
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-81-122

Schemes for Communication

Mathai Joseph*

3 June 1981

Abstract

1 Introduction
2 Language Overview

2.1 Module Specifications
2.2 Module Implementation

2.2.1 Declarations
2.2.2 Basic Statements
2.2.3 Communication Statements
2.2.4 Comments

3 Examples
4 Module Lifetimes and Termination

4.0.1 Example
5 Module Creation
6 Building a Binary Tree
7 Reliable Communication on Unreliable Lines
8 Ports as Modules

8.1 Comments
9 Exception Handling
10 Implementing Modules
11 Conclusions

12 Acknowledgements

References

I. Appendix

LI Dining Philosophers

1

Abstract

This report describes features of a language for distributed and

parallel programming which has been designed to provide flexibility in

the transfer of information and control between the individual

components of a program. The language allows synchronous and

asynchronous message-passing, multiple-source input and broadcast

output, and enables particular features of a distributed architecture to

be efficiently accommodated without modification to the language. The

module serves as the unit of encapsulation and a single communication

takes place between an output port in one module and a set of input

ports in other modules: each port has a control rule which

specifies the protocol for sending or receiving messages, and is

associated with a particular communication scheme which implements

the communication operations. Modules are assumed to execute

independently of each other .except when they communicate by sending

messages: the lifetime of a module is therefore limited only by its

ability to send and receive messages. The use of the distinctive

features of the language, such as broadcast mode output, is illustrated

with several examples.

*Computer Science Department, Carnegie-Mellon University, Pittsburgh, Pa 15213. On leave from the Tata
Institute of Fundamental Research, Bombay, India.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order
No. 3597, monitored by the Air Force Avionics Laboratory under Contract F33615-78-C-1551. The views
and conclusions contained in this document are those of the author and should not be interpreted as
representing official policies, either expressed or implied, of the Defense Advanced Projects Agency or the US
Government.

2.

1 Introduction

Most large programs are built of smaller components which interact by the transfer of information or

control. Traditional sequential programming languages allowed these components to be described as

procedures and combined the operation of transferring information between them widi the exchange of
i 2

control, in a procedure call Quasi-parallel programming languages (eg, Concurrent Pascal , or Modula)

extended the kinds of components to include processes which communicate with each other by executing

mutually exclusive procedure calls to shared monitors. In both these cases, there was the tacit assumption that

the transfer of information could take place by access to shared memory and, often, also that individual

processes would share a single processor. In contrast to this, the parallel programming languages such as

CSP 3 and DP 4 start out with die assumption tiiat individual processes will execute on separate processors and

that the transfer of information will be accomplished by sending messages, usually requiring some form of

communication between processors.

The forms of explicit communication between program components have, so far, been determined by the

nature of the components themselves: for example, whether information is transferred by a synchronous

procedure call or by the asynchronous transfer of a message is usually dependent on whether the called

component is a procedure or a process. However, the distinctions go further than this: though there are

several conventions even for message passing (eg, ranging from the 'no-wait' send of Plits5, to the 'remote

procedure call' of DP), each language has also made a choice of the particular kind of communication it will

provide.

In this paper, we will describe a language in which programs are built of modules and where the 'behaviour'

of a module - eg, whether procedure-like or process-like - is determined solely by the kinds of communication

in which it participates. Two modules may thus communicate with each other in several ways, according to

the needs of the information they are exchanging: rather than attempt to artificially simulate asynchronous

(or message passing) communication between two modules which are compelled to use synchronous (or

procedure call) communication, or to introduce protected tokens as a means of enforcing synchronicity

between processes which otherwise communicate asynchronously, the language permits the sender and the

receiver of information to specify the mode in which the transfer is to occur. This is done by defining ports

through which communication is to take place, by explicidy making connections between ports, and by

associating a control protocol with every port.

Ports are distinguished by the functions they serve, ie input or output, and by the types of messages they

transmit. An output port is termed oport and may be connected to any input port, or iport, which accepts a

message which is 'compatible' with the one it will transmit. More generally, a single port may be connected to

a set of pons: a message sent through an oport is therefore sent to each iport to which it is connected, and an

iport may correspondingly receive a message from any one of its communicating oports. Since ports are

identified by names which are 'local* to modules, communication padis can be specified without using system-

wide names.

An underlying goal for the language is efficient implementation on a variety of architectures, ranging from

those witii shared memory to distributed systems which only share communication links. This is kept within

reach by ensuring that the only language features which are particularly dependent on the architecture are

those of die communication constructs. Here, the assumptions made are minimal and many different, and

efficient, implementations can easily be envisaged for different architectures. We will show that, in fact, ports

are essentially no different from other data types programmed in the language, making it possible for a user to

define new communication schemes, distinct from, say, the standard one supplied by an implementation of the

language. Moreover, it is emphasised diat different implementations will probably be simultaneously present

and that the specification of a module will include the choice of the communication scheme to be used for its

implementation. Separating the design of a communication scheme from the use of communication

constructs has the convenient side-effect that issues such as the presence, absence and extent of buffering

remain questions for the method of implementation of the communication scheme and not for the modules

which use this scheme.

The success with which a language such as this meets its goals has, at this stage, to be judged largely by

appeal to examples and experience; one intention of this presentation is to illustrate that there seems every

possibility that this goal can be met. At this point in time it is difficult to cite much practical experience in the

use of any such language, since distributed systems are still largely experimental (notable exceptions are, of

course, the Xerox Ethernet-based Alto computers), and there is not even a wide and well-accepted set of

problems whose solutions would unambiguously demonstrate the features of the language. It appears to be

particularly important now that language designs suitable for distributed systems be demonstrated using

varied examples. We will therefore choose examples which both illustrate how this language compares with

others and which demonstrate the purpose of its design. In keeping with this, we will restrict the description

primarily to those features of the language which will be illustrated by examples and which are significantly

different from those in other languages.

2 Language Overview

We will first describe each language feature with examples and then illustrate parts of the syntax in a BNF-

like notation. Boldface will be used for reserved words, and in the syntax productions square brackets [...]

will denote zero or more occurrences of the enclosed clause, while braces { ... } will denote that the enclosed

4

cl\u>,Q must appear at least once. Special symbols which appear in the language are placed within double

quotation marks. Types will be defined only to the extent they are required for the examples, and it will be

assumed that expressions arc composed in die usual way. The simple (ie, pre-defined) types in die language

arc boolean, char, integer and real; the communication types are oport and iport, and the standard aggregate

types are array and set, which must be homogeneously composed of elements of the same type, and record

which may have dissimilar fields.

Programs are built of modules: a module is composed of a specification part which defines die ways in

which the module communicates with other modules, and an implementation part which contains the

instructions for the operations performed by the module.

2.1 Module Specif icat ions

A module type is defined with the header module type, a set of specification statements, and a terminator

end <module nameX An instance of a module may either be declared with the header module specs or by

instantiation as a variable in some other module.

A module specification must name all the modules and the attributes^ of other modules which are needed

for the implementation of the module. These attributes consist of constants, types and ports and they are

denoted by qualifying the name of an attribute (eg, Input) with the name of the module in which it appears

(eg, CardReader.Input); an attribute name appearing by itself denotes an instantiation parameter. These

external attributes are specified in a needs statement:

needs iport Printout;
module Transmitter;

needs type MaxM, MaxMO, Stat, Message;

needs const Buff.N;
iport CardReader.Input; LinePrinter.Output;
oport Timer.Alarm;

A module specification must also contain definitions of all the attributes provided by the module, in a

provides statement. In this case, every port definition must have additional information: the type of each

message parameter it will transmit, and the control rule for that port. The control rule specifies the sequence

of actions for communication with a port:

For example,

5.

provides oport Put(char) -> (); Over(boolcan);
iport Gct(char) => () ; ThncOut(); Next(intcger) -> (char);

declares an oport Put which transmits a parameter of type char and waits for a null message () to be returned,'

and an oport Over which transmits a boolean parameter; similarly, Get, Timeout and Next are iports, the first

taking a character of type char and returning a null message, and die last taking an integer parameter and

returning a character. Other attributes, such as types and constants, can be provided:

provides type EntryType; const N : integer;

provides iport FromLeft [1..100] (integer);
oport ToRight [1..100] (integer);

where, in the last cases, an array of ports is defined. The control rules indicated by -> and => have the

following meaning:

iport rule
-> a message sent to this iport will

result in a message being sent in response

=> a message sent to this iport
must be followed by the sender waiting
for a response

oport rule
-> the sender will wait for a message

to be sent in reply

It may be seen that there are three possible control rules for iports and two for oports, since in the simplest

cases there is no response on receiving a message and no waiting after sending a message (for convenience, we

will sometimes denote these cases by "-").

The third type of specification statement is the connect statement which is used to specify how the ports

which have been named in needs and provides statements are to be connected to each other. The connect

statement has the form:

connect (Put, LinePrinter.Output);

connect (S.FromLeft[2..100], S.ToRight[1..99]);

connect (TimcOut, Timer.Alarm);

which connects the first named port (or ports) with the list of ports which follows. Note that:

6

connect (A, B) s connect (B, A)
connect (A, B, C) = connect (A, B); connect (A, C)

connect (A[l. . 10], B[3 .. 13]) s connect (A[l], B[3]).. connect (A[10], B[13])

For a connection to be legal,

1. The kinds of ports being connected must be complementary, ic an oport connected to iports or an
iport connected to oports,

2. The message types transmitted by the ports must be compatible, and

3. The control rules for the ports must match according to the following requirements:

oport iport Compatible
Y

-> Y
-> > Y
-> => Y

All other connections are illegal.

