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Abstract

, This report consists of two papers describing various aspects of a new
tree-structured paraile! computer. The first paper, "A tree machine for searching
problems" by J. L. Bentley and H. T. Kung, describes the basic architecture of the
machine. A set of N elements can be maintained on an N-processor version of the
machine such that insertions, deletions, queries and updates can aill be processed in

2 Ig N time units. The queries can be very complex, including problems arising in

ordered set manipulation, data bases, and statistics. The machine Is pipelined so
that M successive cperatlons can be performed in M~1 + 21g N time units. The
paper studies both the basic machine structure and a VLS implementation of the
machine. The secend paper, "A paraile! aigorithm for constructing minimum spanning
trees" by J. L. Bentley, shows how an (N/lg N)-processor version of the machine can
soive the probiem of constructing minimum spanning trees in time proportional to
N Ig N. This algorithm Is an improvement aver existing algorithms in several ways.

1‘l"his research was supported in part by the Defense Advanced Research Projects Agency under Contract
F33815-78-C-1551 (monitoered by the Air Force Office of Scientilic Research), in part by the National Science
Foundation under Grant MCS 78-236-76, and in part by the Office of Naval Research under Contract
NOOOQ14-76-C-0370. i

2Also with the Degartment of Mathematics,



CMU-CS-79-142

A Tree Machine for Searching Problems !

Jon Louis Bentley2
H. T. Kung
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

30 August 1979

Abstract

In this paper we describe a new tree-structured machine (suitable for VLSl
implementation) that solves a large class of searching problems. A set of N
elements can be maintained on an N-processor version of this machine such that
insertions, deletions, queries and updates can all be processed in 2 Ig N time units.
The queries can be very compiex, including problems arising in ordared set
manipuiation, dala bases, and statistics. The machine is pipelined so that M
successive operations can be performed in M-1 + 2 Ig N time units. In this paper'we
will study both the basic machine structure and the actual implementation of the

machine.
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1. Iniroduction

Very large Scale Integrated circuitry (VLSI) has been increasing in speed and
decreasing in size at an amazing rate over the past decade, and it promises to
continue at this rate far into the next decade (see Mead and Conway [1978]). In
this paper we will describe a tree-structured machine for solving searching problems
that is ideally suiled for implementation in VLSI. The searching problems that the
machine solves arise in a number of applications areas (including ordered set
manipulation, data bases and statistics), and it is able to solve all of the problems

very efficiently.

Before describing this machine in detail, it is heipful to characterize its
contribution in general terms. The authors believe that there is a spectrum of
impacts 'that advances in VLS technology will have on computer architecture. At
one extreme, this technology wili allow conventional architectures to be
implemented as smaller, faster and cheaper machines ~- this will lead to more
sophisticated interconnections of conventional machines {see, for eiample, Swan,
Fuller and Siewiorek [1877], or Sequin, Despain and Patterson [1978]). Also at this
end of the spectruim will be minor (register level) architectural changes that exploit
certain features of VLS) this area has been explored by Sites [1979]. At the other
extreme, VLSI archilectures have been proposed that are radical departures from
the von Neumann tradition (see, for example, Backus [1878], Mago [1979] or Wilner
[1978]). In this paper we will investigate an approach that lies between these two
extremes: a high-performance, special-purpose, non-von Neumann computilig device
that is designed to be used in conjunction with a conventional computer. In general,
such devices should he constructed only when they solve a probiem satisfying two
criteria: the problem should currently consume large quantities of computer time,
and the proposed special-purpose device must be much more efficient than
conventional ways of solving the particular problem. When such a problem is
identified it is reasonable to augment a general-purpose computing system with a
special-purpose device for solving the probiem; the structure of such a system is

depicted in Figure 1. Many such special-purpose devices have recently been
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proposed; see, for example, Kung [1979] and Kung and Leiserson [1978].

BUS
Primary ; Special-
Disk Tape cpPU Memaory g::'t::""-— Purpoen
Device

Figure 1. General system structure.

In this paper we will investigate a special-purpose machine for solving searching
problems. This machine is described at an abstract level in Section 2, where we wiil
also review some necessary background in searching problems. An architccture
(that is, a user's view) of the machine is described in Section 3, aﬁd issues of
implementing that architecture in VL3I are discussed in Section 4. Conclusions are

then offered in Section 5.

2. The Abstract Machine

In this section we will investigate the tree-structured searching machine at an
abstract level, apart from the details of architecture or implementation. The generai
searching problem it solves calls for maintaining a file of fixed-format records. We
must be able lo perform the operations of inserting a new record into the file,
deleting an existing record from the file, updating records in the file, and querying
the file to answer questions. Before we examine the general searching problem, we

will investigate one searching problem in particular.

That particular problem is called member searching. In its abétract form, it
invoives maintaining a set of elements so we can determine if a new element is a
member of the set. In concrete applications, other information is uéually also
requested. For example, after finding that a particular social security number is a
membér of a set of social security numbers, we often wish to retrieve other

information (such as Year-to-Date taxes). We will now investigate how the tree
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machine solves the abotract menmber searching problem, and then return in the next

section to the complicaling issues that arise in applications.
Input Node

Oulpui Node

F_igure g_ Structure of the tree machine.

