
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMJ-CS-79-150

The Design and Implementation of a PMS

Level Hardware Interconnection Language

Brad W. Hosier

Department of Computer Science

Carnegie-Mellon University

24 October 1979

Copyright (C) 1979 Brad W. Hosier

The work reported in this document was supported in part by the MCF project office, US
Army, under contract DAAK80-79-C-0767, and in part by the Department of Electrical
Engineering, Carnegie-Mellon University.

The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of the
MCF project office, the US Army, or the US Government.

Table of Contents

1. Introduction

2. The PMS Language

2.1 The Syntax
2.1.1 Module Declarations
2.1.2 Instantiations
2.1.3 Connections

2.2 Example: PMS Module

3. The PMS Compiler

3.1 Data Structures
3.2 Module Declarations
3.3 Instantiation Declarations
3.4 Connections

3.4.1 Attribute Checking
3.4.2 Connecting two instantiation hooks
3.4.3 Connecting an instantiation hook to a module hook
3.4.4 Attributes Known by the System
3.4.5 How Attribute Checking Is Done

3.5 Cleanup

4. Using the System

4.1 The PMS Description
4.2 Running the Compiler
4.3 Error Messages

5. Conclusions

6. References

I. Appendix A: Examples

1.1 A Multiprocessor Example
1.2 A 4K Ram
1.3 A Simulator Example

II. Appendix B: Syntax

II

List of Figures

Figure 1-1: The PMS and ISPS System
Figure 2-1: A Computer at the PMS Level
Figure 2-2: PMS Picture of a Processor and Memory
Figure 3-1: Node Types
Figure 3-2: Module declaration tree
Figure I-1: ISPS of Microprocessor and Memory
Figure 1-2: PMS of a multiprocessor
Figure 1-3: 4K RAM Module

1

1. Introduction

The PMS notation was first introduced by Bell&Newell [Bell, 1971] as a means to formally

describe the structure of a digital system. Their notation is mainly a graphic one showing the

components of a system and how they are connected. A graphic representation of a systems

structure is a very easy thing for a person to understand, unfortunately, it is difficult for a

machine to interpret and it lacks information for use by a simulator and application programs.

Specifically, it lacks information about the behavior of the system components.

PMS is the top level in the hierarchy of digital systems descriptions. At the level below

PMS, the behavioral level, Bell&Newell introduced a notation called ISP. At CMU, ISP has been

developed into a formal language [Barbacct,1977] that has been used as a design tool which

covers a wider area of application than any other hardware description language. Some of

the applications it has been used for are fault analysis, architecture evaluation, architecture

certification, simulation, design automation and automatic software generation. A model of the

ISPS system (with the PMS system) is shown in Figure 1-1. The main characteristic is the use

of a formally defined intermediate representation for the parse tree. This intermediate

format (called Global Data Base or GDB) can be easily used by a multitude of applications,

written in any language, and running on any machine.

There are several reasons for the development of a formal PMS interconnection language.

The primary reason is, because there is no way to specify connections and other structural

information in the ISPS language, the description of a system in ISPS can get very large and

unwieldy. Using the PMS language, systems can be described using smaller PMS and ISPS

(components which are easier to program and debug. PMS will also promote modularity in the

description.

Because of the wide use of ISPS and its ability to describe components in a digital system,

the PMS system will produce a GDB file using the PMS description and the GDB files of the

components in that description. By using the same internal format (GDB) it is possible to

develop applications for formal machine descriptions that require both structural and

behavioral information. The PMS notation thus complements ISPS and allows a designer to

iterate over the design of a system, adding or eliminating structural and behavioral

information. Thus, one can conceive of a design process in which the designer starts with

only a few large components described in ISPS which are then decomposed into smaller

components until at the end, the only behavioral descriptions (ISPS) are those corresponding

to the "black boxes" (IC chips, boards, modules, etc.) which are available off the shelf.

2

ISPS Description PMS Description

Simulation

Figure 1-1: The PMS and ISPS System

Other implementations of PMS level languages [Knudsen, 1973] do not have established

intermediate formats through which application programs can analyze the description.

Typically, these implementations have developed their own description languages (generally

complex) and their own systems analysis facility. In this respect the system developed here

is unique.

3

2. The PMS Language

The PMS language describes a picture of a digital system. At the PMS level a computer

could be represented by the picture shown in figure 2-1. The picture makes apparent that

the whole computer is composed of three subcomponents connected together in a certain

way. To do this with a language that is not graphic, the language must specify three things:

1. The name and interfaces of the new module being described.

2. Instantiations of components as the sub-components of the system.

3. Connections between sub-component interfaces and between sub-component and
module interfaces.

V

Secondary

Memory

Figure 2-1: A Computer at the PMS Level

2.1 The Syntax

The syntax for the language was chosen to be simialr to the constructs in ISPS so that a

person familiar with ISPS 1 will find the PMS language easy to learn and understand Before

describing the syntax a few definitions often used terms is necessary.

A requirement if anything useful is to be done using the PMS system.

4

2 T h e word hook will be used throughout this report as a technical term for an interface between the module body

and the outside world.

A module is a description of a type 6f component. A module consists of a header and a

body.

The body is code in either ISPS or PMS. ISPS bodies describe the behavior of a module,

PMS bodies describe hqw modules are connected together to make up another module.

Modules described in ISPS are primitive (ie. not decomposable) while PMS modules are

complex (ie. are described as interconnections of simpler components).

The header consists of a module name and a list of hooks^ (e.g. registers, lines) through

which the body may interact with the "outside".

A hook is of the form of an ISPS EHEAD (e.g. X<0:15>) followed by a list of attribute-value

pairs (e.g. {SPEED:45;TECHN0L0GY:M0S}). The attribute-value pairs are mnemonics to specify

physical attributes of the hook (described later).

2.1.1 Module Declarations

The module declaration statement must be the first line in a PMS description. This

statement defines the name of the module being described as well as any hooks it might have.

