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Abstract 1 

In this paper we demonstrate two new approaches to deriving three-dimensional surface 

orientation information ("shape") from two-dimensional image cues. The two approaches are the 

method of Affine-transformable patterns, and the shape-f rom-texture paradigm. They are introduced 

by a specific application common to both: the concept of skewed symmetry. Skewed symmetry is 

shown to constrain the relationship of observed distortions in a known object regularity to a small 

subset of possible underlying surface orientations. Besides this constraint, valuable in its own right, 

the two methods are shown to generate other surface constraints as well. Some applications are 

presented of skewed symmetry to line drawing analysis, to the use of gravity in shape understanding, 

and to global shape recovery. 
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1 . Introduction 
Certain image properties, such as parallelisms, symmetries, and repeated patterns, provide cues 

for perceiving 3-D shape from a 2-D picture. This paper demonstrates how we can map those image 

properties into 3-D shape constraints by associating appropriate assumptions with them and by using 

appropriate computational and representational tools. 

We begin with the exploration of how one specific image property, "skewed symmetry", can be 

defined and formulated to serve as a cue to the determination of surface orientations. Then we will 

discuss the issue from two new, broader viewpoints. One is a class of the Affine-transformable 

patterns. It has various interesting properties, and includes skewed symmetry as a special case. The 

other is the computational paradigm of shape-from-texture. Skewed symmetry is derived in a second, 

independent way, as an instance of the application of the paradigm. Also, it is proven that the same 

skewed-symmetry constraint can arise from greatly different image conditions. 

This paper further claims that the ideas and techniques presented here are applicable to many 

other properties under a general framework of the shape-from-texture paradigm with the underlying 

meta-heuristic of non-accidental image properties. 

2 . Skewed Symmetry 
In this section we assume the standard orthographic projections from scene to image, and a 

knowledge of the gradient space (see [5]). 

2 . 1 . Def ini t ion, Assumption and Constra ints 

Symmetry in a 2-D picture has an axis for which the opposite sides are reflective; in other words, 

the symmetrical properties are found along the transverse lines perpendicular to the symmetry axis. 

The concept skewed symmetry is introduced by Kanade [3] by relaxing this condition a little. It means 

a class of 2-D shapes in which the symmetry is found along lines not necessarily perpendicular to the 

axis, but at a fixed angle to it. Formally, such shapes can be defined as 2-D Affine transforms of real 

symmetries. Figures 2-1 (a)(b)(c) show a few examples 2 . 

Stevens [6] presents a good body of psychological experiments which suggests that human 

observers can perceive surface orientations from figures with this property. This is probably because 

such qualitative symmetry in the image is often due to real symmetry in the scene. Thus let us 

associate the following assumption with this image property: 

"A skewed symmetry depicts a real symmetry viewed from some unknown view angle." 

The mouse hole example of Figure 2-1(c) is due to K. Stevens [6] 
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(a) (b) 

(c) (d) 

Figure 2 - 1 : Skewed symmetry 

Note that the converse of this assumption is always true under orthographic projection. 

We can transform this assumption into constraints in the gradient space. As shown in Figure 2 -1 , a 

skewed symmetry defines two directions: let us call them the skewed-symmetry axis and the skewed-

transverse axis, and denote their directional angles in the picture by a and /?, respectively (Figure 2-

1(d)). Let G = (p,q) be the gradient of the plane which includes the skewed symmetry. The 3-D 

vectors on the plane corresponding to the directions a and (i are 

(cosa, s ina, -pcosa-qsina) and (cos/?, sin/?, -pcos/?-qsin/?). 

The assumption demands that these two vectors be perpendicular; their inner product vanishes: 

cos(a-p) + (pcosa + qsina)(pcos/? + qsin/J) = 0. (1) 

By rotating the p-q coordinates into the p'-q' coordinates so that the new p'-q' axes are the bisectors 

of the angle made by the skewed-symmetry and skewed-transverse axes, it is easy to show that 

Thus, (p,q)'s are on a hyperbola shown in Figure 2-2. That is, the skewed symmetry defined by a and 

P in the picture can be a projection of a real symmetry if and only if the gradient is on this hyperbola. 

