NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-81-116

Writing Efficient Code!

Jon Louis Bentley
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

27 April 1981

Abstract - The most inﬁportant step in making a software system efficient is the proper selection
of data structures and aigorithms; many papers and textbooks have been devoted to these topics,
Most discussions, however, neglect another important activity: that of writing machine-independent
efficient code. This paper examines a set of techniques for accomplishing that step. We will examine
those techniques both in an abstract setting and in their application to a real program, where they led
to a speedup of a factor of over six. Because these techniques should be employed rarely, an
important part of this paper is describing exactly when one should (and should not!) use them.

Copyright (c) 1981, Jon Louis Bentley.

1This research was supported in part by the Cffice of Naval Research under Contract NOD014-76-C-0370.

27 April 1981 Writing Efficient Code

Table of Contents
1. Introduction
2. An Example _
2.1. A Sequence of Pascal Code Fragments
2.2. An Assembiy Program
2.3. What Have We Learned?
3. A Set of Tools
3.1. When To Bother
3.2. Modifying Data Structures
3.3. Moditying Code
3.3.1. Loop Reorganization
3.3.2. Logic Reorganization
3.3.3. Procedure Reorganization
3.3.4. Expression Reorganization
3.4. Summary of the Ruies
4. A Survey of Related Work
5. Conclusions
Acknowledgments
References
I. Details of the Pascal Programs

13
15
17
18
21
27

cEEBLHEN

59

27 April 1881 writing Efficient Code -3-

close to optimal.

The Nearest Neighbor Heuristic: Choose an arbitrary starting point, and then
repeatedly visit the closest unvisited point to the current point until all points have been
visited. When this is accomplished, close the tour by returning to the starting point.

Figure 1c shows the Nearest Neighbor tour of the point set in Figure 1a; the starting point of the tour

is circled. For details on the performance of this heuristic, see Bentley and Saxe [1980].

In this section we will study a Pascal procedure that implements the heuristic. The initial version of
the procedure has a running time of approximately 47.0N2 microseconds on a PDP-KL10; it therefore
required approximately 47 seconds to construct the tour of a one-thousand city set. That program
was used in two distinct applications. In the first it was run several dozen times per day on a PDP-
KL10, and therefore consumed about half an hour of CPU time per day. In the other it was run only
about a dozen times per day, but on a machine that was only about half as fast as a PDP-KL10; it also
required about half an hour per day of CPU time. In both applications, it was tremendously desirable

to decrease the times, so we are justified in expending energy in trying to do so.

As we try to reduce the run time, we must keep an important ground rule in mind.

The purpose of this exercise is to make changes that will decrease the running time of the
Pascal program on most systems; therefore we cannot make changes that exploit a
particular feature of the compiler we happen to be using.

As we study the Pascal program we will not examine the machine code that the compiler generates;
our oniy view of the program’s speed will be by using the built-in RunTime function (for details on how
the times were gathered see Appendix I). The Pascal compiler used for this eaxpe-zrin'tent3 does little
optimization, so the computation that we see in the source code accurately reflects the machine code
from which times were collected. To make sure that the timings are not merely an artifact of the
particular compiler and hardware, the programs of this section were also implemented in a different
language on a different computing system, and produced a similar set of relative timings (details on

those timings can also be found in Appendix 1).

We will now investigate a series of Pascal programs that implement the Nearest Neighbor Heuristic
for the Traveling Salesman Problem. As we do so, the reader should attempt to improve each
successive program before reading the next. (And if you find any more improvements, please
communicate them to the author!)

3 .) . .
The compiler used was the Pascal compiler on the Carnegie-Melion University Computer Science Department PDP-KL10
(Arpanet Host CMUA), which is a derivative of the Hamburg Pascal compiler.

27 April 1981 _ Writing Eificient Code -4 -

2.1. A Sequence of Pascal Code Fragments

The first subroutine for implementing the nearest neighbor heuristic for the traveling salesman
problem is shown in Fragment A1. It assumes several external definitions: the type PtPir is an integer
in the range 1..MaxPts, where MaxPts denotes the maximum possible number of points in the plane.
The points themselves are stored in an array PtArrPtPtr], whose elements are records with the two
real components X and Y. The number of points currently stored in the array is stored in the integer
variable NumPts; we shall often refer to NumPts as N, since it is the problem size. The subroutine Dist
is passed two PtPtr's, and returns the Euclidean distance between the two points (the code for the

function wiil be shown in Fragment A3).

The operation of procedure ApproxTSTour is straightforward. The only data structure it uses
besides the array PtArr is an array Visited[PtPtr] of boolean; Visited[!] is true if and only if point | has
already been visited in the tour. The routine’s first action is to initialize every element of that array to
false and then choose the first point to be visited as PtArr{NumPts] (the last point in the array). Itthen
goes into a loop in which it selects the next NumPts — 1 points on the tour. To select each point it
finds the closest point not yet visited, and then makes that point the current point. The writeln
statements produce a description of the tour on the output file; they were not actually present in the
version used for the timings and will not henceforth be shown in the program fragments. The
program is simple; excluding lines that contain only beqin, end or writein statements, it contains only

thirteen execgutable lines of code.

27 April 1881 Writing Efficient Code .5-

procedure ApproxT3Tour;
var I, J: PtPtr;
Visited: array [PtPtr] of boolean;
ThisPt, ClosePt: PtPtr;
CloseDist: real;

begin

(* Initialize unvisited points *)

for I := 1 to NumPts do
visited{1] := false;

. (* Choose start point as NumPts *)
ThisPt := NumPts;
Visited[NumPts] := true;
writeln('First city is ', NumPts);

(* Main loop of nearest neighbor heuristic *)
for I := 2 to NumPts do

begin -
(* Find nearest unvisited point to ThisPt*)
CloseDist := maxreal;

for J := 1 to NumPts do
if not Visited[J] then
if Dist(ThisPt, J) < CloseDist then
begin
CloseDist :=
ClosePt := J
end;
(* Report closest point *)
writeln(’'Add edge from ', ThisPt, ' to ', ClosePt);
Visited[ClosePt] := true;
ThisPt := ClosePt
end; :
write('Add edge from ', ThisPt, ' to ', NumPts)
end; '

Dist(ThisPt, J);

Fragment A1. Original code.

The main for loop of the program is executed N - 1 times, and contains an inner loap that is itself
executed N times; the total time required by the program will therefore be dominated by a term
proportional to N2, The Pascal running time of Fragment A1 was observed to be approximately

47.0N2 microseconds {details on measurements of the running time can be found in Appendix I.)

We will now modify the program to increase its speed. As we do so, we should concentrate on the
inner loop {for J 1= 1 to NumPts dg ...), because statements in that foop are executed N2 - N times,
while all other statements are executed at most N times. The first thing that we might notice is that the
reat result of Dist(ThisPt,J) can be caiculated twice for each distinct value of J in the inner loop. We

will instead calculate it just once, store it, and then use that stored value twice. Since this can cut

27 April 1981 Writing Eificient Code -6-

down the number of distance calculations by a factor of two, we might expect it to cut the run time of
the program almost in half. The modified code is shown in Fragment A2; it stores Dist{ThisPt,J) in the
real variable ThisDist. All the lines that have been changed from Fragment At are marked with a

vertical bar.

begin |
ThisDist := Dist(ThisPt, J); ‘ i
. if ThisDist < CloseDist then }
begin
CloseDist :=
ClosePt := J
aend
and]

ThisDist: !

Fragment A2. Store ThisDist.

When | first made this change ! was eagerly waiting to see a factor of almost two squeezed out of
the runtime, and | was shocked to see it drop from 47.0N? microseconds only to 45.6N?
microseconds! After | observed these times, though, it was easy to explain what had happened. The
then clause of the inner if statement is executed very rarely, so in Fragment A1l the subroutine Dist
was usually called only once per loop! Specifically, we can show analytically that the average number
of times that the then branch is executed when there are M points left unvisited is

HM =1+ 1/2+1/3 + 1/4 + ... + 1/M,
which is called "the M-th harmonic number” and is approximately equal to the natural logarithm of M

(Hmoo
Section 1.2,10 of Knuth [1968}. Empirical observations that confirm this analysis can be found in

is about 7.5). For a more detailed analysis of this fascinating combinatoriai problem, see

Appendix I. This example illustrates a common experience in writing efficient code: optimizations that
we expect to lead to a big time savings often make but a small difference. Even though this
improvement did not vield a great time savings, it did identify an important part of the problem:

computing the distances between pairs of points.

ls there any way we can improve the distance calculation procedure Dist shown at the top of
Fragment A3? Unfortunately it appears that we cannot; that procedure expresses the mathematical
definition of Euclidean distances very succinctly. We can, however, solve a different problem more
efficiently: since all we ever do (in this procedure} is compare the relative magnitude of two distances,
we do not need to take the square root of the sum of the squares before we return the result. That is,
we can compare the squares of the distance to decide which point is closer; this relies on the

monotonicity of the square roet function. The resulting code is shown at the bottom of Fragment AJ.

27 April 1981 Writing Efficient Code .7

function Dist(I,J: PtPir): real;
begin ' :
Dist := sqrt(sqr(PtArr[I].X-PtArr[J].X) +
sqr(PtArr[1].Y-PtArr{J].Y))
end;

function DistSqrd(1,J: PtPtr): real;

begin

DistSqrd := sqr(PtArr[I].X-PtArr[J].X) +
sqr(PtArr[I]J.Y-PtArr(Jd1.Y)

end;

ThisDist := DistSqrd(ThisPt, J); 1

Fragment A3. Remove square roots.

This improvement does indeed lead to a substantial time savings: while Fragment A2 required
45.6N2 microseconds, Fragment A3 requires only 24.2N? microseconds. This difference is almost a
factor of two. Since remaving (;‘) = N(N-1)/2 square roots saved 21.4N? microseconds, we can

deduce that each square root required about 43 microseconds.

There is stilt one glaring deficiency in the organization of the program. Suppose we are sciving the
thousand-city problem and we have only ten unvisited cities; how do we find the closest city to ThisPt?
We look at all one thousand cities, only to find for most of them that they have already been visited. 1t
would be more efficient for us to keep track of the unvisited cities in a more direct way, so we could
ignore the visited cities after having visited them. This is accomplished in Fragment A4, whichis a
complete rewrite* of Fragment A1, incorporating the changes of Fragments A2 and A3. The array
UnVis contains integer pointers (that is, PtPtr’s) to unvisited members of PtArr; specifically, the
unvisited cities can always be found in UnVis[1..HighPt]. The overall structure of the routine is almost
unchanged. The initialization is somewhat different, and the structure of the inner loop is very
different. the for statement runs from 1 to the current number of points (NumPts}), and no if test is
required. When the closest point has been identified it is swapped with the point in UnVis[HighPt);

this maintains the invariant condition that all unvisited cities can be found in UnVis[1..HighPt].

4This is the most substantial change we will make to the Pascal program, and indeed the most substantial kind of change
that falls under the heading of "writing efficient code”. This change might be better classified as a selection of data structures.

27 April 1981 Writing Efficient Code -8-

procedure ApproxTSTour;
var
I: integer;
UnVis: array [PtPtr] of PtPtr;
ThisPt, HighPt, ClosePt, J: PtPtr;
CloseDist, ThisDist: real;

procedure SwapUnVis(I, J: PtPtr);
var Temp: PtPtr;

begin
Temp := UnVis{I]; "
UnVis{I] := UnVis{J];
UnVis{Jd] := Temp
end;

begin

(* Initialize unvisited points *)
for I := 1 to NumPts do
UnVis[I] := F;

(* Choose start vertex as NumPts *)
ThisPt := UnVis[NumPts];
HighPt NumPts-1;

(* Main loop of nearest neighbor tour *)
while HighPt > 0 do
begin
(* Find nearest unvisited point to ThisPt *)
CloseDist := maxreal;
for I := 1 to HighPt do
begin
ThisDist := DistSqrd(UnVis[I],ThisPt);
if ThisDist < CioseDist then
begin
ClosePt := I;
CloseDist :=
end
end;
(* Report this point *)
ThisPt := UnVis[ClosePt];
SwapUnVis(ClosePt,HighPt);
HighPt := HighPt-1
and '
end;

ThisDist

Fragment A4. Convert boolean array to pointer array .

The result of this change is to decrease the running time from 24.2N? microseconds to 21.2N2
microseconds: it cut the ldop overhead in half and eliminated testing, but intraduced a level of indirect

addressing {through the array UnVis) that was not previcusly present.

27 April 1981 Writing Efficient Code -9-

From this point on we wili concentrate on the inner for loop, which is responsible for almost all of
the time. From our knowledge that the if test is rarely successful, we can deduce that most of the run
time is spent in the subroutine DistSard. To reduce its time, we will rewrite its body in line, which
eliminates the overhead of the procedure calls. We then observe that some invariant expressions are
reevaluated each time through the loop (namely, the array indexing of PtArr[ThisPt]), so we instead
assign those outsu:le the loop to the real variables ThisX and ThisY. The resulting code is shown in

Fragment AS; its running time is 14. ON?2 microseconds (a reductlon of 7.2N2 from Fragment Ad).

(* Find nearest unvisited to ThisPt *)
ThisX := PtArr{ThisPt].X: |
ThisY := PtArr[ThisPt].Y; ‘ |

CloseDist = maxreal;
for I := 1 to HighPt do
begin

ThisDist := sqr(PtArr{UnVis[I]].X-ThisX) |
+ sqr{PtArr[UnVis[I]].Y-ThisY); |
if ThisDist < CloseDist then
begin
ClosePt := I;
C1oseD1st 1=
and
and;

ThisDist

Fragment AS. Rewrite procedure in line and remove invariants.

We can now see precisely where the time of the program is spent. When M cities are unvisited, it
calculates ThisDist M times, makes M comparisons with CloseDist, and then executes the then branch
HM times, on the average. Since the HM term is too small to worry about {remember, it is 7.5 out of
1000) and all M comparisons seem necessary, we had better concentrate on calculating ThisDist. 1t
contains two terms; is there some way we can reduce them to one? Such a reduction is shown in
Fragment A6: we first compute the x-distance from the I-th point to ThisVert, and if that alone is
greater than CloseDist, then we need not examine the y-distance. (Because the second term is

positive, it can only increase ThisDist.)

ThisDist := sqr(PtArr[UnVis[I]].X-ThisX);
if ThisDist < CloseDist then
begin
ThisDist := ThisDist + sgr(PtArr[UnVis[I]].Y-ThisY);
if ThisDist < CloseDist then
begin N
ClosePt := I;
CloseDist :=
and
end |

ThisDist

Fragment A6, Delay computing y-distance.

27 April 1981 Writing Efficient Code -10 -

Fragment A6 will be faster than Fragment A5 if the x-distance alone is usually sufficient to discard
the point from consideration. A heuristic analysis suggests and experimental evidence confirms the
conjecture that the number of times the y-distance must be considered is only about 2.25M"2, where
M is the current number of points; thus for 1000 points, only about 70 need have their y-values
examined. (Details on the number of y-values examined can be found in Appendix .} The empiricaily
observed runnir_lg time of Fragment A6 confirms the efficacy of the approach: it reduced the running

time from the 14N microseconds of Fragment AS to 8.2N2 microseconds.

Fragment A6 appears to be the best we can do with the current structure, s0 we are going to have
to be really sneaky. to squeeze out any more time. We know that most of the time is going to
computing a difference and product of real numbers; is there any way to reduce that?® We can now
use the fact that we know that integer arithmetic is faster than real arithmetic on many machines, and
convert all of the arithmetic from real to integer. The reader should complain that the cost difference
is there for a good reason: real arithmetic solves a different problem! Henceforth we can advertise
this program as giving only an approximate version of the approximate nearest neighbor tour, but we
can deduce from a larger context that the approximation will not be far off (we will not go into the

details here).

The specific mechanism of Fragment A7 is to copy the points in PtArr (which we will assume have
each coordinate between 0 and 1) to the arl:ay IntArr in which each coordinate is in 1..10000. We then
perform all operations in this integer domain. Fragment A7 defines types Smallint (for the Small
Integer coordinates) and Bigint (for the sum of squares of differences of coordinates). The resulting
program is shown in Fragment A7; its run time is 7.5N? microseconds, a reduction of .7N2

microseconds {or about ten percent).

5One way 1o reduce the cost is to replace the multiplication by taking an absoclute value (we then have the x-distance itself
rather than its square) and compare that to the distance to ClosePt (not the square of that distance). On the particular system
used for this test, the cost of computing an absclute value is as much as the cast of a square, so we did not fallow this path. 1t
would have been beneficial en machines without fast multipliers.

27 April 1981 Writing Efficient Code -11-

procedure ApproxTSTour;

type
Smalllnt = 0..10000;
BigInt = 0..10000000000;
IntPoint = record
X, Y: Smalllnt
and;
var

I: integer; -

UnVis: array [PtPtr] of PtPtr;
ThisPt, HighPt, ClosePt, J: PtPtr;
CloseDist, ThisDist: Biglnt;
ThisX, ThisY: Smalllnt;

IntArr: array [PtPtr] of IntPoint;

procedure SwapUnVis(I, J: PtPtr);
+ |nchanged ***

begin :

(* Build IntArr * ‘

for I := 1 to NumPts do
bagin
IntArr[I].X
IntArr[I].Y
end;

round(PtAre[I].X * 10000);
round(PtArr[I].Y * 10000)

»** The remainder of the code is changed as follows.

«* * The builtin function "maxreal” is replaced by "10000000000".
=* = Rafaerences to PtArr are replaced by IntArr.

end;

Fragment A7. Convert reals to integers.

