
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-80-106

University Librar ies
Carnegie Mellon University C 2 S
Pittsburgh PA 15213-3890

An Experimental Analysis of the
B* Tree Search Algorithm

7 x ^ 9

$ O - ! 0

c . 3

Andrew J . Palay
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pa. 15213

8 March 1980

Abstract

We present a set of selection rules for guiding the B* search procedure. The selection rules are

based on a simple probability model. Using those selection procedures, the B* algorithm will expand

approximately one-third as many nodes as a best first search and approximately two-thirds as many

nodes as the previous best version of the B* algorithm. The B* algorithm, using the selection

procedures, wiM expand 30% more nodes than optimum, for small trees, and up to 170% for larger

trees. We also examine the issues of when the B* paradigm is useful and the effect of invalid bounds

on the algorithm.

This research was-sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-78-C-1551.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

An Experimental Analysis of the B* Tree Search Algorithm 1

1. Introduction

The B* tree search algorithm [Berliner 79] is a proof procedure for determining the best move at

the root of the search tree. Associated with each node in the tree is an optimistic value and a

pessimistic value. Those values bound the true value of the node. The object of the B* algorithm is to

prove that the true value of one of the nodes adjacent to the root is greater than or equal to the true

values of the remainder of the nodes adjacent to the root. This is accomplished by showing that the

pessimistic value of one of the nodes adjacent to the root is greater than or equal to the optimistic

values of the rest of the nodes adjacent to the root. The move to that node is then guaranteed to be

the best.

Several open questions exist with respect to the B* tree search algorithm. The first question deals

with the selection of nodes to explore. Unlike other search algorithms, the B* algorithm allows for a

great deal of freedom in the selection of nodes to explore. Berliner [Berliner 79] showed that by

exploring nodes, other than the best, at the top level of the search tree, the size of the search tree can

be reduced to about 60% of the size of the comparable best-first search. In this paper we will present

a set of rules to guide the search at aH levels of the tree. A new set of rules is presented to choose

which node to explore at the top level of the tree, as well as an additional set of rules for selecting

nodes for exploration at the lower levels of the search tree. It will be shown that the best node at each

level of the search tree is not necessarily the proper node to explore. In fact, it is possible that the

best node will never be explored. This is unlike other search procedures, which ultimately explore the

best node.

Another question to be answered is when is the B* algorithm useful? For example, a best-first

search procedure is equally as efficient in both adversary and non-adversary searches. However, the

efficiency of a depth-first search depends on whether or not there is an opponent. With an opponent,

alpha-beta pruning can be used to increase the efficiency of the search. Without an opponent, no

pruning can be done. We will examine the effect that having or not having an opponent has on the B*

algorithm, as well as the general conditions that must be satisfied in order for the B* algorithm to be

useful.

For the B* algorithm to be a proof procedure it is necessary for the optimistic and pessimistic

values to bound the true value of the node. In particular, the evaluation function used by the B*

algorithm must return values that bound the true value of the node. The final question concerns the

effect on the results of the B* algorithm, when the true value of a node is found outside the bounds

retuned by the evaluation function.

2
An Experimental Analysis of the B* Tree Search Aigor.tnm

2c The B* Algorithm - An Example
We begin with a presentation of the B* algorithm. The algorithm used in this paper is a modified

version of the original algorithm presented by Berliner. The algorithm has two sections: one which

pertains to decisions made at the top level of the search tree, and a second which pertains to

decisions made at lower levels in the tree.

The example presented is of a two person (adversary) search. We shall refer to the side on move at

the root as the "player" and the other side as the "opponent".

The B* algorithm begins by expanding the root of the search tree. Figure 2-1 shows the initial state

of the example. Each node has two values. The first value is the optimistic value of the node and the

second is the pessimistic value of the node. Those values bound the true value of the node. The

optimistic value is the highest value the true value can assume. The pessimistic value is the lowest

value that the true value can assume. Given that the true value is bounded by the optimistic and

pessimistic value, a node adjacent to the root is guaranteed to be the best whenever the pessimistic

value of that node is greater than or equal to the optimistic value of all its sibling nodes. The search is

terminated at that point.

[200,5q] [300,10o] j j250,0^]

Figure 2-1: Beginning of Search

The termination condition can be specified another way. Given the descendants, N i f 1 , , N i t t , of a

node N h with ranges [« i t j , j8 i fj], a node Njj is relevant to N h if for all nodes N, k , k * j , a]{ > /? l t k. If

« i j < Pik f ° r some node N { k , then the true value of node Ny is guaranteed to be less than or equal to

the true value of node N { k . Node N { j can have no further effect on the search and can be disregarded.

The search can be terminated whenever there is only one relevant node to the root of the tree.

The B* algorithm produces a separation point between the best node and the remaining nodes.

The true value of the best node is guaranteed to be greater than or equal to the separation point, and

the true values of the remaining nodes are be guaranteed to be less than, or equal to the separation

point.

Every time the search returns to the top level of the tree, the termination condition is checked.

Whenever the termination condition is not satisfied the top level search procedure must decide which

node to explore and under which strategy. There are two search strategies available. The search

An Experimental Analysis of the B* Tree Search Algorithm 3

procedure can either:

1. Attempt to raise the pessimistic value of the best node above the optimistic values of the
remaining nodes. This strategy shall be refered to as the P R O V E B E S T strategy after
[Berliner 79].

2. Attempt to lower the optimistic value of the remaining nodes to below the current
pessimistic value of the best node. This strategy shall be refered to as the D I S P R O V E R E S T

strategy also after [Berliner 79].

In the example of figure 2-2 the termination condition is not met. We begin by trying to show that

node 2 is the best node using the P R O V E B E S T strategy. Under the P R O V E B E S T strategy only the best

node adjacent to the root may be explored (with exception of nodes with equal optimistic values).

The lower level procedure takes over at this point. The role of this procedure is to guide the search

through the existing search tree until a leaf node is encountered. It then expands that node and

recomputes that node's optimistic and pessimistic values. Whenever either bound of a node

changed, the search is backed up to its parent. If the search has been backed up to the root of the

search tree then top level procedure resumes control, otherwise the lower level procedure continues

control. In the example the current node is a leaf node and therefore it is expanded. Figure 2-2

presents the status of the tree following the expansion, before any values are backed up. Notice that

the sign of the values of the new node are reversed. Again the optimistic value is still listed first. As a

result of the expansion, the bounds at node 2 are now changed. The best that the opponent can do is

-100 (the maximum of the optimistic values). His best value defines the player's worst value (reversing

the sign). Thus the pessimistic value of node 2 remains at 100. However, the worst the opponent can

do (the maximum of the pessimistic values) is -190, by choosing node 5. Thus, the best the player can

do.at node 2 is 190. The state after backing up these values is given in figure 2-3.

The example search is now back at the top level. The termination condition is not met. All the

nodes are still relevant to the root. Node 3 is now the current candidate for being the best node. In

order to show that node 3 is the best node, the pessimistic value of node 3 must be raised above 200.

Using the P R O V E B E S T strategy, node 3 is expanded, yielding the tree in figure 2-4.

