
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-81-118

Ü

Mult i-Strategy Parsing 1

A n d Its Role in Robust Man-Mach ine C o m m u n i c a t i o n

Phi l ip J . H a y e s a n d J a i m e G. C a r b o n e l l

Carnegie-Mellon University

Pittsburgh, PA 15213

13 May 1981

A b s t r a c t

Robust natural language interpretation requires strong semantic domain models, "fai l-

soft" recovery heuristics, flexible control structures, and focused user interaction when

automatic correct ion proves infeasible. Al though single-strategy parsers have met with

some success, a multi-strategy approach, with strategies selected dynamically according

to the type of construct ion being parsed at any given time, is shown to provide a higher

degree of flexibility, redundancy, and ability to bring task-specific domain knowledge (in

addition to general linguistic knowledge) to bear on both grammatical and ungrammatical

input. This construction-specif ic, multi-strategy approach can also help provide tightly

focused interaction with the user in cases of semantic or structural ambiguity by allowing

such ambiguities to be represented without dupl icat ion of unambiguous material. The

approach also aids in task-specific language development by allowing direct

interpretation of languages defined in terms natural to the task domain. A parsing

algorithm integrating case-frame instantiation and partial pattern matching strategies is

presented. The algorithm can deal with conjunct ions, fragmentary input, and

ungrammatical structures, as well as less exotic, grammatically correct input.

This research was sponsored in part by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 3597,
monitored by the Air Force Avionics Laboratory under contract F33615-78-C-1551, and in part by the Air Force Office of
Scientific Research under Contract F49620-79-C-0143. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed or implied, of DARPA, the Air
Force Office of Scientific Research or the US government.

University Libraries
Carnegie Mellon University
Pittsburgh PA 15213-389©

1

1 . I n t r o d u c t i o n

When people use language spontaneously, they seldom respect grammatical niceties. Instead of

producing sequences of complete, grammatically well-formed sentences, they typically omit or repeat

words, break off in mid-utterance, interject spurious phrases, speak in fragments, or otherwise use

incorrect grammar. Whereas people experience little diff iculty comprehending ungrammatical

utterances, most natural language computer systems are unable to process errorful input at all. Such

inflexibility in parsing is a serious impediment to the use of natural language in interactive computer

systems. Accordingly, we [6] and other researchers including Weischedel and Black [14], and

Kwasny and Sondheimer [9], have attempted to produce flexible parsers, i.e. parsers that can accept

ungrammatical input, correct ing the errors when possible, and generating several alternative

interpretations for later selection by the user if appropriate.

While different in many ways, all prior approaches to flexible parsing operate by applying a uniform

parsing process to a uniformly represented grammar. Because of the linguistic performance

problems involved, no uniform procedure can be as simple and elegant as the methods fol lowed by

parsers incorporat ing a pure linguistic competence model, such as Parsifal [10]. Indeed, flexible

parsing based on a uniform grammar may involve several strategies applied in a predetermined order

when the input deviates from the grammar, but the choice of strategy is never sensitive to the specif ic

type of construct ion being parsed. In light of experience with FlexP [6], our own flexible parser for

l imited-domain task-oriented languages, we have come to the conclusion that such uniformity is

unnecessary, inefficient, and inferior in functionality to an approach capable of selecting among

several parsing strategies, always applying the one most appropriate to the particular type of

construct ion being parsed at the time. A parser using this construction-specif ic approach might, for

instance, use linear pattern matching to parse idiomatic phrases, or specialized noun phrases such as

names, dates, or addresses (see also [4]), but switch to a special case-oriented parsing strategy to

deal with case construct ions, such as noun phrases with trail ing prepositional phrases, or imperative

phrases. The underlying principle is simple: The appropriate knowledge must be brought to

bear at the right time — and it must not interfere at other times.

The advantages we claim for a multi-strategy construct ion-specif ic approach to parsing (and with

which the bulk of this paper is concerned) include:

• greater accuracy and efficiency in the flexible parsing of ungrammatical input

• greater eff iciency in parsing grammatical input

• an ability to represent ambiguity without dupl icat ing unambiguous parts, making it easier

to indicate the exact source and nature of the ambiguity to the user, and thus facilitating

interactive correct ion

• improved task-specific language development by allowing language definit ions, natural in

terms of the underlying domain, to be used directly as a grammar without prior

compilation into a uniform formalism

2

In addit ion to explaining the theoretical advantages of a construction-specif ic approach, this paper

presents the design of a flexible parser that integrates several distinct construction-specif ic parsing

strategies. Our objective is not to design a totally general and complete parser applicable to all of

English, but rather to develop a flexible and robust task-oriented parser, applicable to a wide range of

tasks, where domain knowledge and specialized construct ions can be exploited and integrated with

more general syntax and semantics. The initial application domain for the parser is in an interface to

various computer subsystems (or tools). This interface and, therefore, the parser, should be

adaptable to new tools by substituting domain-specif ic data bases (called " too l descr ipt ions") that

govern the behavior of the interface, including the invocation of parsing strategies, dictionaries and

concepts, rather than requiring any domain adaptations to the interface system itself.

The following sections substantiate the advantages we claim for construction-specif ic parsing by

describing some problems that arose with our original flexible parser, and showing how these

problems are ameliorated by a construction-specif ic approach. First, we describe the structure of

FlexP and discuss problems that arose in parsing both grammatical and ungrammatical input using

uniform parsing procedures and grammar representations. Secondly, we consider the representation

of ambiguities that can arise through flexible parsing, and the ways in which the form of

representation can affect interactive resolution of these ambiguities. Thirdly, we discuss the

interactions between grammar representations and task-oriented language definit ion and

development. Finally, we make the preceding sections more concrete by presenting the design of two

construction-specif ic parsing strategies and the mechanism that dynamically selects between them

while parsing task-oriented natural language imperative construct ions; imperatives were chosen

because commands and queries given to task-oriented natural language front ends often take that

form [6] .