The skewed symmetry thus imposes a one-dimensional family of constraints on the underlying surface 

orientation (p,q). As we will see in Section 5, other constraints can be exploited for the unique 

determination of surface orientation. 

p ' 2 c o s 2 r t - q , 2 s i n 2 ( ^ ) = -cos(a-jS) (2) 
2 2 

where p' = pcosX + qsinX 
q' = - p s i n \ + q c o s \ 
A = (a + 0)/2. 

U N I V E R S I T Y LIBRARIES 
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F igure 2 - 2 : The hyperbola determined by a skewed symmetry defined by a and /?. 

The tips or vertices G T and G ' T of the hyperbola represent special orientations with interesting 

properties. First, since they are closest to the origin of the gradient space, and since the distance 

from the origin to a gradient represents the magnitude of the surface slant, G T and G ' T correspond to 

the least slanted orientations that can produce the skewed symmetry in the picture from a real 

symmetry in the scene. 

Second, since they are on the line (the axis of the hyperbola) which bisects the obtuse angle made 

by a and /?, they correspond to the orientations for which the rates of depth change along the 

directions of a and /? in the picture are the same. In other words, the apparent ratio of length and 

width of the object in the picture represents the real ratio in the scene (See Kanade [3] for the proof). 

2 . 2 . Rationale and Justi f icat ion 

Skewed symmetry has straightforward applications to scenes containing objects that have been 

manufactured, whether naturally or artificially. Many constructed items exhibit symmetry, 

occasionally about many axes. 

Sonpe symmetries are introduced due to economies of the manufacturing process: an object is 

often composed of identically formed component parts (fibers, cells, bricks, etc.). The symmetries 

result from the three-dimensional tessellation of the components into the whole. Often the 

tessellation is effectively two-dimensional, in lamina (cloth, honeycombs, walls, etc.), and the 

application of the skewed symmetry method is straightforward. Further, the requirement for a close 
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symmetric packing of the components occasionally imposes a local symmetry on the individual 

components, too. The method can then be applied to individual parts (such as the bricks themselves). 

Notice the method does not assume 3-D symmetry of the whole object: what is assumed is the local 2-

D symmetry. 

A further source of symmetry is the bilateral symmetry that results from biological manufacture 

(growth). It not only contr ibutes symmetric objects to the environment; it may also be responsible for 

an imitative esthetic bias in human manufacture. If the extent of a bilaterally symmetric pattern into 

the third dimension is not too great (a face, a leaf, an airplane), the skewed symmetry method can be 

approximately applied there, also. 

3. Aff ine-Transformable Patterns 
In texture analysis we often consider small patterns (texel = texture element) whose repetition 

constitutes " texture" . Suppose we have a pair of texel patterns in which one is a 2-D Affine transform 

of the other; we call them a pair of Affine-transformable patterns. Let us assume that 

"A pair of Affine-transformable patterns in the picture are projection of similar patterns 
in the 3-D space (i.e., they can be overlapped by scale change, rotation, and translation)". 

Note that, as in the case of skewed symmetry, the converse of this assumption is always true under 

orthographic projections. The above assumption can be schematized by Figure 3 -1 . Consider two 

texel patterns P 1 and P 2 in the picture, and place the origins of the x-y coordinates at their centers, 

respectively. The transform from P 2 to P 1 can be now expressed by a regular 2x2 matrix A = (a..). P 1 

and P 2 are projections of patterns P^ and P ' 2 which are drawn on the 3-D surfaces. We assume that 

P^ and P ' 2 are small enough so that we can regard them as being drawn on small planes. Let us 

denote the gradients of those small planes by G 1 = ( p 1 , q 1 ) and G 2 = ( p 2 , q 2 ) , respectively; i.e., P^ is 

drawn on a plane -z = p ^ + q ^ and P ' 2 on -z = p 2 x + q 2 y . 

Now, our assumption amounts to saying that P^ is transformable from P ' 2 by a scalar scale factor 

cr and a rotation matrix R = (^° n

s^ ^ ™ ) . ( W e c a n o m i t t h e t r a n s l a t ' o n from our consideration, since 

for each pattern the origin of the coordinates is placed at its gravity center, which is preserved under 

the Affine-transform). Thinking about a pattern drawn on a small plane, -z = px + qy, is equivalent to 

viewing the pattern from directly overhead; that is, rotating the x-y-z coordinates so that the normal 

vector of the plane is along the new z-axis (line of sight). For this purpose we rotate the coordinates 

first by <p around the y-axis and then by 6 around the x-axis (Figure 3-2). We have the following 

relations among q>, 0, p, and q: 

sin<p = p / / p 2 + 1 , coscp = 1 / / p 2 + 1 , (3) 

sintf = q / / p 2 + q 2 + 1, costf = / p 2 + 1 / / p 2 + q 2 + 1 . 

