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| , Preface
This report defines a gencral mechanism, 1IDL, by which structured data can be precisely specified. The
objective of this specification is to permit the data 10 be communicated between programs, or parts of a single

program, in a safe and cfficient manner.

IDL grew out of work on the Production Quality Compiler-Compiler (PQCC) project at Carnegie-Mellon
University [5}. An notation cafled LG (for Linear Graph) was used to describe the data structures passed
petween phases of the compiler [7]. LG had a number of drawbacks. It was difficult to use, and was strongly
oriented towards the particular implementation language (BLISS (1, 8]) and host machine (the PDP-10) used

by the PQCC project. Nonetheless, it was a very useful tool.

During 1979 and early 1980 a conscnsus developed at CMU that we ncedcd to generalise the data definition
language to simultaneously meet the needs of several different prOJecrs wntten in different implementation
langnages on several different computer sysiems. Within CMU there were compiler-related projects, such as
the Gandalf program development environment effort [3], which ran bn systems quite different from the ones
used by PQCC. During this same period the community of implementors of the Ada programming language

developed a strong interest in being able to share intermediate program representations.  °

In late 1980 there were two major candidates for a common intermediate representation of Ada programs:
TCOL,, 4o developed at Carnegie-Mellon, and AIDA, developed at the University of Karlsruhe. A meeting
was held at SofTech, Incorporated, in December 1980, to discuss these two representations; at this meeting, it
was decided to attempt to merge the two notations. A one-week design session was held at Eglin Air Force
Base in January 1980. The outgrowth of this meeting was a new intermediate Tepresentation, Diana. Since
there was a need to define Diana precisely, and since any intermediate language such as Diana is structured

data, we concurrently defined IDL. The definition of Diana was then written using IDL.

This document provides a formal description of IDL. A companion document, the Diana manual [2], uses
IDL to describe Diana. '
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~rata for Revision 1.0

e external ASCII form is case sensitive. Please change all Statements that it is not,

1 cover page change AUGUST 1981 to SEPTEMEER 1981

54 add a line that reads Revision 1.0

splace pages 47 -~ 50

s;place equation on page 51 by

VALUE = BVALUE u IVALUE u SVALUE

U RVALUE U NV U Set U Seq U PVALUE y
{de!v::lue,undcf\'nluc.nomIuc}

:;place equation on page 52 by

vset{rational) = RVALUE

:place page 53

:lete CREATECOMP operation from top of page 54

place equation on page 54 by .
vset({seq,types]) = { <types.locsy lV]ocelocs,10c==undcﬂocation A loc.letypes }

aélace precondition of MAKE on page 53 by

prel loc=undeflocation A loc.les.l

3§lace equation on page 55 by

vset([set,types]) = { <types.loes> | Viocelocs.loc=undeflocation A loc.letypes }
¥lace precondition of INSERT on page 56 by
‘., pre: loc=undeflocation A loc.les.l

T
xAr”

Place precondition of REMOVE on page 56 by

“pre: loc=undeflocation A loe.les.]

post: ¥nn.ane<name>,atype(nn,an)= @
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’I}ns report.; dcﬁnes 1PL, a mcchamsrn for spcc1fy1ng prOpcrucs of su-ucturcd data The ObjCCIIVe of _this

specification is to penmit the data to bc commumcalcd safcly and ch cxcndy ameng rc]ated programs. Bcfore
ia \ I ?' .

considering the mechanism itself we shall briefly discuss the motivation which fed to its dcs:gn.

i o Weadl dnle L : T ALY dis ) Y- came AT

A programmlng environment consists of a numbecr of programs that assist 2 program;-ner in the prbgram
‘construction, test and validation process. These too!s include cdnors dcbuooers compﬂcrs prctty pnnters,
test-case generators, various kinds of analysis aids, and so on. Many of thesc tools operate on some
mterm'c{d:ate repres_cntauon of the program: a form that is bclow Lhc level of Lhe source text. Some of Lhem
also nee::l iaccésjsltc;‘déta 'that is derived from the source text, but not exphczt m 1t procedure call graphs data
flow graphs, symbol tables, and various semantic attributes, Fma]]y, some of t.he tools will need to access data
that is specific 10 Lhe :installar._ion or target macﬁi;;—é‘-l){it not 'qgheli:wisq related to a particular program: tables
that define coding or reporting. standards, tables that define local pfetty-lbn'n‘ting con»‘enfién;sl,j tz;bles of

simulated on-line testing data, and so on. The kind of situation we envision is illustrated in Figure 1-1.

Figure 1-1: An Example Collection of Programs

In this figure rectangular boxes represent data and ovals represent programs; both boxes and ovals contain
labels to suggest their roles. So, for example, a parser, PARSE, produces a parse tree, PT. A pretty-printer
program, PRETTY, accepts PT and produces a listing using conventions defined in a database called
PR_STD. A screen-oriented language-based editor, STR_ED, operates on the ﬁarse tree and produces
another valid pérse tree. A semantic analyzer, SEM, generates an attributed parse tree, APT, from the simpler
tree generated by the parser and/or editor. Several tools operate from the auributed tree: FLOW creates a

flow graph, FG: a source level optimizer, SRC.OPT, performs program transformations that are agaid
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represented as valid auributed trees; a Lest-case SCNCTALOF, TEST_GEN, uses the auributed tree as well as the

flow graph to p-roducc a form, TCS, that can be uscd by the test-case simufatar, TEST_SIM; finally, a code

generator,
LINK, converts relocatable code into an executable core image, CORE.

In order to work together harmoniously, the various programs in this example must have a precise and
compatible definition of the data structures they use to communicate with each other. The primary purpose

of IDL, then, is to provide such a definition. To meet this primary objective we must meet some secondary
ones as well; these include

o precision: The IDL definition must be sufficiently precise to be used as a formal specification by
those who are writing programs to process the data. :

e represeniation independence: The IDL specification must not unduly constrain the internal
representation of the data. Individual tools must be able to use internal representations that

reflect their special processing requirements.

e language independence: The IDL mechanism must not be restricted to specifying data structures
to be manipulated by a single target language. The tools in a programming environment may be
written in different languages, and IDL must not preclude this.

o maintainability: The tools in a programming environment, like programs in general, will be
developed incrementally and will be enhanced on the basis of experience using them. The various
data structures through which they communicate will consequently also evolve. To retain
compatibility in the face of this evolution, IDL must provide both humane and secure means for

coping with changes.

o communication form: It must be possible to communicate data described in IDL between arbitrary
programs and, indeed, between arbitrary computers. To support this requires at least one
standard representation of the data and the ability to map between this form and the internal one
chosen by specific tools. We choose to make the standard form have an ASCII manifestation to

maximize its portability.

1.1. The Nature of an IDL Specification

Diagrams such as that in Figure 1-1 may be helpfui in illustrating the relation between data and the prograins
which process it, but they are totally inadequate as a specification technique. In fact, one must be very careful
not to read too much into such a diagram. It would be easy, for example, to infer that each of the boxes
representing data is a file or that each of the ovals is a separate program. Neither of these is in;endedf It
might also be inferred that there is 2 single internal representation for the data denoted by a box. This is also
incorrect. To mecf the objective we have set for IDL we need a specification technique that allows all .of these

things, as well as many other possit;ilir.ieé.

CODE,-uses the flow graph and attributed parse tree to generate a relocawable file, REL. A linker, '

iy e S SRR S i R e D

s



The Nature of an IDL Specification 9

We want an IDL specification w describe a data structure without forcing a particular representation on Lﬁe

structure. We want individual instances of structures satisfying the specification to be tmplemented in a way
that is appropriatc for the particular program, or portion of program, that manipulates the data. The well-
" known methodology of abstract data {ypes has the characteristics we want IDL to have, -

The view that we shall adopt is that each box in Figure 1-1 denotes an instance of an abstract data type about
which we can make various assertions. Each oval denotes an instance of an abstract process, which accepts
one or more instances of_ a data abstraction as its ‘input’ and yields instances of other abstractions as its
‘output’.' In effccf, the boxes in Figure 1-1 can be viewed as input-output assertions {or pre- and post-
conditions) on the ‘ovals’. For exampie, we can specify the effect of the semantic analyzer, SEM, as;
PT{SEM } APT _

That is, if the input to SEM satisfics the definition of PT , then its outﬁut will satisfy APT. Similarty, we can
define the effect of the code generator, CODE, as:

APT A FG { CODE } REL
That is, if the inputs to CODE satisfy APT and FG, the output will satisfy REL. Saying it another way, the’
input to CODE must satisfy both specifications APT and FG, and the output of CODE is guarantead to
satisfy REL,

~

This view of the diagram in Figure 1-1 is obviously very abstract. For pragmatic reasons an implementation
of the various programs in a specific situation will need to be concerned with lower level representation
details, and later chapters of this document will deal with these legitimate concerns. For the moment,
however, we will stick with the abstract view for several reasons, First, it provides the basis for the level of
precision we are seeking. Second, it provides complete representation and language independence. Finally,
coupled with a well-engineered specification technique, it allows for easy maintenance, and hence ensures
compatibility in the face of evolution. We will later show how the abstract view taken here can be

mechanically mapped into efficient implementations.

1.2. The Abstract Model
As noted above, we shall view each of the boxes in Figure 1-1 as an abstract data type; data input to the
programs represented by the ovals arc instances of these types. The first stép in an IDL specification will be

to define the abstract types under discussion.

An abstract data type consists of a set of values (the domain of the type), and a set of operations on these
* values. Any specification of an abstract type must define both of these: in IDL we choose to use the abstract

modeling technique for doing this. In this technique one specifies the domain of the type in terms of
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previously defined mathematcal entities; the operations of Uie abstract Lype are then specified in terms of

“their effect on these entities.

We have chosen to require all specifications written with IDL to use the same model. This implies that the
model must be a very gencral one, but it must have straightforward and efficient implementations. We have
chosen typed, attributed directed graphs as our model Informally, this domain is a collection of objects.
Each object has a type, a location, and a value. One category of types in the model are node 1ypest. The value
of a node object is a collection of atfributes; the particular attributes associated with a node object are a
property of its type. No two attributes of the same node type have the same name; each attribute of a node
object has an asscciated location. Attributes are also typcd; the objects form a graph because some of the

attributes may reference other objects.

Instances of these graphs are commonly represented by diagrams such as Figure 1-2. In this diagram, circles
denote objects. Each attribute of a node object is denoted by an arrow (‘arc’) to the object that is its value.

Node types are written within the node object.

name

. reports-to

person

Figure 1-2: An Instance of a Typed, Attributed Directed graph

Ll‘he other categories are sealars (integers, rationals, booleans, and strings), sets, and sequences.

L]




The Abstract Model 1

lthough diagrams such as that in Figure 1-2 may aid one's intition, they are lar [rom being sulliciendy
recise for our purposes. Again, such diagrams can be dangerous if they suggest too much to the reader, It
vould be easy, for example, to assume that each of the node objects in such a diagram is to be implemented
y arecord in some programming language with components to represent its attributes, and that the links are
cpresented by pointers. This is certainly one possible implementation -- but it is not the only anc., and is
efinitely not the best one under many circumsiances. For instance, while some node objects might be
:presented as records, others which are referenced only once might be "up-merged” to become components
f the records corresponding to the node objects that reference them. Remember, throughout this document
1e graphs we are discussing are abstract models of abstract data types being defined. They in no way imply

n implementation.

{.3. On the Structure of this Document

‘he remainder of this document defines IDL. Chapter 2 defines the syntax and semantics of an [DL
necification. Chapter 3 describes the sublanguage used to make assertions about components of an IDL
pecificaton. In Chapter 4 we discuss an external (ASCII) representation of the data defined by an IDIL
pecification; this representation is essential for communication of data between computing systems. Finally,
a Chapter 5 we outline how the abstract specification of IDL can be mechanically converted into a concrete

nplementation.

