a

buffer in the requester's address space into which data can be placed by the receiver of the message.

Message data is not typed.

One way in which the IPC facility differs from the communication system of TRIX is in the use of

messages containing typed data. This allows, for example, port names to be passed in the data

portion of messages rather than only in fixed message headers. It also allows the system to perform

transparent data type conversion between heterogeneous machines.

Another difference is in the asymmetry of TRIX streams. In the IPC ports are simply queues for

messages which may have only one receiver but many senders. In TRIX, a stream represents m + 1

19

queues where m is the number of sending processes. Replies are inherently matched to requests and

no provision is made for third party handling of messages (e.g. process A sends a request to B which

forwards the request to C which responds directly to A). TRIX has bound relationships between

processes to a request/reply paradigm that represents only one of many possible process-to-process

relationships. The IPC facility allows a more flexible graph structured relationship between

processes. (S e e 1 3 for examples of this kind of distributed programming.)

Current TRIX documentation does not specify any mechanism for flow control or error handling.

Both are specified by IPC.

Much of the emphasis of TRIX is on the development of a distributed UNIX-like system environment

rather than the construction of distributed programming tasks by users. The emphasis in the IPC is on

providing a general purpose facility for distributed programming of tasks as diverse as the SPICE

system development 1 4 and Al tasks such as the implementation distributed sensor nets.

10.3.2. Liskov's primitives for distributed computing
Barbara Liskov has proposed a set of message communication primitives which she plans to

incorporate into the CLU programming system 1 5 . A driving force in the specification of those

primitives has been the desire to provide a mechanism for automatic recovery. The result has been

the decision to define a message passing system which does not guarantee the order of messages

and which allows a given message to be delivered at least once but possibly any number of times to its

destination. It is the burden of the programmer to define his make his messages idempotent, i.e.

capable of repeated delivery without adverse affect. A message system defined in this way has the

advantage that the underlying operating system can restart any process from its last checkpoint.

The problem with this approach is its reliance on the notion that no error signal should occur in the

event of a failure. Because no error condition is generated in the event of a system crash, messages

from restarted processes cannot be distinguished as belonging to a new or previously performed

operation. Thus the actions specified by these messages must be idempotent Machine-to-machine

communications protocols often have the property that a given message, repeated any number of

times, cannot be misinterpreted. Liskov seems to be saying that process-to-process communication

must also be of this form to guarantee end-to-end reliablity.

Unfortunately, network protocols are notoriously hard to correctly specify. A logical assumption is

that a requirement for idempotency in the specification of a programming task will dramatically

increase the time required to write distributed programs. Higher level mechanisms would have to be

built on top of Liskov's primitives in order to make them usable.

In contrast, the IPC message system provides a reasonable model for communication under the

20

assumption of no error and guarantees notification of error conditions (such as process death) as

long as a communication dependencies exists between two processes. This allows for a

programming style to be adopted which does not assume an error will occur which is then augmented

by mechanisms for asynchronously detecting and recovering from errors. In addition, it removes one

of the two reasons for incorporating timeouts in distributed programs: a programmer need only use

timeouts to ensure minimum performance (if desired) not to detect the failure of his cooperating

partners.

11. Current state of the IPC
An implementation of the facility currently exists for VAX/UNIX and one is planned for the Three

Rivers Corporation PERQ. An implementation is possible for TOPS-10 and TOPS-20 and it appears

likely that a VAX/VMS implementation will take place. Work is proceeding on the development of

network and file services built around the IPC.

12. Appendix: Structures and Calls
The following describes the set of subroutine calls and structure declarations for the IPC. The

purpose of this appendix is explanatory. It does not conform to either the actual names of routines

currently being used (primarily because of name length restrictions in C) or to actual structures. Full

documentation for the IPC facility as implemented can be found in the appropriate 'Man* files on the

various CMU VAX/UNIX systems. The emphasis here is on the kind of functions which are be

provided and roughly how they might look to a programmer.