Further, let T denote the angle of slant of the pattern, i.e., the angle between the old and the new z 
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Figure 3 - 1 : A schematic diagram showing the assumption on the Affine transformable patterns, 

axes. Then 

cosr = 1 / / p 2 + q 2 + 1 (4) 
The plane which was represented as -z = px + qy in the old coordinates is, of course, now represented 

as -z' = 0 in the new coordinates. 

Let us denote the angles of the coordinate rotations to obtain and P ' 2 in Figure 3-1 by (<p 1 ,^ 1 ) 
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Figu re 3 - 2 : Rotation of the x-y-z coordinates 

and ( (p 2 , 0 2 ) , individually. The 2-D mapping from P\ (x'-y' plane) to P. (x-y plane) can be conveniently 

represented by the fol lowing 2x2 matrix T. which is actually a submatrix of the usual 3-D rotation 

matrix. (cos<p -sin<psin0^ 

0 cos0 

Now, in order for the schematic diagram of Figure 3-1 to hold, what relationships have to be satisfied 

among the matrix A = (a..), the gradients Gj = (p j 5q.) for i = 1,2, the angles (q>v 0^ for i = 1,2, the scale 

factor a, and the matrix R ? We equate the two transforms that start from P ' 2 to reach at P^ one 

following the diagram counter-clockwise P ' 2 = > P 2 = * P 1 f

t h e o t h e r clockwise P' =»P' =»P We obtain 
A T 2 = T 1 a R . 

That is, 

a 1 1 c o s q p 2 = a(cosacos<p 1 - s inas in<p 1 s in^ 1 ) 
a 1 2 c o s # 2 - a 1 1 s i n < p 2 s i n ^ 2 = -a(sinacos<p 1 + cosasin<p 1 sin# 1 ) 
a 2 1 c o s ^ 2 = as inacos f l . (5) 
a 2 2 c o s ^ 2 - a 2 1 s i n < p 2 s i n ^ 2 = a c o s a c o s ^ 1 . 

By eliminating a and a and substituting *'"<p., and by (3), we have the fol lowing equations on 
C O S I C O S I 

p v q 1 , p 2 , and q 2 : 

v p f + q f + ^ ( a n ( p i + 1 ) + a 2 i p i q i ) = Vrp^7qy+~1(a22(p2 + l ) - a 2 1 p 2 q 2 ) (6) 

(-a 1 2(p^ + 1 ) + a , ,p 2 q 2 ) (p * + 1 ) - (a 2 2 (p^ + 1 ) - a 2 1 p 2 q 2 ) p 1 q 1 

= a 2 1 / p J + qJ + 1 / p^ + q^ + 1 . 
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After all, we find that the assumption of Affine-transformable patterns yields the constraint 

represented by (6) on surface orientations. The constraint is determined solely by the matrix A, which 

is determined by the relation between P 2 and P 1 observable in the picture: without knowing either the 

original patterns ( P ^ and P' 2 ) or their relationships (a and R) in the 3-D space. 

In order to have an idea about the degree of the constraint represented by (6), if we assume that 

the orientation of P ' 2 is known (i.e., G 2 = ( p 2 , q 2 ) is known), then (6) gives two simultaneous equations 

for G 1 = ( p 1 , q 1 ) . The system appears to be 4-th degree, but it can be shown that there are only two 

solutions: they are in the form (P 0 , q 0 ) and ( -P 0 rq 0 )> which are symmetrical around the origin of the 

gradient space (see the appendix). 

From (5) we can also derive the following relat ionship 3 : 

d e t ( A ) _ - / p 2 + q 2 + 1 _ cosr i (7) 

a 2 / p 2 + q 2 + 1 cosr2 

This means that the ratio of cosines of the slant angle of the patterns is equal to the ratio d e t ( A ) / a 2 . If 

we assume a = 1 (original patterns are of the same size) or that a is known, (7) shows that we can 

order the texel patterns according to the magnitude of slant, I\ or Vp2+ q 2 , using the values of 

det(A). 

