NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-(S-79-144

An Anatomy of Graceful Interaction
in Spoken and Written
Man-Machine Communication

Phil Hayes
Raj Reddy

13 September 1979

Computer Science Department
Carnegie-Meilon University
Pittsburgh, PA 15213

This research was sponsored by the Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract
F33615-78-C-1551.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official poiicies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the US Government.

UNIVERSITY LIBRARIES
CARNFGHE MELLON UNIVERSITY
PITISBURGH. PENNSYLVANIA 15213

Abstract

There have recently been a number of attempts to provide natural and flexible interfaces
" to computer systems through the medium of natural language. While such interfaces typically
perform well in response to straightforward requests and guestions within their domain of
discourse, they often fail to interact gracefully with their users in less predictable
circumstances. Most current systems cannot, for instance: respond reasonably to input not
conforming to a rigid grammar; ask for and understand clarification if their user’s input is
unclear; offer clarification of their own output if the user asks for it; or interact to resaclve
any ambiguities that may arise when the user attempts to describe things to the system.

We believe that graceful interaction in these and the many other contingencies that can
arise. in human conversation is essential if interfaces are ever to appear cooperative and
helpful, and hence be suitable for the casual or naive uéer, and more habitable for the
experienced user. In this paper; we attempt to circumscribe graceful interaction as a field for
study, and identify the problems involved in achieving it.

To this end we decompose graceful interaction into a number of relatively independent
skills: skills involved in parsing elliptical, fragmented, and otherwise ungrammatical input; in
ensuring robust communication; in explaining abilities and limitations, actions and the motives
behind them; in keeping track of the focus of attention of a dialogue; in identifying things
from descriptions, even if ambiguous or unsatisfiable; and in describing things in terms
appropriate for the context. We claim these skilis are necessary for any type of graceful
interaction and sufficient for graceful interaction in a certain large class of application
domains. None of these components is individually much beyond the current state of the art,
and we outline the architecture of a system that integrates them all. Thus, we propose
graceful interaction as an idea of great practical utility whose time has come and which is
ripe for implementation. We are currently implementing a gracefully interacting system along
the lines presented; the system wiil initially deal with typed input, but is eventually intended
to accept natural speech.

Tabie of Contents

Introduction
1. Components of Graceful Interaction
2. Robust Communication
2.1. Introduction - The Principle of Implicit Confirmation
2.2. Implicit Acknowledgements
2.3. Explicit Indications of Incomprehension
2.4. Echoing and the Use of Fragmentary Recognition
2.5. Summary of Robust Communication
3. Flexible Parsing
3.1. Grammatical Deviations
3.2. Implications for Language Analysers
3.3. Summary of Fiexibie Parsing
4, Domain Knowledge
4.1. The Role of Domain Knowledge
4.2. Simple Services
4.3. Representations for Simple Service Domains
5. Expianation Facility
5.1. Explanation Types
5.2. Questions About Ability - Indirect Speech Acts
5.3. Questions About Ability in a-Restricted Domain
5.4. Event Questions
5.5. Hypothetical Questions
5.6. Ability Models as a Safety Net
5.7. Summary of Explanation Facilities
6. Goals and Focus
6.1. Goals
6.2. Subgoals In Simple Service Domains
6.3. Focus
6.4, Keeping track of focus
6.5. Summary of Goals and Focus
7. Identification from Descriptions
7.1. The ldentification Problem
7.2. Ambiguous Descriptions
7.3. Unsatisfiable Descriptions
7.4. Descriptions and Faulty Comprehension
7.5. Summary of Identification from Descriptions
8. Language Generation
9. Realizing Graceful Interaction
9.1. Architecture of a Gracefully Interacting System
9.2. Worked Example
Conclusion

Introduction

A great deal of interest has recently been shown in providing natural and flexible
computer interfaces through systems capable of engaging in a dialogue with a human being in
more or less natural language. This interest is embodied in numerous systems including GUS
(2], LIFER {207, PAL [37), PARRY (30}, and PLANES [40], and in the work of Codd {6), Grosz
[14]}, and others. Such systems typically respond accurately and appropriately to
straightforward requests and questions or otherwise uneventful dialogue within their domain
of discourse. Compared to human beings, however, the performance of current natural
language interfaces appears quite rigid and fragile. Most current systems cannot, for
instance: respond reasonably to input not conforming to a rigid grammar; ask for and
understand clarification if their user’s input is unclear; offer clarification of their own output
if the user asks for it; or interact to resolve any ambiguities that may arice when the user
attempts to describe things to the system. A dialogue system cannot hope to interact
naturally and gracefuily with its users, unless it can cope with these and the many other
contingencies, sc common in ordinary human conversation,

Graceful interaction, then, invoives dealing appropriately with anything a user happens to
say, rather than just those inputs in the mainstream of a conversation. Even though little
attention has been paid to it in work to date (PARRY {30] being the main exception), we
believe that graceful interaction is essential in making natural language interfaces (for both
typed and spoken input) appear cooperative and helpful to their users, and thus in making
computer systems more accessible to casual or naive users, and more pleasant and generally
~ habitabie for the more experienced user.

In this paper, we claim that the ability to interact gracefully depends on a humber of
relatively independent skills: skilis invoived in parsing elliptical, fragmented, and otherwise
ungrammatical input; in ensuring robust communication; in explaining abilities and limitations,
actions and the motives behind them; in keeping track of the focus of attention of a diaiogue;
in identifying things from descriptions, even if ambiguous or unsatisfiable; and in describing
things in terms appropriate for the context. While none of these components of graceful
interaction has been entireiy negtected in the literature, no single current system comes close
to having most of the abilities and behaviours we describe, and many are not possessed by
any current systems. This will become clear in our discussion of each component. We
believe, however, that none of these components is individually much beyond the current
state of the art, and later in the paper we will present the architecture of a system that
combines them all.

Thus, we believe that graceful interaction is an idea of great practical utility whose time

has come, and which is ripe for implementation. This paper is an attempt to circumscribe
graceful imteraction as a field of study, to identify the prob!éms that need to be solved, and
to present the design of a system that, for a suitably restricted domain, is capable of truly
graceful interaction. We are currently implementing a gracefully interacting system along the
lines presented; the system will initially deal with typed input, but is eventually intended to

accept natural speech.

1. Components of Gracetul Inieractién

Graceful interaction is not a single monolithic skiil. Rather, it seems to be composed of a
number of diverse abililies and behaviours. In the succeeding sections, we will describe a set
of abilities and behaviours that appear to be essential for graceful interaction. Although this
cet conlains necessary components of graceful interaction, it is probably not sutficient for
graceful interaction in gencral; however, we believe it provides a good working basis from
which to build gracefuily interacling systems, and in particular, those which provide a simple
service in a restricted domain (e.g. telephone directory assistance, restaurant reservations,
computer mail services); we will define this class a little more carefully in Section 4.2.

. The components of graceful interaction we describe are based on phenomena observable in
naturally ~occuring human dialogues. We believe it is very important for 2 gracefully
interacting system to conduct a dialogue in as human-like a way as .possibie; if the strategies
the system employs for clarifying its incomprehensions of the user, resolving ambiguous
descriptions supplied by the user, etc. are not the same as those a human would use in the
sama situation, then the user will feel that the interaction is not natural, and hence not
graceful. Furthermore, most of the components of graceful interaction we have gleaned from
human -conversations involve cooperation between speaker and listener; if the user tries to
employ any of these techniques in his interaction with the system, an inability of the system
to qooperaie will appear {0 him most ungraceful. Thus the freedom we wish to give the user
to express himself exactly as he wishes requires that a gracefully interacting system be able

to deal with dialogue problems in much the same way as a human does.

| Unfortunately, the aim of being as human-like as possible must be tempered by the limited

- ,4"'—’ potential for comprehension of any forseeable computer system. Until a solution is found to
the problems of organizing and using the range of world knowledge possessed by a human,
practical systems will only be able to comprehend a small amouni of input, typically within 2
specific domain of expertise. Graceful interaction must, therefore, supplement its simulation

of human conversational abitity with strategies to deal naturally and gracefully with input that

is not fully understood, and, if possible, to steer a conversation back to the system’s home

ground.

file:///dent/fy

We propose seven components of graceful interaction. This set is probably not sufficient,
nor are the boundaries between the several components completely watertight; arguments
could be made for drawing them in different places, However, it would be hard to argue that
any of the seven were unimportant for graceful interaction. The components we propose
are:

- Robust communication: The set of strategies needed to ensure that a listener
receives a speakers utterance, and interprets it correctly.

- Flexible parsing: The ability to deal with naturally used natural fanguage, with all
the ellipses, idioms, grammatical errors, and fragmentary utterances it can
contain,

- Domain knowledge: Not strictly-speaking a component of graceful interaction, but
a prerequisite for all the other components.

- Explanation facility: The ability of the system to explain what it can and cannot
do, what it has done, what it is trying to do, and why, both for response to
direct questions, and as a fall-back when communication breaks down.

~ Focus mechanisms: The ability to keep track of what the conversation is about, as
the items under discussion shift; this is important for the resolution of ellipsis
and anaphora, as well as for continuity in the conversation.

- Identification from descriptions: The ability to recognize an object from a
description; this invoives the ability to pursue a clarifying dialogue if the original
description is not clear.

- Generation of descriptions: The ability to generate descriptions that are
appropriate for the context, and that satisfy requirements imposed by the other
components, especially robust communication,

While none of these components of graceful interaction have been entirely neglected in the
literature, no single current system comes close to having most of the abilities and behaviours
we describe, and many are not possessed by any current systems.

In what foliows, we will consider each component in detail; in particuiar, in each case we
will discuss:

- the natural language and dialogue phenomena on which the component is based;

- the abilities and behaviours needed by a computer dialogue system to participate
gracefully in a conversation containing these phenomena (including thase
differing from humans, but necessitated by those limitations of current dialogue
systems that are unlikely to be removed in the near future);

- the extent to which any current systems contain the component {including any
reasons why their basic structure or methods might preclude their incorporation

of the component, and the implications of this for the design of systems which
try to implement the component).

In these discussions, we will in general make no distinction between spoken and typed
language; this reflects our view that most of the principles of graceful interaction are the
same whether the medium of communication is speech or text. In cases where it does make a
difference, mainly those involving problems with speech that do not arise for typed input, we
will note the difference explicitly. The discussions will be illustrated by example conversatian
fragments; these conversations are intended to be typical of those that might occur between
a gracefully interacting system and its user; accordingly, we have set them in simple service
domains of the type mentioned above (see Section 4.2 for a more precise definition of simpie
service domains). In fact, we have used two domains of discourse in our examples: an
_internal directory assistance system, and 2 restaurant reservation system. The examples
chosen are based in part on protocols of actual conversations {with two human participants),
and in part on conversations invented to iliustrate particdlar points.

2. Robust Communication

During the course of a conversation, it is not uncommon for people to misunderstand or fail
to understand each other. Such failures in communication do not usually cause the
conversation to break down; rather, the participants are able to resolve the difficulty, usually
by a short clarifying sub-dialogue, and continue with the conversation from where they left
off. Current computer systems are unable to take part in such clarifying dialogues, or
resolve communication difficulties in any other way. As a result, when such difficulties occur,
a computer dialogue system is unable to keep up its end of the conversation, and a complete
breakdown is likely to result; this fragility lies in stark and unfavourable contrast to the

robustness of human dialogue.

In this section, we discuss the cooperative techniques that humans use to overcome
difficulties in communication, and the ways in which these techniques can be made available to

computer dialogue systems.

2.1. Introduction - The Principle of Implicit Confirmation

Every time 2 human being speaks to another in an attempt to communicate something, he

faces three obstacies to getting his message across:

- the listener may not receive the message;

- the listener may receive the message but be unable to interpret all or part of it;

- the listener may interprel the message incorrectly.

Although these difficulties do not occur in the majority of attempts at communication, they are
not uncommon in ordinary human conversation and arise completely unpredictably. If one of
them does occur, the listener will not receive the message that the speaker intended to
convey with potentially serious consequences for the conversation. Despite these
unpredictabie errors in communication, human dialogue is extremely robust; people almost
always manage to get their message across. This robustness does not stem from the
elimination or minimization of such errors, but rather from a set of techniques, based on
cooperation between speaker and listener, that humans use to detect, recover from, and
correct the errors that occur. It is these techniques and their application to graceful
interaction that we will be considering in this and the following subsections. The present
subsection, in particular, discusses a convention, tacitly agreed by participants in a human
dialogue, on which all the techniques are based.

Since a speaker typically has no direct way of telling whether his listener has received his
message correctly, detection of communication difficulties must rest on some convention of
acknowledgement, commonly agreed upon by speaker and listener. One possible convention
is for the listener to explicitly acknowledge everything that the speaker says. This is
essentially the technique employed for communication between networks of computers in
which analogous communication problems can arise. While this convention ensures extremely
accurate communication, constant explicit acknowledgement wouid be too tedious for humans.
Instead, humans use a convention which requires much less overhead at the cost of
occaisonally allowing inaccurate communication. We call this convention the principle of
implicit confirmation, and can state it as follows:

The speaker assumes his message has been received by the listener,
and received correctly, unless the listener indicates otherwise.

This assumplion of communication on {he speaker’s part is analogous to the assumption on
the speaker’s part that the listener will follow any shift in focus he may make, as noted by
Grosz [15]

While this approach is obviously very efficient when there is no difficulty with
~ communication, it places a large burden on the listener. Unless the listener can determine
that he has not received the message correctly, the error will go undetected; the
conversation will continue uncorrected and may become quite confused. Marx brothers’
comedies exploit such confusions to good effect. This is the basic reason that human
techniques for robust communication can sometimes fail. Fortunately, the listener normally
has enough expectations about the sorts of things the speaker might say to make this a rare

accurrence.

In order for its interaction to appear natural, a gracefully interacting system must use this
same principle of implicit ~onfirmation in its conversation with its user. Given the necessarily
limited linguistic abilities of current systems, a gracefully interacting system is, in fact, liable
to run into more communication errors in the form of miscomprehension and incomprehension
than is a human, and if the system tries to use another convention (such as explicit
acknowledgement) to deal with these errors, it will seem most ungraceful to the user.
Furthermore, the user will naturally employ implicit confirmation, and unless the system
understands this convention and cooperates in it, inaccurate communication, and considerable
frustration on the part of the user is liable to result. As far as we know, no current dialogue
system conducts its dialogues in accordance with this principle of implicit confirmation.

Although we have been using the terms, “speaker” and "listener®, everything we have said
applies equally to dialogue typed at a terminal. Typed dialogues are just as susceptible to
incomprehension and miscomprehension as spoken dialogues; the only difference is in the
sources of such problems in communication. In typed dialogues, words are not usually
misrecognized as they can be with speech; on the other hand, one cannot make spelling
errors in spoken dialogue. In what follows, we will continue to blur the distinction between
the two forms of dialogue; our discussion will be ostensibly of spoken dialogue,‘but all the
points we make will apply equally to typed dialogue uniess otherwise noted.

In the next subsection, we will discuss details of how the speaker can teil if his message
fails to be received at all; the two subsequent subsections discuss two simple methods by
which the listener can indicate his lack of comprehension or lack of confidence in his
comprehension. In all three cases we will comment on the extent to which the techniques
discussed are used in current dialogue systems, and any modifications that are likely to be
required in a practical gracefuily interacting system, particularly those required by the
limitations of the current state of the art in fanguage understanding. The final subsection is a

summary.

2.2. Implicit Acknowledgements

In this section we consider how the speaker can tell if his message was received at all,
whether correcfly or incorrectly, and what he can do if it was not reccived.

As the principle of implicit confirmation states, the speaker assumes his message was
received unless the listener indicates otherwise. How can the listener indicate that he has
not received a message which we are assuming he does not know has been sent? QObviously,
he cannot do this actively or explicitly; instead, he does it tacitly by not doing anything i.e. by

not replying. To put it ancther way, the speaker expects a reply, and if he does not receive
one will assume that his message has not been received at all. This expectation provides a

* way consistent with the principie of implicit confirmation of detecting communication errors in

which the listener fails to receive any of the speaker’s message.

In general human dialogue, replies need not be linguistic; for instance, the listener might
simply perform an action that the speaker requested. Hawever, for the purposes of graceful
interaction, in which conversations are either typed or spoken without any visual
communication (as over a telephone), we may confine ourseives to purely linguistic replies.
The reply can come either when the speaker has finished delivering his message and has
paused to await a reply (typed input systems operate exclusively this way) or by an
interruption before the end of the message. If no reply is forthcoming, the speaker will
assume that his message has not been received.

One option with a message that has not been received is to repeat it; the more usual and,
if repetition fails, eventually necessary strategy is to assume that there is some fault in the
channel of communication, and to try either to re-establish communication or to confirm that
the channel is defunct. When the speaker is in the presence of the listener, this attempt
might be a shouted "can you hear me" the listener might be asleep or deaf. Qver the
telephone, a much more common situation, the attempt uses phrases such as "Hello!”, "Are you
there?”, " can hear you, can you hear me?". If the original speaker receives suitable replies
to the channel checking utterances, the substantive part of the dialogue can proceed. If the
channel is indeed defunct, the dialogue is at an end. Similar but more conventional forms are
used at the beginning of a dialogue to ensure that the channel is indeed open and available
for communication.

We have said that a reply to a message is enough to convince the speaker of the message
that the message was indeed received. Ars there any constraints on the form of the reply,
or will any reply do? Clearly any reply of the channel-checking form will not confirm
communication, but will actively indicate failure of the message to get across:

S: The number for Joe Smith is 5267
U: Hello! Are you there?
S: Yes! Can you hear me?

The appropriate response is to participate in a channel checking dialogue with the user.

Apart from this case, there are very few other responses which would not be taken to
imply reception (correct or incorrect) of the message. It is not necessary to obtain an

answer to a question; counter questions and even quite distantly related statements serve as
replies:

U: What is the number for Joe Smith?
S: Do you know the address?
U: Sorry! 1 mean Bill Smith.

If the listener gives a reply that appears completely inappropriate to the original speaker, he
is more likely to assume that the listener received the criginal message incorrectly, rather
than not at all.

A gracefully interacting system shoutd, of course, confarm to the human conventions about
implicit acknowledgements, i.e. it should reply to all of its user’s utterances within a short
period (possibly giving a time filing reply or request to "hold on™ if it cannot give a
substantive reply scon enough), and it should expect its user to reply to it in a similarly short
time. 1f this expectation is not met, it should be able to initiate and complete a
channel-checking dialogue, and if possible, return to its ariginal utterance. Of course, it must
also be able to suspend this kind of "time-out" expectation if the user asks it to wait, and
naturally there is no need to limit the *patience” of such a system very tightly.