This time the current bounds of node 3 reflect the bounds given by its descendants. Thus no

backup is done and the lower level procedure must decide which of the nodes 7, 8, and 9 should be

explored. Since the current goal of the search is to raise the pessimistic value of node 3 to above 200,

it would be unnecessary to explore node 9. In order to raise the pessimistic value of node 3 to above

200 it is only necessary to lower the optimistic value of nodes 7 and 8 below -200. The lower level

procedure is responsible for making that selection. Assuming that node 7 is selected, the tree after

expansion is given in figure 2-5. Given the opponent's choice of node 7, the best the player can do is

a value of 250 (choosing node 10) and the worst he can do is a value of 200 (choosing node 11). Thus

4
An Experimental Analysis of the B* Tree Search Algorithm

Q s o , 0]

[100,-300] |~150,-19o] [125,-250]

Figure 2-2: PROVEBEST Strategy - Expansion of Node 2

[250,0]

|j00.-300] £l50,-190] [l25.-250]

Figure 2-3: PROVEBEST Strategy - Backup of Values

[lOO,-30o] [~150,-19o] [l25,-25o] [V - 2 5 o] [l95, -25o] [~210,-25o]

F igure 2-4: PROVEBEST Strategy - Expansion of Node 3

the best the opponent can do is -200 and the worst he can do is -250. The best he can do given the

selection of node 3 is -195 (choosing node 8) and the worst is still -250. The backed up bounds at

node 3 are 250 and 195. This is reflected in figure 2-6..

The search is again back at the top level. This time the D I S P R O V E R E S T strategy is employed. The

only node that is still in contention with node 3, is node 1. Node 2 is no longer relevant to the root and

therefore can be ignored. Node 1 is expanded by the lower level procedure. Backing up the values

from the expansion yields a new bound of [80,0] for node 1 (figure 2-7). Again control returns to the

An Experimental Analysis of the B* Tree Search Algorithm 5

[200,50]

[200,50]

[9 0 . 1 0 0] Q s o . o J

[l00 . -300] [~150.-19o] [l25.-25o] [o . - 2 5 o] [l95 ,-25o] [21O , -25o]

10 ,11

[250 , 70] [225 , 200]

Figure 2-5: PROVEBEST Strategy - Expansion of Node 7

[l90, lOo] J250, 195|

[~100,-300] (~150.-19o] [l25, .250] . [2OO , -25o] [l95 . -25o] £ lO , -25o]

10 v11

Q&50 . 70J £225 , 200J

Figure 2-6: PROVEBEST Stagegy - Backup of Values to Node 3

top level procedure and this time the termination criterion is met. The search is completed with node
3 returned as the best node.

The B* search algorithm is given in figure 2-8. The algorithm for a non-adversary search is almost

identical. There is no alternation of sign, and no alternation of optimistic and pessimistic values.

6
An Experimental Analysis of the B* Tree Search Algorithm

2-7: Final Tree - After DISPROVEREST Strategy on Node 1

An Experimental Analysis of the B* Tree Search Algorithm

PROCEDURE B S T A R ! T O P ! L E V E L (s t a r t i n g ! p o s i t i o n) ;
BEGIN

expand top l e v e l o f t r e e f rom s t a r t i n g (p o s i t i o n ;

WHILE p e s s i m i s t i c v a l u e o f bes t node < h i g h e s t o p t i m i s t i c
v a l u e o f a l t e r n a t i v e nodes 00

BEGIN
s e l e c t search s t r a t e g y , e i t h e r PROVEDEST o r DlSPROVEREST;
c u r r e n t ! node «- nex t node to e x p l o r e ;
BSTAR!LOWER!LEVE L (c u r r e n t ! n o d e) ;

END;

RETURN(best n o d e) ;

END;

PROCEDURE B S T A R ! L O W E R ! L E V E L (c u r r e n t ! n o d e) ;
BEGIN

IF c u r r e n t ! n o d e has not been expanded THEN
expand t r e e from c u r r e n t ! n o d e ;

n e w l p p t i m i s t i c ! v a l u e «- -(maximum p e s s i m i s t i c v a l u e
o f descendants o f c u r r e n t ! n o d e)

n e w l p e s s i m i s t i c ! v a l u e •- -(maximum o p t i m i s t i c v a l u e
o f descendants o f c u r r e n t ! n o d e) ;

WHILE n e w ! o p t i m i s t i c ! v a l u e = c u r r e n t o p t i m i s t i c v a l u e o f c u r r e n t l n o d e AND
n e w l p e s s i m i s t i c ! v a l u e « c u r r e n t ! p e s s i m 1 s t i c ! v a l u e of c u r r e n t l n o d e DO

n r r* T 1 1

nexMnode nex t node to e x p l o r e from descendants of c u r r e n t ! n o d e •
BSTAR!LOWER!LEVrL(next I n o d e) ;
nuwlopt imis t i c f v a l u e «- -(maximum p e s s i m i s t i c v a l u e

of descendants of c u r r e n t l n o d e) ;
n e w ! p e s s i m i s t i c ! v a l u e «- -(maximum o p t i m i s t i c v a l u e

o f descendants o f c u r r e n t l n o d e) ;

c u r r e n t ! o p t i m i s t i c l v a l u e o f c u r r e n t l n o d e - n e w ! o p t i m i s t i c l v a l u e ;
c u r r e n l J p e s s i m i s t i c ' v a l u e o f c u r r e n t l n o d e * n e w ! p e s s i m i s t i c l v a l u e ;

END;

Figure 2-8: The B* Algorithm for Adversary Searches

8
An Experimental Analysis of the B* Tree Search Algorithm

3- Decisions at the Top Level of the Tree
Two decisions are made at the top level of the search. The first decision is the choice of thesearch

strategy. Then, once the strategy is chosen, a decision on which node to explore is made. The

selection of the search strategy is the most important of the two decisions. The ability to use both

strategies is the key to the effectiveness of the B* algorithm. Whereas a best-first search must pursue

the best sub-tree (P R O V E B E S T) , B* can, at the proper moment, use the D I S P R O V E R E S T strategy to

advantage to produce the necessary separation.

The procedure for choosing the search strategy can be viewed from two levels. From a global

viewpoint, the strategy selection procedure can be measured on its ability to split the effort between

strategies. In most cases, it is important to use both strategies. It is rare that one strategy is used to

the exclusion of the other. From a local viewpoint, the strategy selection procedure can be measured

on how well it chooses the better strategy every time the search returns to the top level. Even though,

from a global viewpoint, the use of strategies should be mixed, from a local viewpoint there are clear

choices as to which strategy should be used. A proper strategy selection procedure should be

effective from both viewpoints.

3.1 Trees With Two Relevant Nodes
Let us begin by examining the strategy selection, given that there are only two relevant nodes.

Later the derived procedure will be expanded to situations where there are more than two relevant

nodes at the top level. In our simple case, there are two relevant nodes, N t and N 2 . The ranges of the

two nodes are [a^p2] and [a2,p2] respectively. Also, assume that a t > a 2
 a n d t h a t a2 > Pv There

are a total of six cases that can occur when choosing the search strategy. These are:

1. « 1 - a2 and j31 > p2

2. a 1 - a 2 a n d j81 =/?2

3. a 1 =» a2andp^ <p2

4. a 1 > « 2 a n d / 3 1 > P2

5. a 1 > a 2 and j81 = P2

6. a 1 > a 2 and)8 1 < P2

For each of these cases we shall develop a rule for determining which strategy is to be selected. The

choice of strategies will be based on two basic principles:

An Experimental Analysis of the B* Tree Search Algorithm 9

1. If an action needs to be taken sometime in the search then do it immediately. If that
action were postponed, unnecessary work may be performed. By taking the action
immediately, certain information may be obtained that alters the current assumptions of
the search, making exploration of other nodes unnecessary.

