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Abstract 

Accent is a communication oriented operating system kernel being built at Carnegie-Mellon University 
to support the distributed personal computing project, Spice, and the development of a fault-tolerant 
distributed sensor network (DSN). Accent is built around a single, powerful abstraction of 
communication between processes, with all kernel functions, such as device access and virtual 
memory management accessible through messages and distributable throughout a network. In this 
paper, specific attention is given to system supplied facilities which support transparent network 
access and fault-tolerant behavior. Many of these facilities are already being provided under a 
modified version of VAX/UNIX. The Accent system itself is currently being implemented.on the Three 
Rivers Corp. PERQ. 
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1. Introduction 
Two independent projects, one for the development of a fault-tolerant distributed sensor network 

(DSN) and one for a distributed personal computing environment (Spice) are currently underway at 

CMU. Both projects require as their foundation a network operating system which allows flexible, 

transparent access to distributed resources. Accent 1 has been developed to satisfy the requirements 

of these projects. 

Specifically, Accent was built to conform to the following design constraints which were viewed as 

essential to the success of large distributed systems such as Spice and DSN: 

• Modular decomposition. It must be possible to decompose large problems into smaller 
modular units which can be run concurrently on a single processor or optionally 
distributed between several processors on a network. 

• Multiple language support. The system should support not one but many language 
environments and provide tools for close interaction between languages. 

• Protection. Within both the Spice and DSN environments, a single machine may be 
running a number of processes written by different individuals at different times. In 
Spice, for example, such programs as mail service daemons, games, editors, compilers 
and debuggers may all be running simultaneously to satisfy the desires of a particular 
user. If interactions between these processes were unpredictable, chaos could result. 
Blame for errors could not properly be assigned without knowledge of all the programs 
running at the time of an error. 

• Rapid error detection and tools for transparent fault-recovery, debugging and monitoring. 
Multiple process debugging and monitoring, both on a single processor and over a 
network connection, are essential to building a reliable distributed system. Tools for 
rapid error detection and fault recovery are also necessary if the system is to be usable 
and maintainable. 

• Transparent network access. The location of resources in the distributed system has to 
be transparent. Without transparent access, processes could not be transported from 
one machine to another and the decomposition of a task across machine boundaries 
would be impossible. 

• Uniform access to resources. It should be possible for any feature provided by the kernel 
to be provided instead by a process. This includes functions normally thought to be 
exclusively the preserve of an operating system, such as virtual memory management. 

• Explicit representation of knowledge. Where possible, information about the functioning 
of processes is made explicit rather than procedurally embedded. This allows greater 
latitude for optimization and error detection. 

Accent is a registered trademark of Accent International, Inc. The product it designates is sold as a spice and its only 
ingredient is monosodium glutamate (MSG). 



2 

Accent satisfies these constraints by: 

• providing the ability to create and control a large number of independent processes on a 
single processor and supporting a sophisticated form of inter-process communication; 

• supporting the notion of multiple, independent virtual address spaces and a virtual 
machine specification which can accommodate diverse interpretations of process state; 

• supplying two kinds of protection: 1) address space protection, to insure that no process 
can affect another except through the use of the inter-process communication facility, 
and 2) access protection in the communication facility itself to prevent unauthorized 
communication between processes; 

• defining inter-process communication in a way that allows transparent debugging, 
monitoring and fault recovery; 

• taking advantage of these same mechanisms to allow transparent network extension 
independent of network hardware or protocols; 

• allowing all services except the basic communication primitives to be viewed by 
processes as being provided through a communication interface; and 

• structuring message communication to allow intermediary processes such as debuggers, 
protocol converters or network communication servers to better interpret the contents 
and purpose of messages. 

Accent stands out as a relatively pure example of a communication oriented operating system i.e. 

an operating system which uses the abstraction of communication between processes as its basic 

organizing principle. The integration of virtual memory support, file access and inter-process 

communication in Accent makes possible significant performance improvements over previous 

communication oriented systems as well as a more "transparent" network operating system design. 

2. System overview 
Physically, the distributed system built around Accent can be viewed as a loosely-connected 

collection of host machines, each with its own primary and secondary storage. The notion of a host 

machine is flexible in that it can include either uni-processors or tightly coupled multi-processors. In 

addition, no specific assumptions are made about the technology or topology of the underlying 

communication network which links together these host machines. The initial host machine chosen 

for Spice/DSN, the Three Rivers Corporation PERQ, is a uni-prQcessor which currently possesses a 

3MHz Ethernet5 and will eventually possess a 10MHz Ethernet. 

