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Abeciract

This réport describes features of a language for distributed and
parallel programming which has been designed to provide flexibility in
the transfer of information and control between the individuat
components of a progrém. The language allows synchronous and
asynchronous message-passing, multiple-souree input and broadcast
output, and enables particular features of a distributed architecture
be efficiently accommodated without modiﬁcation to the language. The
module serves as the unit of encapsulation and a single communication
takes place between an output porf in one module and a set of input
portsin other modules; each port has a control rule which
specifies the protocol for sending or receiving messages, and is
associated with a particular commnunication scheme which implements
the communication operations. Modules are assumed to exccute
independently of each other .except when they communicate by sending
messages: the lifetime of a module is therefore limited only by its
ability to send and receive messages. The use of the distinctive
features of the language, such as broadcast mode output, is illustrated

with several examples.
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1 Introdﬁction

Most large programs are built of smaller components which interact by the transfer of information or
control.  Traditonal sequential programming languages allowed these components to be described as
procedures and combined the operation of transferrring information between them with the cxchange of
control, in a procedure call. Quasi-paralle]l programming languages {eg, Concurrent Pascall, or Modulaz)
extended the kinds of components (o include processes which communicate with each other by executing
mutually cxclusive procedure calls to shared monitors. In both these cases, there was the tacit assumption that
the transfer of information could take place by access to shared memory and, often, alse that individual
processes would share a single processor. In contrast to this, the parallel programming tanguages such as
CSP? and DP* start out with the assumption that individual processes will execute on separate processors and
that the transfer of information will be accomplished by sending messages, usually requiring some form of

communication between processors.

The forms of explicit communication between program components have, so far, been determined by the
nature of the components themselves: for exampie, whether information is transferred by a synchronous
procedure call or by the asynchronous transfer of a message is usually dependent on whether the called
component is a procedure or a process. Howcever, the distinctions gb further than this: though there are
several conventions even for message passing (eg, ranging from the ‘no-wait’ send of Plits®, to the ’remote
procedure call’ of DP), each language has also made a choice of the paru'éular kind of communication it will

provide.

Int this paper, we will describe a language in_ which programs are built of modules and where the "behaviour’
of a module - eg, whether procedure-like or process-like - is determined solely by the kinds of communication
in which it participates. Two modules may thus communicate with each other in several ways, according to
the needs of the information they are exchanging: rather than attempt to artificially simulate asynchronous
(or message passing) communication between two modules which are compelled to use synchronous (or
procedure call) communication, or to introduce protected tokens as a means of enforcing synchronicity
between processes which otherwise communicate asynchronously, the language permits the sender and the
receiver of information to specify the mode in which the transfer is to occur. This is done by defining ports
through which communication is to take place, by explicitly making connections between ports, and by

assoctating a control protocol with every port.

Ports are distinguished by the functions they serve. ie input or output, and by the types of messages they
transmit. An output port is termed opbrt and may be connccted to any input port, or iport, which accepts a

message which is ‘compatible’ with the onc it will transmit. More generally, a single port may be connected to
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aset of ports: a message sent through an sport is therefore sent o cach iport o which it is connected, and an
iport may correspondingly receive a message from any one of its communicating oports.  Since ports are
identified by names which are "local’ to modules. communication paths can be specified without using system-

wide names.

An underlying goal for the language is cfficient implementation on a variety of architectures, ranging from
those with shared memory to distributed systems which only share communication links. This is kept within
reach by ensuring that the only language features which are particularly dependent on the architecture are
those of the communication constructs. Here, the assumptions made are minimal and many different, and
efficient, implementations can easily be envisaged for different architectures. We will show that, in fact, ports
are essentially no different from other data types programmed in the language, making it possible for a user to
define new communication schemes, distinct from, say, the standard one supplied by an implementation of the
language. Morcover, it is emphasiséd that different implementations will probably be simultaneously present
and that the specification of a module will include the choice of the communication scheme to be used for its
implementation. Separating the design of a communication scheme from the use of communication
constructs has the convenient side-ef‘f'ect that issues such as the presence, absence and extent of buffering
remain questions for the method of implementation of the communication scheme and not for the modules

which use this scheme.

The success with which a language such as this meets its goals has, at this stage, to be judged largely by
appeal to examples and experience; one intention of this presentation is to illustrate that there seems every
possibility that this goal can be met. At this point in time it is difficult to cite much practical experience in the
use of any such language, since distributed systems are still largely experimental (niotable exceptions are, of
course, the Xe}ox Ethernet-based Alto computers), and there is not even a wide and well-accepted set of
problems whose solutions would unambiguously demonstrate the features of the language. It appears to be
particularly important now that language designs suitable for distributed systems be demonstrated using
varied examples. We will therefore choose examples which both illustrate how this language compares with
others and which demonstrate the purpose of its design. In keeping with this, we will restrict the description
primarily to those features of the language which will be illustrated by examples and which are significantly

different from those in other languages.

2 Language Overview

We will first describe each language feature with examples and then illustrate parts of the syntax in a BNF-
like notation. Boldface will be used for reserved words, and in the syntax productions square brackets [..]

will denote zero or more occurrences of the enclosed clause, while braces { ... } will denote that the enclosed



cluise must appear af least once. Special lsymlmls which wppear in the language are placed within double
quotation marks. Types will be defined only to the extent they are required for the examples. and it will be
assumed that expressions are composed in the usual way. The simple (ie, pre-defined) types in the language
are hoolean, chur, integer and real; the communication types are eport and iport, and the standard aggregate
types are array and set, which must be homogencously composed of elements of the same type, and record

which may have rdissimilar fields.

Programs are built of modules: a module is composed of a specification part which defines the ways in
which the module communicates with other modules, and an implementation part which contains the

instructions for the operations performed by the module.

2.1 Module Specifiéations

A module type is defined with the header modnle type, a set of specification statements, and a terminator
end <module name>. An instance of a module may either be declared with the header module specs or by

instantiation as a variable in some other module.

A module specification must name all the modules and the atiribuzest of other modules which are needed
for the implementation of the module. These attributes consist of constants, types and ports and they are
denoted by qualifying the name of an attribute (eg, Input) with the name of the module in which it appears
{cg. CardReader.Input); an attribute name appearing by itself denotes an instantiation parameter. These

_ external attributes are specified in a needs statement: -

needs iport Print.Out;
medule Transmitter;

needs type MaxM, MaxMO, Stat, Message;

needs const BuffN ;
iport CardReader.Input; LinePrinter.Output;
oport Timer.Alarm;

A module specification must also contain definitions-of all the attributes provided by the module, in a
provides statement. In this case, every port definition must have additional information: the type of each

message parameter it will transmit, and the control rule for that port. The control rule specifies the sequence

of actions for communication with a port:

For example,



provides oport Put(char) -> { ); Over(boolean);
iport Get{char) => (), ThneOui( ). Next(integer) -> (char);
declares an oport Put which transmits a parameter of type char and waits for a null message ( ) to be returned,
and an oport Over which transmits a boolean parameter; similarly, Get, Timeout and Next are iports, the first
taking a character of type char and returning a null message, and the last taking an integer parameter and

returning a character. Other attributes, such as types and constants, can be provided:

provides type EntryType; const N : integer;

provides iport FromLeft [1..100] (integer);
oport ToRight [1..100] (integer);

where, in the last cases, an array of ports is defined. The control rules indicated by -> and => have the

following meaning:

iport rule
D4 a message sent to this iport wiil
result in a message being sent in response

=> a message sent to this iport
must be followed by the sender waiting

for a response
oport rule
-> the sender will wait for a message

-

to be sent in reply

it may be seen that there are three possible control rules for iports and two for oports, since in the simplest
cases there is no response on receiving a message and no waiting after sending a message (for convenience, we

will sometimes denote these cases by "-" ).

The third type of specification statement is the connect statement which is used to specify how the ports
which have been named in needs and provides statements are to be connected to each other. The connect

statement has the form:

connect (Put, LinePrinter.Cutput);
connect (S.FromLeft[2..100], S.ToRight{1..99]);

~ connect {TimcOut, Timer.Alarm);

which connects the first named port (or ports) with the list of ports which follows. Note that:



conaect (A, H) = conneet (B, A)
conncct (A, B, C) = connect (A, BY; connect (A, C)
connect (A[1.. 10L B[3 .. 13]) = connect (A[1]. B[3]) .. connect (A[10], B{13])

For a connection to be legal,

1. The kinds of ports being connected must be complementary, ic an oport connected to iports or an
iport connected 1o oports, ‘

2. The message types transmitted by the ports must be compatible, and

3. The control rules for the ports must match according to the following requirements:

oport iport Compatible

- - Y
- _) Y .
-> > Y
- => Y

All other connections are illegal.

<{ModuleSpecs> :: = module <ModuieKind> <Ident> ";" SpecBody ead Ident "."