The importance of replying to the user within 2 short time of his input has been stressed
in the LIFER system [20]. The immediate replies, however, took the form of progress reports
on the processing of the input, and essentially served as time-fillers. Descriptions of other
systems such as PARRY [30] and PLANES [40] have stressed the need for rapid replies, but
these systems do not attempt to monitor the speed of their own replies and produce a
~ time-filling reply if it is too slow. One version of the SCHOLAR system [4] did,
however,apologize if it took too long to respond. No systems to our knowledge are able to
conduct a channel-checking dialogue.

2.3. Explicit Indications of Incomprehension

The principle of implicit confirmation requires a listener to give an explicit indication
whenever he fails to comprehend a message' of suspects that he may have received a
message incorrectly. In this section we deal with the mast straightforward way a listener can
do this: by asking the speaker what he said or meant. Such questions vary according to how
much of the original utterance the listener thinks he understood, how informative he tries to
be about the nature of the problem, and how much he wants to influence the speaker’s

subsequent reply.

The least informative way of indicating incomprehension, and indirectly of asking the
speaker to repeat his message is through a phrase such as "I beg your pardon?” or "What
was that?" If the lack of understanding was caused by a transient problem such as noise on
the channel or inattention on the part of the speaker, this strategy may result in a second

and successful attempt at communication. If, on the other hand, the failure was caused by a

non-transient problem such as the listener’s unfamiliarity with the words or construction used
(uncommon with human beings, but likely to occur frequently with computer systems), a
second attempt at communication is no more likely to be successful than the first. Since the
original speaker is given no clue to the nature of the difficulty the listener is having in
understanding what he is saying, he is unable to correct that difficulty except by changing
what he is saying in a hit and miss fashion. Successful communication is more likely to result
if the listener can provide some ciues to the nature of the problem, and the conventions of
human dialogue make it easy to do so. Indeed, we believe that the provision of information to
the original speaker about where and what he is failing to communicate is fundamental to the
extraordinary robustness of human conversation. Without the ability to zero in on problems,
human conversation couid not achieve robustness in the apparently effortless way that it
does.

The specificity of the clues the listener can provide to the speaker about the nature and
location of a communication difficulty depends on the degree to which the listener failed to
understand the utterance. If he understood nothing at ail, the only clue he can provide is
what he expected the speaker to say:

S: This is directory assistance.
U: <GARBLE>
S: 1 didn’t guite catch that; can I get a number for you?

If he has understood something, he can show what he has understood while indicating that he
has not understood fully:

U: What is the number for <GARBLE>?
S: Whose number did you want?

U: What is the number for Jim <GARBLE>?
S: Jim who?

This allows the original speaker to concentrate on transmitting only the part of the message
that was not understood, making "Smith", for instance, a suitable reply in the second exampie.
If the listener has understood enough to narrow the possibilities down to a small number he
can list them.

U: What is the number for <?>ill Smith?
S: Did you say Bill Smith or Phil Smith?

This strategy allows the original speaker to solve the communication problem with a phrase
like "the second one”, which is presumably much less susceptible to error than repetition of
the part of the communication that originaily caused the error ("Bili" or "Phil™). In gereral,
the information given by these various strategies to the original speaker allows him to
concentrate on imparting the information that did not get across, and thus makes for much

10

greater directedness and robustness in the resolution of communication difficulties. As a final
strategy, if the listener has produced an interpretation for the utterance, but is uncertain of
that interpretation because of noise or because the interpretation is incongruous, he can ask
explicitly if his complete interpretation is correct.

The way in which incomprehension is indicated can influence the form of the subsequent
clarification. This fact is of particular importance for a gracefully interacting system with
limited power of comprehension. It is not sufficient for such a system merely to indicate
incomprehension, or even to indicate it informatively, so that its user is made clearly aware of
the nature of its difficulty in comprehension; it should also indicate its incomprehension in a
form most likely to elicit a clarification from the user that the system can comprehend. For
instance, as Codd {6] points out, questions of the form "What do you mean by .." are liable to
elicit a description on a level much too sophisticated for such a system. Thus if the system
does not understand "extension” in:

What is the extension for Jim Smith?
it is unwise to reply:

What is an extension?
but better to ask:

Do you want Jim Smith’s number or his address?l
Both replies indicate the problem word exactly, and are thus in some sense equally
informative about the nature of the problem in comprehension, but the second is préferable
since it encourages the user to use either "number” or "address” in his reply, and hence give
the system a good chance of understanding it. ' '

~ While a gracefuily interacting system shouid try to shape its users responses, the form of
the responses cannot be guaranteed. In particular, the system cannot pose multiple choice
questions to the user and expect the user always to pick one of the choices given, as do
many current systems including Codd’s RENDEZVOUS system [6] Multiple choice questions
are contrary to the whole spirit of graceful interaction and sequences of them would soon
frustrate a user. A gracefully interacting system can and should be able to present
alternatives to the user as in the last example, but it must be prepared for the user to
express his choice in his own way or to come up with an entirely different option.
Do you want Jim Smith’s telephone number or his address?

lll is, of course, highly desirable that the aysiem should note the reply lo this question, and remembaer it if the
user sver zays the word, extension, again, since repetition of such a question would surely be very frustrating
to a user. Single word learning of this sort has been discussad by Carbonell in connexion with his Politics system
{31 In general, the problems of Jearning from mistakes and adapling to the idiesyncracies of individual ysers are
. sspmcts of graceful interaction we have chosen not to deal with.

11

Examples of reasonable responses include:

The number.

The first one.

Both.

I want {o phone him.

Do you know where he is now?

I want his social-security number.

I want the number, but [meant Joe Smith.

This raises the possibility that the user’s clarification will also be misunderstood, and of a
sequence of misunderstandings and clarifications failing to converge. In such cases, a
gracefully interacting system will have to become more and more explicit about the nature of
its problems and its limitations and rely on the user to accommodate himself (see Section 5.6.

In short, a gracefuily interacting system must be able to express its own incomprehension
of or uncertainty about what the user said, and be able to deat with the user’s reports af his
own problems in comprehending the system. While most systems c¢an indicate
incomprehension in some way, most are uninformative and undirective in the senses we have
discussed. As far as we know, no current system can respond appropriately to explicit
complaints of incomprehension by its user. Clearly, formulating adequate replies to such
complaints would require a system to keep track of the things it said and the reasons for
saying them.

2.4. Echoing and the Use of Fragmentary Recognition

One restriction associated with explicit indications of incomprehension is the expectation of
a reply. In this section we discuss a technique, called echoing, which the listener can use to
confirm his interpretation of a message, but which does not require a reply from the originat
speaker if the interpretation is correct; a reply is needed if the interpretation turns out to be
incorrect. Echoing is thus an efficient wa‘;f of confirming interpretations of which the listener
is fairly sure, but is less useful far cases in which the listener is less certain. We also
mention another way of reducing the number of explicit indications of incomprehension - by
using fragmentary recognitions of utterances as the basis for complete interpretations. Such
interpretations can never, of course, be guaranteed to be correct, and they should be
confirmed through echoing.

If the original speaker receives a message indicating that his message has not been
completely or confidently understood, he wiil normally try to clarify or contirm his original
message. In particular, an explicit request for confirmation cannot be answered implicitly:

U: What is the number <?>ter Smith?
S: Did you say Walter Smith?
U: Can you also give me his address?

i2

This exampie is unnatural unless the first speaker says "yes" before asking for the address.
It would become tedious to answer too many explicit requests for confirmation, so it is
fortunate that human dialogue provides a method of asking for confirmation in a way that
allows an affirmative response o be given implicitly. When the listener wants to be sure that
his interpretation of the speaker’s utterance (or more commonly part of it) is correct, he has
only to echo his interpretation. If the original speaker does not comment on the echo, then
he implicitly confirms it. Thus:

U: What is the number for <?P>ter Smith?
S: Waiter Smith ..

S: His number is 5592,

U: 5592. Thank you.

S: You're welcome.

Of course, the original speaker still has the option of confirming the echo explicitly; and if the
echo is incorrect, he must indicate that explicitly.

Direct echoes of this type are useful because they can be confirmed implicitly, thus
allowing a listener to verify his understanding without disrupting the flow of the conversation
by a clarifying sub-dialogue. Nevertheless, a direct echo is still somewhat disruptive by its
very presence; if it were not for its verifying function, it would be compietely superfluous to
the conversation. There is, however, another verifying technique which avoids even this
small amount of disruption. The technique, which we will call indirect _echoing, is to

incorporate the assumption to be verified into the listener’s next utterance in the normal flow
of the conversation. For example:

U: What is the <GARBLE> for Jim Smith?
S: The number for Jim Smith is 2597.

In this example, S is able to determine from the tinguistic and non-linguistic context that
<GARBLE> is almost certainly "number”. S then incorporates this assumption into his reply as
an indirect echo. The net effect is much the same as for a direct echo ("the number™); if U,
the original speaker, does not comment on this indirect echo it is implicitly confirmed, and if
he wishes to correct it explicitly, he may do so. The essential difference from a direct echo

is the absence of any utterance by S oulside the naturai flow of the conversation.
| Interestingly enough, this seems to deny the original speaker the opportunity to confirm the

assumption explicitly.

The form of an echo need not always correspond to the form of the utterance which is
echoed, but can be a paraphrase of it. The following examples show paraphrased echoes of
the direct and indirect types respectively.

13

U: [want to contact Roger Smith.
S: The number for Roger Smith ...
S: It’s 2597.

U: I want to <GARBLE> Jim Smith.
S: The number for Jim Smith is 2957.

A number of question answering systems, including RENDEZVOUS [6] and COOP [23, 28], have
adopted the policy of presenting the user with a paraphrased version of each input,
generated from the system’s internal representation of that input. This gives the user a
chance to find and correct any misinterpretations made by the system during its
interpretation of his input. However, the unconditional generation of paraphrases cannot be
considered graceful interaction, and quickly become tedious for the user. Direct echoes,
whether paraphrases or not, shouid only be generated when there is some significant degree
of uncertainty in the interpretation. Selective paraphrase generation along these lines, which
of course involves deciding when uncertainty exists, has been attempted by Carbonell in his
MICS system [3].

In addition to its use for checking the correctness of interpretations, echoing, especially
direct echoing, can also serve as a time filler. In an analysis of protocols of directory
assistance conversations, we found that it was common to echo the name being asked for
while the number was being found (which typically took several seconds). This is perhaps
explainable by a listener’s need (discussed in Section 2.2) to reply in order to convince the
speaker that his utterance has been received at all. [t appears that echoes in this case
served just the same purpose as a phrase such as: “Just a second!”, indicating that the
communication had been received, but that there wouid be a delay befare the real reply was
given. It is interesting to note that a full echo of the input is rarely given in such time~filling
echoes; In the protocols, people echoed only the name as opposed to any other portions of
the request for a number. In doing this they are perhaps conforming to the conventions of
the ciarifying type of echo, by echoing the part of the input least predictable in the given
context, and therefore most liable to misinterpretation.

In order to conduct natural dialogues, and to avoid frustrating its user with a stream of
trivial complaints of incomprehension, a gracefully interacting system should conform to the
human conventions of echoing; i.e. it should be abie to issue echoes (direct or indirect) when
it is uncertain in its comprehension, or when appropriate as time-fillers, and should be able to
monitor and make use of any corrections its user offers in response. It must also be
constantly on the watch for echoes by the user of what it says, and should be ready {o issue
corrections as necessary. As far as we know, none of these components of echoing has ever
" been implemented in a dialogue system.

14

A way more radical than echoing of avoiding explicit requests for clarification is to ignore
uncomprehended but inessential elements of what the user said. In general, it is impossible
to tell whether uncomprehended input is essential or not, simply because it is
uncomprehended. However, there are a number of heuristic strategies that the system can
try. First, if the incomprehensible element is small enough and is contextually determined as
a function word or "noise phrase”, it can be ignored. It is often unimpartant whether a
determiner is definite or indefinite or which preposition is used. Certain larger segments can
be ignored through a key-word approach, For instance, as was found in work on GUS [2],
users are likely to offer explanations for their desires, so that if any unrecognizable
sequence can be found which begins with "hecause”, "since®, etc., it is not unreasonable to
ignore that sequence as an irrelevant explanation. ' -

A more general way of deciding whether or not a partial comprehersion is sufficient is to
decide whether the recognized components can be combined into something that the system
would find it reasonable for the user to say. For example, if a travel agent system could
extract a city and a date from what a user said to it, it could build a request for a reservation
to that city on that daie. The combination of recognized fragments is, in fact, the basis of the
question answering ability of Waltz's PLANES system [40], and other work on the combination
of such fragments has been done by Fox and Mostow [11]

None of the above methods of ignoring certain unrecognized elements of an input are close
to being foolproof; they can, and sometimes will, produce fundamental errors in
comprehension. For this reason it is important that a gracefully interacting system make’
clear what assumptions it is making and what the results of its comprehension really are. It
would be extremely tedious for the user if the system always made explicit requests for
confirmation of everything it was unsure of, particularly if the language capabilities of the
system were less than complete as we might expect for systems in the forseeable future. A
heavy use of direct echoes is little petter, since the user would scarcely feel that excessively
parrot-iike behaviour was very graceful. A more palatable alternative is for the system to
incorporate the assumptions it makes into its reply through an indirect echo. For example, if
ail a travel agent system could extract from:)

I am interested in paying a visit to Pittsburgh on or around May L7
was "Pitisburgh” and "May 17", then its reply could be:

About what time on May 17 would you like to go to Pittsburgh?
This indirect echo, if uncorrected by the user, will confirm both the system’s interpretation of
the fragments, as well as its assumptions about their relationship (it could have been from
Pittsburgh instead of to Pittsburgh). The notion of always making the system’s assumptions

15

explicit is present in the work of Codd [6]; however, Codd suggested that his system should
present its understanding of each of the user’s requests for explicit approval by the user
before proceeding to satisfy the request.

2.5. Summary of Robust Communication

We can summarize the techniques of robust communication, and their implications for
gracefully interacting systems as follows:

- Human dialogue ensures accurate communication without the overhead of explicit
acknowiedgement by using the principle of implicit confirmation, which allows the
speaker to assume his message has been received correclly by the listener,
uniess the listener indicales otherwise.

- A speaker expects his listener to reply. If the listener does not reply within a
very short time, the original speaker will assume his message has not got across,
and initiate a dialogue to check the channel of communication. From the point of
view of the principle of implicit confirmation, the absence of a reply serves as a
tacit indication by the listener that he has not received the speaker’s
communication. A gracefuily interacting system must be able to: conform to the
convention of immediate reply, if necessary with a time-filling reply; initiate a
channei-checking dialogue if its user does not reply; and participate in a
channel-checking dialogue starled by the user.

- The simplest way for the listener to indicate that he has not received the
speaker’s message correctly is to ask him what he said or meant, while possibly
at the same time indicating the nature and source of the problem in
communication. Such an indication requires a reply by the original speaker,
Different ways of asking the guestion tend to constrain the reply to a greater or
lesser extent. The necessarily limited linguistic abilities of a dialogue system
suggest that it should ask the most constraining questions it can in such
situations,

- When a listener thinks he has understood what the speaker said, but is not quite
sure, he can echo (the tentalive part) of what he thought he heard, either
directly in a separate utterance, or indirectly by incorporating the echo into his
next utterance in the normal flow of the conversation. If the original speaker
does not correct the echo, it is implicitly confirmed. Echoing thus allows the
listener to confirm lhis interpretation, without requiring a reply from the speaker.
A dialogue system can avoid many trivial questions by using this technique, and
being ready to accept any corrections that are given. In any case, a system
must moniter its user’s echoes of what it says, and be prepared to correct any
mistakes.

~ QOther explicit indications of incomprehension, with their requirements for replies,
can be avoided if the system guesses what the user said on the basis of partial
or fragmentary recognition of the input. Assumptions made in this way must be
echoed to avoid confusion.

16

3. Flexible Parsing

The language used in naturally occurring diaiogues between humans deviates in many ways
from commonly accepted standards of grammaticality. There may ’be incorrect prepositions,
inflexions, or lack of agreement; utterances may be elliptical, fragmentary, or idiomatic; there
may be omitted or repeated words or phi'ases; utterances may be broken off and restarted at
any point. These deviations occur most frequently in spoken dialogues, but are also
sufficiently common in typed conversaticns that any computer system which attempts to
engage humans in graceful natural tanguage dialogue of the typed or spoken variety must be
able to deal with them.

Unfortunately, most current parsing methodologies are not well suited to the analysis of
such deviant input. Most systems analyse linguistic input in accordance with their
expectations, grammatical and otherwise, which cannot practically be extended to cover all, or
even most, of the possible deviations; input failing to conform to these expectations, by even
so much as a single word is typically totally incomprehensible to such systems. In short, most
current parsing svystems are quite inflexibie in the face of deviant input.

By flexible parsing we mean parsing which can deal with input deviating from grammatical
norms andfor the grammatical expectations of the system doing the narsing. Given the
common occurrence of grammatical deviations in naturally occuring dialogues, flexible parsing
is clearly of prime importance for graceful interaction. In the following subsection we
describe various ways in which language in natural dialogues can and does deviate from the
grammatical nori-n; in a second subsection, we consider current parsing techniques, the way in
which they have been used to deal {or fail to deal) with these deviations, and their potential
in this regard.

3.1. Grammatical Deviations

In this section we describe some of the most common types of deviations from standard
grammar that arise in natural human conversations: idioms, fragmentary utterances,
omissions, repetitions, insertion of noise phrases, small grammatical errors, and ellipsis.

Idioms: Everyday language contains many idioms, i.e. phrases whose interpretation cannot
be obtained by using the components of the phrase in the usual way ("a wild goose chase”
has very little to do with geese). Even though the structure of idioms is often grammatical, it
is unhelpful to parse them, since by definition their meaning cannot be obtained from their

components; it is necessary to interpret them as a whole.

17

Many other phrases while not strictly speaking idiomatic can often conveniently be dealt
with as a whole. It is possible, for instance, to analyse:
Could you give me the number for Joe Smith
as a conditional question about ability, and from that to recognize it as an indirect speech act
making a reques! for information. On the other hand, a directory assistance system would
probably find it more convenient to inferpret "could you give me” directly as a request for
information.