The basic organization of the tree-structured searching'machine is depicted in
Figure 2. There are three kinds of nodes in the machine: circles (which broadcast
data), squares (which have limited slorage and computation power), and triangles
(which "combine" answers to queries). A set of N elements is stored in this machine
by placing each element of the setl into a distinct square node of the tree. Consider
now the problem of performing the member search to answer the query "“Is 17 an
element of the set?". We accomplish this by inserting 17 into the input node and
broadcasting it down the tree -- Ig N steps laler the value 17 will arrive at all of the
squares. This situation is illusirated in Figure 3a. At that point we compare the
values stored in each square 1o 17 and set a bit to one if the value is equal to 17
and zero otherwise; this is shown in Figure 3b. We can now combine the bits
together tiwough the botlom portion of the network by letting each triangle compute
the logical or of its two inputs, as illustrated in Figure 3c. So after a total of 2 g N
time units have passed since the query was posed, a single bit emerges from the
output node telling whether or not 17 is an element of the set. We have thus

described a procedure for determining whether a given object is a member of the
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set whose elements are stored in the square nodes.

it is important to note that the tree machine has a very regular data flow: the
data moves in discrete steps in only one direction (from the input node to the output
node). Thus if many successive eiements are going to be tested for membership in
the set stored in the square nodes, then the process of answering those queries
can be pipelined. As the value of the first element to be tested Is going down the
tree, the next value can follow one step behind, and so on. If M successive tests
are performed in this manner, exactly M-1 + 2 Ig N time units pass between the
entry of the first query at the top of the tree and the exit of the last of the

answers at the bottom of the tree.

The tree machine is able to solve many problems besides member searching. For
example, if a muitiset of elements (that is, a set in which one element can appear
many times) were stored in the square nodes of the tree, we might wish to count
how many times a given object appears in the set. We proceed exactly as we did
for member searching, first broadcasting the given element through the circles to
the square nodes. We load a one into each square if its element is equal to the
given object and zero otherwise, and then combine the answers by letting the
triangles sum the values of their inputs. Another example is given by nearest
neighbor searching. If we wish to find the distance to the element of the set that is
closest to 17, then we do the foliowing: broadcast 17 through the input node to all
squares, subtract the value stored in the square from 17 and take the absolute
value of the difference, and finally take the minimum of ali those values by having
the triangles return the minimum of their twa inputs. As for member searching, for
both member counting and nearest neighbor searching, we can answer a single

query in 2 ig N time and a series of M queries in M-1 + 2 Ig N time.

In general, the tree machine can solve any problem that can be phrased as
computing some function over every element in the set (such as equality or absolute
value of difference) and then combining the vaiues of those functions by some

associative, commutative binary operator. For example, the rank of an element X in
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b.) Comparisons are made.

c.) Answer is returned.

Figure 3. A member search.

a set (lhat is, e number of elements in the set less than X) can be calculated by
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storing in each square a one if the element is less than X and zero otherwise; the
final-answer is then computed by having the triangles add their inputs., Other
problems defined on totaily ordered sets that can be solved by the tree machine
include predecessor (what is the greatest element less than the given?), successor
(what is the least element greater than the given?), and minimum {what is the least
element in the set?). In general, the tree machine can soive all of the
"Decomposable Searching Problems" defined by Bentley and Saxe [1979]. That
reference contains both an algebraic definition of the cléss and a list of over

twenty particular searching probiems in the class.

The tree machine is also able to answer much more complicated kinds of queries
(of the form that arise in data base applications, for instance). Suppose, for
eiample. that every square node of the tree contains a record with ten keys. We
might want to know how many records there are in the file with first key equal to a
given value, tﬁe second key at least as great as the third key, the fourth key in a
certain range, and so on. This type of query is easily answered: we merely
_broadcast each of the conditions down to the square nodes, keeping track in each
node of whether it has satisfied all the conditions shipped so far. We Ioad a one if
all conditions have been satisfied and a zero otherwise, and combine by having the
triangles sum their inputs. Many applications call for a list of the satisfying records
instead of merely their count, and this can be accomplished by letting the triangies
compute the union of their inputs. This can be viewed intuitively by observing each
triangle independently, and imagining a person "tapping" the entire machine at each
time step. As each triangle is tapped, there are three cases to consider: If it has
no items in its inputs, it reports that; if it has one item, it returns it; and if it has two
items, it returns only one (delaying the other until the next tap). This “tapping"
process continues as long as there are elements that have yet to be reported.
(Note that to compute unions in this manner, the pipelining must be carefully

designed to ensure that no "overflow” occurs.)

Having discussed searching at some length, we will now turn to the issues of

maintaining the set of elements stored in the square nodes. A tree machine with N



30 Aognsl 1679 Tree KMachine for Scarclhing -7 -

square nodes (whaere N is a power of two) can store up to N records. A new record
can be inserted into the set hy placing it in any unused square. We find such a
square by having each circle keep track of the number of unused square
descendants of each of his two sons. When a request comes to the root for a new
(unused) position, he passes the request to one of his sons with unused square
leaves, and so on. Mechanically, this is accomplished by turning off all of the
squares except the one finally chosen as the holder of the new record; this square
is then loaded with the desired data. Nole that a single record can be inserted in

Ig N steps, and a set of M records can be inserted in M-1 + Ig N steps.

Another mainienance operalion is that of updating a set of records: this can be
easily accomplished by broadcasting the conditions that the changed records must
meet, turning off all processors that do not meet the conditions, and then making the
desired changes. ({(Although the update set will often have just one element, an
examplie of a "mass update”" might be processed on the first of the month: for all
salesmen with Monlh-Of-Starting-Cmpioyment equal to This-Month, add one to
Years-Of-Service.) To delete a single record we set a flag in its square node saying
that it is unuscd and then adjust the counts in all of the circles above it. This can
be accomplished either by pushing information "backward" to the top of the tree
(adding one to each counier as you go), or by doing a dummy reinsertion of that
element, and modifying the counters on the way down. The time for either of these
operations is proportional to lg N. Notice that after a set of elements in squares
have been identified for deletion, they can he deleted in paralle! (in a single step)
and ali counters can be reset (by pushing the information up the tree) in Ig N steps.
Although having information go up the tree is handy for deletion, it does complicate

the basic design severely; this feature might therefore not be implemented.