Each host machine on the network possesses an operating system kernel which in turn supports a 
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collection of processes (See Figure 2-1.) 
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Physical layout of SPICE/DSN distributed operating system 

Figu re 2-1: Overview of system 

The function of the system kernel is to provide an execution environment for processes running on 

its host machine. This includes 

• inter-process communication, 

• virtual memory management, and 

• process management. 
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In addition, the kernel provides 

• the low-level functions of process creation and destruction, 

• access to devices through inter-process communication, 

• support for language and application specific microcode, and 

• rudimentary support for process monitoring and debugging. 

These kernel functions are similar to those provided by the RIG operating system 1 , 2 and satisfy the 

requirements for a distributed operating system kernel suggested by Watson 4 . 

The system as a whole can be viewed as having a number of layers, with the system kernel at the 

bottom and layers of processes providing successively more complex services building upon each 

other. Inter-process communication (IPC) is the glue which binds processes together. It provides a 

uniform interface at each level of the system. All objects and services in the system (including those 

provided by the kernel) are accessible through IPC. Even though the IPC facility of the Accent kernel 

is defined solely in terms of communication between processes on the same machine, 

communication can be extended transparently over a network by processes called network servers. 

3. Inter-process communication 
Although processes are the active components of the system, the notion of process is a poor one 

on which to base a communication facility. Different languages may define multiple concurrent tasks 

within a single kernel-supported process. Moreover, a given service may be provided over a period of 

time by a number of different processes. 

The basic transport abstraction of the IPC is the notion of a port. A port is a protected kernel object 

into which messages may be placed by processes and from which messages may be removed. All 

services and facilities provided by a process are made available to other processes through one or 

more ports. 

Ports are intended to be used by processes to represent specific services or data structures. For 

example, a file system process might associate a separate port with each open file, or a virtual 

terminal handling process might allocate a port to represent each virtual terminal. However, no 

restriction is placed on their use. Ports may be used by processes to communicate information in any 

mutually convenient way. 
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Logically associated with each port is a queue on which reside messages sent to that port but not 

yet removed from it by a process. The ability to remove messages from a port is called receive 

access, Only one process may have receive access to a port at a time, although receive access to a 

port may be transferred to another process in a message. 

Ports cannot be directly manipulated or named by a process. Instead, the kernel provides 

processes with a secure capability to send a message to a port and/or extract (receive) a message 

from it. This capability is a local name for a system object, much in the way a UNIX file descriptor is a 

local name for a system maintained file, pipe, or device 9 . Port capabilities may be passed in 

messages, handed down to process children, or destroyed. A given process may have only one local 

name for a given port at a time. Whenever a port name is passed in a message the system kernel must 

map that name from the local name space of the sending process into the name space of the 

receiving process. 

The ability to manipulate access to ports allows for the redirection of communication from one 

process to another and the explicit management of communication between two processes by a third 

process. It also allows a port to be used to refer to a specific service or process-provided object even 

in situations in which that service or object is handled by different servers at different times. Neither 

the address (i.e. the location) or the name of a process can be determined from a capability to send a 

message to one of its ports. See Figure 3-1. 

3.1. Ports 

3.1.1. Creat ing , access ing and dest roy ing ports 

A port is created by a process through an AllocatePort system call. It is a system object, distinct 

from the process which created it, but initially owned by the creating process. The result of the 

AllocatePort call is a local port name which refers to the created port. This name is logically an index 

into a correspondence table maintained by the kernel for each process. It has meaning only when 

used by that process. 

Initially the owner of a port also has receive access to it. Ownership of a port and receive access 

are, however, logically distinct. Ownership of a port may be passed in a message from one process to 

another, but not shared. Receive access to a port may also be passed in a message but not shared. 

These restrictions prevent multiple servers from managing the same queue, and are necessary to 

avoid serious problems which occur when access to a single queue is shared by processes on 

different machines. 
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Path of Message Communication 

Ports-

Pa 
Local name table 

Kernel P3 * 

Local name table 

Starred port names imply ownership. 

Figure 3-1: Path of message communication 

If a single process both owns and has receive access to a port, that process may destroy the port 

by performing a DeallocatePort system call. A process with a capability (local name) to a port may 

release the capability via the same system call. 

A port is automatically destroyed when its owner and the process with receive access to it both die. 

In either case, all processes with access to that port are notified via emergency messages. If the 

same process does not both own and have receive access to a port, then the deallocation of the port 

name by either process results in an emergency error message being sent to the other accompanied 

by full access rights to that port (i.e., both ownership and receive rights). 