It is important to realize that the fact that real arithmetic happens to be slower than integer
arithmetic is machine-dependent. The above change could actually siow the program’s performance
on some architectures, while on other machines (especially minis and micros) it could lead to a
savings of one or two orders of magnitude. Regardless of that possible savings, though, Fragment A7
has opened to us another opportunity for time savings: we can now remove the level of indirection
imposed by the UnVis array. Since we copied aver our new version of the points into IntArr, we can
now permute those to keep all the unvisited cities in IntArr[1..HighPt], and do away entirely with the
array UnVis. (Note that we did not before have the freedom to aiter the values in PtArr.) The resulting
code is shown in Fragment A8; its running time is 6.9N2 microseconds, which is another improvement

of about ten percent,

27 Aprit 1981 Writing Efficient Code -12-

(* Find nearest unvisited to ThisPt *)
ThisX := IntArr[ThisPt].X; l
ThisY := IntArr{ThisPt].Y; i
CloseDist := 10000000000;
for I := 1 to HighPt do
hegin
ThisDist := sqr(IntArr[I].X-ThisX}; |
if ThisDist < CloseDist then
begin '
~ThisDist := ThisDist + sqr(IntArr[I].Y-ThisY); |
if ThisDist < CloseDist then
begin
ClosePt := I;
CloseDist :=
and

ThisDist

end
end;

Fragment A8. Remove UnVisited array.

We now have a fast program. All that usuaily happens in each iteration of the inner loop is an array
access, a subtraction, a multiplication, and a comparison, all of which seem necessary. The only
overhead that does not perform a useful service is that of the for statement itself, which we will now
try to eliminate.® There are two aspects of the fgr statement: it increments | and it tests to see whether
| equals the termination value. Since it seems hard to aveid the cost of incrementing | (although we
will see later that it can be donel), we will try to make the second function faster by finding a better
way io test for termination of the loop. The approach taken in Fragment A9 exploits the fact that
ThisPt is stored in position HighPt+ 1. Because the distance from ThisPt to itself is aiways zero, it
would always be assigned as its own closest point, so we can put the test for loop termination into
that part of the code that is executed only HM times on the average.. The one other change in the
program is that we must be careful to ensure that points of distance zero from ThisPt are indeed
assigned as ClosePt; that involves changing a ">=" to a ">" in two places. The performance of
Fragment A9 is 6.8N? microseconds, a savings of .1 N2 microseconds over the time of Fragment A8, or

tess than a two percent reduction.

6W. A. Wuif {1981)] has pointed out that it our goal were to make the program compile to exiremely fast abiect code under
most slightly-optimizing compilers, then we should foilow a different path at this point. Namely, we could decrease the loop
time by counting down to zere {instead of up to HighPt} and by testing at the end of the loep (using a repeat...until statement);
hoth of these transforms result in source code that is usually compiled much mere efficiently. The fact that IntArr is a vector of
records can complicate both indexing through the array and the cost of accessing; we could reduce those costs by changing
IntArr to XArr and YArr.

27 April 1981 Writing Efficient Code -13.

I :=0;
Startloop:
1 := I+1;
ThisDist := sqr(IntArr[I].X-ThisX);
if ThisDist > CloseDist then goto Startloop;
ThisDist := ThisDist + sqr(IntArr[1].Y-ThisY};
if ThisDist > CloseDist then goto Startloop;
if 1 »>= HighPt then goto EndlLoop;
ClosePt := I;
CloseDist := ThisDist;
goto Startloop;
EndlLoop:

Fragment A9. Putloop control inside inner test.

There are two important facts to note about Fragment A9. The first is that the program does specify
less computation than Fragment A8 -- it does much less loop control. The second fact is that many
compilers would produce substantially faster code from Fragment A8 than F;-agment A9 -- they "know
about” for loops and can compile them quite efficiently.

2.2. An Assembly Program
We saw in the introduction to this section that the nearest neighbor heuristic for approximate
traveling salesman tours is important in many applications. Because of this, it was worthwhile to
improve the run time of a program implementing the heuristic; we have concentrated so far in this
section on doing so by reorganizing the computation in the Pascal language. This is often "good
“enough”, but in certain appiications we might need a program that is faster yet. When this is the
case, we have at least one further hope: we can recode the algorithm in assembiy codé to utilize the
full potential of the underlying machine architecture. Fragment A10 shows how the code of Fragment

A9 can be translated into (a slightly augmented version of) IiBM System/360-370 Assembler language.

UNIVERSITY LIBRARIES
CAFNEG!E—MELLON UNIVERSITY
PITISBURGH. PENNSYLVANIA 15213

27 April 1981

Writing Efficient Code

Registers: CloseDist, ThisDist, I, ThisX, YDist

L ThisX,MemThisX
L CloseDist,Posinf
LA I,Array-8
StartlLoop LA I,8(1) increment [by one record
L ThisDist,0(1I) ThisDist := (X[I]-ThisX)?
SR ThisDist,ThisX »
MR ThisDist,ThisDist .
CR ThisDist,CloseDist if ThisDist > ClaseDist
BH Startioop then goto Startloop
L YDist,MemThisY YDist := (Y[I]-ThisY)?
S YDist,4(I) *
MR YDist,YDist * :
AR ThisDist,¥YDist add YDist to XDist, giving totail
CR ThisDist,CloseDist if ThisDist > CloseDist
BH StartbLoop then goto StartLoop
c I,EndPtAdd if I>=EndPtAdd
BENL EndLoop then gaoto Endloop
ST I,ClosePtAdd ClosePt := 1
LR CloseDist,ThisDist Closaellist := ThisDist
B Startloop goto StartLoop

.14.

EndLoop EQU =

Fragment A10. Rewrite to assembiy code.

This program is almost an exact transliteration of the inner loop of Fragment A3. It assumes that
the array of points is stored as N consecutive (x,y) pairs of fullwords (that is, 32-bit words aligned on a
four-byte boundary). The variabies ThisX and ThisY from Fragment A9 are assumed to be originally
- present in memory location MemThisX and MemThisY. All of the arithmetic in the program is carried

out as 32-bit integers, but that could easily be changed to real numbers.

The primary activity of the main loop of the program s easy to trace: it is centered entirely in the six
lines of code starting at the line labeled "StartLoop”. At that line the reqister variable is incremented
by eight bytes to point to the next point to be tested. The x-vaiue of that point is loaded into the
register variabie ThisDist in the next line of code, and the two lines after that subtract ThisX from the
x-valug and square the difference. The fifth line then compares the squared difference to CloseDist,
and the sixth line does a conditional branch that is almost always taken (that is, all but about 2.25M /2

times when M points are left).

A simple experiment was conducted to compare the speed of the assembly code of Fragment A10

with the speed of the code a typical compiler produces from Fragment A1, Fragment A1 was

27 April 1981 Writing Efficient Code -15.

compiled on an I1BM System/370 under the Pascal/VS compi!er7, and the compiled code and the
code of Fragment A10 were both assigned time costs according to the methodology described by
Knuth [1971] {in which one time unit corresponds roughly to seven-tenths of a microsecond ¢gn an
IBM System/360 Model 67). Fragment A10 had a dominant term of 6.5N? time units, while the
compiled code had a dominant term of 110.833N% Fragment A10 is over 17 times faster than the
compiled code.? The Pascal compiler used in this experiment seemed to achieve roughly the same

level-of optimization as the PDP-10 Pascal compiler used in the previous experiments.g

2.3. What Have We lL.earned?
We have devoted a great deal of effort in this section to a refatively small piece of code. Before
going on to study the general principles underlying this example, we should pause for a moment to

review what we have learned in the exercise.

The first thing that we saw was that this fragment was located in the bottleneck of a system and that
it was indeed worthwhile to improve its running time. It is important that the techniques of this section

be applied only to a bottleneck in an inefficient system.

We then studied the computation as embodied in a series of Pascal procedures. We started with a
simple and correct program and performed a set of transformations that
s preserve the correctness of the progl:am.
e usually increase the /ength and decrease the readability ot the program text, and

¢ decrease the run time of the program.

TThat compiler is !BM Program Number 5796-PNQ (an Installed User Program) ‘and is described in the "Pascai/VS
Programmer's Guide" (IBM Publication Number SH20-6162-0). The program was compiled under Pascal/VS Retease 1.0 on
an {BM System/370 at the University of Texas at Austin on 10 April 1981,

8Th\'-.\ dominant term of 110.833N2 time units can be apportioned among the various activities in the innermost loop of
Fragment A1 as follows. Loop costof "forJ = 1to NumPts'é: 10N"; testing "it not Visited[J]": 6.5N"; cogt of square root in
procedure Disl: 42.5N°; other cost of procedure Dist: 42.833N°; comparing result of Dist to CloseDist: 9.0N".

9The point of this subsection is that atter using the techniques of writing machine-independent efficient code (which gave a
speedup facter of over seven), careful hand-translation into assembly code can make the resulting program even faster {by
over a factor of two). If we are willing to use extremely clever. techniques to exploit the full potential of the underlying
architecture {(and recall that that topic is, explicitly beyond the scope of this paper), then we can achieve even greater
speedups. Fragment A10 requires 8.5N° time units under Knuth's model. We can use the |BM System/360-370 LPR
instruction to replace the MR instruction (of cost B) with a unit-cost absolute value operation; this reduces the pregram run
time to 4.5N° units. A different strategy checks for the x-value being in a currentty valid range by explicitty comparing the x-
value fo tower and upper bounds. Implementing the sirategy by the instruction sequence LA, C, BH. C, BL has average time of
3.25N° time units. Steele [1981] has found a way to implement bounds checking with instructions intended to impiement toops
in 2.75N“ time units {the sequence was LA, L, BXH, BXLE). Loop unrailing can be used to remove most of the cost of the LA
instruction, giving an average run time of 2.25N° units. These technigues are incredibly machine dependent and result in
extremely messy code, but they do yield a program over 2.88 times faster than Fragment A10 and over 49 times faster than the
code compiled from Fragment A1.

27 April 1981 Writing Efficient Code . 16-

The transformations and the transformed programs are summarized in Table 1. One can easily see
that the two major time improvements in the program were A2 -> A3 (removing square roots) and
A4 > A6 (computing distances in line with delayed calculation of y-distance). The transformations
leading from Fragment A6 to Fragment A8 were not as "clean" as the previous transformations, and

had much less impact on the running time (the time of Fragment A9 is about twenty percent less than

the time of Fragment A6},

Fragment Time/ N2

Moditication Time Change
Al 47.0

Store ThisDist 1.4
A2, 45.6

Remove square roots 21.4
A3. 24.2

Convert boolean array to pointer array 3.0
A4, 21.2

Rewrite procedure iniine and remove invariants 7.2
AS, 14.0

Delay computing y-distance 5.8
AB. . 8.2

Convert reals to integers , 0.7
A7. 7.5

Remove unvisited array 0.6
AB. _ 6.9

Put loop control inside inner test 0.1
A9, 6.8

Table 1. Summary of program improvements,

Although the final three transformations did not greatly decrease the Pascal running time, they did
pave the way for an elegant and efficient assembly program. Transform A6 -> A7 (converting reals to
integers) increased the storage of the program and made only a stight difference in time; it was
included primarily as a didactic tool to avoid the intricacies of real arithmetic in the assembly code. It
did open the way for A7 -> A8 {removing the UnVisited array), which reduced the overhead in the
resulting assembly code. Transform A8 -> A8 (loop control inside the inner test) led to an efficient
inner loop in.the assembly code. The part of the inner loop that is usually executed contains only six
lines of assembly code. Calculations showed that for large vaiues of N, the assembly code of
Fragment A10 is over seventeen times faster than the code a typical compiler produced from the
Pascal Fragment A1. This efficient program was easy to code from Fragment AQ; it would be
extremely difficult to achieve an assembly program with comparable efficiency by coding directly from

Fragment Al.

27 April 1981 Writing Efficient Code -1

1. Introduction

Research on the issue of efficiency in software systems has come from two primary directions. On
the "low end", work has focused on compilers that produce code that is as good as that produced by
experienced assembly coders (see, for instance, Wulf et al (1975]). On the "high end"”, researchers
have examined the problems of designing efficient algorithms and data structures. The implicit
understanding in both camps has been that the two endeavors together cover the complete range of
activity needed to produce efficient programs.2

The thesis of this paper is that the above understanding is false. In particular, | propose that there
is an intermediate activity between those two extremes that is necessary in the design of an efficient
program. This activity, which 1 call writing efficient code”, takes as input a high-level language
program that incorporates efficient algorithms and data structures, and produces as output a
program in the same high-level language that is suitable for compilation into extremely efficient
machine code. The operations undertaken at this level are to0 complex for most current and
foreseeable compilers, yet are at so low a level as to be "beneath” most work on algorithms and data

structures.

Practitioners have long worked at the level of writing efficient code, yet there is little written about
the subject in most discussions of efficiency in software systems. The purpose_of this paper is t0
describe this activity to software engineers interested in efficiency. In Section 2 we will study the
activity in its appliéation to a subroutine that arose in a real system; by manipulating the code we can
decrease the program’s run time by a factor of more than six. In Section 3 we will. take a more
systematic view of the field, describing both a set of rules for making code more efficient and a
methodology for applying those rules. Sections 2 and 3 provide two orthogbnal views of the same
subject; the reader may read them in either order to suit his taste, Section 4 contains a brief survey of

other work, and conclusions aré offered in Section 5.

This paper assumes that the reader has an extensive packground in reading and writing code in a
high-level computer janguage. The tools that we will examine are like the surgeon’s scalpel: they are
very useful when applied in the right circumstances but disastrous if applied inappropriately. Their

proper abplication must therefore be grounded in much programming experience. A background in

2|t is interesting to note that representatives from the two extremes have upon accasion attached different weights to the
relative imponance of the two endeavors. Baase [1978, p. 27] wriles in her algorithms text that "since the total execution time
is of the same order of magnitude as the number of basic operations done, we are justitied in counting basic operations and
ignoring bookkeeping and implementation details”. Wulf et a! [1975, p. 124] observe in their description of an optimizing
compiler that "all the fancy optimization in the world is not nearly as important as careful and thorough exploitation of the
target machine”.

27 April 1981 Writing Efficient Code -2

algorithms and data structures, assembly language programming, and techniques for analyzing the
correctness and efficiency of programs would be usefu! in reading parts of this paper, but it is not
necessary. In particular, the paper never assumes much background along these lines for mere than

a few paragraphs at a time, so the reader not versed in these areas will not suffer a great deal,

2. An Example _

In this section we will study the (in}famous Traveling Salesman Problem: our input is a set of N
points in the plane {which we often think of as cities), and we must produce as output a minimal-
length tour of the points. A tour of the cities is defined to be a list of the cities in which each city
appears exactly once; the length of the tour is the sum of the distance from the first city to the second
plus the distance from the second to third and so on, finalty ending with the distance from the N city
to the first. A set of points is shown in Figure 1a, and their traveling salesman tour is shown in Figure
1b. This problem arose in the context of scheduling a mechanical plotter to draw marks representing
approximately 1100 points: we would like to plot the points in an order that does not waste much time

moving from one mark to the next.

® 8 .
[
» . o .
. - .
.
.
a.) Point set. b.) An optimal tour. ¢.) Nearest-neighbor tour.

Figure 1. A pgint set and two tours.

The problem of finding a travelling salesman tour of a set of points with absolutely minimal total
length has been studied for almost a hundred years and is still an open probiem; many think that
some day we will be able 1o prove that one cannot efficiently find an optimal tour. (See, for exampie,
Lewis and Papadimitriou [1978].) We will therefore be concerned with finding a relatively good, if not
absolutely optimal, tour; this is ideal in the above application, and appropriate in many other

applications. The following heuristic algorithm is known to give tours whose lengths are usualily quite

27 April 1981 Wwriting Etficient Code -7 -

It is important to keep in mind the purpose of studying the assembly code. It was not to illustrate
any sophisticated assembly coding techniques; Fragment A10 is & straightforward transiation of
Fragment A9. Rather, the reason was to show the interaction of machine-independent and machine-
dependent coding techniques: even if our original goal had been to implement the assembly
program, we would have been wise to perform the high-level changes before considering low-level

issues.

The above discussion has been in a rather abstract context; we will now discuss the problem in the
two concrete applications mentioned at the start of this section. In the first application we had to
write a Pascal program that was executed on thousand-city problems several dozen times per day
over a period of a few weeks; we used the program of Fragment A6 (the nature of some of the inputs
would not allow the conversion from reals to integers). The changes reduced the run time from
approximately haif an hour per day to less than five minutes per day. In the second application we
had to develép a Fortran program that would be executed on thousand-city problems around a dozen
times per day over approximately a one-year period. Because the Pascal if statements had to be
implemented as gotos in the available Fortran, the basic structure of Fragment A9 was used; again,
the reals were not converted to integers. in both applications the original clean code was left in the
program, along with documentation showing how the dirty program was derived from the clean

program.

To summarize this section, our work on the Nearest Neighbor Heuristic has shown us the following.
o An increase of over a factor of six in the speed of a particular Pascal program.

 An efficient assembly language implementation of the Pascal program that is seventeen
times faster than the object code produced by a typical compiler.

¢ A methodology for increasing a program’s speed while preserving its correctness:
transformations at the source program level. '

3. A Setof Tools

In Section2 we saw one particular example of writing efficient code in great and gory detail. In this
section we will take a different view, and study a number of general principles. In Subsection 3.1 we
will consider exactly when one should apply these toois, when they are best left aione, and when
other tools are more appropriate for the job at hand. With this as background, we discuss some
techniques for modifying data structures in Subsection 3.2 and technigues for modifying code in

Subsection 3.3. Subsection 3.4 then provides a retrospective view of the techniques.