So far in our discussion each machine has represented but one set. In some
appiications, however, a given user might wish to represent many sets, or many
users might want to use the machine independently for their respective sets. Either
of these can be accomplished so long as the sum of the sizes of the sets is less

than N, the number of square nodes. Although we could "slice" the machine into
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sections to accomplish this, there is a much more elegant solution. Namely, a fixed
portion of each record is dedicated to a "set identification field", or "SetlD". To
process an operation on Set 56 (or a set bhelonging to user 56), we have as a
prelude to the operation the sequence "check SetlD for equality with 56 and turn
off the processor if not equai”, {Notice that we are not requiring that all records in
all sets be of the same format, but just that they have one field in common.) In an
environment with much sharing, this prelude will occur so often that it might be

advantageous to provide a single instruction that accomplishes its purpose,

Aithough so far we have used the tree machine to solve only searching probliems,
it can be applied to many other problems as well. For instance, it can be used to
sort a set of M elements in time proportional to M (as long as M is between Ig N and
N, where N is the number of square nodes in the tree machine). This is accomplished
by making two passes through the M elements: the first inserts the elements into
the machine, and the second counts for each element the numb.er of elements less
than it (that is, it computes the element's rank, as we saw before). This tells
precisely where each element occurs in sorted order (the output is a permutation
vector), and it is then trivial to arrange the elements into sorted order. By use of
pipelining, both steps run in time linear in M. Note that it was critical to phrase
sorting as a counting problem, rather than as extracting the minimum, to make use of
pipelining in the second step -- this algorithm essentiaily implements an N2 algorithm
in N time by using ail N processors in parallel. There are many other examples of
such speedups for problems that are not prima facie searching problems. Two such
examples are computing all nearest-neighbor pairs in a k-dimensional point set
(which arises in data analysis) and reporting all pairwise design rule violations in a
VLS| mask (a design automation task). The application of this machine to the
problem of constructing minimum spanning trees has been discussed by Bentley
[1979]--he shows how an N/lg N-processor version of the tree machine can
construct the minimum spanning tree of an N-node graph in O(N lg N} time, which is
optimal for complefe graphs, Other applications of tree-structured machines have

been studied by Browning [1979].
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This concludaes our discussion of the machine atl an abstract level, and we ©an
now state the properties that a concrete embhodiment of the machine must possess.
There must be three kinds of nodes in such a machine: circles, squares and
triangles. The circles must broadcast data and have a small amount of state
(na-;nely, to remember how many unused squares are descendants of each of their
sons). The only processing required of a circle is incrementing or decrementing by
one. The squares, however, must have substantial memory and computation power.
Each square must have enough processing capability to handie thie most difficuit
kinds of queries and updates desired and (usually} enough memory to store the
largest record in most applications. The triangles must be able to combine answers.
Most of the "combinatars" we desire are very simple to implement; these are and,
or, min, max, and plus., The only complicated combinalor_ is union, and we are willing

toe "turn off" pipelining in the presence of that operator.

3. An Architecture

In Section 2 we described the tree-structured.searching machine at an abstract
level, ignoring many issues of implementiation. In this section we will move one step
closer to an implcmehtminn. and describe a particular architecture (that is, a user's
view of the machine) realizing the abstract machine. It is essential that the reader
understand that the architecture we will investigate is not proposed as the best
possible archilecture realizing the abstract machine of the last section. Rather, it is
put forth only as evidence that there is at least one reasonably efficient
architecture for the machine. In Section 4 we will discuss how this architecture can

be implemented in VLS.

The basic structure of the architecture we will investigate is that studied in
Section 2 (illustrated in Figure 2). The flow of instructions and data in the machine
is exclusively from the input node (at the top of the figure) to the output node (at
the bottom) -- we will not have deletions that employ any "backwards flow". The
machine is based on 16-bit instructions and 32-bit data words (which are

interpreted either as integers in lwo's-complement or as 32-bit vectors). The top
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data paths in the machine (the son links from circles in Figure 2) are 16 bits wide;
the bottom data paths (links to triangles) are 80 bits wide. The entire machine
operates synchronously; an operation is (perhaps) performed at each node and data
is transmitted from the node to its sons on each major cycle. Having described the
machine at this gross level, we will now examine the circles, squares and triangles

individualiy.

The primary function of the circle on each major cycle is to broadcast what it just
received to its sons. In only three contexts must it perform a more sophisticated
operation. As a new element is being inserted, it must decide which way to direct
'the insertion (to one that has unused square leaves) and then decrement the
appropriate counter by one; it then ships a "no-op" to the other son. The no-op Is
effected by having one bit in the instruction turned off as the 16-bit instruction is
passed to the "other" son. To accomplish a deietion we insert an instruction packet
of three 16-bit instructions at the root node. The first instruction is the deletion
and the next two 16-bit words contain the binary address of the node to be
deleted. The circles can tell by looking at appropriate bits of the address whether
they should increment one of their counters as they see this instruction. The final
capability the circles must have is that of passing data to the squares, without
interpreting that as an instruction to them; we will return to this issue as we discuss

the squares.

While the circles have the simplest architectures of the three units we will see,
the squares have the most complex. The abstract machine requires that the
squares be able to store data and to perform enough calculations to answer queries
and perform updates. This architecture will accomplish both these tasks by shipping
combinations of instructions and data to the machine. We now have to make a
fundamental design decision: should the individual squares be special-purpose
devices (honed for a particular view of the tree machine's task), or should they be
(in some limited sense) general-purpose c'omputing devices? We will choose the
latter course, and make each square a "baby" von Neumann computer; it is

important, however, to emphasize that this is merely a design decision and not an
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inheront proparly of the abstract machine,

Each square will be a small von Neumann-like processor that receives its
instructions and cdata from_ an external, 16-bit stream. An individual processor
contains sixteen 32-bit words of memory, two 32-bit registers, and a vector of
eight single-bit data flags {(F[0], F[1], .., F[7]). The processor also contains an
eight-bit Set Idetification number (SetiD), and an Instruction Register. The first bit
of the F vector (F[0]) is used as the "Active" hit of the processor; a special
"Enable"™ command turns on all processors (by setting F[0] to one), and a processor
can conditionally turn itself off by storing a zero in F[0]. The basic layout of the
machine is shown in Figure 4 (notice that because the machine is roiated 309, the

data flows from right lo left rather than from top to bottom).

RA

_
b

RB .
A
) l 1 M[0]
/ / M[1]
Memor /
Controiier

\ :M[IS]

Figure 4. Components of the square.