The purpose of distinguishing receive access from ownership is to a l lowa process to take over 
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services or functions provided by other processes in the event those processes should die or 

malfunction. This is particularly important when writing fail-soft software and can also be used to 

provide orderly shut-down of services after catastrophic failures. 

3.1.2. Sof tware or pseudo interrupts 

In the case where a process does not wish to wait for messages explicitly, it is possible to enable a 

software interrupt which will be triggered upon message reception. The interrupt service routine, 

executing in the context of that process, can then receive the incoming message and process it or 

notify the main program of the event in a user defined manner. A mechanism such as this can allow 

processes which are inherently compute bound to react quickly to incoming messages without using 

some form of message polling. 

3.1.3. Flow control 

The message queues attached to ports have a finite length. This prevents a sending process from 

queueing more messages to a receiving process than can be absorbed by the system and provides a 

means for controlling the flow of data between processes of mismatched processing speed. 

Subject to implementation restrictions on maximum port size, the process owning a port is allowed 

to specify its backlog the maximum number of normal messages which may be queued for that port 

at one time. Should a process attempt to send a message to a full port, one of three things may 

happen depending on options specified by the sender: 

1. The process is suspended until the message can be placed in the queue. 

2. The process is notified of an error condition (after perhaps allowing itself to be 
suspended for up to a specific period of time waiting for the message to be sent). 

3. The message is accepted and the kernel sends a message to the sending process when 
that message can actually be placed in the queue. A maximum of one message per 
sending process per receiving port may be outstanding in this fashion. 

These three options correspond to three different programming situations: 

1. The first option is the one most likely to be used by a 'user process' when communicating 
with a 'server process'. In this situation the user process does not care if it is suspended 
for some time waiting for a message to be delivered to the server (as in the case of a 
remote procedure call). 

2. The second option is used when a process does not care whether a particular message is 
sent to a destination, but is using the message only to wake up a dormant partner. The 
fact that other messages are in the queue for the partner's port indicates that the partner 
is already scheduled to be activated. 
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3. The third option is the one most likely to be used by a service process when dealing with 
a user process. The server probably cannot afford to be suspended waiting on a user to 
clear its queue. It may also not want to just throw away the message or poll the user 
explicitly until the message can be sent. The system provides an explicit message event 
corresponding to the unblocking of the user's port queue. 

The flow control scheme described here is not the only reasonable technique for restricting the 

flow of messages between processes. Other possible mechanisms include limiting the total number 

of messages which may be outstanding from a given process (as in Brinch Hansen's RC4000 system 

or CMU's Hydra) or limiting the outstanding messages from a given process to a particular port. 

Experience with RIG, however, has shown that the exact flow control policy is much less important to 

overall system performance than the higher level communication protocols devised to solve individual 

problems. Even more important to the functioning of the system is the provision for events to indicate 

when ports become unblocked. This prevents needless and expensive polling in server processes. 

3.1.4. Waiting for messages 

Although particular protocols may specify synchronous behavior, the receipt of a message is 

inherently an asynchronous event. In a network environment in particular it becomes possible for 

error conditions to cause messages to be sent to a process at almost any time. Mechanisms must 

therefore be provided for a process to check the state of its ports, to wait for activity on one or more of 

its ports, and to receive messages selectively. It should also be possible for a process to specify a 

maximum amount of time to wait for a message before reawakening. 

Four basic primitives are provided for accomplishing this task. 

Receive(SetOfPorts,Message,Timeout) waits for at most Timeout milliseconds and if a message is 

available during that time from any of the ports designated by SetOfPorts then the message is read 

into Message and a boolean value of true is returned. MessageWait(SetOfPortstTimeout) performs a 

similar function, but does not receive the pending message. It returns the capability of the port from 

which the next message would be received. Preview(SetOfPortstMessageJimeout) is again similar to 

Receive, but it reads only the header of the next waiting message and does not actually dequeue that 

message from the port queue. PortsWithMessagesWaiting(SetOfPorts) is an informational routine 

which checks the status of all ports and returns the set of ports with messages waiting. 

3.1.5. Sending and receiving kernel messages 

Each newly created process has access to two ports whose primary purpose is to allow messages 

to be sent to and received from the Accent kernel. The first is called the kernel port of the process 

and the kernel logically has the receive rights for this port while the created process has the send 
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rights. The second is called the data port and it is normally used by a process to receive messages 

from the kernel. 

The father of a process can, at the time of process creation, ask that other ports to which it has 

access be given to its child process. The father can also get access to the kernel and data port of the 

child process. This, taken together with the ability to send port access rights in messages, is the basic 

mechanism for establishing communication between processes. 