W MDA VTIY DINBIG G2 1w Ly s e sy m sy

arcacs a alobal svstem ciock. To measure the time taken by a routine one merely stores

27 April 1981 Writing Efficient Code -18.

3.1. When To Bother

The efficiency of a program is secondary when compared to the program's correctness: it is nice if
a program is fast, but it is essentiél that it does what it claims to. For this reason among many others,
efficiency should usually be a minor concern during the design and development of a program.
Rather, the primary concerns of the programmer during the early part of a program's life should be
the overall organization of the programming project (facing the issues described by Brooks [1975])
and broducing disciplined and correct code (using the techniques of Kernighan and Plauger [1978],
for instance). Unless one knows in advance with certainty that efficiency will be .a major concern,
efficiency should be almost ignored at this stage in the design'®; Kernighan and Plauger [1978,
Chapter 7] present a number of programs that underscore the point that "premature optimization is
the root of all evil". Indeed, statistics given by Kernighan and Plauger [1976] show that most of the
programs in their bodk spend the vast majority of their time (upwards of seventy percent) performing
input and output; any optimization of their computing time would have little impact on the overall
efficiency of those programs. Deliberately ignoring efficiency early in the program’s life should
greatly increase the chances of achieving on schedule a carrect and easily maintained program.
Furthermore, in many contexts, that clean program is often "efficient enough” for the particular

application.

Suppose, though, that you proceed as above and rapidly produce a correct and readable program
that takes an enormous amount of time -- what do you do then? The ghvious next siep is to modify the
parts of the progrém you "know in your heart” are consuming all the time. The only probiem with this
approach is that programmers are notoriously bad at guessing what parts of the program are the real
resource hogs! The correct next step, therefore, is to instrument the program to gather data on what
parts of the program take all the time, and then focus one’s attentich on those parts. There are a

number of different ways by which statistics on program usage can be gathered, including the

frllruarins

27 April 1981 Writing Efficient Code .20-

Once the programmer has identified the resource hogs in his program, it is time for him to bring to
bear his two primary programming tools in the never-ending battle against siow programs.11 The first
tool is the field of data structures. Brooks [1975] has eloquently stated the importance of data
structures: "representation is the essence of programming”. By reorganizing the representation of
data, one can often drastically reduce the time required to operate on it. We will return to the issue of
data structures in Subsection 3.2. The second tool is the field of aigorithm design. By changing the
underlying téchnique used to solve a problem, one can often achieve tremendous savings in time.
For instance, changing a sequentiai search subroutine to binary search will reduce the number of
probes required to search a sorted N-element table from about N/2 to just log, N; for N = 1000, this is
a reduction from 500 to 10. Bentley {1979] provides a survey of how proper algorithm design can lead

to similar savings for many problems.

27 April 1981 Writing Efficient Code -21-

the code, it was spending almost seventy percent of its time in the system’s memory
allacator! '

Further investigation revealed that most of this was used in allocating one particular kind
of node (more than 68,000 times, with the next most popular node being allocated around
2000 times). | added the minimal bookkeeping necessary to keep my own queue of free
nodes of this particular kind, and reduced the memory allocator's share of the time to
about thirty percent.

There were three benefits of this change:

1. less time in the allocator (it's a circular list with-a roving pointer),

2. less memory fragmentation (our aliocator doesn't compact), and

3. now that the statistics aren’t overwhelimed by the allocator's share, | can find
places that need to be sped up with sophisticated algorithms or data structures.

On the other hand, it would not be worth my time to provide my own bookkeeping for every
kind of node | allocate, so | save programming effort on anather front.

To make a long story short, by spending a few hours monitaring his program and then making a small
change, Van Wyk was able to reduce the program’s run time to about forty-five percent of what it was
previously. (We will see in the next section that Van Wyk's modification can be viewed as an instance

of SpaceQFor-Time Rule 3 and Procedure Rule 2.)

3.2. Modifying Data Structures

In this section we will study techniques that increase the efficiency of a program by slightly
modifying the program’s data structures. This topic is included for compieteness, but will not be
emphasized as mdch as the section on modifying code because these techniques are often taught in

courses on data structures.

The best changes to make to a data structure are, of course, those that reduce both the program’s
time and space. A host of data structure texts (see, for example, Knuth {1968, 1973] and Standish
[1980]) describe many sophisticated structures that can replace their simpler cousins and thereby
reduce both the time and space requirements of a program. Throughout the remainder of this
section, though, we will take a much more microscopic view of data structures, and try to find the best
way to impiement a particular structure once it has been chosen to represent our data. At this low
level there are few changes that reduce both program time and space; most changes trade one

resource for the cther.

We will start our study by investigating four techniques that decrease a program's time
requirements by increasing the amount of space the program uses. In general, they trade space for
time by storing redundant information. The first such rule is the following.

Space-For-Time Rule 1 -- Data Structure Augmentation: The time required for

27 April 1981 Writing EHicient Code -22 -

common opefations on data can often be reduced by augmenting the structure with extra.
information or by changing the information within the structure so that it can be accessed
more easily. ’

The example of Section 2 provides two' instances of such changes. In changing Fragment A3 to A4
we reduced the time spent in scanning bits by increasing the storage required to one pointer per word
(rather than one bit). In removing the indirect addressing of Fragment A7 we duplicated an array in
Fragment A8. Such changes are common when dealing, for instance, with linked lists. If we know
that there are going to be many changes near the end of the list, then we can augment the structure
with an explicit pointer to the end of the list. Likewise, if we know that we will often access the
predecessor of an element, then instead of searching for the predecessor from the front, we can use
a doubly linked list and access the predecessor immediately. In Loop Rules 2 and 3 we will see a kind

of augmentation that involves adding a "sentinel node” to a data structure.

The next tradeoff is perhaps the one used most commonly with the greatest resulting savings in
time.

Space-For-Time Rule 2 -- Store Precomputed Results: The cost of recomputing an
expensive function many times can coften be reduced by computing the function only once
and storing the results in a table. Subsequent requests for the function are then handled
by tabie lookup rather than by computing the function.

We already saw a very simple application of this rule as we changed Fragment A1 to A2 by computing
the distance between points only once and storing it in the variable ThisDist (which can be viewed as
a one-element table). A more interesting application oceurs if we have a program that repeatedly
computes Fibonacci numbers, as happens, for instance, in Fibonaccian search {see Knuth [1973,
Section 6.2.1]). Recall that the mathematical definition of the Fibonacci numbers is given recursively
as

Fib(1) = 1, Fib(2) = 1, and
Fib(N) = Fib(N-1) + Fib(N-2) for N> 2;

the first eight Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21. [t is quite easy to translate the above

recursive definition into the Pascal-like subroutine of Fragment B1,

27 April 1981 Writing Efficient Code .93

function Fib(N: integer): integer;

var A, B, C, I: integer;

begin

if N<1 or N>Max then return O0;

if N<=2 then return 1;

A :=1; B := 1;

for I := 3 to N do
begin
C :=

A+ B:
A := B;
C

Fragment B1. Fibonacci numbers.
Note that subroutine Fib returns 0 if its input parameter N is less than 1 or greater than the upper limit
Max. If this subroutine were in the time bottleneck of a program, then we could replace it by a table

defined as
var Fib: array [1..Max] of integer;

and replace each call of Fib(N) by the simple access to Fib[N], assuming that we have ensured that N
is in 1.Max. {We will return to this approach when we study Space-For-Time Rule 4.) Bird [1980]
discusses storing precomputed results in the general context of recursive programs, and Lisp

programmers will recognize this technique in MEMO functions.

The next rule is an extension of the previous rule that has many applications throughout computer
science.

Space-For-Time Rule 3 -- Caching: Data that is accessed most often shouid be the
easiest o access.

This rule is used in computer architecture, for instance, by having a cache in the memory system that
stores words that have been recently accessed. When a request arrives for a particular word, the
memory system first checks to see if the desired word is in the cache, in which case it can be returned
immediately, without the need for the costly address mapping and access to main memory. The same
idea is used in searching sequential fists by moving each item as it is found closer to the front of the
list; items that are retrieved often tend to be near the front of the list, so they are found quickly (see
Knuth [1973, Section 6.1]). Jalics [1977, p. 140] describes an application in which merely
remembering the last item retrieved from a table was sufficient to answer 98% of the queries and
reduced the time in those cases from 2004 instructions to 4 instructions. Van Wyk’s storage allocator
described in Section 3.1 is another nice example of caching: he uses a special scheme for the most

commonly used kind of node and a general scheme for the rest.

27 April 1981 Writing Efficient Cede - 24 -

As a more sophisticated application of caching, consider the problem of implementing a
computerized dictionary so a program can ensure that every word in an English manuscript file is
indeed in the dictionary. The huge size of the language (some dictionaries contain half a million
words) dictates that most words must be stored in a secondary memoary, but caching (for instance)
the one thousand most frequently used English words in main memory would make accesses to the
secondary store rare for many documents. A strategy similar to this was used by Peterson [1880] in a

spelling correction program.

The next rule is often used in conjunction with Space-For-Time Rule 2 (Storing Precomputed
Results).

Space-For-Time Rule 4 -- Lazy Evaluation: The strategy of never evaluating an item
until it is needed avoids evaluations of unnecessary items.

Note that this rule counters the well-known proverb by advising the programmer "never do today what
you can put off till tomorrow™. For a simple example of lazy evaluation, we will return to the problem
of computing Fibonacci numbers that we studied under Space-For-Time Rule 2. We saw there that a
subroutine that computes a Fibonacci number can be replaced by a program that first computes all
passible desired numbers and then stores then all in a table. This technique, though, does much
unneeded work if we never access more than the first few Fibonacci numbers. Fragment B2 reduces
that cost of initially evaluating all possible numbers by evaluating each Fibonacci number once and

only once, as it is needed.

function Fib(N; integer): integer;
var I: integer;
static TopGood: integer (initially 2); _
GoodFibs: array [1..Max] of integer (initially [1,1]):
begin
if N<1 or N>Max then return 0;
if N>ToepGood then
begin
for I := TopGood+l to N do
GoodFibs[I] := GoodFibs{I-1] + GoodFibs[I-2];

TopGood := N
end;
return Goodfibs[N]

end;
Fragment B2. Lazy evaiuation of Fibonacci numbers.

In the above fragment the static variables TopGood and GoodFibs have the invariant relation that

GoodFibs{1..TopGood] always contains the first TopGood Fibonacci numbers.

To illustrate a more subtle application of lazy evaluétion. we will consider two examples. The first
was supplied by Al Aho [1980], who had constructed a very efficient table-driven program to locate a

given pattern in a long string. The size of the table was a fast growing function of the length of

27 April 1981 Writing Efficient Code -25-

pattern, but after the table had been built, the string couid be processed very quickly. Unfortunately,
his program spent approximately thirty seconds merely'building the table. When he replaced thatby a
lazy evaluation of the table (that is, his program evaluated each table element as it was needed), the

run time of the entire program was less than half a second.

A second application of lazy evaluation was supplied by Brian Kernighan {1981]. When he
monitored the TROFF program (a Bell Laboratories document formatter}, he found that approximately
twenty percent of the run time of the pfogram was devoted to calculating the width of the current line
after each input character, and also observed that the width was rarely accessed. He theretore
changed the program to store the current line, and calculated the width from that repregentation on
the few occasions that the width was needed. This change was quite easy to incorporate into the

program, and reduced its run time by twenty percent.

We will now study two techniques that decrease a program'’s space requirements; they both trade
time for space by recomputing information from compact representations.

Tinie-For-Space Ruie 1 -- Packing: Dense storage representations often decrease
storage costs by increasing the time required to store and retrieve data.

The classical example of packing is the representation of integers. On the 1BM System/360-370, for
example, integers stored as character strings require eight bits per decimal digit, but can be read and
written to external media without change. ‘The "packed decimal” format requires four bits per digit,
while a binary representation requires only approximately 3.3 bits per decimal digit. These three
- representations illustrate three levels of packing: none at all, an intermediate level, and an optimal

packirng.

For a more sophisticated example of packing we will consider a data structure that arose in a
geopolitical database. The bulk of main storage of the (512K 16-bit word) computer was devoted to
storing a collection of approximately 10,000 records, each of which contained 36 integers. Upon
inspection we found that the vast majority (over 99%) of records had all 36 fieids in the range 0..1000.
We could therefore use only 10 bits to store each integer in all of those records, which allowed us to
put three integers in two 16-bit words, and reduce the size of the record from 36 to 24 words. (The
few records with greater integers were marked with a flag and stored in the old format.) Note that this
method greatly increases the time required to access each integer, but reduces the storage

requirement of a not-inefficiently-coded system to about two thirds of its previous size.

The literature contains many variants on the basic theme of packing. Peterson [1980, pp. 56 f]

uses packing to stere three characters into one 16-bit word to represent a dictionary in little space.

27 April 1981 Writing Efficient Code -26 -

Morris [1978] shows that one can count very large numbers. of events in very small registers if one is
willing to trade accuracy for space. Knuth {1968, Exercise 2.2.4-18] describes a kind of packing that
allows a linked list with a singie pointer per node to be traversed either front-to-back or back-to-front.
Knuth [1973] uses packing on page 401 to represent a set of primes succinctly, and on page 444 and
in Exercise 6.3-42 to compress text.

It is important to remember that when we pack data we decrease the space required to store data
but usually increase both the time required to access it and the space to store the program that
manipulates it. There are horror stories of programmers who decreased their program’s space by
thousands of words by unpacking small tabies -- the data space they saved by packing was much less
than the code space devoted to manipulating the packed data!l An application of packing that avoids
this pitfall is to pack data in files on secondary storage. This decreases the storage required by the
file, the time required to read and write files, and the time required to translate the data between
internal and external format. Applying this technique, Laird [1981] found that by storing a data
structure of floating point numbers in a packed binary format he was able to read it 80 times faster

than when it was stored in character representation.

The final data structure rule we will examine reduces not the data structure space of a program, but
" rather the space devoted to storing the description of the program itself.

Time-For-Space Rule 2 -. Interpreters: The space required to represent a program
can often be decreased by the use of interpreters in which common sequences of
operations are represented very compactly.

This rule is applied in the development of all large systems, with the mativation not of producing
efficient code but rather of producing understandable code; this is the idea underlying the refinement
of a program into subroutines! If we have an action that is done in many different parts of the
program {perhaps with some minor changes), we describe it once as a subroutine and then call it
many times (perhaps with parameters to describe the changes). This use of subroutines decreases
the storage cost of the program by slightly increasing the time cost (through the procedure call

mechanism and the generality of parameters); we will see in Subsection 3.3.3 that these costs can

often be avoided.

There are many exampies of more complex interpreters. It is typical, for instance, to perform the
jexical analysis of a program text by a finite state machine (FSM). Although an FSM can be
implemented directly in a programming language with either while loops or goto’s, they are often
easier to implement by a smail FSM interpreter (about a dozen lines of code) that executes the FSM

defined in a two-dimensional table. Although the tabie-driven interpreter is (minutely) slower than a

27 April 1981 Writing Efficient Code - 27 -

directly-coded FSM, it offers many advantages: it is easier to define, code, prove correct, and
maintain, and it requires less memory. For details on this approach, see, for instance, Wuif, Shaw,
Hilfinger and Flon [1981, Chapters 1 and 19]. Brooks [1975, pp. 102-103] describes an application in
which an interpreter saved the day by trading a littte time for much space. For an excellent discussion
of the applications and construction of interpreters, see Knuth [1968, Section 1.4.3].12

In this section we have seen a number of ways of trading space and time against one another. It is
important to emphasize that although the descriptions in this section were in particular directions
{time for space or space for time), they can usually be applied in the opposite direction also. For
instance, Space-For-Time Rule 2 (Store Precomputed Results) can be used to reduce space at the
cost of time by recomputing results rather than storing them. The tradecffs we described above were

presented in their typical directions, but all of them can be reversed.

3.3. Modifying Code

in this section we will study techniques for increasing the speed of code. The techniques involve
making local transformations that are almost machine independent. That point is important to
emphasize: we are not concerned here with the best way to accomplish a particular operation on a
particular machine. 1t is a compiler's job to implement a certain computation on a particular

architecture; it is our job to give to the compiler a clean initial computation.

This section isrdivided into four parts, each of which discusses modifying a different kind of
computation. The four types are loops, logic, procedures and expressions. Several of the rules
appear in slightly altered form in more than one place, so it is important to realize that the
classification imposed by the sections is not meant to be absolute; but rather to be a guide for

someone trying to speed up a particular piece of code.

3.3.1. Loop Reorganization

The most often-used efficiency rules deal with loops for the simple reason that the time hogs in
most programs involve loops. (It is awfully hard for code to take a lot of time if it isn’t executed a lot,
and the most common -- although not the only -- way to be executed a lot is to be in a loop.) Because

of this fact, we will first study efficiency rules that deal with loops. Qur approach in this section will be

2An important interpreter in some applications is the machine code provided by the underiying computer architecture. For

instance, in system sorting routines it is typical for the user to specify a sophisticated method far comparing two records. It
would be remarkably time consuming to refer to that specification each time two records are compared, so many sorting
routines compile the specifications into code and them jump to the code to compare two records. This very messy approach of
compiling tables into machine code is occasionatly useful to exploit the full potential of the underlying machine.

s

27 April 1981 Writing Efficient Code -28-

to study individually six rules that each reduce some particular cost of a loop; at the end of the section

we will return to view the six rules as a collection.

The first efficiency rule deais with repeated computation in loops.

Loop Rule 1 -- Code Motion Qut Of Loops: Instead of performing a certain computation
in each iteration of a loop, it is better to perform it only once, outside the ioop.