12.1. Structures

/* Bas ic type d e c l a r a t i o n s */

t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef

i n t
i n t
i n t
i n t
i n t
i n t
i n t
char

LocalPortName;
MessageType;
P o r t T y p e ;
M e s s a g e l d e n t i f i e r ;
MessageDataType;
MessageElementSize;
D e s c r i p t o r P o i n t e r ;
MessageData;

s t r u c t Se tOfPor ts
{

B i ts [(MAXBITS+31)/32]
}

21

/•
The implementat ion of S e t O f P o r t s i s as

a bitmap of known l e n g t h w i t h each b i t r e p r e s e n t i n g
a portname. I t i s d e s i r a b l e f o r speed and ease
of implementat ion t o p r o v i d e c a l l s which assume a l l
p o r t s are r e f e r r e d t o o r which s p e c i f y o n l y a s i n g l e
p o r t in the c a l l s below which take a S e t O f P o r t s as
one of t h e i r arguments. I f the S e t O f P o r t s argument
i s -1 o r a small i n t e g e r , e i t h e r a l l p o r t s o r a
s p e c i f i c p o r t i s r e f e r r e d t o . A p o i n t e r - v a l u e d
S e t O f P o r t s argument i s assumed t o r e f e r t o a bitmap
s t r u c t u r e .

*/

/* Types of messages */

^ d e f i n e NormalMessage
^ d e f i n e EmergencyMessage

/* Message data t y p e s : V

^ d e f i n e TypeUnst ruc tu redData
^ d e f i n e TypePor t
^ d e f i n e TypePortOwnership
^ d e f i n e T y p e P o r t R e c e i v e R i g h t s
^Def ine T y p e P o r t A l I R i g h t s
#def ine T y p e D a t a D e s c r i p t o r
#def ine T y p e L i n e a r S t r u c t u r e

/* Type q u a l i f i e r s : */

^ d e f i n e I n l i n e
^ d e f i n e A r r a y O f P o i n t e r s
#def ine P o i n t e r T o A r r a y

/* Send o p t i o n s */

^ d e f i n e Wait
^ d e f i n e R e t u r n W i t h E r r o r
^ d e f i n e N o t i f y

/* System parameter */

#def ine MaximumMessageDataSize
#def ine MaximumNumberOfPointers

/* Minimal message s t r u c t u r e */
s t r u c t MessageHeader

{
MessageType MsgType:
PortType L o c a l P o r t T y p e ;

22

LocalPortName Local P o r t ;
Por tType RemotePortType;
LocalPortName RemotePort ;
M e s s a g e l d e n t i f i e r 10;
/* Fo l lowed by a message d e s c r i p t o r :

One o f
D e s c r i p t o r W i t h P o i n t e r
D e s c r i p t o r W i t h o u t P o i n t e r
D e s c r i p t o r W i t h A r r a y O f P o i n t e r s

•/
} ;

s t r u c t D e s c r i p t o r W i t h P o i n t e r
{

MessageDataType T y p e ; .
MessageElementSize NumberOfElements;
MessageOata * P o i n t e r ;

} ;

/* Note . C does not have v a r i a b l e l e n g t h a r r a y s .
These s t r u c t u r e s are s u g g e s t i v e r a t h e r than
l i t e r a l l y t r u e f o r any g i v e n message.

*/

s t r u c t D e s c r i p t o r W i t h o u t P o i n t e r
{

MessageDataType T y p e ;
MessageElementSize NumberOfElements;
MessageData Data[MaximumMessageDataSize];

s t r u c t D e s c r i p t o r W i t h A r r a y O f P o i n t e r s
{

MessageDataType T y p e ;
MessageElementSize NumberOfElements;
D e s c r i p t o r P o i n t e r Pointer [MaximumNumberOfPointers] ;

}

12.2. Calls

boolean Send(Message ,T imeout .Opt ions)
s t r u c t MessageHeader *Message;

/*
Send a message. C a l l r e t u r n s t r u e i f

i t succeeded, f a l s e i f i t was not ab le
to send the message. Timeout in m i l l i s e c o n d s .

•/

23

boolean R e c e i v e (P o r t s .Message,T imeout)
S e t O f P o r t s * P o r t s ;
s t r u c t MessageHeader *Message;
Time T imeout ;

I f a message i s w a i t i n g on any o f the
p o r t s s p e c i f i e d o r i f a message comes
f o r one o f those p o r t s before a s p e c i f i e d
amount o f time (i n m i l l i s e c o n d s) e x p i r e s ,
then r e c e i v e t h a t message i n t o the s t r u c t u r e
p o i n t e d t o by Message and r e t u r n t r u e .
Otherwise r e t u r n f a l s e .

boolean P r e v i e w (P o r t s . M e s s a g e , T i m e o u t)
S e t O f P o r t s * P o r t s ;
s t r u c t MessageHeader "Message;
Time T imeout ;

I f a message i s w a i t i n g on any o f the
p o r t s s p e c i f i e d o r i f a message comes
f o r one o f those p o r t s before a s p e c i f i e d
amount of time (i n m i l l i s e c o n d s) e x p i r e s ,
then copy t h a t message's header i n t o the
s t r u c t u r e Message and r e t u r n t r u e . Mote t h a t
l i n e a r s t r u c t u r e form of message i s
r e t u r n e d in p rev iew (b u t no data i s c o p i e d) .
Otherwise r e t u r n f a l s e . T h i s does not
dequeue the message.