<ModuleSpecs> :: = module <ModuleKind> <Ident> ";M SpecBody end Ident"."
<ModuleKind> :: = specs | type
<SpecBody> ::= [NcedStmt] [ProvideStmt] [ConnectStmt]
<NeedStmt> :: = needs {<AttribType> {<NameList> M;M }}
<ProvideStmt> :: = provides {<AttribDef> ";M }
<ConnectStmt> :: = connect { "(" <NameList> ")" }
<AttribType> :: = <PortAttrib> | module | type | const
<AttribDef> :: = <PortAttrib> <PortSpecs> [M;M <PortSpecs>] | const <IdentList> ":" <Ident>

| type <IdentList> " = " <SimpleTypeDef> | module <ModuleSpec> ":" <Ident>
<PortAttrib> :: = iport | oport
<PortSpecs> ::= <DesignatorXParList> <ControlRule>
<NameList> :: = <QualIdent> [V <QualIdent>]
<QualIdent> :: = <Ident> "." <Designator> | <Designator>
<Designator> :: = <Ident> | <Ident> <ArrayRange>
<ModuleSpec> ::= <ArrayRange) of <IdcntList> |<IdentList>
<ControlRule> :: = "-> <ParList>" | M = > <ParList>" |
<ParList> :: = "(" <IdentList>
<IdentList> :: = <Ident> [V <Ident>] |

• 2 .2 Module Implementat ion

A module specification defines attributes of a module to allow them to be used in that module, and in

others, for defining types and constants and for making connections between ports. The actual operations of a

module are defined in its implementation. A module implementation always has a header with the same

identifier as its specifications,and a body consisting of declarations and a main block.

7

2.2 .1 Declarat ions

All variables used in a module must be declared before use. Those constants and types which are used in a

module and which are not provided by some other module (ie, which do not appear in a needs statement in

the specification for the module), must also be declared before use. A declaration associates one identifier, or

several, with a definition:

declare Max = const integer (: = 25);

declare M, Mp, P : integer;

declare Buff = [1 . . N] of char;

(The kind of declaration is determined by the symbol(s) used to separate the identifiers) from the definition:

a constant is declared using the separator " = const" and by specifying its type and its value; a type is defined

using the separator " = " and a variable with ":" .)

Constants must be of simple type. Variables may be assigned initial values, using initialisation clauses.

Arrays are defined by specifying range and component type, and enumerations and records somewhat as in

Pascal6; sets are defined by specifying the component type, which must be pre-defined.

All the ports provided by a module must be declared in port declarations. A double colon is used as a

separator and a ";" or a reply/response clause as a terminator in a port declaration. An oport is declared with

the keyword send followed by a message (ie, the set of types of its parameters, and possibly empty); the

control rule for the oport is dien specified by including a response clause. An oport with no response clause

corresponds to the control rule "-"; a response clause is equivalent to the rule "->". The response clause for

an oport may either be a message, or the name of an iport. An iport is declared with the keyword receive, a

parameter set, and a control rule. For a responding iport, however, there is a (possibly empty) set of

statements between the receive and the reply. An iport with no reply part corresponds to the rule "-"; the

presence of a reply part allows either of the control rules "->" or " = >" to be followed and the choice between

them is made in the specifications.

declare NextChar :: send (CI:char);
Assemble:: receive (C:char);

declare Query :: send (CI:char) response (B);

declare IsaMember :: receive (J:integer)
< ... statements ... >

reply (B);

8.

declare GctChar:: send () response Assemble;

declare ToEach :: [1..17] of send (Iiinteger);

Note:

1. The set of parameters used in a port declaration may consist of pre-defined variables, constants
(for output messages), or formal names (qualified by their types).

2. When a port is invoked in a port call (as described below), actual parameters of matching type
must be supplied for each formal parameter in a port declaration, and in corresponding .order.

3. A parameter which is a module is passed by reference, so diat both the sender and receiver can
now communicate with die same module; all other parameters arc passed by value.

4. The receipt of a message is treated as the assignment of the values of the parameters of the
message to local variables.

<ModuleImpl> :: = module implementation <Ident> <DeclarationPart> <MainBlock> end <Ident> *\"
<DeclarationPart> :: = declare { <D.eclaration> ";"}
<Declaration> :: = <ConstDecl> | <TypeDecl> | <VarDecl> | <PortDecl>
<ConstDecl> : : = <IdentList> " = " const <SimpleType> < ValueClause>
<TypeDecl> : : = <ldentList> " = " <TypcDef>
<VarDecl> :: = <IdentList> M : H <TypeSpec>
<PortDecl> : : = <IdentList> " : : " <PortDef>
<TypeSpec> : : = <TypeDef> | <TypeDef> < ValueClause>
<ValueClause> :: = "(" <AssignClause>
<AssignClause> :: = ": = " <Expr> [",M <Expr>]
<PortDef> : : = < ArrayRange> of <PortStmt> | <PortStmt>
<PortStmt> :: = <IportDef> | <OportDef>
<IportDef> :: = send <ParameterSet> <Irule>
<Irule> :: = response <Ident> | response <ParameterSet> |
<OportDef> :: = receive <ParameterSet> <Orule>
<Orule> :: = <StatementSet> reply "(" <IdentList> T |

<ParameterSet> :: = "(" [<ParEl> ["," <ParEl>]] T

<ParEl> :: = <Ident> M:M <Ident> | <Ident>

2 .2 .2 Basic Sta tements

The main block of a module consists of a (possibly empty) set of statements. If present, statements are

preceded by begin and separated from each other by ";". There are two kinds of statements, basic statements

and communication statements, and we will describe them separately.

<MainBlock> :: = begin <StatementSet> |
<StatementSet> :: = <Statement> [";" <Statement>] |
<Slatement> :: = <BasicSlmt> | <CommStmt>
<BasicSlmt> :: = <AssignStmt> | <IfStml> | <LoopStmt>

9

The basic statements are the assignment statement, the conditional if statement, and the general loop

statement. These have forms which are very similar to those of equivalent statements in other languages.

The assignment statement consists of a list of identifiers of one or more different target variables, and an

assignment clause with as many expressions separated by commas as there are target variables; starting from

the left, each target variable is assigned the value of the corresponding expression.

Ne t : = Salary + Perquisites; -

Net, Deduct: = Net - TaxDeduct, Deduct + TaxDeduct;

The if statement closely resembles its counterpart in Modula 2, and has a set of boolean expressions which

are evaluated in order; the set of statements following the first expression which evaluates to true is executed.

If none of the expressions is true, the else part is executed, if it is present

if A>Bthen A : = A - B e I s e B : = B - A end if;

if Free then Lef t := Lef t -1
elseif Queued then Waiting : = Waiting + 1
else Rejected: — Rejected + 1 end if;

The loop statement is used to conditionally or unconditionally repeat a set of statements. The conditional

clauses allow the set of statements to be repeated a number of times (equal to the value of an integer

expression), or a number of times while the value of a variable is assigned increasing or decreasing values (for

...), or as long as a boolean expression has the value true (when...).

loop (1 . . 20)
Deer: = Deer + Deer/Base;
Base: = Base/10;

end loop;

loop (for I : = 2 .. 60 step 2)
A[M]:=A [I] ;

end loop;

loop (while I > 0) I : = I - 5 end loop;

An exit statement unconditionally terminates the execution of a loop and transfers control to the next

statement. If loop statements are nested and labelled, the exit statement can be used with a label designator to

transfer control to the statement following the labelled loop. An exit statement may appear only in a loop

statement.

10

<AssignStmt> :: - <Idcntl isi> <AssignClausc>

<lfStmi> :: = if <Hxpr> I hen <StatcmentSet> [elseif <E\pr> then <SlatcmcntScl>] <FlscClausc> end if

<IZlscClausc> :: = else <StatemcntSel> |
<LoopSiml> :: = loop <I oopCond> <StatememSet> end loop
<LoopCond> ::= <Rangc> | <ForClausc> | <\VhcnClause> |
<ForClause> :: = T f o r <Ident> ": =" <Range> <Steps> M) M

<WhenClause> :: = "(" when <Expr> M) M

<UntilClause> :: = "(" until <Expr> T

<Steps> :: = step <Expr> |
<ExitStmt> :: = exit | exit <LabelDesig>

2 .2 .3 Communicat ion Sta tements

There are five communication statements, each specifying some action(s) to be performed with the ports

declared in a module.

<CommStmt> :: = <PortCall> | <ForwardStmt> | <AwaitStmt> | <EnableStmt> | <DisableStmt>

The simplest communication statement is the port call, which causes the statements of the specified port to be

executed. For example, if NextChar and Query are oports,- they can be called as:

NextChar('F');

if Query(':') then IsaLabel: = true else IsaLabel: = false

A port call specifies the name of the port and provides actual parameters for each formal parameter in the

port declaration. The value returned by a responding oport (ie, one with a response clause, obeying the

control rule "->", as in Query) may also be used in an expression, as for a traditional function call.

A port call to an oport will result in a message being sent to the iport(s) to which it is connected. If an oport

is not connected to any iport, the action of the send has no effect (ie, it is a 'null' statement). A port call to an

iport will result in the execution of the module being resumed only when a message is received at that port; a

port call to an iport which is not connected to any oport will cause the execution of the module to be

permanently suspended (and then terminated). Hence, a call to a responding oport which is not connected to

any port will also cause the execution of the module to be suspended (as otherwise, the module will remain

waiting for a response message which will never come).