3 . 1 . S k e w e d S y m m e t r y f r o m A f f i n e - T r a n s f o r m a b l e P a t t e r n s 

The Affine transform from P 2 to P 1 is more intuitively understood by how a pair of perpendicular 

unit-length vectors (typically along the x and y coordinate axes) are mapped into their transformed 

vectors. As shown in Figure 3-3, two angles (a and /?) and two lengths (T and p) can characterize the 

transform. Components of the transformation matrix A = (a..) are represented by: 

a 1 1 = r c o s a a 1 2 = pcos/? (8) 
a 2 1 = r s i n a a 2 2 = psin/? 

Suppose, for simplicity, the orientation of P 2 in Figure 3-1 is known to be ( p 2 , q 2 ) = (0,0). This 

simplifies the equation (6) to 

a 1 1 ( p ? + 1) + a 2 1 p 1 q 1 = a 2 2 / p 2 + q 2 + 1 

" a i 2 ( p i + 1 ) " a 2 2 p i q i = a

2 y p? + q? + 1 (9) 

If we assume that a, /?, T , and p are known, then ( p 1 , q 1 ) has two possible solutions. This is 

essentially the case which Ikeuchi [1] investigated in his shape recovery method by assuming the 

known standard pattern, even though he used the constraint only partially. 

3 T h i s indicates that det(A) should be.posi t ive . But if it is negat ive , then w e can assume that and P ' 2 a re 
x r> rcosa - s ina , 

mi r rored pat te rns , and put R as ( s j n a . c o s a # 



Mapping Image Properties 8 Kanade and Kender 

F igu re 3 -3 : An Affine transform (without translation) as characterized by 
two angles and two lengths 

Let us consider the case that a and /? are known, but T and p are not. One can substitute a., in (9) 

by (8), and eliminate r and p. Then, we obtain 

( p ^ o s a + q 1 s ina) (p 1 cos/? + q1sin>3) + cos(a-/?) = 0 

which reduces to the same as the hyperbola (1). This can be interpreted as follows. 

As was noted in the previous subsection, a pair of Affine-transformable patterns impose the 

constraints (6) between their surface orientations, in which, if one is fixed, the other has only two 

possible orientations. However, if we loosen the transform in such a way that the angular (rotational) 

correspondence (a and /?) is known while the length relationship is not known (or arbitrary), then the 

one-dimensional constraints of the skewed-symmetry hyperbola is obtained. 

4. The Shape-from-Texture Paradigm 
This section derives the same skewed-symmetry constraints from a second theory, different from 

the Affine-transformable patterns. The shape-from-texture paradigm is a method of relating image 

texture properties to scene object properties, by explicitly incorporating assumptions about the 

imaging phenomenon into a computational framework. The paradigm is briefly presented here, but a 

fuller discussion can be found in [4]. 

The paradigm has two major portions. In the first, a given image textural property is "normal ized" 

to give a general class of surface orientation constraints. In the second, the normalized values are 

used in conjunct ion with assumed scene relations to refine the constraints. If there are sufficiently 

many textural elements ("texels") in the image to be normalized, and if enough assumptions are made 

about their scenic counterparts, then the underlying surface's orientation can be specified uniquely. 

Somewhat more weakly, only two texels are required, and only one assumption (equality of scenic 
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textural objects, or some other simple relation) to generate a well-behaved one-dimensional family of 

possible surface orientations. The method of skewed symmetry -- the use of qualitative symmetries in 

the image to creat a perspectively distorted right angle - is an example of such a weak method. 

The first step in the paradigm is the normalization of a given texel property. The goal is to create a 

normalized texture property map (NTPM), which is a representational and computational tool relating 

image properties to scene properties. The NTPM summarizes the many different condit ions that may 

have occurred in the scene leading to the formation of the given textural element. In general, the 

NTPM of a certain property is a scalar-valued function of two variables. The two input variables 

describe the postulated surface orientation in the scene (top-bottom and left-right slants: (p,q) when 

we use the gradient space). The NTPM returns the value of the property that the textural object would 

have had in the scene, in order for the image to have the observed textural property. As an example, 

the NTPM for a horizontal unit line length in the image summarizes the lengths of lines that would 

have been necessary in 3-D space under various orientations: at surface orientation (p,q), it would 

have to be / p 2 + 1 . 