2. Attempt to choose the strategy that has the highest probability of total success. This is
the key to the selection rules. Choices are made to maximize the probability of success,
without regard to the amount of work that needs to be done. The notion of total success
is important. It is possible to make selections based on partial success. In selecting
strategies, one could make the choice based on the probability of moving a value part
way to the goal. It would then be possible to choose a strategy, move the value part way
to the goal and then be required to use the other strategy, which originally had the
highest probability of total success. Use of the other strategy could result in reaching the
original goal. The work done under the first strategy would have been wasted.

In addition, one assumption is made about the true value of a node in relation to its bounds. It is

assumed that the true value of a node is uniformly distributed over the range of that node. This

assumption, to be referred to as the uniform assumption, is made throughout the entire search, not

only at the top level.

In case 1, it maybe possible to prove that both nodes are the best. However given the "uniform

assumption" it is more likely that the best node will be N v The choice is either to use the P R O V E B E S T

strategy on node N 1 or use the D I S P R O V E R E S T strategy on node N 2 . Using principle 2, the strategy

chosen should be the D I S P R O V E R E S T strategy. By using the uniform assumption the probability of total

success of using the P R O V E B E S T assumption is lower than the probability of total success using the

D I S P R O V E R E S T strategy because the only way the search can succeed using the P R O V E B E S T strategy is

by raising the pessimistic value of the best node up to its optimistic value. Case 3 is symetric to case

1.

In case 2, both nodes are identical. It is possible to prove that either node is the best, using either

strategy. Unfortunately there is no reasonable way to choose which node to explore or which strategy

to use. What is needed is a third strategy, that of E X P L O R E . This strategy would attempt to provide the

most information from the lower levels of the tree without regard to the goal of proving one node

better than the other. In reality using either strategy will provide just that information.

Case 4 is the most difficult case for properly deciding the search strategy. In this case the two

ranges overlap with a definite best node. It is possible, using either strategy, to show that node N t is

the best node. The uniform assumption is the key to making the correct decision in this case. By

principle 2, the strategy that maximizes the probability of success should be selected. That strategy

will also minimize the probability of failure. Given the uniform assumption the strategy selection

becomes very simple. For the best node calculate the probability that the true value is less than or

equal to the optimistic value of node N 2 . This is the probability of failure of using the P R O V E B E S T

10 An Experimental Analysis of the B* Tree Search Algorithm

strategy. That probability is given by:
(3.1)

P Fai l -Prove " (<*2 ~ 0l) / («1 - 0l)

Then for node N 2 calculate the probability of failure for using the D I S P R O V E R E S T strategy. This is the

probability that the true value of node N 2 is greater than or equal to the pessimistic value of the best

node. That probability is given by:

P Fail -Disprove - (<*2 - £ l) ' (« 2 ~ &>) (3.2)

Now if Ppaii-Prove i s , e s s t h a n p Faii -Disprove t h e P R O V E B E S T strategy should be chosen. Similarily, if

p F a i i - D i s p r o v e ' s , e s s t ' i a n p Fai i -Prove * E N D I S P R O V E R E S T strategy should be chosen. If the values are

equal (not very likely) either strategy can be selected. In that case it might be reasonable to select the

strategy least recently used; thereby splitting the effort between the two strategies.

Case 5 is symmetric to case 1. In this case either case can be disproved. However, it is possible to

prove node N 1 to be the best using the P R O V E B E S T strategy. In this case, the P R O V E B E S T strategy will

always have a higher probability of success than the D I S P R O V E R E S T strategy.

In case 6 node the range of node 1 completely surrounds the range of node N 2 . In this case the

probability of total success of the D I S P R O V E R E S T strategy is 0. It is not possible to lower, the optimistic

value of N 2 below the pessimistic value of N v Thus the only strategy available is the P R O V E B E S T

strategy. Even if one relaxes the constraint of principle 2, it would still be necessary to choose the

P R O V E B E S T strategy. No matter how the strategy is selected in other cases the choice of the

P R O V E B E S T strategy in this case would still be mandated by principle 1. Sooner or later one would

have to explore node so it should be done immediately.

3.2 Trees With More Than Two Relevant Nodes
Now let us extend the above rules to the case where there are more than two nodes relevant to the

root. Let nodes N 1 f N t be the set of relevant nodes to the root. The range of N { is [« { , /?J. Assume

that the nodes are ordered by optimistic value, such that a } > a j + v

In the case where there are two or more nodes with the highest optimistic value

(a 1 - a 2 - ... - a k , for some k > 2), the D I S P R O V E R E S T strategy should be chosen. The node that

should be explored is the node with the lowest pessimistic value (of the nodes with the same

optimistic values). Attempting to disprove any other node with lower optimistic values would still leave

the search in a position where the tied nodes would need to be explored. Thus by principle 1 those

nodes should be explored first.

In the case where the range of a node is embedded within the range of the best node (for some k,

An Experimental Analysis of the B* Tree Search Algorithm 11

Pi < P\d>THE P R O V E B E S T strategy should be selected. A problem arises here in that this case and the

above case are not mutually exclusive. It is possible that two nodes have the highest optimistic value

and a third node is totally embedded in both of the nodes. In this case one rule specifies that the

D I S P R O V E R E S T strategy should be chosen, where as the other rule selects the P R O V E B E S T strategy.

Either strategy could be used, with about equal success. To maintain consistency in the selection of

which node to expand (see below), the D I S P R O V E R E S T strategy should be chosen.

The last possibility is that there exists only one node with the highest optimistic value (o^ > a2) and

all the remaining nodes have pessimistic values less than the pessimistic value of the best node

(Pa > Pk » k=2,3,..,t). This is the extension of case 4. For the best node calculate the value given in

equation (3.3).

PFaiLProve - (« 2 ~ 0l) ' (« 1 - Pd (3-3)

This gives the probability of failure in using the P R O V E B E S T strategy on node 1. For each of the nodes

N 2 , . . . ,N t , calculate the value given in equation (3.4).

F i - (a , - A) (3.4)

Then add those values together, yielding P F a j i -Disprove- l f t h e p Fa. i -Prove i s l e s s t h a n p F a i i - D i s p r o v e » t h e n

choose the P R O V E B E S T strategy, otherwise choose the D I S P R O V E R E S T strategy.

The value PFaii-Disprove does n o t realty reflect a probability measure of the failure of the strategy1.

However, it does reflect the fact that given more than one node to disprove, additional work needs to

be done by using the D I S P R O V E R E S T strategy than by using the P R O V E B E S T strategy. Thus, unless the

D I S P R O V E R E S T strategy has a high probability of success it is better to choose the P R O V E B E S T strategy

until the number of remaining nodes is small.

3.3 Strategy Selection From a Global View
This completes the examination the choice of strategies from the local viewpoint. From the global

view the set of selection rules provides for a reasonable mixture of the use of the two strategies.

Assume there are two nodes, N 1 and N 2 , with ranges [200,100] and [150,0]. By case 4, the P R O V E B E S T

strategy would be used on node N,. Say that upon returning from exploring N 1 f the new range of N 1

becomes [180,130]. This time the D I S P R O V E R E S T strategy should be used on node N 2 . Say the result of

that selection is a range for N 2 of [135,100]. Now the P R O V E B E S T strategy is selected. The effect of the

selection rules is to choose dynamically a separation point between the nodes and move the

pessimistic value of the best node above that value and the optimistic values of trie rest of the nodes

below that value. In the above example the separation point is around 135.

The probability of failure of the OISPROVFREST strategy is equal to . 2 t(1 Fj))).

12 An Experimental Analysis or tne a ' i ree oe<« w i

Several attempts were made to estimate, a. priori, the separation point of the search. Although

reasonable estimates could be made, any search using an estimate failed. When an a priori

separation point was used, the search would ultimately get locked into one choice of strategy. No

reasonable criterion on when to choose a new separation point could be determined. The above

approach of dynamically choosing the separation point, will guide the search towards a reasonable

separation point, but will not get locked into one strategy or the other.