3.2. Messages 

A message is logically a collection of typed data objects copied from the address space of the 

sender at the time of a message send call and into the address space of the receiver when a receive 

call is performed. Physically, a message is divided into two parts: 1) the message header which 

contains information normally associated with all messages and 2) an optional description of 

structured data to be sent. The purpose of this division is primarily to optimize the transmission of 

short control messages and to make it easier for the kernel to find critical information which must 

always be contained in a message - such as its destination port. 

3.2.1. The message header 

The message header contains a small amount of system required message information and is used 

to form an anchor for the structured part of a message. At minimum it specifies the type of a message 

and contains a capability for the destination port of a message and a field for a capability (which may 

be empty) to be used for a reply. The destination and reply ports are more commonly referred to as 

the remote and local ports, respectively. The header also contains an ID field to 'be used for 

discriminating messages and a pointer to the structured data part of the message. 

The header may be checked without actually receiving the data portion of a message by calling 

Preview. The purpose of this facility is to allow a process to check the ID of the message.received and 

select an appropriate message structure for receiving it. 

The type of a message contains information which determines the kind of service it requires of the 

IPC. The following service classes are provided: 

• Flow control. Normally messages are flow controlled according to the above procedure. 
The message type can specify, however, that a larger flow control backlog should apply 
to this message. This allows special high priority messages to be sent to otherwise full 
ports. 

• Priority. A range of message priorities is provided. Messages waiting at the same port 
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with different priorities will be received according to the order of their priorities. 

• Sequentially. Messages from the same process to a particular port with the same priority 
are normally guaranteed to arrive in the order they were sent (FIFO). It is possible to relax 
this constraint by noting in the message type that the order of reception of a particular 
message is unimportant. 

• Reliability. A message is guaranteed to arrive at its destination reliably, as long as the 
destination exists long enough for the message to be received. A message could simply 
be advisory, however, and it may be unimportant that it arrive at its destination. A 
message may therefore contain in its message type an indication that it may be delivered 
unreliably. 

• Maximum age. A message could become out of date after a certain length of time has 
passed. A message may therefore be marked as having a maximum age after which it 
may be destroyed rather than delivered. 

• Security. A message may be marked as requiring special procedures for ensuring the 
securify of its data. Messages containing password information would fall into this class. 
Messages marked as 'secure' are encrypted when transmitted on a network or placed on 
a storage medium which may not be secure. 

Two message types have been given special names and play a dominate role in communication: 

1. Normal messages. A 'normal' message is flow controlled, sequential, reliable, not 
secure, of lowest priority and has no maximum age. This is the default message type and 
is assumed to satisfy most communication requirements. 

2. Emergency messages. Emergency messages are specially flow controlled, sequential, 
reliable, not secure, of highest priority, and have no maximum age. Emergency 
messages play an important role in error handling. Because of their high priority, they are 
guaranteed to be received before any normal messages sent to a port. Their purpose is 
to allow urgent information to be delivered to a process regardless of that process' 
current message backlog or message queue. They are used for error notification, special 
event processing, and debugging. 

The notion of message type allows the programmer the ability to specify the exact requirements of 

his IPC use. This gives the underlying system more information about a message and thus makes 

possible optimizations in the delivery and management of messages. This use of message types is 

consistent with the overall goal of making as much of the inner workings of the communication 

system as possible visible to the 'outside world' rather than hidden inside compiled algorithms, thus 

allowing greater flexibility in optimization, management and monitoring. 

The service classes associated with sequentiality, reliability, maximum age, and security are 

considered advisory. The system may choose, for example, to deliver a message reliably which has 
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been marked as unreliable without affecting the correctness of the programs which use unreliable 

messages. For the most part they have a direct effect only on the management of message traffic by 

network servers and other intermediary processes. Priority and flow control, however, are important 

to program correctness and cannot be changed without possibly introducing deadlocks. 

3 .2 .2. Message s t ruc ture 

The structured data part of a message is described in detail in 7 . Currently any data structure which 

contains no self references can be described. A message format which allows an arbitrary graph to 

be transmitted is now being designed for the DSN project. The purpose of message structure is to 

provide a standard protocol for communicating typed information. Among the important kinds of 

typed data which can be passed are capabilities for ports. Only port capabilities are currently 

checked by the system kernel for correctness. All other data is passed unchecked by the kernel, but 

may be interpreted, if necessary, by intermediary processes such as network servers or debuggers. 

3.3. Except ional condit ion handl ing 

Distributed programming imposes a heavy responsibility to handle a multitude of error conditions. 