{ModuleKind> :: = specs | type

{SpecBody> :: = [NeedStmt] {ProvideStmt] [ConnectStmt)

<NeedStmt> :: = needs {<AttribType> {{NameList> ;" }}

<ProvideStmt> ;: = provides {<AttribDef> ";" } '

<ConnectStmt> :: = connect { "(" <NameList> ")" ;" }

{AttribType> :: = <PortAttrib> | module | type | const

<AttribDef> 1 = <PortAttrib> <PortSpecs> [ ":" <PortSpecs>] | const (IdentList> ":" <Ident>-
| type <IdentList> " =" <SimpleTypeDef> | module (ModuleSpec> ;" <Ident>

<PortAttrib> :: = iport | oport

<PortSpecs> :: = {Designator> <ParList> <ControlRule>

<{NameList> :: = <Qualldent> [ "," <Qualldent>]

<Qualldent> :: = <Ident> "." <Designator> | {Designator>

<Designator> :: = <ldent> | <Ident> <ArrayRange>

<ModuleSpec> :: = CArrayRange) of <identList> | <IdentList>

<ControlRule> :: = "-> <ParList>" | " = > {ParList>" |

<ParList> ::= "(" <IdentList> )"

<IdentList> :: = <Ident> [ ",” <Ident>]

© 2.2 Module implementation

A module specification defines attributes of a module to allow them to be used in that module, and in
others, for defining types and constants and for making connections between ports. The actual operations of a
module are defined in its implementation. A module implementation always has a header with the same

identifier as its specifications,and a body consisting of declarations and a main btock.



2.2.1 Declarations

All variables used in a module must be declared before use. Those constants and types which are used in a
module and which are not provided by some other module (ic. which do not appear in a needs statement in
the specification for the module), must alsv be declared before use. A declaration associates one identifier, or

several, with a definition:
declare'Max = const integer (: = 25);
declare M, Mp, P : integer;
declare Buff = [1 .. N] of char; -

(The kind of declaration is determined by the symbol(s) used to separate the ideniifier(s) from the definition:
a constant is declared using the separator " = const" and by specifying its type and its value; a type is defined

using the separator " =" and a variable with "." .}

Constants must be of simple type. Variables may be assigned initial values, using initialisation clauses.
Arrays are defined by specifying range and component type, and enumerations and records somewhat as in

Pascal®: sets are defined by specifying the component type, which must be pre-defined.

", .1

All the ports provided by a module must be declared in port declarations. A doubtle colon "::" isused as a
separator and a ;" or a reply/response clause as a terminator in a port declaration. An oport is declared with
the keyword send followed by a message (ie, the set of types of its parameters, and possibly empty); the
. control rule for the oport is then specified by including a response clause. An oport with no response clause
corresponds to the control rule "-"; a response clause is equivalent to the rule "->". The response clause for
an oﬁort may either be a message, or the name of an iport. An iport is declared with the keyword receive, a
parameter set, and a control rule. For a responding iport, however, there is a (possibly empty) set of
statements between the receive and the reply. An iport with no reply part corresponds to the rule "-"; the
presence of a reply part allows either of the control rules "->" or "=>" 1o be followed and the choice between

them is made in the specifications.
declare NextChar :: send (Cl:char);
Assemble :: receive (C:char),
declare Query :: send (Cl:char) response (B);

declare IsaMember :: receive (J:integer)
(... statements ... >

reply (B),



on

declare GetChar :: sead { ) response Assemble:

declare Tokach @ [1..17} of send (L:integer),

Note:

1. The set of parameters used in a port declaration may consist of pre-defined variables, constants
(for output messages), or formal names (qualified by their types).

2. When a port is invoked in a port call (as described below), actual parameters of matching type
must be supplied for each fonmal parameter in a port declaration, and in corresponding order.

3. A parameter which is a module is passed by reference, so that both the sender and receiver can
now communicate with the same module; g/l other parameters arc passed by value.

4, The reccipt of a message is treated as the assignment of the values of the parameters of the
message to local variables,

ModuleImpl> :: = module implementation <Ident> ;" <{DeclarationPart> {MainBlock> end <Ident> "."
{DeclarationPart> :: = declare { {Declaration> ";"}

<{Declaration> :: = <ConstDecl> | <TypeDeel> | <VarDecl> | <PortDecl>
<ConstDecl> :;= <IdentList> "=" const <SimpleType> {ValueClause>
{TypeDecl> :: = <IdentList> " =" (TypeDef>

CVarDecl> i1 = {IdentList> ":" <TypeSpec>

<PonDecl> :: = (IdentList> "::" {PortDef>

{TypeSpec> :: = <TypeDel> | <TypeDel> <ValueClause>
ValueClause> ;1= "(*" <AssignClause> ")"

<AssignClause> 1= ":=" <Expr> [ ",” <Expr>}

CPortDef> :: = {ArrayRange> of {PontStmt> | {PortSimt>

<PortStmt> :: = <IportDef> | <OportDef>

<{IportDef> :: = send <ParameterSet> {Irule>

<Irule> :: = response <Ident> | response <(ParameterSet> |

<OportDef> :: = receive {ParameterSet> <Orule>

(Orule> 1= (SuatementSet> reply "(" <IdentList> "}" |
{ParameterSet> ;: = (" [(PartED> " <ParEl)]] "

{ParED :: = <Ident> ":" <Ident> | <Ident>

-~

2.2.2 Basic Statements

The main block of a module consists of a (possibly empty) set of statements, If present, statements are

won

preceded by begin and separated from each other by ";". There are two kinds of statements, basic statements

and communication statements, and we will describe them separately.

<{MainBlock> :: = hegin <StatementSet> | )
<StatemnentSet> :: = {Statemen> {":" <Statement)] |
<(Statement> :: = <BasicStm | <CommStmt>
<BasicSumt> i1 = <AssignStmt> | <IfStmt> | <LoopStme>



The hasic statements are the assignment statement, the conditional i statement, and the general loop

statement. These have forms which are very similar to those of equivalent statements in other languages.

The assignment statement consists of a list of identificrs of one or more different target variables, and an
assignment clause with as many expressions separated by commas as there are target variables; starting from

the left, cach target variable is assigned the value of the corresponding expression.

Net : = Salary + Perquisites;

Net, Deduct : = Net - TaxDeduct, Deduct + TaxDeduct;

The if statement closely resembles its counterpart in Modula?, and has a set of boolean expressions which
are evaluated in order; the set of statements following the first expression which evaluates to true is executed.

If none of the expressions is true, the else part is executed, if it is present.

ifA>Bthen A:= A-Belse B:= B- A end if;

if Free then Left := Left-1
elseif Queued then Waiting : = Waiting + 1
else Rejected : = Rejected + 1 end if;

The loop statement is used to conditionally or unconditionally repeat a set of statements. The conditional
clauses allow the set of statements to be repeated a number of times (equal to the value of an integer
expression), or a number of times while the value of a variable is assigned-increasing or decreasing values {for

...), or as long as a boolean expression has the value true (when ...).

loop (1 .. 20)
Decr : = Decr + Decr/Base;
Base : = Base/10;

end loop;

loop (for I : = 2 .. 60 step 2)
All-1]:= All);
end loop;

loop (while I>0) I:= I- 5 end loop;

An exit statement unconditionally terminates the execution of a loop and transfers control to the next
statement. If loop statements are nested and labelled, the exit statement can be used with a label designator to
transfer control to the statement following the labelled loop. An exit statement may appear only in a loop

statement.



<AssignSumi> 1= KTdentl i) <AssigaClause>

AIStme 3= il <Exprd then <StatementSet> [elseif <Exprd then <StatementSet>] <IFlseClause> end if
<ElseClause> 2= else <SlatemeniSet> |

<LoopStmt) o2 = leop <} oopCond> <StatememSet> end loop
<LoopCond> :: = {Range> | <ForClause> | {WhenClause |
<{ForClause> ;1= (" for <ldent> ": =" {Range> <Steps> "}"
<WhenClause> :: = "(" when <Expr> )" ’
<UntilClause> :: = (" until <Expr> )"

<Steps> = step <Expr> |

<ExitStmt> 11 = exit | exit {LabelDesig>

2.2.3 Communication Statemént_s

There are five communication statements, each specifying some action(s) to be performed with the ports

declared in 2 module.
<CommSumt> ;:= {PonCall> | {ForwardStmt> | CAwaitStmt> | {EnableStmt> { {DisableStmt>

The simplest communication statement is the port call, which causes the statements of the specified port to be

executed. For example, if NextChar and Query are oports; they can be called as:

NextChar (F');
if Query(’:’) then Isal.abel : = true eise IsalLabel : = false

A port call specifics the name of the port and provides actual parameters for each formal paramecter in the
- port declaration. The value returned by a responding oport (ie, one with a response clause, obeying the

control rule "->", as in Query) may also be used in an expression, as for a traditional function call.