3.4 Choice of Nodes to Explore
Finally, there is the question of which node to explore under each strategy. The node to be

explored under the P R O V E B E S T strategy is the node with the highest optimistic value. If two or more

nodes have the highest optimistic value the P R O V E B E S T strategy will not be used. Under the

D I S P R O V E R E S T strategy the node with the second highest optimistic value should be explored. For the

search to be completed, either the optimistic value of the second best node would have to be lowered

below the pessimistic value of the best node, or the pessimistic value of the best node would have to

be raised above the optimistic value of the second best node. If any other node was explored the

above action would still have to be done. Thus, given the choice of the D I S P R O V E R E S T strategy, by

principle 1, the node with the second highest optimistic value should be explored.

An Experimental Analysis of the B* Tree Search Algorithm 13

4. Decisions at the Lower Level of the Tree
The lower level procedure must choose which descendant of the current node to explore. That

choice is made under four conditions. The search may be proceeding under either the P R O V E B E S T

strategy or the D I S P R O V E R E S T strategy. Then for each strategy, it may be the player's move or the

opponent's move. We shall begin by discussing the P R O V E B E S T case.

Under the P R O V E B E S T strategy the goal is to raise the pessimistic value of the top level node above

the highest optimistic value of the alternatives (we shall refer to that value as A). Thus, whenever it is

the player's choice, it is necessary and sufficient to raise the pessimistic value of only one of the

nodes above A. When it is the opponent's choice, it is necessary to lower the optimistic value of all

the nodes below - A.

One possible method for selecting the next node to explore is to choose the node with the highest

optimistic value. This was the lower level selection procedure originally used by Berliner [Berliner

79]. This approach reflects a view of searching that is not maintained in the B* search paradigm.

Under most other search techniques, the search attempts to find the best line of play for both sides.

This is not the case for the B* algorithm. For example, when it is the player's choice, the node whose

pessimistic value is shown to be greater than A may or may not be the best move at that point.

For the player's choice of nodes, the lower level selection procedure should explore the node with

the greatest probability of success. Using the uniform assumption, the probability of successfully

raising the pessimistic value for any of the nodes to at least A is given in equation (4.1), assuming the

node has a range of [a\,p{\.

Pi - («• , -• A) / (a , - j B ,) (4.1)

The node with the highest P i f should be chosen.

For the opponent's choice of nodes, the selection should be based on the probability of failure.

Since the goal is to lower the optimistic value of all the opponent's nodes below - A, the best node to

choose is the one which has the highest chance of failing. This selection strategy attempts to

minimize the amount of unnecessary work.

If the pessimistic value of one of the opponent's nodes is raised above - A, the optimistic value of

its parent node will drop below A. Thus, it will not be possible to complete the search by exploring

that node. A different node, for the player, will have to be explored. If all the nodes, for the player,

can be shown to have optimistic values less than A, then the pessimistic value of their parent node

rises a b o v e - A . This can continue to the top level node. At the top level, the node just searched will

no longer be the best node, and the search will be re-directed by a new application of the top level

decision rules.. By choosing the node with the highest probability of failure that process is hastened.

14 An Experimental Analysis of the B* Tree Search Algorithm

Note, at no time is work being wasted. The nodes being explored would have to be explored sooner

or later in the search, if the current top level node is indeed the best node.

One measure for the probability of failure is:

This measure unfortunately takes a very shortsighted view of the search. Using it, the search often

degrades into a race of lowering optimistic values. For example,say at the top level there are two

nodes N 1 and N 2 , with ranges [200,50] and [199,40]. Using the above measure a search of N 1 using

the P R O V E B E S T strategy could yield a range where the new optimistic value is just under the optimistic

value of N 2 , say [195,50]. Then exploring N 2 could yield a new optimistic value just under the

optimistic value of N v Then the process returns again to N v When this occurs, the search expands a

large number of nodes without achieving a great deal of progress.

In order to solve this problem it is necessary to force the selection procedure to take a more far

sighted view. Instead of trying to pick the node with a good chance at raising the pessimistic value by

a little, the selection procedure can attempt to choose a node with a good chance of raising the

pessimistic value a great deal. At the top level, by moving the optimistic value of the old best node just

below the optimistic value of the new best node, it is still quit likely that the old best node will still be

the true best node. However, if the optimistic value could be lowered to a position closer to the

pessimistic value of the other node, it will be much more likely that the old best node will not be the

true best node. Thus instead of using A in equation (4.2), it might be more reasonable to use the

maximum of the pessimistic value of the current best node and the highest pessimistic value of the

alternative (call this value T) . The search would then be either attempting to disprove the current best

node completely or at least attempting to reduce it to its lowest point value.

Unfortunately that measure suffers by trying to attain too much. Given a set of nodes for the

opponent to choose from, only the node with the highest optimistic value would have a chance of

moving the pessimistic value up to T.

In the simulations it has been shown that a reasonable selection procedure for the opponent's level

is to select the node with the highest probability of raising the pessimistic value above the midpoint of

A and T. The new measure of failure is:

That value allows the search to push for major gains, while still allowing nodes without the highest

optimistic value to be explored early.

P | » (- A - &) / (< * { - &) (4.2)

P , - ((A + 0 / 2 - ^ / (0 , - / ? ^ (4.3)

An Experimental Analysis of the B* Tree Search Algorithm

We now turn to the decision rules for the D I S P R O V E R E S T strategy. When it is the player's choice of

moves, it is necessary to lower the optimistic values of all the nodes below the pessimistic value of the

best top level node (A). * For the opponent's choice, it is necessary and sufficient to raise the

pessimistic value above - T . This is symmetric to the rules under the P R O V E B E S T strategy. By the

similar arguments as above, the node to choose for the player, is node that maximizes:

P , - (a , - (A + r)/2)/(a]-Pl] (4.4)

and the node to choose for the opponent, maximizes:

P i - (- r - j i i) / (« i - i 8 |) -
(4.5)

16 An Experimental Analysis of the B* Tree Search Algorithm

5. Simulation Results
Several versions of the B* algorithm were simulated in order to compare the effectiveness of each

version. Five versions of the search algorithm were tested:

1. Best-First (BF): This was the base run. The algorithm used only the P R O V E B E S T strategy
and always selected the best node throughout the search.

2. Probability Based - Lower Levels Only (LL): This version also only used the P R O V E B E S T

strategy but used the selection rules given in section 4 at lower levels of the tree to guide
the search.

3. Depth Based - Top Level Only (DB): This is the method for selecting the search strategy
presented by Berliner [Berliner 79]. If the sum of the squares of the depth from which the
optimistic bounds of the alternative nodes had been backed up is less than the square of
the depth the pessimistic value of the best node had been backed up then the best
alternative is chosen, otherwise the best node was explored. At the lower levels of the
tree the best node was always explored.

4. Probability Based - Top Level Only (TL): This version used the method for selecting
strategies presented in section 3. At the lower levels of the tree, the best node was
explored.

5. Probability Based - All Levels (AL): This uses the probability based selection procedures
at all levels of the tree.

The simulation procedure used the algorithm for generating canonical trees presented by Berliner

[Berliner 79], with one major modification. Whenever the range of a newly expanded node was of

size 2 or less, the range was reduced to a point value. This greatly reduced the maximum depth of the

best-first trees. If the range of a node is small, the probability that the range will be narrowed by the

next expansion is quite small. Thus ranges of 2 or less may be pursued a very long time with no* useful .

results. The maximum depth of any best-first search in the simulations was 38. Without collapsing

the ranges, a greater number of large best-first trees would have been generated 2. Those trees would

normally be solved in significantly fewer expanded nodes by any version that used both search

strategies.