The 16-bit instruction format for the square processor is shown in Figure 5. The
first bit of an instruction processed by the squares is always zero; a one in that bit
signifies an instruction that is ignored by the squares but passed on to the triangles.
The two Fam bits specify one of the four families to which an instruction can belong
(Arithmetic-Logical, Load-Store, Bit or Special), and the Code gives the opcode of

the instruction. There is a one bit flag (Flag) in each instruction, and arguments to
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the instruction are either two four-bit addresses (A1 and A2), an 8-bit string (Name)
or a five-bit integer (Num). The actual instructions are described by group in an
iISP-like language in Tabie 1. All of the arithmetic-logical instructions are
zero-address instructions, combining registers RA and RB and storing the result in
either RA or RB (usually RA). The load-store instructions specify one of 16 memory
addresses as their operand; the data movement is then between that address and
the register RB. The bit operations generally have two addresses: they combine
the first and the second operands, storing the result in the first. The exceptions to
this pattern are the unary not operator and the compare (comp) operation; the latter
compares RA with RB and stores in the first bit (F[A1]) whether or not the values
are equal and tells which inequality in the second bit (F[A2]) -- this is just a

straigihitforward encoding of three states into two bits.

el Al A2
! Name
a

0 [Fam{Code 8 Num

U] 23 678 1011 15

Figure 5. Instruction format.

The only instructions that are not entirely obvious are the special instructions.
The enable instruction turns on all processors in the tree. The ins (insert)
instruction turns on precisely ohe processor, turning off the rest (and decrementing
the counters in the circles), The del (delete) instruction has no effect on the
processors; it only increments the appropriate counters in the circles (the squares
must ignore the two following instructions packets, though -- they are just the
processor address). The ship instruction allows data to enter the 3B register from
the data/instruction stream. The Flag bit tells whether the next one or two 16-bit
packets should be loaded into RB; the data can then be processed as desired. The
chksid and setsid instructions are for manipulating the 8-bit SetlD register; the
former turns off the processor if SetiD is not equal to Name, and the latter loads the

SetiD field from Name.
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add =+ RA« RA+RB

sub - RA <« RA - RB

neg = RA«-RA

rand = RA+«RAARB

ror - RA«RAVRB

rxor - RA<«RA®RB

mot = RAe™RA

shift Num -+  RA « RA left shifted by Num
tab - RA«RB

tha - RB«RA

swap - RA-~RB

Load-Store

Idb Num = RB e« M[Num)

stb Num -  M[Num] « RB

Bit

band AT,A2 = F[A1] « F[AT1] A F[A2]

bor A1,A2 = F[A1]« F[A1] Vv F[A2]
bxor A1,A2 = F[A1]« F[A1] 0 F[A2]
bnot A1 > F[A1]« ~F[A1]

comp A1,A2 = F[A1] « RA=RB; F[AZ2] « RA < RB
Special

enable - F[0]e1

ins = T[[0] « this processor selected
del = (defined in text)

ship MNag =  {defined in text)

chksid Name -

seisid Name —

F[O] « SetiD = Name
SetllD « Name

-13 -

Table 1. Instruction set for squares.

To illustrate the operation of the processors we will study two program segments

for performing searches. The first segment is for member searching.
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chksidt  ThisSet // Turn off undesired processnrs

ship Two // The next two packets hold the comparand
data;

datap '

tab // Put comparand in RA

Idb KeyAd // Put key in RB

comp 1,2 /! Answer is in F[1]

The search key enters the RB register from the data stream and is then transferred
to the RA register. The program then loads the key field of the record into the RB
register (KeyAd is an integer identifying which of the 16 memory words holds the
key), and makes the comparison. F[1] is then one if and only if the record's key
field is equal to the dala shipped in the stream. At this point, the answer can be

combined in the triangle netwark,

The next program that we will examine arises in “nearest neighbor" searching; it
computes the distance between the data and the key field of the record. Since we
desire the absolute valus of the difference of the key and the data, we must have
a conditional step in our program.

chksid ThisSet

ship Two // RA « Data

datay

dataR

tab

Idb KeyAd // RB « Key

comp 2,0 /7 if DatasKey, leave processor on
swap

chksid ThisSet // Turn ali processors back on

sub /! RA « |Key-Data|

The crucial step of this program is the comp instruction: if Data is less than Key
then a one is stored in F{0], which leaves the processor on; the swap then
interchanges key and data. The next instruction (chksid) turns all appropriate
processors back on, and the subtract correctly computes a positive value. The

triangles can then be instructed to return the minimum of these values.

The two code segments that we have just seen iliustrate many of the aspects of
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coding the tree machine. Many other exainples have been coded, and all of them
appear 1o he fairly cificient.  More quantitatively, the ratio of tree machine
“instructions to "critlical" operations in the task cluslers very closely around 2.5.
This statistic is evidence for the vindication of our design decision to make the
squares gcnc‘:rul—purpose machines, ralher than special devices tailored to the

searching task domain. (Pursuing that alternative remains an interesting open

problem.)

Befure ending our discussion of the squares, it is interesting to compare the
design of the processor with a more typical von Neumann processor. In some ways,
we faced exactlly {he same problems: the choices of data representation,
instruction formatling, operation set, and addressing were all taken from the wvon
Neumann design space as discussed by Blaauw and Brooks [1979]. On the other
haﬁd, we avoided many of the issues faced by designers of typical machines; these

include instruction sequencing, interrupt handling, and input/output control.

Before we discuss the archilecture of the triangle, we must settle one more point
about what we want it lo do. In most applications that compute the minimum of a set
{for instance), we want 1o know not only what the value of the minimum is but also
what element has that value. We therefhre have three objects associated with
computing the minimum: the operation (minimum), the value, and the name (which is a
32-bit word associated with the value:; its address or "key" in many applica'tions).
When combining two such objects, we take the value as the minimum of the two
values, and tllwe name from the name of the smaller value. The name is thus
inherited from the minimum. We will also associate names with other binary
operators: the name of maximum is inherited from the node with greater value; for
plus, from a nonzero element; for or, from a nonzero bit vector (arbitrary if both are

zero); and for and from a zero bit vector.