The reason for this rule is simple: by incurring the cost of the computation just once outside the loop,
we avoid incurring it many times inside the loop. We saw this in the transformation from Fragment A4
to Fragment AS: instead of evaluating PtArr[ThlsPt] X and PtArr[ThisPt].Y each t:me through the loop,
we evaluate them o_nly once and store them in the variables ThisX and ThisY. A similar but more
substantial savings can be achieved in the following program, whose purpose is to multiply each
element of X[1..N] by 537/,

for I := 1 to N do
X[I] := X[I] * exp(sqrt{Pi/2));

Fragment C1. Multiply elements of an array.
instead of repeatedly performing the expensive division, square root, and exponentiation each time
through the loop, we can pe'rform it only once, as in the following code.

Factor := exp(sqrt(Pi/2)});
for I := 1 to N do
X[I] := X[I] * Factor:

Fragment C2. Evaluate Factor once outside the loop.

Not only is this code usually faster, it also makes the purpose of the loop more transparent. We

_should note, however, that this particular efficiency rule is easy to implement mechanicaily, and many

compilers aiready perform this transformation on the code they |::rod1.1c:e.“3
The next rule is almost never implemented by a compiler, because it involves a real {though usually
iocal) change to the computation performed by the program.

Loop Rule 2 -- Combining Tests: An efficient inner loop should contain as few tests as
possible, and preferably only one. The programmer should therefore try to simulate some
of the exit conditions of the loop by other exit conditions.

We used exactly this rule to reduce the cost of termination checking as we transformed Fragment A8

to Fragment AS. An oft-cited application of this rule deals with the following sequential search

3at\n important caveat in Loop Rule 1 is that this transformation can actuaily increase the run time of a program by moving.
code out of a loop that is executed zero times. Baskett [1978] describes a simple way that compilers can avoid this pitfall; we
will see an application of that method in the insertion sort program at the end of this section.

27 April 1881 writing Efficient Code -29 -

program.™
I :=1;
while I <= N cand X[I] <> T do
I := I+1;

if I <= N then
(* The search is successful; T = X[I] *)

Found := true

elsa .
(* The search is unsuccessful; T is not in X[1..N] *)
Found := false

Fragment D1. Sequential search in an unsorted table.
This loop searches through the array X looking for the value T, and terminates in one of two ways: it
either finds T in X[I], or it runs out of valid values of | to investigate. Althcugh it might seem that these

two cases realily are distinct and that both must be handled in the loop, the foilowing program cleverly

simulates the action of "running out of values” by "finding the desired element”.®
X[N+1] = T,
I :=1;
while X[I] < T do
I := I+1;
if I <= N than
Found := true
alse
Found := false

Fragment D2. Add sentinel to end of table.
Note that this version of the program is potentially much faster than the previous version: it contains
only half as many tests. Knuth [1973, Section 6.1] reports that this change reduces the run time of a
carefully coded Mix pregram from ~5C to ~4C, where C is the number of comparisons made. The
program does have one serious problem, though: what about the old value of X[N +1]? We might
have just clobbered an important element of the array, or (even worse), the array X might contain only
N elements and w'e just generated an array index out of bounds. This modification to the program can
therefore only be incorporated if we are careful to ensure that the position is indeed valid and

moedifiable. Notice that this change increases the program’'s speed by decreasing its robustness.

Fragment D2 illustrates a very common application of Loop Rule 2 (and Space-For-Time Rule 1 --

Data Structure Augmentation) to searching data structures: tc avoid testing whether we have

1':"This program uses MeCarthy's conditional and operator abbreviated as camd. To evaluate A cand B, we first test A and
then test B only it A is true. This is necessary in Fragment D1 to avoid accessing X[N + 1] during the last iteration of an
unsuccessful search.

1SNQte that the last four lines of the program could be replaced by the assignment "Found := |1 {= N". The program was
presented in its current form to facilitate processing the search element after it is found; such processing can replace the
assignment "Found : = true".

27 Aprit 1981 Writing Efficient Code -30 -

exhausted a structure, we can augment the structure with a sentine/ at- the boundary in which we
place the object for which we are searching. n a binary search tree, for instance, we could replace
all pii pointers by pointers to a sehtinel node. When we search, we first place the search object, T, in
the sentinel node and proceed as usual. When we find T we then test whether it was in a real node of
the tree or the sentinel node. Knuth {1973] reports in Exercise 6.2.2-3 that this change decreases the
run time of a Mix binary search tree program from ~6.5C to ~5.5C, where C is the number of
combarisons méde. He used a similar technique in Exercise 5.2.1-33 to decrease the times of two
sorting programs from ~98 to ~8B and from ~7B to ~6B, in Exercise 6.4-12 to decrease the run time
of a hashing inner ioop from ~5C to ~4C, and in Exercise 6.1-4 10 decrease the run time of searching
a linked list. On page 160 Knuth describes how sentinels can be used to make a merge program

simpler while slightly increasing its run time.

Loop Rule 2 can also be used in many other ways. For instance, Fragment E1 performs a
sequential search in a sorted table, and was claimed to be more expensive than Fragment D1
because the former makes three comparisons per loop (two of X[i] to T and one to implement the for

loop), while the latter makes only two.

for I := 1 to N do
begin
if X[I] = T then
begin Found
if X[I] > T then
begin Found

tfue; goto Done end;

false; goto Done end;

end;
Found := false;
Done:

Fragment E1. Sequential search in a sorted table.
We can immediately notice that the two comparisons made in the Qe‘gin-_e_m‘ block are similar, and
replace them by the statement "if X[1] >= T then goto Done™, and set Found accordingly outside the

loop. With that change we can also convert the for loop to a while loop, which results in Fragment E2.

I:=1;
while I <= N cand T < X[I] do
I := I+1;
if T <= N cand T = X{I] then
Found := true
else
" Found := false

Fragmént E2. Combine the two comparisons of T to X{i].

With the above code itis easy to put a sentinel at the end of the table (just as in Fragment 02), which

results in Fragment E3.

27 April 1981 writing EHicient Code -31-

X[N+1] = T

I :=1;

while T < X[I] do
I := I+1;

if I <= N cand T = X[I] then
Found := true

else

Found := false

Fragment E3. Add T to end of table.
Because this is a sorted array, we could also have implemented the sentinel by putting the highest
possible key value at the end of the table. It is interesting to note that althaugh Fragment E1 was
criticized for making fifty percent more comparisons than Fragment D1, the slightly modified version

of Fragment E£3 makes only half as many!

The next rule allows us to eliminate some of the overhead in extremely small loops.

Loop Rule 3 -- Loop Unrolling: A large cost of some loops that are anly a few lines long
is in modifying the loop indices. That cost can often be reduced by "unrolling” the loop.

As an example of a loop in which most of the expense is devoted to index overhead, consider

Fragment F1, which places in Sum the sum of the elements of X{1..10].

Sum := 0;
for I := 1 to 10 do
Sum := Sum + X[I]

Fragment F1., Compute the sum of X[1..10].
In each iteration of the loop there is only one “real" operation (the addition), but quite a bit of
overhead (adding 1 to | and comparing | to 10). That overhead is eliminated entirely in the following

code.

‘Sum := X[1] + X[2] + X[3] + X[4] + X[5]
+ X[8] + X[7] + X[8]-+ x[9] + X[10]

Fragment F2. Unrolled sum of X[1..10).

We now have just nine additions and no other loop overhead.

Loop unrolling often decreases program run times dramatically. When a mini- or microcomputer’'s
muitiply instruction is implemented in software rather than in hardware, unroiling the main loop can
easily decrease the subroutine's time by thirty percent. Unrolling is also commoniy used in system
numerical routines such as square root and exponentiation. Instead aof testing for convergence at
each iteration, a numerical analyst can prove that it will take at most k iterations and then unroll the

loop k times.

So far we have only discussed unrolling a loop that is executed a constant number of times; the

technique can also be extended to general loops that are executed the variable N times. To unroll

27 April 1981 Writing Efficient Code | 32

such aloop k tirnes.'we repeat k co'pjes of the code in the main loop, and then test in the control part
whether we are within k of the end of the loop. We must take special care to handie the end values
praperly.

For an example of variable-length loop unrolling, we will return to Fragment E3 (which performs a
sequential search in a sorted table). Two operations are performed in each iteration of the loop: T is
compared to X[i] and | is incremented by one; thus a large share of the loop’s cost is devoted to the

none-too-productive process of incrementing. We can decrease that cost in the following code by

unrolling the loop five times.’®
X[N+1] = T;
I :=1;
loop
if X[I] >= T then begin Last := I; break end;
if X[I+1] »= T then begin Last := I+1; break end;
if X[I+2] >= T then begin Last := I+2; break end;
if X[I+3] »= T then begin Last := I+3; break end;
if X[I1+4] »= T then begin Last := I+4; break end;
I := I+5
repeat; :
if Last <= N cand T=X[Last] then
Found := trus
else
Found := false

Fragment E4. Loop-unrolled sequential search in a sorted array.
Whereas before we had only one "real” operation (comparing an element of X to T) for every
"bookkeeping" operation (adding one to i}, we now have a ratio of five real operations for every
bookkeeping operation. This technique can be applied with any value other than five; we trade
program size for run time. {One might complain that in the above example we must, for instance, add
3to 1 to access X1 + 3]; most compilers, though, implement the instruction with 3 as a compiled offset
from the base I.) One can use exactly this technique to unroll the inner loop k times in the assembly
program A10 of Section 2.2; this would remove the incrementing instruction "LA 1L8(1}" from the loop

and replace the Load instruction with "L ThisDist.j(l})", where j =0,8,16,...,(k-1)8.

To give a feeling for the difference that loop unrolling can make in real programs we will note
several examples. Knuth [1973] shows in Section 6.1 that unrolling a sequential search loop k times
decreases its running time from ~4C to ~{3 + 1/k)C, where C is the number of comparisons made. In

Exercise 6.2.1-11, Knuth uses unrolling to reduce the run time of a uniform binary search of an N-

16In Fragment E4 we use the language construct loop...repeat, which has the semantics of repeating the code it contains in
a loep until a break statement is reached, at which time the program resumes execution at the next statement following the
loop...repeat. This kind of Joop construct is often useful in unralling ioops. Note that if g particular language does not offer this
construct, then its effect can be synthesized by disciplined use of goto statements.

27 April 1981 Writing &fficient Code -33-

element table from ~8.5 log, N to ~4.5 Ii)g2 N. Dongarra and Hinds [1979] present empirical timings
that show that unrolling extremely tight Fortran loops on high-performance machines can often
increase their speed by a factor of up to two. Sedgewick [1975, Appendix A] uses loop unrolling to
reduce the Mix time of a Quicksort implementation from ~10.63 N In N to ~8.57 N In N (see also
Sedgewick [1978}).

Alf of the loops that we have seen so far have the property that the maximum number of iterations is
known before the first iteration (some were known even at compile time). We will now consider a
different kind of example: taking the sum of a linked list of integers. If we use the standard
representation of linked lists, then the loop must access the next node of the list and compare it to nil
for each addition. Although we cannot remove the cost of accessing the next node, we can reduce
the cost of comparison to nil by augmenting the list with a special kind of sentinel node at the end.
That node has the value of zero and a link field that points to the node itself; we then unroll the loop k
times, and test for nil every k iterations. Note that we might make up to k unnecessary iterations of the
loop, but adding zero to the sum will not change the final result. A "seif-pointing” sentinel can often

be used in other applications to unroll "run-time unknown®-length loops.

We turn now to a special kind of loop unrolling whose purpose is not to reduce the cost of indexing
but rather to reduce the need for trivial assignments (that is, assignments of the form I: = J, where |
and J are both simple variables).

Loop Rule 4 -- Transfer-Driven Loop Unrolling: If a large cost of an inner loop is
devoted to trivial assignments, then those assignments can often be removed by repeating
the code and changing the use of variables. Specifically, to remove the assignment | = J,
-the subsequent code must treat J as though it were 1.

The above statement of this rule is quite vague; we will now illustrate its use by studying two examples
in detail. The reader interested in a more detailed study of this technique is referred to the fascinating

paper of Mont-Reynaud [1976].

As our first example of transfer-driven unrolling, we will again consider Fragment B1, which
computes Fibonnaci numbers. Recall that the program'’s only loop consists of a for statement that
contains one assignment (involving an addition) and two trivial assignments. We can remove both of

those trivial assignments by modifying the code as shown in Fragment B3.

27 April 1981 Writing Efficient Code .34,

function Fib(N:integer):integer;
var A,B,I: integer;
begin _
if N <« 1 or N > Max then return 0;
if N <= 2 then return 1;
A :=1; B := 1;
for I := 1 to (N div 2) - 1

begin
A := A+B
B := B+A
end;
if not even(N) then
B := B+A:
return B

end;
Fragment B3. Loop-unrolled Fibonacci numbers.
The invariant of the loop is that before the first assignment is executed, A contains the 21— 13t
Fibonacci number and B contains the 21“‘; it is easy to prove the program correct using that invariant.
Note that while Fragment B1 used a loop control and two trivial assignments for every "real”
operation of addition, Fragment B3 involves only half a loop test for every addition, and that fraction

can be reduced by loop unrélling.

The second example of transfer-driven unroiling that we will study inserts a new node named
ThisNode into a sorted linked list whose elements contain both a Link and Value field. To ease
programming (and increase the speed of the loop), we will assume that the list has been augmented
to contain sentinel nodes at the head and tail whose values are, respectively, less than and greater
than all keys. The code for inserting ThisNode into the list pointed to by Anchor is shown in Fragment

G1.

P := Anchor;
Q := Pr.Link;
while Qt.vValue <= ThisNodet.Value do

begin

P := Q;

Q := Q+.Link
end;

ThisNodet.Link := Q;
P+.Link := ThisNode;

Fragment G1. Insert ThisNode in a sorted linked fist.
This is a standard operation on linked lists in which P is always "one step behind” Q. Note that a
substantial percentage of thé code in the inner loop is devoted to the trivial assignment P:=Q. That
can be removed by unrolling the loop two times and ch_anging their roles so that they "leap frog™ over
one another, first Q in front of P and then P in front of Q. This modification is reflected in Fragment
G2.

27 April 1981 Writing Efficient Code .35.

P := Anchor;
repeat
Q := Pt.Link;
if Qr.Value <= ThisNodet.Value then
begin
ThisNodet.Link := Q;
P+.Link := ThisNcde;

break
end

P ;= Qr.Link;

if P+.Value <= ThisNodet.Value then
begin :

ThisNodet.Link := P;
Qt.Link := ThisNode;
break
end

Toop;

Fragment G2. Remove trivial assignment.
Note that the above code makes only one assignment (involving a Link field} and one test for each

node visited; Fragment G1 involved an extra trivial assignment statement.

To iliustrate the impact of transfer-driven loop unrolling we will again turn to several extremely-well
coded Mix programs of Knuth {1873]. in Exercise 5.2.1-33 he shows that a change similar to unrolling
Fragment G1 to achieve G2 reduces the Mix time from ~6B to ~5B. Exercise 5.2.4-15 reduces the
time of a merge sort from ~10N Ig N to‘-BN_ Ig N, and on page 426 he reduces the time of a binary tree
search from ~7.5C to ~6.5C. The application of this technique to Fibcnaccian search can be found
on pp. 415 and 416. Knuth [1971, p. 124] uses this technique to increase the speed of a binary search
on an IBM System/360 by a factor of more than 2. Another instance of this technique can be found in
Knuth [1968, Exercise 1.1-3].

We will now study an efficiency rule that is not appropriate for programs in a high-level language,
but can often be used to speed up an inner loop in assembly code or in unstructured fanguages such
as Fortran.

toop Rule 5 -- Unconditional Branch Removai: A fast loop should contain no
unconditional branches. An unceonditional branch at the end of a loop can be removed by
"rotating” the loop to have a conditional branch at the bottom.

As an example of this rule, we will consider the typical low-level implementation of the statement while
C do S shown in Fragment H1.

Loop: if not € then goto End;
S
goto Loop:

End:

Fragment H1. Typical translation of while C do S.

27 April 1981 Writing Efficient Code -36 -

If the code for C and S is extremely small, then the cost of the unproductive goto can be a substantial

amount of the time spent in the loop. That cost is removed in the following fragment.

goto Test;
Loop: §;
Test: if C then goto Loop;

End:
Fragment H2. Efficient translation of while C do S.
Note that this transiation contains a new unconditional goto outside the loop but has no uncenditional
branch within the loop (it also avoids inverting the value of C, which can save time in many
implementations). This‘ transformation can be applied to loops other than whilg; for more details on
this transformation, see Baskett [1978]. Knuth [1973] uses this technigue in all of the inner loops in

the text; a particularly interesting example can be found in the organization of Program 6.2.27.

It is important to emphasize that the above rule usually need not and should not be applied in a
high-level language -- many compilers recognize loop constructs as special cases and compile them
very efficiently. By "optimizing” the code one runs the risk of the compiler not recognizing the loop,
which results in a slower and more obscure program. ‘When applied to a very small loop in a low-level

language, though, this technique can often reduce run time by ten or twenty perc:e-nt.17

The next loop rule that we will see is based on the same idea as car-pooling: if two sets of
operations are performing operations on the same set of values, then why shouldn't they "share the
ride" through those values?

Loop Rule 6 -- Loop Fusion: If two nearby foops operate on the same set of elements,
then combine their operational parts and use oniy one set of loop contro! operatians.

The application of this rule reduces the loop overhead withaut impairing the "real" computation that
is being performed. It can often be used when two nearby loops operate on the same data structure

for unrelated purposes, at the price of confusing the code.

So far we have viewed the efficiency rules for loops as acting in isolation; we will now take a
moment to view the rules as a collection. The following list gives the number and name of each of the
rules, and briefly describes what unnecessary computation it eliminates from loops.