Each simulation run consisted of searches of 3200 trees. The possible ranges for the top level

nodes were selected from values between 0 and four different values (200, 800, 3200 and 12800).* For

each of the ranges the branching factor was varied from 3 to 8 by increments of 1. For each (range,

branching factor) pair, 100 trees were searched.

In Berliner's simulations where no collapsing of ranges took place, the maximum depth of a best-first tree was 98 and there
were 226 intractable trees out of a sample of 1600 trees. Trees were labeled intractable if the search proceed past a depth of
100 or if more than 30000 nodes were created.

An Experimental Analysis of the B* Tree Search Algorithm 17

Three measures were calculated for each search:

1. the number of nodes expanded.

2. the number of nodes explored.

3. the maximum depth of the search.

The number of nodes expanded is the most important measure. In most cases the major cost of the

search will be in the expansion of the nodes and the calculation of the evaluation function. However,

the number of nodes explored can be important. The number of nodes explored counts the number

of times a decision of which node to next explore is made. This is effectively a count of the amount of

downward movement that is made in the search. The higher the value (given the number of expanded

nodes remains constant) the more often the search is making small changes in values. The number of

explored nodes would be important in an application where the current state of each node could not

be maintained. Thus, whenever a downward* movement is made the move generator would have to be

run to generate the next set of successors.

For each of these measurements a comparison was made to the results of the best-first version of

the algorithm. For the first two measures, the value calculated for each search of the simulation, is

the ratio of the value of the test version and the value of the best-first version. The numbers reported

are averages over various ranges of the number of nodes expanded in the best-first search. For the

depth measurement, the numbers reported are the average maximum depth of the searches, again

averaged over the same ranges of the best-first trees 3.

Figures 5-1, 5-2 and 5-3 present the results of the simulations. In figure 5-1, the number of nodes

expanded by the AL version is significantly fewer than the number of nodes expanded by any of the

other strategies. Even on small trees of size less than 50 expanded nodes, the AL version does 20%

better than the best-first version, where as the DB version can only match the effort used by the

best-first version. For larger trees the AL version does about 35% of the work of the best-first search.

The AL version also does approximately 35% better than DB version. When the selection rules at the

lower levels are removed (the TL version) the probability based scheme still does better than the DB

version.

The savings contributed by the lower level selection procedure can also be calculated. On larger

trees the LL version explores about 25% fewer nodes than the best-first version. The same 25%

^The calculation of these values differs from the calculation of Berliner. His figures were calculated by taking the ratio of the
sum of the number of nodes expanded in the test version and the sum of the nodes expanded by the best-first version. That
calculation allowed the larger trees to have a greater impact on the final figure, than the smaller trees. The above measure
attempts to normalize the measurement, prior to averaging

18 An Experimental Analysis of the B* Tree Search Algorithm

0.2< ' 1 1 • i 1
O 250 500 750 1000 1250 1500

Number of Nodes Expanded by Best-First Search

Figu re 5-1: Comparison of Nodes Expanded to Best-First

savings can been seen in the comparison of the TL version and the AL version.

Figure 5-2 gives the number of nodes explored during the search. Again the AL version does

significantly better than the other versions. Also the TL version is strictly better than the DB version.

The difference between the TL version and the DB version can be attributed to the difference in the

number of nodes expanded. However, the effect of the lower level selection procedures is greater

than can be accounted for the number of expanded nodes. For nodes explored the savings of the

lower level procedure is about 35%. One of the results of the lower level procedure is to select nodes

which will have the greatest impact on the search further up in the tree.

The results of the average depth of the search are presented in figure 5-3. The interesting result of

this measurement is that all versions that select both strategies explore the tree to approximately the

same depth. Even though the depth based version attempts to "minimize" the depth of the search,

the probability based versions do not do significantly worse. Thus, the probability based versions will

still reduce the maximum depth of the search, as it attempts to make a reasonable choice for the

search strategy.

The various versions of the search algorithm were also compared to the optimum search trees. An

algorithm for generating optimum B* search trees is given in appendix I. An optimal tree is defined as

An Experimental Analysis of the B* Tree Search Algorithm

>i • i • 1 — • •

O 250 500 750 1000 1250 1500
Number of Nodes Expanded by Best-First Search

Figure 5-2: Comparison of Nodes Explored to Best First

4» • • 1 • 1 »

O 250 500 750 1000 1250 1500
Number of Nodes Expanded by Best-First Search

Figure 5-3: Average Depth - Grouped by Best First Search

20 An Experimental Analysis of the B* Tree Search Algorithm

a tree with the minimum number of expanded nodes that proves which is the best node. It is not

possible to calculate the number of nodes explored for optimum trees, as there is no way to determine

the proper order of the exploration. Comparisons on the number of nodes expanded and the

maximum depth of the search are presented in figures 5-4 and 5-5.

It should be noted that the optimum trees used in the comparison represent a distorted view of the

set of trees making up the simulation. In the results discussed below, only the trees for which

optimum trees could be calculated, are included. Optimum trees were generated for 2936 out of the

3200 trees simulated. The largest optimum tree calculated expanded 129 nodes. The sample of

optimum trees is highly biased towards trees containing fewer than than 50 expanded nodes.

Figure 5-4 presents the comparison with respect to expanded nodes of the BF, DB, and AL versions

to the optimum tree. For small optimum trees (10 expanded nodes or less), the AL version expands

32% more nodes, compared to 60% more nodes by the DB version and 477% for the BF version. For

larger trees, the AL version expands approximately 1 1/2 times more nodes than optimum. For those

same trees, the DS version expands approximately 2 1/2 times more nodes.

The figures reported for the BF version show the effects of the biased sample of optimum trees

generated. Of the optimum trees that could not be generated, a majority of the best first searches

resulted in the expansion of over 500 nodes. Thus, most of the worst BF results were eliminated from

the comparison. This resulted in the lower values for the BF version for optimum trees of greater than

50 expanded nodes. In comparison, the values eliminated for the AL and DB versions were more

uniformly distributed over the entire spectrum of the number of nodes expanded.

Figure 5-5 compares the AL and BF versions to the optimum with respect to the depth of the

search. For large optimum trees, the AL version searches approximately 3 ply deeper than the

optimum search.

An Experimental Analysis of the B* Tree Search Algorithm

Figure 5-4: Comparison of Nodes Expanded to Optimum

Figure 5-5: Average Depth - Grouped by Optimum Tree Size

22 An Experimental Analysis of the B* Tree Search Algorithm

6. Adversary vs. Non-Adversary Searches
In the previous sections of this paper we have only considered the use of B* for adversary

searches. Berliner also proposed the use the of B* for non-adversary searches. The major

advantage of B* over other search procedures is the ability to put some effort into eliminating moves

at the top level by lowering the node's optimistic value using the D I S P R O V E R E S T strategy. In a

non-adversary search the use of the D I S P R O V E R E S T strategy is costly and probably non-productive.