Having defined the concepts of value, name and inheritance, it is straightforward
to describe the architecture of the triangles. They will operate on 80-bit packets:

16 bits of instruction, and 32 bits each of value and name. Computing min, max,
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plus, and, and or are all simple. Union is a bit more detaiied, but aiso conceptually
straightforward. One aspect that we have not mentioned is the interface between
the squares and the triangles; we must include instructions for transferring the
contents of the RB register to the name or value field of the triangle immediately
beneath it (these couid be included in the load-store family). This allows us to give
complete programs for answering queries. After computing the answers (as
illustrated in the two segments shown above}, we load them into the desired fields

of the triangles, and comhine them as desired.

It is important to emphasize that the architecture we have just seen is not the
architecture that the ultimate user of the machine will see, Rather, there will be a
hierarchy of functions available to him. At the highest level, he will be able to
perform operations on sets (load a set, erase a set, for each element in the set, and
so forth); at an intermediate level there are record-handling operations (defining
gueries or inserting, deleting and updating records); and at the lowest ievel there
are the machine instructions themselves. At the lowest levei the user can make
very efficient code by knowing the details of the machine; at the higher ievels he

sacrifices efficiency for clean and easy code.

An important part of the implementation of this architecture is that there be a
fairly sophisticated device controller for the tree machine (such as an off-the-sheif
microprocessor). This controller will implement the hierarchy of functions mentioned
above. This will also reduce the bus activity substantially by having the controller
fetéh items from main memory and issue instructions to the tree machine; it appears
that having the CPU itself perform these tasks would lead to a substantial

degradation in overall system performance.

4. Discussion of Implementation

In this section we w'll discuss one impiementation of the architecture of Section 3
in VLSI technolagy. The fundamental description of tiie implementation is that it is
bit-serial. There are two motivations for this: one, to exploit the shift-register

technology of VLSI, and two, to use very few pins on packages.
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The implementation of bolh the circles and the triangles described in the last
seclion is straighlforward, The squares are also easy to implement bit-serially. The
16-word memory is in Tact a parallel shift regisler, 16 bits wide and 32 bils long.
The two registers RA and RB are also shift registers. To load or store a word, RB
and the memory shiit register are shifted in paraliel, and Jme memory controller of
Figure 4 is just a mulliplexor (decoding a 4-bit address to one of 16 lines). Alt of
the arithmetic-logical operations are accomplished by putting a single-bit function
box between the BA and BB registers, and then shifting the pair through it (all
operations require at most one bit of memory). Notice that we have assumed that
the squares have 32 minor cycles during each major cycle of the machine. The bit
operalions are straightiorward to implement if the Flag array is just a small RAM.
Estimales by experienced VLS designers indicate that the chip area for the
functioiality in lhe square is about equal to the chip area required for the 512-bit

memory. Using current technology, it is easy to imagine putting 16 squares on a

single chip.

Now that we know how we will implement the individual processing elements
(circles, squares and triangles), we must describe how to piace them on a chip. The
first simplification we will make is to consider them as standard binary trees rather
than the "mirrored™ binary tree of Figure 2; the unmirroring process is illustrated in
Figure 6. We now face the problem of laying out a binary tree on a chip. This
problem has Dbeen studied Dby Mead. and Rem [1979], who suggest the
space-economical layout illustrated in Figure 7. The amount of space used in that
layout is proporiional {o the number of processors on the chip. Note that each edge
in that layowt is realized by two "wires" on the chip -- one for data going to the

squares, and one for data coming from the squares.

Since only some fixed number of the processors in a tree machine will fit on a
single chip, it is important that we discuss the packaging of the chips. The
packaging strategy we propose is illustrated in Figure 8. There are two kinds of

chips in that figure: the /eaf chips and the internal chips. The leaf chips contain
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Figure 6. "Unmirroring" the tree machine.

L LT
M !

Figure 7. Tree layout on a chip.

(say) 16 square nodes and 15 circle and triangle nodes. Al the communication to a
leaf chip is through two wires, so the chip needs oniy two communications pins
(besides power, ground and timing synchronization pins). Notice that this implies
that with technologicai advances in VLS|, we will be able to place many more
processors on a sduare chip; we are not bound by pin limitations. The internal chips
would probably be constructed with seven circles and triangies on them; this implies
that there is one input-output pair of wires at the top of the chip and eight pairs at
the bottom. The total number of pins for this'chip is therefore eighteen (pilus
miscellaneous pins). This chip is therefore pinbound even in today's fabrication
technology; uniess there are unexpected advances in packaging technology, the
internal chips will probably conlinue to have seven or at most fifteen pairs of circles

and triangles.

To get a hetter feeling for the size of the tree machine, we will briefly consider
how one might be built today. Suppose that we put sixteen square nodes on each

jeaf chip, and seven circle-triangle pairs on each internal chip (both of these are
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easily accomplished in today's technology). We will now put 64 leaf chips and nine
internal chips on a board; this gives us 1024 square nodes. We can then put
sixteen of these boards in a small cabinet, giving a tree machine of more than
| sixteen thousand square nodes, each holding a 512-bit record. If we assume that
technology continues to double the number of components on a chip every two
years, this implies that we can expect a tree machine of one million records to fit in

about a cubic foot of space by the end of-the 1980's.

These rough (but fairly conservative) estimates indicate that the tree machine
might be one reasonable way 1o exploit the processing power that VLS! will give us.
Before we can assert this with confidence, however, we must show that the iree
machine is a wiser way to invest resources than other structures for searching. For
example, might it be beller to put the same resources into a large RAM memory
rather than a tree machine? The authors' preliminary investigations strongly
sugyest that the excess cost of the tree machine compared to a RAM is very small
compared 1o the funclionality purchased, but the detailed comparison of this

architecture to the RAM and ils other compelitors remains an open probiem.