LocalPortName MessageWait (Ports .T imeout)
S e t O f P o r t s * P o r t s ;
Time T imeout ;

/*
I f a message i s w a i t i n g on any o f the

p o r t s s p e c i f i e d o r i f a message comes
f o r one o f those p o r t s before a s p e c i f i e d
amount of time (i n m i l l i s e c o n d s) e x p i r e s ,
then r e t u r n a c a p a b i l i t y t o the r e c e i v i n g
p o r t . Otherwise r e t u r n n o t h i n g .
T h i s does not dequeue any message.

*/

DIVERSITY LIBRARIES
C A R N E G I E - M E L L O N U N I V E R S I T Y

PITTSBURGH. PENNSYLVANIA 15213

24

Por t sWi thMessagesWai t ing (Por t s)
S e t O f P o r t s * P o r t s ;

I f a message i s w a i t i n g on any o f the
p o r t s s p e c i f i e d o r i f a message comes
f o r one o f those p o r t s be f o re a s p e c i f i e d
amount o f time (i n m i l l i s e c o n d s) e x p i r e s ,
then r e t u r n the s e t o f p o r t s w i t h messages
w a i t i n g . Otherwise r e t u r n the empty s e t .
T h i s does not dequeue any message.

boolean AssertName(Name,Port .Access,NameType)
char *Name;
LocalPortName P o r t ;
i n t A c c e s s ;
i n t NameType;

/•
Def ine a correspondence between a s t r i n g

name and a p o r t . The c a l l i n g process must
e i t h e r own o r have r e c e i v e r i g h t s t o the
p o r t . Returns t r u e i f the name has been
e n t e r e d , f a l s e i f the name a l r e a d y e x i s t e d
o r the p o r t name passed i n the c a l l was
somehow i l l e g a l . I f NameType i s DIRNAME
then a Locate (see below) when i t encounters
Name as a d i r e c t o r y p r e f i x o f the name i t
i s l o o k i n g up, w i l l cause a LocateMsg to
be sent t o the s p e c i f i e d p o r t and w i l l w a i t
f o r a r e p l y . On ly o t h e r va lue f o r NameType
i s NORMALNAME.

LocalPortName Locate(Name)
char *Name;

/ *
Returns the p o r t name a s s o c i a t e d w i t h a

s t r i n g . The access f i e l d of the name e n t r y
i s check as f o r f i l e name lookup . Returns
NULL i f no correspondence or no access .

boolean RemoveName(Name)

r

25

char *Name;

Dest roy the correspondence between a s t r i n g
and a p o r t . T h i s c a l l w i l l r e t u r n t r u e i f the
name e x i s t s and the c a l l i n g process owned o r
had r e c e i v e r i g h t s f o r the p o r t i t r e f e r r e d t o .

LocalPortName A l 1 o c a t e P o r t (B a c k l o g)
i n t Back log ;

/ *
Create a p o r t . A Backlog o f ze ro imp l ies

the use o f the system d e f a u l t b a c k l o g . Negat i ve
backlogs are i g n o r e d .

D e a l l o c a t e P o r t (P o r t)
LocalPortName P o r t ;

I f the c a l l e r i s the owner o f the p o r t and has
r e c e i v e r i g h t s t o i t , d e s t r o y the p o r t . I f the c a l l e r
has r e c e i v e r i g h t s o n l y , then send a message to the
owner c o n t a i n i n g those r i g h t s . I f the c a l l e r has ownership
r i g h t s o n l y then send a message to the r e c e i v e r having
r e c e i v e r i g h t s . I f the c a l l e r i s not the owner o r r e c e i v e r ,
r e lease i t s c a p a b i l i t y to the p o r t . Noop i f use count i s
n o n - z e r o .

Inc rementUseCount (Por t)
LocalPortName P o r t ;

/ *
Increment use count f i e l d f o r p o r t name.

DecrementUseCount(Port)
LocalPortName P o r t ;

/*
Decrement use count f i e l d f o r p o r t name.

26

C h i l d P o r t s (C h i l d P o r t , K e r n e l P o r t)
LocalPortName * C h i l d P o r t ;
LocalPortName * K e r n e l P o r t ;

/*
Returns in i t s arguments the data and
c o n t r o l p o r t s f o r the l a s t c h i l d
spawned by t h i s p r o c e s s .