2. C o n s t r u c t i o n - S p e c i f i c F lex ib le Pars ing

Our present flexible parser, which we call FlexP, is intended to parse correct ly input that

corresponds to a fixed grammar, and also to deal with input that deviates from that grammar by erring

along certain classes of common ungrammaticali t ies. Because of these goals, the parser is based on

the combination of two uniform parsing strategies: bottom-up parsing and pattern-matching. The

choice of a bottom-up rather than a top-down strategy was derived from our need to recognize

isolated sentence fragments, rather than complete sentences, and to detect restarts and

cont inuat ions after interjections. However, since completely bottom-up strategies lead to the

consideration of an unnecessary number of potentially spurious alternatives in correct input, the

algorithm used al lowed some of the economies of top-down parsing for non-deviant input.

Technically speaking, this made the parser left-corner rather than bottom-up. We chose to use a

grammar of linear patterns rather than, say, a transition network for three reasons: 1) Pattern-

matching meshes well with bottom-up parsing by allowing lookup of a pattern from the presence in

the input of any of its constituents. 2) Pattern-matching facil itates recognit ion of utterances with

3

omissions and substitutions when patterns are recognized on the basis of partial matches. 3) Pattern-

matching is necessary for the recognit ion of idiomatic phrases. More details of the justif ications for

these choices can be found in [6] .

FlexP has been tested extensively in conjunct ion with a gracefully interacting interface to an

electronic mail system [1] . "Graceful ly interact ing" means that the interface appears friendly,

supportive, and robust to its user. In particular, graceful interaction requires the system to tolerate

minor input errors and typos, so a flexible parser is an important component of such án interface.

While FlexP performed this task adequately, the experience turned up some problems related to the

major theme of this paper. These problems are all derived from the incompatibil i ty between the

uniform nature of the grammar representation and the kinds of flexible parsing strategies required to

deal with the inherently non-uniform nature of some language construct ions. In particular:

• Different elements in the pattern of a single grammar rule can serve radically different

functions a n d / o r exhibit different ease of recognit ion. Hence, an efficient parsing

strategy should react to their apparent absence, for instance, in quite different ways.

• The representation of a single unified construct ion at the language level may require

several linear patterns at the grammar level, making it impossible to treat that

construct ion with the integrity required for adequate flexible parsing.

The second problem is directly related to the use of a pattern-matching grammar, but the first would

arise with any uniformly represented grammar applied by a uniform parsing strategy.

For our application, these problems manifested themselves most markedly by the presence of case

construct ions in the input language. Thus, our examples and solution methods will be in terms of

integrating case-frame instantiation with other parsing strategies. Consider, for example, the

following noun phrase with a typical postnominal case frame:

"the messages from Smith about ADA pragmas dated later than Saturday".

The phrase has three cases marked by " f r o m " , "about " , and "dated later t h a n " . This type of phrase

is actually used in FlexP's current grammar, and the basic pattern used to recognize descript ions of

messages is:

<?determin9r * M e s s a g e A d j MessageHead *MessageCase>

which says that a message descript ion is an optional (?) determiner, fol lowed by an arbitrary number

(*) of message adjectives followed by a message head word (i.e. a word meaning "message") ,

followed by an arbitrary number of message cases. In the example, " t he " is the determiner, there are

no message adjectives, "messages" is the message head word, and there are three message cases:

" f rom Smith" , "about ADA pragmas", and "dated later t han" . Because each case has more than one

component, each must be recognized by a separate pattern:

<%from Person>
<%about S u b j e c t >
<%since D a t e >

Here % means anything in the same word class, "dated later t h a n " , for instance, is equivalent to

4

"s ince" for this purpose.

These patterns for message descript ions illustrate the two problems mentioned above: the

elements of the case patterns have radically different funct ions • the first elements are case markers,

and the second elements are the actual subconcepts for the case. Also, a single construct ion at the

language level is spread over several patterns in the grammar. What consequences does this have

for the parsing process? Because the parser has no information about the relationship between the

cases and the top-level pattern (other than that the results of the case patterns match the last element

in the top-level pattern), several powerful , but specialized, strategies for dealing with (regular or

irregular) case construct ions cannot be employed. For instance, since case indicators are typically

much more restricted in range of expression, and therefore, much easier to recognize than their

corresponding subconcepts, a plausible strategy for a parser that " k n o w s " about case construct ions

is to scan input for the case indicators, and then parse the associated subconcepts top-down. This

strategy is particularly valuable if one of the subconcepts is malformed or of uncertain form, such as

the subject case in our example. Neither "ADA" nor "pragmas" is likely to be in the vocabulary of our

system, so the only way the end of the subject field can be detected is by the presence of the case

indicator " f r o m " which follows it. However, the present parser cannot distinguish case indicators

from case fillers - both are just elements in a pattern with exactly the same computat ional status, and

hence it cannot use this strategy.

Section 5 describes an algorithm for parsing case construct ions flexibly. At the moment, the

algorithm works only on a mixture of case construct ions and linear patterns, but eventually we

envisage a number of specif ic parsing algorithms, one for each of a number of construct ion types, all

working together to provide a more complete flexible parser. Section 5 also points out a number of

efficiencies that its construction-specif ic approach makes possible in the parsing of grammatical

input.