1. Code motion out of loops: eliminates repeated computation.
2. Combining tests: reduces the number of tests.

17Although | have tried to avoid entirely low-level language tricks specific to given machines, there is one trick that is so
common as to be worth a brief note. Because on many machines it is easy to compare a value to zero, it is often advantagecus
to restructure a tight loop to "count down to zerp” to facilitate a more rapid termination test (see Knuth [1968. p. 148, Note
10]). indeed, many cemputer architectures provide single instructions that implement counting loops (such as the 1BM
System/360-370 BXLE instruction and the PDP-11 SOB instruction).

27 April 1981 Writing Efficient Code -37 -

3. Loop unrolling: reduces costs of indexing.
4. Transter-driven unroliing: reduces the number of trivial assignments.
5. Unconditional branch removal: removes the unconditional branch at the bottom of

the loop.
8. Loop fusion: shares the cost of ioop overhead.

Each one of the rules eliminates a different kind of unnecessary computation, and together they can
eliminate almost all excess baggage from a loop. We will see in Logic Rute 2 a technique for
eliminating unnecessary iterations of loops, and in Expression Rule 2 a technique for simplifying the

kind of computation in loops.

As an example of how the above six rules work together on a single loop, we will consider the
classical insertion sorting program for arranging the elements of an array in nondecreasing order
shown in Fragment 11 (for more information on insertion sorting, see Knuth {1973, Section 5.2.1] or

Sedgewick [1975, Chapter 1]).
for I := 2 to N do

begin
J := I;
while J > 1 cand X[J] < X[J-1] do
begin
Swap(X[J]1,X[J-1]);
J = J-1
end
end

. Fragment I1. Insertion sort.
' The above program is easy to read and prove correct; in most applications, the program should be left
in exactly the above state. If sorting is in the program's time bottleneck, though, and this is the best
sorting procedure to use (and it is for small values of N), then we are justified in devoting a great deal

of energy to improving the program.

The first improvement we should make is to write the call of the Swap procedure in line, which

results in the following fragment.
for I := 2 to N do

begin
J =1,
while J > 1 cand X[J] < X[J-1] do
begin
T := X[J];
X[3] := X{J-1]:
X{3-1] := T;
J := J-1
and
end

Fragment 12, Swap procedure written in line.

27 Aprii 1981 Writing Efficient Code .18 .

We do this both to eliminate the cbs_t of the procedure call and to allow further time reductions. We
will now try to apply Loop Rule 1 to move repeated computation out of the loop. Careful inspection of
the code shows that the variable T is repeatedly being assigned and then storing the same value; we

can remove those assigns and stores by rewriting the code as shown in Figure 13.

for I := 2 to N do

bagin

J := I;

T := X{I]:

while J < 1 cand T > X[J-1] do.
begin
X[3] := X[JI-1];
J := J-1
end;

X[3] := T

end

Fragment 13. Move operations on T out of loop.
(Note that if the while loop is usually executed zero times, then this code will take longer than
Fragment 12; Knuth [1973] shows how this pitfall can be avoided in Exercise 5.2.1-10 and Program
5.2.2Q, Step 9.)

We next try to apply Loop Rule 2 and combine tests. The inner while loop contains two tests that
can easily be reduced to one by placing a sentinel in the zero™ position of the table; the modified

code is shown in Fragment 14.
X[0] := MinusInfinity:
for I := 2 to N do
begin
J = I; ,
T := X[1];
while T < X[J-1] do
begin
X[J] = X[J-11;
J = J-1
and;
X[J] := 7
end

Fragment 14. Add a sentinel at X[0].

To measure the benefit of the above transformations Fragments i1 through 14 were implemented in
Pascal on a PDP-10 (using the same compiler and processor used in the experiment of Section 2).
Insertion sort is known to require time proportional to N2 In ten runs each on five hundred random
elements, the constants for the four fragments were estimated to be 10.17, 6.43, 4.03, and 3.32
microseconds, respectively (that is, Fragment I1 required approximately 10.17N? microseconds, on

the average). Note that the cumulative effect of the three transformations is to speed the program up

27 April 1981 Writing Efficient Code -39 -

by over a factor of three.'®

We can still apply further loop rules to this program. Loop Rule 3 (Loop Unrolling) can be used to
reduce the cost of the instruction J := J-1 by unrolling the loop some fixed number of times;
because that change is so straightforward, we will not show it here. Loop Rule 4 (Transfer-Driven
Unrolling) is not applicable to this code because it contains no triviai assignments. Likewise, Loop
Rule 5 (Removing Unconditional Branches) is not applicable because we are coding in a high-level
language, but it would certainly be used in any efficient low-level language implementation of the

code.

It is interesting to study Loop Rule 6 {Loop Fusion) as it relates to Fragment 14. On the one hand, it
appears not to be applicable because there is only one loop in the program. On the other hand,
though, we can view it as having been applied already: the two tasks of finding where to place X[l]
and then placing it there might logically be divided into two loops, but our code already performs both
tasks with the overhead of only one loop!

3.3.2. Logic Reorganization

In this section we will study techniques that can decrease the cost of code that is devoted to logic.
In particular, these techniques will focus on efficiency probtems that arise when evaluating the
program state by making various kinds of tests. They all take a clean piece of code and massage it so
that it is less clear but (we hope) more efficient; in other words, they sacrifice clarity and robustness

- for speed of execution.

The first rule for manipulating logic will arise again in a similar context as Expression Rule 2.

Logic Rule 1 -- Exploit Algebraic Identities: if the evaluation of a logical expression is
costly, replace it by an aigebraically equivalent expression that is cheaper to evaluate.

For instance, instead of testing whether "sgr(X) > 0" in an inner loop, we could just as easily test
"XO0" {(because the square of a number is greater than zero if and only if that number is not zero).
Similarly, we could use deMorgan's laws to change the test "~A and ~B" to "~{A or B)"; the latter

might involve one less negation. |n general, we could use many techniques of switching theory to

18Kernigha\n and Plauger [1978, pp. 131-133] study an “efficient” interchange sort that was presented in a programming
text and show that a simple version of the same idea not only requires only half as many lines of Fortran code but is also about
thirty percent taster on randomly generated data. Their simple program was conceptually somewhere between Fragments 11
and 12, its Pascal transliteration was eight lines leng and had a running time of 7.10N™ microseconds. Kernighan and Plauger
present this as an illustration of the principle to "keep it simple lo make it faster™. it is interesting to note that Fragment 14
contains only twelve lines of {relatively simple) code to achieve a speed increase of a factor of two aver their program.
Although this longer and faster proegram might appear to violate the letter of their maxim, it does follow its spirit: the more
complex approach to efficiency they describe results in a program that requires thirty percent more time, while our approach of
applying simple and well-understoed transformations results in a pragram that is faster by maore than a factor of two.

o7 Aprit 1981 Writing Efficient Code .40-

minimize the work required by boolean functions. Operations at this ievel are, however, 'extremely
dependent on the compiler and the underlying machine, so one must be careful that a clever

"optimization” along these lines does not fool one's compiter into generating siower code!

There are more substantial applications of Logic Rule 1 that will reduce the run times of many
programs on most compilers and machines. For instance, in changing Fragment A2 to A3 we used
"strength reduction” to remove a square root. In particular, we wished to compute a boolean variable
telling whether a new point was close'r than the best point so far. We exploited the fact that square
root is a monotone increasing function to show that A > B" if and only it "sqrt(A) > sqrt(B)", which
allowed us to remove the square root from the test. This algebraic technique can often be used to
avoid a function evaluation when we are concerned only about the relative ordering of a pair of
objects {though it can increase bookkeeping). Knuth {1973, Exercise 6.2.1-23] shows how a different
algebraic identity can be used to reduce ternary comparisons to binary and thereby decrease the cost

of a single comparison in comparison-based approaches to searching.

The next rule for dealing with logic allows us to avoid unneeded work after we have already
gleaned enough information to make a decision.

Logic Rule 2 -- Short-circuiting Monotone Functions: If we wish to test whether some
monotone nondecreasing function of several variables is over a certain thresheld, then we
need not evaiuate any of the variabies once the threshold has been reached.

A common application of this rule is in the evaluation of simple boolean formulas. In many languages,
for instance, if we wish to evaiuate "A and B", we can write “A cand B", which evaluates A and then
evaluates B only if A is true. This avoids the evaluation of B if A is faise, which can represent a
substantial time savings. (In the ADA language, this feature is explicitly called "short-circuiting”.) For
a more sophisticated application of the rule, consider determining whether there are any negative
elements in an array of reals. The most naive (and perhaps cleanest) approach sets the boolean
FoundNegative originally to false, and then goes through the array and sets FoundNegative to true if it
observes that a given real is negative. Itis only slightly more work to modify the loop to terminate

precisely at that point, because we can then accurately report that the array does contain a negative.

Logic Rule 2 was essentially the idea we used in transforming Fragment A5 to AS by calculating the
y-distance between a pair of points only after ensuring that their x-distance alone was not sufficient to
discard them from consideration. We will now generalize that idea by examining the problem of
determining whether the sum of the real numbers in X[1..M] is greater than the given real CutOff; we
will assume that the reals in X are known 10 be positive (in Fragment A6, for instance, the

corresponding values were sguares and therefore nonnegative). A straightforward program for this

27 April 1981 Writing Efficient Cade -41 .

task is shown in Fr'agment J1; the boolean variable Greater is true if and only if the sum of the

elements of X is greater than CutOff.

Sum := 0;
for I := 1 to N do

Sum := Sum + X[I]:
Greater := Sum > CutOff

Fragment J1. Sum first then compare.
If it is known that CutOff is usually less than the sum of the first few values of X, then Fragment J2 i5 a

faster means of accomplishing the same task.

I := 1;
Sum := Q;
while I <= N and Sum <= CutOff do
begin
Sum := Sum + X[I];
I = I+1
end;

Greater := Sum > CutOff
Fragment J2. Compare as we sum.
if the cost of compariﬁg Sum to CutOff is relatively high, or if the probability that the loop will be -
terminated early is relatively low, then Fragment J2 can be slower than Fragment J1. The two
fragments are extremes along a spectrum in which we trade the work of additional comparisons for
the expected benefits of early termination of the loop. A middle element of that spectrum is shown in

Fragment J3, in which we perform two additions for every comparison.
I :=1;
Sum := 0;
if odd(N) then
begin
I := 2;
Sum X[1]
end;

while I < N and Sum <= CutOff do
begin
Sum := Sum + X[I] + X[I+1];
I ;= 1I+2
end;

Greater := Sum > CutQOff

LI\)

Fragment J3. Add twice for each compare.

Note the careful preprocessing necessary to apply unrolfing to the above loop.

Logic Rule 2 is especially powerful when dealing with loops that evaluate monotone logical
functions. It is usually easiest to write such loops so that they iterate over their entire range of values,
and they shouid be written this way originaily. If we later find that a certain such loop is in a time

bottleneck of the program, then we can maodify it to terminate early, by disciplined use of !oop exiting

27 Aprit 1681 Writing Efficient Code -42 -

constructs (either break statements or even disciplined and documented use of gotos). Depending
on where the "jump to threshold” usually occurs, this techni‘que can usually save a factor of two or
more on loops that evaluate this particular kind of togic. This strategy gives us the best of both
worlds: all loops in our programs are initially designed with a clean and straightforward structure, and
then the critical loops are modified in an understandable way from understandable code {(as opposed

to being monuments to extreme cleverness from the beginningl).

The next logic rule reduces the running time of a program by rearranging the sequencing of tests.

Logic Rule 3 -- Reordering Tests: Logical tests should be arranged such that
inexpensive and often successful tests precede expensive and rarely successful tests.

This rule has the coroliary that when a series of nonoverlapping conditions is sequentially evaluated
until one is true, the inexpensive and common conditions should be evaluated first and the expensive
and rare conditions should be evaluated last. As an example of this coroliary, we will consider
Fragment K1, which is a pseudo-Pascal function that returns an integer code that describes the type

of the character it was passed.

function CharType(X: char): integer;
begin
CharType :=
if X = ' ' then 1
else if (’'A’ <= X and X <= 'I") or ('Jd’ <= X and X <= 'R")
or ('S’ <= X and X <= 'Z") then 2
glse if '0’ <= X and X <= '9’ then 3

else if X = '+’ aor X = */' or X = '-'or X = ', or X = ('
' or X = ')’ or X = '=' then 4

elsa if X = '*' then 5

else if X = '"' then 6

else 7

end;

Fragment K1. A character recognizer.
Fragment K1 was used to process every character read by a compiler for a Fortran-like language on
an IBM System/360; the seven integers respectively denote blank, letter, digit, operator, asterisk,
quote and other. (it is because of "holes" in the EBCDIC character code that the test for letter is S0
complicated). Although the above presentation is semewhat clearer, the code actually used in the

compiler was similar to that shown in Fragment K2.

27 April 1981 Writing EFficient Code .43 -

function CharType(X: char): integer;

begin
CharType :=
if X =" ' then 1
else if X = **' then b
else if X = '"" then 6§

else if '0’ <= X and X <= '@’ then 3
else if (A’ <= X and X <= 'I") or ('J'" <= X and X <= 'R’)
or ('S’ <= X and X <= "Z') then 2
glse if X = '+ or X = "/ or X = "-" ar X = ', or X = "(°'
~ or X =) or X = '=" then 4
else 7 '
end;

Fragment K2. Order of tests changed.
Fragment K2 will be faster than the previous version if there are enough occurrences of asterisks,
quotes and digits to merit their earlier testing. For a precise mathematical formulation of this coroilary
of Logic Rule 3, see Knuth [1973, Exercise 6.1-16]. Knuth {1973, Program 6.2.2T] orders the tests in a

binary tree search program (lines 10 and 11) to reduce its running time from ~7C to ~6.5C.

Logic Rule 3 has many applications other than performing a sequential series of tests; for instance,
it encourages us to "push an expensive test inside a cheaper test”. This is exactly what we did in
transforming Fragment A8 to Fragment A9; we "pushed” the loop control test inside the necessary
test for being a new minimum. This was exactly the same idea underlying the sentinels in Loop Rule
2: we push a test for loop control inside a test on the data structure. Knuth [1973, Exercise 5.2.3-18]
uses this idea to reduce the running time of a heapsort program from ~16N log, N to ~13N log, N
time units. A more sophisticated kind of "pushing one test inside another" is to perform an expensive
yes-no check by first running a cheaper algorithm thét usually returns yes or no but socmetimes
returns "maybe"” . only in the latter case do we have to perform the more expensive test. An example
of such an approximate test can be found in Bentley, Faust and Preparata [1981].

Logic Rule 4 is an application of Space-For-Time Rule 2 (Store Precomputed Results) to the
domain of logic.

Logic Rule 4 -- Precompute Logical Functions: A logical function over a small finite
domain can be replaced by a iookup in a tabie that represents the domain.

A simple application of this rule can replace the rather complicated and very siow CharType

procedure of Fragment K2 by the more slegant and clean program of Fragment K3,
function CharType(X: char): integer;
begin
CharType := TypeTable[ord(X)]
end;

Fragment K3. Character recognition by tatlé lookup.

27 April 1981 Writing Efficient Code - 44 -

This program determines the type of character X simply by iooking at the appropriate entry in a 256-
element table (the number of characters in the EBCDIC character code); the function "ord" is used in
Pascal to convert a character to its integer rank. Peterson [1980] used precisely this method to
classify letters in a spelling correction program. This change results in slightly more space {we have
less code but a new table), but is much faster; trading that space for time is wise if much time was
spent in Fragment K2. Kernighan [1981] reports that when translating the programs of Kernighan and
Plauger [1978] from Ratfor to Pascal, he observed that between 30 and 40 percent of the run time of
some of the resulting Pascal programs was spent in character recognition by a subroutine like

Fragment K2. 1n an application such as that, the 256-element table would be well worth its space!

Logic Rule 4 has many faces. Sometimes we use it to replace a long chain of if-then-else if-then-

else statements by a single case statement; clever compilers then choose an optimal strategy for
implementing the case statement in the assembly code, and often generate a table. Knuth [1968,
Exercise 1.3.2-8] describes how assembly language coders can implement muitiway branches
effectively as a jump table. He uses that technique in Exercise 1.3.2-9 to test for validity of a certain
field of an assembiy code instruction, in Exercise 1.3.2-23 to prepare graphical output, and on pp.
200-204 to implement an interpreter.'® If we were evaluating a function of six boolean variables, we

could repiace the function evaluation by a lookup in a sixty-four element table.

A powerful application of this technique was used by David Moon [1881] in the'design of a PDP-8
simulator (which was designed to run on a PDP-10 but was never actually implemented). Because the
PDP-8's memory words are just twelve bits wide, there are only 212 or 4096, different instructions.
Moon observed that instead of taking the time to interpret each instruction at run time, we could
precompute the actions of all possible instructions, and store them in a 4096-élement table. This led
to an extremely efficient inner loop in the simulator: we execute a single instruction, using the
program counter as an index into the instruction table. Most of the PDP-8 instructions could be
emulated by a single PDP-10 instruction, and those that couldn’t had a jump to subroutine in their

position in the table.

In the final logic rule we will see how the time required to read and write boolean variables can be
eliminated by "storing them in the program counter”.

Logic Rule 5 -- Boolean Variable Elimination: We can remave boolean variables from
a program by replacing the assignment to a boolean variable V by an f-then-else
statement in which one branch represents the case shat V is true and the other represents
the case that V is false.

198&& especially the paragraph starting at the hottom of page 200 and the first sentence cn page 204.

27 Aprit 1981 Writing Efficient Code -45.

As an instance of the above rule, we will consider Fragment L1.