More specifically, the NTPM is formed by selecting a texel and a texel property, back-projecting the 

texel through the known imaging geometry onto all conceivable surface orientations, and measuring 

the texel property there. The representation chosen for the two-dimensional space of orientations is 

important; we will, however, only use the gradient space here. 

In the second phase of the paradigm, the NTPM is refined in the following way. Texels usually have 

various orientations in the image, and there are many different texel types. Each texel generates its 

own image-scene relationships, summarized in its NTPM. If, however, assumptions can be made to 

relate one texel to another, then their NTPMs can also be related; in most cases only a few scenic 

surface orientations can satisfy both texels' requirements. Some examples of the assumptions that 

relate texels are: both lie in the same plane, both are equal in textural measure (length, area, etc.), 

one is k times the other in measure, etc. Relating texels in this manner forces more stringent 

demands on the scene. If enough relations are invoked, the orientation of the local surface 

support ing two or more related texels can be very precisely determined. 

4 . 1 . Skewed Symmetry from the Paradigm Applied to Slope 

What we now show is that the skewed symmetry method is a special case of the shape-from-texture 

paradrgm; it can be derived from considerations of texel slope. 

To normalize the slope of a texel, it is back-projected onto a plane with the postulated orientation. 

The back-projected texel now has a new shape on this new surface. Its exact value, however, 

depends upon the coordinate system on this surface plane. Many coordinate systems are possible; 
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we choose here a coordinate system whose x-axis lies along the gradient direction. The normalized 

slope is then the angle that the back-projected texel makes with respect to the surface coordinate 

system x-axis. The calculation is a bit involved, especially under perspective, which requires a 

knowledge of both the location of the center of focus and the length of the focal distance. 

F igure 4 - 1 : Back-projecting an image slope onto a plane with gradient (p, q). 

Using the construction in Figure 4 -1 , together with several lemmas relating surfaces in perspective 

to their local vanishing lines, slope is normalized as follows. Assume a slope is parallel to the p axis; 

the image and gradient space can always be rotated into such a position. (If rotation is necessary, the 

resulting NTPM can be de-rotated into the original position using the standard two-by-two 

orthonormal matrix.) Also assume that the slope is somewhere along the line y = y , where the unit of 

measurement in the image is equal to one focal length. The normalized value of the slope is equal to 

the tangent of the 3-D space angle T J , whose base (of length R) is parallel to the surface plane, and is 

in the direction of the gradient. R is determined from the focal distance, and from the point of the 

nearest approach of the vanishing line of the plane. This line has equation px + qy = 1 (or G.P = 1) and 

its nearest approach is G/1| G | | 2 . The distance d is given by the intersection of the line y = y § with the 

vanishing line. Then, the normalized slope value -- the Normalized Texture Property Map -- is given by 

q - y s ( p 2 + q 2 ) (10) 

p / 1 + p 2 + q 2 

This normalized value can be exploited in several ways. Most important is the result that is obtained 

when one has two slopes in the image that are assumed to arise from equal slopes in the scene. 

Under this assumption, their normalized property maps can be equated. The resulting constraint, 

surprisingly, is a simple straight line in the gradient space. It is intimately related to the vanishing 

point formed by the intersection of the extensions of the two image slopes [4]. 



Mapping Image Properties 11 Kanade and Kender 

The constraint equations resulting from assuming that the two slopes arose from perpendicular 

lines in the scene is, however, enormously complex. It unfortunately does not appear to have many 

tractable forms or special cases. 

Under orthography, nearly everything simplifies. The normalized slope of a texel becomes 

q OD 

p / l + p 2 + q 2 

It is independent of y s ; in effect, all slopes are at the focal point. 

Considering two image slopes to have arisen from parallel lines in the scene has a trivial solution. If 

the image slopes are parallel, the entire gradient space is a solution. If they are not, there is no 

solution at all. This corresponds to the projective geometry theorem that under orthography, parallels 

are taken into parallels regardless of surface orientation. 

In the case of assuming the scenic slopes were perpendicular, we again get a simplif ication, but 

this time a useful one. Not only is the solution tractable, it is the skewed symmetry method of Section 

2. We derive it as follows. 

Figure 4 - 2 : Two image texels assumed to be perpendicular in the scene. 