5. Conclusions

in this paper we have investigated the tree machine for searching problems on

several levels. In Section 2 we studied it in an abstract setting and showed that it
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can rapidly solve many searching problems, as well as some other problems that do
not immediately appear to be searching problems. In Section 3 we saw an
architecture (that is, a user's view) of the machine, and in Section 4 we saw that
that architecture can be efficiently implemented in VLS| technology. Having studied
the machine at these various levels, we will now spend a few moments summarizing

the contributions of this work.

‘This machine can be compared with many other architectures. It is similar to an
associative memory in many aspects, but it can perform many more operations than
even the most powerful associative memories considered to date {see, for example,
Lamb and Vanderslice [_19?8]). One might consider the square processors as
forming a Single-Instruction, Multiple-Data stream {SIMD) computer, but each square
is considerably simpler than most SIMD machines proposed to date. The tree
machine is also superficially similar to the CASSM computer of Su et a/ [1979], but
there are fundamental differences in the two machines at both the architectural and
implementation levels. Two other machines to which it might be compared are the
tree-structured machines of Mago [1979] and Sequin, Despain and Patterson
[1978]. Both of these machines, however, are put forward as general-purpose
computing devices, while our machine is much more specialized to the particular

problem of searching.

Although we explored only one design path in this paper, it is importent to
remember that there are many variants of the tree machine. For exampie, in the
unmirrored tree machine of Figure 6, the circte-triangle nodes could be made more
powerful so that they could interact with passing data in more sophisticated ways,
thereby substantially enhancing the machine’s capability. So far we have
investigated only binary trees; in certain applications, other branching factors may
prove superior. Other Interesting variants of the machine come from changing the
amount of memory in a square processor; might it be reasonable, for instance, to
have thousands of memory words in each square? Many other design paths remain
unexplored -- in this paper he have only attempted to describe the fundamental

concepts of the machine, __
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[

Annderesting aspect of the tree machine is what we might call its "computational
structure®, which is illustrated in Figure 9. That diagram has three intarpretations.
First, it illuslrates the tree machine itself: very small input and output channels, with
massive computation going on in between. Second, it describes the searching
problem: a small question is asked about a large set, giving a small answer. And
finally, the figure illustrates the constraints of working with pinbound VLSI: the
number of pins on a chip is very small compared to the number of functional
compenents.  The fact that the abstract structure of both the searching problem

and the tree imachine's solution to it closely model the medium of VLSI indicates that

|

this approach might be very successful,

Figure 8. A computational structure.

To summarize the 1iree machine, the authors feel that this work has three
contributions. The first is the abstract tree machine: it gives a number of nice
"theoretical" solutions 1o a large set of probiems. The second contribution is the
architecture and implamentation we have proposed; they indicate that this machine
might be a reasonable device to build as further advances in VLS| technology occur.
Finally, we feel that the "computational structure" we Just investigated provides an
example of the kind of argument that will Justify special-purpose architectures

proposed for implementation in VLSI.
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1. Introduction

A minimum spanning tree (MST) of a weighted graph is defined as a subset of
edges of the graph that connects all hodes and whose total edge weight is minimum.
The problem of computing MSTs arises in many applications. In &8 communications
system, for example, we might wish to link together a set of cities using minimum
wire length; if only wires from one city to another are allowed, this calls precisely
for finding the minimum spanning tree. (Indeed, this method is used for billing
purposes by the Bell System!) The problem of computing MSTs also arises in such
diverse appiications areas as data analysis, operations research, and transportation
networks. In this paper we will investigate a new method for rapidiy computing

MSTs on a parallel computer.

Much previous work has been devoted to the minimum spanning tree probiem. In
its most general setting, the problem is defined on graphs; Cheriton and Tarjan
[1976] provide a thorough treatment of algorithms for the general problem. A
special case of the MST problem (and one of great practical interest) is \)vhen the
input graph is the complete graph induced by a set of points in Euclidean k-space.
(That is, the vertices are the points in the set, and the edge weight between two
vertices is their distance in space.) Shamos [1978] gives an optimal worst-case
algorithm for computing the MST of a planar point set, and Yao [1977] describes the
best-known worst-case algorithm for point sets in k-space. Fast expected-time

algorithms are considered by Bentley, Weide and Yao [1978].

In this paper we will study a parallel algorithm for compqtlng MSTs of graphs in
which the edge weights are implicitly given by a distance function that returns the
(nonnegative) distance between two nodes. The most common example of such
graphs is the Euclidean case that we just saw; there are, however, other examples
(for instance, the vertices might be bit strings and the distances their Hamming
distance). Assuming that the distance function can be computed in constant time,
the best known uniprocessor algorithm for this problem runs In (optimal) time

proportional to NZ on a graph of N vertices. The putpose of this paper is to present
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an algorithm for solving this probiem on an N/(ilg N)-processor parallel machine in
time proportional to N Ig N. (A similar result was achieved by Sollin {1977]}; we wili

compare the new algorithm to his later in the paper.)

This paper is organized into three primary sections. In Section 2 we study a
particutar tree-structured parallel computer, and in Section 3 we will review a
well-known algorithm for constructing M5Ts. These sections provide the background
for Section 4, in which we will see how the algorithm can be implemented very

efficiently on the tree machine. Conclusions are then offered in Section 5.

2. Background on the Tree Machine

In this section we will examine the tree-structured searching machine described
by Bentley and Kung [1979]. Although this discussion will provide the necessary
background for applying the tree machine to the MST problem, it will be rather brief;

the interested reader can refer to Bentley and Kung [1978] for additional details.

The basic structure of the tree machine is illustrated in'Figure 1. It is a
"mirrored" binary tree, containing three types of nodes: circies (which broadcast
data), squares (which store data and compute), and triangles (which combine their
inputs). To illustrate the operation of the tree machine, let us suppose thai each of
N square processors holds an element of set §, and we wish to determine whether
59 is a member of 5. We enter 58 into the input node of the tree, and Ig N steps
later it reaches all the square nodes. We then perform N comparisons (in parallel},
giving N bits that teill whether the element stored in each processor is 53. We can
now combine those bits in Ig N steps by letting the triangles compute the logical or
of their two inputs. We therefore receive the answer to our query 2Ig N steps

after it was posed.