A forward statement is used to transfer control out of an iport without executing the normal reply part; the

forward statement names an oport through which a message is to be sent and causes the execution of the

current iport to be terminated. The iport which receives a forwarded message will find it indistinguishable

from a message which has been sent normally: the reply port for the message received at an iport becomes the

11

reply port for a message forwarded from the iport (hence, if module A send a message to module B, with a

reply port P in A, a reply will be received at P either from B or from some other port which receives the

forwarded message from B).

declare Store :: receive (. . .)
if Full then forward A (. . .)
else...

reply (. . .) ;
A :: send (. . .) ;

The await statement specifies a (non-null) set of iports and causes the execution of the module to be

resumed after a message is received at any one of these iports. If any of the specified iports is not connected,

execution of the module is suspended.

await {NextQuery, Close};

if Empty then await {Nextln}
elseif Full then await {NextOut}
else await {NextIn,NextOut};

The enable statement specifies a set of iports at which messages may be received whenever the module is

awaiting a message at any iport (ie, due to a port call, an await statement, or when waiting for a response to a

send). Unlike the await statement, the action of the enable statement is distributed over all die succeeding

communication statements. The enable statement permits messages to be received from all the 'enabled'

iports which have messages ready before a message is ready at an awaited iport. For example, the statements

enable {Error};
await {Result};

are equivalent to

loop await {Error, Result};
if Lastport = Result then exit end if;

end loop

where Lastport is a standard oport which returns the name of the last iport at which a message was received.

A corresponding disable statement can be used to remove iports from the enabled set

12

2 .2 .4 C o m m e n t s

1. The port call is the simplest of the communication statements and is used for unconditionally
sending or receiving a message.

2. The forward statement can be used so that a module can receive a message and then either
perform the function associated with die iport, or forward a message to some otiier module for
further action (eg, for handling.errors).

3. The await statement is non-deterministic, in tliat if messages are ready at more than one of the
awaited ports, any one of the messages may be received.

4. The use of an if statement with await statements provides a simpler form of guarded command
than the alternative statement in CSP as the boolean expressions of the if statement are evaluated
in order and the statements following the first true expression are then executed: non-
determinism is therefore restricted to the choice of which ready message to accept

5. From the point of view of practical programming, there is usually no difficulty in transforming a
non-deterministic alternative statement (which can readily be derived from the post condition
using the methodology suggested by Dijkstra8) into a deterministic if statement with non-
deterministic await statements, and the resulting programming construct is considerably easier to
compile efficiendy. In terms of CSP, this amounts to restricting non-determinism to the input
commands, rather than the boolean expressions, in guards. 1

6. The enable statement allows a simple form of priority to be introduced in the handling of input
messages, and is useful both in simplifying program structure (by allowing all 'enabled' ports to be
specified at one place so that the subsequent statements are simpler) and for handling exceptional
conditions (so diat if these occur, the associated error messages will be received before all other
messages).

7. However, it should be noted that exceptions are not defined in the language: an exception can be
treated as just another kind of communication'raising' an exception then amounts to sending a
message through an oport, and this message can be received if a module makes a connection to
this oport. Naturally, most implementations will predefine the names of exception generating
modules and the associated oports, and exceptions may need to be propogated using a different
communication 'scheme' (as we shall see later).

<PortCall> ::= <PortDesig>
<ForwardStmt> :: = forward <PortDesig>
<AwaitStmt> :: = await <Expr>
<EnableStmt> :: = enable <Expr>
<DisableStmt> :: = disable <Expr>
<PortDesig> :: = <ldent> | <Ident> <ParList>

I am grateful to Fred Schneider for pointing out a significant example where this restriction becomes cumbersome: however, I do not
know of any other cases where this is so. In most cases, only one boolean guard of an alternative statement evaluates to true at any time
and this situation can be simply and correctly expressed by a deterministic if statement

13

3 Examples

Problem: A module, Clock, sends a (null) message through an oport Tick after every time unit has elapsed.

Design a module which can be used by other modules for timing multiples of the basic time unit.

Solution: Let Timer be a type module with an iport, Count, which can be connected to Clock.Tick (ie, to

the oport Tick in. the module Clock) to count time units. An iport, SetTime, will receive an integer specifying

the interval to be timed, and an oport Alarm will send a (null) message when die interval has elapsed.

module type Timer;
needs oport Clock.Tick;
provides iport Count () - > () ; SetTime (integer);

oport Alarm () ;
connect (Count, Clock.Tick);

end Timer.

module implementation Timer;
declare Interval: integer (: = -1);

Count: : receive ()
if Interval >= 0 then Interval: = Interval - 1 end if;

reply () ;
SetTime:: receive (Interval);
Alarm:: send() ;

begin
loop await {Count, SetTime} ;

if Interval = 0 then Alarm end if;
end loop;

end Timer.

All instances of Timer will be connected to the oport Clock.Tick. A module can set an interval of time after

which it wishes to receive an alarm by sending a non-negative integer to the iport SetTime. Timer stores this

number in the variable Interval and decrements it at every 'tick' of the clock; when the interval reaches zero, it

sends a message through Alarm.

Problem: A minor road crosses a major road at a junction with traffic lights which are normally green for

traffic on the major road. Pressure pads on the approaches of the minor road to the junction send a signal

whenever they are depressed. When the first vehicle crosses the pressure pads while the lights are red for

traffic on the minor road, the lights must change after 20 time units and remain green for 15 time units. (Note:

there is never much traffic on the minor road).

Solution: Let us call the major road NS and the minor road EW. The traffic lights have two states: green

for NS and green for EW. The pressure pads cause a change of state only when the first vehicle crosses them

while the lights are red for EW. Let Pads be a module with oports EW1 and EW2 which send the signals from

14

the pressure pads, and NSGrecn and EWGrccn be-iports in a module Lights. An instance of the module

Timer will be used to measure the waiting intervals.

module specs Signals;
needs module Timer; oport Pads.EWl, Pads.EW2;

iport Lights.NSGreen, Lights.EWGreen;
provides module T:Timer; oport EWtoGreen () ; NStoGreen () ; Sct(integer);

iport PadSignal () ; Timesup () ;
connect (PadSignal Pads.EWl, Pads.EW2); (Set, T.SctTime); (Timesup, T.Alarm);

(EWtoGreen, Lights.EWGreen); (NStoGreen, Lights.NSGreen);
end Signals.

module implementation Signals;
declare T : Timer;

EWtoGreen,NStoGreen :: send () ; Set:: send (I : integer);
Timesup :: receive () ; PadSignal:: receive () ;

begin
loop

NStoGreen; await {PadSignal};
Set (20); await {Timesup};
EWtoGreen; Set (15);
loop

await {PadSignal, Timesup};
if LastPort = Timesup then exit end if;

end loop;
end loop;

end Signals.

The main block has a loop to set the initial condition (NStoGreen) and then to wait until a pad is

depressed. When this occurs, the lights are switched after 20 units and the time interval is reset to 15 units.

The second loop reads and ignores any further pad signals until the time interval has passed (LastPort is a

standard oport which returns the name of the last port at which a message was received). The solution can be

easily extended to switch the lights either when a vehicle crosses the pressure pads, or after a fixed time

interval, whichever occurs sooner.

4 Module Lifetimes and Termination

A module is created when it is instantiated; except for type modules, modules are instantiated implicidy

when the program of which they are part is created. A type module must be instantiated in some other

module to be created. When a module is created, its declarations are performed, all (local) module instances

which may be declared in that module are created,, and the connections described in its specifications are

made. The module is then said to be initialised, as are all its local module instances. An initialised module is

ready to execute the statements of its main block.

15

A module continues execution until

1. It has completed execution of the last statement in its main block (a module with an empty main
block is treated as if it has executed a single 'null' statement), or

2. It attempts to receive a message at a iport which is unconnected to any oport.

When either of these conditions occurs, a module suspends execution and becomes comatose and all

connections are broken from and to the ports of that module (note that this does not automatically cause its

local modules to become comatose). A module remains comatose as long as it has any local modules which

are either executing or comatose and is terminated only when all its local modules have been terminated.

Thus a module cannot be terminated while its own variables are still in execution; the variables of a comatose

module will themselves become comatose if they attempt to communicate with the module and can then be

terminated if they have no executing variables of their own.

A module therefore has four stages in its existence: created, initialised, executing, and comatose. The stages

of this existence may be dependent on the stages of existence of other modules. For example, we have already

seen that a comatose module cannot be deleted until all its local modules have been terminated. On the other

hand, an executing module may become comatose because some other module with which it is

communicating has ceased execution. From the point of view of an implementation, whenever one module is

terminated a check must be made to see if the condition for terminating any other module has now been me t

4 .0 .1 Example

Problem: (cf. Hoare 3) Two square matrices or order N are to be multiplied. One matrix is already stored

with its individual elements in the elements of a square array of modules. The other matrix is to be read in

columns, multiplied with the stored matrix, and the product matrix is to be output in rows. "After an initial

delay, the results are to be produced at the same rate as the input is consumed" 3.

Solution: Let West be a vector of modules each of which has an oport, Next, which delivers a real number

corresponding to an element of the column of the array to be multiplied. Let North be a module which has

an oport, Zero, which sends zeroes. The elements of the array of multipliers, Cn, are modules of type Node

which receive a real number at the iport FromW, and a partial sum from an iport FromN, and send a new

partial sum through an oport ToS. A vector of modules, South, each with an iport, Result, receives the rows of

the product matrix. It is assumed that West and South are pre-defined.

16

module type Node;
provides iport FromW(real); FromN(real);

oport ToS(real);
end Node.

module implementation Node;
declare R,Rl,R2:real; % R is the stored clement\

FromW, FromN :: receive (Ehreal);
ToS :: send (Res:real);

begin
loop(L.N)

FromW (Rl); FromN (R2); ToS(R*Rl + R2);
end loop

end Node;

module specs Multiplier;
needs oport West.Next[l..N] (real); North.Zero (real);

iport South.Result[l..N] (real);,
provides module Cn : [L.N, 1..N] of Node;
connect (West.Next[l..N], Cn.FromW[L.N,l].. [l..N,N]);

(North.Zero, Cn.FromN[l,l] . . [1,N]);
(Cn.ToS[l,l..N].. [N-l,l..N],Cn.FromN[2,l.:N].. [N,1..N]);
(Cn.ToS[N,l..N], South.Result[l..N]);

end Multiplier. *

module implementation Multiplier;
declare Cn : [l..N,l..N] of Node;

end Multiplier.