V := LogicalExp;
S1;
if V then
52
glse
353

Fragment L1. Code with boolean variable V.
We could replace the above example by the code in Fragment L2, as long as the boolean variable V is

used nowhere else in the program.

if LogicalExp then

begin
S1;
52
end

else
begin
S1;
S3
end

Fragment L2. Booleanvariable V removed.
The resuiting code is larger by the size of S1 (because it is now repeated twice), but is slightly faster.
Knuth [1974, pp. 284-285] shows how boolean variable elimination can be used in the partitioning
phase of a Quicksort program to reduce the total run time by about 25 percent. Knuth [1973, Program
6.2.3A] uses a similar technique to eliminate a variable over {-1,0,1} in a progrdm for maniputating

balanced binary search trees.

3.3.3. Procedure Reorganization
So far we have improved the efficiency-of a program by making local changes to small pieces of
code. In this section we shall take a different approach by leaving the code alone and instead

modifying the underlying structure of the program as it is organized into procedures.

The first procedure rule that we will study is essentially the dual of Time-For-Space Rule 2
{Interpreters); we pay in program space to buy program run time.

Procedure Rule 1 -- Collapsing Procedure Hierarchies: The speeds of the elements
of a set of procedures that (nonrecursively) call themselves can often be reduced by
rewriting procedures in line and binding the passed variables.

The simplest application of this rule is that subroutine calls in time bottlenecks should be written in
ling; this is exactly the method we used in transforming Fragment A4 to AS. This achieves two kinds
of savings: we avoid the cost overhead of the procedure call and it often opens the way for further

optimizations (as in Fragments 12 through Fragment |4).

27 April 1981 Writing Efficient Code - 48 -

Many languages provide means whereby certain subroutines are always expanded in line (as
opposed to being invoked through a subroutine call); this mechanism goes under names such as
macros and in-line procedures. Scheifler [1977] studies the benefit this cperation can have in entire
programs, and observes that "in programs with a low degree of recursion, over 90 percent of all
procedure calls can be eliminated, with little increase in the size of compiled code and a small savings
in execution time."” This operation is especially important if a system has been designed using data
abstfaction me{hodologies in which most accesses to data are done with a procedure call; if the

substitutions are made mechanically, then we have a clean program with rapid execution time.

Procedure Rule 1.need not always instantiate all procedures intc in-line code; as in many tradeoffs,
we can often cheose a middle between two extremes. For instance, it might be cleanest to design a
narticular piece of code with one subroutine with five variables called from ten places. We could then
replace that with ten different in-line instantiations, as one extreme., A more moderate approach
might involve replacing the one subroutine with three subroutines that have, say, just two parameters

each, and each much faster than the single subroutine.

Procedure Rule 1 takes a nicely structured program and unstructures it for the sake of speedzﬂ;
because of this, some people have deduced that efficiency and clean modularity cannot peacefully
coexist. Although that deduction might appear valid on the surface, a deeper analysis shows that
guite the opposite is in fact true. An important cost in most programs is the space ihey require, and a
clean module structure usually reduces that space (as we saw in Time-For-Space Rule 2 --
Interpreters). Recall that monitoring programs usually shows that a very small percentage of the code
accounts for a very large percentage of the run time; at that point we know which are the expensive
data structures in the system, and can then modify them. If the accesses to the structures had been
spread throughout the system, then there is no way we could have isolated the resource hogs. When
we finally do collapse the hierarchy, we can do so in an orderly way (often by changing procedures to
macros), so the programmers later involved in the project can still see the highly structured code,

even though it is compiled into something less clean.

The next rule for procedures is related to Logic Rule 3 (Reordering Tests); it formalizes Allen
Newell's [1881] maxim that "almost always is almost always as good as always”.

Procedure Rule 2 -- Exploit Common Cases: Procedures should be crganized to

20EZ‘.ecause it is machine-dependent and therefore oulside the scope of this paper, we have left unmentioned ane of the most
important applications of callapsing procedure hierarchies. Itis often arofitabie to "push” common operations in a system
down into the operating system, microcode, oF even special-purpose hardware. This is difficult to accomplish in most systems,
but it can sometimes vield substantiai ime reductions.

27 April 1981 Writing Efficient Cede - 47 -

handle all cases correctly and common cases efficiently.

Jalics [1977, p. 137] used this technique in a routine to calculate Julian dates. He observed that 0%
of the calls to the routine had the same date as the previous call, so in those cases he returned the
previous answer without recomputing it. We saw an application of this rule in Space-For-Time Rule 3:
caching data allows us to handle all accesses to it correctly and common accesses efficiently. The
basic mechanism for implementing Procedure Rule 2 is simple: we have two routines that accompligh
the same end. One is slow but handles.all cases correctly; the other handles only special ¢ases but
does so very quickly. There are several ways by wh'ich we can ensure that the proper procedure will
be executed at run time.

1. All calls in the body of the program are to the general procedure. The general procedure
contains a prelude that checks the input, and calls the special procedure when it is
appropriate. This localizes knowledge of the special procedure to the general procedure
itself, but incurs an added cost at run time. '

2. All calis in the body of the program are to the special procedure if we can deduce at
compile time that it is appropriate; otherwise they are to the general procedure. This
saves run time, but destroys program modularity by spreading knowiledge of the special
procedure throughout the entire program.

3. An intermediate approach has all calls refer to the procedure through a compile-time
macro; if that macro can determine at compile time that the special procedure can be
called then it is, otherwise it calls the general procedure. This approach has the
advantages of both the above schemes: maximal efficiency is achieved, and knowledge
about the special procedure is still localized (in the macro).

The first approach is the easiest to implement in most languages and achieves most of the time
savings possible, the third approach can squeeze out a little more time, and the second approach
should almost never be used (because it pays too much a cost in maintainability to buy too little in

time).

An important application of Procedure Rule 2 is to observe when a particular subroutine is being
used in a certain way. For instance, it might be natural to write a subroutine to access the I element
of a sequence of elements, and then ask sequentially for the first, second, third, up to the N
elements. For most representations of sequences (including linked lists, trees, and usually even
arrays), it wouid be preferable to make a new procedure to access the next element. A different
approach would use Space-For-Time Rule 3 and cache the most recently accessed element in the
- hope that the next element will be near it; this approach retains state in a procedure across calls, (For
a general discussion of retaining state across calls, see Scherlis [1980, p. 5].) This application of
Procedure Rule 2 is often appropriate when dealing with input and output; it would encourage us, for
instance, to have operating system primitives that read or write entire records instead of forcing the

user to access each byte individually through an operating system call. There are two benefits of this

27 April 1981 Writing Efficient Code -48 -

strategy: we can avoid the cost of many procedure calls and avoid recomputing state across those

calls.

Procedure Rule 2 encourages us to reduce time by developing specialized procedures; it is
sometimes the case, though, that we can reduce time by developing more general procedures. This
fact is so startling that Polya [1945, p. 121] refers to it as the "Inventor's Paradox" and states it as
"the more general problem may be easier to solve™. Experienced programmers can usually recall
seeing the paradox applied in many circumstances; for instance, it is often more effective in terms of
both coding effort and run time to have one procedure for searching tables in a program rather than
to have a separate procedure for each table in the program. By having only one routine we can
devote a great deal of energy to making it very fast; the payoff of that work is then realized each time
the single procedure is called. We also are using the inventor’'s paradox to achieve efficiency when
we have one very efficient (but very general) system sort routine rather than have each programmer
write a custom sort for each new application. The inventor’s paradox has long been realized as an
important tool for maintaining correct and maintainable code; it is important not to et Procedure Rule

2 make us forget that the inventor’s paradox can also help us make efficient code.

The next procedure rule can reduce the overhead cost of input and output in many applicaticns.

Procedute Rule 3 -- Coroutiries: A multiple-pass algorithm can often be turned into a
single-pass algorithm by use of coroutines.

This technique has been discussed in detail by Knuth [1968, pp. 194-196]. He observes that if
program A reads file 1 and writes file 2 sequentially, and is then followed by program B which reads
file 2 sequentially and writes file 3, then we can avoid any use of file 2 by keeping both programs A
and B in core and allowing them to communicate as coroutines. This will be faster than the
sequential version (because we reduced the costly 1/0 operations), but requires more space {both for
data and code). An important point, however, is that programs are often easier to design if we think of
them as multiple-pass algorithms and then implement them later as single-pass algorithms. The Unix
operating system has made coroutines a fundamental concept in the form of its pipes and filters (see

Ritchie and Thompson [1978, Sections 5.2 and 6.2]).

Recursive procedures (that is, procedures that can call themselves) are powerful expressive tools
that can greatly ease the design and implementation of a correct program. That lesson was made
clear to me when | translated a dozen-step iterative algorithm that | had written {which resulted in
about 80 lines of code) into a four-step recursive algorithm (which took just 30 tines of code).
Unfortunately, this expressive power is not entirely without cost, and many implementations of

recursion are rather slow. For this reason, a great deal of work has been devated to transformations

27 April 1981 Writing Efficient Code .49.

that increase the sbeed of recursive programs. . (See, for instance, Burstall and Darlington [1976},
Bird [1980], Darlington and Burstall [1977], Knuth [1974], and Standish et a/ [1976].) Because that
literature is so extensive, we shall mention here only a few transformations on recursive procedures,
and those only briefly.
Procedure Rule 4 -- Transformations on Recursive Procedures: The run time of
recursive procedures can often be reduced by applying the following transformations.

e Code the recursion explicitly by use of a program stack. This can sometimes
reduce costs induced by the system structure, but is often stower than using the
system procedure calls,

¢ {f the final abtion of a procedure P is to call procedure Q, replace that call by a goto
to Q. That goto can often be fransformed into a loop. Knuth [1974, p. 281] has a
detailed discussion of this rule.

«» If a procedure contains only one recursive call on itself, then it is not necessary to
store the return address on the stack (see Knuth [1974, pp. 281-282]).

o |t is often more efficient to solve small subproblems by use of an auxiliary
procedure, rather than by recurring down to probiems of size zero or one. This
technique was used by Sedgewick [1978] to reduce the time Quicksort used in
sorting small subfiles and by Friedman, Bentley and fFinkel [1977, pp. 220-221] to
reduce the search time of a data structure by a factor of almost two.

This above list only briefly scratches the surface of techniques for increasing the efficiency of
recursive programs; programmers who use recursion often should certainly read the articles

mentioned above.

The final procedure rule we will study is the most nitty-gritty.

Procedure Rule 5 -- Parallelism: A program should be structured to exploit as much of
the parallelism as possible in the underlying hardware.

This rule of course takes on gigantic proportions when we are designing a program to be executed on
a multiprocessor architecture, but it usually surfaces whenever we scrutinize a computing system.
For instance, in Expression Rule 5 we will see that we can exploit the width of a computer word to
perform several operations at once. Clever compilers often use the fact that operations set condition
codes as a side effect to avoid redundant tests (see, for instance, Russell {1978]); this exploits
parallelism at a microscopic level. Many architectures provide "block move” gperations that allow us
to move many adjacent words in a single instruction (for instance, the IBM System/360 has LDM,
STM, and MVC instructions). Parailelism is usuaily present in the operation of the CPU and /0
devices; in some systems one can move work from the CPU to the channels or device controllers {for
instance, by using CCW programs in the IBM System /360 family). Very high performance computers
such as the |BM System/360 Model 91 and the CDC 7800 have many functional units in the central

27 April 1981 Writing Efficient Code : -50 -

processor that opefate in parallel; knowledge about their detailed characteristics can allow us to

utilize that parallelism more efficiently.

It is important to keep in mind that all of the above techniques for exploiting parallelism are hard to
apply and are quite peculiar to the architecture of the computer on which the program is executed,;
one should fherefore be guite reluctant to use them. Occasionally, however, they can be used t0
increase the speed of a program dramatically. Kulsrud et af [1978] provide a fascinating example of
the exploitation of a highly parallel architecture; they describe an implementation of Quicksort on a
CRAY-1 that can sort 800,000 elements in less than 1.5 seconds. They employ many general
techniques for efficiency (including proper algorithm and data structure setection and very careful
assembly coding), many techniques of writing efficient code (including loop unrolling, caching the
recursion stack, and special treatment of small subfiles), and many techniques specific to highly
parallel machines (including chaining operations, careful instruction buffering, and overlapping the

execution of independent activities).

3.3.4.Expression Reorganization

In this final section on code madifications we shall study techniques that reduce the time devoted
to evaluating expressions. Itis important to emphgsize that many of these techniques are applied by
even relatively simple compilers, and our attempts to heip them produce more eificient code can

actually make the cbject code slower.

The first expression rule that we will see is essentially an extension of Loop Rule 1 {Code Motion
Out of Loops). That rule told us to move computation out of a loop, performing a given computation
only once rather than many times. -The following expression rule treats the many executions of a
program as thoug'h they were a loop.

Expression Rule 1 -- Compile-Time Initialization: As many variables as possible
should be initialized before program execution.

One application of this rule is usually called "constant propagation”; if we have the statement
constX=3;Y =5

in a Pascal program, then the compiler should replace an instance of X*Y later in the program by the

constant 15. As a more substantial application of this rule, we can return to Fragment K3, which

classified characters by using a large table. Peterson [1980] initiaiizes the table in his program by a

procedure that contains four do statements and five assignment statements; initializing the table at

compile time would result in a slight increase in the speed of the program, and, mere importantly, less

code.

27 April 1881 Writing Efficient Code - 51 .-

This application is typical of a much larger class of applications of Expression Rule 1. Many
programs spend much time reading in data that is uhchanged between runs and processing it into
tables that are then used for thé particular run. Much of the processing and reading time can be
avoided by building a new program that processes the input data into an intermediate file which can
then be read and processed more quickly. Laird [1981] used this technigue in a program that spent
120 seconds processing data that was unchanged from run to run, and then less than three seconds
procéssing the. data for the given run. A new program processed the unchanged data into an
intermediate file (represented in the packed form we studied in Time-For-Space Rule 1) in 120
seconds; his primary program could then read that intermediate file in less than a second. Thus the
time required by his program dropped from over 120 seconds to less than four, for a speedup of over
a factor of thirty.

The next expression rule arose in a slightly altered form as Logic Rule 1.

Expression Rule 2 -- Exploit Algebraic Identities: If the evaluation of an expression is
costly, repiace it by an algebraically equivalent expression that is cheaper to evaluate.

For instance, it would often be beneficial to replace the expression "In{A) + In(B)" {where In is the
subroutine for computing natural logarithms) by the algebraically equivalent expression "In(A*B)".
This particular example raises the important point that sometimes we write expressions in a certain
way because of the properties of real arithmetic on digital computers, and often the laws of algebra
do not apply. Simple applications of Expression Rule 2 are easy to mechanize, and many compilers
do quite well at this. (Some Fortran compilers, for instance, will observe that if the two terms
" SIN(X)**2 and COS(X)* *2 are added together in an expression, then they can be replac_:ed at compile
time by the constant 1!). With this rule, just as with Logic Rule 1, it is important to avoid

“optimizations” that lead to our compilers-producing slower code.

An important appilication of Expression Rule 2 is recognizing when special cases of an expression
can be evaluated in a more efficient way than by applying the general rule. For instance, instead of
evaluating X**2 by a general routine for raising powers, we could merely multiply X by itself (note that
this transformation might actually be achieved by Procedure Rule 1 -- Collapsing Procedure
Hierarchies). Similarly, on binary machines we can efficiently multiply or divide by pawers of two by
shifting left or right {as long as the number is in a proper range, which is often easy to verify). Knuth
[1973, p. 408] used this method to reduce the run time of a binary search program from ~26 Iog2 Nto
~18 Ic)g2 N.

An important kind of algebraic identity is quite useful in increasing the speed of loops. Consider,

for instance, the loop "for 1:= 1to Ndo ...", and suppose that we evaluated the expression |*J inside

27 April 1881 Writing Elficient Code -52 .

the loop (where J is an integer). The straightforward way of implementing this requires a
multiplication in each iteration of the loop, while a more clever implementation can keep the last value
of the expression and just add J {o get the next. This operation is an instance of a technique called
strength reduction and is intimately related to techniques tor manipulating induction variables. For a

discussion of these technigues in a general setting, see Aho and Ullman [1977, Section 12.2].

Expression Rule 3 helps us avoid redundant work in evaluating expressions.

Expression Rule 3 -- Common Subexpression Elimination: If the same expression is
evaluated twice with none of its variables altered between evaluations, then the second
evaluation can be avoided by storing the resuit of the first evaluation and using that in
place of the second evaluation:

This is exactly the rule we used to achieve the (unexpectedly small) time savings as we transformed
Fragment A1 to Fragrhent A2, This rule can be viewed as an application of Space-For-Time Rule 2,
where we are now storing recomputed results rather than precomputed results; we already saw an
application of this rule in Loop Rule 1, as we eliminated the subexpression from a loop that was
common to all iterations. Many compilers are very good at recognizing and exploiting common
subexpressions (see, for instance, Aho and Uliman'[ig?’?, Sections 14.2 and 15.6] or Wulf et a/
[1975]), and this technique is usually best left to the campiler.

The next expression rule is very similar to Loop Rule 6 (which encouraged us to let similar loops
share their gverhead of loop control).

Expression Rule 4 .- Pairing Computation: If two similar expressions are frequently
evaluated together, then we should make a new pracedure that evaluates them as a pair.

The hope of the above rule is that "two can live as cheaply as one”. Knuth [1971, p. 1A16] chserves
that while sine and cosine each require 110 time units to evaluate (where a time unit is approximately
7 microseconds on an |BM System/360 Model £7), a routine that returns both the sine and the cosine
of a value requires only 165 time units. We therefore get the second trigonometric function for just
half price, after we have purchased the firstt A similar phenomenon occurs in finding the minimum
and maximum elements of an N-element set; while either alone requires N - 1 comparisens to find,
both together can be found in at most 3N/2 comparisons (see Knuth [1973, Exercise 5.3.3-25]). Note
that this rule is similar in spirit to Procedure Rules 1 and 2 -- in both cases we rearganize the division

of the computation into procedures.