Consider Figure 4-2. Note that under orthography, texels can be translated arbitrarily, since the 

focal length is infinite and the focal point is effectively everywhere: there is no information in image 

position. Given the angle that the two texels form, rotate the gradient space so that the positive p axis 

bisects the angle. Call this adjustment angle \ ; we will use it to de-adjust our results into the original 

positipn after they have been computed. 

Let the angle that is bisected be 25. Calculating the normalized value of either slope is obtained 

directly from the standard normalized slope formula, corrected for the displacement of + 8 and -5 

respectively. That is, for the slope at the positive S orientation, instead of formula (11), we use the 
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formula under the substitution pcosS + qsinS for p, -psinS + qcosS for q. We do similarly for the slope 

at -8 . Note that the factor V1 + p 2 + q 2 is invariant under this transformation (it is the length of the 

normal vector of the surface). 

The fact that the normalized slopes are assumed to be perpendicular in the scene allows us to set 

one of the normalized values equal to the negative reciprocal of the other. The resultant equation 

becomes 

p 2 c o s 2 5 - q 2 s i n 2 5 = s in 2 S-cos 2 S = -cos28. (12) 

This is exactly the hyperbola in Section 2 with 28 = |a-/?|. 

1.2. S k e w e d S y m m e t r y f r o m t h e P a r a d i g m A p p l i e d to Leng th a n d A n g l e 

The paradigm is similarly applicable to other texture measures. Using texel length as the property 

to be normalized, we find that under perspective, lengths must lie on the same line in order for the 

resultant equations to be simpler than fourth order. If they are colinear, again the resultant gradient 

space constraint is a simple straight line. 

Under orthography and the assumption that image lengths have arisen from equal scenic lengths, 

the constraint equation is again an hyperbola: the skewed-symmetry hyperbola, somewhat offset. In 

fact, the geometric construct ion in Figure 4-3 shows that the assumption of equal length can be made 

equivalent to skewed symmetry. 

First, a triangle is formed by translating one or other of the lengths so that they meet at a common 

endpoint. Under orthography, such translations do not affect the resulting constraints. Connecting 

the remaining endpoints creates a tr iangle which must be isosceles in the scene. Further, under 

orthography, midpoints of lines are preserved (the midpoint of the base of the scene triangle is 

imaged as the midpoint of the base of the image triangle). The line connect ing the vertex and this 

midpoint has the property that, in the scene, it must form a right angle with the base. Its distortion to 

something other than a right angle in the image — the induced angle 28 — is precisely the distortion 

which characterizes skewed symmetry. Therefore, the same methods apply. 

One other case is worth mentioning. Suppose the image has two angles such that one leg of the 

first is parallel to one leg of the second. See Figure 4-4. In this case, again the constraint is 

equivalent to skewed symmetry, as the construct ion shows. Choosing one of the angles, extend its 

non-parallel leg until it intersects both legs of the other angle. (If it cannot do so, then first translate 

the angle before extending.) The resulting triangle must be isosceles in the scene, since the angles 

are assumed equal in the scene. However, this is the same situation above encountered with the 

construct ion involving lengths. Therefore, the altitude from the midpoint of the base (here, the 
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\ 

Figu re 4 - 3 : Assuming lengths are equal generates the skewed symmetry constraint. 

midpoint of the parallel side) to the vertex must form a right angle. Again, the distortion observed in 

the image is the skewed symmetry distortion. 

Figu re 4 -4 : Assuming angles are equal generates the skewed symmetry constraint. 

5. Applications of Skewed Symmetry and 
Affine-Transformable Patterns 

5 . 1 . Quanti tat ive Shape Recovery from Line Drawings 

Given a line drawing of Figure 5-1 (a), we usually perceive a right-angled parallelepiped. The 

Huffman-Clowes-Waltz labeling scheme for the trihedral world gives the labeling shown in Figure 5-

1(b), which signifies that the three edges gathering at the central FORK vertex are all convex, i.e., the 

object is a convex corner of a block. However, it does not specify a particular quantitative shape. In 

fact, the labeling represents only that the gradients of the three surfaces should be placed in the 

gradient space so as to form the triangle shown in Figure 5-1 (c). The edges of the triangle should be 

\ \ 
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(a) (b) <c> 

Figu re 5 - 1 : (a) A line drawing of a block; 
(b) Huffman-Clowes-Waltz labeling; (c) Constraints in the gradient space. 

perpendicular to those picture edges separating the corresponding regions, but the location and size 

of the triangle are arbitrary in the gradient space. Therefore, the object is not necessarily right 

angled. 