- This solution requires N(N + 2) + 1 modules, compared to the N(N + 4) processes required for a similar

solution in CSP; this reduction is made possible because of the ability to connect one port (eg, North.Zero, or

West[l].Next) to a set of ports (ie, Cn[l,l] .. Cn[l,N], and Cn.FromW[l,l] .. Cn.FromW[l,N]). The indices

used in the connect statements clearly indicate the types of connections: ie, between columns and rows (West

to the rows of Cn), and rows and rows (each row of Cn to the succeeding row). Multiplier is an example of a

module with no main block. It becomes comatose as soon as it is initialised. However, the array of local

modules, Cn, will execute the basic loop N times. The module, Multiplier, will be terminated when each

module in the array, Cn, is terminated.

5 Module Creation

The modules we have described so far have been created as parts of programs, or as variables in other

modules. In addition to this, modules may be dynamically.created using the make statement. A dynamically

created module must be referred to by a name which is associated with a module type by a special declaration.

declare NewMod, NewNode : *ModType;

17

A "*" in a declaration (or a provides statement) denotes a dynamically created module. NewMod and

NcwNodc will be referred to as dynamic variables; note that this declaration does not create a module.

A set of modules may be dynamically created by the make statement:

make {NewMod, NewNode};

which results in die names NewMod and NewNode being associated with dynamically created modules of

type ModType. A dynamic module is declared in a provides statement:

provides NewNode : *Node;

and its ports can be connected as usual:

connect (Out, NewNode.Inp);

This connection will be made between the port Out and the port Inp whenever a dynamic module is associated

with NewNode. (Since the receipt of a message is equivalent to the assignment of the values of the message to

local variables, a dynamic connection can also be made for modules passed as parameters in messages).

declare NewNode : *ModType;
Out : : send ('String');
Get :: receive (Mod : ModType);

begin
make {NewNode}; . %NewNode is now associated with a new moduleX
Out; [LI]
Get (NewNode); %NewNode is now associated with a moduleX
Out; %passed as a parameterX [L2]

end

At each of the statements LI and L2, the variable NewNode refers to a different instance of ModType. Hence,

two different dynamic connections are made between the port Out, and the port Inp in each instance of

ModType, and the two port calls to Out will send the message ('String') to two different modules.

A corresponding break statement can be used to disconnect a set of dynamically created modules:

break {NewNode, NewMod};

A dynamic variable can only be associated with one module at a time: therefore, if a dynamic variable was

associated with a module, its connections must first be broken before the variable can be associated with a

new module.

A dynamically created module is treated like a module created by a declaration; however, a dynamically

connected module can be disconnected in two ways, by a break statement or when its creating module

becomes comatose. Note that the termination rule for modules still allows the problem of dangling references

18

to be avoided. The legality of port connections can be checked (at compile time) as a dynamic variable can

only be associated with modules of one type.

Problem: (cf Hoare 3. attributed to D. Gries) Construct a parallel version of the Sieve of Hrastodienes; each

element of the sieve will first receive, and then print, a prime number from its nearest neighbour on the left. It

will then receive a stream of integers; every integer which is a multiple of the prime must be suppressed, and

all other numbers must be sent to its nearest neighbour on die right. Print all the prime numbers between 2

and 10000.

Solution: Let the elements be modules of type Sieve; each module has an iport FromLeft which reads in

integers sent by the neighbouring module on the left The first number, which is also a prime, is output

through the oport ToPrint and all succeeding numbers which are multiples of this number are suppressed.

When die module first encounters a number which is not a multiple of its prime, it creates a new instance of

Sieve and sends the number through its oport ToRight which is dynamically connected to the iport FromLeft

of the new module. The starting sequence of numbers and the first instance of Sieve are created in a module

Primes; all subsequent instances of Sieve are dynamically created and there will be as many such instances as

there are prime numbers between, in this case, 3 and 10000.

module type Sieve;
needs iport PrintOut (integer);
provides module Next: *Sieve; iport FromLeft (integer);

oport ToRight (integer); ToPrint (integer);
connect (ToRight, Ncxt.FromLeft); (ToPrint PrintOut);

end Sieve.

module implementation Sieve;
declare M,Mp,P : integer; Next : *Sieve; First: boolean;

FromLeft:: receive (N :integer);
ToRight:: send (M); ToPrint:: send (P);

begin
FromLeft (P); ToPrint; Mp : = P; First: = true;
loop

FromLeft (M);
loop (while M > Mp) Mp : = Mp + P end loop;
if M < Mp then

if First then make {Next}; First: = false end if;
ToRight;

end if;
end loop;

end Sieve.

19

module specs Primes;
needs type Sieve; iport. Print.Out;
provides iport S.FromLeft(integcr);

oport Pl(inlcger); ToP(integer);
connect (ToP, Printout) ; (PI, S.FromLcft);

end Primes.

module implementation Primes;
declare S : Sieve; R : integer;

P I : : send(R); ToP: : send(2);
begin

ToP;
loop (for R : = 3..10000 step 2) PI end loop;

end Primes.

The module Primes will send out a stream of odd numbers from 3 to 9999 and then become comatose; its

connections will be broken, and the first instance of Sieve, S, will therefore become comatose when it

attempts to-read the next number through its port, FromLeft. This will be repeated for all the dynamic

instances of Sieve; die last of these will not itself have created any instance of Sieve and will be terminated as

soon as it becomes comatose. Once this is done, the previous module can be terminated, and so on. The

dynamic instances of Sieve will all be terminated in the order opposite to that of their creation and then the

program Primes can itself be terminated.

6 Building a Binary Tree

Problem: A company keeps information about each of its employees in the form of a record with the fields

Ident, Name, Age and Sex. The records are to be kept sorted by Ident, which is a unique integer for each

employee. The operations to be done are Insert, to add a record; Search, to find the entry corresponding to a

name; Delete, to remove the entry for a name; and, List, to print out all entries in sorted order.

Solution: Let the employee data be stored in the form of a binary tree, with each node having one record of

type EmplRec, and variables Left and Right as the subtrees which extend from the node.

EmplRec = record
Ident: integer; Nm : Name;
Age : integer; S : Sex
end EmplRec;

All nodes can be of identical type, TreeNode, with the operations performed by the iports Insert, Delete,

Search and List

1. Insert: A new record can only be inserted in a node which is empty (ie, one whose EmplRec has
zero in the Ident field). According to whether the Ident for the new entry isless or greater than
the Ident for a non-empty node, the new entry will be on the left or right subtree for the node. A

20

non-empty node which has no descendants makes a pair of new nodes and forwards die entry to-
die appropriate one.

2. Delete: The record to be deleted is identified by name and may be anywhere in the tree: if it is at
a leaf (ie, a node whose references to subtrees are both nil), die node can be merely be made
empty; if, however, it is elsewhere in the tree, die record which is at the root of a subtree
originating at the required node should replace the record to be deleted. This must be done
iteratively down the subtree until, finally, a leaf node is made empty. A node which has two
empty descendants can disconnect them both (ie, using the break statement). The Delete
operation makes use of an auxiliary operation, ReadLeft (or ReadRight), to find which subtree
should be moved up and to detect empty descendant nodes.

3. Search: If a node contains the required record, the search is over (and the reply is true); otherwise,
(a) if the node has no descendants the reply is false, or (b) the search must continue down both
subtrees and the reply is the logical or of the replies from the subtrees.

4. List: To print the entries with Ident in ascending order, print the left subtree (if there is one), the
node (if not empty), and then the right subtree (if there is one). Repeat for all nodes.

module type TreeNode;
needs type EmplRec; iport PrintEntry;
provides module Left, Right : TreeNode; iport Insert (EmplRec); Delete (Name);

Search (Name) => (boolean); List() => (); Read () => (EmplRec);
oport InsertLeft, InsertRight (EmplRec); DeleteLower (Name);

DeleteLeft, DeleteRight (Name); ReadLeft, ReadRight () -> (EmplRec);
NextLevelSearch (Name) -> (boolean); Display (EmplRec);
ListLeft, ListRight () - > () ; *

connect (InsertLeft, Leftlnsert); (InsertRight, Rightlnsert);
(DeleteLeft, LeftDelete); (DeleteRight, Right.Delete);
(ReadLeft, LeftRead); (ReadRight, RighLRead);
(DeleteLower, LeftDelete, RightDelete); (Display, PrintEntry);
(NextLevelSearch, LeftSearch, RightSearch);
(ListLeft, LeftList); (ListRight ListRight);

end TreeNode.

module implementation TreeNode;
declare Rec : EmplRec; Left, Right: "TreeNode; Sons, Found : boolean (: = false);

Insert:: receive (R : EmplRec)
if Rec.Ident = 0 then Rec : = R;

else if -iSons then make {Left, Right}; Sons : = true end if;
if R.Ident < Rec.Ident then forward InsertLeft (R)

else forward InsertRight (R) end if;
end if;

reply () ;

21

Delete :: receive (N : Name)
ifRcc.Nm*Othen

if Rcc.Nm * N then forward DeleteLowcr (N)
elseif -«Sons then Rec.Ident : = 0
else Rec : = ReadLcft;

if Rec.Ident * 0 then DeleteLeft (Rec.Nm)
else Rec : = ReadRight;

if Rec.Ident * 0 then DeletcRight (Rec.Nm)
else break {Left, Right}; Sons : = false end if

end if *
end if

end if
reply ();

Search :: receive (N : Name)
if Rec.Nm = N then Found : = true

elseif Sons then NextLevclSearch (N); Found : = B;
await {Result}; Found : = Found or B

else Found : = false
end if

reply (Found);
List :: receive ()

if Sons then ListLeft; Display; ListRight
elseif Rec.Nm * 0 then Display end if

reply () ;
Display :: send (Rec);
ListLeft, ListRight :: send (.) response ();
Read : : receive () reply (Rec);
InsertLeft, InsertRight :: send (ER : EmplRec);
ReadLeft, ReadRight :: send () response (ER : EmplRec);
DeleteLower, DeleteLeft, DeleteRight :: send (N : Name); .
NextLevelSearch :: send (N : Name) response Result;
Result :: receive (B);

begin
loop

await {Insert, Delete, Search, List, Read}
end loop

end TreeNode.