The final expression rule speeds up a program by utilizing the paralielism inherent in the word
width of the underlying machine; it is therefore related to Procedure Rule 5 (Parallelism).

Expression Rule 5 -- Exploit Word Parailelism: Use the full word width of the
underlying computer architecture 10 evaluate expensive expressions.

27 April 1881 Writing Efficient Code .53.

This rule is used in the implementat.ion of set operations as bit strings; when we OR two 32-bit sets
together giving as output their 32-bit union, we are performing 32 operations in parallel. There are
many applications of this rule; almost all of them, however, are best implemented in assembly
language. Reingold, Nievergelt and Deo [1977, Section 1.1} nicely describe several aigorithms for
counting the number of one bits in a computer word; the first aigarithm takes B operations in a B-bit
word, while the final algorithm takes only approximately 1092 B operations. Beeler, Gosper, and
Schroeppel [1972] deseribe a number of similar algorithms for a host of probiems an computer words;
see especially ltems 167, 169, and 175. All of'these techniques have the same motivation in
Procedure Rule 5: there is parallelism inherent in the word widths of the underlying data paths and
registers, and the algorithms go out of their way to make sure that none of it is wasted in any

operation.

3.4. Summary of the Rules
In the previous subsections of this section we have seen a number of tools for writing efficient
code. In this subsection we shail take a brief moment to review those tools and consider their

application as a collection.

The most important thing to remember about their application is the point made in Subsection 3.1:
we should almost never apply them in the first design of a program, and rarely apply them to ¢lean
although somewhat slow code to yield messy but fast code. Knuth’s [1971] statistics make this point
quantifiable: he cbserved (and many have since verified) that in most programs about four percent of
the code of most programs usually accounts for fifty percent of the run time. We saw in Subsection
3.1 that this fact helps us concentrate our search for éfficiency on that critical four percent; we will
now consider two deeper implications of the statistics.

e If our goal in increasing the efficiency of the program is to increase the speed as much as
possible in a short period of time, then we shouid identify the largest time sinks and focus
our work on those. Using the rules of this paper often enables us to decrease the time of
many of the critical regions by up to an order of magnitude. If we achieve such a
speedup, then we will have increased the efficiency of our system by a factor of about two
(because the remaining 96 percent of the code accounted for about half of the original
run time).

o If our goal is to increase the efficiency of our entire system by a factor of ten, then it will
be very difficuit to accomplish. The first step is the one menticned above: we identify the
initial time sinks and reduce those; this might reduce the total system time by a factor of
two. We then instrument the resulting program, and try to reduce the time spent by the
new resource sinks, and iterate. The hope of this strategy is that the sysiem will have a
very jagged time profile at each iteration; that is, we hope that no matter how many
improvements we have made, that most aof the run time is still concentrated in a smail
percentage of the code.

27 April 1981 | Writing Efficient Code . 54.

The above points pht our rules in context: they are often quite useful to reduce dramatically the run
time of a costly piece of code (say, by an order of magnitude). Several such changes can have a
tremendous effect on the speed of an entire system (say, up to a factor of two), but it is difficult to

have an impact of.much more than that.

Now that we know the effect these rules can have on an entire system, we should consider the
mechanics of using them. There are three steps in applying the rules.

1.Identify the code to be changed. The above discussion showed that we should
identify the code to be changed by monitoring the program and working on the parts that
are taking the majority of the time.

2 Choose a rule and apply it. Once we know what code to change we see if any of our
rules can be used to change it. The rules have been presented in groups as they relate to
different parts of programs; we should therefore identify whether the expense of our
program is going to data structures, loops, logic, procedures or expressions, and then
search in the appropriate list for a candidate rule. When we apply a rule we should make
sure that the application preserves the correctness of the program; this is usually done by
applying the spirit, if not the actual formulas, of program verification.

3. Measure the effect of the modification. The first transformation we saw in Section 2
(removing the common subexpression from Fragment A1) was typical of many changes
we make: it appeared that it would increase the program’s speed by a factor of two but in
fact it gave less than a three percent improvement. Even if we believe that we understand
the effect of a transformation by reasoning alone, it is usuaily quite beneficial to support
that analysis with observation; we often find that we are quite mistaken!

Each of the above steps plays a crucial role in yielding a correct and efficient program, and none of
the steps should be skipped in applying the rules. The rules themselves are summarized in Table 2;

we will now briefly discuss each class of ruies as a set.

27 April 1981 Writing Efficient Code . 55 .

Modifying Data Structures

Trading Space-For-Time Trading Time-For-Space
1. Data structure augmentation 1. Packing

2, Store precomputed results 2. Interpreters

3. Caching

4. Lazy evaluation

Modifying Code

Loops Logic

1. Code motion out of loops) 1. Exploit algebraic identities

2. Combining tests 2. Short-circuiting monotone functions
3. Loop unrolling 3. Reordering tests

4. Transfer-driven loop unrolling 4. Precompute logical functions

5. Unconditionat branch removal 5. Boolean variable elimination

6. Loop fusion

Procedures Expressions

1. Collapsing procedure hierarchies 1. Compile-time initialization

2. Exploit common cases 2. Exploit algebraic identities

3. Coroutines 3. Common subexpression elimination
4. Transformations on recursive procedures 4. Pairing computations

5. Parallelism 5. Exploit word parallelism

Table 2. Summary of the rules.

If monitoring the program shows that a certain data structure is a primary user of a scarce
_resource, then we should use the rules of Subsection 3.2 to make that structure more efficient. Atthe
time we modify the structure we should know whether space or time is dearest, and then trade the
cheaber commodity for the more expensive. Although each rule was expressed in terms of trading

one resource for the cther, by reversing each we can effect the trade in the opposite direction.

If we find that the primary resource _bottleneck is the time spent in a certain loop {as we often do),
then we should carefully apply the loop rules of Section 3.3.1 to remove every possible piece of
excess baggage from the loop. Although each of the six loop rules typically reduces the run time only
by ten or twenty percent, when they are carefully applied together to a single ioop it is not uncommeon

to see speedups of factors of three or more.

The logic rules of Section 3.3.2 should be brought to bear when the time spent in evaluating
program state is in the system bottleneck. Logic Rules 1 and 5 sometimes shave a very small
percentage from the system run time, but sometimes fool comgilers into producing slower obiect

code. Logic Rules 2 and 3 are applicable less often, but can sometimes be used to cut in half the time

27 April 1981 Writing Efficient Code - 56 -

required by some loops. Logic Rule 4is perhaps the most powerful of all: ‘we can frequently eliminate

most of the time spent in evaluating a logical function simpiy by precomputing all possible outcomes.

The procedure rules of Section 3.3.3 make the most global of the changes that we héve seen.
Procedure Rules 1 and 2 are the most frequently applied and often yield substantial speedups.
Procedure Ruies 3and 4 are extremely powerful in certain special cases (if we have a multiple-pass or
recursive program). Procedure Rule 5 is the most nitty-gritty: if we know a great deal about the

parallelism in the underlying hardware, then we can explait it,

The expression rules of Section 3.3.4 should usually be brought to bear orily as a last resort. They
are often done by a compiler, they are perhaps the easiest to apply incorrectly, thei rarely yield
enormous speedups, and their application can result in slower object code. Occasionally, though,

they can be used to shave ten percent here or twenty percent there.

4. A Survey of Related Work

In this section we will briefly survey some of the 'work that has been done on topics related to
writing etficient code.2! The content of this section will follow the trichotomy discussed in Section 1:
we will first examine work related to _the "high end" of algorithms and data structures, then work

related to the "low end™ of optimizing compilers, and finally work at the level of writing efficient code.

Courses in daté structures and algorithms are now well-established in most curricula in computer
-science. Because of the central role played by data structures, expert programmerss shouid be
intimately familiar with the material in data structures texts such as Standish [1980]. Knuth [1968,
1973] is an excellent source for all aspects of data structure selection and implementation. Algorithm
design and analysis is the subject of several recent texts, including Knuth [1973}, Aho, Hopcroft and
Ultman [1975), Goodman and Hedetniemi [1977], Reingold, Nievergelt and Deo [1977] and Baase
[1978]. For survey articles on the subject, see Lewis and Papadimitriou [1978] and Bentley [1979].

At the other end of the spectrum, there has been a great deal of research on the principles
underlying optimizing compilers. For general discussions of these principies, the reader shouid see
Aho and Ullman [1977], Schaeffer [1975], or Waite [1974]. Wuif et a/ [1975] show how these
principles can be brought togéther to form a compiler that produces abject code that rivals that of the

pest assembly language coders. Wulf and Shaw [1980] address the issue of the impact of language

2 A related topic that we will not investigate in detail is technigues of building efficient hardware. 1tis interesting to observe
that almost all of the ruies we have seen for programs nave anatogs in the domatn of hardware.

27 April 1981 Writing Efficient Code - 867 -

design decisions on the speed of compiled programs.

There is much less written on the activity of writing efficient code. One line of research at this level
goes uﬁder the name of "source-to-source program transformations”. The goal of that research is to
describe precisely a set of transtormations at the source language level that preserve program
equivalence but increase program.speed. The insistence on precise description of transformations
has resulted in a set of transformations_much more accurately defined than those in this paper, but
unfortunately also less powerful. Examples of program transformations can be found in Burstall and
Darlington [1977], Darlington and Burstall [1976], Loveman [1977], Scherlis [1980] and Standish et af
[1976]. Nelson [1981] and Sproull [1881] both use informal source-to-source transformations to write
very efficient code; Nelson uses many of the technigues in this paper to reduce the cost of a remote

procedure call by over a factor of thirty.

Some programming texts include discussions of writing efficient code. For instance, Goodman and
Hedetniemi [1977, Section 4.2] discuss precisely this topic under the title of "implementation
efficiency”. They mention aspects of Loop Rules 1, 3 and 6, Logic Rule 3, and Expression Rules 2 |
and 3. Kernighan and Plauger {1976, 1978] describe a number of issues related to writing efficient
code; these may be found in the index under the headings "algorithm", "efficiency”, "optimization®,

"running time”, and "time complexity”, among others.

Jalics [1977] and Smith [1978] are nice introductions to issues of efficiency in data processing
software systems. Jalics discusses a number of "high end" issues such as file organization and "low
end" issues such as the efficiency of various language constructs. He mentions several of the rulés
that we have Seen in this paper, inciAuding Space-For-Time Rule 3, Loop Rule 1, Logic Rule &, and
Procedure Rules 1 and 2. He also provides many concrete examples of increasing the efficiency of
real data processing systems. Smith covers in detail many of the important issues in system
efficiency. She discusses the "high end” issues of reducing costly input/output operations, reducing
paging, and data structure selection, and the "low end" issues of compiler optimization. The
techniques of writing efficient code that she discusses includes Loop Rules 1, 2, 3 and 6, Procedure
Rule 2, and Expression Rule 2. She addresses a number of important points in applying efficiency
improvements, such as selecting the programs to medify and the management of efficiency

improvements. She also discusses in detail the improvement of the efficiency of several real systems.

in the transformations of Subsection 2.1 we made changes to the program that we thought would
improve performance and then measured the new program to calculate the performance

improvement. it would be much more desirable to have an analytic tool that would predict the

27 April 1981 Writing Efficient Code - 58 -

performance improvement. One such fool has been described by Shaw [1979]; she gives a set of
measurements of the clock times that various Pascal instructions require (on the same compiler and
machine used in the experiment of Subsection 2.1). A comparison of the run times derived by her
method with the empirically observed run times for seven of the fragments can be found in Appendix
I. The analytic predictions were consistently less than the observed times, varying from 94.4% to
73.5% of the observed times. Having these performance statistics for a particular compiler/machine
pair allows us fo fine-tune our code for that given system with a little analysis replacing a lot of

measurement.

There is a treasure-house of information about writing efficient code in the works of Donald Knuth.
His series of textbooks (Knuth [1968, 1968, 1973]) are classics in the fields of algorithms and data
structures, and are also laden with both examples and principles of writing efficient code. His
empirical study of Fortran programs (Knuth [1971]) gave a precise perspective to the activity of
writing efficient code; we saw in Section 3.1 that his data allows us to ignore efficiency most of the
time and concentrate on it when it really matters. That paper also contains seventeen detailed
examples of efficient compilations of fragments of Fbrtrén programs. Knuth [1974] is an excelient
study of the question of how programming language design and programming methodologies relate
to writing efficient code. Itis interesting'to note that of the twenty-seven efficiency rules in this paper,
fifteen refer explicitly to the works of Knuth! In addition to his own works, many of the Stanford Ph.D.
theses and other papers of Professor Knuth’s students are invaiuable studies in writing efficient code;
we have already referred to Sedgewick [1975, 1978], Mont-Reynaud [1976], and Chris Van Wyk.

5. Conclusions

The thesis of this paper is that there is an activity, which we have called writing efficient code, that
is an essential part of the engineering activity of producing efficient software. That activity is
somewhere "above™ the level of optimizing compilers and "below" the level of selecting algorithms
and data structures. The goal of this paper has been to equip the reader with the fundamentai tools
of writing efficient code. To this end, in Section 2 we studied in detail one example that arose in a real
application. In Section 3 we took a more systematic view of the endeavor and saw both a set of
techniques and the context in which those techniqués should be applied. Section 4 then provided a

brief survey of work related to writing efficient code.

To give more context to the process of writing efficient code, | propose the following as five steps

that are essential in a methodology of building efficient software.

1. The most important issues in the lifetime of a large system are a clean design and

27 Aprit 1981 . Writing Efficient Code - 569 -

implementation, useful documentation, and a maintainable modularity. The first step in
the programming process should therefore be to write the program with a clean design
and implementation.

2. If the overall system performance is not satisfactory, then the programmer should monitor
the program to identify where the scarce resources are being consumed. This usually
reveals that most of the time is used by a few percent of the code.

3. Proper data structure selection and algorithm design are often the key to large reductions
in the running time of the expensive parts of the program. One should therefore revise
the data structures and algorithms in the critical parts of the code.

4. If the performance of the critical parts is still unsatistactary, then use the techniques of
writing efficient code to recode them. The original code shouid usually be left.in the
program as documentation.

5. if additional speed is still needed, then there are courts of last resort, including assembly
code, microcode, and special-purpose hardware design,

It is important to keep the techniques of writing efficient code in proper context. If they are used
inappropriately, such as in the premature optimization of unmonitored code, then they can reduce a
clean system to an incomprehensible mess and sometimes decrease performance as well. On the
other hand, when they are applied sparingly under the keen. eve of an experienced software
craftsman, they can play an important role in building an efficient software system.

.Acknowledgments
This paper has benefitted greatly from the contributions of several dozen individuals: The careful
comments of Al Aho, Steve Johnson, Elaine Kant, Brian Kernighan, Ed McCreight, John McDermott,
Al Newell, Joe Newcomer, Guy Steele, Chris Van Wyk and Bill Wulf have been particularly helpful.
Elaine Rich and Bill Trosky went beyond the call of duty in transporting the programs of Section 2 to

various computer systems.

References

Aho, A. V. [1980]. Private communication of A. V. Aho of Bell Telephone Laboratories, Murray Hill,
NJ, December 1980.

Aho, A. V. and J. D. Uliman [1977}. Principles of Compiler Design, Addison-Wesley, Reading, MA.

Aho, A. V., J. E. Hoperoft and J. D. Ultman [1974]. The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA.

27 April 1881 Writing Efficient Code - 80 -

Baase, S.[1978]. Computer Algorithms: introduction to Design and Analysis, Addison-Wesley,
Reading, MA.

Baskett, F. [1978]. "The best simple code generation techniques for WHILE, FOR and DO loops,”
SIGPian Notices 13, 4, April 1978, pp. 31-32.

Beeler, M., R. W. Gosper and R. Schroeppel [1972]. HAKMEM, Artificial Intelligence Memo No. 239,
Massachusetts Institute of Technology, February 1972.

Bentley, J.L. [1979]. "An introduction to algorifhm’ design," JEEE Computer Magazine 12, 2,
February 1979, pp. 66-78.

Bentley, J. L., M. G. Faust and F. P. Preparata [1981]. "Approximation algorithms for convex hulls,”
to appear in Communications of the ACM. :

Bentley, J.L. and J.B. Saxe [1980]. "An analysis of two heuristics for the euclidean travelling
salesman problem," Eighteenth Annual Allerton Conference on Communication, Control and
Computing, October 1880, pp. 41-49.

Bergeron, R. D. and H. Bulterman [1975). "A technique for evaiuation of user systems on an IBM
S/370," Software--Practice and Experience, 5, pp. 83-92.

Bird, R. S. [1980]. "Tabulation techniques for recursive programs,” Computing Surveys 12, 4, pp.
403-417.

Burstall, R.M. and J.Darlington [1877]). "A transformation system for developing recursive
programs,” Journal of the ACM 24,1, pp. 44.67, January 1977.

Brailsford, D.F. et al [1979]. "Run-time profiling of Algol 68-R programs using DIDYMUS and
SCAMP," SIGPlan Notices 12, 6, June 1977, pp. 27-35.

Brooks, F.P. [1975]. The Mythical Man Month: Essays in Software Engineering, Addison-Wesley,
Reading, MA.

Darlington, J.and R. M. Burstall [1976]. "A system which automatically improves programs,” Acta
Informatica 6, pp. 41-60.

Dongarra, J.J. and A R. Hinds [1979]. "'Unrolling lgops in FORTRAN," Software--Practice and
Experience 9, pp. 219-226.