We can use here the skewed symmetry to provide additional constraints. The three regions are 

skewed symmetrical with the axes shown in Figure 5-2(a). The hyperbolas corresponding to these 

regions are shown in Figure 5-2 (b). Thus the problem is now how to place the triangle of Figure 5-

1(c) in Figure 5-2(b) so that each vertex is on the corresponding hyperbola. Kanade [3] proves that 

the combination of locations shown in Figure 5-2(b) is the only possibility, and that the resultant shape 

is a right-angled block. 

It is interesting to note that if we apply the same procedure to the line drawing of Figure 5-3, we find 

that there is no way for all the three regions to satisfy the skewed symmetry assumptions. That is, at 

least one of them has to be non-symmetrical (skewed) in the 3-D space: in other words, the object 

cannot be right angled, but should be rhomboid (prism). Remember that Figure 5-1 (a) can be either 

right angled or rhomboid, but it is usually perceived as right angled. 

Figure 5-4 demonstrates how the above procedure results in the interpretation of the drawing as a 

trapezoid block in this case. 
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F igu re 5 - 2 : (a) Axes of the skewed symmetry of the regions of Figure 5-1 (a); 
(b) Corresponding hyperbolas and allocations of the gradients 

F igure 5 - 3 : A line drawing of a rhomboid: this cannot be a right-angled block. 
Notice that Figure 5-1 (a) can be a rhomboid. 

5 . 2 . S k e w e d S y m m e t r y u n d e r G r a v i t y 

One principal influence toward symmetry seems to be an object's structural necessity to oppose 

the gravitational field. Objects that must support themselves tend to have structural members aligned 

parallel to the direction of force, that is, vertically. Such members are mutually parallel: a type of 

symmetry. The base of such an object is often perpendicular to gravity to distribute weight and 

provide balance. Together, then, the base and structural members provide a local symmetry frame 

that can also be exploited by the skewed-symmetry method. One can show that in this last case it is 

usually possible to specify surface orientation uniquely. 

We will assume that the direction of the gravity field is known, say the top-to-bottom lines in the 
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F igu re 5 -4 : Shape recovery of a trapezoid block: (a) axes (b) gradient allocations. 

image frame are assumed to be the true projection of a line of gravity force. The gradient space is 

also considered to be aligned in the direction of the gravity field: -q is also " d o w n " . 

P 

Under such condit ions, suppose we do find a portion of the image that is assumed to be a vertical, 

symmetric surface: say, a building face as in Figure 5-5. Using skewed symmetry (or even direct 

observation), it is not hard to obtain an angle in the image that corresponds to a right angle in the 

scene. Suppose one of the legs of the angle is parallel to the known gravity field as in Figure 5-5. The 

skewed-symmetry method generates the following constraint hyperbola. 

p = -(q + 1 /q)coty . (13) 

This constraint is somewhat interesting: it expresses p (left-right slant) as a function of q (top-

bottom slant). The value of q itself is easily obtained. 
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If gravity points in the -q direction, the ground plane must have as its orientation (0,q g ) , for a value 

of q g determinable through sensing. Since all vertical planes are perpendicular to the ground plane, 

all vertical planes must have the orientation (P v , - 1 /q g ) . for variable p v > (A quick check shows that the 

dot product of the corresponding normals is zero: (0 ,q g ,1) . (p v , -1 /q g ,1) = 0). Note that the value of q 

for any vertical plane is fixed at - 1 / q g - Thus, in our example, p is also determined: it is 

-(q + 1/q )coty. Since q is a constant, p varies simply with y. Figure 5-5 shows the constraints 
9 9 9 

graphically. 

5 .3 . Shape Recovery of an Object wi th Many Patterns Stamped 

Figure 5 - 6 : A picture of a ball with a number of ((§ps stamped. 