[l00 .-250] [l10 ,-190]

[125 ,50]

[115 , -200] [- 60, -140] [-50 , -130] [.70 -125]

C][][1 [] • [] [] [] [] [] [] [] [] [] [] [] [] []
Figure 6-1: Adversary Search Tree

[][][] [] [] U [] [] [] [][] [] [] [] [] [] [] []
Figure 6-2: Non-Adversary Search Tree

Given the adversary tree in figure 6-1, in order to show that moving to node 1 is correct, one must

either raise the pessimistic value of node 1 to at least 125 or one must lower the optimistic value of

node 2 to no greater than 100. In order to raise node 1's pessimistic value, the optimistic values of

nodes 3, 4 and 5 must all be lowered to -125. To do that one would have to show that the pessimistic

value of one subnode of each of the nodes 3, 4 and 5 can be raised to at least 125. Thus in order to

raise the pessimistic value of node 1, in the worst case, one would need to explore only three nodes at

the third level of the tree.

An Experimental Analysis of the B* Tree Search Algorithm 23

In trying to lower the optimistic value of node 2 to no greater than 100, one would need to raise the

pessimistic value of one of the nodes 6, 7 or 8 to at least -100. In the worst case, in order to

accomplish that the optimistic values of all the subnodes of that node must be lowered to 100 or

below. Thus, again, at the third level of the tree 3 nodes would have to be explored. The notion that

the work involved in either strategy is about the same is a key to the success of the use of both

strategies in B*.

In the non-adversary case the strategies in general will not have equal power. Figure 6-2 shows a

non-adversary tree. In. this case, in order to show that node 1 is the correct move, one must raise the

pessimistic value of that node to at least 125. To do that one needs to be able to raise the pessimistic

value of only one of the nodes 3, 4 or 5 to at least 125. In order to do that one needs to raise the

pessimistic value of only one node on the third level of the tree.

However, in trying to reduce the optimistic value of node 2 to below 100, a different story unfolds.

In order to reduce the optimistic value of node 2, one must reduce the optimistic values of all its

subnodes. Then to reduce the optimistic values of those nodes, the optimistic value of all of their

subnodes must be reduced. Thus at the third level of the tree presented in figure 6-2, 9 nodes would

need to be explored. In general, the D I S P R O V E R E S T strategy leads to an exponential amount of work in

a non-adversary search, whereas using the P R O V E B E S T strategy one needs only to find a single good

path.

Independent of the cost of the D I S P R O V E R E S T strategy, it is likely that the strategy would not even be

productive. Given a range [a,/?] and n descendants within that range, it is likely that at least one of

the descendants will have an optimistic value close to a. Thus the probability of reducing an

optimistic value in a non-adversary search is hot very high. On the other hand, it is highly unlikely that

all the pessimistic values of the descendants will have a pessimistic value close to ft. At least one of

the descendants will have a value significantly greater than ft. Thus while it is difficult to lower the

optimistic value of a node, it is much easier to raise the pessimistic value of that same node.

That problem does not occur in adversary searches. In an adversary search, exploring one level of

the tree affects the optimistic value of the parent, whereas at the the next level of the tree the

pessimistic value of the root will be altered. If in figure 6-1, the original value of node 1 was [300,100],

expanding node 1 would reduce the range to [200,100]. Then expanding any of the subnodes of node

1 would tend to raise the pessimistic value of node 1.

Although the full power of B* can not be enjoyed in a non-adversary search, it should be noted that

the use of ranges and the ideas presented in section 4 on selection of nodes to be expanded at lower

levels are still useful ideas..

24 An Experimental Analysis of the B* Tree Search Algorithm

7. Other Information to Guide the Search
Up to this point we have made our decisions using only the optimistic and pessimistic values of a

node. No attempt has been made to use information that can be acquired from already expanded

subtrees of a node under consideration.

Figure 7-1 presents an example of the inability of the range to properly reflect the true state of a

node. In this case a choice by the player needs to be made. Both nodes have ranges of [200,0].

However the first node has three descendants with ranges of [0,-200], while the second node has only

one relevant descendant also with a range of [0,-200]. Just using the range of a node to make a

decision, these two nodes would be considered equal. Taking account of the subtrees of the two

nodes would yield the correct selection of node 2. 4

Another example of the need to use information from subtrees is given in figure 7-2. Again both

nodes have identical ranges of [300,100]. However, a look at the direct descendants of the nodes

gives a different impression. Assume the goal of the search is to raise the pessimistic value of one of

the nodes to above 250. In each case two nodes need to be explored. However, the probability of

moving the optimistic value of both subnodes of node 1 to below -250 is greater than the probability of

moving the optimistic values of the subnodes of node 2 to below -250. Thus the correct choice would

be the first node.

Information can also be gathered from deeper locations in the subtrees. Figure 7-3 presents two

nodes with identical sets of direct descendants. If one only examines the ranges of the direct

descendants of the nodes in question (the subnodes of nodes 1 and 2), there is now difference

between the two nodes. Both nodes have only one relevant subnode, each with a range of [0,-200].

However in examining the entire subtree of the first node, that subtree reduces to the subtree of node

1 in figure 7-1.

4
Given that the goal is to raise the pessimistic value of one of the nodes above 0, it is much more likely that that one can

lower the optimistic value of one node, instead of 3 nodes

Figure 7-1:

An Experimental Analysis of the B* Tree Search Algorithm 25

[2 0 0 , 0]

[0 . - 2 0 0] [0 , - 2 0 0] [0 , - 2 0 0]

Figure 7-3:

At the present time it is not clear what information about subtrees is necessary to make the proper

choice. One possible approach would be to try to approximate the expected true value of a node. For

example, in figure 7-1, assuming that the true value of an unexpanded node could be any value within

the range with equal probability, the expected true value of node 1 would be 50, where as the

expected true value of node 2 would be 100. Thus using only that value, node 2 would be considered

the best node.

Using only the expected true value can also be insufficient. If in figure 7-1 the nodes 1 and 2 had

expected true values of 100 and 125 respectively, and the goal is to raise the pessimistic value of one

of the nodes to at least 150, the expected true value measure would select node 2. Suppose that it

has been determined that 95% of the time the true value of the first node would be found in the range

of 175 and 25 while 95% of the time the true value of node 2 would be found in the range of 130 and

120. Since it is highly unlikely that pessimistic value of node 1 could be raised to 150 (at most 5% of

An t xpenmenta i Analysis or tne t r 1 ree s e a r c n Aigorunrn

the time will the true value of node 2 be greater than 130), the best choice of nodes to explore would

be node 1.

Another measure that has, for the most part, been ignored is the amount of work that needs to be

done to accomplish a goal. In the original B* paper, Berliner used the depth of subtrees at the top

level, in an attempt to gauge the amount of work that needed to be done. The measure that was used

for the best node was the depth that the node's pessimistic value came from, while the measure used

for the other nodes was the depth the respective optimistic values came from.

There are two problems with trying to approximate the amount of work to be done by a measure of

depth. First, it highly discriminates against long but thin subtrees. Figure 7-4 presents a tree that

effectively reduces to the tree in figure 7-55. However, it is doubtful that any selection procedure that

attempts to minimize depth would select node 2 even though very little work is truly involved. It could

be argued that the case presented in figure 7-4 is highly unlikely and therefore depth still can be a

reasonable measure. However, it is often the case that later in the search the above problem arises to

some degree, and the use of depth often, leads to the wrong choice.

The other problem with depth is that it does not provide a reasonable measure of work in

non-uniform trees. It is not realistic to assume that the branching factor at every node is the same. If

one subtree has an average branching factor.of 20 and another subtree has an average branching

factor of 3, a depth measure will not reflect the difference.

A better measure would be the number of terminal nodes that need to be expanded in order to

change one of the bounds of the current node. The exact number of expansions can not be

calculated a priori, since expanding one node may lead to further expansions of its descendants. The

minimum number of expansions can be calculated.