Message activity can be pipelined or multiplexed, and the relationships between incoming and 

outgoing messages can be much richer than in a conventional programming environment (i.e., one in 

which subroutines are used as the primary structuring mechanism). A faulty process could 

conceivably crash many processes by sending illegal messages, making it very hard to identify the 

source of the problem. As a practical matter, it is difficult to ensure complete compatibility between 

similar programs written by different individuals in different languages. Supposedly interchangeable 

processes may differ in subtle ways. A failure in a message-based system can quickly lead to finger-

pointing. 

A variety of facilities for protection, error detection and error handling have been built into the IPC. 

Illegal process addresses are noted within the send and receive primitives, and the appropriate error 

returned to the offending process. In addition, processes are protected from accidental or malicious 

access through the use of port capabilities rather than global port or process identifiers. Whenever a 

port is destroyed the kernel notifies all processes which still have access to that port via an 

emergency message. Emergency messages themselves are important because the give processes a 

a way to reliably communicate errors in situations where normal communication channels are 

blocked. Software interrupts allow processes to handle error conditions without interfering with 

normal execution. 
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3.4. Network in ter -p rocess communicat ion 

3.4.1. The notion of an intermediary p rocess 

The fact that messages are sent to ports rather than processes and that ports are only referred to 

indirectly by processes allows a single process N to act as an intermediary for communication 

between two distinct process groups, A and B. Such an intermediary process allocates ports which 

'mirror' only those ports used by each of the two process groups for communication with the other. 

When a message is sent between the two groups it arrives at one of these 'alias' ports and is 

forwarded to its appropriate final destination. Processes in group A believe that the intermediary ports 

of N are in fact owned by processes in group B, since all messages sent to those ports have the effect 

of being delivered to ports which are in fact owned by group B processes. The same is true for 

processes in group B. Because messages are strongly typed, capabilities for ports can be passed in 

messages in the same way that they are passed by the kernel, with N substituting the names of its 

'alias' ports for those of the corresponding 'real' ports of A and B. Whenever a new, previously 

unseen, port of A is sent to B in a message, N creates a new local port to correspond to it and passes 

that onto B in the forwarded message. It is in this way that new communication connections are made 

between A and B through N. Of course, N must provide some means by which A and B establish an 

initial connection. This could be done either through string name lookup or through some special 

function provided by N and known to A and B. See Figure 3-2. 

3.4.2. The network server as an intermediary p rocess 

A network server which provides a transparent network extension of the IPC can function much like 

the intermediary process described in the previous section. In the case of inter-machine 

communication, the process groups A and B are the processes of two host machines X and Y 

respectively. Two network servers are required, N 1 and N 2 which communicate with each other 

across a network to provide the correspondence between 'alias' ports. The kernel requires no 

knowledge of networking or networks for such a mechanism to be provided. See Figure 3-3. 

The primary requirement of a network server is that it provide some form of reliable, flow controlled 

communication between machines which can accommodate the semantics of local IPC 

communication. A communication path for messages to a port on another machine on the network is 

identified with a port which belongs to the network server and to which processes may send 

messages to be forwarded across the network. As in the case of the intermediary process, a process 

A on machine X can possess a capability for a port to which messages can be sent destined for a 

process B on machine Y. This capability is in fact a capability for a port owned by a network server N 1 

on X, but this is both unknowable and unimportant to A. The exact nature of the connection, the 
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Two processes communicating via intermediary 

Starred ports are owned by intermediary process N 

Messages travel in direction of arrows. 

Figure 3 -2 : Communication via an intermediary procesis 

protocols used, the topology of the network, and even the existence of multiple competing networks 

linking X and Y can be hidden from process A. 

For this reason, there is no requirement that there be only a single network server or that all 

network servers use the same communication protocols or even that 'network servers' actually 

implement communication on a physical communication link. This allows multiple competing 

versions of network software to be written and debugged or multiple network links to be provided 

without affecting the system kernel or existing software. 

Where efficiency is critical, the fact that the kernel can act like a process allows the implementation 
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Figure 3-3: Network communication 

of the network server in the Accent kernel. 

3.4.3. Port migration 

Just as a network server can fabricate a local port to correspond to a remote port, it is also possible 

for a port to be 'passed' between processes through a network server. One requirement of this 

scheme is that there be a way for network servers to know when a message contains a port capability. 

Along with each such capability sent in a message goes an implicit network connection which would 

be needed should a message be sent to that port. It is the responsibility of the network server to 

convert any references to capabilities found in messages forwarded over a network into capabilities 

local to its host machine. 
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3.4.4. T h e use of message t ypes 

The concept of message type is important to the efficient functioning of a network server. Message 

service classes encoded into the message type, such as unreliable, maximum age, and security can 

be directly translated into actions which can be taken by the network server to speed service or make 

communication more secure. For example, a distributed sensor net with real time constraints could 

mark messages containing audio data as having a specific lifetime or as not requiring reliable 

transmission. If such messages arrive too late they could have no use to the tracking processes. 