Below, we list a number of the parsing strategies that we envisage might be used. Most of these

strategies exploit the constrained task-oriented nature of the input language:

• C a s e - F r a m e I n s t a n t i a t i o n is necessary to parse general imperative constructs and

noun phrases with postnominal modifiers. This method has been applied before with

some success to linguistic or conceptual cases [12] in more general parsing tasks.

However, it becomes much more powerful and robust if domain-dependent constraints

among the cases can be exploited. For instance, in a f i le-management system, the

command "Transfer UPDATE.FOR to the accounts di rectory" can be easily parsed if the

information in the unmarked case of transfer ("update.for" in our example) is parsed by a

fi le-name expert, and the destination case (flagged by " t o ") is parsed not as a physical

location, but a logical entity inside a machine. The latter constraint enables one to

interpret "d i rectory" not as a phone book or bureaucratic agency, but as a reasonable

destination for a file in a computer.

• S e m a n t i c G r a m m a r s [7] prove useful when there are ways of hierarchically clustering

domain concepts into functionally useful categories for user interaction. Semantic

5

grammars, like case systems, can bring domain knowledge to bear, in disambiguating .

word meanings. However, the central problem of semantic grammars is non­

transferability to other domains, stemming from the specificity of the semantic

categorization hierarchy built into the grammar rules. This problem is somewhat

ameliorated if this technique is applied only to parsing selected individual phrases [13],

rather than being responsible for the entire parse. Individual consti tuents, such as those

recognizing the initial segment of factual queries, apply in may domains, whereas a

consti tuent recognizing a clause about file transfer is totally domain specific. Of course,

this restriction calls for a dif ferent parsing strategy at the clause and sentence level.

• (Par t ia l) P a t t e r n M a t c h i n g on strings, using non-terminal semantic-grammar

constituents in the patterns, proves to be an interesting generalization of semantic

grammars. This method is particularly useful when the patterns and semantic grammar

non-terminal nodes interleave in a hierarchical fashion.

• T r a n s f o r m a t i o n s t o C a n o n i c a l F o r m prove useful both for domain-dependent and

domain-independent constructs. For instance, the fol lowing rule transforms possessives

into "o f " phrases, which we chose as canonical :

[<ATTRIBUTE> i n p o s s e s s i v e f o r m , <VALUE> l e g i t i m a t e f o r a t t r i b u t e]

»>
[<VALUE> W 0 F " <ATTRIBUTE> i n s i m p l e f o r m]

Hence, the parser need only consider "o f " construct ions ("fi le's dest inat ion" =>

"destination of f i le") . These transforms simplify the pattern matcher and semantic

grammar application process, especially when transformed construct ions occur in many

different contexts. A simple form of string transformation was present in PARRY [11].

• T a r g e t - s p e c i f i c m e t h o d s may be invoked to parse port ions of sentences not easily

handled by the more general methods. For instance, if a case-grammar determines that

the case just signaled is a proper name, a special name-expert strategy may be cal led.

This expert knows that names can contain unknown words (e.g., Mr. Joe Gallen D'Aguila

is obviously a name with D'Aguila as^the surname) but subject to ordering constraints and

morphological preferences. When unknown words are encountered in other posit ions in

a sentence, the parser may try morphological decomposit ion, spell ing correct ion,

querying the user, or more complex processes to induce the probable meaning of

unknown words, such as the project-and-integrate technique described in [2] . Clearly

these unknown-word strategies ought to be suppressed in parsing person names.

3. The Represen ta t i on of A m b i g u i t y and Focused I n t e r a c t i o n

If a flexible parser being used as part of an interactive system cannot correct ungrammatical input

with reasonable certainty, then the system user must be involved in the resolution of the diff iculty or

the conf irmation of the parser's correct ion. The approach taken by Weischedel and Black [14] in

such situations is to inform the user about the nature of the difficulty, in the expectation that he will be

able to use this information to produce a more acceptable input next t ime, but this can involve the

user in substantial retyping. A related technique, adopted by the COOP system [8], is to paraphrase

back to the user the one or more parses that the system has produced from the user's input, and to

6

allow the user to conf i rm the parse or select one of the ambiguous alternatives. This approach still

means a certain amount of work for the user. He must check the paraphrase to see if the system has

interpreted what he said correctly and without omission, and in the case of ambiguity, he must

compare the several paraphrases to see which most closely corresponds to what he meant, a non-

trivial task if the input is lengthy and the dif ferences small.

Experience with our own flexible parser, FlexP, suggests that the way requests for clarif ication in

such situations are phrased makes a big dif ference in the ease and accuracy with which the user can

correct his errors, and that the user is helped most by a request focusing as tightly as possible on the

exact source and nature of the difficulty. Accordingly, we have adopted the fol lowing simple principle

for our new flexible parser: when the parser cannot uniquely resolve a problem in its input, it

should ask the user for a correction in as direct and focused a manner as possible.

Moreover, this request for clarif ication should not prejudice the processing of the rest of the input,

either before or after the problem occurs. In other words, if the system cannot parse one segment of

the input, it should be able to bypass it, parse the remainder, and then ask the user to restate that and

only that segment of the input. Similarly, if a small part of the input is missing or garbled and there are

a limited number of possibilities for what ought to be there, the parser should be able to indicate the

list of possibilities together with the context from which the information is missing rather than making

the user compare several complete paraphrases of the input that differ only slightly.