•/

D e f i n e S i g n a l (M s g T y p e , S i g n a l)

/*
I n the case where a process does not wish t o w a i t

f o r messages e x p l i c i t l y , i t i s p o s s i b l e t o enable a
s i g n a l (i . e . so f tware i n t e r r u p t) which w i l l be t r i g g e r e d
upon message r e c e p t i o n . The s i g n a l s e r v i c e r o u t i n e can
then r e c e i v e the incoming message and process i t o r n o t i f y
the main program of the event i n a user d e f i n e d manner.
T h i s mechanism a l lows processes which are i n h e r e n t l y compute
bound t o reac t q u i c k l y to incoming messages w i t h o u t us ing
some form o f message p o l l i n g .

A separate s i g n a l i s used to i n d i c a t e the a r r i v a l of
emergency messages and t r i g g e r e r r o r r e c o v e r y p r o c e d u r e s .

I f a u s e r ' s main program i s per forming a message w a i t
of any form (see above) and any s i g n a l a r r i v e s , the
message w a i t i s te rminated w i t h an e r r o r . T h i s i s
the same as the e f f e c t o f a s i g n a l on a UNIX Read c a l l .
The user making use of s i g n a l s in a message program
should be prepared t o handle these abor ted c a l l s .

D e f i n e S i g n a l (M s g T y p e , S i g n a l) i s used to d e f i n e which o f
the 16 UNIX s i g n a l s a process wishes to use f o r handl ing
messages of type msgtype (see b e l o w) . Two message types
e x i s t : (1) NORMALMSG and (2) EMERGENCYMSG. Thus two
separate handlers may be de f ined f o r the r e c e i p t of messages.
By s p e c i f y i n g a s i g n a l of z e r o , the s i g n a l handl ing of
messages of t h a t type i s d i s a b l e d . The b i n d i n g o f a
r o u t i n e to a s i g n a l s p e c i f i e d by t h i s c a l l must be
s e p a r a t e l y made using the normal UNIX c a l l s i g n a l .

V

G e t s i g n a l (M s g T y p e)

/•
Because UNIX s i g n a l s are not s tacked , v a r i o u s c a l l s

27

are p r o v i d e d to a l l o w a process to c o r r e c t l y handle
m u l t i p l e message e v e n t s . I f a message hand le r i s enabled
and the l a s t s i g n a l l e d message event has not y e t been
hand led , a counte r i s incremented and no new s i g n a l i s
g e n e r a t e d . The s t a t e of t h i s c o u n t e r can be d i s c o v e r e d
using G e t S i g n a l .

•/

C l e a r S i g n a l (M s g T y p e)

/•
The s i g n a l counter may be c l e a r e d by C l e a r S i g n a l
which a l s o reenables f u r t h e r s i g n a l s .

•/

DismissS igna l (MsgType)

/*
T h i s r o u t i n e shou ld be c a l l e d by the s i g n a l handl ing
r o u t i n e a f t e r each message is p r o c e s s e d . I t decrements
the counter and r e t u r n s the t o t a l number
of messages s t i l l w a i t i n g to be handled by t h a t hand le r
(message events cou ld occur w h i l e the hand le r i s running
so t h i s count may not n e c e s s a r i l y d e c r e a s e) .
A re tu rned va lue o f ze ro i m p l i e s t h a t the hand le r has
no more work t o do and t h a t message events from t h a t
p o i n t on w i l l cause a new s i g n a l to be generated (and
thus a new i n c a r n a t i o n of the hand le r t o be c a l l e d) .

*/

M a k e F i l e D e s c r i p t o r (L o c a l Por t ,RemotePor t)
LocalPortName Local P o r t ;
LocalPortName RemotePort;

/*
Make a f i l e d e s c r i p t o r co r respond ing to
a p a i r o f p o r t s .

*/

LocalPortName L o c a l P o r t (F i l e D e s c r i p t o r)

/*
Decompose a f i l e d e s c r i p t o r .

LocalPortName R e m o t e P o r t (F i l e D e s c r i p t o r)

/*
Decompose a f i l e d e s c r i p t o r .

28

*/

S e t B a c k l o g (P o r t , N e w B a c k l o g)
LocalPortName P o r t ;
i n t NewBacklog;

/*
Change the backlog o f a p o r t .

• /

13. Acknowledgements
The author would like to acknowledge the help, advice and assistance of Eugene Ball, George

Robertson, Peter Hibbard and Sam Harbison at CMU, Keith Lantz and Ed Burke at the University of

Rochester, Greg Jirak, David Kashtan and other members of the MUSE project at SRI.