Also, redundancy in the handling of audio data for tracking purposes could make retransmission of 

error packets unnecessary. At the same time a network server may choose to ignore such advisory 

class distinctions inthe name of simplicity or debugging (where reproducibility is more important than 

speed). 

3.4.5. The use of s t ruc tu red messages 

Message structuring is important not only for handling the transmission of port capabilities across 

networks but also for data conversion in networks with machines which have widely varying data 

representations for integers, reals, characters, etc. As stated above, it would be appropriate in such 

networks to reserve certain 'user types' which would have network understood meanings. In this way 

network servers could provide for data conversion across machine boundaries. Specifically, process 

A on machine X is communicating with process B on machine Y. A sends B a message containing 

arbitrary data. The kernel on X packages the data into a host-dependent linearized form and delivers 

it to the network server, which then delivers the data across the network in a manner which Y can 

understand. The network server on Y unpacks the data into the host-dependent linearized form for Y 

and delivers the message to its kernel. If word-size mismatches occur, B can specify In its receive 

that the data should either be truncated or expanded. 

By having this translation performed by the network server rather than the end processes, greater 

location and implementation independence are obtained and the knowledge of which machines are 

actually in communication can be hidden by the network. In addition, the translation of data need 

occur only once rather than twice. 

3.4.6. I ssues in p rocess migrat ion 

The definition of the IPC makes it possible for a process B to migrate from one machine to another 

on the network without a cooperating process A being aware of the change as long as the network 

servers involved handle the transfer of the logical communication channel between A and 

B. Although the transfer of all ports associated with a process and their corresponding message 

queues is possible using the IPC, process migration remains a difficult problem due to issues about 
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the definition of process state. The problem of process migration is made especially acute by the fact 

that the most common reason for migration is probably hardware failure. In such a case the recreated 

state of the migrated process corresponds to the last 'good* or checkpointed process state and some 

message communication may have gone on since it was saved. The issue of process migration for 

fault-tolerance is therefore not only a system problem but also one of properly structuring message 

communication into atomic transactions. 

4. Virtual memory management 
In Accent, virtual memory, file storage and IPC are integrated together in a way that preserves the 

logical structure of inter-process communication while providing significant performance advantages 

over previous communication based operating systems. This same melding of virtual memory with 

IPC makes it possible for Accent to allow one process to manage the virtual address space of another 

(either by allocating virtual memory from the kernel and sending it to another process or by explicitly 

managing page faults) and in so doing provides a clean, kernel-transparent mechanism for cross-

network paging. 

4.1. Vir tual memory and fi les 

The virtual address space of an Accent process is flat and linearly addressable. On the PERQ this 

address space is 2**32 sixteen bit words. An Accent segment is the basic unit of virtual memory 

allocation and secondary storage management. All randomly accessible secondary storage is 

considered part of the virtual memory of the system and is organized into Accent segments and 

managed by the kernel. 

There are two kinds of Accent segments: temporary and permanent. Temporary segments are 

allocated by processes as required for their memory needs and are released when all processes 

which have access to them are terminated. The storage contained in permanent segments form the 

basis for the Accent file system. Permanent segments are allocated by sending messages to a special 

port normally supplied only to special processes. They do not disappear except by explicit request/ 

Normally, new segments are allocated by the kernel in response to a CreateSegment message, with 

the kernel responding in a message with the newly created segment's identifier. A segment can be 

explicitly destroyed through the use of a DestroySegmeni message. The data contained in a segment 

can be read into a processes virtual address space using a ReadSegment message. The reply to a 

ReadSegment message contains the newly allocated pages which are introduced into the requesting 

process' address space through reception of the message. Similarly, data can be explicitly 
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transferred out of a process1 address space through the use of a WriteSegment message. 

4.2. Optimizing message t ransfers 

Messages are logically copied from a process' address space into a kernel message data structure 

upon transmission and are logically copied from the kernel to a process' address space upon 

message reception. Since data is never shared between processes, message communication over a 

network has precisely the same semantics as local message communication. 

Double copy semantics need not, however, imply actually copying the data twice. If a process 

sends a message pointing to pages in its virtual memory and either releases the memory or simply 

never changes it, double copy semantics can be preserved by marking the pages referenced in the 

message as copy-on-write and not actually copying them into the supervisor's address space. 