A port call to an oport will result in a message being sent to the iport(s) to which it is connected. If an oport
is not connected to any iport, the action of the send has no effect (ie, it is a 'null’ statement). A port call to an
iport will result in the execution of the module being resumed only when a message is received at that port; a
port call to an iport which is not connected to any oport will cause the execution of the module to be
permanently suspended (and then terminated). Hence, a call to a responding oport which is not connected to
any port will also causc the execution of the module to be suspended (as otherwise, the module will remain

waiting for a response message which will never come),

A forward statement is used to transfer control out of an iport without executing the normal reply part; the
forward statement names an oport through which a message is to be sent and causes the execution of the
current iport to be terminated. The iport which receives a forwarded message will find it indistinguishable

from a message which has been sent normally: the reply port for the message receivéd at an iport becomes the
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repiy port for a message furwarded from the iport {hence, if module A send a message w0 inodule B, with a
reply port P in A, a reply will be received at P cither from B or from some other port which receives the

forwarded message from B).

declare Store :: receive (... )
if Full then forward A { ...)

else ...
reply (... );
Auvsend(..);

The await statement specifies a (non-null) set of iposts and causes the execution of the module to be
resumed after a message is received at any one of these iports. If any of the specified iports is not connected,

execution of the module is suspended.

await {NextQuery, Close};

if Empty then await {NextIn}

elseif Full then await {NextOut}

else await {NextIn,NextQut};
The enable statement specifies a set of ipofts at which messages may be received whenever the module is
awaiting a message at any iport (ie, due to a port call, an await statement, or when waiting for a response to a
send). Unlike the await statement, the action of the enable statement is distributed over all the succeeding
communication statements. The enable statement permits messages to be received from all the ’enabled’
iports which have messages ready before a message is ready at an awaited iport. For example, the statements

enable {Error};
await {Result};

are equivalent to

loop await {Error, Result};
if Lastport = Resuit then exit end if;
end loop :
where Lastport is a standard oport which returns the name of the last iport at which a message was received.

A corresponding disable statement can be used to remove iports from the enabled set.



2.2.4 Comments '

1. The port call is the simplest of the communication stitements and is used for unconditionally
sending or receiving a message,

2. The forward statement can be used so that a module can receive a message and then cither
perform the function associated with the iport, or forward a message o some other module for
further action (cg, for handling errors).

3. The await statement is non-deterministic, in that if messages arc ready at more than one of the
awaited ports, any one of the messages may be received.

4, The use of an if statement with await statements provides a simpler form of guarded command’
than the alternative statement in CSP as the boolean expressions of the if statement are evaluated
in order and the statements following the first true expression are then exccuted: non-
determinism is thercfore restricted to the choice of which ready message to accept.

5. From the point of view of practical programming, there is usually no difficulty in transforming a
non-deterministic alternative statement (which can readily be derived from the post condition
using the methodology suggested by Dukstra) into a deterministic if statement with non-
deterministic await statements, and the resulting programming construct is considerably easier to
compile efficiently. In terms of CSP, this amounts to resmctlng non-determinism to the input
commands, rather than the boclean expressions, in guards

6. The enable statcment allows a simple form of priority to be introduced in the handling of input
messages, and is useful both in simplifying program structure (by allowing all "enabled’ ports to be
specified at one place so that the subsequent statements are simpler) and for handling exceptional
conditions (so that, if these occur, the associated error messages will be received before all other
messages).

7. However. it should be noted that exceptions are not defined in the language: an exception can be
treated as just another kind of communication - "raising’ an exception then amounts to sending a
message through an oport, and this message can be received if a module makes a connection to
this oport. Naturally, most implementations will predefine the names of exception generating
modules and the associated oports, and exceptions may need to be propogatcd using a different
communication ‘scheme’ (as we shall see later).

<PoriCall> :: = {PortDesig>
<ForwardStmt> :: = forward <PortDesig>
<AwaitStmt> ;: = await <Expr>
<EnableStmt> :: = enable {Expr>
<DisableStmt> :: = disable <Expr>

. <PortDesig> :: = <{ldent> | <Ident> <ParList>

I am grateful 1o Fred Schneider for pointing out a significant cxample where this restriction becomes cumbersome: however, I do not
know of any other cases where this is so. In most cases. only one boolean guard of an alternative statement evaluates to true at any time
and this situation ean be simply and correctly expressed by a deterministic if statement.



3 Examples

Problen: A module, Clock, sends a {null) message through an oport "lick after cvery time unit has ciapsed.

Design a module which can be used by other modules for timing multiples of the basic ime unit.

Solution: Let Timer be a type module witl_1 an iport, Count, which can be connected to Clock.Tick (ie, to
the oport Tick in the module Clock) to count time units. An iport, SetTime, will reccive an integer specifying

the interval to be timed, and an oport Alarm will send a (nuil) message when the interval has clapsed.

module type Timer;
needs oport Clock.Tick;
provides iport Count () -> ( ); SetTime (integer);
oport Alarm ( );
connect (Count, Clock.Tick);
end Timer.

module implementation Timer;
declare Interval ; integer ( : = - 1);
Count :: receive () :
if Interval >= 0 then Interval : = Interval - 1 end if;

reply ( );
SetTime :: receive (Interval);
Alarm :: send ();

begin
loop await {Count, SetTime} ;
if Interval = 0 then Alarm end if;
end loop;
end Timer.

All instances of Timer will be connected to the oport Clock.Tick. A module can set an interval of time after
which it wishes to receive an alarm by sending a non-negative integer to the iport SetTime. Timer stores this
number in the variable Interval and decrements it at every ‘tick’ of the clock; when the interval reaches zero, it

sends a message through Alarm.

Problem: A minor road crosses a major road at a junction with traffic lights which are normally green for
traffic on the major road. Pressure pads on the approaches of the minor road to the junction send a signal
whenever they are depressed. When the first vehicle crosses the pressure pads while the lights are red for
traffic on the minor road, the lights must change after 20 ﬂme units and remain green for 15 time units. (Note:

there is never much traffic on the minor road).

Solution: Let us call the major road NS and the minor road EW. The traffic lights have two states: green
for NS and green for EW. The pressure pads cause a change of state only when the first vehicle crosses them

while the lights are red for EW. Let Pads be a module with oports EW1 and EW2 which send the signals from
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the prossure pads. and NSGreen and EWGreen be ipoits in a module Lights. An instance of the module

Timer will be used to measure the waiting intervals.

module specs Signals;
needs module Timer; oport Pads. EW1, Pads. EW2;
iport Lights, NSGreen, Lights. EWGreen;
provides module 1:Timer; oport EWtoGreen ( ); NStoGreen ( ); Sct(integer);
iport PadSignal { ); Timesup ( );
connect (PadSignal. Pads. EW1, Pads.EW2): (Set, T.SetTime); (Timesup, T.Alarm);
(EWtoGrecn, Lights. EWGreen); (NStoGreen, Lights. NSGreen);
cnd Signals.

module implementation Signals;
declare T : Timer:
EWtoGreen, NStoGreen @: send (); Set :: send (I : integer);
Timesup :: receive { ); PadSignal :: receive ();

begin
loop
NStoGreen; await {PadSignal};
Set (20); await {Timesup};
EWtoGreen; Set (15);
loop .
await {PadSignal, Timesup};
if LastPort = Timesup then exit end if;
end loop;
end loop;
end Signals.

The main block has a loop to set the initial condition (NStoGreen) and then to wait until a pad is
depressed. When this occurs, the lights are switched after 20 units and the time interval is reset to 15 units.
The second loop reads and ignores any further pad signals until the time interval has passed (LastPort is a
standard oport which returns the name of the last port at which a message was received). The solution can be
easily extended to switch the lights either when a vchicle crosses the pressure pads, or after a fixed time

interval, whichever occurs sooner.

4 Module Lifetimes and Termination

A module is created when it is instantiated; except for type modules, modules are instantiated implicitly
when the program of which they are part is created. A type module must be instantiated in some other
module to be created. When a module is created, its declarations are performed, all (local} module instances
which may be declared in that module are created, and the connections described in its specifications are
made. The module is then said to be initialised, as are all its local module instances. An initialised module is

ready to execute the statements of its main block.,
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A muodute continues exccution until

1. It has completed exccution of the last statement in its main block (a module with an empty main
block is treated as if it has executed a single "null’ statement), or

2. It attempts to receive a message at a iport which is unconnccted to any oport.

When either of these conditions occurs, a module suspends execution and becomes comatose and all
connections are broken from and to the ports of that module (note that this does not automatically cause its
local modules to become comatose). ‘A rﬁoduie remains comatose as long as it has any local modules which
are either executing or comatose and is terminated only when all its local modules have been terminated.
Thus a module cannot be terminated while its own variables are still in exccution; the variables of a comatose
module will themselves become comatose if they attempt to communicate with the module and can then be

terminated if they have no executing variables of their own.

A module therefore has four stages in its existence: created, initialised, executing, and comaiose. The stages
of this existence may be dependent on the stages of existence of other modules. For example, we have already -
seen that a comatose module cannot be deleted until all its local moduies have been terminated. On the other
hand, an executing module may become comatose because some other module with which it 18
communicating has ceased execution. From the point of view of an implementation, whenever one module is

terminated a check must be made to see if the condition for terminating any other module has now been met.

4.0.1 Example

Problem: (cf. Hoare3) Two square matrices or order N are to be muldplied. One matrix is already stored
with its individual elements in the elements of a square array of modules. The other matrix is to be read in
columns, multiplied with the stored matrix, and the product matrix is to be output in rows. “After an initial

delay, the results are to be produced at the same rate as the input is consumed™.