Inserting a new record takes log n operations, assuming the tree is balanced and has n nodes, and may involve

the creation of two nodes. This is no better, and no worse, than for a sequential program. However, a

number of new records can be inserted in 'pipe-lined' fashion and each subsequent insertion takes only 1 step

(the Insert operation has no waiting, so the caller is free to continue execution). Deleting a record is not as

simple: in the worst case (deleting the root of the tree), a single deletion may trigger off (log n) - 1 other

deletions, each of which requires one or two Read operations. However, note that for the Delete operation, as

for the Search, finding the required element is done in parallel (each node forwarding the request to its

descendants, with a Tan-out' of 2); the Delete operation may also be pipelined but with reduced parallelism as

22

the subtree originating in the node to be deleted will be 'blocked" until the entire Delete operation is over.

Insert and Delete operations may even be pipelined and interleaved in any order and, subject to die

restriction for parallelism for die Delete operation, diey can be executed as fast as 1 operation per stcp.Thc

Search operation takes a time of 2 log n steps, as the request has to travel down the tree and the responses

(Result) have to be sent back up, each node combining the responses of its two descendants. These results

compare reasonably well with those given by Bcntley and Kung for dieir tree-structured parallel computer 9.

The List operation is relatively simple: since records arc sorted by Jdcnt when they are inserted, die sorted list

of records can be printed by traversing the nodes in order; naturally, this takes n steps. (For bodi Search and

List, the value of n must include the empty nodes).

7 Reliable Communication on Unreliable Lines

Problem: Two programs communicate with each other by sending messages across unreliable lines.

Communication may be in one direction, or both, and the propogation time on the lines is such that the

transmission of N messages can be initiated in the time it takes one message to go to the other end. A

standard operation Checksum is available to verify if a message has been mutilated in transmission. Devise a

means for messages to be sent from one program to the other without errors or change of order.

Solution: Since communication may be one way or both ways, transmission and receipt of messages must

be kept separate to ensure that these operations can be performed independently. Let Transmitter be the

module which accepts messages from a program for transmission across the lines, and Receiver be the module

which receives messages from the lines. Every message which is received must be checked (using Checksum);

if it has been corrupted, a message must be sent to the other end asking for a re-transmission. Since N

messages can be sent in the time it takes one message to go from one end to the other, the acknowledgement

for a message will take a time equal to the transmission time for 2N messages. Let us assume that messages

are much longer than their acknowledgements, so that it is worthwhile sending acknowledgements 'piggy­

back' along with outgoing messages.

Transmitter will need to keep a buffer of at least 2N messages if the line is to be efficiendy used as a

message can only be deleted after it has been acknowledged. The buffer requires three pointers: NextFill,

NextOut, and NextAck, to indicate the positions of the next empty slot, the next message to be transmitted,

and the next message to be acknowledged, respectively. A variable, MCount, records the number of

unacknowledged messages still in the buffer. Transmitter will require an iport, FromProg, to receive

messages for output from the program and another, FromRec, to receive acknowledgements from its

Receiver. It will have an oport, ToLine, for sending messages to the line. However, since communication can

be in one direction or both, and since acknowledgements are sent 'piggy-back' with outgoing messages, it is

23

possible that acknowledgements will get held up at one end if dierc are no outgoing messages. To avoid this,

Transmitter must also send a 'null' message if any acknowledgement is pending without an outgoing message

in die buffer.

We will assume that the constants N and Max (= 2N), and the types Status = (Ack, Nack), Message and

MaxMO = 0 .. 2N are defined elsewhere.

module type Transmitter;
needs constant N, Max; type Status, Message, MaxMO;
provides iport FromProg(Message) => () ; FromRec(MaxMO, Status, MaxMO, Status);

oport ToLine (MaxMO, Status, MaxMO, Message) -> () ;
end Transmitter;

module implementation Transmitter;
declare Buffer : [1 . . Max] of Message;

•NextOut, NextFill, NextAck : 1.. N (: = 1,1,1);
RecStat: Status; MCount, RecNum : MaxMO(: = 0,0);
FromProg :: receive (M : Message)

BufferfNextFill] : = M; MCount : = MCount + 1;
NextFill: = (NextFill mod Max) + 1;

reply () ;
FromRec :: receive (AckNum : MaxMO; AckStat: Status; RecNum; RecStat);

if AckNum * 0 then
if AckStat = Ack then

NextAck : = (NextAck mod Max)+1;
MCount: = MCount - 1 ;

else NextOut: = AckNum end if;
end if;

reply () ;
ToLine :: send (RecNum; RecStat; Num2 : MaxMO; M2 : Message) response () ;

begin
loop

if MCount =* Max then
await {FromRec}

else await {FromProg, FromRec} end if;
if NextOut * NextFill then

ToLine (NextOut,Buffer[NextOut]);
NextOut: = (NextOut mod Max) + 1;

else ToLine (0, null) end if;
end loop;

end Transmitter;

Transmitter has the iport FromProg to receive messages from the program provided MCount < Max. The

iport FromRec is to be connected to the Receiver module for that program, which will supply the number,

AckNum, and the status, AckStatus, of the last acknowledgement received from the other program and the

24

number and status of the last message received (these are stored directly in RecNum and RecStatus, for

transmission to the other program through the oport ToLine). We use die convention diat a message number

is set to.zero when die status is to be ignored. A message (and an acknowledgement, if there is one) is sent to

die line whenever there is one pending in the buffer (ie, NcxtOut * NextFill); if just an acknowledgement is

pending, it is sent with a null message. Note that if die acknowledgement (AckStat) from the other program

indicates diat a message (AckNum) was correctly received, MCount is decremented and NextAck updated;

otherwise, all messages from that one onwards are to be retransmitted (by setting NextOut to the value of

AckNum).

Receiver has iports ToProg, to supply the next message to the program, and FromLine, to receive input

from the line; messages ready for the program are stored in a buffer of size Max. A variable RCount records

the number of correct messsages in the buffer. Input from the line may consist of acknowledgements and/or

messages; acknowledgements to messages sent by the Transmitter of that program are AckNum, the message

number, and AckStat, the status, and are just to be sent to Transmitter. An incoming message (M) from the

other program has to be checked by passing it to the oport Checksum. If a message has been received without

error, it can be added to the buffer; however, if there is an error, no further messages should be stored in the

buffer until that message has been correctly re-transmitted (Num2 is the number of the next message and it

must be the same as the buffer pointer Nextln if the message is the next to be stored, or zero if there is no

message (ie, a null message with a real acknowledgement)).

module type Receiver;
needs constant N, Max; type Status, Message, MaxMO;
provides iport FromLine (MaxMO, Status, MaxMO, Message) -> () ;

ToProg () = > (Message);
oport ToTrans (MaxMO, Status, MaxMO, Status);

end Receiver.

module implementation Receiver;
declare Buffer : [1 . . Max] of Message;

Nextln, NextToProg : 1.. Max (: = 1,1);
AckStat, RecStat: Status;
AckNum, MCount: 0.. 2N (: = 0,0); M : Message;
ToTrans:: send (AckNum; AckStat; N u m l : MaxMO; RecStat);
CheckSum :: send (M) response (RecStat);
ToProg :: receive ()

M : = BufferfNextToProg]; MCount: = MCount - 1 ;
NextToProg : = (NextToProg mod Max) + 1; •

reply (M);
FromLine :: receive (AckNum; AckStat; Num2 : MaxMO; M);

if Num2 * 0 then CheckSum end if;
if (RecStat = Ack) and (Num2 = Nextln) then

25

BufterfNcxtln] : = M; MCount : = MCount + 1;
NcxtIn: = (NcxtIn mod Max)+ l ;
ToTrans(Num2);

else ToTrans(0) end if;
reply () ;

begin
loop

if MCount = 0 then await {FromLine}
elseif MCount = Max then await {ToProg}
else await {FromLine, ToProg}

end loop;
end Receiver.

Finally, the two module types can be instantiated in the modules representing the programs which need to

communicate across the lines. Let Transl and Reel be the instances in program 1, and Trans2 and Rec2 the

instances in program 2. The oport ToTrans in Reel (or Rec2) must be connected to the iport FromRec in

Transl (or Trans2) so that acknowledgements can be sent for each message which is received. Program 1 will

send its messages to the iport FromProg in Transl: this is a blocking send, as the control rule in the

specifications for this port is " = >". Program 1 can only continue when the message has been accepted, and

that will be when there is place in die buffer. Program 1 can receive incoming messages from the iport

ToProg in Receiver: this is also a blocking send, so the program will wait until a message has been received.

Note that the line is transparent to the Transmitter and Receiver: in fact, the oport ToLine in Transl (or

Trans2) can be directly connected to the iport FromLine in Reel (or Rec2) and the properties of the lines can

be represented in a communication scheme which is used for these ports.