Fragmentary utterances: Humans are adept at piecing together fragments of an utterance to
come up with an interpretation of the utterance as a whole. For people, the need for such
fragmentary recognition occurs mainly when noise of some sort or lack of clarity in
pronunciation has made it impossible for them 1o hear all of an utterance, or when a speaker
has actually spoken in disjointed fragments. In the case of computer systems, a more
frequent need for fragmentary recognition might arise through ignorance of vocabulary or
constructions, In either case, dealing with such fragmentary input, as humans seem able to
do, requires an ability to extract the largest recognizable fragments from the input, and to
use those fragments to construct a reasonable interpretation.

In many cases, if it is possible to construct a reasonable interpretation of recognized
fragmenis at all, then that interpretation will be the correct one. For example, if the
fragments "give me" and "the number for Joe Smith" were recognized out of:

Would you be so kind as to give me your listing of the number for Joe Smith
then the obvious interpretation would be the right one. On the other hand, fragments can be
pieced together incorrectly, as in the same limited understanding of:

I asked you to give me the number for Joe Smith, but [meant Fred.
Thus, allowing fragmentary recognition raises the question of when the uncomprehended
portion of an utterance can be safely ignored, and when it cannot. There is surely no
solution to this problem that is guaranteed always to be correct, but as discussed in Section
2.4, the techniques of robust communication are helpful when an interpretation built from
fragments turns out to be wrong.

Omissions, repetitions, and noise phrases: It is possible to omit and repeat words or phrases
or insert noise phrases into an utterance without significantly decreasing its intelligibility as
in:

What the the number for lemme see Joe Smith?
Of course, function words have the least effect, but in the proper context content words or

18

phrases may be omitted or repeated without loss of comprehension. Omission and repetition
is much more of a problem in speech input than in typed input (though it does occur in the
latter). The noisiness of a speech signal can often effectively cause omission of words or
parts of words, (particularly small function words); while repetition commonly occurs as a
person repeats (or worse, repiaces) words, or sequences of words as he is producing an
utterance as in: '
What is er could er you g..give me the number er the extension for Joe Smith?

This written representation does not indicate the prosodic features - rising and falling
_ intonations, pauses, and stress - present in such utterances; these features may be very
important in human comprehension of utterances containing such repetition, breaking-off, and

restarting, as well as in comprehension of more fluent utterances.

Grammatical Errors: It is not uncommon. through carelessness of ignorance, to make
mistakes in the use of ianguage without materially affecting comprehensibility. Examples are
incorrect tenses, lack of agreement between subject and verb, using the wrong preposition,
and, for typed input, misspelling. Humans appear to be remarkably unaffected by these
errors in their language understanding, often not even noticing that errors have been made.

Ellipsis: It is not uncommon in dialogue to say things that would be meaningless outside the
context of the dialogue: '

U: What is the number for Mr. Smith?
$: Do you mean Joe Smith or Fred Smith?
U: Joe

In this interchange, "Joe” is said to be an ellipsis of the more complete " mean Joe Smith".
Needless to say, humans are seidom confused by this such omissions, and are able to use the
linguistic and non-linguistic context to understand the elliptical utterance without difficuity.
There is no clear indication whether human resciution of ellipsis involves the construction of
a more complete linguistic form.

3.2. Implications for Language Analysers

Having presented some of the ways in which naturally used language can deviate from
grammatical norms, we turn to the question of how current parsing techniques can cope with
such deviations, both in practice and in theory. We will consider a whole range of parsers,
including traditional top-down left-to-right parsers using fixed grammars of both the
syntactic and semantic variety, conceptual parsers, pattern-matching parsers of wvarious
degrees of sophisticaiion, and parsers developed for use specifically with spoken input.
There is no intention, however, to survey the field of parsing, so references to existing

19

systems will be cursory, and will assume prior knowiedge on the part of the reader.

The most common parsing technique in use today is top-down left-to-right parsing based
on a fixed grammar. This technique is usuaily implemented by an augmented transition
network (ATN) of the type developed by Woods [45], or some close variation; such parsers
can parse in terms of either general grammatical categories as in the LUNAR system {46], or
in terms of categories having some significance within a restricted domain of discourse as in
the LADDER system [33].

Parsers of this type are extremeiy fragile; they typically fail to produce any sort of parse
if their input deviates from their grammar by so much as a single word. This property
obviously makes them extremely unsuitable for dealing with input with missing or repeated
words, grammatical errors, or with fragmentary input,

These parsers are so fragile because of the depth-first way in which their top-down
left-to-right algorithms explore the set of potential parses. When a partial parse fails
because the next word does not fall into one of the categories allowed by the grammar at
that point, the failure is taken to mean that the parser made an incorrect choice earlier; that
parse path is abandoned; and a different choice is made at an earlier chaice point. Clearly,
unless the input conforms exactly to one of the possibilities allowed by the grammar, no
parse at all will result. This fail and back-up procedure is so fundamental to the way in
which such parsers search their often very large space of possibilities that it is very difficuit
to modify their algorithms to deal with repeated words, incorrect endings, etc. Weischedel
and Black [41] have made some progress in this direction, by arranging to relax predicates
enforcing such grammatical constraints as noun-verb agreement whenever a straightforward
parse fails, but these tactics can deal with only a relatively limited class of grammatical
deviations.

An approach which avoids much of this fragility and opens up the possibility of
fragmentary recognition involves the use of a number of specialist subgrammars, each
capable of recognizing a description of one particular type of entity or analysing one
particular type of construction. While each subgrammar is applied in the same top-down,
left-to-right fashion as before, they are appiied independently, so that failure of one to find a
parse does not affect the performance of the others. This is the approach taken by Waltz in
his PLANES [40] system, which has a subgrammar for each type of entity known to the
system; if an input contains references to several different entities known to the system, then
each of them is analysed quite independently of the others.

While splitting up the recognition in this way ensures that a single repeated or omitted
word or grammatical mistake will not wreck the entire parse, the parsing of each

20

subcomponent still suffers from the same fragility as before, and there are the extra
problems of deciding at which point in the input to apply each subgrammar, and of one
subgrammar analysing input which should have been analysed by a different one. In addition,
while it is desirable to be able to parse fragments if the need arises, it is also desirable {0
parse utterances as a whole whenever possible; if an utterance is 'always parsed as 2 set of
fragments, it is always necessary to construct a complete interpretation out of the
interpretations of the fragments. In the case of Waltz's system, the domain was sufficiently
constrained that the interpretation of a set of fragments was always unique, but in general
this will, of course, not be true.

More possibility for flexibility in this area of missing and extra words and grammatical
errors seems to be offered by the conceptual parser of Riesbeck [32]. Since 2 parse by that
system is organized around and directed by the meaning of the key action or state in the
sentence being parsed, the parse could presumably be made less sensitive to the presence of
the correct function words. In practice, this potential flexibility does not seem to have been
greatly exploited, and the system still relies heavily on finding, for example, the correct
prepositions in prepositional phrases.

A quite different style of analysis is based on pattern-matching or rewrite rules. In the
simplest type of pattern-matching approach, interpretation of input is obtained by matching it
as a whole against a set of patterns of words. This was essentially the way in which input
was analysed by many early Al language processing programs, such as ELIZA [42] and SIR
[31]. Early versions of PARRY [8] used an approach barely more sophisticated than this, and
pattern matching (of structures more complex than words) was the basis of Wilks machine
translation system [43]

Flexibility in pattern-matching parsing can be obtained by flexibility in the matching
process. Many of the simpler pattern matching systems used variables in their patterns
which could match arbitrary strings, but while this resulted in systems which could analyse a
‘very wide range of input, the level of analysis was correspondingly shallow. More
sophisticated forms of flexibility could presumably be obtained by allowing partial matches of
patterns, with perhaps restrictions to ensure that some content words were inciuded in the
match; it is not hard to see how this could deal with repeated and omitted words, and in some
cases grammatical errors. Surprisingly enough, this potential has not been widely exploited;
The more advanced version of PARRY [30], for instance, seems to rely on exact matching of
very general patterns, rather than inexact matching of specific patierns to deal with deviant
input. Nevertheless, pattern-matching parsing seems to offer the greatest potential for
dealing with grammatical mistakes, and missing and repeated words.

21

A further advantage of pattern matching for the PUrposes of flexible Parsing is its ability
to handie idioms and fixed phrases, [n fact, since the structure of idiomatic phrases ig by
definition unhelpful in their interpretatiOn, some sort of wholistic approach such ag
pattern—matching seems almost obligatory for their interpretation. Indeed, a number of more
traditional Parsers including the One for the LUNAR system [46] have a distinet
pPre-processing stage in which idioms are recognized by a pattern-matching process.

Pattern matching does, however, have its limitations, If one tries to analyse complete
utterances by single patterns, there will he commonalities between the patterns
Corresponding to the regularities of expression in the domain of discourse. |t is these
regularities that the more usuai type of grammar is designed to account for., The solution
within a pattern-matching system is to introduce rewrite rules, substituting the results in
place of what ig matched. In this way, patterns which account for regularities in the use of
auxitiary verbs can be combined with patierns which recognize specific idioms to produce a
language analyser, based on pattern—matching, but capable of coping with regularities in a
non-redundant way. The power of this approach has been shown in more recent work on
PARRY [30].

This uncertainty abouyt where fragments begin and end makes any top-down approach with
either a left-to-right or right-to-left directionality inappropriate for fragmentary recognition.

HEARSAY-1] [18] and HwIM (47} syslems, have deait with the fragmentary recognition
problem by applying strict Erammars in 3 bottom-up non-directional fashion, The extra
robustness achieved by this technique is, however, bought at the price of considerably
increased search effort. These systems alsg suggest that top-down recognition still has 4
role to play wince the expansion of already recognized fragments in accordance with the

Most parsers do not deal with ellipsis, the omission from an utterance of details that

22

context can provide (see also Section 6.3). The problem is tackled in a limited way for
parsers built by LIFER [20] Any inpuf not recognized in the normal way is agsumed to be an
ellipsis of a senience structurally analogous to the last previously recognized input, and an
attempt is made to parse the input accogding to each of the possible structural analogies.
The parser of the GUS system (2] deals with eliipsis in reply o a question (e.g. Q: "When do
you want to go‘_?" A: "ten", instead of A: "1 want to go at ten"), by inserting an otherwise
unrecoghizable input info 2 templale generated from the question asked, ("1 want to go at .."
for "When do you want to go?™), and then parsing the filled-out template in the normal way.
Neither mechanism can cope with more general forms of ellipsis.

This general approach to ellipsis is based on the assumption that the "complete” form of
the efliptical input must be discovered before the input can be analysed. An alternative
approach is to treat elliptical inpuls as corplete within their context. In practical terms this
means prediciing possible ellipses according to the context, and attempting to parse them
directly from the input. Such 2 direct approach avoids the possibly unnecessary complication
of enclosing the (presumably) important part of an input in a "completing” confext only 1o
have to unwrap it again in the analysis. Carbonell [3] has attempted to deal with ellipsis in
essentially this way in the context of question answering sysiems. Of course, not all ellipses
can be predicted easily enough for it to be efficient to recognize them this way; an
alternative approach, untried as far as we know, might be to deal with such ellipses in the

same way as fragmentary input.

3.3, Summary of Flexible Parsing

The language used in naturally occuring diafogues often deviates from strict grammatical
norms; common types of deviation include: omitted and repeated words, incorrect tenses,
inflexions and prepositions, idiomatic, elliptical, and fragmentary utterances. Current parsing
systems typically do not deal with these types of deviant input. In the case of parsers which
apply 2 strict grammar to their input in 2 top-down left-to-right fashion, whether that
grammar is semanticaily based or purely syntactic, there seem to be fundamental difficulties
involved in dealing with input which does not conform to the grammar. The majority of
attacks on deviant input seem to have taken place in the context of pattern-matching parsers,
and although this type of parser is less suited to the reguiarities of language than a more
traditional top-down parser, there is reason to hope that these difficulties can be overcome.
Pattern-matching parsers are very well suited to deal with idiomatic input, and aiso lend
themselves 10 the kind of bottom-up analysis that appears necessary to deal with

fragmentary input.

The points we have made in this section about the fl_exible parsing of naturally occuring

23

language can be itemized as foilows:

- Strict top-down left-to-right parsing schemes, such as those based on ATNs,
appear irredeemably unsuited to deal with small grammatical deviations such as
repeated or omitted words, incorrect inflexions, etc..

- These problems can be localized, but not overcome through the use of small
specialist subgrammars.

~ The basic approach of conceptual parsers - fitting an input into a predefined
conceptual iramework suggested by the main action or state of an input - seems
potentially much better able to deal with grammatical irregularities, but has not
yet been exploited in this way.

~ Pattern-matching parsers are in a similar situation; they have the potential to
deal with grammatical irregularities through flexible partial matching schemes, but
this potential has been little exploited.,

- Idioms and other fixed phrases are best handled by a pattern-matching
approach.

- Fragmentary recognition requires a basically bottom-up approach.

- Speech-parsers demonstrate the advantages in efficiency afforded by allowing
top-down strategies to be used after a context has been established by
bottom-up methods.

= Only limited forms of ellipsis are handled by current parsing systems; all current
methods rely on filling in the ellipsed components, and parsing the completed
input; a little explored alternative strategy is to recognize ellipses as complete
inputs, either by prediction or in the same way as other fragments.

4. Domain Knowledge

In this section we discuss the importance {o a gracefully interacting system of knowledge
about its domain of discourse; consider a class of domains and related tasks that appear
especially appropriate for gracefully interacting systems, and that will figure heavily in our
discussions of the remaining components of graceful interaction; and finally, describe a
method of knowledge representation appropriate for gracefully interacting systems in such
domains.

4.1. The Role of Domain Knowledge

A computer system cannot interact gracefully with its user uniess it has substantial
knowledge about the domain that the interaction concerns. Such domain knowledge is not,
however, a clearly separabie component of graceful interaction like those we have discussed;
rather, it is a prerequisite or underpinning for the other components. A parser, for instance,

24

requires knowledge of how words and the phrasings in which they are used relate to the
underlying domain; and for the purposes of robust communication, it is important to know
what are the important, information-bearing parts of a user's utterance, and which parts can
be safely ignored, even if not fully understood; an explanation facility clearly requires
knowledge of the abilities and mode of operation of the system itseif.

For the two components of gracefu interaction aiready discussed: robust communication
and flexible parsing, we were able to describe the component in a more or less domain
independent way. Even though examples were necessarily restricted in domain, it is not hard
to see how the principles and requiremenis we established apply to virtually any domain.
Nor did our discussion depend at ali on the way in which the requisite domain knowledge was

represented; we were able simply to assume that it was available.

Neither of these simplifying assumptions holds for the four components discussed in the
following four sections: explanation facility, goals and focus mechanisms, identification from
descriptions, and language generation, While the components are relevant to and important
for an equally wide-range of domain as the preceding components, they will be significantly
different according to the particular type of domain involived. In discussing them, we will try
to give a perspective on them for a range of domains; but we wilt concentrate our attention
on one (quite broad) class of domains that we will call simplezservice domains, and which

include both the directory assistance and restaurant reservations domains that we have been
foliowing.

In the foilowing two subsections, we will describe this class ‘of domains a littie more
carefully, and consider appropriate representations for knowledge about such domains.

4.2. Simple Services

Many of the simple services provided in current society, especially those offered over the
telephone, require in essence only that the customer or client identify certain entities to the
person providing the service; these entities are parameters of the service, and once they are
identified the service can be provided. We will call tasks which can be cast in this framework
simple services. Examples of such services are directory assistance (the person, business or

organization whose number is desired is the entity that must be identified) and restaurant
reservations (party size, time, date must be identified); in fact, airline and any other type of
reservation falis into this mould, along with requests tor weather information, current stock
market prices, and any other "current value” requests for information. An additional simple
service, which for obvious reasons is not available from humans, is provided by an electronic

mail system; the parameters for sending an item of electronic mail, for instance, are the

25

source and destination, plus the {unanalysed) body of the message.

Examples of non-simple service domains for gracefully interacting systems include
assembly tasks as studied by a group at Stanford Research Institute [339] in which an expert
supervises a novice assembling a mechanical device (the obvious role for a gracefuily
interacting system here is the expert), or more generally any supervisory or instructional
task. A complete secrelarial service wouid also be beyond the realm of simple services.

We have singled out simple service domains for two reasons: their commonness, and their
tractability. 1t is clear from the above exampiles thal simple service cystems are very
common in the real world, 50 a solution to the graceful interaction probiem which was
" restricted 1o simple service domains would still be extremely useful. Furthermore, we believe
that the graceful interaction problem is tractable in a relatively straightforward way for
simple service systems. In particular, we believe that the set of companents of graceful
interaction that we are proposing is sufficient for systems operating in simple service
domains. We still claim that our proposed components are necessary for all gracefully
interacting systems, whether operating in simpie service domains or not, but other non-simple

service domains may require exira skills.

4.3. Representations for Simple Service Domaing

Now we turn to the question of how o represent knowledge about simple service domains.
The use of conversational systems in simply service domains is far from novel. Two
important examples are the GUS system [2], which made round-trip plane reservations
between pairs of cities in California, and the PAL system [37], which scheduled appointments
from specifications of participants, meeting place, time, etc.! Both systems used frames to
organize and represent their domain knowledge.

Frames are a melhod of knowledge representation, named and popularized by Minsky [29],
which seem particularly well suiled to simple service domains because their structure reflects
. the natural structure of a simple service: a service specified through the description of a
limited set of entities which serve as parameters to the service.

A frame is a representation of some entity in terms of the entities which make it up; a
physical object can be represenied in terms of ils parts, an event can be represented in
terms of its participants, and a more complex event can be represented in terms of its

lAciualty. PAL is not an interaclive system. IV accupls a monologus which specities all the information necessary to
schadule a mesting. Neveriheless, it domain is simpie service and many of the rame problems, particularly in the ares of
focusn, arise as for s gracefuily inleracting ayslom.

Ly b .o
[T LAY T o I S

26

sub-events. The components of a frame are called its slots. The use of frames in simple
service systems is thus straightforward; the entities which the user must describe to the
system correspond to slots in a frame which represents the service as a whole. The system
performs the service by filling the siots according to the user’s descriptions, plus possibiy
performing some manipulations on the completed frame.