Solution: Let West be a vector of modules each of which has an oport, Next, which delivers a real number
corresponding to an element of the column of the array to be multiplied. Let North be a module which has
an oport, Zero, which sends zeroes. The elements of the array of multipliers, Cn, are modules of type Node
which receive a real number at the iport FromW, and a partial sum from an iport FromN, and send a new
. partial sum through an oport ToS. A vector of modules, South, each with an iport, Result, receives the rows of

the product matrix. It is assumed that West and South are pre-defined.
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module type Node;
provides iport FromWireal): FromN(real);
oport ToS(real);
end Node. :

module implementation Node;

declare R.R1.R2:real; % R is the stored clermenth
FromW, FromN :: receive (El:real);
ToS :: send (Res:real);

begin
loop (1.N) :

FromW (R1); FromN (R2); ToS(R*R1 + R2);

end loop '

end Node;

moduie specs Multiplier;
needs oport West.Next[1..N] (real); North.Zero (real);
iport South.Result[1..N] (real);.
provides module Cn ; [1..N, 1..N] of Node;
connect {West.Next{1..N], Cn.FromWI[1..N,1] .. [L.N,N]);
(North.Zero, Cn.FromNI[1,1] .. [LLN]};
(Cn.ToS[1,1..N] .. [N-1,1.N],Cn.FromN[2,1..N] .. [N,1..Nj);
(Cn.ToS[N,1..N}, South.Result{1..N]);
end Multiplier.

module implementation Multiplier;
declare Cn : [1..N,1..N] of Node:;

end Multiplier.

- 'This solution requires N(N + 2) + 1 modules, compared to the N(N + 4) processes required for a similar
solution in CSP: this reduction is made possible because of the ability to connect one port (eg, North.Zero, or
Westfl].Next) to a set of ports (ie, Cn{1,1] .. Cn{1,N], and Cn.FromW[1,1] .. Cn.FromW[1,N]). The indices
used in the connect statements clearly indicate the types of connections: ie, between columns and rows (West
to the rows of Cn), and rows and rows (each row of Cn to the succeeding row). Multiplicr is an example of a
module with no main block. It becomes comatose as soon as it is initialised. However, the array of local
modules, Cn, will execute the basic loop N times. The module, Multiplier, will be terminated when each

module in the array, Cn, is terminated.

5 Module Creation

The modules we have described so far have been created as parts of programs, or as variables in other
modules. In addition to this, moedules may be dynamically created using the make statement. A dynamicatly

created module must be referred to by a name which is associated with a module type by a special declaration.

declare NewMod, NewNode : *ModType;
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A ™" in a declaration (or a provides statement) denotes a dynwnically created module.  NewMod and

NewNode will be referred to as dynamic variables: note that this declaration does nof create a module.

A set of modules may be dynamically created by the make staterment:
make {NewMod, NewNode};

which results in the names NewMod and NewNode being associated with dynamically created modules of

type ModType. A dynamic module is declared in a provides statement:
provides NewNode : *Node;

and its ports can be connected as usual:
connect (Out, NewNode.Inp);

This connection will be made between the port Qut and the port Inp whenever a dynamic module is associated
with NewNode. (Since the receipt of a message is equivalent to the assignment of the values of the message to
local variables, a dynamic connection can also be made for modules passed as parameters in messages).

declare NewNode : *ModType;

Qut :: send {'String’);
Get :: receive (Mod : ModType);

begin
make {NewNode}; . %NewNode is now associated with a new module\
Out; [L1]
Get (NewNode), %NewNode is now associated with a module\
Out; %passed as a parameter\ fL2]
end :

At each of the statements L1 and L2, the variable NewNode refers to a different instance of ModType. Hence,
two different dynamic connections are made between the port Qut, and the port Inp in each instance of

ModType, and the two port calls to Out will send the message ('String’) to two different modules.

A corresponding break statement can be used to disconnect a set of dynamicaily created modules:
break {NewNode, NewMod};

A dynamic variable can only be associated with one module at a time: therefore, if a dynamic variable was
associated with a module, its connections must first be broken before the variable can be associated with a

new module.

A dynamically created module is treated like a module created by a declaration; however, a dynamically
connected module can be disconnected in two ways, by a break statement or when its creating module

becomes comatose. Note that the termination rule for modules still allows the problem of dangling references



18

W be avoided. The legality of port connections can be checked (at compite time) as a dynamic variable can

only be associated with modutes of one type.

Problem: (cf Hoare®. attributed to D. Gries) Construct a parallel version of the Sieve of Erastothenes; each
clement of the sicve will first receive, and then print. a prime number from its nearest neighbour on the left. it
will then receive a strcam of intcgers; every integer which is a multiple of the prime must be suppressed, and
all other numbers must be sent to its nearest neighbour on the right. Print ail the prime numbers between 2
and 10000. '

Solution: Let the elements be modules of type Sieve: each module has an iport FromLeft which reads in
integers sent by the neighbourin'g module on the left. The first number, which is also a prime, is output
through the oport ToPrint and all succeceding numbers which are multiples of this number are suppressed.
When the module first encounters a number which is not a multiple of its prime, it creates a new instance of
Sieve and sends the number through its oport ToRight, which is dynamically connected to the iport FromLeft
of the new module. The starting sequence of numbers and the first instance of Sieve are created in a module
Primes; all subsequent instances of Sieve are dynamically created and there will be as many such instances as |

there are prime numbers between, in this case, 3 and 10000.

module type Sieve;
needs iport Print.Out (integer}; -
provides module Next : *Sieve; iport FromLeft (integer);
oport ToRight {integer); ToPrint (integer);
connect (ToRight, Next. FromLeft); (ToPrint, Print.Out);
end Sieve. ’
module implementation Sieve;
declare M,Mp,P : integer; Next : *Sieve; First : boolean;
Fromieft :; receive (N :integer);
ToRight :: send (M); ToPrint :: send (P);

begin
FromLeft (P); ToPrint; Mp : = P; First : = true;
loop
FromLeft (M),
loop (while M > Mp) Mp : = Mp + P end loop;
il M < Mp then
if First then make {Next}; First : = false end if:
ToRight;
end if;
end loop;

end Sieve.
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module specs Primes;
needs type Sieve: iport Print.Qut;
provides iport S.Froml_cfi(integer);
oport PY(inteser); ToP(integer);
connect (ToP, Print.Out); (P1, S.FromLeft);
end Primes.

module implementation Primes;
declare’S ; Sieve; R : integer;

P1:: send (R); ToP :: send (2); T
begin ' '

ToP;

loop (for R : = 3..10000 step 2) P1 end loop;

end Primes. ’

‘The module Primes will send out a stream of odd numbers from 3 to 9999 and then become comatose; its
connections will be broken, and the first instance of Sieve, S, will therefore become comatose when it
attempts to-read the next number through its port, FromLeft. This will be repeated for all the dynamic
instances of Sieve; the last of these will not itself have created any instance of Sieve and will be terminated as
soon as it becomes comatose. Once this is done, the previous module can be terminated, and so on, The
dynamic instances of Sieve will all be terminated in the order opposite to that of their creation and then the

program Primes can itself be terminated.

6 Building a Binary Tree

Problem: A company keeps information about each of its employces in the form of a record with the fields
Ident, Name, Age and Sex. The records are to be kept sorted by Ident, which is a unique integer for each
employee. The operations to be done are Insert, to add a record; Search, to find the entry corresponding to a

name; Delete, to remove the entry for a name; and, List, to print out all entries in sorted order.

Solution: Let the employee data be stored in the form of a binary tree, with each node having one record of
type EmpiRec, and variables Left and Right as the subtrees which extend from the node.
EmplRec = record

Ident : integer; Nm : Name;
Age : integer; S : Sex
end EmplRec;

All nodes can be of idenr.icall fype, TreeNode, with the operﬁtions performed by the iports Insert, Delete,

Search and List.

1. Insert: A new record can only be insertéd in a node which is empty (ie, one whose EmplRec has

zero in the Ident field). According to whether the Ident for the new entry is-less or greater than
the Ident for a non-empty node, the new entry will be on the left or right subtree for the node. A
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non-empty node which has no descendants makes a pair of new nodes and forwards the entry to-
the appropriale one.

. Delete: Vhe record to be deleted is identificd by name and may be anywhere in the tree: ifitis at
a lcaf {ie, a node whose references to subtrees are both nil), the node can be merely be made
empty; if. however, it is clsewhere in the tree, the record which is at the root of a subtree
originating at the required node should replace the record to be deleted. This must be done
iteratively down the subtree until, finally, a leaf node is made empty. A node which has two
empty descendanis can disconnect them both (ie, using the break statement). The Delete
operation makes use of an auxiliary operation, ReadLeft (or ReadRight), to find which subtree
should be moved up and to detect empty descendant nodes.

. Search: 1f a node contains the reguired record, the search is over (and the reply is true); otherwise,
(a) if the node has no descendants the reply is false, or (b) the search must continue down both
subtrees and the reply is the logical or of the replies from the subtrees.