The syntax for declaring the new module name and hooks is:

MODULE <module.name>(<hook><qual If ier>,<hook><qual If i e r > , i t i) * =

where <hook> has the form:

i d e n t i f i e r < left.bit.name * right,bit*name >

or

i d e n t i f i e r <>

and <qualifier> has the form:

{attributes value*val u e , . . . t at tr ? but e» va I ue, va I ue, t , t}

Attributes are user specified identifiers; Values are either identifiers or constants.

Qualifiers are application dependent specifications and are used to check the validity of

connections. They are checked for syntactic correctness by the PMS compiler, but no

attempt is made to ascertain their semantic correctness other than verifying that a connection

5

is valid.

2.1.2 Instantiations

The instantiation statement declares an instantiation of a module as a sub-component within

the PMS description. Every sub-component in a PMS description has to be instantiated

separately even if there are multiple instances of the sub-component.

The syntax for the instantiation statement is one of the following:

< lns tant ia t l on ,name> 2 = <GDB,f i le,name>
:= <PMS,f ile,name>
1= <PHS,fi le,name>,<attribute,fI le iname>

The file named <attribute.file.name> contains 'special case' attributes (described later) that

are used by the system to validate connections made while processing the PMS file.

2.1.3 Connections

The connect statement defines connections made in the PMS description. There are two

types of connections that can be made (ie. sub-component to sub-component or

sub-component to module) but they are both handled by the same general connect statement.

The general syntax for the statement is:

CONNECT <instance,name>(<hook>) := <instance.name>(<hook>)

Instance names can be replaced by the module name and if the hook being connected is a

module hook, the module name can be omitted. There is no differentiation between the sides

of a connect statement.

2.2 Example: PMS Module

An example will make the use of this language more clear. This example is very simple and

does not illustrate any of the more advanced features of the system, but it does give a

general feel for the kinds of things the system can do and the syntax of the language.

Imagine a simple system, consisting of a processor connected to a memory. At the PMS

level this is shown in Figure 2-2. The ISPS descriptions of the processor and memory are

shown below.

6

PROCESSOR(ADDRESS<Os 15>,DATA<0:7>,R. W<Os 2>) 2 =
BEGIN

(D e s c r i p t i o n of processor behavior)
END

MEMORY(DATA<7*0>,ADDRESS<15*0>.R.W<22 0>) 2 =
BEGIN

(D e s c r i p t i o n of memory behavior)

END

The PMS description of the desired module will involve the instantiation of a processor and

memory and then the connection of the address.data, and control lines. The PMS description

of the system is given below. Note that the instantiation statements use the parsed versions

(ie. GDB files) of the ISPS descriptions given above. Instantiation statements always use

either GDB files or PMS files.

Address

Memory

Data

Ctl

Address

Processor

Ctl D a t a

Figure 2-2s PMS Picture of a Processor and Memory

MODULE SYS 2 =

PROC s= PROCESSOR. GDB instantiate processor
MEM 2 = MEMORY. GDB instantiate memory

CONNECT PR0C(ADDRESS<02 15>) 2= MEM(ADDRESS<1520>)

CONNECT MEM(DATA<72 0>) 2 = PR0C(DATA<02 7 >)

CONNECT MEM(R.W<22 0>) 2= PR0C(R.I4<02 2>)

connect address lines
connect data lines

connect control lines

7

3. The PMS Compiler

The PMS compiler uses as input a PMS description and produces a GDB parse tree. The

compiler does all error checking and building of the parse tree on the fly. As the parse tree

is built it is immediately shipped to the output file.

3*1 Data Structures

As the compiler goes through the PMS file it generates a symbol table that has a tree

structure. Every statement in the PMS file generates a tree that contains all the necessary

information for error and attribute checking.

The main data structure in the generated tree is an integer matrix of arbitrary length

(currently 500) and eight words wide with a parallel string array (length 500). There are

five types of nodes allowed in this matrix (See fig. 3-1). The first word in each node

determines the type of that node.

In a name-pair node, the second and third words contain the decimal values of numbers

found in a word or bit FS-Set (word and bit name boundaries). If there is a pair of numbers,

the first number is in word 2 of the node and the second is in word 3. If the FS.-Set contains

a single number then both word 2 and word 3 are set to that number. If there is no number

in the FS set (ie. a single un-named bit) both word 2 and word 3 are set to - 1 . The

differentiation between cases is necessary for generating the proper GDB output.

The fourth and fifth words in a name-pair node each contain the radix of the respective

number preceding them. Note that all the numbers are stored in the table in their decimal

equivalent value. Thus if the compiler reads a hex value of IF for a boundary, this

information is stored in the table as 31 (lF jg « 31 ^Q) with a radix of 16. All error checking is

done with the decimal equivalent values, and if the information is shipped to the output file

the number will be restored to its original radix.

For the remaining four nodes (module, instantiation, hook, and connect) the first four words

in the node all serve the same purpose. The first word is to identify the type of the node.

The second word contains an index into the table that points to a hook node. The third and

fourth words contain an index into the table that points to a name-pair node. The third word

is associated with a Word FS-Set and the fourth word is associated with a Bit FS-Set. A

value of -999 indicates a null pointer.

In the connect node the fifth through eighth words are not used and are set to -999,

Likewise, the sixth through eighth words are not used in name-pair, module or instantiation

nodes and are set to -999 for consistency.

8

Module node

1
first hook

node or -999

word dimension

node or -999

bit dimension

node or -999

first qualifier

ncdc IT -(322 -999 -999 -999

Instantiation node

CM

first hook

node or -999

word dimension

node or -999

bit dimension

node or -999

first qualifier

nodo 2r -222 -999 -999 -999

Hook node

3
first hook

node or -999

word dimension

node or -999

bit dimension

node or-999

first qualifier
node or

next hook
nnH*» nr -Q9Q

declared
(if 1)

connected
(if 1)

Name-pair node

4
left word/bit

name

right word/bit

name

left word/bit

radix

ri^M word/bit

radix -999 -999 -999

Connect node

5
first hook

node or -999

word dimension

node or -999

bit diffi«r.3;~r.

node or -993
-999 -999 -999 -999

Figure 3-1 : Node Types

The fifth word of hook, module and instantiation nodes contain an index into

RECORDtPOINTER array that has a pointer to the records containing the qualifier for that

hook. The sixth word of a hook node contains an index into the table that points to a hook

node that is a brother to this hook. The seventh word contains a 1 if that hook has been

defined in the GDB output file and the eighth word contains a 1 if the hook has been

connected.