29

References

1. J .E . Ball, J.A. Feldman, J.R. Low, R.F. Rashid, and P.D. Rovner., "RIG, Rochester's Intelligent
Gateway: System overview.," IEEE Trans. Software Eng., Vol. 2, No. 4, December 1976, pp.
321-328.

2. J . E. Ball, E. Burke, I. Gertner, K. A. Lantz, and R. F. Rashid, "Perspectives on message-based
distributed computing," Proceedings 1979 Networking Symposium, IEEE, December 1979, pp.

3. K.A. Lantz and R. F. Rashid, "Virtual terminal management in a multiple process
environment," Proceedings of the Seventh Symposium on Operating Systems Principles,
ACM, December 1979, pp. 86-97.

4. D . J . Farber, et al., "The Distributed Computing System," Proceedings of IEEE COMPCON,
IEEE, 1973, pp. 31-34.

5. D.L. Mills, "An overview of the Distributed Computer Network," Proceedings AFIPS NCC,
AFIPS, June 1976, pp. 45:523-531.

6. NSW Protocol Committee, "MSG: The interprocess communication facility for the National
Software Works," Tech. report 3483, Bolt Beranek and Newman, December 1976.

7. J .E. White, "A high-level framework for network-based resource sharing," Proceedings AFIPS
NCC, AFIPS, June 1976, pp. 45:561 -570.

8. R.W. Watson and J .G . Fletcher, "A protocol structure for network operating system services,"
Proceedings 4th Berkeley Conference on Distributed Data Management, August 1979, pp. .

9. F. Baskett, J .H. Howard, and J.T. Montague, "Task communication in DEMOS," Proceedings
of the 6th Symposium on Operating Systems Principles, November 1977, pp. 23-32.

10. M.H. Solomon and R.A. Ftnkel, "Roscoe — A multiminicomputer operating system," Tech.
report 321, Computer Science Department, University of Wisconsion-Madison, September
1978.

11. Cheriton, D.R.; Malcolm, M.A.; Melen, L.S.; and Sager, G.R., "Thoth, a Portable Real-Time
Operating System," CACM, February 1979, pp. 105-115.

12. S. Ward, "TRIX: A network operating system," Tech. report, MIT, December 1979.

13. J.A. Feldman, "High-level programming for distributed computing," CACM, Vol. 22, No. 6,
June 1979, pp. 353-368.

14. , "Proposal for a joint effort in personal scientific computing," Tech. report, Computer
Science Department, Carnegie-Mellon University, August 1979.

15. B. Liskov, "Primitives for distributed computing," Proceedings of the Seventh Symposium on
Operating Systems Principles, ACM, December 1979, pp. 33-42.

Path of Message Communication

Figure 1

Starred port names imply ownership.

Simple Message Formats

Simple Message Header

with Data

LocalPort

RemotePort

Message ID

Type

of elements

Data

Figure 2

Simple Message Header

with Pointer

LocalPort

RemotePort

Message ID

Pointer Type

of elements

Pointer

Data

Message Data Descriptors

In-line
Data Descriptor

Type

of elements

Data

Pointer-to-array

Data Descriptor

Type

of elements

Pointer

Array-of-pointers
Data Descriptor

Type

of elements

Pointerl
Pointer2

Rgure3

Structured Data Description

TypePointer
TpDescriptor TypePortCapabiiity

4 / 1

/ Port #3

TypePointer
Tolnteger(32)

4

1

CM

3
4

TypePointerTo
UnstructuredData

6*32

6*32

Bits

<
6*32

Bits

<

Typeinteger(16)
6*32

Bits

<

10

1 6

CM
 7

3

CO

4 CO

5 10

Figure 4

Processing an Open Request

User process Kernel

fd » Open(Mbin/me/xx");

ip = ScanDirectoryO;
up = CreatePortO;

SendOpenMessage(p,up);

sp = GetOpenReply(up);

fd = MakeFileDescriptor(up,sp);

Server process

Receive<{ip},Message);

sp = HandleRequest("xx");

ConstructReply(Reply,sp);

Send(Reply);

Ports: ScanDirectory:

Rgure 5

* = special file
ip = initial connection port for server
sp = server port for handling requests on this connection
up = user port created for connection

Two Processes Communicating Via Network

Net
Server

| PI j (A)

P2* (Net)

Kernel

<P2>

<P1>

Net
Server

(B) pT]
(Net) P1*

Kernel

Rgure 6

Starred ports are owned by network servers
and correspond to ports on another processor

fummm, PENNSYLVANIA itzu