In the remainder of this sect ion, we show how a construct ion-specif ic approach to parsing can

contr ibute to focused interaction in cases of error. We restrict our attention to situations in which a

flexible parser can correct an input error or ungrammat ical ly , but only to within a constrained set of

alternatives. We show why it is diff icult for a flexible parser based on uniform methods to produce a

focused ambiguity resolution request for the user to distinguish between such a set of correct ions,

and how a construction-specif ic parser can produce one much more easily. Realizing the advantages

afforded by the construction-specif ic approach requires that special representations be devised for

all the structural ambiguities that each construct ion type can give rise to . We illustrate these

arguments with examples involving case construct ions. The example ambiguity representations for

case construct ions are designed for use with the parser described in Section 5.

The following input is typical for an electronic mail system interface [1] with which FlexP was

extensively used:

the messages from Fred Smith that arrived after Jon 5

The fact that this is not a complete sentence in FlexP's grammar causes no problem. The only real

difficulty comes from " J o n " , which should presumably be either " J u n " or " J a n " . FlexP's spell ing

corrector can come to the same conclusion, so the output contains two complete parses which are

passed onto the next stage of the mail system interface. The first of these parses looks like:

7

[D e s c r i p t i o n O f : Message
S e n d e r : [D e s c r i p t i o n O f : P e r s o n

F i r s t N a m e : f r e d
Surname: s m i t h

]
A f t e r D a t e : [D e s c r i p t i o n O f : D a t e

M o n t h : J a n u a r y
D a y O f M o n t h : 5

]
3

This schematized property list style of representation should be interpreted in the obvious way. Since

FlexP operates by bottom-up pattern matching of a semantic grammar of rewrite rules, it can parse

directly into this form of representation, which is the form required by the next phase of the interface.

If the next stage has access to other contextual information which allows it conclude that one or

other of these parses was what was intended, then it can proceed to fulfill the user's request.

Otherwise it has little choice but to ask a question involving paraphrases of each of the ambiguous

interpretations, such as:

Do you mean:

1. the messages from Fred Smith that arrived after January 5

2. the messages from Fred Smith that arrived after June 5

Because it is not focused on the source of the error, this question gives the user very little help in

seeing where the problem with his input actually lies. Furthermore, the system's representation of the

ambiguity as several complete parses gives it very little help in understanding a response of " J u n e "

from the user, a very natural and likely one in the circumstances. In essence, the parser has thrown

away the information on the specific source of the ambiguity that it once had, and would again need

to deal adequately with that response from the user. The recovery of this lost information would

require a complicated (if done in a general manner) comparison between the two complete parses.

One straightforward solution to the problem is to augment the output language with a special

ambiguity representation. The output from our example might look like:

[D e s c r i p t i o n O f : Message
S e n d e r : [D e s c r i p t i o n O f : P e r s o n

F i r s t N a m e : f r e d
Surname: s m i t h

]
A f t e r D a t e : [D e s c r i p t i o n O f : D a t e

M o n t h : [D e s c r i p t i o n O f : A m b i g u i t y S e t
C h o i c e s : (J a n u a r y J u n e)

]
D a y O f M o n t h : 5

]
]

This representation is exactly like the one above except that the Month slot is filled by an

AmbiguitySet record. This record allows the ambiguity between January and June to be confined to

8

the month slot where it belongs rather than expanding to an ambiguity of the.entire input as in the first

approach we discussed. By expressing the ambiguity set as a disjunction, it would be straightforward

to generate from this representation a much more focused request for clarif ication such as:

Do you mean the messages from Fred Smith that arrived after J a n u a r y or J u n e 5?

A reply of " June" would also be much easier to deal with.

However, this approach only works if the ambiguity corresponds to an entire slot filler. Suppose,

for example, that instead of mistyping the month, the user omitted or so completely garbled the

preposition " f r o m " that the parser effectively saw:

the messages Fred Smith that arrived after Jan 5

In the grammar used by FlexP for this particular appl icat ion, the connect ion between Fred Smith and

the message could have been expressed only by " f r o m " , " t o " , or "copied t o " (or synonyms thereof).

To represent the ambiguity, FlexP generates three complete parses isomorphic to the first output

example above, except that Sender is replaced by Recipient and CC in the second and third parses

respectively. Again, this form of representation does not allow the system to ask a focused question

about the source of the ambiguity or interpret naturally ell iptical replies to a request to for a dist inction

among the three alternatives. The previous solution is not applicable because the ambiguity lies in

the structure of the parser output rather than at one of its terminal nodes. Using a case notation, it is

not permissible to put an "Ambigui tySet" in place of one of the deep case markers. 1 To localize

such ambiguities and avoid duplicate representation of unambiguous parts of the input, it is

necessary to employ a representation like the one designed for use by the new flexible parser

described in Section 5:

[D e s c r i p t i o n O f : Message
A m b i g u o u s S l o t s : (

[P o s s i b l e S l o t s : (S e n d e r R e c i p i e n t CC)
S l o t F i W e r : [D e s c r i p t i o n O f : P e r s o n

F i r s t N a m e : f r e d
Surname: s m i t h

]
,]

)
A f t e r D a t e : [D e s c r i p t i o n O f : D a t e

M o n t h : J a n u a r y
D a y O f M o n t h : 5

]
]

This example parser output is similar to the two given previously, but instead of having a Sender slot,

it has an AmbiguousSlots slot. The filler of this slot is a list of records, each of which specifies a

SlotFiller and a list of PossibleSlots. The SlotFiller is a structure that would normally be the filler of a

1Nor is this problem merely an artifact of case notation, it would arise in exactly the same way for a standard syntactic parse
of a sentence such as the well known "I saw the Grand Canyon flying to New York." The difficulty arises because the
ambiguity is structural, and structural ambiguities can occur no matter what form of structure is chosen.

9

slot in the top-level descript ion (of a message in this case), but the parser has been unable to

determine exactly which higher-level slot it should fit into; the possibilities are given in PossibleSlots.