»art IT gives a formalization of IDL. Chapter 6 describes the notation used in the formal model. Chapter 7
ives the basis of the mathematical graph model we use w0 describe IDL. Chapter § gives the type model. A
ormal model of IDL structure specifications is given in Chapter 9. Chapter 10 formalises the external

epresentation. A later version of this document will include a formal description of the assertion language.
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2. IDL Definition

A complete IDL definition may be thought of as a precise definition of the intuitions captured by diagrams
such as that in Figure 1-1. It defines both the data denoted by boxes and the processes or programs denoted
by ovals. Data is viewed as an instance of an abstract data type about which various assertions can be mada,
Processing components are vicwcd as accepding one or more data types which salisfy these assertions and
establishing others, We shall refer to descriptions of data as structures and to descriptions of programs as

Drocesses.

Although IDL takes a relatively abstract view of data and programs, we intend it to be a very practical tool in
the construction and maintenance of collections of real systems. This implies that we musf be ultimately
concerned with impiementation issues and with the paramount need to keep the formal IDI. specification
synchronized with implementations of it. More will be said about this later; for the moment we will simply
assert that we intend for implementations to be mechanically derived from the formal definition, thus forcing
synchrony. To do this implies that information abouf the intended implementation stratcgy must be present
in the IDL definition. It must be present, however, in a manner that is disjoint from the logical porticn of the
specification; that is, we want a separation similar to the separation of specification and implementation in

*

data abstraction languages.

In order to separate the logicai properties of structures and processes from the implementation-specific
properties, we split the definitions into two categories. Absiract structure and process definitions describe

logical properties; concrete definitions provide implementation-specific properties.

We will also occasionally speak of struciure instances and process instances. A structure instance is a partcular
data structure that meets the assertion represented by a particular structure definition. A process instance is a
particular program that fits a partcular process definition. We will sometimes speak about a structure or
Process when we mean "all structure instances satisfying some structure specification” or "all programs

satisfying some process specification™; the meaning should be clear from context.

An IDL specification, then, contains four kinds of information:

® Abstract Structure Specifications -- Here we define the structures in terms of the abstract model

- (typed attributed directed graphs) discussed earlier. Each abstract structure specification defines
the domain of a single abstract data type by giving the node types that can be used for objects in
the domain. Defining a node type involves specifying the names and types of its attributes. A
structure specification can also include assertions that specify constraints on instances of the
structure. This level of data specification makes no commitment to representational details.

== & Concrete Structure Specifications — Here we provide details of the representation of abstract
UNIVERSITY LIBRARIES

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213

_—-
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14 IDL Definition

structurcs. For any particular abstract structure there may be many corresponding concrete
structures. Concrete structure specifications can be organised into a hierarchy, with lower levels
of the hierarchy containing more representation-specific information than higher levels. For each
concrete structure specification which satisfies certain constraints specified later in this chapter,
there is a standard external ASCII representation for the data described by that specification.

o Abstract Process Specifications - Here we define cach of the abstract processes (the ‘programs’), in
terms of what abstract structures they expect as input and what abstract structures they produce as
output. These specifications attempt to capture the logical propertics of a program without
unduly constraining implementations. .

e Concrete Process Specifications -- Here we provide implementation-specific details for the abstract
processes. Information in this section includes bindings of abstract structures from the abstract
process specifications to particular concrete structures, and restrictions on the set of operations the
process may perform on the data.

In each of these specifications, IDL provides notation to describe certain structural properties of the
component being specified. In addition an extensible assertion language is defined for expressing properties
other than those captured by the structural and typing notation.

Although we intend that IDL be processable by machine, its most importaat use s (0 communicate
speciﬁcat.ions'among people. IDL allows a great deal of flexibility in the way specification is written. Order
of specifications is never significant; portions of declarations may be written separately and merged by the
IDL processor. The order in which the rules are written, and the use of comments and indentation is very
important for human understanding. Various orders and styles will make good sense in certain contexts.
Unfortunately, sloppy use, poor mnemonics, and poor factorization of the specification can all detract from

readability. We urge the wise use of these features.

Two of the operations defined for each structure are reading and writing external. representations. The
external ASCII representation is intended to allow for communication among arbitrary tools, written in
arbitrary languages for arbitrary machines. Within a particular host environment there may also be several
external binary representations used to communicate between toois written in different languages but running
oﬁ the same machine. Prograxhs written in the same language on the same machine may be able to

communicate at the internal representation level as well.

The following sections define IDL. The syntactic definition of IDL is given in an extended BNF. Angle
brackets (*¢<>") surround the name of a non-terminal. Braces (‘{}’) are used to group elements of a production;

a trailing asterisk (**") indicates zero-or-more occurrences; a trailing plus ('+’) indicates one-or-more

ZWe expect that teast some of these assertions will be automatically checked when data is read from {written to) external media. The
extent to which this is done is implementation specific and may be disabled under certain circumstances.
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vccurrences; a trailing question mark ('7°) indicates an optional item. A special lexeme such as a brace -is
included as a terminal by prefixing it with a double-quote mark (). This notation is a slight simplification of
the input language for the CMU Front End Generator [6].

2.1. Structure of an IDL Specification

An IDL specification consists of a sequence of structure and process specifications.

<specification> ::= { <decl> }+
<decl> ::= <structure decl> | <process decl>
<structure decl> ::= <abstract structure decl> i <concrets structure decl>

<process decl> ::2 <abstract process decl> | <concrete process decl>

The declarations are not required to be in any particular order, and there may be more than one of each of

them. This permits one to group related portions of a specification in ways that enhance readability.

The following lexical conventions are observed in an IDL specification:

1. A comment is introduced by double hyphens, --*, and terminated by the end of the line on which
they occur, )

2. The notation is ‘case sensitive’. That is, identifiers with identical spelling except for the case of
their letters are considered distinct® . )

3. Reserved identifiers in the IDL syntax have the first letter of each word capitatized, and all other
letters in lower case. E.g., ‘Structure’, ‘Foraly’.

4. Names (identifiers) consist of 2 letter followed by a sequence of letters, digits, or underscore
characters.

2.2. Abstract Structure Specification _

An abstract structure specification is divided into a set of structural constraints and a set of assertions.
Structural constraints specify the node types that comprise the structure, together with their set of possible
atributes. Assertions capture all the other iﬁteresting properties of the structure.

3&53 sensitivity is a questionable language property; in this case it was adepted oniy 1o support the needs of the Diana description {2].
Diana's node, class, and attribute names are taken directly from the formal definition of Ada, which is case sensitive. We \f.'ould gladly
consider a modification of the formal definition that removed its case sensitivity and thus remaoved the need for this property in IDL.
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{abstract structure decl> ::= Structure <name> Roat <name> Is
{ <name 1istd Except }?

A { <abstract structure simtd> ; }+

48 End

sy oA i ) il

ee I X

<name Tist> ::= <{name> { , <{name> }*

ap ) <abstract structure stmt)> ::= {production> | <type decl> | <without clause>
| <assertion> .

Each abstract structure declaration defines a new abstract structure whose name follows the keyword

Structure. Each abstract structure must have a distinct name. The <name> following the Root keyword names

a class (see b.e!ow) which is the type of the reot node of the data structure; the root node is a distinguished

object from which all others in the structure can be reached. An abstract structure can be specified in one of

i

1

§ two ways.

' 1. As a new abstract structure. In this case the the <name Tist> Except clause is omitted and no

i Without clauses are permitted. , :

¢ ' 2. As a modification of other abstract structures. In this case the <name 1ist> between the Is and

i Except keywords names the other abstract structures. The new structure is defined by copying
E ] and editing the old structures as described in Section 2.2.2.

H The order in which <abstract struecture stmtd’s appear is not significant. .

B .

0. 2.2.1. Productions and Type Declarations

8 . . . : :

i Productians and type declarations define structural constraints. Node productions define names and types of
;‘ attributes for each node type. Type declarations define private fypes, which are types whose structure is not

specified within the abstract structure specification. Classes are names used as abbreviations for collections of
node types; when used as types for atributes, they indicate that the attribute may reference abjects of any of
the node types in the class. For each node type, a class of the same name is implicitly defined. Private type

names and node type names must all be distinct,

{production> ::= <class production> | <node production)

The :: = form of production is used to define class names.

A P kT e 4 K e 3% U 0§ B APAR - s i ok T

<class production> ::= <name> ::= <name> { | <nama> }*
Here the <aame> that appears to the left of the : : = is defined to be a class name. The names to the right of the
::= must be class names. The new class consists of the union of all node types that are in any classes named
1 “ on the right hand side. The same class name may appear on the left of several ::= productions. In this case,
the class consists of the union of the node types defined in all such productions. Class names may not depend

. upon themselves in a circular fashion involving only : : = productions.

bhﬁlﬂl"ﬂlﬂﬂ



Abstract Structure Specification 17

‘The => form of production is used to associate sets of atributes with node wypes, Each atribute is given a

namc and a type.

<node broduction) ::s (name> => { {attribute> { , <attribute> }* }?

Cattribute> ::= <name> : <{type>
The ¢name> to the left of the =» is a class name. This <name> is defined us a n;)dc type name il it is not defined
elsewhere as a class name (that is, on the left hand side of a : : = production). The <attribute>’s to the right of
the => define a set of attributes that are to be associated with all of the node types belonging to the class whose
name appears on the left. The same class name may appear on the left of several => productions. The
atrributes of a node type are the union of the attributes specified for all classses which contain the node type.
The attributes of a node type must ail have different names; however, attribute names necd not be disjoint
from node. class, and private names. Different node types may have attributes of the same name. Attribute

types are discussed below (see Scction 2.2.3).

The type declaration is used to define private names,

{type decl> ::= Type <name$
Private types name implementation-specific data structures that are inappropriate to specify at the abstract
structure level. For instance, an absuract structure specification describing a compiler’s parse tree migﬁt wish
10 include information in each node object about the position in the source file corresponding to that object.

The notion of what constitutes a source position might be quite different in different environments.

2.2.2. Defining Abstract Structures in Terms of Other Abstract Structures
When an abstract structure declaration has a Is <mame 1ist> Except clause it is defined in terms of the other
abstract structures whose names appear between the 1s and the Except. The new abstract structure is derived

in a three step process:

1. Copying. - All productions, type declarations, and named assertions from all of the abstract
structures whose names appear after the 1s are copied. Information duplicated in several abstract
structres is copied only once. Specifically,

e [f there are two : : = productions with the same left hand side in two abstract structures, then
each alternative that appears in both is copied only once.

o If there are two => productions with the same left hand side in two abstract structures, then
each attribute with the same name and type that appears in both is copied only once.

o If there are two or more <type dec1>s for the same type name that appear in two abstract
structures, then only one is copied. : ‘

o If two assertions have the same name, only one is copied. Unnamed assertions are not
copied. ) :

2. Deletion. - The without clauses described below are uscd to delete some parts of the result of the
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18 IDL Definition

copy'step.

. 3. Additions. - The productions, type declarations, and assertions specified as part of the pew
abstract structure are added to the result of the deletion step. .

The without clause is used to specify deletions.

<without clause> ::= Without <without item> { , <without item> 1

<without item> ::= Assert <(name>

V(without item> "::= "<name>

{without item> ::= { <name> | * } { =3 | ::= } { <name> }?