In fact, one would really need the minimum number of nodes that would have to be expanded in

order to change one of its bounds to a given value. In figure 7-6 the information that a minimum of 1

node needs to be expanded to raise the pessimistic value of the root above 0, is of little value if the

goal is to raise the pessimistic value of the root to above 50. In that case, it would be necessary to

know that a minimum of 3 expansions are needed. At every node, a list containing the minimum

number of expansions needed in order to reach a given value would be kept. The list associated with

the root of figure 7-6 is given in figure 7-7. Unfortunately, the list at a node grows in direct relation to

the number of leaf nodes in the subtree. Thus the cost of storage would be prohibitive.

5 Th is is based on the assumption that the cost of moving between already expanded nodes is overshadowed by the cost of
expanding nodes and determining the ranges of the descendants

An Experimental Analysis of the B* Tree Search Algorithm

[200, ipoT] [300,195]]

[j80,-20xT] , Q l O O r - 2 5 0 ^] [~195, -30o]] [[350, -4(xf]

[300,195]] [j90 , o]]

Q200 , -350[] (j 9 5 , -3CKf]

[300 , 1 9 5] [200 , 100]]

Q l 95 , -5 (x f] [j250 , -300^]

[500 , 100T] [450 , 195^]

Figure 7-4: A Thin Tree

[200,100]] [300.195]]

Q18O. -200] Q100.-250] Q195.-300]]

J500 .100^] [450 , 195]]

Figure 7-5: A Thin Tree - Reduced

An Experimental Analysis of the t r I ree Search Algorithm

Figure 7-6:

Optimistic Value
Minimum of 1 to move below 200 Minimum of 1 to move above 0

Minimum of 2 to move above 20
Minimum of 3 to move above 50

Pessimistic Value

Figu re 7-7: A Work List for the Root of Tree in Figure 7-6

Finally, even if one develops a reasonable measure for work, it is not clear that using the measure

would be beneficial. It can be used in the situation when the probability of reaching the goal is. the

same for two or more nodes. In this case one would like to be able to choose the node that will

require the least amount of work. Those cases do not arise very often, so unless the computation of

the work measure is inexpensive in both time and space, the use of a work measure can hardly be

justified.

Another possible use of the notion of work is in guiding the search to less probable nodes that

require very little work in order to reach a goal (if in fact it can). If the most probable node requires a

large expenditure of work then one might want to examine less probable nodes that require small

amounts of work, since that extra work will only increase the total amount of work that truely needs to

be done by a small factor. Where that type of selection is reasonable is an open question. However, it

would seem to require a good notion of where the true value of a node is to be found before a good

determination based on work can be made.

An Experimental Analysis of the B* Tree Search Algorithm 29

8. When is B* Useful?
There are certain types of problems where the B* paradigm is not effective. In particular, B* does

not seem to be suited for finding solutions to puzzles. However, B* does appear to be well suited for

chess. Protocols of chess masters, collected by DeGroot [DeGroot 65] appear to support the B*

paradigm.

Berliner attempted to use the B* algorithm to find solutions to the 8-puzzle [Nilsson 71].

Compared to a best-first search, the B* search provided no gain. A difference between the 8-puzzle

and chess problems is that the goal of the 8-puzzle is to find a complete line of play while in chess

only the next move is desired.

In developing a solution to the 8-puzzle, a B* search will eventually have to explore the node with

the highest optimistic value at each level of the tree 6. Postponing the exploration of those nodes, as is

done by the lower level selection procedure, will only result in the useless exploration of the other

nodes.

The B* paradigm is useful whenever the position in which the player finds himself the next time he

must make a move is not solely determined by the current move he makes. In an adversary search,

the opponent makes a move after the player, so it is impossible to guarantee the next position the

player will find himself. In most puzzles, that is not the case.

^ h e node with the highest optimistic value need not be explored in determining the best move at the root; however, in
determining the total line of play the best node at each level will eventually be explored by some application of the B* algorithm.

30 An Experimental Analysis of the B* Tree Search Algorithm

9. Bounding Functions and the Horizon Effect
The major open issue about the B* algorithm is the development of bounding functions. In the

course of this research, we have not attempted to devise any bounding functions, but we have

examined analytically the effect on the B* paradigm when the bounds of a new node are not within

the bounds of its parent. In particular, if the bounds of a node, do not strictly bound the true value, the

horizon effect [Berliner 73] can result.

The horizon effect is a condition that occurs when a search procedure pushes, by selecting

delaying moves, the eventual outcome of a move at the root of the search tree far enough away from

the root that it disappears from the scope of the search. Thus, the value reported for that move no

longer reflects the eventual outcome of making that move.

If the bounds of a node are strictly bounding, the node returned by the algorithm is guaranteed to

be the best. The pessimistic value of the node will be the absolute lowest value the true value of the

node can be. However, if the bounds are not strictly bounding then it is possible to delay finding the

true low value of the returned best node past the horizon of the search.

Figure 9-1 presents a non-adversary search without values being backed-up where the bounding

function is not strictly bounding. The goal at the root is to raise the pessimistic value of node 2 above

150. If the player selects node 2, eventually, he must reach a node with a maximum value of 50.

However, by the time the search expands node 6, the backed up pessimistic value of node 2 will be

150. The search will terminate and return node 2 as the best node, even the though true value of

node 2 is at best 50. In this way the search procedure has pushed the bad effect of the move to node

2 past the horizon of the search.

It is doubtful that a bounding function will be strictly bounding. More likely, the bounds of a node

will be invalid a small percentage of the time. It is not clear how small that percentage must be. Even

with an extremely small percentage of invalid nodes, it might be the case that a large percentage of

those cases result in the horizon effect. Only by examining the use of the B* algorithm on a real

problem, can the effect of invalid bounds be measured.

Figure 9-1:

32 An Experimental Analysis of the B* Tree Search Algorithm

10. Conclusion
We have presented a set of rules for making decisions throughout the B* search algorithm; These

rules provide a savings of 65% of the work required by a best-first search. The rules also require 35%

less work than the best version of the B* algorithm presented so far. We have also explored the

selection procedure at the lower levels of the search and showed the rules developed save 25 % of

the number of nodes expanded in a procedure that always selects the best node and save 35 to 40%

in the number of nodes explored.

The rules are based on a simple probability model. It is hoped that by extending the model to allow

for the backing up of values from lower levels of the tree (as described in section 7), additional speed

up will be provided. The extension of the probability model may also provide an insight to the way

humans search. It seems clear that humans maintain additional information about a node in a search

other than one or two values. We conjecture that if the B* algorithm does correctly capture the

technique of human searching, then a probability model will provide the additional information used

by humans in guiding the search.

Acknowledgement

comments of Hans Berliner, Elaine Kant and Bruce Ladendorf are gratefully

Bibliography

Berliner, H.J.
Some Necessary Conditions for a Master Chess Program.
In Third International Joint Conference on Artificial Intelligence. , Stanford

University, 1973.

Berliner, H.J.
The B* Tree Search Algorithm: A Best First Proof Procedure.
Artificial Intelligence 12,1979.

DeGroot, A.D.
Thought and Choice in Chess.
Mouton and Co., Der Haag, 1965.

Nilsson, N.J.
Problem-Solving Methods in Artificial Intelligence.
McGraw-Hill, New York, 1971.

Palay, A.J .
A Procedure for Calculating Optimum B* Search Trees.
1980.
Available from Author.

The helpful

acknowledged.