. Lisr: To print the entries with Ident in ascending order, print the left subtree (if there is one), the
node (if not empty), and then the right subtree (if there is one). Repeat for all nodes.

module type TreeNode;
needs type EmplRec; iport Print.Entry;
provides module Left, Right : *TreeNode; iport Insert (EmplRec); Delete (Name);
Search {(Nameé) => (boolean); List () => (); Read () => (EmplRec);
oport Insertf.cft, InsertRight (EmplRec); DeleteLower (Name});
Deleteleft, DeleteRight (Name); ReadLeft, ReadRight ( ) -> (EmplRec);
Nextl evelSearch (Name) -> (boolean); Display (EmplRec);
ListLeft, ListRight ()-> (); : '
connect (Insertlcft, Left.Insert); (InsertRight, Right.Insert);
{DeleteLeft, Left.Delete); (DeleteRight, Right.Delete);
(Readl eft, Left.Read); (ReadRight, Right.Read);
(DeleteLower, Left.Delete. Right.Delete); (Display, Print.Entry);
(NextlevelSearch, Left.Search. Right.Search);
{ListLeft, Left.List); (ListRight, List. Right);
end TreeNode. '

module implementation TreeNode;
declare Rec ; EmplRec; Left, Right : *TreeNode; Sons, Found : boolean {: = false);
Insert ;: receive (R : EmplRec)
if Rec.Ident = O then Rec:= R;
else if ~Sons then make {Left, Right}: Sons : = true end if;
if R.Ident < Rec.Ident then forward InsertLeft (R)
else forward InsertRight (R) end if;
end if;
reply ();



Delete :: receive (N Name)
if Ree.Nm = 0 then
if Rec. Nm = N then forward Deletel ower (N)
elseif =Sons then Rec.ident : = 0
clse Rec 1= Readl.cft:
il Rec.ldent = 0 then Deletel.eft (Rec.Nm)
else Rec : = ReadRight;
if Rec.Ident = 0 then DeleteRight (Rec.Nm)
clse hreak {Left, Right}; Sons : = false end if
end if
endif
end if
reply ()
Search :: receive (N ; Name)
if Rec.Nm = N then Found : = true
elseif Sons then NextLevelSearch (N); Found : = B;
await {Result}; Found : = Found or B
else Found : = false :
end if
reply (Found);
List :: receive () : )
if Sons then ListLeft; Display; ListRight
elseif Rec.Nm = 0 then Display end if
reply ();
Display :: send {Rec):
ListLeft, ListRight :: send (.) response ();
Read :: receive ( ) reply (Rec);
InsertLeft, InsertRight :: send {ER ; EmplRec);
ReadLeft, ReadRight :: send () response (ER : EmplRec);
Deletel .ower, DeleteLeft, DeleteRight :: send (N : Name); .
NextlevelSearch :: send (N : Name) response Result;
Result :: receive (B); '
begin
loop
await {Insert, Delete, Search, List, Read}
end loop
end TreeNode.

Inserting a new record takes log n operations, assuming the tree is balanced and has n nodes, and may involve
the creation of two nodes. This is no better, and no worse, than for a sequential program. However, a
number of new records can be inserted in 'pipe-lined’ fashion and each subsequent inscrtion takes only 1 step
. (the Insert operation has no waiting, so the caller is free to continue execution). Deleting a record is not as
simple: in the worst case (deleting the root of the tree), a single deletion may trigger off (log n) - 1 other
deletions, each of which requires one or two Read operations. Howev‘er, note that for the Delete operation, as
for the Search, finding the required element is done in parallet (each node forwarding the request to its

descendants, with a ‘fan-out’ of 2); the Delete operation may also be pipclined but with reduced parallelism as
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the subiree originating in the node te be deleted will be "blocked” untif the entire Delete operation is over.
Insert and Delete operations may cven be pipelined ;u.]d interleaved in any order and, subject to the
restriction for parallelism for-the 1elete operation, they can be exccuted as fast as 1 operation per step.The
Scarch operation takes a time of 2 log n sieps, as the request has to wavel down the tree and the responscs
{Result) have to be sent back up. each nede combining the responses of its two descendants. These results
compare reasonably well with those given by Bentley and Kung for their tree-structured parallel computerg.
The Lisl opcration is relatively simple: since records are sorted by Ident when they are inserted, the sorted list
of records can be printed by traversing the nodes in order; naturally, this takes n steps. (For both Search and

List, the value of n must include the empty nodes).

7 Reliable Communication on Unreliable Lines

Problem: Two programs communicate with each other by sending messages across unreliable lines.
Communicdtion may be in one direction, or both, and the propogation time on the lines is such that the
transmission of N messages can be initiated in the time it takes one message to go to the other end. A
standard 6pcrati0n Checksum is available to verify if a message has been mutilated in transmission. Devise a

means for messages to be sent from one program to the other without errors or change of order.

Solution: Since communication may be one way or both ways, transmission and receipt of messages must
be kept separate to ensure that these operations can be performed independently. Let Transmitter be the
module which accepts messages from a program for transmission across the lines, and Receiver be the moduie
-~ which receives messages from the lines. Every message which is reccived must be checked {using Checksum);
if it has been corrupted, a message must be sent to the other end asking for a re-uansmisﬁon. Since N
messages can be sent in the time it takes one message to go from one end to the other, the acknowledgement
for a message will take a time equal to the transmission time for 2N messages. Let us assume that messages
are much longer than their acknowledgements, so that it is worthwhile sending acknowledgements ’piggy-

back’ along with outgoing messages.

Transmitter will need to keep a buffer of at least 2N messages if the line is to be efficiently used as a
message can only be deleted after it has been acknowledged. The buffer requires three pointers: NextFill,
NextOut, and NextAck, to indicate the positions of the next empty slot, the next message to be transmitted,
and the next message to be acknowledged, respectively. A variable, MCount, records the number of
unacknowledged messages still in the buffer. Transmitter will require an iport, FromProg, to receive
messages for output from the program and another, FromRec, to receive acknowledgements from its
Receiver, It will have an oport, ToLine, for sending messages to the line. However, since communication can

be in one dircction or both, and since acknowledgements are sent 'piggy-back’ with outgoing messages, it is _
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possibic that acknowledgements will get held up ac one end if there are no OUgeing INessages. To avoid this,
Transmitter must also send a null” message if any acknowledgement is pending without an otgoing message

in the buffer.

We will assume that the constants N and Max ( = 2N ), and the types Status = (Ack, Nack), Message and
MaxMOQ = 0.. 2N are defined clsewhere.

module type Transmitter;
needs constant N, Max; type Status, Message, MaxMO;
provides iport FromProg(Message} => ( ); FromRec(MaxMO, Status, MaxMO, Status)
oport ToLine (MaxMO, Status, MaxMO, Message)} -> ( );

end Transmitter;

module implementation Transmitter;
declare Buffer : [1 .. Max] of Message;
NextOut, NextFill, NextAck : 1..N{:= 1,1, 1);
RecStat : Status: MCount, RecNum ;: MaxMO(: = 0, 0);
FromProg :: receive (M : Message)
Buffer[NextFiil] : = M; MCount := MCount + 1,
NextFill: = (NextFill mod Max) + 1;
reply (); »
FromRec :: receive (AckNum : MaxMO; AckStat : Status; RecNum; RecStat);
if AckNum = 0 then
if AckStat = Ack then
NextAck : = (NextAck mod Max)+ 1;
MCount : = MCount - 1;
else NextOut : = AckNum end if;
end if;
reply ();
ToLine :: send {RecNum; RecStat; Num2 MaxMQ:; M2 : Message) response { );
hegin
loop

if MCount = Max then
await {FromRec}

clse await {FromProg, FromRec} end if;

if NextQut = NextFill then
ToLine (NextOut,Buffer[NextOut]);
NextOut : = (NextOut mod Max) + 1;

else ToLine (0, nuil) end if;

end looyp;
end Transmitter;

Transmitter has the iport FromProg to receive messages from the program provided MCount < Max. The
iport FromRec is to be connected to the Receiver module for that program, which will supply the number,

AckNum, and the status, AckStatus, of the last acknowledgement received from the other program and the
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number and stitus (;f the last mmzv;zj.;ff received (these are stored directly in ReeNum and RecStatus, for
transmission to the other program 1hrmigh the oport Tol.ine). We use the convention that a message number
is set to.zero when the status is to be ignored. A message {and an acknowledgement, if there is one) is sent to
the line whenever there is one pending in the buffer (ie, NextOut = Nexiiil): if just an acknowledgement is
pending, it is sent with a null message. Note that if the acknowledgement (AckStat) from the vther program
indicates that a message {AckNum) was correctly received. MCount is decremented and NextAck updated;
otherwise, all messages from that one onwards are to be retransmitted (by sctting NextQut to the value of
AckNum). o | '

Receiver has iports ToProg, to supply the next message to the program, and FromlLine, to receive input
from the line; messages ready for the program are stored in a buffer of size Max. A variable RCount records
the number of correct messsages in the buffer. Input from the line may consist of acknowledgements and/or
messages; acknowledgements to me-ssages sent by the Transmitter of that program are AckNum, the message
number, and AckStat, the status, and are just to be sent to Transmitter. An incoming message ( M ) from the
other program has to be checked by passing it to the oport Checksum. If a message has been received without
error, it can be added to the buffer; hbwcver, if there is an error, no further messages should be stored in the
buffer until that message has been correctly re-transmitted (Num?2 is the number of the next message and it
must be the same as the buffer pointer Nextln if the message is the next to be stored, or zero if there is no

message (ie, a null message with a real acknowledgement)).

module type Receiver;
needs constant N, Max; type Status, Message, MaxMO; .
provides iport Froml.ine (MaxMO, Status, MaxMQ, Message) -> ( );
ToProg ( ) => (Message);
oport ToTrans (MaxMO, Status, MaxMO, Status);
end Receiver,

module implementation Receiver;
declare Buffer : [1 .. Max] of Message;

Nextln, NextToProg: 1..Max (:=1,1);

AckStat, RecStat : Status;

AckNum, MCount : 0.. 2N (: = 0, 0); M : Message;

ToTrans:: send (AckNum; AckStat; Numl : MaxMO; RecStat);

CheckSum :: send (M) response (RecStat);

ToProg :: receive ()
M : = Buffer|[NextToProg]; MCount : = MCount - 1;
NextToProg : = (NextToProg mod Max) + 1; -

reply (M);

FromLine :: receive (AckNum; AckStat; Num2 : MaxMQ; M);
if Num2 = 0 then CheckSum end if;
if (RecStat = Ack) and (Num2 = Nextin) then
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Bufter Nextin] = M: MCount : = MCount + 1;
NextIn: = (Nextln mod Max)+ 1;
ToTrans(Num?2):
else ToTrans( 0 ) end if;
reply (
begin
loop
if MCount = 0 then await {FromLine}
elseif MCount = Max then await {ToProg}
else await {FromLine, ToProg} -
end loop; :
end Receiver.