9

The parallel string array contains the identifiers associated with module, hook, instantiation

and connect nodes.

Qualifiers are not contained in this array but they are still part of the generated tree

structure. Qualifiers are handled using the record facilities in SAIL The record structure for

qualifiers is as follows.

| There are two types of records in the qualifier structure. These are VALUE records and

ATTRIBUTE records. VALUE records look like:

STRING ident RECORDIPOINTER next

The first field contains an attribute value (stored as a string). The second field contains

pointer to the next VALUE record of that attribute.

ATTRIBUTE records look like:

STRING idem RECORD!POINTER(VALUE) valpnt RECOROfPOINTERlATTRlBUTET) next

Here the identifier field contains the name of the attribute. The second field contains a

pointer to the first VALUE record for that attribute. The third field contains a pointer to the

next attribute of the hook.

The best way to show how this record structure looks for an actual qualifier is to show

what happens. Suppose that a hook has the following qualifier.

{I NPUT; TECHNOLOGY: CMOS, TTL: TI ME: 25}

This will generate a record structure that looks like:

ATTRIBUTE

10

ATTRIBUTE

INPUT NIL INPUT NIL I TECHNOLOGY

VALUE

CMOS
1

J
VALUE

J
TTL NIL

ATTRIBUTE

TIME N I L

VALUE

25 NIL

This structure will be pointed to in field five of the symbol tablefor this hook.

Now that the data structures have been explained, a detailed description of what happens

wth the three statements of the PMS language can be given.

3.2 Module Declarations

Unlike the other statements in a PMS description, the module declaration statement does

not cause any immediate output to the GDB file. This is because attributes of the modules'

hooks can be inherited from the components of the module. Therefore the module head

portion of the GDB parse tree is output after the whole PMS description has been processed.

The information in the module statement is kept in the symbol table and the record

structure described previously. The module declaration

| MODULE MEM(ADDBUSS<0r,F>{INPUT},DBUS<0:#7>{TRISTATE}tRtMo{INPUT}) i =

will generate a tree in the symbol table like the one shown in figure 3-2. Any connections

made to a module hook can be checked using, the information contained in this tree.

3*3 Instantiation Declarations

Instantiation declarations contain the name of a component in the system and the name of

the file which describes the component. The description can be either GDB or PMS, but if it

is PMS then the compiler calls itself recursively to generate a GDB tree which is then used.

Once the GDB file has been specified, the file is opened and the information in the header

11

1 1 2 -999 -999 -999 -999 -999 -999 MEM

2 3 -999 -999 3 1 4 -999 -999 ADDBUS

3 4 0 15 10 16 -999 -999 -999

4 3 -999 -999 5 2 6 -999 -999 DBUS

5 4 0 7 10 8 -999 -999 -999

6 3 -999 -999 7 3 -999 -999 -999 R.W

7 4 -1 -1 10 10 -999 -999 -999

ATTRIBUTE RECORD

RECORDJPOINTER

ARRAY

INPUT NIL NIL

ATTRIBUTE RECORD

TRISTATE NIL NIL

ATTRIBUTE RECORD

INPUT NIL NIL

Figure 3-2: Module declaration tree

is processed and loaded in the symbol table. From this information an interface for the

component is generated.. This interface is what makes possible the connections and also

12

avoids conflicts in scope with other variables that may have the same name as one of the

hooks.

To avoid naming conflicts between similar names appearing as module names, instantiation

names, and hook names, the GDB files which are instantiated are slightly transformed before

being inserted in the resulting GDB file.

The renaming of hooks is performed by enclosing the body of a GDB file inside a compiler

defined section. This section contains the declaration of the module as it appeared in the

original GDB file (but with the FC-Set eliminated) and one mapping declaration for each hook

in the original FC-Set. Each hook appears on the left hand side of a mapping whose right

hand side has the same structure but where the entity name has been replaced with a

compiler generated entity name. For instance, assume the following module:

X(Y<>) s= BEGIN Y = 0 END

This module could be instantiated as:

M := X.GDB (assume the f i l e name and
module name are the same)

The renaming that takes place could'be expressed as if the original ISP description had been

written as:

H i= BEGIN

INTERFACE 'section header Introduced by the PMS compiler
Y<> 1 = M.Yo, J mapping replacing the formal

{parameter (FC-Set) declarat ions

X i = BEGIN Y a 0 END . I X without formal parameters

END,
M#Y<> !declaration of the interface c a r r i e r

The entity Y is available inside the body of X. The entity M.Y is declared outside the

context of X. Notice that it is perfectly legal for X to have a local entity named M.Y but this

does not present any problem given the Algol scope rules used in ISPS (ie. the M.Y used in

the definition of Y is the outside one, not the inside one local to X).

By enclosing the whole section in a body with the name of the instantiation, the formal

parameters (Y in the example) are also protected from naming conflicts with formal

parameters of other instantiations. Since instance names are unique within a module, the

pseudo-formal that the formal is mapped into (M.Y) is also unique.

13

The mechanism described above is in fact equivalent to an ISPS description whose top

level declarations consist of instance declarations and pseudo-formal declarations.

Connections between modules are performed through pseudo-formal mappings.

3.4 Connections

Connections are the core of the PMS description. They describe the actual structure of

the system. Connections also involve almost all of the error checking done in the system.

They have to be checked to see that the hooks being connected have been defined, that they

haven't already been connected, that they are the same size, and that their attributes are

compatible.

A connection statement in the PMS description can have two different conceptual meanings

depending on the connection being made. If two instantiation hooks are being connected then

the connection can be viewed as a physical link between two entities. However, a connection

statement involving a module hook and an instantiation hook should not be viewed as a

physical connection between entities, but rather as a renaming of that entity.