The use of frames provides a number of clear-cut advantages for graceful interaction in
simple service domains. First, a frame is a declaralive data structure, so that is easy for a
system to manipuiate its components in whatever order and however often it desires; this
allows a simpie service system to deal with a user’s descriptions of slots in whatever order
they are presented, and to go back and change the entity filling a slot if the user changes his
mind. Furthermore, the declarative nature of a frame allows the system easily to keep track
of what has been accomplished so far in a conversation, and what stiil has to be done. If the
user fails to volunteer a description for any required slot, the resuiting hole in the frame is a
signal for the system to take the initiative and ask the user for a description of an
appropriate entity. In the same way, a full complement of filled slots can be the system’s cue
to perform the service and attempt to terminate the conversation. As we will see in Section
6.3, a slot (or the goal of filling it) also provides a good representation for what the attention
of the system and user is directed to at any given time. In short, knowledge about a simple
service in the form of a frame provides a useful way of organizing the acquisition of
information necessary to perform the service.

The slots in a frame are themselves declarative data structures, and so can contain
pointers to information other than their actual fillers. In particular, slots commonly refer to
other frames which describe the entities that may fill them; thus, the person slot of a
directory assistance frame might refer to a frame describing a person with slots for surname,
first name, litle, etc; in turn a surname might be described by a frame with slots for
individual letters. These references to other frames serve as type information to help a
system decide in which slot a given description should be placed. In addition, the potential
. they provide to represent the grain of descriptions to essentiaily arbitrary levels of fineness
{Jim Smith; Jim; a person whose first name begins with 'J) is important for the focus and

identification from description components, as we shall see.

Another type of reference found in slots is to procedures to be invoked when 2 filier is
found for a slot or when an attempt is made to find a filler. This technique, called procedural
attachment, was heavily exploited by the GUS system to allow transmission of fillers from one
slot to another and to provide special strategies to fill selected slots. As an example,
consider an electronic mail system which, like ARPAnet mail, provides a separate FROM and

SENDER field; if no FROM is specified, then it is the same as the person composing the

27

message; if a different FROM is specified, then SENDER is the same as the composer. A
procedure to transmit the default contents of FROM to SENDER it a different FROM were

specified would clearly be very useful in this case.

A third type of information that could be attached to slots in temporary information used in
establishing the contents of the slot. For instance, if a system had only partially understood
a user’s description of a slot, it could store in the slot what it had understood, plus perhaps
some hypotheses about what it had not understood, the better to understand the user’s reply
to its request for clarification. In addition, it is sometimes necessary to maintain temporary
information about alternative slat filiers, for insstance, when the user’s description of a slot is
ambiguous (see Section 7.2).

In summary, frames provide a natural representation for information about simple service
domains: both a prieri knowledge about the domain itself and information important to a
system in interacting with the user to formulate a request for service. More specifically, the
advantages of a frame-based representation for a simple service domain include:

- an easily manipulable representation for the overall task of interacting with a
user to formulate a request for a simple service; the structuring of a frame into
slots makes it easy to teil:

- what parts of the reques! have been formulated,
- what vital parts are missing,

- and to what part the conversation is currently directed.

- convenient storage associated with each frame slot for information relevant to
that slot including:

- information about the type and structure of the entilies supposed to fili
the slot,

- procedures to transmit filiers appropriately from one siot to another and
provide special sirategies to fill selected slots,

- defauli fillers,

- temporary information about partially described and alternative fillers.

In addition, frames have already been used successfuily in systems that provide simple
services,

28

8. Explanation Facility

A gracefully interacting system must be able to deal reasonably with any questions that its
user sees fit to pose. In this section, we consider a limited set of question types that appear
to us the most important for gracefully interacting systems, especially those operating in
simple service domains.l The set includes questions about the system’s abilities, its actions
and the motives for them, other events within the system’s experience, and hypothetical
questions based on these types. We call the ability to answer questions of these types
appropriately an explanation facility.

The set of types does not cover all reasonable questions, even for simple service domains,
so that a system dealing only with these types could well find itself faced with legitimate
questions that it cannof answer, or even comprehend. To deal with such cases, and with
other cases of complete incomprehension, we also describe a technigue, related to the
explanation facility, by which a gracefully interacting system can extricate itself from
situations in which its inability to comprehend has led to a totally confused dialogue.

5.1. Explanation Types

The explanation facility we propose deais with four different question types:

~ Questions aboutl ability:

Can you give me a number in Tokyo?

Can I make a reservation?

How can [make a reservation?

Can you give me a reservation for next Tuesday?
What places can you give listings for?

What can you do?

Despite the fact thal many questions ostensibly about ability are in reality
requests to perform the embedded actions (with the service provider as the
agent instead of "I" in appropriate cases), some ability questions must be
answered literaily. This requires a gracefully interacting system to have an
explicit model of its own abilities and (some of) its inabilities.

- Questions about events:

What did you just say?

Why do you need to know my name?

Have you made a reservation for Mr. Smith?
Why can’t you make the reservation for eight?
Will you hold the reservation against late arrival?
Why not?

s impregsion is based on an analysis of some human inleractions in auch domains.

29

Dealing with such questions clearly requires a memory for what has already
occurred in a conversation, together with knowledge about the goai structure of
the conversation as described in Section 6.2.

- Hypothetical questions (embedding either of the two preceding types):

Can you give me the number if [give you the address?
. Could you give me a reservation tonight if the party size was three?
Will you hold the reservation if [put down a deposit?

Answering such questions requires an ability to construct representations of the
hypothetical conditions without getting them confused with the current situation
or the user’s previously stated preferences.

- Factual questions:

Where are you located?
Is there a charge for this service?
What are your opening hours?

These questions typically involve non-systematic domain-dependent information,
and must be answered on an individual basis.

The repertoire of question types that we propose to deal with in our explanation facility is
very far from a full spectrum of all the types of questions that can occur in ordinary human
dialogue or discourse; this is clear from the range of question types considered in the work
of Charniak [5], Lehnert [24), Scragg [35), and others. Nevertheless, we believe that such an
' explanation facility, together with the method for dealing with confused diaiogues discussed
below is sufficient for a gracefully interacting system in a simpie service domain. In
particuiar, the explanation facility proposed here is of much greater scope than that provided
in more conventional question-answering systems such as LADDER [33], PLANES [40], LUNAR
[46], etc. which have tended to concentrate on answering factual questions; the factual
questions that such sysiems answer can, however, be much more complicated and are dealt
with in a much more systematic way than we are proposing here.

In the remainder of this section, we will consider the various question types in more detail.
The next two subsections will deal with ability questions, first in general human conversation,
and then in restricted domains. The next two subsections deal with event and hypothetical
questions respectively. Finally, we discuss a technique based on the explanation facility by
which a gracefully interacting system can extricate itself from situations in which its inability
to comprehend has created confusion.

5.2. Questions About Ability = Indirect Speech Acts

In general human dialogue, second person questions about abilities can be interpreted in
two quite distinct ways. They can either be taken literally {"Can you swim?™; "Can you lift

30

this bar-bell?”), or be interpreted as requests for the listener to perform the action
embedded in the guestion ("Can you open the window?" "Can you tell me your address?").
The distinction between the two modes of interpretation does not depend on the question
itself, but rather on the context (both linguistic and non-linguistic) in which it is spoken. The
examples given above to illustrate the two modes of interpretation could all be interpreted
the other way in a suitably chosen context; the intended interpretations are simply the more
common ones.

The difference between the two modes of interpretation is accounted for by the linguistic
theory of speech acts {1], {36]. In brief, the theory says that the listener will interpret an
ability question as a request to perform the embedded action if he believes that the speaker
already knows whether or not he is able to perform the embedded action; thus, “Can you
open the window?" will generally be interpreted as a request, because, unless these are
unusual circumstances, the listener will assume that the speaker believes that he is able to
open the window. Using an ability question to express a request in this way is cailed an
indirect speech act.!

The mode of interpretation of a second person question about ability is also correlated
with the specificness of the question. A non-specific question such as ("Can you chop
wood?") is much more likely to be interpreted as a literal question about abilities, than a more
specific question {"Can you chop this wood?"). This distinction is somewhat related to the
previously mentioned rule for choosing between the two modes of interpretation, in that if
the speaker were unsure about a general ability of the listener, there would be no point in

asking about a more specific ability.

One further point to note is that even though the listener interprets an ability question
jiterally, the alternative mode of interpretation may aiso be retevant. In particular, if there is
any possibility that the speaker may wish the listener to perform a possibly more specific
instance of the action embedded in the question, then the listener is likely to suspect that the
speaker actually does wish him to perform such an action.

A: Can you chop wood?
B: Yes, what do you want me to chop?

in this example, it is a moot point whether B interpreted A's question literally or not. The
most important point is that B realized that A might want B to chop some particular wood,

even though A’s question was more general.

ot course, this is not the only kind of indirect speech act. Requests for action, for instance, can also be expressed
as guestions about prefersnces {"Do you want lo open the window?"), statements about preference ("] would like you
to open the window."), and sven more cbacurely ("It's cold in here")

31

5.3. Quastions About Ability in a Restricted Domain

In this subsection, we consider what implications the human methods of dealing with ability

questions have for a gracefully interacting system.

It is safe to assume that for the forseeabie future any gracefully interacting system wiil
operate in a highly restricted domain, and be able to provide its users with a highly
restricted set of services. Making this assumption allows us greatly to simplify the treatment
of direct questions by the user about the systems ability. In brief, if the user asks the
system about its ability to do something that it can do, then it is reasonable to assume that
the user is asking for the service to be performed; on the other hand, if the user asks about
the system’s ability to do something that it cannot do, a negative answer is appropriate.
Thus, for a directory assistance service:

U: Can you tell me the number for Jim Smith?
Yes, it’s 5629.

S:
U: Can you connect me ta Jim Smith?
S: No, I'm sorry! 1 Canl.

An interesting consequence of this strategy is that a system requires no explicit model of
its abilities to answer ability questions which have positive answers. Since such questions
are treated in the same wayl as reguests to perform the embedded action, the system need
only recognize the embedded action and perform it. To do this, the system only needs to be
able to recognize exactly those actions that it can actually perform, Clearly, this constitutes
an ability model, but of an implicit kind.

The chief drawback to such an implicit model is that it treats all ability questions with
negative answers in the same way, and furthermore, relies on non-recognition of the action
embedded in the question. 1t is, of course, unrealistic to imagine that all the embedded
actions that the system cannol do can be recognized, bul recognition of some of the more
likely ones would allow the system lo help users with reasonable misconceptions about the
system’s ability, rather than just giving them a flat negative.

U: Can you connect me to Jim Smith?
S: Ne! You'll have to dial yourself, the number is 5629.

Another situation in which an explicit model of ability and/or inability is useful occurs when a
service has parametlers, and the system can only perform the service for certain values of

1Tho treatment cannot be compiately identical since "Yes, il's 5629" is not an appropriate response fo "What is the
number for Frad Smilh?", but apart from the format of the response there is no spparent need to discriminate.

32

the parameters.

U: Can you given me a number in Rome?
S: No, I have only local numbers.

U: Can you make me a reservation for next month?
S: No, we only accept reservations a week in advance.

The second example particularly shows the importance of telling the user the limitations the
system places on the parameter; if il just replies in the negative, the user has no way of
knowing what prevents his request from being fuifilled, and consequently no way of deciding
whether he can modify his reques! so that the system can help him. Note alsoc that this
~ strategy applies not only to requests phrased as ability questions, but also to requests in any
other format.

U: I would like a reservation for next month. _
S: I'm sorry, we only accepl reservations a week in advance.

In discussing questions about ability in human dialogues, we observed that the more vague
an ability question, the less likely it was to be interpreted as a request for action. It seems
that a gracefully interacting system need not make this distinction. All abiiity questions with
positive answers can be treated as requests for action, while all with negative answers
should be answered negatively, giving whatever extra information is appropriate as discussed
above.

Can you give me a number?
Yes, whose number would you like?

Can you make me a reservation?
Yes, what time would you like?

we 0o

As these exampies suggest, the requests implied by vaguer abilify questions are typically too
vague to be fulfilied directly. In other words, the vagueness takes the form of the absence
of (or vagueness in) certain parameters of the requested task, without which the task is not
well-defined. In the examples above, the user does not specify the name of the person for
whom the number is required or the time or other details of the reservation. Appropriate
action for the system is not 1o reject the reques! because it is incompletely specified, but
rather to ask for specifying information, as in the examples above. Of course, the extra
information the user goes on to supply may specify a request that cannot be fulfilled, but
such problems must be dealt with as they arise. Again, note that formulation of the request
as a question about ability has little to do with the system’s response; vague requests
formulated as other question lypes, statements, or imperatives should be dealt with in

essentially the same way.

33

There are exceptions to our proposal for handling all ability questions as requests for
action. First, "wh"-questions about ability ("Where can you give listings for?") should
generally be answered directly; although if the answer is awkward because of its size or
some other reason, it may still be appropriate to treat the question as a request for action
("Where do you want a listing for?”). Secondly, the extremeness of vagueness in which the
embedded action is "do" ("Can you do samething for me?”, or more naturaily in "wh"-form,
"What can you do?") should cause ability questions to be treated literally, and make the
system give an accounting of its abilities. Clearly, both these exceptions require a system to
have an explicit model of its own abilities. They correspond closely to calls on a “help
facility™ of the type commonly found in current (non-graceful) interactive systems.

To end this section, we might note two points: first, virtually all that has been said above
about second-person ability questions applies equally to many first-person ability questions
("What can | do?", "Can [make a reservation for 7 PM?") in which the user places himself in
the active role. In fact, the only cases in which the transformation is not applicable are those
in which the user was a recipient in the second-person version ("Can you teil me the number
far Jim Smith?"). In general, then, first-person ability questions should be treated exactly the
same as the corresponding second-person questions. Secondly, "how” questions ("How can I
make a reservation?”, or aven "How do [make a reservation?™) can usually be treated in the
same way as the corresponding ability gquestion without the how, i.e. as requests to perform
the action specified. "How" questions for which this transformation does not produce a
request fulfillable by the system ("How can | get there?”, "How do you ge! any customers at
those prices?™) are either informational questions which shouid be recognized separately (see
Section 5.1), or are questions that a gracefully interacting simple service system could not be
expected to answer satisfactorily,

5.4, Event Questions

In this section, we turn from ability questions to questions about events, covering events
both in the past and in the future, and the motives behind them. As in the case of ability
questions, the restricted domains of forseeable gracefully interacting systems make event
questions much more tractable. The only event questions to which a gracefully interacting
system can be expecied to give an informed reply are those concerning its own actions and
their results and molives, along with those actions of its users which it can observe directly.
Questions about events ouiside its direct experience will be incomprehensible.

Examples of questions that should be dealt with include:

What did you just say?
Did you just ask for my name?

34

Why do you want to know my name?
Why won't you make the reservation for Spm?

and using examples from an electronic mail domain:

Has the message | cent yesterday been delivered successfully?
Will this message be delivered immadiately?

The first two examples are explicit indications of incomprehension as discussed in Section 2.3,
Such guestions about what has just been said serve a robust communication function and
shouid therefore be treated as special cases. Answering other event guestions requires a
history of all the events that have taken place in the current interaction, plus in the case of
the system’s actions, the reasons for them. The SHROLU system of Winograd {44] was the
first to maintain such a history of events and their reasons. As the penuitimate example
shows, event questions can refer to events outside the current interactive session.
Presumably, it is impractical to maintain a detailed history of all previous interactions, and
instead sufficient to remember only "major” events, such as the delivery of a message in the
case of an electronic mail system. Questions to the system about its future actions, as in the
last example, require the system to "imagine” that the future has arrived under prescribed
conditions and to observe the resuits; such questions are thus closely relafed to the
hypothetical questions discussed in the next section,

Before leaving this section, we shouid note that, like ability questions, event guestions can
also be indirect speech acts. For mos! yes-no questions, a bare negative answer is generally
not an acceptable response, since such questions normally involve an indirect speech act
asking for an explanation in the negative case. Thus, for "Was the message delivered
successfully?”, it is unacceptable merely to reply "No!"; the reason for non-delivery should
also be given. Again, "Will the message be delivered immediately?” not only seeks
information, but would normally be interpreted as an indication that the user wishes the
message {0 be delivered immedialely. As a third and final example, the user of a restaurant
reservations service says in the middle of his conversation "Did [say there would be eight in
the party?”, he is probably not even interested in the direct answer to the guestion, but only
in making sure that the system knows there wiil be eight in the party. The recognition of
such speech acts is a difficult problem which has been addressed in more general terms in
the work of Cohen [7], Levin and Moore [25), Lehnert [24), and others. Adapting such work
to the requirements of graceful interaction, and using all the constraints that simple service
domains give is an important but unsolved problem.

5.5. Hypothetital Questions

Bésides being able to answer questions in the context of the current situation, a gracefully
interacting system must also be able to deal with questions based on a hypothetical context

35

invented by the user. As usual, dealing with such questions in limited domains is very much
easier than for general human conversation, simply because the number of variables about

which hypotheses can be made is so very restricted.

In the case of simple service systems, the most important class of hypotheses are those
concerning the value of one of the slots of the service or one of the subslots of a slot. A
user may ask an ability question based on the Hypothesis that such a slot has a certain value,
or even that the {unspecified) vaiue of the slot is known to the system. Examples include:

Can you give me a reservation if the party-size is three?
Can you give me the number, if | give you the address?

U: I'd like a reservation for this evening.
S: I’'m afraid we're fully booked.
U: Could you give me a reservation for tomorrow?

To answer such questions, a gracefully interacting system must first construct
representation of the hypothesized situation, and then evaluate and answer the question. In
doing this, the system must be careful not to confuse the representation of the hypothetical
situation with any other conflicting situations the user has previously specified, as in the last
example. The user may wish to return to his previous specification, or even to introduce
others, and switch between them several times (this might be quite common for, say, an
airline reservation system). In other words, the system must have a way of representing
alternative situations independently, of sharing common information between them, and of
switching back and forth between the alternatives. Such ideas have been explored in
knowledge representation systems such as CONNIVER [38] and NETL [10}, and in work by
Hendrix [21], Hayes [16], and others. The methods thus developed are suitable for use with
the frames type of representation proposed in Section 4.3,

Evern after a representalion for the hypothesis has been consiructed, it is not always
possible to treal a hypothetical question in the same way as its embedded question wouid be
treated if it were posed in a context corresponding to the situation hypothesized. In
particular, the indirect speech act may be different. Thus "Can you give me a reservation for
eight pm tonight?™, spoken in a context in which the party size has been previausly
established would normally be interpreted as a directive to make a reservation at the stated
time if that is possible. On the other hand, "Can you give me a reservation for 8pm tonight, if
the party size is three?” would normally be interpreted as an exploration of possibilities,
rather than a request for action, and might well have been preceded by a discussion in which
the party-size was different; it shouid therefore be answered literally. However, once it has
answered yes or no, the system should not forget the hypothesis, since the user may then
decide to make a reservation based on that hypothesis.