Consider the problem of recovering the shape from a picture of a ball with a number of patterns 

stamped on it (See Figure 5-6). For each pair of texel patterns, if they are Affine-transformable, we 

compute a transformation matrix A. Thus we obtain many constraints on the gradients of texels. From 

these, however, we cannot uniquely determine the surface orientations of each texel. 
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We need more assumptions or data. We will suppose we know the gradients of some particular 

texels, and assume that the surface is smooth (together, maybe, with an assumption of global 

concavity or convexity). Then a relaxation or cooperative technique similar to the one for shape-from-

shading [7] [2] will allow us to determine consistent assignments of gradients to the texels which 

satisfy those many constraints. Notice that we need not assume that the original pattern is known, nor 

that they are stamped in a particular manner. Even other patterns can be mixed together with them. 

One of the plausible methods to determine the gradient of one particular texel is to use the 

equation (7). Assuming a = 1, we order the texels by the magnitude of v p^+q* and assign 

(p,q) = (0,0) (the orientation that is directly facing to the viewer) to the least slanted texel. This 

corresponds analogously to a similar hypothesis in shape from shading. That is, we tend to assign to 

the brightest point the orientation of directly facing to the light source, even though under the 

assumptions of parallel lights and a matte surface, one can only say that the brightest pixels have the 

minimum incident angle of light, not necessarily 0° 

6. Conclusion 
The assumptions we used for the skewed symmetry, the Affine-transformable patterns, and texture 

analysis can be generalized as: 

"Properties observable in the picture are not by accident, but are projections of some 
preferred corresponding 3-D propert ies." 

This provides a useful meta-heuristic for exploiting image properties: we can call it the meta-heuristic 

of non-accidental image properties. It can be regarded as a generalization of general view directions, 

often used in the blocks world, to exclude the cases of accidental line alignments. 

Instances that can fall within this meta-heuristic includes: parallel lines in the picture vs. parallel 

lines in the scene, use of texture gradients due to distance, and a set of lines convergent to a 

vanishing point. 

The most essential point of our technique is that we related certain image properties to certain 3-D 

space properties, and that we map the relationships into convenient representations of shape 

constraints. We explicitly incorporate assumptions based either on the meta-heuristic or on a priori 

knowledge of the world. The shape-from-texture paradigm provides a computational framework for 

our technique. In most part of our discussion we assumed orthography. Similar (though more 

involved and less intuitive) results can be obtained under perspective projections. 

UNIVERSITY U3RAKIES 
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I. The proof that the equation (6) has two symmetrical 
solutions 

We wil l try to solve (6) for p 1 and q v assuming that p 2 , q 2 , and A = (a..) are known. Let us put 

y = • / p 2 + q 2 + 1 . Then (6) can be rewritten as 

C a 1 1 ( p 2 + l ) + C a 2 1 p 1 q 1 = B y 

A ( p 2 + 1 ) - B p i q i = C a 2 1 y (14) 

where 

A = a ^ p g - a ^ t p ^ + i ) 

B = a 2 2 ( p ^ + 1 ) - a 2 1 p 2 q 2 

C = y p 2 + q2 + i 

We can derive a quadratic equation on y from (14). 

f(y) = D E y 2 - ( D 2 + E 2 + F 2 ) y + DE = 0, (15) 

where 

D = C ( B a 1 1 + A a 2 1 ) = Cde t (A ) (p 2 + 1)>0 

E = B 2 + ( C a 2 1 ) 2 > 0 
F = - C 2 a 1 1 a 2 1 + A B 

The discriminant of (15) is 

disc = ( D 2 + E 2 + F 2 ) 2 - 4 ( D E ) 2 

= F 4 + 2 F 2 ( D 2 + E 2 ) + (D-E) 2 

> 0 

Thus, f(y) has real roots. Now, notice y > 1 and thus we are interested in the root larger than or equal 

to 1. Let us check the sign of f(1) multiplied by the coefficient of y 2 , 

f(1)DE = (2DE-(D 2 + E 2 + F 2 ) )DE 
= - ( F 2 + (D-E) 2)DE 
< 0 

This means that one and only one root of f(y) is larger than or equal to 1. Let us denote the root as y Q . 

By substituting y Q into (14), we can solve it as a simultaneous quadratic equation on p n and q., , and 

know that ( p 1 , q 1 ) has two solutions in the form of ( P 0 , q 0 ) and ( -p 0 , -q 0 ) , which are symmetrical to the 

gradient space origin. 
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