Finally, the two module types can be instantiated in the modules representing the programs which need to
communicate across the lines. Let Trans! and Recl be the instances in program 1, and Trans2 and Rec2 the
instances in program 2. The oport ToTrans in Recl (or Rec2) must be connected to the iport FromRec in
Transl (or Frans2) so that acknowledgements can be sent for each message which is received. Program 1 will
send its messages to the iport FromProg in Transl: this is a blocking send, as the control rule in the
speciﬁcati'ons for this port is "=>". Program 1 can only continue when the message has been accepted, and
that will be when there is place in the buffer. Program 1 can receive incoming messages from the iport
ToProg in Receiver: this is also a blocking send, so the program will wait until a message has been received.
Note that the line is transparent to the Transmitter and Receiver: in fact, the oport ToLine in Transl (or
Trans2) can be directly connected to the iport FromLine in Recl (or Rec?) and the properties of the lines can

be represented in a communication scheme which is used for these ports.

8 Ports as Modules
"We shall call a group of definitions and programs which covér a notion such as this an
implementation scheme, or simply a scheme™®."
We have so far considered ports as pre-defined types which are created by declarations in modules. It is
fairly easy to see that the declaration of a port accomplishes more that.a simple declaration as it associates a
control rule and, for iports, possibly a set of statements with the port. The syntax of a port declaration

provides a framework in which the operations of the port are performed.

We can also view ports as data types which have a limited set of operations which can be performed on
them. Some of these operations are cxplicitly stated whenevér ports are used : connect, send and receive
(note that reply, response and forward arc basically syntactic variations of the last two operations); another has
been referred to in connection with module lifetimes and the break statement, and is disconnect {which is

performed on all the ports of a module when it becomes comatosc) . Another operation is necessary for the
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awail statemnent, to indicate if o port his a message ready. Stree there is no iaberent reason why -these
operations cannat be programmed in the language. we can even consider a port as 4 module (with a set of
oports and iports for cach of the operations send, reccive, connect ond disconneet) which is instantiated at cach

port declaration.

To illustrate how ports might be implemented, let us consider a version which would be suitable for
distributed systems in which each processor has a uniform method for communicating with any other
processor. Since, in general, an oport ma} be connected to a set of iports, an output message may need to be
sent to several different destinations any of which may delay accepting it; we would also like communication
1o be as asynchronous as Lhe control rule for a port will allow. Both these requirements point to the need for

maintaining buffers for ports. We will therefore first consider the design of a suitable buffer module.

The module Buffer will contain an array of Storage to hold messages: this will allow a sending module or a
receiving module to execute as much in parallel with the transmission and receipt of messages as possible (the
size of the array can be a parameter). The obviously necessary operations are Save (to put a new message into
the array), Read (to non-destructively read a message from the array) and Clear (to delete a message in the
array); an additional operation Restore allows a partially transmitted message (ie, one which has been sent to
some but not all of its intended destinations) to be stored until it can be sent to its remaining destinations.

Two operations, Empty and Full, allow the state of the Buffer to be tested. .

The definitions of Buffer and Port are mutually dependent, as we will see that the destinations of messages
stored in a buffer are ports, and that ports require buffers for storing messages. (From the point of view of
compilation, this would require the specifications for Buffer and Port, the implementation of Port, and the
implementation of Buffer to be compiled in that order). The oport Next, used in the implementation of
Buffer, takes a set of 1 .. N and returns the value of one of its elements, according to an algorithm we will not

consider here,

module type Buffer:
needs module Port; type BufEl; const N;
provides iport Save(BufEl) => ()] Read () => (BufEl);
Restore(BufEl) -> (); Clear () -> ();
IsEmpty, IsFull ( } -> (boolean);
end Buffer.



module implementation Buffer;
declare Vacant, Filled s setof 1. N ={1L . N}, { })
NextEl: 1. N; Swrage @ {1 .. N] of BufEL
Save :: receive (M : BufEl)
Nextkl : = Next{ Vacant); Storage[NextEl] : = M:
Vacant : = Vacant - {NextEl}; Filled : = Filled + {NextEf};
reply ();
Read :: receive () reply (Storage[Next(Filled)]);
Restore :: receive (M : BufEl)
Storage]Next(Filled)] : = M;
reply ( );
Clear :: receive { )
Vacant : = Vacant + {Next(Filled)};
Filled : = Filled - {Next(Filled)};
reply ();
IsEmpty :: receive () reply (Filled = { });
IsFull :; receive { ) reply (Vacant = { });
PSet : set of iport (: = {Clear, IsEmpty, IsFuil});
begin
loop .
if Vacant = { } then await (PSet + {Read})
elseif Filled = { } then await (PSet + {Save})
else await (PSet + {Read, Save}) end if;
end loop
end Buffer.

Vacant and Filled are sets of 1 .. N representing the elements of Storage: initially, Storage is empty (so
Filled = { }) and for each entry stored in the array, one element of Vacant is added to Filled. The main block
of Buffer resembles the operation of a bounded buffer: if Vacant = { } then no further entries can be
accepted, if Filled = { } then no entries can be read, otherwisc entries can be stored and removed. PSet

contains the names of the iports at which messages will always be accepted.

We can now define the module Port: we will assume that PortType is a compile-time parameter of type
($port, $Oport). Port will require iports for the basic operations $Connect, Disconnect, $Send, and $Receive,

and we will define a single module which can serve as both kinds of port.

The $Connect operation is to be used to connect two ports together (since all multi-way connections can be
reduced to sets of two-way connections); as either of two connected moduies may become comatose, a record
" of all connections must be kept in both modules {or, to be more precise, in the ports of both modules). The
$Connect operation therefore has two parts: to add a new port to the set, PS, of ports connected to a port, and
10 send the name of the port to the port it is to be connected to. The second part requires the use of a distinct
operation, AddLink. Similarly, corresponding to the Disconnect operation, another distinct operation,
RemLink, is used to remove a port from the set of connections of the port it is connected to. Both these

operations make use of a standard operation. This, which returns the name of the current module.
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The $Send operation must esentualh caise the senieral send (o be performed: from one opet w the set of
iports it is connected 10. To do this with a high degree of parallelism, the message is first stored in the Buffer,
along with the set of ports it is to be sent to (thus, unless the Bufter is full, the sending module is then free to
continuc exccution). The main block of Port performs the actual transmission of the message, by reading it
from Buffer and sending it with the name of the transmitting Port (using the Transfer oport} to as many of its
destination ports as arc not full; when a message has been sent to all of its intended destinations. it can be
dclcfcd (by the operation Clear, in Buffer), but if any of the destinations is full, the message must be sent back
to Buffer (Buf Restore), |

With the usc of a Buffer in Port, the $Receive operation becomes very simple: it will just wai; until there is
a message available in the Buffer. If more than one message is rcady in the Buffer, one of them is chosen
according to the value returned by the oporst Next (this function could therefore serve to arbitrate between
messages and/or senders of different priorities). Note that it is possible that the Buffer is full when the
$Receive opiefation is invoked, so that some senders may potentially have been unable to transfer messages
into the Buffer; WasFull is a boolean indicating this condition and if it is set, a message is sent to all
connected oports through thé oport Signal (in this simple implementation, this could result in unnecessary

comrmunication, but we will ignore that here).