A connection statement defines a mapping between hooks. There are no restrictions in the

order in which the connections are specified. Moreover, the left and right hand sides of a

connection can be swapped.,

The way connections are handled in the GDB output file is similar to the way the interface

is made in instantiation declaractions. The two hooks in the connections statement are

mapped onto one another so that the two names become synonymous. For instance, the

connections statement

CONNECT COMP l (Do) := C0HP2(B<>)

will cause the entities C0MP1.D and C0MP2.B to refer to the same thing. This connection

coupled with the interface in the component descriptions produces the desired mapping so

that the overall connection is made. The equivalent ISPS declaration would look like:

CQMP l .Do := C0MP2.B<>,

When connecting component hooks, the hooks are renamed to componentname.hookname.

However, when connecting a module hook, the module hookname is not changed to

modulename.hookname. Thus the statement

CONNECT EXAMP(Ao) := COMP(Bo)

14

with EXAMP the name of the module is equivalent to:

COMP.Bo := A<>

This is so the complete GDB tree of the system can be used as a primitive in another PMS

description.

When a connection statement is encountered in the PMS file, the information about the left

hook is stored in the symbol table. Then the rest of the table is searched to see if the hook

exists. If it is found then the hook is marked connected and since it appears on the left hand

side of the connect statement it is also marked defined. If the hook has already been

connected then a warning in given. If it has already been defined then an error message is

given because this will produce a double definition in the GDB file.

The right hook in the connection statement is handled in the same way as the left one

except that it is not marked as defined. An exception to this rule is if the lefthand hook is a

module hook. Then, effectively, the positions of the two hooks are interchanged, so that the

right hand hook will be marked defined. Once the right hand hook has been processed, the

attributes of the hooks are checked for compatability, the sizes of the hooks are checked for

equality, and then the connection is output to the GDB file.

3.4.1 Attribute Checking

A hook consists of a carrier and a qualifier. The carrier is of the form of an ISPS EHEAD.

The qualifier is a list of attribute-value pairs. The attributes specify properties of this hook.

Since the set of attributes is open ended, attributes (and their values) are not necessarily

understood by the system.

Essentially, qualifiers limit the functionality of a hook. If a hook is specified with no

qualifier, then it is a 'super* hook and can be connected to any other hook of the same size.

A hook with a qualifier is limited by the values specified.

Attribute checking follows different rules depending on the connection being made. There

are two cases for connecting hooks in a PMS description. Case 1 is when hooks from

instantiations are connected, and case 2 is when a module hook is being connected to an

instantiation hook.

3.4.2 Connecting two instantiation hooks

I In this case, if an attribute is shared by both hooks, then the values of that attribute in

one hook must be a subset of the values in the other hook. This convention was chosen as

15

being the most proper criteria for checking a connection. If the two sets of values are

completely disjoint the connection is suspect. If the hooks have exactly the same values,

then the connection is deemed legitimate. The question arises in what to do for the other

conditions. When the two sets of values have some values in common but there is a value in

each set that is not found in the other (ie. one set is not a subset of the other) then because

there are these inconsistencies this connection is also suspect.

If one of the hooks has a certain attribute and the other hook does not then this will be a

legal connection. The second hook has no restrictions with regard to that attribute so there

is no incompatability.

3.4.3 Connecting an instantiation hook to a module hook

When connecting a module hook to an instantiation hook the rules are a little different.

In case 1 (above) the attribute value pairs are used only for error checking in making the

connection. After the checking has been done, the qualifier is done with and is not included

in the GDB output file. However, in case 2 this information is necessary in the GDB output

file because the new module could be used as an instantiation in another module.

If a module hook and an instantiation hook have an attribute in common, then the module

values have to be a subset of the instantiation values. This is so the person describing the

module can specify which values of an attribute are inherited (ie. acquired from the

instantiation hook) and also so that the module cannot have attribute values that have not

been explicitly stated in an internal instantiation.

If an instantiation hook has an attribute that the module hook does not have, then the

module hook will inherit that attribute and its values. This is so a PMS module can be

described with the hooks having no qualifiers, but in the final GDB file the hooks will have

inherited the qualifiers from the instantiations.

3.4.4 Attributes Known by the System

It was decided that, some attributes should not follow the rules given above. For example,

the attributes INPUT and OUTPUT should not. If two instantiation hooks are to be connected

and one is specified OUTPUT the other should be specified INPUT. On the other hand, if a

module hook and an instantiation are to be connected, they must have the same attribute,

either INPUT or OUTPUT. The system does not know about these 'special case' attribute

pairs unless they are specified by the user. This is done by putting these special attribute

pairs in a file, one pair per line, with the two attributes in the pair separated by a space.

16

The system will prompt the user for the name of the attribute file. These 'special case'

attribute pairs will then be handled the same way as INPUT and OUTPUT were in the example

above.

Along with attributes specified in the attribute file, the compiler is also 'smart' about the

attribute BUS. If a hook is specified with the attribute BUS the compiler will not object if

more than one connection is made to that hook (see example on page 25). A user should

beware that any hook that appears in more than one connect statement, can only appear on

the right hand side of a connect statement once. The compiler will give a warning if this rule

is broken because it will result in a double-definition in the gdb file.

3.4.5 How Attribute Checking Is Done

When connecting two instantiation hooks together attribute checking is done for each

attribute individually. Each attribute of the first hook is first checked to see if it is a 'special

case' attribute. If it is then the second hook's attributes are searched to see if the proper

match can be found. If the proper match cannot be found then a warning is given. If the

attribute is not 'special case' then the second hook's attributes are searched for a match. If

there is a match then the values, for that attribute are tested for the subset criteria given

above. If the matched attributes values are not subsets a warning is given.

When all of the first hook's attributes have been checked then the second hooks attributes

are checked for 'special case' attributes. If one is found then the first hooks attributes are

searched for the proper match. A warning is given if it is not found. When all the second

hooks attributes have been checked for 'special case' then attribute checking for this type of

connect statement is done.