36

Finaily, note that hypotheses can be made about things other than slot vaiues, as in: “If |
had called two hours ago woulid you have been able to give me a reservation?™. Answering
such a question would require an ability fo change the context by restoring the reservations
data-base to its state two hours ago. For a practical system, one would have to balance the
utility of answering such questions against the expense of facilities for changing the context
in the way required.

5.6. Ability Models as a Safely Net

In the preceding secltions we have discussed what is essentially a passive explanation
facility: one that issues explanations in response to a user’s express desires (whether those
desires are expressed literally, or in an indirect speech act). In this section we discuss a
more active type of explanation facility: one which volunteers explanations of its own abilities
in circumstances in which the user might benefit from such explanations. We only propose
one such circumstance here - when the system has repeatedly failed to understand the user
and the conversation is in danger of breaking down completely. For a more sophisticated
system there might be others, such as when the user appeared to be using a more
~ complicated strategy to accomplish his goals than was really necessary.

We claim then that, when a gracefully interacting system has repeatedly failed to
understand its user, it should use its ability model to let the user know what it can do for
him, pius possibly what it needs to know to do it. There are two benefits: first, it allows the
user to see whether the system can help him in what he wants to do; and secondly, it the
system can help, the way in which it states ils abilities suggests to the user a phrasing for
his requests that the system would be able to understand.

What is the number for Jim Smith?

Jim Smith’s number is 2597.

Thank you. Do you know how the weather is where you are?

Are you asking me for another number? ,

No! I’'m asking you about the weather,

P’m sorry! All [can do is give you telephone numbers. [am comptetely
ignorant of everything else.

wocowcuco

In this example, the system cannot understand the user’s questions about the weather. The

first time he asks, it asks a question based on what it expected him to say (this strategy was -
discussed in section 2.3), but this does not produce anything more understandabie from the
user. The system then assumes that the conversation is breaking down and uses its ability
model to inform the user of what it can do for him (and intensionally what it cannot). At this
point, the user is fully aware of why the system is not cooperating more directly with him by
fulfiiling his request for information about the weather, and so is much less likely to become

37

frustrated than if he didn’t understand the reason for the problem.

The following example shows how the way the system phrases its statement of abilities can
aid the user in formulating his request.

U: 1 want to come and eat at your restaurant.
S: I'msorry! All]l can do is make reservations. [am compietely ignorant about
everything else. :

We are assuming that the system cannot understand the user’s request because of the
unusual wording, and that this fragment was preceded by other unsuccessful attempts at
communication, so that the system has fallen back on its ability model. Now, if the user cares
to heed the system’s stalement of its ability, he might try something like: "Then please make
me a reservation.”, which the system should be able to understand. Of course, this feature
implies that the system can comprehend any appropriately transformed version of its own
statement of abilities (see Section 8).

Finally, note that this use of an ability model, while vitally important for a computer system
of limited understanding, has little basis in real human dialogues. The reason for this is clear:
humans understand each other so well and have such a breadth of knowledge that
conversations hardly ever break down into repeated incomprehensions; so humans do not
have any real need for a last resort strategy of the kind we have discussed.

5.7. Summary of Explanation Facilities
We can summarize this section as follows:

- A gracefully interacting question should be able to answer several different
types of question from its user, including questions about its abilities, about its
actions and the motives for them, about other events in its past experience, and
hypothetical questions based on all these other types,

- In human dialogue, second-perscn questions about ability are interpreied in one
of two distinct modes: either literally or as requests to perform the action
embedded in them.

- In general, a gracefully interacting system need not make this distinction;
second-person ability questions with positive answers can be treated as
requests for action, and those with negative answers should be answered
negatively. This does not require an explicit ability model.

~ However, an explicit model is useful for the negative cases when it is only
incorrect parameters that prevent the sysiem from performing the embedded
action, and for giving useful information besides a flat negative in other
commonly occurring negative cases,

- Other cases in which ability models are important are "wh-" ability questions, and

38

very vague ability questions in which the embedded action is "do.”

-~ Most first-person ability questions can be treated in exactly the same way as
the corresponding second-person questions.,

- To answer event questions, including those about its own actions and the motives
for them, a sysiem needs {0 maintain a history of ali events that have taken
place in the current interaction, plus major events from previous interactions,
together with its representation of the goal structure of the conversation at the
time of those events.

- Event questions, especially those of a yes/no type can also be indirect speech
acts.

- Answering hypothetical questions requires an ability to construct and swop
between temporary contexts which represent the conditional parts of the
hypothetical questions; the range of aspects of the context which can be
manipulated in this way restrict the range of hypothetical questions which can be
dealt with. _

~ A gracefully interacting system can also use its model of its own abilities to
extricate itself from totally confused dialogues by telling the user what it can
and cannot do for him,

6. Goals and Focus

In this section we deal with the intimately related topics of the goais of the participants in
a conversation and what their attention is focused on at any given point in the conversation.
Both these items are very complicated in general human conversation and a thorough
treatment is far beyond the scope of this paper. Instead, we will largely confine ourselves to
dealing with these phenomena in gracefully interacting simple service systems. We will find
that high-level goals can be treated very simply for such systems, since there are very few
goals that the system can recognize in the user (essentially only those to make use or find
out about the services provided by the system, plus an undistinguished set of others that the
system cannot help with), and since the system has no goals except to help the user satisfy
his. Subgoals that arise during the satisfaction of the top-level goals must, however, be

" treated more generaily in order for a system to understand what is happening in a

conversation,

The participants in a conversation share a common view of what the conversation is about,
which we call the focus of the conversation. This shared focus allows them to economize in
what they say through anaphoric reference and ellipsis. 1t is thus very important for a
gracefully interacting system to be able to follow the shifting focus of a conversation in order
to interpret its users’ ellipsis and anaphora. Goals and focus are clearly highly related in any
case, but for simple service systems we find it expedient to equate them. While other

39

definitions of focus have aided in the resolution of anaphora, the view we propose aids aiso
in the treatment of ellipsis. We will describe how this view of focus heips in the resclution of
eilipsis and anaphora, and discuss strategies for keeping track of it.

6.1. Goals

Human conversation is very goal-oriented. In other words, virtually everything a person
says during a conversalion is intended to achieve some definite aim. An ability to determine
" the goals of its user is thus of prime importance for a gracefully interacting system.

In general human conversation, the types of goals that can be pursued are many and
varied. They range from highly specific {trying to find someone’s telephone number) to
extremely vague (maintaining “interesting” smali-talk), from quite straightforward (trying to
find out someone’s origin by a direct question) to downright devious (trying t¢ manoeuvre
someone into pronouncing a certain word so that you will know his origin); from completely
cooperative {obtaining a number from a helpful directory assistance operator) to totally
antagonistic (a cross-examination at a trial). Fortunately, as we shall see, a gracefully
interacling simple service system need concern itself with oniy a highly restricted subset of
these various types of goals.

Not surprisingly, the goals people have affect what they say and the way they say it.
Even more importantly from our point of view, the way a listener interprets what a speaker
says is dependent upon the listener’s view of the speaker’s goals. The way in which this
happens is the subject of the linguistic theory of speech acts by Austin [1] and Searie [36],
and has also been studied in more computationally oriented work by Cohen [7] and Mann,
Moore, and Levin [27]

The problems irvolved in dealing computationally with the full range of goals and speech
acts are immense. In both pieces of work cited, it was found necessary to maintain a model
of the beliefs of both participants in a conversation, inciuding beiiefs about the beliefs of the
other participant. In addition, Levin and Moore [25] found it usefui to recognize a number of
distinct patterns of expressed goals and characteristic responses; examples included asking
for information, requesting help with a problem, and requesting a service.

While the work just mentioned has expiored the problem, many unresolved difficulties
remain in the recognition and modelling of ail the types and palterns of goals that can arise in
general conversation. So it is fortunate that graceful interaction, at least for simple service
domains, invoives the recognition and modelling of only a highly restricted set of goal types.
For the remainder of the section we will concentrate our attention on this restricted problem.

40

A gracefully interacting simple service system can make the following two sweeping
simplifications in its modelling of goals:

- it has no independent goals of its own; its only goal is to help the user fulfill his
goals;

- the user’s goals are either to avail himself of the system’s highly limited
services, or fali into an undistinguished class for which the system is unable to
help the user.
Note that these simplifications apply only to primary or top-level goals; lower-level goals or
subgoals which can arise during an attempt to satisfy a top-ievel goal must be treated more
generaily as we will see in the next section.

The two restrictions require little justification. The first foliows from the notion of a
gracefully interacting system whose reason for existence is to serve its user. Such a system
would have no interests of its own to worry about, as does every human participant in a
conversation, and so it need have no goals other than those it can recognize in its user. In
attempting to satisfy its users’ goals, it can, of course, generate subgoais which cause it to
take the initiative in the interaction, but such initiatives are ailways subservient to the user’s
top-level goal.

The second restriction is appropriate because it is futile for a gracefully interacting system
to recognize goals in the user that it cannot help to fulfil. The only goals that a gracefully
interacting system needs to recognize in its user are those within its domain of expertise,
plus perhaps a few other closely related areas that it explicitly knows it cannot fulfil, but for
which it can offer some helpful advice (see Section 5.3). Without becoming significantly less
graceful, it can treat all other goals thal the user might express with undifferentiated
incomprehension. For instance, it would be of little use for a directory assistance program to

recognize that its user was trying to find out the state of the weather, or trying to ask it out
. to dinner, since it would be quite unable to fulfil either of those goals of the user.

Neither of these simpiifications is generally true of gracefully interacting systems outside
the simple service class. A graceful supervisory or instructional program might, for instance,
have to choose between cooperating in fulfilling a user’s expressed goal, which it knows to
be a bad goal to have, and correcting the user. Again, the range of goals that a user might
reasonably express to a secretarial system could be quite large.

In summary, the combination of recognizing a highly limited number of goals in the user,
and making the user’s goals the system’s own, allows the treatment of high-levei goals for
simple service domains to be extremely simple. The system need have no high-level goals of

41

its own; it just cooperates with the user in fulfilling his goals. Moreover, the system can
assume that the goals of the user are either to use (and/or perhaps ftind out about) the
service it offers, or are outside the competence of the system. Thus, graceful interaction in a
simple service domain does not reguire a sophisticated model of its own and the user’s goals
and motivations, such as would be necessary for a more general interaction,

©6.2. Subgoals In Simple Service Domains

While top-level goals can be treated in a very simplified way by a gracefully interacting
simple service system, the subgoals that can arise during fulfillment of the top-ievel goals
must be treated much more generally. As we will see, subgoals for simple service systems
can be nested arbitrarily deeply, can originate from the system as well as the user, and
invoive the acquisition or imparting of spécific pieces of information or descriptions,

Subgoals arise because top-level goals often cannot be accomplished in a single step. Thus
a user may be unable or unwilling to specify all the components of, say, a restaurant
reservation (time, party size, etc) in a single utterance. Instead, he may spread the
specifications over several different ulterances; we can say that in each of those utterances

he is pursuing the subgoals of imparting the specifications of the corresponding components.

Linlike top-level goals, subgoals can originate from the system as well as the user. A user
may fail to volunteer specifications of certain parameters of the service, or may specify
parameters in an ambiguous or unsatisfiable way {see Section 7). In such cases, the system
may take the initiative by formulaling and pursuing a subgoal of trying to acquire the
appropriate information from the user. If the user of a restaurant reservations system, for
instance, does not vaolunteer the size of his party, the system will have to ask him explicitly.
Such system generated subgoals are, nevertheless, derived from and subordinate to the goals
of the user, and should not be pursued blindty if the goals of the user change.

There can be several levels of subgoals; that is, subgoals can themselves have subgoals.
So far, all our examples have been in terms of the primary parameters of the service offered
by a simple service system: subgoals on the part of the user to specify a parameter to the
system, and subgoals on the part of the sysiem to obtain the specification of a parameter
from the user. In terms of the frames representation described in Section 4.3, the subgoals
have been to fill the slots of the frame representing the service. However, these subgoals
may themselves not always be achieved in one step. If the system, for whatever reason,
does not understand all of a description of a parameter (siot) by the user, it can set up the
subgoals of obtaining the missing part of the description from the user.

U: I would like the number for Jim <GARBLE>.
S: Jim who?

42

In this example {see Section 2.3}, the user is pursuing the goal of trying to find a telephone
number, including the subgoal of trying to identify to the system the person for whom he
wants the number. This subgoal succeeds only in part, because the system cannot
understand the surname, and so the system sets up a sub-subgoal by explicitly asking the
user to redescribe the surname. Note that the subgoal generated by the system is
subordinate to the user’s original subgoal. Other common examples of subgoals of subgoals
occur when a user’s description of a slot is ambiguous or unsatisfiable (see Section 7) and
the system attempts to resolve the difficulty.

If a goal can have several subgoals which can in turn have subgoals of their own and so
on, trees of subgoals of the type common in planning systems (see Hayes [17] and Sacerdoti
{34], for example) can be produced. However, since a simple service system does not need
to pian an entire conversation out in advance, there is no need, as is usual in planning
systems, to generate complete trees of subgoals in advance (though see Section 6.4); indeed,
an interaction in which the system insisted that all parameters were specified in a fixed order
{and the generation of such a tree would imply this) would be quite ungraceful. More
important is the dependency between subgoals and their parent goals. Since subgoals are
generated in an attempt to fulfil higher-level goals, they must be abandoned rather than
blindly pursued if the parent goals are abandoned or changed.

_ U: 1 would like the number for Mr. Smith,
S: Do you mean Jim Smith or Joe Smith?
U: P'm sorry, I mean Fred Jones.

In this example, the system generates a subgoal of deciding between two aiternative fillers
corresponding to the ambiguous slot specification by the user. However, the user does not
cooperate with the system’s subgoal, but instead changes his own subgoal from which the
system’s subgoal is derived. This means that the system should now abandon its subgoal and
attempt to fulfil the user’s revised subgoal. Note that the commitment of the system always
{o cooperate without any corresponding commitment on the part of the user means that such
changes in goals will always originate with the user.

The dependency of subgoals on the goals that generate them is not the only farm of
dependency that need concern simple service systems. Since paramelers to services can be
interdependent, subgoals involved in establishing ane slot can be dependent on another siot
being filled or remaining unchanged. For example, the time, date, and party-size of a
restaurant reservation are mutually constraining, so that changing one may requife changing
another. Work on representation for these more general types of dependencies has been
done by Hayes [17] and Doyle [9].

To end this subsection, we might comment on the general form of subgoals that arise for

43

simple service systems. The most important are subgoals to impart or acquire information;
commoniy, the user will have subgoals of imparting the specifications for the parameters
(siots) of the service, and the system will, when appropriate, generate subgoals for acquiring
such specifications from the user, Lower-level subgoals of this type concern parts of these
specifications, i.e. slots of frames which fill the slots in the main frame for the service (e.g.

the surname for a name).

Subgoals can also concern the acquisition of information relevant and prerequisite to
specifying a slot. Thus, prior to specifying the time of a restaurant reservation, a user might
ask what time the restaurant clased, If the user was asking the question because he wanted
a reservation as late as possible, this question would represent a subgoal of the subgoal of
specifying the time. Since an informational question could also signal a switch to a completely
different subgoal, knowledge of what information was relevant to which slot specifications
would be useful to the system to enable it to keep track of which subgoals are current.

S: What time would you like your reservation?
U: What time do you close?

In this example it wouid be desirable for the system to appreciate that the user was
probably cooperating with the subgoal it had generated, rather than introducing a distinct
subgoal of his own. However, in general, arbitrary amounts of knowledge may be required to
make this determination; the user might, for instance, ask how far the restaurant was from
the Opera House in irying to specify the time of his reservation. The best strategy may be
to recognize common examples of this type of subgoal as special cases, and answer all other
" informational questions with the presumption that they represent subgoals of the current
goal or subgoal. Note that from this perspective, general questions about the system’s ability
can be viewed as subgoals of the user’s top-level goal to make use of the system’s services.
Other methods of keeping track of goais and subgoals are discussed in Section 6.4.

ln summary, subgoals can arise for both the user and the system and they can be nested
several levels deep. The system should always cooperate with the subgoals established by
the user, but the user cannot be expected always o cooperate with subgoals established by
the system; he may pursue other subgoals independently, or change previously estabtished
goals or subgoals on which the system’s subgoal depended. [n either case, the system should
foilow the user’s initiative rather than doggedly pursuing its own subgoals. The most common
form of subgoal concerns the specification of a parameter of the service or of a sub-slot of
such a parameter. Another common type seeks information useful for establishing such a
specification.

44

6.3. Focus

When people engage in conversation, their attention is generally directed to a highly
specific topic or focus. This focus of attention is typically the same for ail the participants,
giving rise to the impression that they are “talking about the same thing". A shared focus of
attention allows dialogue participants to economize substantially on what they say through
use of ellipsis and anaphora; they assume listeners can fill in the r}aissing information by use
of the common focus. Since people make such economies of expression very frequently and
naturaily, any gracefully interacting system must be able to keep track of the shifting focus
of its conversation and use it to resolve the ellipsis and anaphora of its user (as weil as
perhaps generating its own). The problems involved in keeping track of conversational focus
are the topic of the next section; in the remainder of this section, we wilt provide an
expedient definition of focus for simple service domains, and show how such a focus can help
resolve anaphora and ellipsis.

A definition of focus that is both precise and general is hard to formulate. Even though the
notion of focus (or topic} has been used in computational systems by Grosz [14] and Sidner
[37] as well as in more traditional linguistic work, including some by Grimes [13] and Hockett
[22], it has been viewed in different ways according to the research goals involved. Grosz,
for instance, modelled dialogues in which an expert guided an apprentice through a
mechanical assembly task, and found it convenient to equate the focus of the dialogue with
the set of objects involved in the assembly step currently being undertaken or under
discussion. Sidner, on the other hand, dealt with monologues specifying arrangements for a
meeting, and so took focus to be a complete single entity: either a meeling as a whole or
some parameter of it, such as its time or place. In both cases, the entity or entities in focus
are used to help resolve anaphoric references by providing a set of potential referents for

such references.