module type Port;
needs module Buffer; type MessageType; const BufSize, PortType;
provides type StorageEl; module Buf : Buffer; Dest : *Port;
iport $Connect (Port) -> ( ); Disconnect (Port) -> (); -
AddLink (Port) -> ( ); RemLink (Port) -> ();
$Send (MessageType, Port) => ( ); TryAgain ( };
$Receive (MessageType, Port) => ();
oport SavelnBuf (StorageEl) -> ( };
MakeLink (Port); BreakLink(Port); PortFull ( ) -> (boolean);
Transfer(MessageType, Port) -> ( ); Signal ();
connect (BufEmpty, Buf IsEmpty): (BufFull, Buf.IsFull); (BufRead, Buf.Read);
(BuiRestore, Buf.Restore); (SavelnBuf, Buf.Save); (BufClear,Buf.Clear);
(MakeLink, Dest. Addi.ink); (BreakLink, Dest.RemLink);
(Transfer, Dest.Buf.Save); (PortFull, Dest.Buf. IsFull);
{TryAgain, Dest.Signal);
end Port.
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module implementation Port
declare Storagel-l = record
M1 MessageType:
MPR : Port ‘
MPS : set of Port;
end StorageEl;
Buf : Buffer(Storagekl, BufSize); Dest : *Port;
PS, NPSI, NPS2 : set of Port (: = { });
StFl : StoragcEl; B, WasFull : boolean ( : = false, false);
$Connect :: receive (Dest); -
PS := PS + {Dest}: MakeLink;
reply ( );
Disconnect :: receive (Dest);
PS : = PS - {Dest}; BreakLink;
reply ();
MakeLink, BreakLink :: send (This);
AddLink :: receive (To : Port)
PS := PS + {To};
reply ( );
RemLink :: receive (From : Port);
PS := PS - {From};
reply ();
$Send :: receive (M : MessageType; R : Port); )
S(ELMI1 := M; StELMPR : = R; StELMPS : = PS;
SavelnBuf (StED);
reply ();
SReceive :: receive ()
if PS = { } then Abort
elseif BufFull then WasFull: =true end if;
BufRead (StEl); BufClear;
reply (StEL.M1, StELMPRY;
Transfer :: send (CopyEl : StorageEl) response {);
SavelnBuf :: send (NewEl : StorageEl) response { );
BufEmpty, BufFull :: send () response (B);
BufClear :: send ( );
BufRead :: send () response (NextEl : StorageEl);
BufRestore :: send (OldE] : StorageEl);
PortFull :: send { ) response (B);
Signal :: send ();
TryAgain :: receive ( );
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hegin
{oop
il PortFype = $Oport then :
await {$Connecl. Disconncct, AddLink, RemLink, $Send, TryAgain};.
if not BufEmpty then
- BufRead (StED); NPS1 ;= StELMPS; NPS2 : = NPS1;
loop (while NP§2 = { })
Dest: = Next(NPS2);
if not PortFull then
StELMPS /= {This}; .
Transfer (StEl); NPS1 : = NPSI - {Dest} end if;
NPS2 := NPS2 - {Dest};
end loop;
if NPS1 = {} then BufClear
clse StELMPS : = NPS1; BufRestore (StE}) end if;
end if;
else await {$Connect, Disconnect, AddLink, RemLink, $Receive};
il WasFull then :
NPS1 : = PS; WasFull ; = false:
loop (while NPS1 = {})
Dest : = Next(NPS1);
Signal; NPS1 : = NPS1 - {Dest};
end loop
end if
end loop
end Port.

8.1 Comments

Operations using ports then amount to little more than operations on modules which implement ports,
exactly as operations on, say, TreeNode are operations deﬁnéd in the module TreeNode; the difference arises
only because the operations on ports are not directly invoked by port calls but by statements in the language.
This creates the possibility, given some means, of associating different implqmentations of ports with
modules, depending on particular requirements. For example, it is usually necessary to implement
communication with peripheral devices differently from normal inter-module communication even when,
conceptually, they can be treated equivaiently (’special’ handling of this kind can be seen in Modulaz, with
device modules and device processes, and in Adal!, when interrupts are to be associated with entry calls on
tasks).

This would itself serve a useful purpose, as it permits different communication needs to be met without
burdening the language with new features and constructs. But we can go beyond this. Many of the languages
recently proposed for distributed or paraltel processing appear to have been designed with an underlying

architccture in mind as they make no provision for specifying how different components are physically
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distributed or how communication takes plice if the architecture is not uniform. Because of this, CSP would
be difficult to implement on a system which did not allow unitorm interconnection between processes {either
on a single processor, or on a-distributed system with one process per processor and full interconnection). as
the usual requirement for shared memory has been replaced by the need for a sharcd intercommunication
structure. Similarly, DP has been designed so that the single process on cach processor of a distributed system
would intericave its own processing with serving requests for the execution of remote procedure calls from
othcf processes. (The "guardians’ of Clu!? can also be seen to have a similar structure if we substitute a
guardian for the DP process and a Clu process for each DP procedure). Dependence on a particular
architecture can be a major restriction as it scems likely that there wiil be many more differences in
architectures than in the features of programming languages, so each such language will have to rely on the
ingcnﬁity of its implementors in making visible, or invisible (if that is preferred), the interconnections of the
hardware and the way i)rocesses are mapped onto processors. The use of different implementations of ports is
one way for languages for parallel or distributed computing to be both independent of the particular

architectures they are implemented on and capable of being used efficiently on a variety of architectures. '

We can refer to each implementation of ports as a communication scheme and visualise a port declaration as
an instantiation of a port type. It is usually of no consequence to the instructions of a module how ports are
going to be implemented, so the choice of communication scheme is made in the module specifications. For
example, if Ready is an oport which sends a boolean message when a line printer is ready to accept another
line for printing through its ipost Buff, and Print is an iport to which users can send lines for printing, we can

specify a line-printer device driver as: .
module specs LPDriver;
needs type Line; iport LP.Buff; oport LP.Ready;
provides iport Print(Line) -> ( ) using InterProcess;
Next{ ) using InterruptLevel;
oport Output(Line) using InterruptLevel;
connect (Next, LP.Ready); (Qutput, LP.Buff);
end LPDriver,
The using clause specifies the particular communication scheme to be used for the implementation of the
ports and cach port to which they are to be connected (two ports can be connected only if their message types
match, their control rules are compatible and if they use the same communication scheme). We have assumed
here that the line printer is represented as a module LP which uses the communication scheme
InterruptLevel, and that other modules communicate with cach other using the scheme InterProcess. When
there is no using clause, it is assumed that some standard default communication scheme will be usgd,

"Using" a communication scheme means that the operations of that port will be provided by the module

named in the using clause.



There are several cccastons where the use of diffcrent commurrcaiion schemes woudd be obvious:

Ve have already imentioned the hindling of devices: in general, the interface with the hardware of
a machine (including all forms of device operations and interrupts) would requtre a scheme which
is quite distinct from all others:

s In a system with multiple processors and memories, one scheme could be used for modules which
can share memory for their execution (in this case, messages can often be passed without making
copies in buffers), and another scheme would be necessary for modules which exccute on
different proccssor-memory systems; for a distributed system. providing one scheme for local
communication and another for inter-node communication would allow more efficient message
transfer. ’

« Some systems have a hierarchical configuration: for example, on the Cm*13 Systelm, processors are

grouped in clusters which are then interconnected; this would suggest the use of one scheme for
modules executing on the same processor. another for modules on different processors in the same
cluster, and a third for modules in different clusters.

It should be noted that the statements in the implementation of a module do not need to be altered when
there is a change of communication scheme; all that is required is to recompile a module whenever a different

scheme is to be used. The choice of scheme is therefore static but so also, in most cases, is the architecture.

We have emphasised the use of different communication schemes to take account of the features of the
architecture: this is a fairly straightforward requirement (though not one considered in most languages). But
even on the same architecture, it is clear that several different schemes may be necessary if the same language
is to be used for the implementation of the operating system and user programs. This is because the
implementation of the mechanisms for synchronisation and access to storage have usually to differ between
the operating system and user programs. In’the past, this requirement has either been hidden, or different
compilers have been used for operating system and.user programming, or low level languages have been used

so that synchronisation has been provided by explicit programming.

9 Exception Handling

In a programming language designed with particular regard for communication, an exception should
obviously be treated as another form of communication: between a module detecting an exception and one
which has to take some action for recovery. But there are special requirements for adequately handling
exceptions, and limitations to what can be accomplished in a distributed system. We will restrict ourselves to
dealing with exceptions which invalidate other communications, or which require the execution of a module
to be terminated; we will not consider simple exceptions which can be characterised as distinguished values in
the range of a function (such as a function returhing the value zero for illegal arguments), as these can
obviously be handled by normal programming techniques. To simplify the discussion, we wﬂl often talk of

exceptions which can occur when a module A sends a message to a module B and is awaiting its response.
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l.Tet us describe exceptions which occur during communication between A and B as
conmttanicalion exeepiions; such exceplions cun have severa: causes:

» The message sent by A to B may be outside the domain of the function to be evaluated by B
(as in the case, cg, of a simple square root function which oaly takes positive real numbers as
arguments). An cxception is then send to indicate this fact (and that the value which will be
returned by the function is undefined). In this case, A must be prepared to receive two
differcnt messages.

» Module B may fail 1o respond to A's request, either due to software or hardwarc errors on a
processor; for example, this miay be detected by a timeout at the ipost at which A is waiting
for the reply.

» There may be a failure of the communication medium between A and B, also detected by a
timeout at A's iport.

In the last two cases, there can be no communication from B itself and A could be waiting
indefinitely unless some altcrnative action is taken.

2. There is another important set of cases where exceptions may be detected: this is where a module
fails to perform correctly and has to be terminated. We will refer to such exceptions as module
exceptions; they are distinguished by the’ fact that recovery is not possible (eg, due to stack
overflow) and, exception handling, when it is possible at all, is limited to ‘cleaning-up’operations.

Handling communication exceptions requires the detecting module or scheme to send an exception
message through a pre-defined oport, and the receiving module to declare and connect an iport to this oport.
This is analogous to providing a handler for an exception condition. The action that can be taken by this
mechanism can be quite elaborate:

1. The announcement of the exception may merely be informative, and it may be entirely up to the

programmer of a module to decide what action, if any, he wishes to take; this can be done by
having the exception oport follow the control rule ™.

2. Alternatively, the exception oport may follow the control rule ->", so that it can only be connected
to an iport which will send a reply; this will allow a receiving module to do some recovery, and for
the exception module to examine the effects of this action before allowing the module to continue.