8 Ports as Modules

"We shall call a group of definitions and programs which cover a notion such as this an

implementation scheme, or simply a scheme^*"

We have so far considered ports as pre-defined types which are created by declarations in modules. It is

fairly easy to see that the declaration of a port accomplishes more that, a simple declaration as it associates a

control rule and, for iports, possibly a set of statements with the port. The syntax of a port declaration

provides a framework in which the operations of the port are performed.

We can also view ports as data types which have a limited set of operations which can be performed on

them. Some of these operations are explicitiy stated whenever ports are used : connect, send and receive

(note that reply, response and forward are basically syntactic variations of the last two operations); another has

been referred to in connection with module lifetimes and the break statement, and is disconnect (which is

performed on all the ports of a module when it becomes comatose). Another operation is necessary for the

await statement, to indicate if a port has a message ready. Since there is no inherent reason why dicse

operations cannot be programmed in die language, we can even consider a port as a module (with a set of

oports and iports for each of die operations send, receive, connect and disconnect) which is instantiated at each

port declaration.

To illustrate how ports might be implemented, let us consider a version which would be suitable for

distributed systems in which each processor has a uniform mediod for communicating with any other

processor. Since, in general, an oport may be connected to a set of iports, an output message may need to be

sent to several different destinations any of which may delay accepting it; we would also like communication

to be as asynchronous as the control rule for a port will allow. Both these requirements point to the need for

maintaining buffers for ports. We will therefore first consider the design of a suitable buffer module.

The module Buffer will contain an array of Storage to hold messages: this will allow a sending module or a

receiving module to execute as much in parallel with the transmission and receipt of messages as possible (the

size of the array can be a parameter). The obviously necessary operations are Save (to put a new message into

the array), Read (to non-destructively read a message from the array) and Clear (to delete a message in the

array); an additional operation Restore allows a partially transmitted message (ie, one which has been sent to

some but not all of its intended destinations) to be stored until it can be sent to its remaining destinations.

Two operations, Empty and Full, allow the state of the Buffer to be tested..

The definitions of Buffer and Port are mutually dependent, as we will see that the destinations of messages

stored in a buffer are ports, and that ports require buffers for storing messages. (From the point of view of

compilation, this would require the specifications for Buffer and Port, the implementation of Port, and the

implementation of Buffer to be compiled in that order). The oport Next, used in the implementation of

Buffer, takes a set of 1.. N and returns the value of one of its elements, according to an algorithm we will not

consider here.

module type Buffer;
needs module Port; type BufEl; const N;
provides iport Save(BufEl) = > () ; Read () = > (BufEl); *

Restore(BufEl) -> () ; Clear () - > () ;
IsEmpty, IsFull () -> (boolean);

end Buffer.

27

module implementation- Buffer:
declare Vacant, hilled : set of 1.. N (: = {1, . . N}, { });

NcxtRl: 1 N; Storage : [1 . . N] of BufEl;
Save :: receive (M : BufEl)

NextEl : = Ncxt(Vacant): Storage[NextEl] : = M;
Vacant: = Vacant - {NextEl}; Filled : = Filled + {NextEl};

reply () ;
Read :: receive () reply (Storagc[Next(Filled)]);
Restore :: receive (M : BufEl)

Storage[Next(Filled)]: = M;
reply () ;

Clear:: receive()
Vacant: = Vacant + {Next(Filled)};
Filled : = Filled - {Next(Filled)};

reply () ;
IsEmpty :: receive () reply (Filled = { });
IsFull:: receive () reply (Vacant = { });
PSet: set of iport (: = {Clear, IsEmpty, IsFull});

begin
loop

if Vacant = { } then await (PSet + {Read})
elseif Filled = { } then await (PSet + {Save})
else await (PSet + {Read, Save}) end if;

end loop
end Buffer.

Vacant and Filled are sets of 1 . . N representing the elements of Storage: initially, Storage is empty (so

Filled = { }) and for each entry stored in the array, one element of Vacant is added to Filled. The main block

of Buffer resembles the operation of a bounded buffer: if Vacant = { } then no further entries can be

accepted, if Filled = { } then no entries can be read, otherwise entries can be stored and removed. PSet

contains the names of the iports at which messages will always be accepted.

We can now define the module Port: we will assume that PortType is a compile-time parameter of type

($Iport, $Oport). Port will require iports for the basic operations SConnect, Disconnect, $Send, and $Receive,

and we will define a single module which can serve as both kinds of por t

The $Connect operation is to be used to connect two ports together (since all multi-way connections can be

reduced to sets of two-way connections); as either of two connected modules may become comatose, a record

of all connections must be kept in both modules (or, to be more precise, in the ports of both modules). The

$Connect operation therefore has two parts: to add a new port to the set, PS, of ports connected to a port, and

to send the name of the port to the port it is to be connected to. The second part requires the use of a distinct

operation, AddLink. Similarly, corresponding to die Disconnect operation, another distinct operation,

RemLink, is used to remove a port from the set of connections of the port it is connected to. Both these

operations make use of a standard operation. This, which returns the name of the current module.

The SSend operation must eventually cause the general send 10 be pcrfomied: from one oport to die set of

iports it is connected to. To do tliis with a high degree of parallelism, die message is first stored in die Buffer,

along with the set of ports it is to be sent to (thus, unless the Buffer is full, die sending module is then free to

continue execution). The main block of Port performs the actual transmission of the message, by reading it

from Buffer and sending it with the name of die transmitting Port (using the Transfer oport) to as many of its

destination ports as are not full; when a message has been sent to all of its intended destinations, it can be

deleted (by the operation Clear, in Buffer), but if any of the destinations is full, die message must be sent back

to Buffer (Buf.Restore).

With the use of a Buffer in Port, the SReceive operation becomes very simple: it will just wait until there is

a message available in the Buffer. If more than one message is ready in the Buffer, one of them is chosen

according to the value returned by the oport Next (this function could therefore serve to arbitrate between

messages and/or senders of different priorities). Note that it is possible that the Buffer is full when the

$Receive operation is invoked, so that some senders may potentially have been unable to transfer messages

into the Buffer; WasFull is a boolean indicating this condition and if it is set, a message is sent to all

connected oports through thè oport Signal (in this simple implementation, diis could result in unnecessary

communication, but we will ignore that here).

module type Port;
needs module Buffer; type MessageType; const BufSize, PortType;
provides type StorageEl; module Buf: Buffer; Dest: *Port;

iport SConnect (Port) -> () ; Disconnect (Port) - > () ; -
AddLink (Port) -> () ; RemLink (Port) -> () ;
$Send (MessageType, Port) => () ; Try Again () ;
SReceive (MessageType, Port) = > () ;

oport SavelnBuf (StorageEl) -> () ;
MakeLink (Port); BreakLink(Port); PortFull () -> (boolean);
Transfer(MessageType, Port) -> () ; Signal () ;

connect (BufEmpty, Buf.IsEmpty): (BufFull, Buf.IsFull); (BufRead, Buf.Read);
(BufRestore, Buf.Restore); (SavelnBufBuf.Save); (BufClear,Buf.Clear);
(MakeLink, DestAddLink); (BreakLink, Dest.RemLink);
(Transfer, Dest.Buf.Save); (PortFull, DesLBuf.IsFull);
(TryAgain, DestSignal);

end Port.

http://Dest.Buf.Save

29

module implementation Port:
declare Storage HI = record

Ml : MessageType;
MPR:Por t
MPS : set of Port;
end StorageEl;

Buf: Buffcr(StorageEl, BufSize); Dest: *Port;
PS, NPS1, NPS2 : set of Port (: = { });
StEl: StorageEl; B, WasFull: boolean (: = false, false);
$Connect:: receive (Dest); •

PS : = PS + {Dest}; MakeLink;
reply () ;

Disconnect:: receive (Dest);
PS : = PS - {Dest}; BreakLink;

reply () ;
MakeLink, BreakLink :: send (This);
AddLink :: receive (To : Port)

P S : = P S + {To};
reply () ;

RemLink :: receive (From : Port);
PS : = PS -{From};

reply () ;
$Send :: receive (M : MessageType; R : Port);

StEl .Ml: = M; StEl.MPR : = R; StEl.MPS : = PS;
SavelnBuf(StEl);

reply();
$Receive:: receive ()

if PS = { } then Abort
elseif BufFull then WasFull: = true end if;

BufRead (StEl); BufClear;
reply (StEl.Ml, StEl.MPR);^

Transfer:: send (CopyEl: StorageEl) response () ;
SavelnBuf:: send (NewEl: StorageEl) response () ;
BufEmpty, BufFull:: send () response (B);
BufClear:: send () ;
BufRead:: send () response (NextEl: StorageEl);
BufRestore :: send (OldEl: StorageEl);
PortFull:: send () response (B);
Signal:: send() ;
Try Again :: receive () ;

30

begin
loop

if PonType = SOportthen
await {$Conncct, Disconnect, AddLink, RcmLink, $Scnd, TryAgain};.
if not BufEmpty then

BufRead (StEl); NPS1 : = StEl.MPS; NPS2 : = NPS1;
loop (while NPS2 * { })

Des t := Next(NPS2);
if not PortFull then
StEl.MPS :"= {This}; .

Transfer (StEl); N P S 1 : = NPS1 - {Dest} end if;
N P S 2 : = NPS2-{Dest};

end loop;
ifNPSl = { } then Bu(Clear
else StELMPS : = NPS1; BufRestore (StEl) end if;

end if;
else await {$Connect, Disconnect, AddLink, RemLink, $Receive};

ifWasFull then
NPS1 : = PS; WasFull: = false;
loop (while NPS1 # { })

Des t := Next(NPSl);
Signal; N P S 1 : = NPS1 - {Dest};

end loop
end if

end loop
end Port

8.1 Comments

Operations using ports then amount to little more than operations on modules which implement ports,

exacdy as operations on, say, TreeNodeare operations defined in the module TreeNode; the difference arises

only because the operations on ports are not directly invoked by port calls but by statements in the language.