If the without clause contains multiple <without items> then it is equivalent to a sequence of Without
clauses, one for each <without item>. The ::= and => forms of the without clause remove the class name or
attribute name (respectively) given on the right from those productions with the same left hand side. If no
name appears to the right of the arrow then all productions of the corresponding type (::= or =>) with the
Spec.iﬁed left hand side are deleted. If the left hand side is an asterisk (*) then this is equivalent to teplicating
the item for all names that appear on the left hand sides of the speciﬁed kind of produédon. The <name> form
of the <without item> removes the provate type with the specified namé. The Assert <name> form removes

the assertion with the specified name. v

- All of these rules are eatirely syntactic; no semantic information is used in the edidng process. It is therefore
possible to convert a node name to a class name by adding a ::= production with the node name on its left
hand side. It is similarly possible to convert a class name to a node name by deleting all : : = productions with

the class name on the left hand side.

2.2.3. Basic Types
In this section we define the set of permitted artribute types.

<type> ::= Boolean | Integer | String | Rational | Set Of <type> | Seq Of <type> | <name>
These basic types are;

1. Boolean - the boolean type with values are true and false.
2. Integer -~ the ‘universal integer’ type.

3.8tring - ASCII strings. Any ASCII character may be represented. This includes printing
characters, blanks, and non-printing control characters.

4. Rational - the ‘universal rational number’ type. This type includes all values typically found in ‘
computer integer, floating point and fixed point types.

o L ki S e h s i | e ko isd
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5.Set Of <type> — An unordeled coilection (sct) of values of <type>. Duplxcauon of values (Le,
multisets) are not permuted

. .

6. Seq Of <type> =~ An ordered collection (sequence) of values of <type>,

7. <name> -- where <name> is a private name from a <type dec1>. The set of values for this type is
defined by the package that implements it.

8. <nama> -- where <name> is a class name. A value of this type is a node object whose type is one of
the elements of the class,

There are no enumeration types per se; a class of node types, all of which have no attributes, can serve this

purpose.

2.2.4. Example
Suppase that we wish to define a data structure to represent the abstract syntax of arithmetic expressions

involving simple integer variables. First we provide the abstract structure definition:

Structure PT Root exp Is

~- First we define two node types; 'leaf' objects appear at the leaves

-- of the expression tree and '"tree’ objects appear at its interior.

-- The ¢lass 'exp’ is an abbreviation for either of these types. *

exp ::= ieaf | tree;.

== Second we define some node types that serve as enumeration literals.

oper_name ::* plus | minus | times ] divide; =~ operator names
plus => ; minus 3> ; times =» ; divide => ;

context_name ::= value | flow; -- expression context
value => ; flow => ;
-=- Finally we define the attributes associated with the various node types.
Teaf =»> value: Integer:
tree => left: axp,
right: exp,
op: oper_name;
exp =» context: context_name;

End

Although this example is extremely simple, it illustrates several things about IDL. As can be scen, only leaf
nodes have an integer ‘value’ attribute. Only interior nodes of the tree have ‘left’, ‘right’, ‘op’ and attributes.
The ‘left’ zind ‘right’ attributes are references to ‘exp’ nodes -- that is, to either leafs or trees. The ‘op’ attribute

is a reference to an object of one of the node types"plus', ‘minus’, and so on. Since these node types have no

yoTY!
=

.
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attributes they may be lhuugm of as elements of an enumeration type. The null =» productions for 'plus’ etc.
were needed to define them as node types: node type names are never implicitly defined. Both leaf and tree
nodes have the ‘context’ attribute; this is indicated by the use the class name ‘exp’, which is a shorthand for

leaf” and ‘tree’.

The following example shows how an abstract structure may be defined in terms of a previously defined

abstract structure,
" Structure APT Reot exp Is PT Except

Without Leaf => Value;

-- We define variable_sym as a private type name.
== It wiil serve as a "symbol tabte entry".

Type variable_sym;
leaf =» defianition: variable_sym;
exg => next exp;
. End; .
The abstract structure APT is defined in terms of our previous example abstract structure, PT. Like PT,
APTs root must be a tree or a leaf. The ‘value’ attribute of leaf nodes has been deleted in APT, but two new
attributes have been added: leaf nodes now have a ‘definition’ attribute and both tree and leaf nodes have a

‘next’ attribute. The type of the definition attribute is the private type ‘variable_sym’,

2.3. Abstract Process Specification

An abstract process specification defines the input and output data structures of a program,

{abstract process dacl> ::= Process <(name> Is { <abstract process stmt> ; }+ End
<abstract process stmt> ::= {pre stmt> | <post stmt> | <assartion>
‘The <name> of the abstract process follows the keyword pProcess. All abstract process names must be distinct

from each other.

{pre stmt> ::= Pra {port list>

<post stmt> ::

Post <{port list>
<port 1ist> ::= <port decl> { , <{port decl> }*

<port decl> ::= <{name> : <name)

The Pre and Post statements are used to specify ports, which are formal input and output parameters of a .

process. Each <port dec1> specifies a port name (before the *:*) and an abstract structure name (after the *:").
All the port names of an abstract process must be disjoint. The abstract structure associated with a port serves
as a precondition (postcondition) of the data structure bound to the port. These preconditions and

s
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osteonditions are expected Lo hold only before or after the execution of any instance of the abstract process

Agsertions in an abstract process declaration are used to express relationships between two or more ports.

2.3.1.Example
The abstract process PT_compare takes two parse trees, primary_pt_port and sccondary_pt_port, and

sroduces a data structure, dt_port, describing the way one parse tree differs from the other.
Process PT_compare Is .

-- a program that compares two PTs and produces an annotated
-~ tree

Pre primary_pt_port : PT, secongary_pt_port: PT..

Post dt_port : DT:
End

2.4. Concrete Structure Specifications

Concrete structure specifications provide implementation-specific information about abstract structures.

Cconcrate structure decl> ::= Concrate Structure <{name> Is <nama> With
{ <concrete structurge stmt> ; 3+ .
End

<concrate structure stmt> ::= (type rep> | <production> | <Cassertion>

The name after the Structure keyword is the name of the new concrete structure. The namé after the 1s
keyword is the name of an abstract or concrete structure from which the new concrete structure is derived.
The new concrete structure specification contains all of the information of the old, together with new

specifications given by the <concrete ‘structure stmt> list following the with keyword.

2.4.1. Type Representations

A concrete structure specification can contain internal type representations and private type representations.

{type rép) ::= Cinternal type rep> | <private type rep>

An internal type representation can be used 10 specify a private type that is to be used to implement somé

existing attribute type.
{intarnal type rep> ::= For {(type rafarence> Uss {typed

<(type refarance> :i= <{nama> . <name> { ( * ) }*

The first name in the type reference must be a class name. The name after the dot must be the name of an

attribute declared in some => production for the class. The parenthesized star forms can be added to descend
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through sets or sequences o their clement type. ‘'Lhe name after ihe yse is the name of 4 private type \;vhich is
then used to represent the specified attribute. An ID]_ impiementation may create a set of predefined private
types with standard implementations. For instance, a particular system might have a List_sequence private
type and an Array_sequence private type which could be used in a concrete structure declaration to specify

implementations of various sequence-valued attributes.

An IDL implementation may extend the syntax of the <internal type rep> 10 provide additional
implementation-specific details not covered here; such extensions must be done in a way that is compatible
with the rest of the IDL syntax.

A private type representation may be used to define the way in which a private type is to be represented

extcrnally, and the package in which the internal representation of the private type is defined.

<pr1vat§ type rep> ::= For <name> Use <private rep>

<{private rep> ::= <nama> { . <name> }? | External <{type>
The <name> after the For must indicate a private type. The <type> following the External keyword may be
any of the predefined types outlined in Section 2.2.3, or a node type. The private type will be represented

externally as if it had been the indicated type. The use <name> form gives the name of a package that defines
the private type.

2.4.2. Productions in Concrete Structures

In order to give external representations for some private types, it may be necessary to introduce new node
types not defined by the abstract structure from which a concrete structure is defined. A concrete structure
specification may include ::= and => productions for this purpose. However, the only names which can
appear on the left hand sides of such productions are private type names, or new node type names and class
names introduced in the concrete structure specification. Productions here cannot add new attributes to node

types defined in the abstract structure specification, nor can they add node types to classes defined in the
abstract structure specification.

2.4.3. Exampie
This example provides a concrete structure for the APT structure discussed in earlier sections. A user-
supplied package called ‘variable_package’ defines the ‘variable_sym' type. In the external represéntation an

object of this type is represented as a node with an integer-valued attribute and an expression-valued
attribute, .
Concrete Structure particular_APT Is APT With

== we provide a specification for the viriahie_s&m private type of APT

skt e o g b b T
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For variable_sym Use variable_package;
For variable_sym Use External variab]e_externa1_repr

vafiab1e_externa1_rep -
usage_count: Integer,
original_dqf; Exp;

End

2.4.4. Concrete Structure Specification Hierarchies
Specifying concrete structures in terms of other concrete structures organises them into a hierarchy, with
lower levels of the hierarchy being more implementation-specific than higher levels There are two
interesting boundaries in any such hierarchy: -
e The externally adeguate level. At this point, sufficicnt infon'natio.n has been provided to define an
external representation for all instances of the stucture. This level is reached when a concrete

structure supplies a representation for all types defined in the abstract structure from which it is
descended. See Chapter 4 for a discussion of external represcntations.

¢ The internally adequare level: At this point. enough information is present specify internal
representations for all node types and attributes defined in the abstract structure. Internal
representations for types may be given by naming packages which define the types; this may be
done for the predefined types as well as for user-defined types. .
A structure can be internally adequate without being cxternally adequate, if impiementation packages are
given for private types without giving external representations. The reverse is not possible, since an external

representation implies a default internal representation if no specific internal representation is given.

2.5. Concrete Process Spécifications |

A concrete process specification gives implementation-specific properties of processes.

<{concrete process decl> ::= Concrete Process <name) Is {name> With
{ <concrete process stmt> ; }+
End

{concrete process stmt> ::= (port assoc) | <restriction> | <group decl> | <assertiond

The first <name> after the Process keyword is the name of the new concrete process. The <name> after the Is
keyword is the name of an existing abstract or concrete process from which the new one is to be derived. As
with concrete structures, concrete processes can be organised into hierarchies, with lower levels binding more

details than higher levels.
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2.5.1. Port Associations

A port association names a particular concrete structure which specialises the abstract structure associated”

with the port in the abstract process from which the concrete process was ultimately derived. The concrete
structure must be ultimately derived from the abstract structure specified in the port declaration of the

abstract process.

{port assoc> ::= For (name)lUsa {nameg}

The first <name> indicates a port of the abstract process. The second <name> indicates a concrete structure.

2.5.2. Group Declaration 7

When a process instance produces an output data structure it can do so in one of WO ways. Eithef it modifies
some combination of its input data structures ‘in place’, ar it creates a new data structure, In the first case
there must be an intimate relationship between the representations of the input structures and the output
structures, while in the second they can be decoupled. The 6roup construct captures the notion that a group

of input and output structures may be represented as a singie data structure within a program.

<group decl> ::= Group <name 1ist> Inv <nama>

The <name 14ist> consists of names of input and output ports of the abstract process from which the concrete

process is derived. The <name> after the Inv keyword gives the name of a concrete structure, which must

_declare all the node types and attributes in all the port structures. The structure may declare additional node

types and attributes that the process needs internally in order to perform its work. Inv is short for ‘invariant:’
the concrete structure serves as an invariant assertion about the process in the same way that structures

associated with ports provide preconditions and postconditions of the process,

2.5.3. Restriction of Operations

Restriction specifications provide information about the operations a concrete process is allowed to perform.

<restriction> ::= Restrict <nama> To <oper listd
<oper 1ist> ::= (oper> { , <oper}> }*
<oper> ::= <node oper> | <attribute ober)
The <name> following' the keyword Restrict must be a class name. The operation list gives the set of

operations that are permitted on objects of the node types in the class, and operations permitted on attributes
of the objects,

The node operations are those that are used to create or destroy whole node objects.