Moreover, if the receiver of the message doesn't care about its placement or desires that it be placed 

in its memory on the same page boundaries no copy of data need be performed at all. Instead, the 

data pages may be placed directly into the address map of the receiving process. 

Thus, when a process sends a message to a port, whole virtual memory pages referenced in the 

message are not copied but instead marked as copy-on-write in the address space of the sender. 

Should the sender attempt to change any or all of these pages, new virtual pages will be allocated, 

filled with the appropriate data, and placed in its address space. On reception into an area of the 

receiver's virtual memory which is properly aligned, pages referred to in the incoming message are 

mapped in rather than copied. If the receive desires a different alignment of data than that specified 

by the sender, a copy operation will he performed'. 

The utilization of virtual memory by the IPC represents a functionally transparent optimization 

which is not required either for the functioning of the IPC or the virtual memory management facility. 

Nevertheless, this optimization can be of enormous value in increasing the speed of communication 

between processes on the same host. 

4.3. Optimizing message t ransfers : an example 

The advantage of integrating virtual memory, file storage and IPC is graphically illustrated by the 

example of file system access provided through messages sent to and from a file system process. 

The file system process can read secondary storage by sending a message to the kernel. The kernel 

then sends back a message which contain the virtual pages requested by the file system. This 

message need look no different than any other-message containing data. Moreover the requested 
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pages need never be copied, but are simply placed into the address space of the file system in the 

normal way that data is placed into the address space of any process when received in a message. If 

a user requests a block of data, however large, the file system can send it that block in a message, 

again without ever having the underlying data referenced by either the kernel or the file system. In 

this way the speed advantages of large PMAPed 3 files can be obtained through the reception of 

normal IPC messages without resorting to special file mapping primitives. 

4.4. P rocess d i rected management of v i r tual memory and network paging 

Another advantage of the Accent approach to virtual memory is that it allows virtual memory to be 

considered a process provided resource. A process can create apseudo segment and "read" it into 

an unused part of its address space. It is then possible for a process to send another process these 

'pseudo pages' in a message. When the message is received, these pages are placed into the address 

map of the receiving process. When these pages are referenced by the receiving process, messages 

requesting their contents are sent to a port belonging to the process which created the segment 

When a changed 'pseudo page' is about to be purged from main memory, its new contents are also 

sent in a message. This allows a process which is not the kernel to provide kernel-like management 

of secondary storage. In particular, it makes cross-network paging possible using the standard IPC 

facility. 

5. Process Management 
The process management system forms the third major part of the operating system kernel. It 

interacts with the virtual memory management and inter-process communication systems to provide 

the execution environment for processes running on a host machine. 

As mentioned earlier, all communication between a user process and the kernel is through a port, 

called its kernel port, which is created when the process is created. Since ports can be sent in 

messages to other processes, it is possible for process A to send its kernel port to process B. The 

process system is designed so that process B can manage process A's behavior, much the same way 

the virtual memory system allows one process to manage another's virtual memory. This mechanism 

forms the basis for remote debugging and monitoring systems. 

A number of issues were addressed in building the process management component of Accent: 

• Simple user interface. From the user's point of view, the process system is quite simple. 
The basic primitives allow process creation and destruction with Fork and Terminate, 
process monitoring with Status, and process control with SetPriority, SetLimit (which sets 
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a runtime time limit), Suspend, and Resume. 

• Multiple language support. Mechanisms are provided for supporting languages with 
different notions of process state. In particular, different languages will have different 
underlying microcode support. In order to support multiple languages at this level, most 
of the process mechanisms are forced down to the microcode level. A MicroKernel has 
been defined to provide this support. The MicroKernel consists of all the language 
independent microcode support, including process queue management, process state 
switch and context swap, low level scheduling, I/O support, interrupt support, and virtual 
address translation. The MicroKernel is defined so that language microcode interfaces to 
it in a small number of well-defined ways (e.g., the number of registers to include in 
context swap is language dependent and is stored in a fixed register). 

• High performance. The context swap mechanism is language independent, yet quite fast. 
Since the virtual memory system requires no change of page map on context swap, only 
language dependent microcode registers need to be swapped. Our current 
measurements indicate that context swap will be well under 100 microseconds. 

• Scheduling control. The process scheduling system provides time slice scheduling with 
sixteen priority levels. Preemption is provided to enable time critical processes to meet 
their demands. Aging is provided to support some degree of fairness in scheduling. 