When connecting a module hook to an instantiation hook the module hooks attributes are

examined one at a time. An attribute is first checked to see if it is a 'special case' attribute.

If it is then the instantiation hooks attributes are checked for the proper match. If no match

is found a warning is generated.

If it is not a special ease attribute then the instantiation hooks attributes are searched for

a match. If there is a match then the values are compared to make sure that the module's

values are a subset of the instantiations values. Processing then moves on to the next

attribute.

When all the attributes of the module hook have been processed, then the attributes of the

instantiation hook are checked one at a time to see if the module hook has the same attribute.

If the module hook does not then- the attribute (and its values) are added to the module

17

hook's attributes. This is how attributes are inherited by the module. When all additions

have been made then attribute checking for this type of connect statement is done.

3.5 Cleanup

When all the statements in the PMS file have been taken care of then several things have

to be done before the output GDB file is complete. First, all of the hooks in the connection

statements that weren't defined will have to be now. For example, the connection statement

CONNECT COMPKDo) := C0MP2(B<>)

generated the output (ISPS equivalent):

C O M P l . D o := C0MP2 tB<>,

This leaves the entity C0MP2.B undefined in the GDB file. To define it the GDB equivalent of

C0MP2.B<>,

is output. AH of the hooks left undefined by connection statements are declared in this way.

Any hooks that were left unconnected in the PMS description are also undefined. The

symbol table is searched for any unconnected hooks, a warning is given to the user and then

the hook is declared in the output file in the same way as undefined hooks resulting from

connection statements.

Another thing that is added to the GDB file is an entity that will activate all of the

components of the system. This is the main entity of the system and is given the same name

as the module foHowed by a It is needed so that if the description of the system is used

as a primitive in another system, all of its components will be activated. Thus if a module has

three components the equivalent ISPS of the main entity would be:

MAIN modulename & V * =
BEGIN

c omp lO ;
comp2();
comp3():

END

Once all the undefined hooks have been declared and the main entity has been output, then

the output file is closed. The GDB file is now complete except for the module header. Since

the header has to go at the head of the GDB file, the file is reopened for both input and

18

output. Then the module header (with any inherited hooks) is output to the file and the rest

of the file is copied after it enclosed in a section called PMS. With that done the GDB file is

complete and the program is ended.

19

I

4. Using the System

The PMS language developed here is easy to grasp and understand but it requires a

knowledge of ISPS. This is because the primitive components in a PMS description have to

be written in ISPS and they have to have a certain format.

In order for an ISPS described component to be connected to another component, the

hooks have to be included in the FC-Set of the ISPS-declaration. For example, if a component

called MEM has three hooks, ADDBUS, DBUS, and R.W, then the first line of the ISPS

description should look like:

MEM(ADDBUS<0:15>,DBUS<0:7>,R.W<>) := BEGIN . . . END

The entities ADDBUS, DBUS, and R.W are the only interface between that component and the

outside world.

4.1 The PMS Description

A PMS description consists of a module declaration, instantiations of components, and the

connection of hooks. The module declaration has the syntax described earlier and must be

the first element of a PMS description.

Instantiations of components may be declared anytime after the module declaration. These

declarations can occur only one per line and the declaration must be all on one line. Because

the instantiation declaration does not include the names of the hooks of the component, the

user has to know what hooks a component has in order to make the proper connections.

Connection statements must also occur one per line and cannot be more than one line long.

They may occur anywhere in the description but the hooks being connected have to have

already been declared for the connection to make sense.

4.2 Running the Compiler

The compiler for the PMS system can be started by typing:

run pms

The compiler will prompt the user for the necessary input. Let's use the example given

earlier to illustrate the use of the system. In the earlier example we had two components, a

processor and a memory. These components were used to build the system shown in Figure

2-2.The PMS description below generates this system.

20

MODULE SYS :=

PROC := PROCESSOR.GDB

MEM J= MEMORY.GDB

CONNECT PROC(ADDRESS<0:15>) .= MEM(ADDRESS<15:0>)
CONNECT MEM(DATA<7:0>) := PROC(DATA<0:7>)
CONNECT MEM<R.W<2:0>) := PROC(R.W<0:2>)

The dialogue with the computer to get the description parsed into GDB is shown below,

. run pms

Inpu t name of PMS f i l e . c omp
Name of a t t r i b u t e ' f i l e [RET i f none]:
E r r o r s w i l l be logged i n COMP.ERR

End of SAIL execu t i on

4.3 Error Messages

When the compiler finds an error it will give a message that is hopefully self-explanatory.

Most error messages will not cause the compiler to abort, but the output GDB file will

probably be incorrect. Messages generated because of an incompatability with the attributes

do not cause any error in the GDB file. All of the error messages given by the compiler

while compiling a PMS file will be logged in an error file with the same name as the PMS file

but with the extension ERR.

21

5. Conclusions

The language developed in this paper is not meant to be a stand alone description

language. It is more of an upward extension of ISPS intended to make the description of

large systems easier and more flexible. Its development is mainly because the ISPS

environment has grown to such an extent that a description language at the level above ISPS

is needed and can be used.

The PMS system should prove very useful in describing large modules because a user can

partition the module into smaller components so that the ISPS descriptions are at a

manageable size. Also a database of components could be developed so that the design of a

system would merely involve writing a PMS description of the interconnection of these

predefined components.

In the future, an addition that might make the system easier to use would be to make it

more interactive. Because the language has no block structure, each statement of a PMS

description could be typed directly to the system with any errors or warnings communicated

immediately. Another interesting feature would be to add a graphics section that would

generate a picture of the described module on a Graphics Display Processor.

Another addition that might make the system a little more elegant would be to have the

user declare one of the instantiated modules as the MAIN component. This would give the

user control over which components are activated and what order they are activated. As it is

now, components that just add structure to the system (ie, no behavioral characteristics) are

activated along with components that do have behavioral characteristics. While this activation

does not hurt anything it is unnecessary and has no physical meaning.

22

6. References

[Barbacci, 1977] M. R. Barbacci, G. E. Barnes, R. C. Cattell and D. P. Sieworek, "The ISPS
Computer Description Language", Technical Report, Department of
Computer Science, Carnegie-Mellon University, 1977.