<rode opaer> ;:= Create. | Destroy

IR P
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Lamiha) L

vtiribute operations apply o the auribuies of node objects. . S L . !

<attribute operd ::s { Fetch | Store} ( <name 1ist> )

The names in the <name 1ist> must be the names of attributes of the node of this restriction specification. b

A complete list of node and attribute operations is implementation-specific. An implementation may cxtend

DL by adding additional operations to these lists; the ones listed above are the minimum which must be

supported.

2.5.4. Exampie

Continuing the example from Section 2.2.4 we can define the process that maps from the abstract structure

PT to the abstract structure APT as follows. . i

-- first we define an abstract structure that describes the local data of the
-- process’s package

Structure PT_to_APT Root Exp Is APT Except

tree =» tempattr: Integer ;
End

-~ next we provide a concrete structure for PT_to_APT .

Concrete Structure c_PT_to_APT Is PT_to APT With
For variable_def Use variable_package;

End

-~ next we define the process

Process PT_to_APT Is

Pre Inport: PT H
Post Qutport: APT

..
v—ye— r
TINTRCLE

End

-- Finally we define the concrete process. It augments PT to produce
-- ¢_PT_to_APT, modifies it '"in place’, and produces APT.

Concrete Process p_PT_to_APT Is PT_to_APT With
Group Inport.Outport Inv c_PT_to_APT;

Restrict exp To
Create, Destroy,
Fetch( value, tempatir );
Restrict tree To
Fetch{ left, right, op),
Store{ tempattr ): .
-- and so on .

End -- p_PT_to_APT
The concrete process inputs a parse tree from Inport, and outputs an attributed parse tree to Cutport.
Internally its data structures are represented as described by structure c_PT_to_APT, which is an APT with
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the parse tree is modified ‘in place’ to produce the attributed parsc tree,

: an additonal "tempatu” aunbute in alfl ree nodes. ‘The Group specification indicates thar tie representation of

et P g o 5 LA AL P e



27

. Assertion Language
2 domain of a structure is expressed using productions and private type definitions. The assertion language
>ws the expression of additional restrictions on a structure. The assertion language also cah be used with

scesses to relate the preconditions on the input ports to the postconditions on the output ports. Finally, the

ertion language can be used with concrete processes to statc invariants on a groups.

s useful to consider two major kinds of asscrtion that can be made.

o Value assertions: These assertions can be used to further limit the domain of some value (e.g.
restrict an integer value to some specified range) or to express refationships between values (e.g.
require that one integer value always be less than a second integer value).

e Object assertions: These assertions can be used to express structural properties beyond those
captured by productions. These structural properties can be cither local (e.g. require that two

attributes reference the same object) or global (e.g. require that some set of nodes and attributes
have the form of a tree). '

practice, an assertion may actually express a combination of value and object properties.

any operations of the assertion language are in many cases distinguished based on whether they apply to
iues of objects or to the objects themselves.

e Value operations: The form a=b compares the values of objects a and b.

e Object operations: The form a Same b compares objects a and b. It returns true if and oniy if a
and b are the same object.

.1. Assertions

Cassertion> ::= <assert stmt> | <definition>
<assert stmt> ::3 { <name> }? Assert <expression>
1e <expression> must be a boolean expression. Itis required to be true for all instances of the structure or

ocess in which the assertion appears. The optional <name> can be used to reference the assertion in

ithout> clauses.

.2. Expressions

ae syntax of the expressions of the assertion language is given here.
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<expression> ::= (lexpression> | <expression® <lop» {lexpression>

{1lop> ::= Or | Union

{lexpression> ::= (2expression> | <lexpression} <2ap> <(2expressiond

<2op> ::= And | Intersac;

{2expression> ::= { (3op> }? <3expression>

<3op> i Not

<{3expression> ::= {4axpression | <3expression> <{dop> <4§xpression>

Cdop> 1:= = | == | C | <= | > | >= ].In | Same | Psub | Sub

C4expression> ::= { <Sop> }? <Sexpression> | <dexpressiond <Sop> <Sexpressiond
<Bop> ::= + | - 7

<Sexpression> ::= <primary expression> | <Sexpressian> <Bop> {primary expressiond>
{Bop> ::=* | / -

These rules define a conventional expression grammar with operators organized into precedence levels. The

operators or and union have lowest precedence, while  and 7 have highest priority.

<primary expressien> ::= { <name> : }? <type>
) | <litaral> *
I { <expressijond )}
| <primary expressiond . <name>
| <name> ( <actualsd> )
| <if expression>
| <guantified expression>
L3
<literal> ::= True | False
| { <name> : }7 Root
| Empty
] <integer>
{ <rational>
| <string>

<actuals> ::= { <expression> { , <expressiond> 3* )

The ( <expression> ) form of <primary exprassion> is used only for grouping and has no other effect. The
semantics of the other syntactic forms are discussed below.

Each expression will have a type. There are two possible kinds of expression types.

 IDL types. An expression may have Integer, boolean, rational, string, sequence, or set types".
Operations used in value expressions are discussed in Section 34, '

2

* Object set types. Here the expression represents a set of objects of some class. Operations used in
structural expressions are discussed in Section 3.3. ‘
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4I.e.. any of the types defincd in Section 2.3 3 except class types.
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3.3. Operations on Objects and Sets of Objects

The expressions discussed in this section all produce sets of objects.” When such a sct containg ¢xacdy one
object we do not distinguish between a result which is this object and a result that is a set whose only member
is this object.

The following expression forms all specify sets of objects:

e Empty : the literal for the empty object set

o { <port name> : }? <type> :stands for the set of all objects (from the structure associated with
the specified port) with the specified type. The port specification can appear if and only if the
assertion appears within a process definition.

e { <port name> : }? Root :!isthe literal for a set containing oniy the root node object. The port
name rules are the same as the previous case.

e <name> : where <name> is a quantifier (sce Section 3.6).
e Members(setv) : produces the object set of all objects whose locations arc in the set value setv.

e Head(segv) : where seqv IS a2 non-empty sequence value produces the object set containing the
object whose location is first in the sequence. ‘ .

The following expression forms take existing object sets and produce a new object set.

e Union. Intersect : These are the object set union and intersection operations.

e Type(n) : where n is an object set produces the set of all node objects with the same types as those
in n. :

e Dot qualification : of an object set containing only node objects produces an object set which
consists of the objects that are associated with the specified attribute of all these nodes.
The following operations are used to compare object sets to produce a boolean value result.

e same  This is the object set equality operation. Two objects sets are equal if and only if they
contain exactly the same objects.

e Sub, Psub : These are the subset and proper subset operations.

3.4. Operations on Values
The operations and literals listed here all produce values, as opposed to objects. They have conventicnal

semantics and will not be further explained.

e boolean: =, ~=, And, Or, Not, True, False
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o integer and rational: =, ~=, <, <=, >, >2, +, -, =, ;. < integer>, <rational
{operations that mvolve mixtures of integer and rational values are permitted).

® SUING: =, ~=, ¢, <=, >, >=, Siza, ¢string)
;'Set=. ~2, In, Size

® 3eqQUENCe. =, ~=, Size, Tail

e node: =, -=

The lexical fdrm of the iiterals used here is the same as that given in Section 41,

If an object-producting expression is used as an operand of an operation or ar actuals of a built-in functions
listed above, the value of the object is used as the value of the opcrand or actual parameter. Tn general,
object-producing expressions produce sets of objects. In a value-producing cxpression the set must always

contain exactly one object. To ensure this we restrict the oi:uect-producmcr expression forms that are
permitted here to:

s A quantifier name (see Section 3.6).

J :I'he { (‘name> : }7 Root form.

 The Head(<expression>} form.

. DE)[ qualification of one of these forms.

® If expressions where ail expressions following the Then and £1se have one of these forms,

All of these forms are guaranteed to producé a result which consists of a single object.

3.5. lIf Expressions

<if expression> ::= If <expression> Then {expression>
{ OrIf <expression> Then <express1on> }*
Else <expression>
Fi .

The <expression>’s following 1f and or1f must be boolean expressions. The <expression>’s following Then

and E1se must all have the same type which will be the type of the entire <if expression>,

Sthn <if expressionds are evaluated only one of the expressions following a Then or E1se is evaluated. This fact is useful in
ensuring that recursive valye definitions are not cydiic.
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3.6. Quantified Expressions

<quantified expression> :r= { ForAll | Exists } <name> In <expression$
Do <expression> Od

The expression following In must be an object sct expression. The expression betwecn Do and od must be a
boolean expression. The <name> before the 1n is defined to be a quantificr name, has an object set value, and

may be referenced only within the buoleun expression.

Both forms of guantified expression index over all the members of the object set specified by the object set
expression and take as values each of the dbjec:s in this object set. The boolean expression is evaluated for
each of these indexed objects. The result is a boolean value which is true if and only if all (at feast onc) of the

indexed boolean expression evaluations are true for the Fora11 (Exists) form.

3.7. Definitions

<definitien> ::= Dafine <name> { <{formals> }?
{ = <expression> | Returns <(type> }

¢formalsy ::= { <formal> { , <formal> }* )
(formal> ::= <name> : {type>
There are two kinds of definitions

o User-defined functions - the Returns form of definition. This introduces the name of a user-
defined function, whose body must be linked with the assertion checker.

e Value definitions - The expression after the = must have a value type. Invocation of a value
definition produces a value result. Recursion is permitted but vaiue definitions may not be cyclic
(i.e. their evaluation must not involve cyclic identical calls).

e Object set definitions - The expression after the = must define an object set. Invocation of an
obiject set definition produces an object set. Recursive and cyclic definitions are permitted. Cyclic
definitions produce the minimum fixed point solution. The body of such a definition may not
include 1t expressions; this restriction preserves monotonicity.

These functions are invoked using the <name> ( <actuals> ) form of <primary expression>. The type of

each actual expression must match the specifed type of the corresponding formal of the user defined function.,

Overloading of definitions is permitted provided they can be distinguished by their formal parameter types.
It is possible that the IDL translator could resolve the overloading of a user-defined function when the target

language for an assertion checker could not; in this case an the IDL translator will issue an error message.

wrrrererm——e
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3.8. Exampie
The first example shows a collection of asserdons which specify that a data structure is a tree,

Structure Tree Root exp Is
exp ::= inner | leaf;
inner_void ::= inner | void;
void =>

- inner =>» left:exp,
right:exp;

leaf => val: Integer;:
Assert ForAll 1 In leaf Do 1.val <= 100 Od;

i exp =» parent: inner_void;

Assert ForAll e In exp Do
If e Same Root then e.parent Sub void
else e Same e.parent,left Or
e Same e.parent.right Fi
0d;

Define IDesc(n:leaf) = Empty:
Define IDesc{n:inner) = n.left Union n.right;

Define Desc{n:exp) = Reach({IDesc(n}); .
Define Reach(n:exp) = n Union Desc(n);

Assert ForAll n In inner Do Reach(n.left) Intersect Reach(n.right) Same Empty 0d;
» Assert ForA1l n In exp Do Not{a Sub Desc(n)) 0d;

Assert Reach{Root) Same exp;
»

End
The two overloaded ‘[Desc’ functions define the set of immediate descendants of leafs (the empty set) and
inner nodes (the union of the values of the right and left attributes). ‘Desc’ defines the descendants of a node
as all the nodes reachable from its immediate descendants. ‘Reach’ defines the nodes reachable from a node
as itself plus all of its descendants. The first Forai1 states that the set of nodes reachable from the left
subnode of a inner node does not intersect the set of nodes reachable from its right subnode. The second says

a0 node is a descendant of itself. The last says that all expression nodes are reachable from the root.