With this representation, it is now straightforward to construct a directed question such as:

Do you mean the messages f r o m , t o , or c o p i e d to Fred Smith that arrived after January 5?

Such questions can be generated by outputt ing and highlighting AmbiguousSlot records as the

disjunction of the normal case markers for each of the PossibleSlots followed by the normal

translation of the SlotFiller. The main point here, however, does not concern the quest ion generation

mechanism, nor the exact details of the formalism for representing ambiguity, it is, rather, that a

radical revision of the initial formalism was necessary in order to represent structural ambiguit ies

without dupl icat ion of non-ambiguous material.

The adoption of such representations for ambiguity has profound implications for the parsing

strategies employed by any parser that tries to produce them. For each type of construct ion that such

a parser can encounter, and here we mean construct ion types at the level of case construct ions,

conjoined lists or linear f ixed-order patterns, the parser must " k n o w " about all the structural

ambiguities that the construct ion can give rise to, and must be prepared to detect and encode

appropriately such ambiguities when they arise. Construct ion-specif ic parsing techniques fit this

requirement perfectly. Each construction-specif ic parsing strategy can encode detailed information

about the types of structural ambiguity possible with that construct ion and incorporate the specific

information necessary to detect and represent these ambiguit ies.

We must reiterate, however, that when possible we advocate the use of domain semantics to

resolve selectional and structural ambiguities. Only when semantic disambiguation proves unequal to

the task, a not uncommon situation with il l-formed input, do we suggest interaction with the user; but

when this interaction occurs it must be as tightly focused as possible on the source of the ambiguity

so that both the cognit ive and the mechanical (typing) demands on the user are kept to a minimum.

4. Language Def in i t ion

Yet another advantage of a construction-specif ic approach to parsing is related to the definit ion of

l imited-domain task-oriented languages. As we will show in this section, the uniform grammar

representation required by a uniform parsing strategy makes it diff icult to define task-oriented

languages in terms natural for the task domain. An alternative is to define the language in a formalism

well suited to the domain and then compile this formalism into rules in the uniform grammar

representation that the parser actually requires. However, this considerably inhibits the process of

language development because it requires an often t ime-consuming phase of compilat ion into the

uniform grammar after each change to the language definit ion. On the other hand, as we shall see, a

construction-specif ic approach allows a grammar representation well-suited to the domain to be

interpreted directly without any compilat ion phase.

10

Since our initial flexible parser, FlexP, applied its uniform parsing strategy to a uniform grammar of

pattern-matching rewrite rules, it was not possible to cover construct ions like the one used in the

examples above in a single.grammar rule. A postnominal case frame such as the one that covers the

message descript ions used as examples above must be spread over several rewrite rules. Recall that

the patterns actually used in FlexP look like:

< ? d e t e r m i n e r * M e s s a g e A d j MessageHead *MessageCase>

<%fpom P e r s o n >
<%since D a t e >
<%to P e r s o n >

• • •

The point here is not the details of the pattern notation, but the fact that this is a very unnatural way

of representing a postnominal case construct ion. Not only does it cause problems in the process of

flexible parsing, as explained in 2, but it is also quite inconvenient to create in the first place.

Essentially, one has to know the specific trick of creating intermediate (and from the language point

of view, superfluous) categories like M e s s a g e C a s e in the example above. Since we designed FlexP

as a tool for use in natural language interfaces, we considered it unreasonable to expect the designer

of a task-oriented language to have the specialized knowledge to create such obscure rules.

Accordingly, we designed a language definit ion formalism that enabled a grammar to be specified in

terms much more natural to the system being interfaced to. The above construct ion for the

descript ion of a message, for instance, could be defined as a single unified construct ion without

specifying any artificial intermediate constituents, as follows:

c
StructureType: Object
ObjectName: Message
Schema: [

Sender: [FillerType: &Person]
Recipient: [FillerType: &Person Number: OneOrMore]
Date: [FillerType: &Date]
After: [FillerType: &Date UseRestriction: DescriptionOnly]
]

Syntax: [
SynType: NounPhrase
Head: (message note <?piece ?of mail> letter)
Case: (

<°/ofrom tSender>
<%to tRecipient>
<7odated t D a t e >
<%since tAfter>
)

]
]

In addit ion to the syntax of a message descript ion, this piece of formalism also describes the internal

structure of a message, and is intended for use with a larger interface system [1] of which FlexP is a

part. The larger system provides an interface to a functional subsystem or tool, and is tool-

independent in the sense that it is driven by a declarative data base in which the objects a n d .

11

operations of the tool currently being interfaced .to are defined in the formalism shown. The example

is. in fact, an abbreviated version of the definit ion of a message from the declarative tool descript ion

for an electronic mail system tool with which the interface was actually used.

In the example, the Syntax slot defines the input syntax for a message; it is used to generate rules

for FlexP, which are in turn used to parse input descript ions of messages from a user. FlexP's

grammar to parse input for the mail system tool is the union of all the rules compiled in this way from

the Syntax fields of all the objects and operations in the tool descr ipt ion. The Syntax field of the

example says that the syntax for a message is that of a noun phrase, i.e. any of the given head nouns

(angle brackets indicate patterns of words), fol lowed by any of the given postnominal Cases,

preceded by any adjectives - none are given here, which can in turn be preceded by a determiner.