Fitch, G. P. {1977}. "Profiling alarge program,” Software--Practice and Experience 7, pp. 511-518.
Friedman, J. H., J. L. Bentley and R. A. Finkel [1977). "An algorithm for finding best matches in

logarithmic expected time," ACM Transactions on Mathematical Software 3, 3, September
1977, pp. 209-226.

27 April 1881 7 Writing Efficient Code -61 -

Goodman, S. E. and S. T. Hedetniemi [1977]. Introduction to the Design and Analysis of Algorithms,
McGraw-Hili, New York, NY. ‘

Jalics, P. J. [1977]. "Improving performance the easy way," Datamation, April 1977, pp. 135-148,

Kernighan, B.[1881]. Personal communication of B. Kernighan of Beil Telephone Laboratories,
Murray Hill, NJ, February 1981.

Kernighan, B. and P. J. Plauger {1978]. Software Tools, Addison-Wesley, Reading, MA.

Kernighan, B.and P. J'. Plauger {1978]. The Elements of Programming Style, Second Edition,
McGraw-Hill.

Knuth, D.E. [1968]. The Art of Computer Programming, volume 1. Fundamental Algorithms,
Addison-Wesley, Reading, MA.

Knuth, D.E. [1969]. The Art of Computer Programming, volume 2: Seminumerical Algorithms,
Addison-Wesley, Reading, MA.

Knuth, D.E. [1971]. "An empirical study of FORTRAN programs,” Software--Practice and
Experience 1, 2, pp. 105-133.

Knuth, D. E. [1973]. The Art of Computer Programming, volume 3: Sorting and Searching, Addison-
Wesley, Reading, MA,

Knuth, D. E. [1974]. "Structured programming with goto statements,” Computing Surveys 6, 4,
December 1974, pp. 261-301.

Kulsrud, H. E., R. Sedgewick, P. Smith and T. Szymanski [1978]. Partition sorting on CRAY-1, SCAMP
Working Paper No. 7/78, Institute for Defense Analyses, Princeton, NJ, September 1978.

Laird, J. [1981]. Private communication of J. Laird of Carnegie-Mellon University, March 1981.

Lewis, H.and C.H. Papadimitriou [1978). "The efficiency of algorithms,” Scientific American,
January 1978, pp. 97-108.

Loveman, D. B. {1977]. "Program improvement by source-to-source transformation,” Journal of the
ACM 24,1, January 1974, pp. 121-145,

Matwin, S. and M. Missala [1976]. "A simple, machine independent tool for obtaining rough measures
of Pascai programs,” S!GPlan Notices 11, 8, August 19786, pp. 42-45.

Mont-Reynaud, B.[1976]. Removing ftrivial assignments from programs, Stanford University
Computer Science Department Report STAN-CS-76-544, Stanford, California, March 1976.

27 April 1881 writing Efficient Code - 62 -

Moon. D. A. [1981]. Private communication of D. A. Moon of Massachusetis Institute of Technoiogy,
March 1981.

Morris, R.[1978]. “"Counting large numbers of events in small registérs," Communications of the
ACM 21,10, October 1978. pp. 840-842.

Nelson, B. J. [1981]. Remote procedure call, Ph.D. Thesis, Carnegie-Mellon University, June 1981,
Newell, A. [1981]. Private communication of A. Newell of Carnegie-Mellon University, March 1681.

Paterson, J. L. [1980]. Computer Programs for Spelling Correction: An Experiment in Program
Design, Springer-Verlag, New York, NY.

Polya, G. [1945]. How To Solve It, Princeton University Press, Princeton, NJ.

Reddy, R. and A. Newell [1877]. "Multiplicative speedup of systems,” in Perspectives on Computer
Science, A. K. Jones (ed.), pp. 183-198, Academic Press, New York, NY.

Reghbati, H. K. [1981]. "An overview of data compression techniques,” [EEE Computer Magazine
14,4, April 1981, pp. 71-75.

Reingotd, E. M., J. Nievergelt and N. Deo (1977}, Combinatorial Algorithms: Theory and Practice,
Prentice-Hall, Englewood Clitfs, NJ.

Ritchie, D. M. and K. Thompson [1978]. "The UNIX time-sharing system," Bell System Technical
Journal 57, 6, pp. 1905-1930, July-August 1978. (An earlier version is in Communications of the
ACM 17,7, pp. 365-375, July 1974.)

Russel, R. D. [1978]. "The PDP-11: A case study of how not to design condition codes,"
Proceedings of the Fifth Annual Symposium on Computer Architecture, pp. 190-194, IEEE and
ACM.

Satterthwaite, E. H. [1972]. "Debugging tools for high level languages,” Software -- Practice and
Experience 2, 3, July-September 1872, pp. 197-217.

Schaefer, M.[1973]. A Mathematical Theory of Glopal Pragram Optimization, Prentice-Hall,
Englewood Cliffs, NJ.

Scheifler, R. W. [1677]. "An analysis of inline substitution for a structured programming tanguage,”
Communications of the ACM 20, 9, September 1977, pp. 547-654.

Scherlis, W.[1980]. Expression procedures and program derivation, Ph.D. Thesis, Stanford
Computer Science Report STAN-CS-80-818, Stanford, CA, August 1980.

Sedgewick, R. [1975]. Quicksort, Ph.D. Thesis, Stanford Computer Science Report STAN-CS-75-492,

27 April 1981 Writing Efficient Code -B63 -

Stanford, CA, May 1975.

Sedgewick, R.[1978]. "Implementing Quicksort programs," Communications of the ACM 21, 10,
October 1978, pp. 847-857. :

Shaw, M. [1979]. A formal system for specifying and verifying program performance, Carnegie-Mellon

University Computer Science Technical Report CMU-CS-79-129, June 1979. (A preliminary

. version of the material in this report can be found in Wulf, Shaw, Hilfinger and Flon [1881,
Section 6.5).)

Shaw, M.and W.A. Wulf [1880]. "Toward relaxing assumptions in languages and their
implementations,” SIGPfan Notices 15, 3, March 1880, pp. 45-61.

Sites, R. L. [1978]. "Programming tools: statement counts and procedure timings,” SIGPlan Notices
13, 12, December 1978, pp. 98-101.

Smith, C.[1878]. "Methods for improving the performance of applications programs,” Computer
Measurement Group Transactions 22, December 1978.

Smith, C.[1980]. "Consider the performance of large software systems before implementations,”
Proceedings of the Computer Measurement Group 11, Boston, MA, December 1980,

Sproull, R. [1981]. "Program transformations and Bresenham's algarithm,"” in preparation.

Standish, T.A. et a/ [1976]. The Irvine Program Transformation Catalog, Technical Report,
Department of Information and Computer Science, University of California at irvine.

Standish, T. A. [1980]. Data Structure Technigues, Addison-Wesley, Reading, MA.

Steele, G. L., Jr. [1981]. Private communication of G. L. Steele, Jr. .of Carnegie-Mellon University,
April 1981.

Waite, W. M. [1974]. "Code generation,” in Compiler Construction: An Advanced Course, F. L. Bauer
and J. Erckel (eds.), pp. 549-602, Springer-Vertag, New York, NY.

Wulf, W. A. [1981]. Private communication of W. A. Wulf of Carnegie-Mellon University, April 1981.

Wuif, W. A. et af [1975]. Design of an Optimizing Compiler, American Elsevier Publishing Company,
Inc., New York, NY.

Wuif, W. A., M. Shaw, P. Hilfinger and L. Flon [1981]. Fundamental Structures of Computer Science,
Addison-Wesley, Reading, MA.

27 April 1981 Writing Efficient Code - 64 -

|. Details of the Pascal Programs

In Section 2 we studied a sequence of Pascal code fragments for producing Nearest Neighor
Traveling Salesman Tours. This appendix contains some details about the Pascal programs that
contained those fragments. In Section 2 we noted that the compiler used for these experiments was
the Pascal compiler on the Carnegie-Mellon University Computer Science Department PDP-KL10
(Arpanet Host CMUA), which is a derivative of the Hamburg Pascal compiler. i performs very litthe
optimization, so the computation we see expressed in the source code is very similar to that in the
resulting object code. All tests were run with the array bounds checking and debugging features

turned off.

in Section 2 we assigned a running time to each fragment of the form K1N2 microseconds. Such a
time is, of course, merely an approximation; the actual run time of Fragments A1 through A5 is
actually of the form

KN2 4 KNH, + KN + o(N)
while for Fragments A6 through A8 the run time has the form

KN + KNYZ 4 KNH + KN+ oN)
Because it would be rather laborious and not terribly instructive to calculate all the values of the
various K's, we used instead the sifnple approximation to K, of dividing the total run time in
microseconds by N2. Table 3 shows the run times of several experiments; the rows represent the niné
fragments and the columns represent values of N from 100 to 1000. Each entry consists of the
“average run time in seconds over the 95 percent confidence interval for the run time in seconds over

the estimated value of K1.

27 April 1981 Writing Efficient Cade . B5 -

N 100 200 400 800 1000

Program #

1 4845 1.8786
{.0075) (.0060)
48.4 47.0

2 ‘ A533 1.8249
{.0047) (.0044)
45.3 458 -

3 2392 8707
{.0046) (.0030)
23.9 24.2

4 2118 8465
(.0035) (.0033)
21.2 1.2

5 1425 5578 2.2241
{.0051) (.0034) (.01686)
14.25 13.94 14.01

6 0845 3614 1.3857 53332 - 8.2456
(.0047) (.0049) (.0036) (.0179) (.0159)
9.45 9.04 8.66 8.33 8.25

7 .1066 .3683 1.3160 4.8034 7.5268
(.0024) {.0021) (.0058) (.0125) (.0113)
10.7 9.21 8.22 7.66 7.53

8 1036 3418 1.2153 4.5094 £6.9334
{(.0047) (.0040) (.0041) (.0081) {.0139)
104 8.54 7.60 7.05 6.93

9 1033 3431 1.2068 4.4330 6.7936
(.0026) (.0041) (.0047) {.0077) (.0081)
10.33 8.58 7.54 6.93 6.79

Table 3. Pascal program run times.

Table 3 is ragged due to the extreme expense of using Fragments A1 through A5 on inputs of size
greater than 200; recall that Fragment A1 requires approximately 47 seconds on a 1000-point set
uniformly distributed on the unit square [0,1]%. Each program was run on ten different data sets for
the point sets with 100, 200 and 400 points; on the 800- and 1000-point sets each program was run on
five different data sets. The smail values of the 95% confidence intervals give us confidence that any

statistical error in the table occurs in at most the third digit of the reported times.

27 April 1981 Writing Efficient Cade - 66 -

Because the above data is only for one compiler on one machine architecture, we might be worried
that our estimates of the coefficient K1 are more artifacts of the particular system than values inherent
in the underlying programs. To fest this, William J. Trosky transliterated Fragments A1 through A8
from Pascal to C and performed experiments identical to those described above using the C compiler
on an HP-1000 computing system. His results are summarized in Table 4; the first column gives the
program number, the second column gives the estimate of the coefficient K1 for the Pascal program
{in mricroseconc-is), and the third column normalizes that coefficient by dividing it by the coefficient for
Fragment A6; the fourth and fifth cotumns give the corresponding values for the C program. It is
satisfying to note that the normalized run times of the Pascal and C programs are remarkably similar.

(A C version of Fragment A9 was not-available.)

Pascal Programs C Programs
Coefficient Normalized Coefficient Normalized

Program #
1 47.0 573 311.8 4.39
2 45.6 5.56 3038 4.27
3 242 295 197.4 2.78
4 21.2 2.59 187.2 2.63
5 14.0 1.71 122.0 1.72
6 8.2 1 711]
7 7.5 91 61.1 .86
8 6.9 .84 £59.8 84
g 6.8 .83

Table 4. Comparison of run times.

Table 5 presents data on the number of minimal vaiues of CloseDist found by Fragments A1l
through A9 {the transformaticns do not change the expected number of minima). The first column
gives N, the number of points in the sets. Tests were run on ten poinf sets for values of N up to 400,
and on five point sets for larger values of N. The second column shows the average number of
observed new minima in the point sets, and the next column gives the ninety-five percent confidence
intervat of that value. The fourth column divides the third column by N; our analysis predicts that to
be the sum of the first N harmonic numbers divided by N, or approximately H, - 1, which is shown in
the final column. The last two columns show that the observed values were quite close to the

predicted values.

27 Aprit 1981 Writing Efficient Code - B7 -

N New Minima (85% Coni.) . New/N Hy —1
4 2.4 ' (.34) B0 1.083
13.4 (1.58) 1.49 1.829
16 36.4 (4.37) 2.28 2.381
25 64.9 (6.37) 2.60 2.816
36 104.2 (8.88) 2.89 3.175
49 161.8 (9.75) 3.30 3.479
64 232.1 (16.47) 3.63 3.744
81 313.4 (13.90) 4.12 3.978
100 422.1 (34.12) 4,22 4.187
144 628.4 (46.96) 4,36 4.550.
196 915.3 (47.44) 4.67 4.858
256 1296.6 (64.19) 5.06 - 5.124
324 1790.2 (92.07) 5.53 5.360
400 2230.1 (90.88) 5.57 5.570
484 2764.4 (136.01) 571 5.760
576 3443.4 (148.02) 5.98 5.934
676 4133.2 (316.78) 6.11 6.004
784 4791.4 (180.01) 6.1 6.242
900 5677.4 - (237.42) 6.31 6.380

Table 5. Data on new minima.

Table 6 presents data on the efficacy of delaying computing fhe y-distance in Fragment A6. The
first column gives N, the number of points, the second column gives the average number of total y-
values calculated during the execution of the program, and the third column gives the 95%
confidence interval of the second column. These statistics were gathered on exactly the same point
sets used for the statistics of Table 5. The fourth and fifth columns show the average number of y-
distances divided by N and N%/2, respectively. The fifth column indicates that the total number of y-
distances is on the average less than 1.5N%2, This fact implies that when M points are left unvisited,
2.25M1/2 y-distances are calculated on the average (because the sum over all values of M from 1 to N
of that value is 1.5N%2). '

27 April 1981 ‘ writing Efficient Code -68 -

N Raw (95% Cont.) Raw/N Raw/N3/2
4 5.7 (.55) 1.425 7125
27.6 (2.16) 3.033 1.011
16 80.4 (4.58) 5.025 1.256
25 148.5 (4.54) 5.940 1.188
36 268.9 {11.57) 7.468 1.245
49 440.4 (18.73) 8.988 1.284
64 697.5 (21.33) 10.898 1.362
81 978.1 (28.64) 12.075 1.342
100 1347.8 (61.38) 13.478 1.348
144 2368.1 - (89.55) 16.445 1.370
196 3753.9 (121.94) 19.153 1.368
256 5666.5 (181.51) 22.135 1.383
324 8462.4 (216.93) 26.119 1.451
400 11150.0° (355.52) 27.875 1.394
484 © 15016.4 (354.65) 31.026 1.410
576 19619.0 (622.45) 34.061 1.419
676 25198.2 (778.70) 37.272 1.434
784 31452.8 (1205.47) 40.118 1.433
900 38365.0 (676.01) 42.628 1.421

Table 6. Data on y-values tested.

The final experiment on the Pascal fragments compared the erﬁpirically observed run times with the
analytic estimates given by the technique of Shaw {1978]. The cost of each Pascal operation was
determined from Figure 6.3 of Wulf, Shaw, Flon and Hilfinger [1981, p. 165], with the exception of the
sqrt function, which was assumed to have a cost of 42.8 microseconds. The results of the experiment
are shown in Table 7; the first row of that table says that Shaw's method estimated that Fragment A2
would require 43.05N2 microseconds, while it was observed to require 45.6N2 microseconds. The

final column shows that Shaw's estimates were quite close to the observed times.

Program Empirical Analytic Analytic/
Time Time Empirical

2 45.6 43.05 944

3 24.2 21.65 895

4 21.2 18.86 889

5 14.0 12.9 921

8 8.2 7.05 860

7 7.5 6.1 813

8 6.8 5.0 735

Table 7. Analytic predictions of times.

SECURITY CLASSIFICATION OF Tuis PAGE rWhan Data Fntered)

3 NSTRU N
REPORT DOCUMENTATION PAGE Bm@ggygﬂg;gggy%gﬂ
1. REPORT NUMBER i2. GOVT ACCESSION NQ, 3. RECIRIENT'S CATALQGINUMSER
CMU-CS-81-116
4. TITLE rand Subriile) 5. TYPE QF REPORT & PERIOD COVERED
WRITING EFFICIENT CODE Interim

6. PERFORMING QRG. REPQORT NUMBER

7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(a}
Jon Louis Bentley NO0014-76-C-0370
9. PERFORMING CRGANIZATION NAME AND ADDRESS 10. PADGRAM £ _EWENT, PROIECT, TASK

Carnegie-Mellon University AREA & WORK UNIT NUMBERS

Computer Science Department
Pittsburgh, PA, 15213

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OATE
April 27, 1981

13. NUMBER QF PAGES

T4, MOMITORING AGEMCY NAME & AGDRESS(1 dfiferont from Controlling Cliten} 18, SECURITY CLASS. (of thia raport)

UNCLASSIFIED

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

1§. GISTRIBUTION STATEMENT (of thia Repard)

17. DISTRIBUTION STATEMENT ({of the abatract sntered [n Block J0, it different trom Report)

Approved for public release; distribution unlimited

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side i necessary and identily by block number)

20. ABSTRACT (Continue on reverse side !{ neceseary and identify by block number)

0D tji:.‘n 1473 EDITION GF 1 HOV 65 1S OBSOLETE

S/N 0102-014-6603 | UNCIASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (#hen Date Entarad)