The second example shows an assertion that the input and output of a process are isomarphic.
Pracess A Is

Pre dinput:Tree;
Post output: Tree;

. Define Compatible{A:exp,B:exp) =

e If Type(A) Same Type(B) Then

: If Type(A) Same leaf Then

. True .

a Else

Compatible(A.left . B.left) And Caompatible{A.right,B.right)

Else
Fatse
Fi;

ST e et e by G e
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Assert Compatible(input:Root.output:Root);

End .
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4. The External ASCIl Representation . -
in order to communicate data between arbitrary programs, possibly written in different languages and

running on different computers, there must be a canonical external representation for cach concrete structure,

We chose an ASCII encoding to maximize the portability of the data. This section defines that encoding.

The paékage that provides the interface between a process instance and data on its ports is required to provide
sperations for mapping to ‘and from the ASCII representation. Programs are not required to use this
epresentation, however, and operations to map to other, more efficient representations are permitted.
‘ndeed, these alternative representations would be the preferred means of communication between

sroduction versions of the various processes.

The external representation of a concrete structure is completety defined by the abstract structure except for
he representation of private types. The syntax of the external representation'has free form lexical rules, so
hat variations based on spacing and comments are not significant. The representation of an object can be
1ested within the repr'escmation of the node that references it or placed at the highest level so as to produce a
'flat” form. The distinction between nested and flat representations can be made on a object-by-object basis

nd is not significant. ,

2ach private type must have an external representation which fits within the fixed syntax given below, The
apresentation is specified by private type representations with €xternal ¢lauses is concrete structures derived
com the abstract structure defining the type. For two programs to communicate via the external
apresentaton, they must use concrete structures which are descended from the same externally adequate

oncrete structure.

-.1. Lexical Rules

he lexemes permitted in the external representation are given beiow. Unlike the DL specification, the
tternal répresenr.ation is not case sensitive, except within <string>’s. This implies a constraint on the use of
ise sensitivity in an IDL specification: two names which differ only in case of letters may not be used if both
ight appear in an external representation. Only node type names and attribute names appear in the external
:presentation; there is no fepresentation of class names. Thus node and attribute names may have the same

»elling, ignoring case, as class names.
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Ctoken> ::= <basic token> | <punctuation>

<basic token> ::= TRUE | FALSE | <name> | <integer> [ <rational> | <string>

<punctuation> ::= "{ | "} J < 1>} s bt 1011
{name> ::= letter { letter | digit ] _ }*

<integer> ::= { + | - }7? <unsigned integer>

<unsigned integer> ::= { digit }+

{ratiomal> ::= { + ] - }7 <unsigned rational>
{unsigned rationaly ::= <basig ratioﬁa])

| { <unsigned integer> | <basic rational Y}/
{ <unsigned integer> | (basic ratianal> }

<{bastc rationald> ::s <unsigned integer> . {unsigned integer> { <exponent> )t

| <unsigned integer> { . <(unsigned integer> }7? <exponent>

| <unsigned integer> # <based> { . <based> }? # { Cexpanentd }?
<exponent> ::= E d{integer> .

<based> ::= { digit | A | B | C|D]E]|F }+

<string> ::= " { string_character }* "

The <rational> literal can be used to represent any rational number. The form iy is the ratonal number
produced by dividing 1 by j. The form with the # can be used to represent numbers in any base between 2

and 16. The first <unsigned integer> gives the base in base 10 and must have a value between 2 and 16. The

- ext part gives the vaiue in that base. The exponent is given in base 10 and specifies. the power of the base by

which the number is to be multiplied. Representations that specify the same rational value (e.g. 1/2 and ¢.5)

are considered to always be equivalent,

The <string> literal can represent any ASCII sting. It may directly contain blanks and the ASCII printing
characters, except = and ~. Each of the other ASCII characters is represented by a two character escape
sequence. The character - is represented by ==. The non-printing characters with octal values 0, 1, ..., 37 are
represented by the escape sequences -@, -A, ..., ~~ (i.e. the controi-shift equivalents of a standard ASCII

keyboard). The character - is represented by --. The character whose octal value is 177 is represented by ~|. _

Break symbols include blanks, comments, and "end-of-line"s. Comments start with -- and are terminated by
the end of the line on which they appear. Any number of break symbois may appear between any two

Ctoken>s with no effect. Break symbols may not appear within tokens, Two adjacent <basic token>’s rmust

be separated by at least one break symbol.

GRS AL 3 ki AL
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The second uses a "flat” form,
1 - - ) . .
2: tree[ context value: op times; left 37; right 4-]
3: leaf[ context value; value 35 ]
4: Jeaf[ context value; value 23 ]
§: leaf[ context value; value 10 ] :
1: tree[ context value; op plus: left 2~; right 5~]
Here, node 1 is the root node. Since the root -node or a reference to it must come first in the external
representation, the 1 + was needed in the first line. If the representation of node 1 came first, the 1 + could

be omitted.

4.4. Mapping Between Internal and External Representations
Every package instantiated from an IDL definition will include a pair of reader/writer operations for mapping

to/from the external representation.

The reader must be able to accept any legal form for its input; it must be able to read nested forms, "flat”

forms, and mixtures of these.

There are a wide variety of choices for how the writer decides on output format. A pdrticular implementation
might provide defaults via site-specific extensions to the concrete process descriptions, or might have the
writer driven by run-time options. It is not necessary that a writer be able to produce all possible variations

between fully nested and compietely flat; -it may chose 0 implement only one preferred form.

Py e
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5_Instantiation of IDL Specifications
A prime purpose of IDL is to provide a notation for describing data structures $o that an automated tool can
generate a variety of data declarations, data structures, and code segments from the description. From the
IDL description of a system, it is possible to generate

& The specification of a package that defines the operations a concrete proeess may perform on the
internal data structures®.

¢ The implementation of the operations for manipulating the internal representation of a concrete
structure. :

« Tables or code for a reader that inputs the external representation described in Chapter 4 and
maps it into whatever internal representation is needed for a-particular concrete process, and for a
writer that performs the opposite transformation. '

o Tables or code for a checker that verifies that a particular data structure satisfies the assertions of
some structure.

This chapter discusses the issucs involved in instantiating an IDL description. These issues are also covered in

L]

the CMU IDL implementation document [4l.

5.1. Implementation of Concrete Structures

jmplementng a CONCrete SUUCTUrE involves deciding how to implement IDL nodes, IDL classes, and
artributes of IDL nodes. Because IDL supports a wide range of target languages, the implementation of [DL
data structures will vary from one target language to another. When provided by the target language, use of
an abstract type facility is the preferred approach. In this case the IDL internal level will be divided into wwo
parts: one for the abstract speciﬁcatibn (i.e. the externally visible types and operations) and a second part for
the implementation. For languages lacking an abstract type facility, an attempt should be made to follow the

abstract type methodology.

The straightforward implementation of an IDL structure is to define an implementation language record type
for each IDL node type, and to represent IDL atiributes as fields of the records. IDL classes complicate this
view slightly, since they are used as types of attributes. In a language that allows untyped pointers there is no
need for a representation of classes, since node-valued attributes can be represented as untyped pointers. Ina
“language with union types, each IDL class can be represented as a union of the node types comprising the
class. In a strongly typed 1anguage with variant records, it might be convenient to represent all node types as

variants of a single type.

6An example of an Ada package is given in the Diana report.
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‘I'ne record implementation IS ONC ANONE THAY alternatve implementations allowed by the ubstract/concrete

split in IDL. The following paragraphs discuss some of the implementation options.

e A Coroutine Organization. It is common for the Front and Back Ends of a compiler to be
organized in a coroutine manncr. the Front End produces a portion of the intermediate
representation after which the Back End produces code for this portion and then discards the
unnceded pieees of the intermediate representation. tn this oreanizaton there would never be a
complete representation for the entire structure used to communicate between the two phases.
Instead, only a consistent subgraph for the portion being communicated is needed. To use this
style of compiler organization, the user necds only to ensure that the valucs of all of the attributes
for that portion of the tree being communicated are defined property.

o Non tree structures. IDL is oriented towards graph-structuted and tree-structured data. Many
simple compilers use a linear representation, such as poiish postfix. Such a representation
simplifies certain trec traversals, and indced may be obtained from a wee representation by such 2
rraversal. Such representations may also have an advantage in that they are more cfticient where
storage is limited or paging overheads are high. An IDL description might suggest a tree
strucrure, but a linear representation is entrely within the spirit of IDL. Where an IDL

- description requires a (conceptual), pointer it may be replaced by an index into the linear
representation.

o Atributes outside the nodes. There is no need for the auributes of a node to be stored
contiguously. There are many variations on this theme, but we will flustrate with just one here.
Suppose that the general storage representation to be used involves storing each node as a record
in the heap and using pointers to encode structural attributes. Because there are a number of
different attributes associated with each node type, one may not wish to store these atiributes
directly in the records representing the nodes. Instead. one might define a number of vectors (of
records) where the records in each vector are tailored to the various groupings of attribute types in
IDL nodes. Using this scheme, the nodes themselves need only contain indices into the relevant
vectors. Such a scheme has the advantage of making nodes of uniform size as well as facilitating
the sharing of identical sets of atribute values.

o Nodes inside other nodes. An attribute of a node may ‘reference’ another node, but this does not -
necessarily imply that a poiater is required; the referenced node may be directly included in the B
storage structure of the outer node so long as the processing permits this. This is especially
important where the referenced node has no atributes. If a class consists entirely of node types B
with no attributes. and node objects within the class arc never shared, then the class can be
implemented as an enumerated type, with the node types in the class as literals of the enumerated
type.

i
3

5.2. Implementation of the Reader
The syntax of the external representation can be described by a fairly small LALR(1) gré_mmar. as well as by

an LL(2) grammar (see Figure 5-1). The parsing component of the reader can be generated automatically.

Building the internal data structures can be more difficult

The primitive syntactic clements of the cxternal representation are labels, strings, integers, }ists of
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{program> ;:= <node-ref> <{lnode-Tist> $$ ‘
¢lrode-1ist> ::= <Inode> <1node-list> | $3
<{Inoda>

::® {Tabel) : <node> $$

<lvalue> ::= {lzbel> : <value> $$ ‘
{value> ::= <simp1e-va1pe) | { <value-1ist> } | "¢ <value-list> "> | <node> $%
<reference> ::= <value> | labeliref $$ .
<value-Tist> ::=2 <{pvalue> <(value-Tist> | §%
C(pvalue> ::= <reference> | <(lvalue> 3§
<labg1> ::= integer | name $$ .

<node-ref> ;:= (label> + | <node> $$

{node> ::* name <{factor-1> 3$

{factor-1>

{pair-Tist> :

pair-list~

lpaird =

113 [ <pair-list> ] | $$
:x (pair> (pair-Tist-p> | $$
p> ::= ; <pair> <pair-list-p> | $$

name <pvalue> $3%

oy

WAy

(simple-valua> ::= integer | rational | string | true | false $%

Figure 5-1: L1(2) Grammar for IDL External Representations :

ttribute/value pairs, and lists of values. From these the reader must build the internal data structures. If the 3
mplementation language is ioosely typed or typeless, the reader can be driven by a set of tables describing the

zyout of each node type. When the reader encounters a node, it fetches the description of the node type from

T

symbol table, using the node name as the key. For each of the attribute/value pairs in the node’s external

>presentation, the reader applies one of a small set of transformations in order to convert it into an internal

bl Ik VL i it Dokt

:presentation, and places the result in an appropriate place in the node representation. Labels can be

P e g vy 7 o

andled in a second fixup pass, in the same manner as most assemblers.