The up-arrows in the Case patterns refer back to slots of a message, as specif ied in the Schema slot

of the example - the information in the Schema slot is also used by other parts of the interface. The

actual grammar rules needed by FlexP are generated by first filling in a pre-stored skeleton pattern for

NounPhrase, result ing in:

< ? d e t e r m i n e r * M e s s a g e A d j MessageHead *MessageCase>

and then generating patterns for each of the Cases, substi tut ing the appropriate FillerTypes for the

slot names that appear in the patterns used to define the Cases, thus generating the subpatterns:

<%from P e r s o n >
<%to P e r s o n >
<%dated Da te>
<%since D a t e >

The slot names are not discarded but used in the results of the subrules to ensure that the objects

which match the substituted FillerTypes end up in the correct slot of the result produced by the top-

level message rule. This compilat ion procedure must be performed in its entirety before any input

parsing can be undertaken.

While this approach to language definit ion was successful in freeing the language designer f rom

having to know details of the parser essentially irrelevant to him, it also made the process of language

development very much slower. Every time the designer wished to make the smallest change to the

grammar, it was necessary to go through the t ime-consuming compilat ion procedure. Since the

development of a task-specific language typically involves many small changes, this has proved a

significant impediment to the utility of FlexP.

The construction-specif ic approach offers a method of c ircumventing this problem. Since the

parsing strategies and ambiguity representations are specif ic to particular construct ions, it is possible

to represent each type of construct ion differently - there is no need to translate the language into a

uniformly represented grammar. In addit ion, the constructions are exactly those for which there will

be specif ic parsing strategies, and grammar representations. It therefore becomes possible to

dispense with the compilation step required for FlexP, and instead interpret the language definit ion

directly. This drastically cuts the t ime needed to make changes to the grammar, and so makes the

parsing system much more useful. For example, the Syntax slot of the previous example formalism

12

might become:

S y n t a x : [
S y n T y p e : NounPhrase
H e a d : (message n o t e < ? p i e c e ? o f m a i l > l e t t e r)

C a s e s : (
[M a r k e r : %from S l o t : S e n d e r]
[M a r k e r : %to S l o t : R e c i p i e n t]
[M a r k e r : %dated S l o t : D a t e]
[M a r k e r : % s i n c e S l o t : A f t e r]
)

3
This grammar representation, equally convenient from a user's point of view, should be directly

interpretable by a parser specific to the NounPhrase case type of construct ion. All the information

needed by such a parser, including a list of all the case markers, and the type of object that fills each

case slot, is directly accessible from this representation eliminating the need for an intermediate,

cumbersome compilat ion phase.

5. A S imple Mu l t i -S t ra tegy Parser

As part of our investigations in task-oriented parsing, we have implemented (in addition to FlexP) a

pure case-frame parser exploit ing domain-specif ic case constraints stored in a declarative data

structure, and a combinat ion pattern-match, semantic grammar, canonical-transform parser. All

three parsers have exhibited a measure of success, but more interestingly, the strengths of one

method appear to overlap with the weaknesses of a different method. Hence, w e are working towards

a single parser that dynamically selects its parsing strategy to suit the task demands.

Our new parser is designed primarily for task domains where the prevalent forms of user input are

commands and queries, both expressed in imperative or pseudo-imperative constructs. Since in

imperative constructs the initial word (or phrase), establishes the case-frame for the entire utterance,

we chose the case-frame parsing strategy as primary. In order to recognize an imperative command,

and to instantiate each case, other parsing strategies are invoked. Since the parser knows what can

fill a particular case, it can choose the parsing strategy best suited for l inguistic construct ions

expressing that type of information. Moreover, it can pass any global constraints from the case frame

or from other instantiated cases to the subsidiary parsers - thus reducing potential ambiguity,

speeding the parse, and enhancing robustness.

Consider our multi-strategy parsing algorithm as described below. Input is assumed to be in the

imperative form:

1. Apply string PATTERN-MATCH procedure to the initial segment of the input using only the

patterns previously indexed as corresponding to command words/phrases in imperative

constructions. Patterns contain both optional constituents and non-terminal symbols that

expand according to a semantic grammar. (E.g., " copy" and " d o a file transfer" are

13

synonyms for the same command in a file management system.)

2. /Access the CASE-FRAME associated with the command just recognized, and push it onto

the context stack. In the above example, the case-frame is indexed under the token

<COPY>, which was output by the pattern matcher. The case frame consists of list of

pairs ([case-marker] [case-f i l ler- information],. . .) .

3. Match the input with the case markers using the same PATTERN-MATCH procedure

mentioned above. If no match occurs, assume the input corresponds to the unmarked

case (or the first unmarked case, if more than one is present), and proceed to the next

step.

4. Apply the parsing strategy indicated by the type of construct expected as a case filler.

Pass any available case constraints to the sub-parser. A partial list of parsing strategies

indicated by expected fillers is:

• S u b - i m p e r a t i v e - Case-frame parser, starting with the command-identi f icat ion

pattern match above.

• S t r u c t u r e d - o b j e c t (e.g., a concept with subattributes) - Case-frame parser,

start ing with the pattern-matcher invoked on the list of patterns corresponding to

the names (or compound names) of the semantically permissible structured

objects, fol lowed by case-frame parsing of any present subattr ibutes.

• S i m p l e O b j e c t - Apply the pattern matcher, using only the patterns indexed as

relevant in the case-fi l ler-information f ield.

• S p e c i a l O b j e c t - Apply the parsing strategy applicable to that type of special

object (e.g., proper names, dates, quoted strings, stylized technical jargon, e tc . .)

• N o n e o f t h e a b o v e -- (Errorful input or parser deficiency) Apply the graceful

recovery techniques discussed below.

5. If an embedded case frame is activated, push it onto the context stack.

6. When a case filler is instantiated, remove the <case-marker>, <case-filler-information>

pair from the list of active cases in the appropriate case frame, proceed to the next case-

marker, and repeat the process above until the input terminates.