• Simple interrupt structure. The traditional interrupt structure is not being supported in 
this system. Hardware interrupts are serviced in the MicroKernel, and processes waiting 
on service are simply awakened. Preemptive scheduling is used if the awakened process 
is time critical. At the process level, there is no notion of hardware interrupt. However, 
there is a notion of software interrupt, which is tied closely to the inter-process 
communication system. Any receipt of a normal or emergency message will flag a 
software interrupt for the receiving process. Since different languages will represent 
software interrupts in different ways, it is left to the language microcode support to 
interpret the interrupt flag (on resumption from a context swap) and reflect it to the user 
in whatever way is appropriate for that language. 

6. Current status of Accent 
An implementation of the Accent IPC facility as a communication facility for VAX/UNIX has been in 

use since March, 1980. Network servers written in PASCAL have also been implemented and are now 

in use. The PERQ implementation of the full Accent kernel is now (April 1980) in its final stages. 

7. Final thoughts 
One of the first (and suprisingly most controversial) decisions made in the design of Accent was the 

determination that every kernel supported process should have a logically distinct and independent 

address space. The reasons for this decision were: 

• Not all languages are "safe" in the sense that a properly compiled and loaded program 
can be expected to respect the integrity of storage which is not its own. Examples of 
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unsafe languages include BCPL, C, and PASCAL. Even languages which are often 
thought of as safe have embarrassing loopholes which make address space protection 
important. 

• It is usually easier to construct a runtime environment for a language if it does not have to 
be integrated into the same address space as other language environments. Moreover, 
decisions about the use of an address space by a language, once made, need not be 
reviewed every time a new language gets added to the system. This is simply a modularity 
argument, but it can be important in practice. 

• Both DSN and Spice have the requirement that a single processor may need to support a 
large number of simultaneous processes, many of them written by different individuals 
with varying levels of programming expertise. It is important for the isolation of problems 
that errors generated in a given subsystem not be allowed to propagate at random 
through other subsystems. Address space protection provides an important tool for 
controlling inter-program error propagation. 

• It is very difficult to provide truly transparent networking if processes can potentially have 
interactions which the system itself cannot detect. 

This decision to support multiple independent address spaces on a single personal computer 

should be contrasted with the approach being taken by others currently doing similar research. The 

XEROX Pilot operating system 8, for example, provides a single (currently 24 bit) address space for all 

concurrent processes it supports. It can do this because it supports only one programming language 

(MESA) which has been designed to reduce the probability of inter-program contamination. 

One significant disadvantage of the Accent approach is that it is often time-consuming for existing 

computers to switch from one logical address space to another. One reason for Pilot's single address 

space design is that its target machine has a single large set of virtual address mapping registers 

which would have to be updated in order to switch contexts. As another example, the VAX 11/780 

uses a content addressable address translation buffer to provide both a larger address space and 

faster context switching. Unfortunately the buffer must be flushed on a context switch and refilling the 

buffer for the new process results in switching times on the order of hundreds of microseconds. 

Some machines, however, do provide acceptable address space switching times. The PRIME 750, for 

example, can switch address spaces in less than ten microseconds 6. The key to the PRIME approach 

is the use of the process identifier as part of the virtual address. In the PERQ system we have adopted 

* a similar scheme with the result that context switching times are comparable to two PERQ procedure 

calls. 

The decision to build a communications based system on the notion of protected ports and port 

capabilities was based on considerable past experience with message based operating systems both 
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at CMU and the University of Rochester. Ports simplify the problems of network communication and 

protection by decoupling networking from intra-machine communication and providing an 

abstraction of function which does not depend upon a particular implementation of processes. Ports 

can be used to represent functions independent of how those functions are implemented. They can 

be used to specify kernel objects (such as files or process management functions) or objects 

maintained by processes. All access to the outside world is mediated through ports with the notion of 

system call reduced to the notion of sending and receiving messages. 

Protection derives from the fact that ports are protected kernel objects to which processes only 

have a local reference. The right to send a message to a port cannot be forged or accidentally 

created. This prevents processes which are either buggy or malevolent from gaining fraudulent 

access to resources and it allows the writer of a process to make a positive statement about the 

correctness of his program based on precise knowledge of which other processes are allowed to 

communicate with it. 

The existence of access lists also provides the kernel with complete knowledge of the 

communication rights of processes. It is riot possible for a process to hide a reference to another 

process' port in its private address space. The system can know who is talking with whom and notify 

processes which have access to a port when that port is destroyed. Knowledge of inter-process 

communication paths can also be used as an aid in intelligently scheduling systems with tightly 

coupled communicating processes. 

Finally, the fact that the location of a port can change at will as can the nature of the process 

serving it, without affecting the processes using the port allows transparent process migration and 

fail-soft performance. 
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