LA™ w2 i)

- a strongly typed language, the stuong typing prevents this kind of table-driven approach. The IDL

‘ocessor must generate code in this case. Furthermore, the symbol tabie needed for label processing requires

Lok pdtbinid i

at the objects stored in the symbol table be of some single type. This may require that all values that can be

>elled be represented by a single type, and thus may force ail the IDL types to be represented as variants of
single record type.

lvate types require the definition of an interface between the reader and the package implementing the
tvate type. One possible interface is to have the private package provide a subroutine which takes the

rder’s 'rcprescntation of the components of the external representation as parameters, and which returns a
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value of the private type-as its result,

5.3. Implementation of the Writer
The writer is subject to some of the same considerations as the reader. In a typeless language it can be table-

driven: in a sirongly typed lunguage it is likely to be "hard code.”

The key problem for the writer is generating labels for node objects referenced from more than one attribute.
This may require additional data structures o hold the labels, or may require a "label attribute in every node.
In the latter case the label attribute should be added automatically by the IDL processor,. rather than
requiring users to insert such an attribute. To generate a flat form, where ail nodes are labelled and all node-
valued attributes are represented as labels, requires some way for the writer to touch ail nodes in a structure.
To generate a nested form requires knowledge of which attributes are node-valued. If the data structure is
known to be a tree then the writer can cmit the nested form by a single tree walk, If the structure might be a

graph, a pre-pass is needed to assign labels to nodes that might be referenced more than once.
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Part Two

Formal Model of IDL







45
6. Notes on the Formal Notation
This chapter introduces some of the nomtional conventions used throughout Part Two of this document.
6.1. Sets
Let S and T be sets with s,s1,s2,...sneSand te T,

The notation [S,T] denotes the cartesian product of S and T. Elements of cartesian products are refered to by

ordered pairs and subscripts are used to select out each component. So, for example, if ste [S 'I'I then we may
write either

st=4s,>
or

s=st.] At=st2

The notation [S]* stands for the set of all ordered secjuences of values from S. We will write sequences in the

form <sls2,..sn>. Sequences are accessed with two functions:  with car((sl.sZ,...,sn))-—:sl. and

cdr(<s1,82,...,s10) =<s2,....s1. Sequences may be constructed with cons(sl,<s2,...sn>)=<s1,s2,...sn>. The

predicate se<sl.s2,....sn> is true iff s is equal to some si in the sequence. The notation P(S) stands for the
power set of S. ' '

The notation S+ T stands for the disjoint union of S and T.

The notation $ — T denotes the set of all (total and partal) computable functions from Sto T.

6.2. Operation Definitions -

In the following chapters, we define a number of operations on model domains. Each of these definitions is of

the form:

OP: domain — range
note:  some prose that describes the intuitive effect of the operation
use: an example of programming language-like use of the operation
pre: the precondition of the operation (in case the precondidon is true we omit 1t)
post:  the postcondition of the operation -

The use clause in this definition is often used to establish names which are subsequently used in the pre and

post conditions,

——_—
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7. Formal Model of IDL Graphs
This chapter formally defines the mode! of IDL. attributed graphs. We first define the domain of'graphs and

then specify graph operations. We begin by defining the domain; to do this we will some auxiliary domains
that are used in the definition:

TYPE " isacountable set of ‘types’.
VALUE is a countable set of ‘values’, o
TAG is a countable set of ‘tags’, _ f

We shall have more to say about these domains and their clements later. Intuitively, however, TYPE is a
collection of types, VALUE is a collection of values of these types, and TAG is a collection of vaiues used to
distinguish between objects of the same type. For the moment we only need the fact that they are mutually '

disjoint and that there exists a function which maps from types to the possible v;alues of that type.

vset: TYPE — P(VALUE)
That is, ‘vset’ maps each type into a set of values in VALUE. Note that we do not require that this furiction i
nduce a partition on VALUE, thus a single value can be in the vset of more than one type. We will also need - *r:'

some distinguished values in these domains; these distinguished values will be used to model deleted objects
ind undefined values and attributes:. |

delvalue e VALUE where VteTYPE delvalueevset(t)

undefvalue ¢ VALUE ~ where V¢ TYPE undefvaluesvset(t)
undeftag ¢ TAG E

Ve will also need to know what types the root node may have.

e P A e T T

roottypesc TYPE i

‘e will also need the following derived domain:
LOCATION a [TYPE,TAG]

ituidvely LOCATION is a domain of ‘typed addresses’.

’e can now define a domain that characterizes the model:

PO
i

GRAPH a [LOCATION, LOCATION - VALUE]

~where

Y TSN ITE T LY
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Veraphe GRAPH graph.1.2#undeftag=
graph.l.leroottypes

VerapheGRAPH, V<type tagde LOCATION, Vvaluee VALUE,
graph.2(<type,tag>) = vaiue A value= delvalue A value= undcfvalue
= valucevsct{typc)

VerapheGRAPH, —( Jtypee TYPE, Jvaluee VALUE, graph.2(<type,undeftagd) = value )

where (a) the first LOCATION is distinguished and called the ‘root’ of the graph, and where (b) 'LOCATION
— VALUE' Is an abstract store that associates values with locations. Intuitively, each graphe GRAPH consists
of a distinguished root location and a function which given a ‘lucation’ returns the value that is ‘stored’ there.
We can also think of a graphe GRAPH as describing a set of objects, each of which has a type, tag, and value.
The root object is distinguished and is used as a means of gaining acccss to all the other objects. We will
model changes to the data structure by operations that take an existing ‘graph’ and preduce a new updated
‘graph’. The first restriction ensures that the root object has a correct type. The second restriction given with
the domain ensures that the values in the ‘graph’ are compatible with their location type. The third restriction

ensures that there will never be an object with the undeftag tag.

The following definitions are for the operations permitted on graphs.

LOCATIONS: GRAPH — 2(LOCATION)
‘note:  Returns the set of (locations of) all objects in a graph.
use: s:= LOCATIONS(g)
post: s = {loceLOCATION | Jvaluee VALUE, g.2(loc)=value }

EMPTYGRAPH: — GRAPH
note:  Constructor used to obtain the empty graph.
use: g:= EMPTYGRAPH
post: LOCATIONS(g) = B
A g1.2 = undeftag

CREATE: [GRAPH,TYPE] — [GRAPH,LOCATION]

note:  Allocates a new object of the specified type and returns its location; the
new object is uninitialized.

use:  <glloc>:= CREATE(g,type)

post: loceLOCATIONS(g)
A LOCATIONS(gl) = LOCATIONS(g) U {loc}
Aloc.l = type
A ViocleLOCATION (locl=loc = gl.2(locl) =g.2(locl))

A (leel=loc = gl.2(locl) = undefvalue)
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DESTROY: [GRAPH,LOCATION] — GRAPH

note:

use:
pre:

post:

Trecs (deallocates) the object at the specified location; the object is not
actually destroyed, but instead is given the distinguished value delvalue.
This allows other preconditions on other operations to prohibit
dereferencing a ‘dangling pointer’.
gl ;= DESTROY(g,loc)
loce LOCATIONS(g)
A g.2(loc)=delvalue
Y10ele LOCATION, (locl=loc = gl.2(locl)=g.2(locl))

A (locl=loc = gl.2(locl) = deivalue)

FETCH: [GRAPH.LOCATION] — VALUE

note:
use:
pre:

post:

Retrieves the value assaciated with the specified object.
value : = FETCH(g,loc)

loce LOCATIONS(g)

A g.2(loc)=delvalue A g.2{loc)=undefvalue

vaiue = g.2(loc) )

STORE: [GRAPH,LOCATION,VALUE] — GRAPH

note:

use:
pre:

post:

Sets the value of the object at the specified location ta a specified value.
The previous vaiue of this object is lost Note that the value of a freed
cbject cannot be altered and that the type of the object must be that of

the value to be stored -- the type of an object’s value cannot be changed. v
gl 1= STORE(g,loc,value) .
loce LOCATIONS(g)

A g.2(loc)=delvalue

A valueevset{loc.1)

Y1ocle LOCATION, (locl=loc = gl.2(loc1)=g.2(locl))
A (locl=loc = gl(locl) = value) -

FETCHROOT: GRAPH — LOCATION

note:
use:
pre:
post:

Returns the distinguished root of the graph.
loc : = FETCHROOT{(g)

£.1.2 = undeftag

loc =gl

STOREROOT: [GRAPH,LOCATION] — GRAPH

note:
use:
pre: |
post:

Sets the distnguished root of the graph to the specified location.
gl := STOREROQOQT(g,loc)

loc.lercottypes

gl = <loc,g.2>






8. Formal Model of IDL Types

In this chapter the IDL types and their associated value sets are formally defined. We begin by giving the
definition of the complete IDL TYPE and VALUE domains and then in the following sections describing
cach type and its values.

TYPE 2 {boolean,integer,string rational} U NN U [{ seq,set}, TYPES] U PT

VALUE 2 BVALUE v IVALUE U SVALUE U RVALUE U NV U Set U Seq U PVALUE u
{delvalue,undefvalue}

The auxiliary domain TYPES is defined as:
TYPES 2 { {type} | typeeTYPE } U P(NN)

Members of this domain will be used to constrain the types of objects tﬁat node attributes and elements of sets
and sequences can reference. In the simpie case, a reference can be to only one type of object. For references
to nodes, however, the reference can be to any node object having any of a specificd set of node types. This
feature of the model provides support for the kinds of data smxcturiﬁg done in many programming languages

with variant records or union types.

8.1. Boolean Type
The IDL Boolean type has type

boolean
and value set

BVALUE = {false,true}
and type-value set association

vset(boolean) = BVALUE

8.2. Integer Type
The IDL Integer type has type

integer
and value set

IVALUE = {..,-2,-1,0,1,2,3,...}
and typé—value set associz;tion_ A

vset(integer) = IVALUE
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i

8.3. String Type
The IDL string type has type

[
- i
.

string

and value set

m g g

SVALUE = [CHARJ*
where CHAR is the set of all ASCII characters and type-value sct association

vsel(string) = SVALUE

8.4. Rational Type
i The IDL Rational type has type

rational

and value set

N RVALUE = { <ij>€[IVALUE,IVALUE] | j=0 }/Req
Pt where <> Req <k, = i*1=j"k .

and type-value set association

T L TR I

vset(Rational) = RVALUE

8.5. Node Types
Node types are characterized by a finite domain of node names.

o NN is-a finite set of ‘node names’.
We will also need a domain for the names of the attributes of nodes.

AN is a finite sot of ‘attribute names’.

P S B e ]

Each of these domains must be disjoint from the VALUE and TAG domains. The NN and AN domains may

overlap.

We can now define the domain of node values:
NV a [NN, AN—LOCATION] 3

Note that a node value consists of a node name and a function that maps atribute names to locations of

objects in which the attribute values are ‘stored’.

T TR IR
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We must also have a function: -
AType: [NN,AN] — TYPES

Given a node name and the name of one of its attributcs, this function produces the set of types {of objccts)

that the attribute can reference. One major purpose of the 1DL notation is to provide a humane way of

defining this function.

We also require here that the ‘vset function will map cach node type (i.e. node name) to a set of node values.

VnneNN, vsbt(nn) = {<an,eNV|
YaneAN, Viypese TYPES, .
(types=AType(nn,an)) = (JtageT AG, Stypeetypes, f{an) =<type,tagd) }

The predicate ensures that ail node vaiues are compatible with AType (i.c. that they conform to their IDL
node specification). '

The operations on node values are defined below.