7. If all the cases in a case frame have been instantiated, pop the context stack until that

case frame is no longer in it. (Completed frames typically reside at the top of the stack.)

8. If there is more than one case frame on the stack when trying to parse additional input,

apply the following procedure:

• If the input only matches a case marker in one frame, proceed to instantiate the

corresponding case-fil ler as outl ined above. Also, if the matched case marker is not

on the most embedded case frame (i.e., not at the top of the context stack), pop the

stack until the frame whose case marker was matched appears at the top of the

stack.

14

• If no case markers are matched, attempt to parse unmarked cases, starting with the

most deeply embedded case frame (the top of the context stack) and proceeding

outwards (i.e., downwards through the context stack). If an unmarked case is

matched, pop the context stack until the corresponding case frame is at the top.

Then, instantiate the case filler, remove the case from the active case frame, and

proceed to parse additional input. If more than one unmarked case matches the

input, choose the most embedded one (i.e., the most recent context) and save the

state of the parse on the global history stack. (This suggests an ambiguity that

cannot be resolved with the information at hand.)

• If the input matches more than one case marker in the context stack, try to parse

the case filler via the indexed parsing strategy for each fi l ler-information slot

corresponding to a matched case marker. If more than one case filler parses (this is

somewhat rare situation - indicating underconstrained case frames or truly

ambiguous input) save the state in the global history stack and pursue the parse

assuming the most deeply embedded constituent. [Our case-frame attachment

heuristic favors the most local attachment permitted by semantic case constraints.]

9. If a conjunction or disjunction occurs in the input, cycle through the context stack trying

to parse the right-hand side of the conjunction as filling the same case as the left hand

side. If no such parse is feasible, interpret the conjunction as top-level, e.g, as two

instances of the same imperative, or two different imperatives. If more than one parse

results, interact with the user to disambiguate. To illustrate this simple process, consider:

"Transfer the programs written by Smith and Jones to ..."

"Transfer the programs written in Fortran and the census data files to ..."

"Transfer the programs written in Fortran and de le te . . . "

The scope of the first conjunct ion is the "author " subattr ibute of program, whereas the

scope of the second conjunct ion is the unmarked "ob ject " case of the transfer act ion.

Domain knowledge in the case-filler information of the "object" case in the " t ransfer"

imperative inhibits "Jones" from matching a potential object for electronic file transfer.

Similarly "Census data f i les" are inhibited from matching the "author" subattr ibute of a

program. Thus conjunct ions in the two syntactically comparable examples are scoped

differently by our semantic-scoping rule relying on domain-specif ic case information.

"Delete" matches no active case filler, and hence it is parsed as the initial segment of a

second conjoined utterance. Since "delete" is a known imperative, this parse succeeds.

10. If the parser fails to parse additional input, pop the global history stack and pursue an

alternate parse. If the stack is empty, invoke the graceful recovery heuristics. Here the

DELTA-MIN method [3] can be applied to improve upon depth-first unwinding of the stack

in the backtracking process.

11. If the end of the input is reached, and the global history stack is not empty, pursue the

alternate parses. If any survive to the end of the input (this should not be the case unless

true ambiguity exists), interact with the user to select the appropriate parse (see [5).]

The need for embedded case structures and ambiguity resolution based on domain-dependent

semantic expectations of the case fillers is il lustrated by the fol lowing pair of sentences:

15

"Edit the programs in Fortran"

"Edit the programs in Teco"

"For t ran" fills the language attr ibute of " p r o g r a m " , but cannot fill either the location or instrument

case of Edit (both of which can be signaled by " i n ") . In the second sentence, however, " T e c o " fills

the instrument case of the verb "ed i t " and none of the attributes of "p rog ram" . This disambiguation

is signif icant because in the first example the user specif ied which programs (s)he wants to edit,

whereas in the second example (s)he specified how (s)he wants to edit them.

The algorithm presented is suff icient to parse grammatical input. In addit ion, since it operates in a

manner specifically tailored to case construct ions, it is easy to add modif ications dealing wi th deviant

input. Currently, the algorithm includes the following steps that deal with ungrammaticality:

12. If step 4 fails, i.e. a filler of appropriate type cannot be parsed at that position in the input,

then repeat step 3 at successive points in the input until it produces a match, and

continue the regular algorithm from there. Save all words not matched on a SKIPPED list.

This step takes advantage of the fact that case markers are often much easier to

recognize than case fillers to realign the parser if it gets out of step with the input

(because of unexpected interjections, or other spurious or missing words).

13. If words are on SKIPPED at the end of the parse, and cases remain unfilled in the case

frames that were on the context stack at the time the words were skipped, then try to

parse each of the case fillers against successive positions of the skipped sequences. This

step picks up cases for which the marker was incorrect or garbled.

14. If words are still on SKIPPED attempt the same matches, but relax the pattern matching

procedures involved.

15. If this still does not account for all the input, interact with the user by asking questions

focused on the uninterpreted part of the input. The focused interaction technique

discussed earlier is used to resolve semantic ambiguities in the input.

16. If user interaction proves impractical, apply the project-and-integrate method [2] to

narrow down the meanings of unknown words by exploiting syntactic, semantic and

contextual cues.

These flexible parsing steps rely on the construction-specif ic aspects of the basic algorithm, and

would not be easy to emulate in either a syntactic ATN parser or one based on a pure semantic

grammar.