[Barbacci, 1978] M. R. Barbacci, A. Nagle, HAn ISPS Simulator", Technical Report,
Department of Computer Science, Carnegie-Mellon University, 1978.

[Bell, 1971] C. G. Bell and A. Newell, Computer Structures: Readings and Examples,
McGraw-Hill Book Company, New York, 1971.

[Knudsen, 1973] M. J. Knudsen, "PMSL, An Interactive Language for System-Level
Description and Analysis of Computer Structures", PhD. Thesis,
Department of Computer Science, Carnegie-Mellon University, 1973.

23

I. Appendix A : Examples

L l A Multiprocessor Example

Assume that a description of a system of two microprocessors sharing a memory is desired.

Further assume that ISPS descriptions of a microprocessor and a two-ported memory exist.

Figure 1-1 shows the ISPS essentials of the descriptions of a microprocessor and a memory.

MICRO (ADDRESS< 11: 0>, DATA<7: 0>, DlNo, DOUTo) : »
BEGIN

(Body describing behavior of microprocessor)

END

MEMORY (ADD1<1: 12>, ADD2<1: 12>, DATA1< 1: 8>, DATA2< 1: 8>,
DINlo,DIN2<>.DOUTlo,DOUT2<>) :«

BEGIN

(Body describing behavior of memory)

END

Figure 1-1: ISPS of Microprocessor and Memory

Note that the microprocessor has address and data lines as well as flags to let the memory

Know which way data is flowing. The memory has two sets of address and data lines which

make up the two ports of the memory. The multiprocessor system will consist of two of the

described microprocessors both sharing the described memory.

The PMS description of the multiprocessor is shown in Figure 1-2. Note that the described

module has no hooks and therefore cannot be used as a primitive in another PMS description.

UNIVERSITY LIBRARIES
C A R N E G I E - M E L L O N U N I V E ^ T Y

P I T T S B U R G H . PENNSYLVANIA 15213

24

MODULE multi: =

pi :* micro, gdb
p2 : = micro, gdb
m : * mem. gdb

Connect pi(address<11:0>) : = M(addl<l: 12>)
Connect pi (data<7: 0>) := M(datal<l: 8>)
Connect Pl(dino) := MCdinlo)
Connect Pl(douto) := M(doutlo)
Connect p2 Caddress<ll: 0>) := M(add2<l: 12>)
Connect p2 (data<7: 0>) := M(data2<l: 8>)
Connect P2(din<>) :* M(din2<>)
Connect P2(douto) := M(dout2<>)

Figure 1-2: PMS of a multiprocessor

The ISPS equivalent of the GDB output generated by the PMS compiler is shown below.

MULTI :*

BEGIN
** PMS t t

PI : =
BEGIN
*• INTERFACE tt
ADDRESS<11:0> : = PI. ADDRESS< 11. 0>,
DATA<7:0> := PI. DATA<7: Q>,
DINo : = PI.DINo,
DOUTo PI. DOUTo,

MAIN MICRO : «
BEGIN

(Body describing behavior of microprocessor)
END

END,
P2 : =
BEGIN

tt INTERFACE tt
ADDRESS<11: 0> :» P2. ADDRESS< 11. 0>,
DATA<7:0> :« P2. DATA<7: 0>,
DINo :* P2. DINo,
DOUTo : » P2. DOUTo,

MAIN MICRO :«
BEGIN

(Body describing behavior of microprocessor)
END

END,
M : =

BEGIN
tt INTERFACE tt
ADD1<1: 12> : = M. ADD1< 1: 12>,
ADD2<1:12> : « M. ADD2< 1: 12>,
DATA1<1:8> : a M. DATA1< 1: 8>,
DATA2<1:8> :» M. DATA2< 1: 8>,

25

DINlo : = M. DINlo,
DlN2o := M. DIN2o,
DOUTlo := M. DOUTlo,
D0UT2<> : * M.D0UT2o,

MAIN MEM : =
BEGIN

(Body describing the memory)
END

END.

PI. ADDRESS< 11: 0> := M. ADD1<1: 12>,
P2. ADDRESS<11: 0> := M. ADD2< 1: 12>,
PI. DATA<7: 0> := M. DATA1< 1: 8>,
P2. DATA<7:0> := M. DATA2< 1: 8>,
PI. DINo : = M. DINlo.
P2.DIN<> := M.DIN2<>,
Pl.DOUTo := M. DOUTlo,
P2. DOUTo := M.D0UT2o,

M. ADD1<1: 12>,
M. ADD2< 1: 12>f

M. DATA1 < 1: 8>,
M. DATA2<1:8>,
M. DINlo,
M. DIN2o,
M. DOUTlo,
M. D0UT2o,

MAIN MICRO.: »
BEGIN

P10;
P2Q;
M O

END

END

1.2 A 4K Ram

Suppose we have the ISPS description of a IK RAM and we would like to build a 4K RAM

from them. The first thing we would need is a controller that could take a 12 bit address and

then choose the proper IK RAM and feed it a 10 bit address. Figure 1-3 shows a diagram of

the memory module. The ISP's of such a controller and a IK RAM pre shown below, as is the

PMS descripton of the entire module.