NAMES: NV — P(AN)
note:  Returns the set of all attribute names of a node value, .
use.  ans:= NAMES(nv) _
post: ans = { aneAN | SloceLOCATION, av.2(an)=loc }

FETCHCOMP: [NV,AN] — LOCATION
note: Returns a reference associated with the specified atribute.  The
attribute must have been initialized.
use: loc:= FETCHCOMP(nv,an)
pre: aneNAMES(nv)
A nv.2(an).2 = undeftag
post:  loc = nv.2(an)

STORECOMP: [NV, AN,LOCATION] — NV ]
note:  Sets the reference associated with a specified attribute. The type of the
location must be one of those permitted for the attribute.
use.  nvl:= STORECOMP(nv,an,loc)
pret.  aneNAMES(nv)
Aloc.l € AType(nv.1,an)
post: nvll =nvl
A VanleAN, (anl=an = nvl.2(anl)= nv.2(anl))
A (anl=an = nv1.2(anl) = loc)

. =g gy
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54 Formal Model of 1DL Types

CREATECOMP: [NN] — NV .
note:  Creates a node value for the specified type; the attributes of the node

* are uninitalized.
use: NV:i= CREATECOMP(nn)

post: mv.l=nn .
A Fane AN, (Ftypese TYPLS, Atype(nn.an) =ypes) = nv.2(an).2 =undeftug

8.6. Sequence Types

A sequence type has the form

[seq.types]
where types € TYPES and controls what types of values elements of the scqﬁcncc may reference. Informally a

scquence vatue is a typed n-tuple of locations; formally,
Seq 2 [TYPES,[LOCATION]*]
‘The vsct for scquences is defined by

. vsey([seq,types]) = { <types.locs? | Yiocelocs.loc. letypes }

The restriction here ensures that elements of a sequence may only reference objects of the permitted types.

The operations on sequence values are formally defined below.

HEAD: Seq — LOCATION
note:  Remmns the first element of the specified scquence.
use:  loc:= HEAD(s)
pre: = ISEMPTY(s)
post: loc=car(s.2)

TAIL: Seq — Seq .
note: Removes the first element of the specified sequence and rerurns the
remainder.
use:  sl:= TAIL(s)
pre: - ISEMPTY(s)
post: sl = <s.lcdr(s.2p

ISEMPTY: Seq — boolean
note:  Returns true iff the specified sequence is empty.
use: b := ISEMPTY(s)
post: b =(s2=<>)

VY i Fh L EAN. Sl bl M e = 51 7L
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MAKE: [LOCATION,Seg] — Seq

note:  Constructor that returns the Sequence consisting of the specified object
as its head and the specificd sequence as its tai,

use: sl := MAKE(loc,s) :

pre:. loclesi

post: sl = <s.leons(locs.2)y

EMPTYSEQ: TYPES — Seq
note:  Constructor for the empty sequence.
use:  s:= EMPTYSEQ(types)
post: s = {types, D

8.7. Set Types
A set type has the form

[set,types]

where types € TYPES and controls what types of values elements of the set may reference, Informally a set

*

value is a typed set of locations; formally,
Seta [T YPES,EP(LOCATION)]

The vset for sets is defined by

vser([set,types]) = { <typeslocs) | Vlocelocs,loc. 1etypes }

The restriction here ensures that elements of a set may only reference objects of the permitted types.

The operations on set values are defined below.

SELECT: Set — LOCATION
bote:  Returns some (unspecified) element of the set. Note that SELECT may
be used in conjunction with REMOVE and ISEMPTY to iterate over a
set of values, )
use:  loc:= SELECT(s)
pre: = IsSEMPTY(5)
post: loces2

ISEMPTY: Set — boolean
note:  Returns true iff the specified sct is empty.
use: b= ISEMPTY(s)
post: b=(s2=g)
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INSERT: [Set, LOCATION] — Set
note:  Adds specified clement to the specified set
use:  sl:= INSERT(s,loc)
prez  loclesl
post: sl =4sls2U {loc}>

REMOVE: [ScLLOCA’l'ION] —+ Set
note: Removes specified clement from the specified sct (if present).
use: sl := REMOVE(s,}oc)
pre:  loclesl
post: sl = <s.1.{loclflocles A locl=loc}>

EMPTYSET: TYPES — Set
note:  Constructor for the empty set.
use:  §:= EMPTYSET(types)
post: §= Qypes, >

8.8. Private Types
The type for private types is

PT - a finite-set of private types
and the value set for private types is

PVALUE - a countable set of private values

5 b 1 R e e S 0 L i S e S B

The PVALUE set may include arbitrary values that are not presenc in the value sets of the built-in types;

pe-value set

however, the PYALUE set need not be disjoint from the value sets os the built-in types. The ty

association for private types must obey

VptePT,vset(PT)cPVALUE
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9. Formal Model for Productions

Previous chapters of part two have discussed a formal model for IDL data structures that is universal in that it
applies to all IDL structures. To specialize this model to a paticular Structure, it is necessary to fuily specify
the NN, AN, and PT domains, the roottypes set, and the ATypc function, This chapter'shows how this
information is derived from the productions of some specific 1D, structurc.' The format technique used here
is a denotational definition that Operates over a somewhat simplified syntax for structures. In particular, given

a structure, <abstract structure dects, then the information can be found by:

' {NN,AN,PT,roottypes, AType> 2 AMS [<apstract structure decd>]

Auxiliary Domain

NAMES 2 P(¢name>)

Attribute Types Domain and Operations

ATYPES = [¢name>,<name>] — TYPES

EMPTYATTR: — ATYPES
note:  Returns an attributes types function.
use: atype := EMPTYATTR
post:  —(Jnode.attre<name>, Jrypese TYPES, atype(nn,an)= types)

ADDATTR: [ATYPES < name> <name> NAMES] — ATYPES
note:  Adds an attribute, consisting of a node and attribute name together with
the types permitted for the attribute to the auributes types function.
use:  arypel ;= ADDATTR(a[ype,node,attr,types)
pre:  —(JiypeseTYPES, atype(node,atir) = types)
post:  Vnnlanle<names, (<anl.anl>=<an.an> — atypel(nnl.anl)=atype(nnl,anl))
A (<nnlanl>=<ngn,an> = atypel(nni,anl)=types)

Znvironment Domain and Operations

ENV s <name> — [{node,class,private}, NAMES]

EMPTYENYV: — ENV
note:  Returns an empty environment.
use: env .= EMPTYENV
post: —~(Jnamee<name>, Jinfoe [{nodc.class,privnte},NAMES]. env{name)=info)
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DEFINE: [ENV. name>.{nodc.class.privutc}.NAMES} — ENV
note:  Adds the specificd <name> and its type and valuc to the enviropment.
pse:  envl:= DEFIN F{env.name,typ,val)
nh pre: —|(':_lénfoe[{nodc,cluss,private},NAMES]‘ env{name)=info)
i 'r post: Vnamele<name>, (namel=name = envl(namcl)=env(name 1)
! A (nuncl =name = envl(namel)=<typ,val>)

FINDTYPES: [<name>,ENV] — NAMES
note: Looks up the specificd <name> in the environment and returns its
S _ associated value.
l pse:  names ;= FINDTYPES(name,env)
pre. Jinfoel{ node.class,private}, NAMES], env(name)=info
post: names = eav(name).2’

S Denotational Function Domains

1 AT - cabstract structure decly — [NAMES,NAMES.NAMES,NAMES,ATYPES]

AMY - cabstract structure stmts> — [ENV.ENV ATYPES] —
[ENV,NAMES,NAMES NAMES,ATYPES]

-7 CLY : ¢names> — ENV — NAMES ' N
AT : <attributes> — [ENV,<name> ATYPES] — [NAMES,ATYPES]

Ll TYP ; <type> — ENV — TYPES

Denotational Rules

: cabstract structure decl> ::= Structure <{name> Root <name> Is
bo (abstract structure stmts> End

AMT {<abstract structure decD] =
LetRec <envall.an,an,ptatype> = AAS [<abstract structure stmts>]
<EMPTYENV,envalLEMPTYATTR> In
- Let it = FINDTYPES([<name>] envall} In
T {nn,an,pLrt,atype>

<abstract structure stmts> ::= <abstract structure stmt> ;

AT [<abstract structure stmts>] = AMY [<abstract structure stme>]

T R R e A T e AL REY
»

[N, SR
e . .

¢abstract structure stmts> ::: {abstract structure stmts>1 <abstract structure stmtd> 3
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AM S [<abstract structure stmis>] <env,envall.atyped. =

Let<envl,nnl anl,ptlatypeld = A <abstract structure stmts>1]]
{env,envallatyped In

Let <env2.nn2.an2,pt2,atype2> = AM Y [<abstract structurs stmt>]]
<envl,envallatypel> In
<envZunlunnlanluan2,ptlUp.atype2d

<abstract structure stmt> ::= {class productiony

AN S [<abstract structure stmts>] = AMY [cerass production>]
{abstract structure stmt> ::= {node productiond

AMYS [<abstract structure stmts>] = AT J<node production>]
<abstract structure stmt> ::= {type decl>

AM S [cabstract structurs stmts>] = AMS [<type dect]
<class production> ::= {name> ;:= <names>l

AMS [<crass production>] <env,envallatyped =

Let names = CLY [<names>] envall In

Letenvl = DEFINE(env,[<name>],class,names) In
{envl,d,d,d,atyped>

{names> ::= {pame>

CL? II( names>] envall =
FINDTYPES(H< name)ﬂ,envall)

<names> ::= <{names>1 | <{name>

C..f..'f [I(names)]] envall =
CL¥ J<names>1] envall U FINDTYPES([<name>],envall)

{type decl> ::= Typg <{nams>
AMF [<type dec1>] <env,envallatyped =
Let envl = DEFINE(env,<name> private,{[<name>]}) In
{envl,@,d {<name>},atyped>
<{node production> ::= <{name> =)
AM S [<node production>] <env.envall atype> =
Letenvl = DEFINE(env,[<name>],node,{<name>]}) In
<Kenvl {[<name>]},2,2,atype>

<node production)> ::= <pame> 2> (attributaes>

59
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AMY {<node production>] <env.envailatype> =
Letenvl = DEFINE(env,[[<name>].node{[f<nane>]}) In
" Let<anl.atypel> = A9T [<attributes>] <envail,[<name>],atype> In
<envl,{[[<name>]},anl, @ atypel>
<attributes> ::= <{attribute)
ATT [<attributes>] = ATT [cattributer]
<attributes> ::= <{attributes>1 , <attribute>
AT [<attributes>] <cnv,nn,atyped =
Let<anl,atypel> = ATT [cattributes>1] <env,nn,atype> In
Let<an2atype2> = AT [<attribute>] <env,nn,atypel> In
<anluan2,atypel>
<attribute> ::= <{name> : <{type>
AT [<attribute>]) <env.nnatype> =

Let types = TYP [<type>] env In ,
{[<name>]},ADDATTR(atype.nn,[<name> ], types)>

;type> ::= Boolean
TYP [<type>] env = {boolean}
(tfba) (:= Integer
JYP [<type>] env = {integer}
{type> ::= String .
JYP [<type>] env = {string}
{type> ::= Ratiocnail
JYP [<type>] env = {rational}
{type> ::= Set Of (t&pe)l
TYP [<typer] env = {set, TYP [<type>1]>}
{type> ::= Seq Of <type>1
TYP [<type>] env = {<seqIYP [¢rypa>1]>}

{type> ::= <{name> -
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FINDTYPES([<name>],env)

TYP [<type>] env
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10. Formalization of the Exte'rna_l Forr_h

10.1. Formal Mapping from the External Form

This section formally specifies the mapping from externals forms to the formal attributed directed graph
domain. The approach used here is to specify the semantics of external forms denotationally in terms of the
operations of the formal model given in previous chapters. In par_cicu]ar, if <ASCII rep>1 is some par.[icular
instance of an external form of some structure, then 8<ascir rep>1] will be the grapheGRAPH that it

represents,

An external form is considered to be valid for some cxrernally adequate structure iff all of the preconditions

of the operations used to convert it to its corresponding graph are satisfied.