Nor will we attempt to define focus in general, or even for all of graceful interaction;
instead we will again confine ourselves to simple service systems. For such systems,
however, we propose an extension of the notion of focus by equating it with the currently
active subgoal. This view of focus subsumes the notion of a collection of entities to which
attention is currently direcled, since the current subgoal also defines a set of entities which
are currently receiving attention - those involved in the subgoal. This set can be used in the
same way as just mentioned o provide potential referents for anaphora.

Using the current subgoal as the focus also, however, heips in the resolution of eltipsis.
The ellipsed information can often be filled in, via the assumption that the elliptical utterance
is intended to fuifil the current subgoal, thus providing a complete interpretation for the

45

-elliptical utterance. For instance, an answer of "X" in response to a question of "Do you mean
X or ¥?" could be seen as fulfilling the subgoal set up by the question of choosing between X
and Y. Interpreted in the light of such a focused subgoal, the elliptical utterance, "X", has the
coherent interpretation of choosing X instead of Y.

In other words, this extended notion of focus is useful in the same way as the more usual
one in the resolution of anaphora, but unlike the other one, can also be used in the resolution
of ellipsis. This latter use of focus appears to be novel, but see also the work of Levin and
Moore [25)]. Of course, it could be argued that the two aspects of focus - as a collection of
potential anaphoric referents, and as a goal with the potential for providing ellipsed
information - are separate and should not be deall with in related ways. We believe,
however, that the two aspecls are sufficiently intertwined for it to be profitable to treat
them through a common mechanism.

At this point, some concrete examples will make it clearer how focus, as we are proposing
it, can help with anaphora and eliipsis.

U: I'd like the number for Mr, Smith,
S: Do you mean Biil Smith or George Smith?
U: I mean Bill.

Here the new user refers anaphorically to Biil Smith by use of the first name. This reference
is easy o resoive, however, because the focus is on the user generated subgoal of filling the
person slot of the directory assistance frame, and more particularly on the system generated
subgoal of getting the user to distinguish between two alternatives; this subgoal involves two
entities and the reference can easily be resoived to one of them. A similar resolution could
be made if the user had, for instance, said, "] mean the first one.” Note that this resolution
depends upon the fact that the user’s utlerance does not changa; the current subgoal and
hence the current focus. If we further change the example so that the user’s reply is just
“BillY, or “The firsl one™ this ellipsis can easily be esolved by assuming ihat the user is
cooperating in the focused subgoal of choosing between the alternatives, so that the object
mentioned actually represents the user’s choice. Note that there is no need to reconstruct a
phrase such as "I mean Bili", (or "I think it’s Bill, "Bill is the one [wan! the number for”, etc.);
it is enough to interpret the referent as fuifilling the system’s subgoal of getting the user to
indicate a choice (see Section 3.2).

Consider also the following extract from the extended example of Section 9.2, in which the
time of a restaurant reservation is under discussion.

46

| cant give you eight o’clock; it would have to be seven or
after nine thirty.

You don’t have anything between those times?

Ne! I'm afraid we don’t.

Welil, the later time then,

The system’s "it" in the first line refers to the time of the reservation rather than eight

coc @

o’clock; this corresponds to the focus of filling the time slot. The system’s utterance refines
the goal of fiiling this siot into a subgoal involving a choice on the part of the user, and
"those times” in the user’s reply has to be interpreted in this context, since in particular, the
referenced set of times does not inciude eight o'clock. The user’s "anything” is less
straightforward, however; if a referent had to be found for it, a non-specific reference to a
time would probably be best, but it is probably preferabie to interpret the utterance as a

whole as asking the system to confirm its restriction on times, without trying to interpret
' "anything” individually. It thus sets up a subgoal on the part of the user, in terms of which
the system’s eliiptical reply is easy to interpret. However, the focus on the choice
established in the system’s first utterance is still available, and must be used to interpret the
ellipsis and anaphora in the user’s second utterance.

The importance of focus, then, is related to the commonness of anaphora and ellipsis in
natural language use, and they are very common indeed. Both allow a speaker to economize
on what he says by omitting unnecessary information that his listener can fitl in because their
attention is focused on the same common ground. Since the user of a gracefully interacting
system will natuially economize in this way, it is vital for the system to be able to use its
awareness of the conversational focus to make good the omitted information.

In summary, for simple service systems it is convenient to equate the focus of the
conversation with the subgoal that the user and the system are currently cooperating on.
Anaphoric references can often be resolved into objects involved in the subgoal currently in
focus, and eflipsis can be resoived by assuming that the eliiptical utterance is fulfilling the
focused subgoal.

6.4. Keeping track of focus

Since focus is so important in the interpretation of ellipsis and anaphora, and since these
phenomena are so commonplace, it is very impartant for a gracefully interacting system to
keep track of the focus as it shifts during the course of a conversation. It is easy encugh for
a system to tell when the focus changes as a result of some new subgoal it establishes, but

what about when the user changes subgoals and therefore focus?

The problem is a very difficult one in general, and even for simple service systems, we can

a7

only suggest a direction for experimentation. The main problems are the unpredictability of
focus shifts.in terms of both when they occur and what the new focus will be. As Sidner
[37] observes, focus shifts cannot be predicted in advance, they can only be detected after
they occur. In the remainder of this section, we will investigate what the new focus can be
after a shift (the answer will be virtually anything), and suggest some approaches to
detecting such shifis.

A very common pattern of focus shift arises when goals are refined into subgoals, which in
turn spawn subgoals of their own. For example, in:

U: What is the number for Bill Smith?

S: Did you say Bill or Phil?

U: Bill with a 'B".

S: 'B. O.K. The number is 2597.
the user first focuses on the person parameter (slot) of the directory task (frame), the
system then changes the focus to the first name of the person and in particular to a choice
between two alternatives for that slot. The user then cooperates with the system’s goal and
chooses one of the alternatives, but in doing so refines the focus yet again to the first letter
of the first name. In its reply, the system first maintains the focus by acknowledging the

letter, and then shifts the focus drastically by providing the user with the number he desired.

The last focus shift can be thought of as popping the nested set of foci that had been built
up thrbugh the preceding utterances, and then moving on to the next task - in this case
performing the requested service since its parameters are now complete. Popping back
through all the nested levels and going on to the next major subgoal is probably the most
common way of terminating such nesting, but partial popping can also occur:

U: What is the number for Mr, Smith?
S: Do you mean Bill Smith or Joe Smith?
U: [mean Jim Smythe.

Here the user does not cooperate with the system’s subgoal of distinguishing between two
alternatives, but instead pops back to the previous level and retries his goal of specifying the
person slot {o the system.

Focus shifts do not, however, aiways follow this nice stack discipline. For instance, the
user can at any lime reopen a focus that was apparently closed, either as a result of
something the system tells him which might make such a shift more predictable, as in:

I would like a reservation for {wo tonight.

What time would that be for?

About seven.

I’m afraid the earliest 1 could give you is eight thirty.
What about tomorrow night?

CPCOG

48

or for reasons best known o himself;

U: [would like a reservation for a party of six tonight.
S: What time would that be for?
U: No! There will be seven of us,

Even worse, the user can shift the focus to subgoals of previously open foci, which
themselves have never been ¢pen, as in;

U: What is the number for Bill Smith?
S: The number for Bill Smith is 2597.
U: Not I said Phil with a 'P’ as in parrot.

where the user not only reopens the focus on specifying the person, but jumps immediateiy
into specifying the first name slot. Note that the specification for the surname remains the
same, which is added evidence thal the old focus of filling the person slot is reopened and
then refined.

These examples suggest that at any time there is a tree of potential foci, i.e. subgoals
which may become the current focus; for a simple service system, the root of the tree would
be the lop-level goal of getting the service performed, the next level wouid be the goals of
specifying the main parameters or slots of the service, the next level, specifying their slots,
etc. The stack-like paitern of focus shifts, described above as the most common type, then
corresponds to depth-first shifts down one branch of the tree, followed by a return up the
branch and a transfer to the highest node of another branch. Reopening of old foci
corresponds to visiting a node in the tree more than once, and shifting focus to a subgoal of
a previously open focus, which itself has never heen open, correspands to visiting for the
first time a node whose parent has been visited before.

In the examples above, the shifts across branches always involved shifts to completely
different branches, since they involved changes in which top-level parameter of the service
was being considered. Shifts can also occur across branches which meet below the root of
the tree, as the following example shows. '

U: What is the number for Mr. Smith?
S: Do you mean Joe Smith or Fred Smith?
U: I mean the Smith on the eighth floor.

Here the user does not cooperate with the system’s subgoal of distinguishing between the
Smiths by first name, but instead chooses to distinguish them by location, a sibling subgoat of
the goai of filling the person slot.

Finally, a user can always compietely abandon his top-ievel goal, and thus move the focus
entirely out of the tree, as in:

49

U: 1 would like a reservation for two this evening,
S: It would have to be after ten.
U: Il try somewhere else.

Note also that in this example the user covers two subgoals in his first utterance; the system
must be prepared to deal with problems in one of them without forgetting the other.

The net conclusion from all these examples is that while there are certain comman types of
focus shift, which follow a stack discipline corresponding 10 progress through the
specification of the service and the several levels of detail that can be involved, focus can
shift to virtually any part of the tree of potential foci, including shifts to old, apparently
closed, foci or to subparts of such old foci that have never themselves been open.

Previous work on keeping track of focus has been based on more restrictive assumptions.
Modulo their different views of focus, both Grosz and Sidner have assumed that focus shifts
in a quite orderly way through a tree of potential foci; in particular, they assumed that no
node or branch of the tree was visited mare than once, and in some cases, that the branches
of the tree were traversed in a partially fixred order. They fhen detected focus shift from
mention of entities that belong in foci either further down or further up the same branch of
the tree as the current focus, or in a focus on one of the permissible next branches. We
have no immediate solution for the detection of more general types of focus shif; a good
starting point might be, in the same way as Grosz and Sidner, to search for appropriate foci
when the entities or goals mentioned do not fit in the current focus, but to search over the
entire tree of possible foci for the task domain. In addition, since old foci can be reopened
and specific objects associated with them reused, the relevant information must be associated
with the nodes that have already been traversed.

6.5. Summary of Goals and Focus
We can summarize the main poinls made in this section as follows:

- Ordinary human conversation is highly goal oriented; peopie almost always are
pursuing one or more goals in saying what they say.

- A gracefully interacting simple service system need have no high-level goais of
its own; it merely cooperates with the user in fulfilling his.

- The only goais such a system need recognize in its user are those it can help
satisfy; this precludes the need for a sophisticated model of top-level goals.

- Subgecals must be treated with greater care; they can be nested arbitrarily
deeply and originate from both the system and the user, but the system
generated subgoals are always derived from and subservient to those of the
user. '

50

- Common types of subgoal concern the specification of parameters of the service,
or one of their subslots; others seek information usefui for establishing such
specifications.

- People use a shared view of what a conversation is about, called the focus of the
conversation, to economize substantiaily on what they say through anaphora and
ellipsis.

~ For a simple service system, viewing focus as the currently active subgoal helps
in the resolution of both anaphora and ellipsis.

- Aijthough there are some common patterns of focus shifts, the focus of a
conversation has the potential to shift unpredictably to any of a tree of potentiat
foci.

7. Identification from Descriptions

7.1. The Identification Probiem

A fundamental component of human conversation is the ability of a listener to use a
speaker’s description of a previously memorized entily (abject or event) to identify and recall
the entity. If a definite focus of attention has already been established in the conversation,
then as we saw in Section 6.3, descriptions can be quite cryptic or anaphoric (the woman; the
. second one; it). On the other hand, if no context has been established, or if the cbject to be
described is not in the established context, much fuller forms of descriptions must be used
(the camping trip we went on last Easter; a word beginning with ‘0’ meaning fawning or
serviie; the lady that 1 saw you wilh last night). One of the more remarkable features of
human memory is the ability to identify from a suitable description virtually any previously
experienced or krown object or event (that man we met ai the second hotel we stayed at
when we went on vacation last year).

When he describes an entity, a speaker aims to identify the entity uniquely to his listener.
To do this, he uses his beliefs about the listener’s state of knowledge to construct a
description that is informative enough to identify the object uniquely to the listener (possibly
with respect to a current context). Most usually he succeeds, but sometimes a listener will
recall more than one entity fitting the description, or may not be able {o identify any entity
filling the description. In other words, there are three possible outcomes to any attempt to
identify an entity through a description:

unique - only one entity fits the description
ambiguous - more than one entity fits the description
unsatisfiable - no entity fits the description

51

In accordance with the Principle of Implicit Confirmation (Section 2.2), a speaker assumes
that his communication is successful, and in particular that his descriptions identify unique
entities for his listener, unless the listener indicates otherwise. The listener thus need do
nothing if a description fails into the unique case, but must indicate a problem to the original
speaker in the ambiguous or unsatisfiable cases. In indicating such a problem, the listener
will usually initiate a dialogue during which the description is revised to specify a unique
entity to the listener, '

Identification from descriptions is clearly very important for a gracefuily interactions
system which must idenlify entities from its user’s descriplions, and must in turn describe
things to its user. A directory assistance must be able to accept descriptions of its listings,
and in turn describe the corresponding numbers to its user; and a restaurant reservation
system must be able to accept and give out descriptions of times, dates, party sizes, etc..

Fortunately, identification from descriptions for gracefully interacting systems, does not
involve the quite awe-inspiring range of description and recail found in human conversation.
In simple service systems, in particular, entities that the system must recognize from the
user’s descriptions are essentially the entities that serve as parameters to the service, and
these typically fall into a few highly restricted categories such as listings for directory
assistance, times, dates, party sizes, and names for restaurant reservations, and mailboxes,
hosts, and messages for electronic mail systems.

Once a description has been obtained from a user, identification as an entity known te the
system is also relatively simple; since each parameter to the service typically must be a
member of a finite class known to the system. A directory assistance system, for example,
would know the set of all listings that it could consult, and a restaurant reservations system,
the date, time, and party size must be a member of a finite set. The name in which a
reservalion is made is an exceplion to this rule.

Even though the range of entities that can be described, and the method of identifying
entities from their descriptions is much simpler than in general human conversation, the end
resuits of attempting identification from descriptions can be classified into the same three
categories: unique, ambiguous, and unsalisfiable. A gracefully interacting system must,
therefore, be able to participate on either side of a dialogue for clarifying unsatisfiable or
ambiguous descriptions; these dialogues will be the subject of the following subsections. Qur
examples and analysis in these subsections will be in terms of simple service domains, and no
claims are made beyond this, Many of the strategies presented are, however, based on
protocols of human conversations, and have much relevance to broader classes of human
communication. We know of no other work that has attempted to analyse this type of

52

clarification dialogue.

7.2. Ambiguous Descriptions

When a speaker describes an entity to a listener in such a way that the listener can
interpret the description as referring to more than one entity, the description is said to be
ambiguous. In order for the speaker’s attempt at description to succeed in such a situation,
an clarifying dialogue must ensue to resolve the ambiguity. In this section we investigate the
strategies involved in such a resolution, restricting ourselves to the case in which the

descriptions are given to a gracefully interacting simple service system by its user.

The simplest strategy for ambiguous descriptions is to inform the user of the options and
ask him to make a decision between them as in:

U: What is the number for Smith?
S: Do you mean Jim Smith or Joe Smith?

Note that in distinguishing the options by the first name of the person, the system refines the .
focus of the conversation to the corresponding slot in the description of a person.

Sometimes the alternatives may be too many to list and in this case the system can fix on a
distinguishing feature of the alternatives and ask the user about it.

U: What is the number for Smith?
S: There are 59 Smiths listed. Do you know the first name?

While unavoidable in this case, this strategy has the disadvantage of inviting a wider variety
of reply than the strategy of explicitly listing the aiternatives. In general, some method for
weighing the relative advantages of the various strategies of clarification according to the
prevailing circumstances may be needed. Both strategies, however, change the focus to be a
distinguishing aspect (siot} of the entities fitting the original ambiguous description. This
focus shift serves as the basis for understanding a continuation of:
U: I think it starts with a "P"...
to the above example.

There is, of course, no guarantee that the user will choose to follow the system’s shift of
focus. He may instead try to resoive the ambiguity by giving distinguishing information of his
own choosing; in particular, by further specifying an aspect of the entity different from the
one chosen by the system.

U: I don’t know the first name, but the address is Willow Crescent.
This corresponds to a shift of focus to a sibling node in the tree of possible foci. In any
case, the system must be able to take whatever distinguishing information the user gives it

53

and apply it to the resolution of the ambiguity. If the ambiguity is still not resocived, yet more
interaction must take place with the user.

Instead of trying to resolve the ambiguily, the user may also change the original
description, giving
U: No!' I meant Smythe.
as a possible continuation for the last exampie, abandon the attempt at identification
completely, or reiterate the ambiguous description. These cases must ail be recognized
separately, and appropriate responses given.

Qccasionally, for domain dependent reasons, one of the allernatives for an ambiguous
- description may be much more likely than any of the others. In such cases, the alternative
may be offered as a yes/no oplion to the user without referring to the others. Suppose
reservations are available only after 9:30:

U: I'd like a reservation for two tonight at 8:30 or later.
S: Would 9:30 be OK?

Even though the user's specification covered 8:30 and all later times, 9:30 is the time of
those available that the user is most likely to prefer. A similar sirategy can be foliowed if
the user is unlikely to be concerned about which of the aiternatives is chosen.

There may aiso be user dependent reasons for the system to prefer one alternative
referent over another. If the system has previous experience of a particular user, it might
chose an alternative which it knows {he user normally prefers. A restaurant reservation
system, for instance, rﬁight have knowledge of the time a client usually prefers to dine.
Again, knowledge of the current goals of a user might provide some clue to his choice
between two alternatives. 1f a restaurant system knew, for instance, that the user wished to
dine after the theatre, it migh! select an aiternative reservation time that conformed to that
constraint. We have not, however, considered the significant prehlerms involved in using and
acquiring idiosyncratic information, or in modelling and using an open-ended set of real-world
goals.

7.3. Unsatisfiable Descriptions

In this section we consider descriptions from which a listener cannot identity any entity he
knows about, The basic human strategy in such cases seems to be to indicate the
unsatisfiability as well as indicating any near-misses, i.e. entities that "almost™ fit the
description. As before we will discuss unsatisfiable descriptions assuming that the listener is
a gracefully interacting simple service system and the speaker is its user.