The above example ilustrates the important aspects of the tree machine. The
primary function of the circles is to broadcast data (they also decide where a new
record is to be inserted into the tree). The triangles’ purpose is to combine their

inputs; the operations they perform include min, max, and, or, and plus. In addition
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Input Node

Qutput Node

Figure 1. Structure of the tree machine.

to returning the minimum vaiue (for instance), simple bookkeeping enables them to
return also the name of the object achieving it. The squares are the most
compiicated nodes, Each is a "baby" von Neumann computer with a smail amount of
main memory, They receive their instructions and data in a single stream
transmitted by the circles. (The stream for the above member search would be
something like "the following is data, constant 59, load into register A, load register
B from the memory word holding the key, and compare.") An important property of
the tree machine is that M successive member searches can be "pipelined" (that is,
the second goes down the tree immediately following the first, and so on) to run in

M-1 + 2 lg N time.

Note that the tree machine can be simulated to within a constant time factor by a
set of N processors operating on a large shared memory with constant access time.
Such a machine is a more typical theoretical model of parallel computation (see, for

example, Borodin and Munro [1975] or Kung [1979]), and the resuit of Section 4

holds in this model as well as for the tree machine.

Although this concludes our discussion of the tree machine on a "theoretical"

level, there are two important points of practical interest that should be made. The
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first is the fact that the tree machine is efficiently implementable in VLSI
technology; this issue has been discussed at length by Bentley and Kung [1979].
The second point is that the algorithm we will see in Section 4 can be implemented
on the concrete tree machine of Bentley and Kung [1979] simply by coding a

program; no modification of the basic machine is required.

3. The Prim~-Dijkstra MST Algorithm

In this section we will study an MST algorithm due to Prim [1957] and its
computer impiementation as given by Dijkstra [1958]. Because the algorithm has
been examined at length in those pioneering papers (as well as in numerous texts),
we will review it at a fairly intuitive level. Proofs of correctness and details of

implementation abound in the literature,

Prim’s algorithm works by starting with a fragment (subtree) that consists of
exactly one vertex of the graph and then successively expanding the fragment
until a spanning tree is obtained. Because the fragment is expanded at each step
under a very lccal condition, this is réferred to as a "greedy" algorithm. To specify
that condition, we must give some definitions. The distance of a vertex to the
fragment is defined as the weight of the shortest edge connecting that vertex to
the fragment. The nearest neighbor of the fragment is then defined as that vertex
not in the fragment with minimum distance to the fragment (with ties broken
arbitrarily). It is now easy to describe Prim's algorithm. The fragment is initialized to
contain an arbitrary vertex, We then expand the fragment at each stage by adding
. to it the nearest neighbor of the fragment. When applying this atgorithm to an
N-node graph, after N-1 stages we will have emptied the set of nonfragment nodes
and thereby have built a spanning tree of the graph. Prim gives an elegant proof
that the resulting spanning tree is indeed minimum {(the proof of this particutar

algorithm is based only on Principie 2 of his paper).

If Prim's algorithm is implemented in a computer program by keeping track of the
"nearest nonfragment neighbor" of every fragment node, then the resulting algorithm

has O(N3) running time. Dijkstra [1959] makes the brilliant observation that an
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0(N2) algorithm can be achieved by the dual strategy of keeping track of the
"nearest fragment neighbor" of each nonfragment node. (Note that quadratic time is
optimal because all (ﬁ) edge weights must be examined in the general case.) The
primary data structure of Dijkstra’s algorithm contains, for each nonfragment node,
the name of its nearest neighbor in the fragment and the distance to it. We initialize
the program by choosing an arbitrary node as the single member of the fragment and
assigning that node as the nearest neighbor of all other {(nonfragment) nodes. In
each successive stage of the algorithm, we choose the nonfragment node with
minimum distance to nearest neighbor for insertion into the fragment and then
update every nonfragment node to see if that chosen node is perhaps its nearest
neighbor (we check if the distance to.the chosen node is less than the distance to
its current nearest neighbor). The informal method we have just seen is described
more precisely as Algorithm 1.
- TreeEdges « ¢
NonFragment « ¢
fori« 2 toNdo
New(a)
a.Node « i
a.NNinFrag « 1
a.NNDist « Distance(1,i)
Insert a into NonFragment
while NonFragment # ¢ do

Assign b s.t. H.NNDist = MiNceNonFragment ¢-NNDist
Insert (b.Node, B.NNinFrag) into TreeEdges

Delete b from NonFragment

foreach a in NonFragment do

ThisDist « Distance(a.Node, b.Node)
if ThisDist < a.NNDist then

a.NNinFrag « b.Node
a.NNDist « ThisDist

Algorithm 1. The Prim-Dijkstra MST algorithm.

Algorithm 1 assumes that the input vertices are named 1 through N and that the

function Distance(i,j) returns the distance from node i to node J- The set TreeEdges



30 August 1979 A ﬁarallei MST Algorithm -6 -

contains pairs of integers, and its final value gives the MST. The set NonFragment
contains the nonfragment nodes, each of which is represented as a Pascal record
with three fields: Node (an integer node number), NNinFrag (an integer name of the
node’'s nearest neighbor in the fragment), and NNDist (the distance to the node's
nearest neighbor). Whitney [1972] gives a Fortran implementation of Algorithm 1
that implements the NonfFragment set as an array; the running time of his program is

proportional to N2,

4. The Algorithm on the Tree Machine

In this section we will see how Algorithm 1 can be efficiently impiemented on the
tree machine that we st.udied in Section 2. We will use the tree machine to
implement the NonFragment set; specifically, every record tn the NonFragment sét
resides in a different square processor of the tree machine. We will assume that
there is a small conventional computer "driving” the tree machine; that computer will
aiso store the TreeEdges set. We will now describe how each part of Algorithm 1

can be impiemented in this scheme.