This section is now incomplete. It is missing:

® Rules for the external representation of private types.

® Rules for handling the fact that IDL is case sensitive but the external form is not.
® Rules for the semantics of literais (i.e. The S semantic rules).

e More informal descriptions of the rules.

These will all be included in later versions of this document.

.abel Table Domain and Operations

LABELS 2 <1abe1> — LOCATION

EMPTYLABELS: — LABELS"
note: Returns an empty label table,
use: L:= EMPTYLABELS
post:  —(Jlabeleciabet>, Jioce LOCATION, L(label) =loc)

ADDLABELS: [<1abe1>,LOCATION,LABELS] — LABELS
note:  Adds the specified <1abe1> and its location to the label table.
use:  L1:= ADDLABELS(labelloc.L)
pre.  —(JloceLOCATION, L(lzbel)=1loc)
post:  Viabelleciavet>, (labell =label = L1(labell) = L(labell))
A (labell =label = Ll{labell) =loc)

r g
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‘64 Formalizadon of the External Form

FINDLABELS: [<1aba1>, LABELS] — LOCATION
note: Looks up the specified <lavel> in the label table and rewrns its
associated location.

use:  loc := FINDLABELS(labelll)
pre.  JloceLOCATION, L(label)=1loc
post: loc = L{label)

Denotational Function Domains

B :<asci1 rep> — GRAPH
N @ ¢node> — [LABELS,LABELS] — GRAPH — [NV,TYPE,LABELS,GRAPH]
A :<attribute> — [LABELS,LABELS] — GRAPH — NV — [NV,LABELS,GRAPH]

% : creferance> — [LABELS,LABELS] — GRAPH — TYPES —
[LOCATION,LABELS,GRAPH]

Y . <value> — [LABELS,LABELS] - GRAPH — TYPES —
[VALUE,TYPE,LABELS,GRAPH]

L :<labeled nodes> — [LABELS.LABELS] ~ GRAPH — [LABELS,GRAPH)]

B :iteral> — VALUE

ASCII rep Denotational Rules

<ASCII rep> ::= <reference)> <labeled nodes)

8 [<ascII rep>] =

LetRec <Lall,gd> =
Letg = EMPTYGRAPH In
Let<loc,L1,g1> = % [[<reference>] <EMPTYLABELS,LalD g In
Let g2 = STOREROOT(gL.loc) In
Let<12,g3> = L [<1abeled node>] <L1,Lall> g2 In
<L2.83>

In

g4

{labeisd nodes)> ::=

L [<1abeted noges>] <L1Lall> g = <L1g>
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<{labeled nodes> ::= {labeled nodes>l <label} : <node>

L [<1abeled nodes>] <L1Lall g =

Let<L.2,g1> = L [[<1abeled nodes>1] <L1,Lall> gIn
Let<nv.type.l3,g2> = N[<node>] <L2,Lall> gl In
Let<glloc> = CREATE(g2 type) In
Let g4 = STORE(g3.loc,nv) In
Let L4 = ADDLABELS([<1abe1>],loe,L3) In
<L4,g4>

Node Denotational Rules

<noded> ::= <{name>

N¢noges] <LLalb g =
< CREATECOMP([I(name)]]) [<name>] , L g)

<node> ::= <(name> [ <attributes> ]
Ncnoges] <L Lal> g =
Letav = CREATECOMP([<name>]} In

Let<nviL1lgl> = A ﬂ<attr1bute>]] <LLail>gnvIn
<nvl.[<nrame>],L3,g1>

Attribute Denotational Rules
Cattributes> ::= <attributed>
A [<attributes>] = A [<attribute>]
{attributes> ::= <attributes>l ; <attributad
A [<attributes>] <L Lal> gnv =

Let<nvl,L1gl> = A [<attributes>1] <L Lal> gnvin
A [<attrinute>] <L1,Lall> gl nvl

<attribute> ::= (name> (referance-kt
A [cattribute>] <L LalD g nv =

Let<loc,L1,gl> = % [« reference)]] <LlLal>gln
{ STORECOMP(nv,[¢name>],loc), L1, gl >

Refercnce Denotational Rules

{referance> ::= <{value>
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% [cretarence>] <L.Lall> g types =
Let <v,type,L1gl> = ¥cvatue>] <L,Lall> g types In
- Let<g2loc> = CREATE(gl.type) In
Let g3 = STORE(g2,}oc,v) In
oc,Llgd> -

<reference> ::= {label> : <value>

% [creference>] <L, Lall> g types =
Let<v,type,L1,gl> = Y[<vatue>] <L.Lall> g types In
Let<g2loc> = CREATE(gl,type) In
Letg3 = STORE(g2loc,v) In
LetL2 = ADDLABELS([<1abe1>],loc,L1) In
loe,L2,23>

¢raferance> ::= {label> *

% [« referance>] <L,Lall> g types =
< FINDLABELS([<1abe1>],Lall}, L 82
Value Denotational Rules

{value> ::= TRUE

Y<value>] <L,Lail> g types =
{true,boolean,L g>

.

{value> 1::= FALSE

Tevaruer] <L,LalD g types =
{false boolean,L,g>

<value> ::* <{integer>

¥{<value>] <L,Lall> g types =
<D [<integer>] , integer, L, 2>

{value> ::= <{string>

T{cvalue>] <L.LalD g types =
<D [<string>],string, L, >

{value> ::5 {rational>

Ycvatue>]) <L.LalD g types =
<B [<rationa1>], rational ,L, g>

{valua> ::= <{node>
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Tlcvarues] <L,Laib> g types =
- Let<av,type,Llgl> = X [<node>] <L,Lail> g In
<nv,type,Llgl> :

<valued ::= { <set values> }
7ﬂ<value>ﬂ = Vcset values>]
<{set values)y ::=

Tl<set vatuess] <L Lall> g types =
Let {type} = types In
CEMPTYSET(type.2), type, L, 2>

{set values> ::= <(set values>l (referenca>

Tlcset valves>[ <L Lall> g types =
Let <v.type L1g1> = ¥cset values>1] <L,Lall> g types In
Let<loc,L2,92> = % [« reference>] <L1,Lail> gl type.2 In
Letvl = INSERT(v,loc) In
<vltypel2,g2>

<value> ::= ¢ <{seq values> >
Yﬂ(va1ue>ﬂ = T¢seq values>]

<seq values)> ::=

Tlcvatues] <LLalD g types =
Let {type} = types In
<EMPTYSEQ(type.2), type, L, g>

<seq values> ;:= <reference> <{seqg values>t

¥cvatue>] <L Lall> g types =
Let {type} = types In
Let<loc,L1gl> = % [« reference>] <L,Lall> g type.2 In
Let <v,typel.L2,g2> = ¥fcseq values>1] <L1,LalD gl types In
Letvl = MAKE(loc,v) In
<vltypeL2,g2>

10.2. Formal Mapping to the External Form ‘

Previous sections defined the many-te-onc mapping from external forms to internal forms. We define the
possible mappings from internal form to cxternal form as the many possible .inverse mappings. Given a
grapheGRAPH, then its possible external forms are
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External_Forms(graph) = { <ASCII rep> | 8 [<asci1 rep>] = graph}

That is, the possible external forms of graph are all. <AsC1® rep>s such that the § map applied to such an
<ASCII rap> yiclds graph. The writcr must be able to produce at least one of these forms.
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Appendix |
IDL BiNF Summary

¢lexpression> ::» <(2expression’ ! <lexpression> <(20p> {2expraession>
<lep> ::= Or | Union
<Zexpression> ::= { <Zop> }? ¢3expression>

<2op> ::= And | Intersect

{3expression> <4expression> | <3expression> {depd <4expression>

(3ep> ::= Not

(4axpression> { <Bop> }? ¢Bexpression> | <4expression> {Sop> <Sexpression>
Cdopy 1:2 = | == | | <= | > | >= | In | Same | Psub | Sub
<Gexpression> ::= <primary exprassion> | <Sexpression> <Gop> <primary- expression>

<Sop> ::= + |

<Gop> ::= * | /

<abstract process decl> ::= Process <nama> Is { <abstract process stmt> ; }+ End

(abstract process stmt> (pre stmt> | <post stmt> | <assertion)

L]

<abstract structure decl> ::= Structure <name> Root <name> Is { <name 1ist> Except }?7 {
¢abstract structure stmt> ; }+ End

<abstract structurs stmtd ::= <production> | <type decl> | <without clause> | <assertion>
<actualsd> ::= { <expression> { . <expression> }¥ }

<assert stmt> ::= { <name> }? Assart {expression>

¢assertiony ::= <assert stmt> | <definition>

<attribute oper> ::= { Fetch ] Store} ( <name list> )

<attribute> ::= <{name> : <{type>

<{ctass production> ::3 <{name> ::= ¢name> { | <name} }*

{concrete process decl>

Concrate Process <name> Is <{name> With { <concrete process stmt>
}+ End .

{concrste process stmtd <port assoc> | <restriction> | <group decl> | Cassertion>

¢concrete structure decl> ::= Concrete Structure <name> Is <name> With { <concrete structure
stmt> ; }+ End :

¢concrete structura stmtd> ::= <type rep> | <preduction> | (assertion5

¢decly ::= <{structure decl> | <{process decl>

<definitiond> ::= Daf1ne <name> { <formals> }? { = <expression> | Returns <type> }
Cexpression) ::= <1expression) | <axprass1on> {lop> <lexpress1on)

<formal> ;,. <name> : {type>

TR T
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{formalsy ::= { <formal> { . <formaly }= }
{group decl) ::.= Group <name list> Inv <{name>

<if expression> -:= If <axpression> Thean <{expression> { OrIf <expression> Then <expression> 3
Eise <expression> Fi

<{internal type rep> ::= For <iype reference> Usg <typa>

<literal> ::= True | False | { <name> : }? Root | Empty | <integer> | <cational> | <string>
<name 1ist> ::= <nama) { ,;<name) 3}

<ncde oper> ::= Create | Destroy

<{node praduﬁtion) ::; <hame> => { <attributed { . <attribute) I* 37

<oper listd> ;:= <oper> { , <opar> 1*

{oper> ::=z (pode eper> | <attribute oper>

{port assoc> ::= for {name> Use <nama>

<port decl> ;:= <¢named ¢ <nama)

port Tist> ::= <port decl> { , <port decls }*

{post stmt>

Post <port list>
<pre stmtd ::= Prg {port list)>
. .
<primary expressiondy :.= { <name> }? <type> | <literat> I ( <expressignd Yo <primary
expression> . <namae> | <name> { <actuais> ) I <if expression> | <guantifieq exprassiony -
<private rep> ::= (pame> { . <name> 37 | External {type>
<{private type_rep> ::= For <name> Use <private rep>
{process decly ::= <abstract process decl> | <concrete process'decl)
<{production> ::= {class product{on; | .<node production)
{quantified 2xpressiond ;:= { ForAll | Exists } <name> In {expression> Qo <axbrassion) Od
{restriction> ti® Restrict <name> To <oper list)
<specificationd ;.- { <decl> }+ '
<{structure decly ;.= <abstract structurs gdecl> | <concrete structure deci>
<type decl> ::= Typev<name>
<type reference> :.= <name> . <{name> {{*)3
<{type rep> ::= <internal type rep> | <private type repd>
<{type> :;:= Boolean | Integar | String | Ratioﬁa] | Set Of <type> | Seq Of <type> [ <nama>
<without clause> ;.= Without <without item> { . <without item>'}'
<without ftem> :.a Assert <(name)

<without item) ::= <nama>

Cwithout ftem> ::x { ¢pames | =3 {=> ] t:2 3 { <hamey 3?
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