GuiviRsily D RRARIED Iy
CARNEGIE-MELLON UNIVERSE
PITISBURGH, PENNSYLVANRIA 152i%.;

54

When a user’s description is unsatisfiable by any entity consistent with the system’s
constraints, the basic strategy must be to inform the user of the problem and expect him to
either change the description so that it is satisfiable or give up. In doing this, the system
should provide the user with as complete a picture as possible of why the description is
unsatisfiable. This information will help the user in reformulating his description, and, in
particuiar, heip him avoid giving another description that is fauity.

{J: What is the number for Mr. Jim Smith?
: I’'m sorry! There is no listing for any Smith with initial °J.

I'd like a reservation for ten people tonight.
I’'m sorry! we can’t accommodate parties larger than seven..

wo

I’d like a reservation for two for tonight.
I’'m afraid the earliest reservation is next Thursday.

we

Implicit in these explanations of unsalisfiability is the search for "near-misses”, entities
which nearly fit the description. It is considered helpful for humans to suggest such
near-misses, and a gracefully interacting system should do the same. Of course, any metric
for measuring whether an enlity is a near-miss must be quite domain dependent. The metric
may also be dependent on the idiosyncracies of a particular user, or on user goals only
distantly related to the domain of the system, in much the same way as the automatic
selection between alternative possibilites for ambiguous descriptions discussed at the end of
the last section. As also mentioned there, we have not attempted to address the formidabie
probiems that these topics raise,

Near-misses may be either unique (one near-miss) or ambiguous (several comparably
distant near-misses). They can be treated similarly to the basic unique and ambiguous
description cases, except that it must be made plain that the description was satisfied by no
entity as it stood. In addition, the unique case must be presented in a yes/no question to the
user rather than assumed.

U: What is the number for Joe Smith?
We don’t have a listing for Joe Smith. Do you mean Jim Smith?

S:

U: What is the number for Joe Smith?

S: We don't have a listing for Joe Smith. There’s one for
Jim Smith or Pete Smith or one for Joe Smythe.

In addition to the replies to the basic ambiguous case discussed above, the near-miss case
can result in replies in which the user claims that the near-miss was what he said in the first
place, or in which he repeats (possibly in the negative, "out there isn't any Joe Smith?") the

original description.

55

7.4, Descriptions and Faulty Comprehension

In discussing the repiies that a gracefully interacting system shoutd make to ambiguous or
unsatisfiable descriptions, we have assumed that the system comprehended the descriptions
both fully and accurately. A partially or uncertainly comprehended description can, of course,
be classified in the same way as unique, ambiguous, or unsatisfiable, but the way in which the
system reacts to such descriptions should be modified in the presence of faulty
comprehension. We can distinguish the two subcases of incompiete and uncertain

comprehensian.

If the system’s comprehension of a description is incomplete, so that some aspects of the
description are comprehended, while others are not, then the system’s reaction ought or
ought not to be modified depending on the classification of the description. It such a
description is ambiguous and the missing part of the description might possibly resoive the
ambiguity, then the system should assume that it wouid, and ask the user 3 suitabie clarifying
question.

U: What is the number for <GARBLE> Smith?
S: Did you say Jim Smith or Joe Smith?

If, on the other hand, the uncomprehended part of the description could not distinguish the
two alternatives, then the description should be treated in the same way as an ordinary
ambiguous description. For example, if there is a Jim Smith and a Joe Smith, both with the
same title, then the following sequence is appropriate.

U: What is the number for <GARBLE> J. Smith?
S: Do you mean Professor Jim Smith or Professor Joe Smith?

In the same way, if we assume that uncomprehended parts of a description can only
further restrict the class of entities to which a description could refer, there is no point in
the system’s lrying to determine the uncomprehended part of a description whose
comprehended part is aiready unique or unsatisfiable; for instance, there is no point in trying
to determine the garbled part of "Professor <GARBLE> Smith" if only one Professor Smith is
known to the system. Of course, there are exceptional cases (negatively phrased
descriptions) in which this assumption does not hold, but normally it will ailow the system to
ignore the uncomprehended part without ill-effect (see Section 2.4).

Now we iurn to the case in which a description is completely, but uncertainiy,
interpretable; the uncertainty can be about one interpretation or be between several
possibie interpretations. The action a system should take in such cases depends very much

on the classification of the uncertain interpretations as either unique, ambiguous, or

56

. unsatisfiable. If une of the alternatives is unique, while the others are all ambiguous or
unsatisfiable, then this interpretation should be raised in certainty {on the grounds that
people try to give unique descriptions), possibly to the extent that the system wouid want to
accept this interpretation over all the others (perhaps checking it with an echo see Section
2.4_). In general, being unique will tend to raise a description in certainty, while being
ambiguous will tend to lower it, and being unsatisfiable will tend to lower it even more. The
picture changes, however, if an unsalisfiable alternative has near-misses, especially if it has
just one near-miss. In such a case it might be fruitful to re-analyse the input to see if the
alternative couid be reinterpreled as a direct description of the near-miss entity. If it could,
then there wouild be reasonable grounds for assuming that it was the interpretation the user
originally intended. The process of mapping descriptions onto entities must thus be closely
coordinated with the process of analysing the descriptions iinguistically;

7.5. Summary of [dentification from Descriptions
We can summarize the main points of this section as follows:

- A fundamentally important important part of human conversational skills is the
ability of a listener to identify entities from a speaker’s description of them.

- In the given context, such descriptions may be uniquely specifying, ambiguous, or
unsatisfiable by any entity known to the listener.

- In the ambiguous case, the speaker shouid be informed of the alternatives or
asked for further distinguishing information, but there is no guarantee that he
will choose to make the distinction in the way the listener suggests.

- In the unsatisfiable case, the listener should mention "near-misses”, entities that
almost fit the description, :

- If the description was only partially or uncertanly comprehended by the listener,
the strategies he uses for ambiguous and unsatisfiable descriptions should be
modified in a number of detailed ways.

8. Language Generation

The extraordinary abiliiy of humans to make sense out of the most convoluied and obscure
language forms makes language generation one of the less critical components of graceful
interaction; even quite clumsy utterances by a gracefully interacting system could be
understood without great difficuity by its user, Nevertheless, a user cannot be presumed
upon too much to compensate for a system’s generative deficiencies; if a system’s utterances
are too clumsy, they will not appear natural; if they are over-detailed or too long winded, the
user may become frustrated; in either case, the interaction will be less graceful than it could

57

be.

In the remainder of this section, we discuss briefly some of the characteristics of human
language that a gracefully interacting system should imitate in order to appear natural,
including contextually dependent (anaphoric) references and ellipsis, and the inclusion of
several different messages (illocutionary acts) in the same utterance, especially combining
echoes with other output. We will also discuss generation considerations specific to
gracefully interacting systems; in particular, the need to restrict the complexity of generated
utterances in accordance with analytical ability.

When a human describes some entily, he does not normally incorporate all that he knows
about the entity into the description; rather, as Grice [12] has pointed out, he normaily uses
sufficient information to identify the entity to his listener, but no more. Thus, if a speaker
wanted to describe a black desk, he might just say "the desk” if he thought that description
was sufficient for his listener to understand what he meant. On the other hand, if he thought
there was some danger of confusion with a different desk (a brown one, say), he might say
"the black desk”. The way an entity is described in human conversation, then, debends not
only on the entity and the speaker’s knowledge of i, but also on the speaker’s beliefs about
his listener’s staie of knowledge and focus of attention. An appropriate description is
typically the least informative one that is sufficient to identify the described entity refative to
 the listener’s current focus of attention. Little attention has been paid in natural language
research to generating descriptions appropriate in this sense, except for the description
generation system of Levin and Goldman [26].

The problem is, nevertheless, important for a gracefully interacting system; if the
descriptions such a system uses to identify objects to its user do not conform to human
conventions, the user will find them unnatural and ungraceful. Thus, if a restaurant
reservations system wishes to offer its user « reservation on Wednesday at /pm, and if the
user has already made it clear that he wants a reservation on Wednesday in the evening, the
system need only and should only describe the reservation by "7" (as in "Would 7 be ok?").

Using these conventions leads to the generation of anaphoric references. A similar
convention (of nat giving more informalion than one has to) can result in eiliptical utterances,
e.g. replying "Jim Smith” instead of " mean Jim Smith" in response to "Do you mean Jim Smith
or Fred Smith?". 1t is clearly desirable for a gracefully interacting system to use its
knowledge of the goal structure and focus of atiention of a conversation to generate such
ellipses and anaphora as well as analyse them (see Section 6.3).

Humans often use a single utterance to serve severai different purposes (or following
Searle’s terminology [36] to perform several illacutionary acts). A person might, for instance,

58

ask if a window was open, both to indicate that he was cold and to ask his listener to shut
any open window, as well as to find out whether a window was indeed open.

At a much less sophisticated level, an ability to combine more th%n one illocutionary act in

a single utterance is also useful for a gracefully interacting system. In particular, such an
ability is useful for the kind of indirect echoing described in Section 2.4. In indirect echoing,
a listener who is unsure of his interpretation of a speaker’s utterance incorporates his
uncertain interpretation into his reply. If the original speaker does not comment on the echo,
the interpretation is implicitly confirmed. Thus, if a restaurant reservations system was
unsure about its recognition of "seven” in:

I'd like a reservation for seven people.
a suitable reply wouid be:

What time would your party of seven like to eat?
The substitution of "your party of seven” for the more normal "you" represents an indirect
echo of the system’s uncertain interpretation. Of course, using indirect echoes can (and in
this example did) violate the convention discussed above of using descriptions only minimaily
sufficient for identification. However, this appears to be acceptable in human dialogue,
presumably because of the clarification purposes thus served. Similarly, indirect echoes can
also replace ellipses with fuller forms, as in:

U: I want to go to Pittsburgh on May 17.
S: What time on May 17 do you want to go to Pittsburgh?

instead of;
S: What time do you want to go?
in which the date and destination are eilipsed.

Before ending this section, we must consider an aspect of generation that is much more
important for gracefully interacting systems than in general human conversation. As
mentioned in Section 2.3, the form of a speaker’s utterance tends to influence the form of the
listener’s response. Thus it is vitally important for a gracefully interacting system with a
limited ability to comprehend language to co-ordinate the questions and other output it
generates with its receptive repertoire. This co-ordination has two parts: first, a system
should try to restrict the content of the user’s reply by asking questions that are as specific
and directive as possible. To repeat an example from Section 2.3, if a system cannot
understand “extension” in "I would like the extension for Jim Smith", it should ask "Do you
want the number for Jim Smith?”, rather than "What do you mean by ’extension’?. Secondly,
a system should be able to understand standard transformations and convolutions of the
phrasings in which it asks its questions. Thus, if a system asks "Would you prefer 7 o'clock

59

or 8 o’clock?”, it should certainly be able to understand "I prefer 7 o’clock.”, and should
probably also understand convolutions as distant as "7 o’clock would be my preference.”,

In summary, although a human user can be expected to compensate somewhat for the
deficiencies of the output produced by a gracefully interacting system, the more natural the
output is, the more graceful the system wiil appear to the user. In particular, the system
should use its model of the focus to generate elliptical and anaphoric utterances when
possible. However, sometimes other demands, particularly those of indirect echoing, can
override this requirement for terseness and cause the information omitted from an utterance
by ellipsis and anaphora to be reintroduced. Finally, a gracefully interacting system should
produce only output that it can understand itself, in case it is transformed by the user and
incorporated into his reply.

9. Realizing Graceful Interaction

Having outlined the basic components of graceful interaction, we now turn to the question
of how to fit the components together in a single gracefuily interacting system. In the
following subsection, we give some design considerations for complete gracefully interacting
systems, and go on to outline an architecture in line with these considerations for graceful
interaction in simple service domains. We are planning to implement a practical gracefully
interacting interface according to the proposed architecture, but at the time of writing have
only just started to do this. The architecture proposed must therefore be regarded as
tentative and subject to revision. A second subsection follows a hypothetical gracefully
interacting system employing the proposed architecture through a realistic exampie dialogue
in which many of the components of gracefui interaction that we have discussed come into

play.

9.1. Architecture of a Gracefully Interacting System

The overall design of any gracefully interacting system must take into account three
important characteristics of the interplay between the various components of graceful
interaction,

- At any point in the type of conversation we are considering, the role of the
gracefully interacting sysiem can be described in terms of just one of the
components of graceful interaction.

- The several components of graceful interaction come into ptay in an inherently
asynchronous manner, in the sense that a system’s use of one component may be
interrupted by use of one of the others without the first coming to a proper
conclusion.

60

- Components interrupted in this way can often be restarted from where they left

off after the interruption is over, but this is not inevitable.
Consider, for example, a dialogue concerned with identification of some entity by the system
from a user’s description. While this dialogue is taking place, the behaviour of the system can
be explained purely in terms of the identification from description component. Yet at any
time this line of conversation can be interrupted in favour of (say) a channel-checking
dialogue, or an echo correction, or even an identification from a different description (see
Section 6.4). Moreover, the original identification may or may not be taken up after the
interruption is over.

Because the different components of graceful interaction can come into play in this
inherently asynchronous manner, we propose to organize our gracefully interacting system as
a set of autonomous modules, each capable of carrying on a particular type of dialogue: one
for channel checking, one for identification from descriptions, etc.. At any time, exactly one
of these modules would be aclive, in the sense that its state would hold the system’s primary
view of what was happening in the conversation. However, the other modules would be kept
in a state of readiness, and if the user’s next input could be dealt with better by one of the
other moduies, it would be made the currently active module. The state of a module usurped
in this way would, of course, be preserved in anticipation of a possible continuation. Each
module would indicate which inputs it was able to deal with by a set of expectations or
conditions; the inputs it can deal with are those that satisfy the'expectations. These
expectations could change according to what had gone before; thus, a description identifier
module would have different expectations after it had presented a list of alternative fillers of
an ambiguous description, than after it had informed the user that a description was
unsatisfiable; again, 2 module for detecting echo corrections would only have an expectation
at all after the system had issued an echo.

What modules are needed, and what are their functions? We give here our current answer
for simple service systems; we expect that most of the medules would stay the same for a
gracefully interacting system of greater abilities. '

- Channel maintainer: This module can conduct a channel-checking dialogue. It will

initiate one if the user fails to reply to the system, and will respond to the user’s
initiation of such a dialogue.

- User's echo meonilor: This module can conduct a dialogue to correct incorrect
echoes by the user of what the system said. It will detect any echoing by the
user and initiate a correction dialogue if the echo is incorrect.

- Echo correction monitor: This module can detect any correction by the user of
echoes by the system. It will take part in a dialogue to ensure that the

6l

correction is understood properly.

- Explicit incomprehension monitor: This module can engage in a dialogue to clear
up explicit complaints of complete or partial misunderstanding by the user. It
will initiate its dialogue when the user makes such an explicit complaint.

- Incomprehension resolver: This module is used whenever the degree of
comprehension of the user's input is unsatisfactory. According to the degree of
incomprehension and the importance of what was nat understood, it can echo or
request clarification explicitly, and participate in any clarifying dialogue. (The
echo correction monitor could be inciuded as part of this module, since it deals
with a logical continuation of echoing by the system).

- Dascription identifier: This module is used to identify entities from descriptions
by the user. If necessary, it can request descriptions explicitly, and engage in
dialogue o clarify ambiguous or unsatisfiable descriptions.

- Ability and poal describer: This module can engage in a dialogue about the
system’s ability, either in response to direct questions, or as a last resort when
incomprehension resolution does not appear to be working. It can also describe
to the user what it thinks the user is trying to do, how it is cooperating with
that, and what the user needs to do to let it succeed; this information is available
through the focus of the system.

- Initiator: This module is used to establish communication between the system
and the user, It is always the first module activated. Besides ensuring that the
communication channel is indeed open, it can conduct a dialogue about what the
system is and can do; this allows the user to make certain that the system is the
party he really wants.

- Terminator: This module is used when the conversation needs to be terminated.
It can initiate a termination when the task has been completed, and can also be
activated when the user decides {o give up before finishing the task.

To coordinate all these modules, some kind of executive is needed. The job of this
executive is to direci the user’s input to the appropriate module, and to make sure that when
one module completes its dialogue, control is turned over to the next appropriate module.
" For these reasons we call this executive module the focus maintainer. The focus maintainer

we envisage is tailored directiy to simple service systems, and assumes a frame-based
representation as discussed in Section 43. It can handle input containing descriptions of
more than one slot by parcelling the descriptions out to appropriate invocations of the
description identifier module; it keeps track of which slot the user and system are currently
trying to fill; it can detect any correction by the user of slots that have previousiy been
filled; it can initiate filling of a slot when the user has not tried to fill it; it can deal with
descriptions of several slots at once; it can decide when all slots have been fiiled; and it can
keep track of the focus within a slot, i.e. which aspec! of the entity described is being used
to resoive ambiguities.

62

Parsing of each input will be done in accordance with the demands of flexible parsing
discussed in Section 3.2; in particular, the parsing will be bottom-up, not strictiy directional,
and based on pattern-matching. Each module will parse its input separately (if this results in
too much duplication of effort, partial results could be saved). This allows the expectations of
each individual module to influence the parsing in two advantageous ways: first, at any given
time the parser will only use patterns relevant to the module for which it is parsing; and
secondly, expectations of specific replies can be used to recognize ellipses as complete
utterances in themselves, as discussed in Sections 3.2 and 6.3. Using these strategies, input
from the user that satisfies an active module's expectations can be recognized with a
minimum of search.

How shouid the several modules listed above be implemented? QOne possibility is to model
each of them as a finite slate network. As was shown in the discourse component of the
Hearsay system [19], a finite state network is very suitable for representing a
straightforward conversation in which nothing unexpected happens. The preceding dialogue
can be represented implicitly by the state of a finite network plus possibly the contents of
some registers, and transition o other states can be made conditional on both the input and
the contents of registers, thus ensuring that the state reached by a transition reflects all the
relevant history of the conversation, and enabling the system’s response to a user’s input to
depend both on the input, and on what has gone before in the dialogue.