ISPS of 4K RAM Controller

cont4k (add<0: 11 > (input), memadd<0: 9> (bus; output), ctl <0:1 > (bus; tristate),
data<0: 7> (bus; tristate), onlo, on2o, on3o, onOo) : «

begin

** Memory.Controller **

26

1 interp : *
begin

memadd = add<2:ll>next
decode add<0: 1> =>

begin
0 : = begin

onO = 1
end,

1 := begin
onl = 1
end,

2 :» begin
on2 = 1
end,

3 : = begin
on3 * 1
end

end
end,

Main Run.cycle : =
begin

VAIT(ctl) next
interp() next
waltConO onl. on2 on3 EQL 0) next
restart run.cycle

end
end

ISPS of IK RAM

ramlk (add<0: 9> (input), data<0: 7> (tristate), ctl <0:1> (tristate),ono) : »
begin

** Memory t t

Mp[0: 1023] <0: 7>f

** Memory. Cycle **
Mcycle :=

begin
decode ctl =>

begin
INRead : = data = Mp[add],
2\Write :* Mp[add] « data,
[0,3] :» No.opO

end next
ctl * 0

end
*« Cycle **

Main Run : =
begin

WAIT (on) next
Mcycle () next
on a 0 next
restart run

end
end

27

PMS Description of 4K RAM

module ram4k(add<0: ll>,data<0: 7>,ctl<0:1>) : =

controller :» cont4k. gdb
memO : = ramlk. gdb
meml : = ramIk.gdb
mem2 : = ramlk. gdb
mem3 :» ramlk. gdb

connect add<0:ll> := controller (add<0:11>)
connect ctl<0:l> := controller (ctl <0:1>)
connect data<0: 7> := controller (data<G: 7>)
connect memO (data<0:7>) := controller (data<0: 7>)
connect meml (data<0: 7>) controller (data<0: 7>)
connect mem2 (data<0: 7>) := controller (data<0: 7>)
connect mem3 (data<0: 7>) : = controller (data<0: 7>)
connect memO (ctl <0: 1>)
connect meml(ctl<0: 1>)
connect mem2 (ctl <0: 1>)
connect mem3 (ctl <0: 1 >)
connect memO (add<0:9>)
connect meml(add<0: 9>)
connect mem2 (add<0: 9>)

I connect mem3 (add<0: 9>)
! connect controller (onOo)
connect controller (onlo)
connect controller(on2<>)
connect controller(on3<>)

controller (ctl <0:1>)
controller (ctl <0:1>)
controller (ctl <0:1>)
controller (ctl <0:1>)
controller(memadd<0: 9>)
controller(memadd<0: 9>)
controller (memadd<0: 9>)

a controller (memadd<0: 9>)
» memO(ono)
= meml (ono)
* meo2(on<>)
a mem3(on<>)

The duty of the controller is to decode the top two bits of the address, activate the proper

memory and wait until the memory transfer is complete before starting again. The RAMs are

always waiting to be activated by the controller. When one is, it checks the control lines to

see which operation (read/write) is desired and when the transfer is complete, it resets the

control lines. The PMS description of the 4K RAM is shown above. This description will

produce a GDB that maps all the IK RAMs data lines onto the modules data lines, maps all the

control lines onto the modules control lines, and maps the memories address lines onto the

controller's memory address lines.

The description as it is now, will generate a valid GDB tree when run through the PMS

compiler, but the compiler will issue warning messages because of the multiple connections to

several of the entities (e.g. CONTROLLER(DATA), CONTROLLER(CTL)). Because these lines

have multiple connections to them, we will give them the attribute BUS, so the compiler will

not issue its warnings. Also we will give the hooks other attributes depending on whether

the lines are read, write, or both. The new headers for the descriptions are shown below.

RAM 1K (ADD <0: 9> (INPUT), DATA < 0: 7 >(TR I STATE), CTL < 0:1 > (TRI STATE), ONo) : «

CONT4K(ADD<0: 11> (INPUT), MEMADD<0: 9> (BUS; OUTPUT), CTL<0: 1> (BUS; TRISTATE),
DATA < 0: 7 > (BUS; TR I STATE), ONI <>, 0N2 <>, 0N3 <>, ONO <>) : •

When the PMS compiler is run using the revised ISPS descriptions, the module hooks will

28

4 K R A M

Address

Control

Data

IK RAM

On

Ctl

Address

Data

IK RAM

On

Ctl

Address

Data

IK RAM

On

Ctl

Address

Data

IK RAM

On

Ctl

Address

Data

CONTROLLER

Address

Ctl

Data

Memadd 0N#Nb*l£N3

Figure 1-3: 4K RAM Module

29

inherit the attributes from the hooks they were connected to. The equivalent ISPS of the

output module header is shown below.

RAM4K (ADD<0:11) (I NPUT), DATA<0: 7 > (BUS; TRI STATE),
CTL<0:1> (BUS;TRISTATE}) : =

L3 A Simulator Example

In this example, a very crude processor (based on the Manchester University Mark-1

Computer) will be connected to the memory described in the previous section. Then the

whole module will be simulated on the ISPS simulator [Barbacci, 1976]. The ISPS description

of the processor is shown below.

! ISPS description of a Yery limited microprocessor based
! on the Manchester University Mark-1 Computer

MICRO (ADDRESS<0: 11 > (OUTPUT), DATA <0: 7 > (TRI STATE), CTL <0: 1> (TRI STATE))
BEGIN

** PROCESSOR.STATE t t

I R\ INSTRUCT I ON. RBGISTER<0: 15>,
ADD<0: 11> :* IR<4: 15>,
F<0: 3> : = IR<0: 3),

PC\PROGRAM. COUNTER<0:11),
ACC\ACCUMULATOR<0: 15),

•* INSTRUCTION.EXECUTION t t

MAIN I.CYCLE : =
BEGIN

IR = MR (PC) next
DECODE F =>

BEGIN
0\JMP : * PC * MR (ADD),
1\JRP:« PG ? PC • MR (ADD),
2UDN : * ACC = -MR(ADD),
3\STO : = MW(),
4:5\SUB : = ACC * ACC - MR (ADD),
6\CMP : * IF ACC LSS 0 •) PC * PC + 2,
7\STP :* LEAVE I. CYCLE,
8:15 :*NO.OP()

END NEXT
PC * PC +2 NEXT
RESTART I.CYCLE

END,

MRXMemory. Read. Cycle (Arg<0:11>) <0:15>:»
begin

address * arg next
ctl = 1 next
WAIT (ctl EQL 0) next
mr<0:7> • data next
address = arg • 1 next
ctl = 1 next
WAIT (ctl EQL 0) next
mr<8: 15> • data

end,
MWMemory. Write: =

UNIVERSITY LIBRARIES
CARNE6IE-MELL0N UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