This creates the possibility, given some means, of associating different implementations of ports with

modules, depending on particular requirements. For example, it is usually necessary to implement

communication with peripheral devices differendy from normal inter-module communication even when,

conceptually, they can be treated equivalently ('special' handling of this kind can be seen in Modula 2, with

device modules and device processes, and in Ada 1 1 , when interrupts are to be associated with entry calls on

tasks).

This would itself serve a useful purpose, as it permits different communication needs to be met without

burdening the language with new features and constructs. But we can go beyond this. Many of the languages

recently proposed for distributed or parallel processing appear to have been designed with an underlying

architecture in mind as they make no provision for specifying how different components are physically

31

distributed or how communication takes place if the architecture is not uniform, Because of this, CSP would

be difficult to implement on a system which did not allow uniform interconnection between processes (cither

on a single processor, or on a-distributcd system with one process per processor and full interconnection), as

die usual requirement for shared memory has been replaced by die need for a shared intercommunication

structure. Similarly, DP has been designed so that the single process on each processor of a distributed system

would interleave its own processing with serving requests for die execution of remote procedure calls from

odier processes. (Hie 'guardians' of C lu 1 2 can also be seen to have a similar structure if we substitute a

guardian for the DP process and a Clu process for each DP procedure). Dependence on a particular

architecture can be a major restriction as it seems likely that there will be many more differences in

architectures than in die features of programming languages, so each such language will have ,to rely on the

ingenuity of its implementors in making visible, or invisible (if that is preferred), the interconnections of the

hardware and the way processes are mapped onto processors. The use of different implementations of ports is

one way for languages for parallel or distributed computing to be both independent of the particular

architectures diey are implemented on and capable of being used efficiently on a variety of architectures.

We can refer to each implementation of ports as a communication scheme and visualise a port declaration as

an instantiation of a port type. It is usually of no consequence to the instructions of a module how ports are

going to be implemented, so the choice of communication scheme is made in the module specifications. For

example, if Ready is an oport which sends a boolean message when a line printer is ready to accept another

line for printing through its iport Buff, and Print is an iport to which users can send lines for printing, we can

specify a line-printer device driver as:

module specs LPDriver;
needs type Line; iport LP.Buff; oport LP.Ready;
provides iport Print(Line) -> () using InterProcess;

Next() using InterruptLevel;
oport Output(Line) using InterruptLevel;

connect (Next, LP.Ready); (Output, LP.Buff);
end LPDriver.

The using clause specifies the particular communication scheme to be used for the implementation of the

ports and each port to which they are to be connected (two ports can be connected only if their message types

match, their control rules are compatible and if they use the same communication scheme). We have assumed

here that the line printer is represented as a module LP which uses the communication scheme

InterruptLevel, and that other modules communicate with each other using the scheme InterProcess. When

there is no using clause, it is assumed that some standard default communication scheme will be used.

"Using" a communication scheme means that the operations of that port will be provided by the module

named in the using clause.

32

There are several occasions where the use of different communication schemes v^ould be obvious:

• We have already mentioned the handling of devices: in general, die interface with die hardware of
a machine (including all forms of device operations and interrupts) would require a scheme which
is quite distinct from all others;

• In a system with multiple processors and memories, one scheme could be used for modules which
can share memory for their execution (in tiiis case, messages can often be passed without making
copies in buffers), and another scheme would be necessary for modules which execute on
different processor-memory systems; for a distributed system, providing one scheme for local
communication and another for inter-node communication would allow more efficient message
transfer.

• Some systems have a hierarchical configuration: for example, on die Cm* system, processors are
grouped in clusters which are dien interconnected; this would suggest the use of one scheme for
modules executing on the same processor, another for modules on different processors in the same
cluster, and a third for modules in different clusters.

It should be noted that the statements in the implementation of a module do not need to be altered when

there is a change of communication scheme; all that is required is to recompile a module whenever a different

scheme is to be used. The choice of scheme is therefore static but so also, in most cases, is the architecture.

We have emphasised the use of different communication schemes to take account of the features of the

architecture: this is a fairly straightforward requirement (though not one considered in most languages). But

even on the same architecture, it is clear tiiat several different schemes may be necessary if the same language

is to be used for the implementation of the operating system and user programs. This is because the

implementation of the mechanisms for synchronisation and access to storage have usually to differ between

the operating system and user programs. frTthe past, this requirement has either been hidden, or different

compilers have been used for operating system and user programming, or low level languages have been used

so that synchronisation has been provided by explicit programming.

9 Exception Handling

In a programming language designed,with particular regard for communication, an exception should

obviously be treated as another form of communication: between a module detecting an exception and one

which has to take some action for recovery. But there are special requirements for adequately handling

exceptions, and limitations to what can be accomplished in a distributed system. We will restrict ourselves to

dealing with exceptions which invalidate other communications, or which require the execution of a module

to be terminated; we will not consider simple exceptions which can be characterised as distinguished values in

the range of a function (such as a function returning the value zero for illegal arguments), as these can

obviously be handled by normal programming techniques. To simplify the discussion, we will often talk of

exceptions which can occur when a module A sends a message to a module B and is awaiting its response.

33

1. Let us describe exceptions which occur during communication between A and B as
communication exceptions', such exceptions can have several causes:

. • The message sent by A to B may be outside the domain of the function to be evaluated by B
(as in the case, eg, of a simple square root function which only takes positive real numbers as
arguments). An exception is then send to indicate diis fact (and diat die value which will be
returned by die function is undefined). In this case, A must be prepared to receive two
different messages.

• Module B may fail to respond to A's request, eidicr due to software or hardware errors on a
processor; for example, this may be detected by a timeout at the iport at which A is waiting
for the reply.

• There may be a failure of the communication medium between A and B, also detected by a
timeout at A's iport.

In the last two cases, there can be no communication from B itself and A could be waiting
indefinitely unless some alternative action is taken. .

2. There is another important set of cases where exceptions may be detected: this is where a module
fails to perform correctly and has to be terminated. We will refer to such exceptions as module
exceptions', they are distinguished by die' fact that recovery is not possible (eg, due to stack
overflow) and, exception handling, when it is possible at all, is limited to 'cleaning-up'operations.

Handling communication exceptions requires the detecting module or scheme to send an exception

message through a pre-defined oport, and the receiving module to declare and connect an iport to this oport.

This is analogous to providing a handler for an exception condition. The action that can be taken by this

mechanism can be quite elaborate:

1. The announcement of the exception may merely be informative, and it may be entirely up to the
programmer of a module to decide what action, if any, he wishes to take; this can be done by
having the exception oport follow the control r u l e .

2. Alternatively, the exception oport may follow the control rule '->', so that it can only be connected
to an iport which will send a reply; this will allow a receiving module to do some recovery, and for
the exception module to examine the effects of this action before allowing the module to continue.

3. The exception oport may also send a message to a monitoring module, and allow the module with
the error only limited time for recovery.

Module exceptions are more difficult to handle as the module with the error may not be waiting for any

message (and therefore will not receive an exception message even if it is sent). One way of overcoming this

problem is to use 'watch-dog' timers. Another is for the scheme implementing the creation and deletion of

modules (see the next section) to handle such errors.

Whenever exceptions can be handled as messages received by an exception iport, there is the advantage

tiiat all the variable* of die module are a\aiiable for inspection and modification (ic, the exception "handler'

executes in the same scope as die other instructions of the module) .

1 0 Implementing Modules

Having illustrated how ports can be built as modules, allowing a variety of schemes to be used for the

implementation of die communication primitives, it is interesting to consider if the same technique can be

applied to the implementation of modules. The reason for this is diat we have so far assumed that all modules

are created and terminated in identical manner, and that module names are unique over an enure system.

Both these assumptions are questionable: in a complex system, there is likely to be need for several different

implementations of modules in the same way that there is need for different implementations of ports. In a

hierarchically composed system, for example, there may be one implementation of modules for the operating

system, another for users, and a user may have need for yet another implementation for the individual

modules of his program; each level of the system may provide different implementations of modules in order

to control the creation, scheduling, and termination of modules at the next level. Such a hierarchy may also

be apdy representative of multi-level communication protocols where several levels may exist between

communication at the level of a user program and the eventual transfer of data across a physical medium.

We can envisage the implementation of modules being done by operations in a pre-defined module:

module specs NewModules;

provides iport CreateModule () -> (ModulcName); DeleteModule () -> (ModuleName;
IsaModule (ModuleName) -> (boolean);

end NewModules.

and for the specifications of a module to (perhaps optionally) indicate which implementation scheme is to be

used:

module specs UserModule using NewModules;

end UserModule.

Apart from the practical advantages of this technique, there is also the fact that it allows a common

specificational technique to be used for studying the properties of modules schemes, communication schemes,

and 'user' modules which use these schemes. The use of algebraic specifications for a simple communication

data type has already been described by Cunha and Maibaum 1 4 and a similar but more elaborate definition

for these schemes is being considered separately.

1 1 Conclusions

Software designed for die distributed environment has often been built around 'service' programs such as

file servers, printer servers, etc. In such designs, the extent of parallelism is determined by die extent to which

die active agents in the system (ic, the processes) are able to manipulate die passive objects (eg, files) in

parallel. In constrast to tiiis, the language we have described here is intended to be used in a way which

exposes die maximum parallelism in the problem: it is dien possible to reduce this to the extent necessary for

adaptation to the available hardware; using appropriately designed communication and module

implementation schemes. The distinction between these two approaches is important and likely to become

even more so as distributed and parallel systems of hundreds of processors become widely available.