These features appear to make the finite state model extremely suitable for the several
modules described above, since each of them can, by definition, conduct a straightforward
conversafion in which nothing unexpected happens. Figure 1 shows a finite state net for a
simplified description identifier module; the diamond boxes are tests and the square boxes are
actions, while the circles are states; transitions are made from state to state according to the
conditions, which typically depend on the input, but in some cases also depend on registers
{e.g. the test for one option specified, after the ambiguous description state). It is easy to
see from the example that the expectations of a given module in a given state correspond to
the conditions on the arcs leading from that state.

Nevertheless, the finite state model for the individual modules suffers from certain
disadvantages. These arise mainly because the implicit way in which state information is
represented in a finite state network, In such a network it is natural to encode current goals
and past history implicitly in the stale nodes. In Figure 1, for exampie, the state "ambiguous
description” implicitly encodes the fact that the user has given the system an ambiguous
description, and the goal of the system to get the user to make that description unambiguous,
This implicitness makes finite state networks relatively hard to modify, since the state implicit

63

output

ripti
escription options

ambiguous

ambiguous
description

output
near-misses
as options

description
unsatisfiable:

output oo
request for escriphion <
description requested

output
inability to
help further

inform
user

vnsatisfiable:
no_near-

same
description
epeated

description

repeat
inability to
satisfiy

Figure 1: Finite-state nel for description identifier module

iﬁ a node must in general be taken into consideration when links to or from that node are
added or deleted. More serious perhaps is the problem that finite state modules would not
be perspicuous to other modules, and in particular to the focus maintainer. We believe that
communication between modules about the goals that they are currently pursuing may be
very important to a complete system. It may be best to tackle the problem of modifiability
by representing each module as an independent set of production rules. It should still be
possible to compile such rule sets into finite state networks if extra efficiency proved
important. Communication between modules might be achieved in the context of independent
ruie sets through shared global variables. On the other hand, it may be necessary to maintain

64

a stack of system and user goals in a way similar to the "dialogue games™ model of Levin and
Moore [25] We expect to resolve these questions and many other more detaiied ones
through experience with the implementation that we are currently undertaking along the lines
presented above of a gracefully interacting system for composing, sending, filing, and
retreiving electronic mail.

9.2. Worked Exampie

Below we list a realistic example of the sort of dialogue that we expect a gracefully
interacting system to be able to participate in; The exampie was constructed to illustrate most
of the components of interaction that we have discussed. The system in the example is a
simple service system for restaurant reservations. We will follow through the dialogue and
see how the several modules described above contribute to the system’s participation.

S: Hello! This is the Brown Cow restaurant.

U: Hella! The Brown Cow restaurant?

S: Yes! Would you like to make a reservation?

U: Yes! I'd like one for eight tonight.

S: At eight o’ciock, and for how many peopie? 5
U: There will be (five} of us.

<clicks on line>

U: Hello! Hello! Are you there?
S: Yes! Can you hear me?
U: Yes | can. 10
S: OK. For three people, and what name will that be under?
U: No! I said five.
S: Oh! Five people. 1 can’t give you eight o’ciock; it would have to be seven or
after nine thirty.
U: You don't have anything between those times?
S: Not I'm afraid we don't. 15
U: Weil, we'll wait until the later time. Was it nine or nine thirty?
S: It was nine thirty. What name will that be under?
U: Teacon. '
S: Was that Beacon with a 'B’, or Deacon with a 'D"
U: It’s Teacon with a T3 TEACON. 20
S: TE A C O N. Very good! We'll expect five of you at nine thirty.
U: OK. Thank you! :
S: You're welicome! Bye!
U: Bye!

The first three lines are dealt with by the initiator moduie. A conversation is always
started by the activation of this module, and its first action is to give a greeting which both
informs the user that the channel of communication is open, and tells him who he is taiking to.
On line 2, the user asks for some reassurance that he is talking to the right party; the module
provides it, de-activates itself, and passes control back to the focus maintainer; Since the
focus maintainer has no input to work on, it asks the user if he wants to use the {(only)

65

service that the system can provide.

If, at this point, the user had still not been satisfied with whom it was taking to, the
initiator module would have been re-activated. Instead, the user satisfies the expectation of
the focus maintainer by specifying a reservation. We are assuming a frame-based system, so
the focus maintainer must now activate the description identifier module for each slot covered
by the specification. Since the two slot specifications are uniquely identifying, the identifier
module terminates in both cases without generating any output. However, the prior choice of
which slots fo use was not straightforward: "tonight” specifies the date slot, but “for eight”
could specify either the party size or the time. The focus maintainer has two options: either
ask the user explicitly which one he meant (using the incomprehension resolver module), or
choose one of the options on its own initiative. Since eight is a sufficiently large party size,
and a sufficiently popular reservation time to make the time interpretation significantly more
plausible, it makes its own choice. However, an assumption like this cannot be made without
informing the user, so the assumption is included in an echo at the start of line five. Making
the echo will set up an expectation by the echo correction monitor that the user will correct
the assumption; however, in this case the system struck lucky; the echo is not challenged, and
the assumption is thereby impiicitly confirmed.

After echoing, the focus maintainer selects an empty slot, the party size, and starts the
description identifier for that slof, which in turn asks for the party size. The user’s reply
conforms to the expectations of the now active description identifier by specifying
unambiguously a party size of what the system hears as three, but which really is five.
However, the system is sufficiently unsure of its perception of the number to mark it down
for an echo.

At this point, an unexpected sound on the line causes the user to initiate a channel
checking dialogue. This input satisfies the ever-presenl expectations of the channel
maintainer, so that it becomes active at this point and conducts the dialogue up until the OK
of line 11. The conflict between the satisfaction of the expectations aof both the channel
maintainer, and the description identifier is resolved by a precedence ordering on the several
modules; the precedence is analogous to an interrupt priority scheme in which the most
pressing concerns receive the highest precedence, so that the channel maintainer has the
highest precedence, followed by the eche modules, with the description identifier having the
lowest precedence,

Now that the channel has been re-established, the description identifier can continue from
where it left off, so it echoes the party-size, and then de-activates itself, allowing the focus
maintainer to take over. The focus maintainer then selects the only slot still to be fiiled, and

66

starts up the description identifier on that slot, resulting in the request for the name.
However, the user has detected the incorrect echo and issued a correction. This does not
satisfy the expectations of the active description identitier, but does satisfy those of the echo
correction monitor. The monitor corrects the description, and, after re-echoing to ensure that
the message has been received correctly this time, terminates, allowing the focus maintainer

to restart the previous invocation of the description identifier with the new description.

Unfortunately, the description is no longer satisfiable, since no table for five people is
available at eight o’clock. In this situation, the normal response of the description identifier
would be to look for near-misses for the party-size, but it would clearly be a mistake to
offer the user a table for three or four at eight o’clock. The problem arises because of the
interaction between the party-size and the time in determining whether the description is
satisfiable. The system, therefore, provides a method of specifying which slots of a frame
constrain which others, and offers a mechanism for specifying which to change to resolve any
conflicts that arise. In this case, the time, date, and party-size ail interact to constrain each
other, and changes are to be attempted in that order. The net effect is that instead of
indicating that five is an unsatisfiable description of a party-size, the description identifier
for party-size accepts five as a unique description, terminates, and restarts the description
identifier for time with the previously given description.

This time the normal procedure for dealing with unsatisfiable descriptions applies, and the
system lists its near misses. The user’s repiy in line 14 satisfies one of the expectations of
the description identifier by essentially repeating the same specifications. The reply is a
straightforward affirmation that the limitations given are truly correct. The tendency for
humans to ask for confirmation when they hear something that tHey don't want to hear is
very common, and there shouid perhaps be a larger recognition of that in a gracefuily
interacting system, but we have not investigated that possibility.

The user next accepts the later of the two times, but asks the system to confirm exactly
which time it is. The first part of this input terminates the description identifier for the time,
and the second part is handled by the explicit incomprehension monitor, which generates the
first part of tine 17. The second part is generated by a re-initialized version of the
description identifier for the name in which the reservation is to be made. The module is
re-initialized because a module cannot be continued from where it left off if other modules at
the same priority level have participated in the intervening dialogue. The ensuing
determination of the name shows some of the special problems that can arise when proper
names not previously known to the system have to be communicated. To understand such
descriptions properly, a system needs a catalogue of common names and an ability to

recognize speilings.

67

Finally on line 21, the reservation is complete and the system reconfirms the essential
points. Again this is an echo which the user could contradict. In the event, he is satisfied
and the conversation is finished off by the terminator module.

Conclusion

Graceful interaction is of fundamental importance for all computer computer systems that
interact with humans. Without graceful interaction skills, interactive computer systems will
continue to appear uncooperative, uncompromising, and altogether obtuse to the non-expert
user. Yet, as we have seen, graceful interaction is a little studied field; some work has been
done on some of the skills required, but such efforts have generally been tangential to the
main thrust of the systems in which they were embedded. No workers have attempted to
study the graceful interaction probiem as a whole.

In this paper we have attempted to circumscribe graceful interaction as a field for study.
To this end, we have defined a set of basic components of graceful interaction, including
robust communication, flexible parsing, explanation facilities, focus mechanisms, identification
from descriptions, and generation of descriptions. These components are certainly necessary
for any kind of graceful interaction, but are also sufficient, we claimed, for systems restricted
to offering one of the very large class of simple services.

Finally, we believe that graceful interaction is an idea whose time has come, and is ripe for
implementation. We ciaim that none of the components we described is significantly beyond
the current state of the art in dialogue processing (at least not for simple service systems),
and we have presented an architecture for their integrated implementation in a single
gracefuily interacting system. A gracefully interacting simple service system (for sending and
receiving electronic mail) conforming to this architecture is currently under implementation.

Acknowledgements

We are particularly grateful to Jaime Carbonell and Candy Sidner for their insightful
comments on earlier versions of this paper.

References

1. Austin, J. L. How to Do Things with Words. Oxford University Press, 1962.

2. Bobrow, D. G, Kapian, R. M, Kay, M., Norman D. A., Thompson, H, and Winograd, T. GUS: a
Frame-Driven Dialogue System. Artificial Intelligence 8 (1977), 155-173.

63

3. Carbonell, J. G. Subjective Understanding: Computer Models of Belief Systems. Ph.D. Th,,
Yale University, 1979,

4. Carbonell, J. R. Mixed-Initiative Man-Computer Dialogues. tech report 1970, Boit,
Beranek, and Newman, Inc.,, 1971.

5. Charniak, E. C. Toward a Model of Children’s Story Comprehension. TR-266, MIT Al Lab,
Cambridge, Mass., 1972,

6. Codd, E. F. Seven Steps to RENDEZVOUS with the Casual User. In Klimbie, J. W, and
Koffeman, K. L., Ed., Proc. IFIP TC-2 Working Conf. on Data Base Management Systems, North
Holland, Amsterdam, 1974, pp. 179-200.

7. Cohen, P. R. On Knowing What to Say: Planning Speech Acts. Ph.D. Th, Dept. of Computer
Science, University of Toronto, January 1978. also available as Tech. Report 118

8. Colby, K. M. Simulations of Belief Systems. In Schank, R. C. and Colby, K. M, Ed,,
Computer Models of Thought and Language, Freeman, San Francisco, 1973, pp. 251-286.

9. Doyle, J. Truth Maintenance Systems for Problem Solving. TR-419, MIT Al Lab,,
Cambridge, Mass., 1978, ‘

10. Fahiman, S. E. NETL: A System for Representing and Using Real-World Knowledge. MIT
Press, Cambridge, Mass., 1979. :

11. Fox, M. S, and Moslbw, D. J. Maximal Consistent Interpretations of Errorful Data in
Hierarchically Modelled Domains. Proc. Fifth Int. Jt. Conf. on Artificial Intelligence, MIT, 1977,
pp. 165-171.

12. Grice, H. P. Logic and Conversation. In Cole, P. and Morgan, J. L., Ed., Syntex and
Semantics: Speech Acts, Academic Press, New York, 1975.

13. Grimes, J. E. Topic Levels. Proc. of Theoretical Issues in Natural Language Processing:
An Interdisciplinary Workshop, University of Nlincis at Urbana-Champaign, July, 1978, pp.
104-108.

14. Grosz, B. J. The Representation and Use of Focus in a System for Understanding
Dialogues. Proc. Fifth Int. Jt. Conf. on Artificial Intelligence, MIT, 1977, pp. 67-76.

15. Grosz, B. J. Focusing in Dialogue. Proc. of Theoretical Issues in Natural Language
Processing: An Interdisciplinary Workshop, University of lilinois at Urbana-Champaign,
July, 1978.

16. Hayes, P. J. On Semantic Nets, Frames, and Associations. Proc. Fifth Int. Jt. Conf. on
Artificial Intelligence, MIT, 1977, pp. 99-107.

17. Hayes, P. J. A Representation for Robot Pians. Proc. Fourth Int. Jt. Conf. on Artificial
Intelligence, Tbilisi, Georgia, 1975, pp. 181-188,

18. Hayes-Roth, F., Erman, L. D., Fox, M., and Mostow, D. J. Syntactic Processing in
HEARSAY-IL Speech Understanding Systems. Summary of Results of the Five-Year Research
Effort at Carnegie-Mellon University, Carnegie-Mellon University Computer Science
Department, 1976.

69

19. Hayes-Rolh, F., Gill, G.,, and Mostow, D. J. Discourse a - i HEAF
, F., Gill, G, , D J. nd Task Performance in HEARSAY-
Speech Understandn'ng Systems. Summary of Resulls of the Five-Year Research Effort ats ! H-"""
Carnegie-Mellon University, Carnegie-Melion University Computer Science Cepartment, 1976
R .

20. Hendrix, G. G. Human Engineering for Applied Natural Language Processine <. Fifth

Int. Jt. Conf. on Artificial Intelligence, MIT, 1977, pp. 133-191. _

21. Hendrix, G. G. Expanding the Utility of Semantic Networks through Par‘{'ing' Proc.

Fourth Int. Jt. Conf. an Artificial Intelligence, Thilisi, Georgia, 1975, pp. 115

22. Hockett, C. F. A Course in Modern Linguistics. MacMillan, New Yor 399

23. Kaplan, S. J. Cooperative Responses from a Portable Natural tangue Data Base OL'Lery
3f Pennsylvania,

System. Ph.D. Th,, Dept. of Computer and Informati :) ,
Philadelphia, 1979’. rmation Science, Universil

24. Lehnert, W. The Process of Question An c»;.e;gng_ Law:- = = Hillside, N. J., 1978.

-Communiation Structures for Natural

25. Levin, J*A, and Moore, J. A. Dialgue Games: Meta
395-420.

Language Understanding. Cognitive :ience 1, 4 (1977),
Context, 1SI/RR-78-72,

26. Levin, J. A. and Goldman N. M ~rocess Models of r. . /ereir.e in
1978.

Information Sciences Institute, Ur. of Southern California, October,

27. Ma.nn, W. C., Moore,J. A, and Levin, J. A A Comprehension Model for Human Dialogue.
Proc. Fifth Int. Jt. Conf. n Artificial Inteliigence, MIT, 1977, pp. 77-87.
matio.n in a Question-Answering

28. McKeown, K. Paraplrasing Using Given and New Infor
San Diego, 1979. -

System. Association forComputationai Linguistics Meeling,

29. Minsky, M. A Framcwork for Representing Knowledge. In Winston, P., Ed, The

Psychology of Compute Vision, McGraw Hill, 1975, pp. 211-277.

ionai Language Comprehension

30. Parkison, R. C., Colts. K. M, and Faught, W. S. Conversa
elligence 9 (1977), 111-134,

Using Integrated Pattern-Matching and Parsing. Artificial Int
tion Retrieval. In Minsky, M.

31. Raphael, B. SIR: A Computer Program for Semantic Informa
Mass., 1968, pp. 33-134.

L., €d., Semantic Information Pracessing, MIT Press, Cambridge,

and Context.

. . - /
32. Riesbeck, C. K. Computaliona! Understanding: Analysis of Sentences
Switzerland, 1974,

Working Paper 4, Istituto per gli Studi Semantici e Cognilivi, Castagnola,

33. Sacerdoti, E. D. Language Access.to Distributed Data with Error Recovery. Proc. Fifth
Int. Jt. Conf. on . -lificial Intelligence, NAIT, 1877, pp. 196-202.

4
34. Sac’erdoti, E. L Planning,in, 35272 rehy of Abstraction Spaces. Artificial Intelligence S,
2 (1971’4). 115_1¥. : '

35. #5cragg, G. W. Answering Questions about
197 4,

36. 'l_ Searle, J. R. Speech Acts. Cambridge Universily Press, 1969.

Processes. Ph.D. Th, U. of California, San Diego,

!
\

70

37. Sidner, C. A Progress Report on the Discourse and Reference Companents of PAL. A. L
Memo. 468, MIT A. I. Lab., 1978.

38. Sussman, G. J. and McDermott, D. V. From PLANNER to CONNIVER - a Genetic Approach.
Proc. Fail Joint Computer Conf., AFIPS Press, Montvaie, N.J,, 1972, pp. 1171-1179.

39. Walker, D. Speech Understanding Research, Final Report, Project 4762. Artificial
Intelligence Center, Stanford Research Institute, Menlo Park, Ca., 1976,

40. Waitz, D. L. An English Language Question Answering System for a Large Relational Data
Base. Comm. ACM 21, 7 (1978), 526-539.

41, Weischedel, R. M. and Black, J. Responding to Potentially Unparseable Sentences. tech.
report 79/3, Dept. of Computer and Information Sciences, University of Delaware, 1979.

42, Weizenbaum, J. ELIZA - A Computer Program for the Study of Natural Language
Communication between Man and Machine. Comm. ACM 9, | (January 1966), 36-45.

43. Wilks, Y. A. Preference Semantics. In Keenan, Ed., Formal Semantics of Natural
Language, Cambridge University Press, 1975.

44, Winograd, T. Understanding Natural Language. Academic Press, New York, 1872,

45. Woods, W. A. Transition Network Grammars for Natural Language Analysis. Comm. ACM
13, 10 (October 1970}, 591-606.

46. Woods, W. A, Kaplan, R. M,, and Nash-Webber, B. The Lunar Sciences Language System:
Final Report. 2378, Boit, Beranek, and Newman, Inc., 1972.

47. Woods, W. A, Bates, M, Brown, G, Bruce, B, Cock, C, Klovstad, J,, Makhoul, J.,
Nash-Webber, B, Schwartz, R, Wolf, J,, and Zue, V. Speech Understanding Systems - Final
Technical Report. 3438, Bolt, Beranek, and Newman, Inc., 1976.