A further advantage of our mixed-strategy approach is that the top-level case structure, in essence,

partit ions the semantic world dynamically into categories according to the semantic constraints on

the active case fillers. Thus, when a pattern matcher is invoked to parse the recipient case of a file-

transfer case frame, it need only consider patterns (and semantic-grammar constructs) that

correspond to logical locations inside a computer. This form of expectation-driven parsing in

restricted domains adds a two-fold effect to its robustness:

• Many spurious parses are never generated (because patterns yielding potentially

16

spur ious matches are never tr ied in inappropriate contexts.)

• Addit ional knowledge (such as addit ional patterns, grammar rules, etc.) can be added

wi thout a corresponding linear increase in parse t ime since the case-frames focus only

upon the relevant subset of patterns and rules. Thus, the efficiency of the system may

actually increase with the addit ion of more domain knowledge (in effect enabling the case

frames to restrict context further). This behavior makes it possible to incrementally build

the parser wi thout the ever-present fear that a new extension may cause the entire parser

to fail due to an unexpected application of that extension in the wrong context.

In c losing, we note that the algori thm descr ibed above does not mention interaction with

morphological decomposi t ion or spell ing correct ion. Lexical processing is particularly important for

robust parsing; indeed, based on our limited experience, lexical-level errors are a signif icant source

of deviant input. The recognit ion and handl ing of lexical-deviation phenomena, such as

unrecognized abbreviat ions and misspell ings, must be integrated with the more usual morphological

analysis. Some of these topics are discussed independently in [6] . However, integrating resilient

morphological analysis with the algori thm we have outl ined is a problem we consider very important

and urgent if we are to construct a practical f lexible parser.

6. C o n c l u s i o n

This paper has proposed an approach to parsing limited domain task-oriented languages based on

dynamic select ion among a number of dif ferent parsing strategies, one for each type of construct ion

covered by the language. This approach was shown to have a number of advantages over more

tradit ional uni form parsing strategies, inc luding:

• Grammatical input can be parsed efficiently by the strategy most appropriate to each type

of expected construct ion, br inging exactly the appropriate domain knowledge to bear.

• Ungrammatical input can be analyzed by first isolating the troublesome port ions of the

input, and subsequently applying our " fai l -soft" recovery heuristics (exploiting

constraints from other, better understood, consti tuents in the input), or engaging in

focused interaction with the system user.

• Semantic and structural ambiguit ies can be represented straightforwardly without

dupl icat ion of unambiguous material, facil itating the construct ion of focused queries to

the user concern ing the ambiguity. Moreover, focused interaction facilitates

interpretation of elliptical user replies to clari f ication queries.

• The task-specif ic language development process can be simplified and made more

eff icient since the interface designer can define the language in terms natural to the task

domain. In addit ion, the construct ion-specif ic approach enables the resulting language

definit ion to be interpreted directly without a t ime-consuming compilat ion into a uniform

grammar formalism, thus al lowing interactive incremental testing when new constructs

are added to the task-oriented data base.

1.7

R e f e r e n c e s

1. Ball, J. E. and Hayes, P. J. , "Representat ion of Task-Independent Knowledge in a Gracefully •

Interacting User Interface," Proc. 1st Annual Meeting of the American Association for Artificial

Intelligence, Stanford University, August 1980 , pp. 116-120.

2. Carbonel l , J . G., "Towards a Self-Extending Parser," Proceedings of the 17th Meeting of the

Association for 'Computational Linguistics, 1979 , pp. 3-7.

3. Carbonel l , J . G., "A -MIN: A Search-Control Method for Information-Gathering Problems,"

Proceedings of the First AAA! Conference, August 1980 .

4. Gershman, A. V., Knowledge-Based Parsing, PhD dissertat ion, Yale University, April 1979,

Computer Sei. Dept. report # 1 5 6 .

5. Hayes P. J., "Focused Interaction in Flexible Parsing," Proc. of 19th Annual Meeting of the

Assoc. forComput. Ling., Stanford University, June 1981 .

6. Hayes, P.J . and Mouradian, G. V., "Flexible Parsing," Proc. of 18th Annual Meeting of the

Assoc. for Comput. Ling., Philadelphia, June 1980 , pp. 97-103.

7. Hendrix, G. G., Sacerdot i , E. D. and Slocum, J . , "Developing a Natural Language Interface to

Complex Data," Tech, report Artif icial Intell igence Center., SRI International, 1976.

8. Kaplan, S. J . , Cooperative Responses from a Portable Natural Language Data Base Query

System, PhD dissertation, Dept. of Computer and Information Science, University of

Pennsylvania, Philadelphia, 1979.

9. Kwasny, S. C. and Sondheimer, N. K., "Ungrammat ica l l y and Extra-Grammaticality in Natural

Language Understanding Systems," Proc. of 17th Annual Meeting of the Assoc. for Comput

Ling., La Jolla, Ca., August 1979 , pp. 19-23.

10. Marcus, M. A., A Theory of Syntactic Recognition for Natural Language, MIT Press,

Cambridge, Mass., 1980.

11 . Parkison, R. C , Colby, K .M. , and Faught, W. S., "Conversat ional Language Comprehension

Using Integrated Pattern-Matching and Parsing," Artificial Intelligence, Vol. 9, 1977 , pp. 111-

134.

12. Riesbeck, C. and Schank, R. C , "Comprehension by Computer: Expectat ion-Based Analysis

of Sentences in Context , " Tech. report 78, Computer Science Department, Yale University,

1976.

Waltz, D. L. and Goodman, A. B., "Wri t ing a Natural Language Data Base System,"

Proceedings of the Fifth International Joint Conference on Artificial Intelligence, 1977 , pp.

144-150.

'eischedel, R. M. and Black, J. , "Responding to Potentially Unparseable Sentences," Tech.

ort 7 9 / 3 , Dept. of Computer and Information Sciences, University of Delaware, 1979.