3. The exception oport may also send a message to a monitoring module, and ailow the module with
the error only limited time for recovery.

Module exceptions are more difficult to handle as the modute with the error may not be waiting for any
message (and therefore will not receive an exception message ¢ven if it is sent). One way of overcoming this
problem is to use ‘watch-dog’ timers. Another is for the scheme implementing the creation and deletion of

modules (see the next section) to handle such errors.

Whenever exceptions can be handled as messages received by an exception iport, there is the advantage



that all hhe vanabies ol the medule are whailable for inspection and niwditication gic, the excepton handler’

cxecules in the samne scope as the other instructions of the module).

10 Impiementing Modules

Having illustrated how ports can be built as modules, allowing a variety of schemes to be used for the
implementation ‘of the communication primitives, it is interesting to consider if the same technique can be
applied to the implementation of modules. The reason for this is that we have so far assumed that all modules
are created and terminated in identical manner, and that module names are unique dvcr an entire system.
Both these assumptions are questionable: in a complex system, there is likely to be need for several different
implementations of modules in the same way that there is need for different implementations of ports. Ina
hierarchically composcd system, for example, there may be one implementation of modules for the operating
system, another for users, and a user may have need for yet another implementation for the individual
modules of his program; each level of the system may provide different implementations of modules in order
to control the creation, scheduling, and termination of modules at the next level. Such a hierarchy may also
be aptly -reprcsentative of multi-level communication protocols where several levels may exist between

communication at the level of a user program and the eventual transfer of data across a physical medium.

We can envisage the implementation of modules being done by operations in a pre-defined module:

module specs NewModules;

provides iport CreateModule ( ) -> (ModuleName); DeleteModule () -> (ModuleName:
4 IsaModule (ModuleName) -> (boolean); -
end NewModules.
and for the specifications of a module to (perhaps optionally) indicate which implementation scheme is to be

used:

module specs UserModule using NewModules;

end UserModule,

Apart from the practical advantages of this technique, there is also the fact that it allows a common
specificational technique to be used for studying the properties of modules schemes, communication schemes,
and 'user’ modules which use these schemes. The use of algebraic specifications for a simple communication
data type has already been described by Cunha and Maibaum!* and a similar but more elaborate definition

for these schemes is being considered separately.
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i1 Conclusions

Software designed for the diswibuted c.n\-irunmcm has ofter bzen built around “service” programs such as
file servers, printer servers, cte. In such desigas, the extent of patallelism is determined by the extent to which
the active agents in the system (ic, the processes) are able to manipulate the passive objects (cg, files) in
parallel. In constrast to this, the language we have described here is intended to be used in a way which
exposes the maximum parallelism in the problent. it is then possible to reduce this to the exient necessary for
adaptation to the available hardware, using appropriately designed communication and module
implementation schemes. The distinction between these two approaches is important and likely to become

even more so as distributed and parallel systems of hundreds of processoss become widely available.

The low cost of small, powerful processors and fast memory, and the devclopments in communication
technology are likely to make it possible to build interconnected computer systems of many kinds, eg those
with shared memory, with a common bus, or special purpose systems for applications like process control. It
would be unrealistic either to expect each such system to be programmed in a special language or for the
important characteristics of the system to be hidden in the special implementation of a general fanguage. One
purpose of using communication schemes is to be able to separate these two concerns: to be able to

implement the logic of a module independently of the choice of communication scheme to be used.

Languages like CSP and DP have already demonstrated: the attractive possibilities of using parallel
programming features as the basis for language' design. Here, we cxtend parallelism to include "broadcast’
mode cutput and multiple caller input, also allowing the particular synchronisation discipline to be specified
as a control rule. This is done in the context gf a fairly realistic design which can readily be implemented: in
fact, the feasibility of implementation has been an important consideration in determining how ambitious the

language should be, and has been one reason for making the features relatively simple.

These simplifications have nbt resulted in any significant compromise either in the power of the language
or in the compactness with which algorithms can be expressed. On the other hand, they have led to a very
simple and efficient rule for the lifetimes and termination of modules, which assumes great importance in an
actual implefnentation. A conspicuous omission from this report has been any mention of a program
verification or proof methodology which would serve as an aid for the design and validation of programs.
This issue is being considered separately and the relatively simple nature of the language appears to make this

task tractable.
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I.1 Dining Philosophers

Probiem: (due to E.W. Dijkstra) Five philosphers spend their time between pondering, going to a room (o
cat, and rcturning to think. The food at the table is spaghetti. and this requires two forks for catng. There are
five forks placed on a round table, between the philosophers’ places. Each philosopher must pick up the fork
on his left, the fork on his right, and then eat. Write a program which will allow the philosophers o eat
without deadlock (ie, all five philosophers taking one fork each and waiting for a neighbolur 1o rclease the

other fork).

3

Solution: The program given by Hoare” uses one process for the room, cach philosopher, and each fork,

and we will give a similar solution.

moduie type Room;
provides iport In () => (); Out () -> ();
end Room. : :

module implementation Room;
declare Count : integer ( : = 0);
In :: receive () Count : = Count + 1; reply ();
Out :: receive () Count : = Count - 1; reply ( );
begin
loop ]
if Count < 4 then await {In, Out} else await {Out} end if:
end loop .
end Room.

maodule type Fork;
provides iport Pick () => (); Down ();
end Fork;

module implementation Fork;
declare Pick :: receive () reply ();
Down :: receive { ); '
begin
loop Pick; Down end loop;
end Fork.

module type Sage;
provides oport Enter, Takel, Take2 () ->();
iport Leave, Dropl, Drop2 ( );
end Sage.



miodule implementation Sage:

declare Lnter, Takel. Fahe2 tosend () response ()

Dropl, Drop2, Leave 2 send ();
. hegin
loop Ponder: Enter; Takel; Take2;
Consume; Dropl; Drop2; Leave:

end loop

end Sage.

module specs Dinner;
needs type Room, Fork, Sage;
provides module Rm : Room; Fk : [1.. 5] of Fork;
Phil : [1.. 5] of Sage; _
connect (Rm.In, Phil. Enter{1]..[5]); (Rm.Out, Phil.Leave[1].[S]);
(Fk Pick[1..5], Phil. Takel[L..5], Phil. Take2(2.4<2)]);
(Fx.Down([1..5], Phil. Drop1[1..5], Phil. Drop2{2..(<2)]);
end Dinner. - ‘

% Note: <{n = pred n mod array size\

module implementafion Dinner; . )
declare Rin : Room;: Fk : [1.. 5] of Fork; Phil : [1 .. 5] of Sage;
end Dinner.

Synchronisation is essential for two actjons, entering the room and picking up a fork, and this is ensured by
using the " => " control rule for the associated ports. Dropping a fork and leaving the room are both actions
which can be performed asynchronously and should require no waiting, Deadlock is prevented by not letting
more than 4 philosophers into the room at a time. ‘Note that each philosopher’s ports Takel and Take2 are

connected to the appropriate forks according to their position at the table.

Problem: A file may be read simultaneously by a number of readers but may only be written by one writer
at a ime, and then only if there are no readers {this is the Readers and Writers problem). Assume the file has

two operations, Read and Write, to access and modify the file respectively..

Solution (cf Brinch Hansen4): Let State be an integer variable recording the kind of access being made to
the file. Each file will perform its own control over access: the operations Read and Write must be preceded
by the operations StartRead and StartWrite, and foltowed by the operations EndRead and EndWrite,

. respectively.

module specs RWFile;

provides iport StartRead () => (); Read () =>(...); EndRead () -> (),
StartWrite { ) => (); Write ( ...} -> (); EndWrite ( Y->();
end RWFile; ’



Siduaiy epiviavitaiion O il
deckre S1ete s integer 0= 1)
Pata: ... ’
StartRead :: receive ()
State 1= Siate + 1
reply (),
Read :: receive ()
< Get Data >
reply ( .. );
EndRcad :; receive ()
State ;= State - 1
rep}y ()
StartWrite :; receive ()
State : = 0;
reply ()
Write :; receive ( ...)
{Updatc Data>
reply ( );
EndWrite :: receive ()
State:= 1
reply ( );
begin
loop
if State = 1 then await {StartRead, StartWrite}
elseif State > 1 then await {StartRead, Read, EndRead}
clseif State = 0 then await {Write, EndWrite}
end loop
end RWFile,

A writer can start only if there are no readers or writers already (State = 1); a reader can start if there is no
active writer (State >= 1).

Problem: (cf. Brinch Hansen4) A vending machine has two operations: Insert, which takes in a coin, and
Serve, which returns an item if there are any left and the inserted coins cover the cost (if either of these

conditions is false, any inserted money is returned).

module specs VendingMachine;
_provides iport Insert (integer) -> (); Serve ( ) =3 (integer, integer);
end VendingMachine.

module implementation VendingMachine;
declare Stock, Paid, Cash, Change : integer (: = 50, 0, 0, 0);;
Insert :: receive (Coin : integer) .
Paid : = Paid + Coin;
reply ( );



Seive o raoehie b))
H Stook s Ut Paid s Poe tien
Chunge lem o= Beid - Cashl 1
Stock, Cush ;= Stock - 1 Cash + Price
else Chunge. Paid, ltem = Paid, 0.0 :
reply (Change, ltem):
begin
loop
await {Insert, Serve}
end loop
end VendingMachine.