[Berliner 73]

[Berliner 79]

[DeGroot 65]

[Nilsson 71]

[Palay 80]

An Experimental Analysis of the B* Tree Search Algorithm 33

I. Calculation of Optimum Trees
Given a B* search tree, an optimal tree is defined as the minimal set of nodes that need to be

expanded in order to prove that the best node is, indeed, the best node. It should be noted that the

optimum tree for a given search tree is not necessarily unique.

The procedure for determining the size of the optimum B* trees consists of two parts. The first part

determines which node is the best node. Given the best node, the second part determines the size of

the optimum tree. Since the best node for each simulated tree was already determined in earlier runs

of the B* algorithm the first part needed only to read in the computed best node from a file. If those

values were not known, a priori, then a version of the B* algorithm would have to be used to

determine the best node.

In determining the size of the optimum tree, the second part of the procedure determines the

optimum separation point for the proof. At the root of the tree, two lists are maintained. One list

(Best-Node Work List) describes the minimum number of node expansions that need to be done to

raise the pessimistic value of the best value to a given point. The other list (Alternative Work List)

describes the minimum number of node expansions that need to be expanded in order to lower the

pessimistic values of the alternative nodes below a given point. Given the two lists, the size of the

optimum tree can be determined by finding the separation point that minimizes the sum of the number

of expansions that are required to raise the pessimistic value of the best node above that point and

the number of expansions required to lower the optimistic values of the alternative nodes below that

separation point. The procedure that determines the size of the optimum tree, given the two lists, is

presented in figure 1-1.

In order to create those two lists, two additional values are maintained for each node in the search

tree. The two values will be referred to as W O R K D O N E and W O R K - N E E D E D . For the best node, the

W O R K D O N E value will contain the number of nodes that have been expanded in order to raise the

pessimistic value of the node to its current value. The W O R K - N E E D E D value contains the minimal

number of nodes (including the ones already expanded) that will have to be expanded in order to

raise the pessimistic value further. For nodes at the player's level in the best node's subtree, the

values are the same as above. For nodes at the opponent's level of the best node's sub-tree, the

W O R K - D O N E value contains the number of nodes that have been expanded in order to lower the

optimistic value of the node to its current value. The W O R K - N E E D E D value contains the minimal number

of expansions needed in order to lower the optimistic value further.

For the alternative nodes, the W O R K - D O N E value contains the number of nodes that have been

expanded in order to lower the optimistic value of the node to its current value. The W O R K - N E E D E D

value contains the minimal number of expansions needed in order to lower the optimistic value

34 An Experimental Analysis of the B" i ree search Aigomnm

PROCEDURE F I N D ! S I Z E ! O F ! T R E E (b e s t I node I work H i s t , a l t e r n a t i v e ! w o r k M i s t) ;
BEGIN

s i z e ! o f loptimum! t r e e «- I N F I N I T Y ;

a l t l p o i n t e r «- s i z e o f a l t e r n a t i v e ! w o r k ! 1 1 s t ;
b e s t l p o i n t e r «- s t a r t o f b e s t ! n o d e ! w o r k ! l 1 s t ;

WHILE b e s t l p o i n t e r ^ s i z e o f b e s t ! n o d e ! w o r k ! 1 1 s t AND
a l t l p o i n t e r > s t a r t o f a l t e r n a t i v e l w o r k ! 1 i s t DO

BEGIN

WHILE b e s t ! p o i n t e r < s i z e o f - b e s t ! n o d e ! w o r k ! 1 1 s t AND
n e w ! p e s s i m i s t i c ! v a l u e [b e s t ! p o i n t e r] < n e w ! m a x ! o p t i m i s t i c [a l t ! p o i n t e r] DO.

b e s t l p o i n t e r b e s t ! p o i n t e r + 1;

WHILE a l t l p o i n t e r > s t a r t o f a l t e r n a t i v e l w o r k ! 1 i s t AND
n e w ! m a x ! o p t i m i s t i c [a l t ! p o i n t e r - l] < n e w ! p e s s i m i s t i c ! v a l u e [b e s t ! p o i n t e r] DO

a l t ! p o i n t e r n a l t ! p o i n t e r - 1 ;

n e w l s i z e «- # o f expans ions o f b e s t ! n o d e ! w o r k ! 1 i s t [b e s t ! p o i n t e r] +
o f expans ions o f a l t e r n a t i v e l w o r k ! 1 i s t [a l t ! p o i n t e r] ;

s i z e ! o f l o p t i m u m ! t r e e «• M I N (n e w ! s i z e , s i z e ! o f l o p t i m u m ! t r e e) ;

a l t ! p o i n t e r g a l t ! p o i n t e r - 1 ;

END;

R E T U R N (s i z e ! o f l o p t i m u m ! t r e e) ;

END;

Figure 1-1: Procedure for Calculating Size of Optimum Tree

further. For nodes at the player's level in an alternative node's subtree the values refer to the lowering

of the optimistic value. At the opponent's level the values refer to the raising of the pessimistic value.

In order to form the list for the alternative nodes at the top level of the tree, two additional values

are maintained. The value M A X - O P T I M I S T I C contains the maximum optimistic value of the alternative

nodes. The value, M A X - N E E D , contains the minimum number of nodes that need to be expanded in the

alternative nodes' subtrees in order to reduce the value of M A X - O P T I M I S T I C .

In order to determine the size of the optimum tree, the procedure alternately searches the best

node's subtree and the subtrees of the alternative nodes. Whenever the pessimistic value of the best

node is raised, an entry in the work list for the best node is made. Whenever M A X - O P T I M I S T I C is lowered

an entry for the work list of the alternative nodes is made.

Figure I-2 presents the status of the optimum search procedure on the tree presented in section 2.

Node 3 is the best node. The optimistic and pessimistic values are presented (enclosed in brackets)

for each node along with the W O R K - D O N E and W O R K - N E E D E D values (enclosed in parentheses). The

original pessimistic value of node 3 was 0. In order to raise the pessimistic value of node 3 to 195, two

nodes had to be expanded (nodes 3 and 7). In order to raise the pessimistic value oi node 3 further, at

An Experimental Analysis of the B* Tree Search Algorithm 35

[OPTIMISTIC V A L U E , PESSIMISTIC VALUE] MAX-NEED = 3

(WORK-DONE , WORK-NEEDED) MAX-OPTIMISTIC = 190

(0,1) (0 ,1)

Best-Node Work List Alternative Work List

of expansions new MAX-OPTIMISTIC

START 300

1 200

2 190

Figure I -2: Calculation of an Optimum B* Tree

least one additional node (node 8) will have to be expanded. For the alternative nodes, the original

value of M A X - O P T I M I S T I C was 300. By expanding node 2 the value of M A X - O P T I M I S T I C was lowered to 200.

Then by expanding node 1, M A X - O P T I M I S T I C was lowered to 190. In order to lower M A X - O P T I M I S T I C

further, at least one more node will have to be expanded (either node 4, 5, or 6). Thus the current

value of M A X - N E E D is 3.

When the procedure finds a separation point, a maximum size for the optimum tree is determined

by the sum of the W O R K - D O N E values of all the top level nodes plus one for the expansion of the root.

In the example, the maximum size of the optimum tree is 5 expansions. Given the maximum size for

the optimum tree, the procedure searches the best node's subtree until the W O R K - N E E D E D value of the

best node is greater than or equal to that maximum size. The procedure then searches the alternative

nodes until M A X - N E E D is greater than or equal to that maximum size.

of expansions new pessimistic value

START 0

2 195

36 An Experimental Analysis of the B* Tree Search Algorithm

By scanning the two lists, the optimum separation point can be determined, thus yielding the size of

the optimum tree. For a complete description of the procedure for generating optimum B* trees, see

[Palay 80].