The low cost of small, powerful processors and fast memory, and the developments in communication

technology are likely to make it possible to build interconnected computer systems of many kinds, eg those

with shared memory, with a common bus, or special purpose systems for applications like process control. It

would be unrealistic either to expect each such system to be programmed in a special language or for the

important characteristics of the system to be hidden in the special implementation of a general language. One

purpose of using communication schemes is to be able to separate these two concerns: to be able to

implement the logic of a module independently of the choice of communication scheme to be used.

Languages like CSP and DP have already demonstrated- the attractive possibilities of using parallel

programming features as the basis for language design. Here, we extend parallelism to include 'broadcast*

mode output and multiple caller input, also allowing the particular synchronisation discipline to be specified

as a control rule. This is done in the context of a fairly realistic design which can readily be implemented: in

fact, the feasibility of implementation has been an important consideration in determining how ambitious the

language should be, and has been one reason for making the features relatively simple.

These simplifications have not resulted in any significant compromise either in the power of the language

or in the compactness with which algorithms can be expressed. On the other hand, they have led to a very

simple and efficient rule for the lifetimes and termination of modules, which assumes great importance in an

actual implementation. A conspicuous omission from this report has been any mention of a program

verification or proof methodology which would serve as an aid for the design and validation of programs.

This issue is being considered separately and the relatively simple nature of the language appears to make this

task tractable.

12 Acknowledgements

This report describes some of die major language issues in the design of communication schemes. I would

like to thank Michael McKeag for his interest in an earlier version of die language, and several members of

the Computer Science Department at Carnegie-Mellon University for comments which can only have

improved the paper. Richard Snodgrass made a number of detailed and perceptive suggestions on earlier

versions of this report which have undoubtedly made the presentation more precise and understandable, and

I am grateful to Nico Habermann for discussions on some of the features described here. None of them is

responsible for any errors which remain.

The basic idea behind communication schemes originated from the experience gained while implementing

and using die CCNPascal language 1 5 but its present form has been considerably influenced by the work on

C S P 3 a n d D P 4 .

37

K5 r\T O r ^ -Ci o
I. !i ;.-r tt V/ ft W « U W %**y W

1. P. Brinch Hansen, "The Programming Language Concurrent Pascal," IEEE Trans. Softw. Eng., Vol.
SE-1, No. 2, June 1975, pp. 199-207.

2. N. Wirth, "Modula: a Language for Modular Multiprogramming," Softw. Pract. & Exp., Vol. 7, No. 1,
January 1977, pp. 37-66.

3. C.A.R. Hoare, "Communicating Sequential Processes," Comm. ACM, Vol. 21, No. 8, August 1978, pp.
666-677.

4. P. Brinch Hansen, "Distributed Processes: A Concurrent Programming Concept," Comm. ACM, Vol.
21, No. 11, November 1978, pp. 934-941.

5. J.A. Feldman, "High Level Programming for Distributed Computing," Comm. ACM, Vol. 22, No. 6,
June 1979, pp. 353-368.

6. N. Wirth, "The Programming Language Pascal," Acta Informatica, Vol. 1, No. 1,1971, pp. 35-63.

7. E. W. Dijkstra, "Guarded Commands, Nondeterminacy, and Formal Derivation of Programs," Comm.
ACM, Vol. 18, No. 8, August 1975, pp. 453-457.

8. E. W. Dijkstra, A Discipline of Programming Prentice-Hall, 1976.

9. J.L. Bentley, H.T. Kung, "Two Papers on a Tree-Structured Parallel Computer," Tech. report,
Carnegie-Mellon University, September 1979.

10. J.G. Mitchell, B. Wegbreit, Schemes: A High-level Data Structuring Concept, Prentice-Hall, 1978, pp.
150-184.

11. J.H. Ichbiah et al, "Rationale for the Design of the Ada Programming Language," SIGPLAN Notices,
Vol. 14, No. 6, June 1979,, Part B

12. B. Liskov, A. Snyder, R. Atkinson, C. Schaffert, "Abstraction Mechanisms in CLU," Comm. ACM,
Vol. 20, No. 8, August 1977, pp. 564-576.

13. R.J. Swan, The Switching Structure and Addressing Architecture of an Extensible Multiprocessor: Cm*,
PhD dissertation, Carnegie-Mellon University, 1978.

14. P.R.F. Cunha,T.S.E. Maibaum, "A Communication Data Type for Message Oriented Programming,"
IV Intl. Symp. on Prog, Springer-Verlag, 1980, pp. 79-91, Lecture Notes in Computer Science.

15. M. Joseph, V.R. Prasad, K.T. Narayana, I.V. Ramakrishna, S. Desai, "Language and Structure in an
Operating System," in Operating Systems - Theory and Practice, D. Lanciaux, ed., North Holland,
Amsterdam, 1979.

1.1 Dining Philosophers

Problem: (due to E.W. Dijkstra) Five philosphcrs spend dicir time between pondering, going to a room to

eat, and returning to think. The food at the table is spaghetti, and this requires two forks for eadng. There are

five forks placed on a round table, between the philosophers' places. Each philosopher must pick up die fork

on his left, the fork on his right, and dicn eat. Write a program which will allow the philosophers to eat

without deadlock (ie, all five philosophers taking one fork each and waiting for a neighbour to release the

other fork).

Solution: The program given by Hoare 3 uses one process for the room, each philosopher, and each fork,

and we will give a similar solution.

module type Room;
provides iport In () = > () ; Out () - > () ;

end Room.

module implementation Room;
declare Count: integer (: = 0);

In :: receive () Count: = Count + 1; reply () ;
Out:: receive () Count: = Count - 1 ; reply () ;

begin
loop

if Count < 4 then await {In, Out} else await {Out} end if;
end loop

end Room.

module type Fork;
provides iport Pick () = > () ; Down () ;

end Fork;

module implementation Fork;
declare Pick :: receive () reply () ;

Down:: receive () ;
begin

loop Pick; Down end loop;
end Fork.

module type Sage;
provides oport Enter, Takel, Take2 () -> ();•

iport Leave, Dropl, Drop2 () ;
end Sage.

module implementation Sage:
declare Hnler, TakeL Take2 :: send () response () ;

Dropl, Drop2, Leave :: send () ;
• begin

loop Ponder: Knter; Takcl; Take2;
Consume; Dropl; Drop2; Leave;

end loop
end Sage.

module specs Dinner;
needs type Room, Fork, Sage;
provides module Rm : Room; Fk : [1 5] of Fork;

Phil : [1 . . 5] of Sage;
connect (Rm.In, Phil.Enter[l]..[5]); (Rm.Out, Phil.Leave[l]..[5]);

(Fk.Pick[1..5], Phil.Takel[1..5], Phil.Take2[2..(<2)]);
(Fk.Down[1..5], Phil.Dropl[1..5], Phil.Drop2[2..(<2)]);

end Dinner.

%Note: < n = pred n mod array size\

module implementation Dinner; .
declare Rm : Room; Fk : [1 . . 5] of Fork; Phil: [1 . . 5] of Sage;
end Dinner.

Synchronisation is essential for two actions, entering the room and picking up a fork, and this is ensured by

using the " => " control rule for the associated ports. Dropping a fork and leaving Xhe room are both actions

which can be performed asynchronously and should require no waiting. Deadlock is prevented by not letting

more than 4 philosophers into the room at a time. Note that each philosopher's ports Takel and Take2 are

connected to the appropriate forks according to their position at the table.

Problem: A file may be read simultaneously by a number of readers but may only be written by one writer

at a time, and then only if there are no readers (this is the Readers and Writers problem). Assume the file has

two operations, Read and Write, to access and modify the file respectively..

Solution (cf Brinch Hansen 4): Let State be an integer variable recording the kind of access being made to

the file. Each file will perform its own control over access: the operations Read and Write must be preceded

by the operations StartRead and StartWrite, and followed by the operations EndRead and EndWrite,

. respectively.

module specs RWFile;
provides iport StartRead () = > () ; Read () = > (. . .) ; EndRead () -> () ;

StartWrite () = > () ; Write (...) - > () ; EndWrite () - > () ;
end RWFile;

declare Slate : integer (: ~ 1)
Data : ... ; •
StartRead :: receive ()

State : = State + 1
reply () ;

Read :: receive ()
< Get Data >

reply (. . .) ;
En dRcad :; receive ()

State : = State - 1
reply () ;

StartWrite :: receive ()
State : = 0 ;

reply () ;
Write :: receive (...)

<Update Data>
reply () ;

EndWrite :: receive ()
State: = 1

reply () ;
begin

loop
if State = 1 then await {StartRead, StartWrite}

elseif State > 1 then await {StartRead, Read, EndRead}
elseif State = 0 then await {Write, EndWrite}

end loop
end RWFile.

A writer can start only if there are no readers or writers already (State = 1); a reader can start if there is no

active writer (State > = 1).

Problem: (cf. Brinch Hansen 4) A vending machine has two operations: Insert, which takes in a coin, and

Serve, which returns an item if there are any left and the inserted coins cover the cost (if either of these

conditions is false, any inserted money is returned).

module specs VendingMachine;
provides iport Insert (integer) -> () ; Serve () => (integer, integer);

end VendingMachine.

module implementation VendingMachine;
declare Stock, Paid, Cash, Change : integer (: = 5.0,0,0, 0);;

Insert:: receive (Coin : integer)
Paid : = Paid + Coin;

reply () ;

Scr \o ;: receive () •

if Slock > 0 ;»iiJ id i Vice (isL-ii
Change, Item : - Paid - Cash, 1;
Slock, Cash : = Slock - 1; Cash + P

else Change, Paid, Irem : = Paid, 0, 0 :
reply (Change, Item);

begin
loop

await {Insert, Serve}
end loop

end VendingMachine.