30

begin
ADDRESS = ADD;
DATA * ACC<0: 7> NEXT
CTL * 2 NEXT
WAIT (CTL EQL 0) NEXT
ADDRESS * ADD • 1;
DATA « ACC<8:15> NEXT
CTL - 2 NEXT
WAIT (CTL SQL 0)

END,
end

The processor will use the memory described in the previous section as its primary

memory. The PMS description of the entire module is shown below. Note that the

instantiated memory module is itself a PMS description. When the PMS compiler processes

this statement it will call itself recursively, generate a GDB file of the memory module, and

then when it returns use that GDB file in the entire module.

module microcomputer :=
comp := micro, gdb
mem := ram4k.pms,ram4k. att
connect mem(data<0: 7>) := comp (data<0: 7>)
connect mem(add<0:11>) :« comp(address<0:11>)
connect comp (ctl <0:1>) :« mem(ctl<0.1>)

A reproduction of a session at the terminal shows how the PMS compiler is run and then

shows the described module being simulated on the ISPS simulator. The compiler is given an

attribute file so that it can do more detailed checking of the validity of connections being

made., The attribute file is shown below.

input,output
t r i s t a t e , t r i s t a t e

The special case attribute pair TRISTATE.TRISTATE will have the compiler check that any

hook with the attribute TRISTATE is connected to another hook that has that attribute. The

INPUT,OUTPUT attribute pair will work as described earlier.

The reproduction of the session follows. The simple program loaded into the simulator will

have the processor add four numbers while keeping a running subtotal.

• run pms
PMS File: comp
Attribute Pile [CRLF if none]:comp.att
Errors Will be Logged in COMP. ERR
End of SAIL execution

. ru gdbrtm
GDB to RTM Translator Y4B(0)-7
Error Messages Will be Logged On DSK: <f ilenamo. ERR
GDB File: comp
PMS: P; PMS Compiler VA-5; DSK: COMP. PMS [X710BH50]; 23 Oct 1979; 09: 06: 16;

31

MACRO: RTM
Files deleted:
034RTM. TMP 90

.r link
tcomp
•Sispsim
*/ssave test
•/go

EXIT

• run test
ISP SIMULATOR V9. 1
PMS: P; PMS Compiler VA-5; DSK: COMP. PMS [X710BH50]; 23 Oct 1979; 09: 06: 16;
Sequential Simulation? [YES]: n
Type HELP for Help
Type *C*C to Interrupt Simulation Loops
Latest News: 22 Oct 79
>>echo
>read micro.cmd
>>radix hex
>>s mem0*ramlk%mp[0] =24, 10

mem0*ramlk%mp[2]=44, 12
mem0*ramlkt;inp[4]=3C, 10
mem0*ramlk*mp[6] =44, 14
mem0%ramlk1smp [8] «3C, 12
memOSramlk%rap[A]=44, 16
mem0*ramlklmp[C]=3C, 14
mem0$ramlk*raptE]s2C, 10
memQ%ramlk*mp[10] *3C, 10
mem0$ramlk*mp[12] *2C, 12
mem0%ramlk*mp[14]s3C, 12
mem0%ramlk*mp[16] =2C, 14
memOferamlktmp[18]=3C, 14
mem0%ramlk*mp[1A]=72, 00•

! LDN
! SUB
! STO
! SUB
! 5TO
ISUB
! STO
! LDN
! STO
! LDN
! STO
! LDN
! STO
I STOP

410
412
CIO
414
C12
416
C14
CIO
CIO
C12
C12
C14
C14

>>s
>>s
>>s
> >s
>>s
>>s
>>s
>>s
>>s
>>s
>>s
>>s

I >>s
I > >

>>
>>radix decimal
>>!Load meml with the numbers to be added
>>s meml*ramlk*mp["10]*0, 27
>>s meml$ramlk*mp["12]=0, 53
>>s memlfcramlktmp ["14]«0,14
>>s meml*ramlk%mp["16]=0, 6
>>
>>!Load PC vith location of
>>PC=0
>>!Set a break so that simulation vill stop vhen the processor stops
>>abreak comp
>>26 Lines Read
>v meml*ramlk%mp ["10: "17]

start of program

MEMlfcRAMl
MEM1*RAMI
MEM1*RAM1
MEM1*RAMI
MEM1SRAM1
MEM U R AMI
MEM1SRAM1
MEM U R AMI
>start

K*MP[16]=0
K*MP[17]=27
K*MP[13]=0
K*MP[19]=53
K*MP [20]r0
K*MP[21]=14
KSMP [22]-0
KSMP[23]=6

BREAK Tail of COMP

32

END
*v mem3Sramlk%mp["10: *15]
MEM3*RAM1K*MP [163=0
MEM3SRAM1K*MP[17]=80
MEM3%RAM1K%MP[183=0
MEM3%RAM1K%MP[193=94
MEM3$RAM1K*MP[20] =0
MBM3%RAM1K%MP[21] * 100
#exit

Simulation Completed
Run Time (Milliseconds) = 1857
RTM OPS EXECUTBD=82G2
> >exit

EXIT
[2. 65 9. 21 247 1]

27 . 53 - 80

27 4 53 4 14 - 94

27 4 53 4 14 4 6 - 100

33

II. Appendix B: Syntax

constant

7 j 1>(^ digit (0-9) ^ -

i > (^) E>(^ digit (0-1) ^ -

— s p p ^ * * (Q-9))

letter (A-F)

identifier

1

letter

digit)<J-

O

name-pair

-J> constant

(J) — 2 ; ^ d i g i > (° - 7)) —

constant

34

file-name*

identifier —{>|

O
> ^ g d b ~y.

PMS

Q-sei

identifier

identifier

< T) _ i identifier

constant

hook

identifier name-pair u L r :

name-pair
- 0 — J

port

{>{ identifier -N hook

hook

statement

identifier
•KE>

£ j file-name

- ^ (^ C O N N E C T ^ J> P*'* — K 3) — & port

35

module header

{> identifier hook

— T

PMS description

E > ^ M O D U L E ^ J> module header — — Z T " ^ statement