Setting Treef.dges to be empty is trivial, and initializing NonFragment to be empty
can be accompiished by broadcasting a "clear" command to all of the square
processors in the tree machine. The for statement is implemented by perfarming the
calculations in the "driver" computer, and then inscrting each record into the tree
machine. Since insertions can be pipelined, the total time required for this step is

finear in N.

We now come to implementing the code in the while loop. We can find the record
of NonFragment with the minimum NNDist- field in logarithmic time by letting the
triangles compute the minimum of those fields {and also returhing the name of the
record achieving that minimum). We then fetch the Node and NNinFrag fields of that
record, insert the edge into TreeEdges, and delete 'the record from NonFragment
(this amounts to turning off a processor). We must now perform the foreach
statement, and it is here that we empioy the massive paralielism of the tree

machine. To every record currently stored in the tree, we (simultaneously) ship
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down a description of b.Node (sufficient to compute the distance function) and then
compute ThisDist. If ThisDist is greater than the NNDist field of the particular
processor, we (temporarily) turn it off. We now broadcast the assign commands to
alter the NNinFrag and NNDist fields, which are executed only by the listening
processors. We then turn back on all the processors currently representing

elements on NonFragment, and repeat the while loop until NonFragment is empty.

" The method that we just described is easy to program on the VLS| tree machine
of Bentley and Kung [1979], assuming that the distance function between pairs of
nodes can be computed by the square processors in constant time. The initiatization
steps (assigning sets to be empty and initializing NonFragment) require linear time on
the tree machine. Each iteration of the while foop requires O(ig N) time. (Data must
travel from the iiput node to the output node three times: once to find the minimum
NNDist, once to find the associated values and delete the old record, and once to
perform the updates of the foreach statement.) Since this step is executed N-1
times, the total time used by the step is O(N Ig N). That cost dominates the cost of
the initialization, and the total running time of the Prim-Dijkstra MST algorithm

implemented on the tree machine is therefore proportional to N ig N.

To iliustrate the operation of this parallel algorithm on a more concrete example,
et us consider the problem of constructing the MST of a set of N points in k-space
{using the Euclidean metric). Initializing the set NonFragment involves storing k reals

in each of N processors; this can be accomplished in Nk time. In the while

statement, finding the minimum can be accomplished in fg N time, and the name of
the record realizing the minimum can also be retrieved (and deleted) that quickly.
We must now execute the foreach statement. This invoives entering the k
coordinates of the point most recently added to the fragment to all of the N
processors (and computing the sum of the squares of the coordinate-wise
distances); this can be accomplished in time proportional to k. Updating the
appropriate fields requires constant time, so the total time per step of this algorithm

is proportional to k + Ig N. The total running time of the algorithm is therefore
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proportional to N ig N + Nk.

The MST algorithm of this section can be used to yield an N Ig N time algorithm on
a tree machine with N/(lg N) square processors, each of which has Ig N storage. To
accomplish this, we store ig N vertices at each square node, and implement the
foreach statement by executing its code Ig N times. Each iteration of the while loop
still costs ig N time, and the total cost of the algorithm is still proportional to N Ig N.
The processor-time product of this modified algorithm is N2, rather than the N2 lg N
of the previous version. Note that this sgcheme can be used to give an N*G(N) time
MST algorithm on an N/G(N)-processor machine for any function G that grows more

quickly than ig N (the trick is to store G(N) vertices in every square processor).

5. Conclusions

Sollin's [1977] algorithm is another method that has been proposed for the
parallel construction of MSTs in N Ig N time on an N-processor machine. The method
that we saw in Section 4 is a fundamentally different approach to the problem than
Sollin’s: our method performs N iterations of logarithmic cost, whereas Sollin's
performs lg N iterations of linear cost. A particular advantage of our method over
Soilin's is that while his performs N2 Iy N distance caiculations in the worst case,
ours performs snly (g), which is optimal. A related advantage of ours is that it
performs only N2 operations altogether (unlike Sollin's N2 Ig N), and this approach
might therefore lead to an N-processor algorithm with linear running time. We also
saw that for any function G growing as fast as Ig N, our algorithm can be
implemented in N'G(N) time on an N/G(N)-processor machine, giving an optimal
processor-~time product of O(N2); this is superior to Sollin's processor-time product
of O(NZ lg N). Yet another parallel MST algorithm has been given by Savage [1977].

Her algorithm runs in 0(192 N) time on a machine with O(N2/Ig N) processors, and is

1Ii is possible to use the tree machine to achieve an asymptotically faster MST algorithm for point sets in
k-space by implementing Yao's [1977] “directional nearest neighbor® MST aigorithm. The directional nearest
neighbors are found by pipelining the tree machine, and the resuiting MST is then computed on a uniprocessor. The
running lime of the resulling algorithm is O[(N lg lg N + Nk)'t(k)], where t{k} is the number of directional nearest
neighbor soarches Yao's algorithm requires in k dimensions, The parallel implementation of the Prim-Dijkstra
algorithm would probably be faster than this methed in aimost every practical application, however.
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therefore applicable in an entirely different sphere than the algorithm of Section 4.

(Note that the processor-time product of her algorithm is proportional to N2 Ig N.)

The contributions of this paper are in two areas. In a "theoretical" setting, we
have investigated an implementation of the Prim-Dijkstra MST algorithm on a parallel
computer. While this algorithm has the same running time as a previous aigorithm, it
uses an optimal number of distance calculations, and therefore gives hope for a
faster parallei aigorithm. A modified version of the algorithm runs on N/G(N)
processors, with optlimal processor-time product. We also saw a faster parallel MSY
algorithm for the special case of finding the MST of a point set in Euclidean k-space,
answering an open problem in computational geometry (see Shamos [1978, p. 210,
Probiem 7]). On a more practical level, the algorithm that we have investigated
uses a machine with a simple and regular interconnection strategy that can be

efficiently implemented in VLSI technology.
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