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Abstract 

When people use natural language in natural settings, they often use it 
ungrammatically, missing out or repeating words, breaking-off and 
restarting, speaking in fragments, etc.. Their human listeners are 
usually able to cope with these deviations with little difficulty. If a 
computer system wishes to accept natural language input from its 
users on a routine basis, it must display a similar indifference. In this 
paper, we outline a set of parsing flexibilities that such a system 
should provide. We go on to describe FlexP, a bottom-up 
pattern-matching parser that we have designed and implemented to 
provide these flexibilities for restricted natural language input to a 
limited-domain computer system. 
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1 . The Importance of Flexible Parsing 
When people use natural language in natural conversation, they often do not respect grammatical 

niceties. Instead of speaking sequences of grammatically well-formed and complete sentences, 

people often miss out or repeat words or phrases, break off what they are saying and rephrase or 

replace it, speak in fragments, or use otherwise incorrect grammar. The following example 

conversation involves a number of these grammatical deviations: 

A: I want. . . can you send a memo a message to to Smith 
B: Is that John or John Smith or Jim Smith 
A: Jim 

Instead of being unable or refusing to parse such ungrammaticality, human listeners are generally 

unperturbed by it. Neither participant in the above example, for instance, would have any difficulty in 

fol lowing the conversation. 

If computers are ever to converse naturally with humans, they must be able to parse their input as 

flexibly and robustly as humans do. While considerable advances have been made in recent years in 

applied natural language processing, few of the systems that have been constructed have paid 

sufficient attention to the kinds of deviation that will inevitably occur in their input if they are used in a 

natural environment. In many cases, if the user's input does not conform to the system's grammar, an 

indication of incomprehension followed by a request to rephrase may be the best he can expect. We 

believe that such inflexibility in parsing severely limits the practicality of natural language computer 

interfaces, and is a major reason why natural language has yet to find wide acceptance in such 

applications as database retrieval or interactive command languages. 

In this paper, we report on a flexible parser, called FlexP, suitable for use with a restricted natural 

language interface to a limited-domain computer system. We describe first the kinds of grammatical 

deviations we are trying to deal with, then the basic design decisions for FlexP with justification for 

them based on the kinds of problem to be solved, and finally more details of our parsing system with 

worked examples of its operation. These examples,and most of the others in the paper, represent 

natural language input to an electronic mail system that we and others [1] are constructing as part of 

our research on user interfaces. This system employs FlexP to parse its input. 

2. Types of Grammatical Deviation 
There are a number of distinct types of grammatical deviation and not all types are found in all 

types of communicat ion situation. In this section, we first define the restricted type of communication 

situation that we will be concerned with, that of a limited-domain computer system and its user 

communicat ing via a keyboard and display screen. We then present a taxonomy of grammatical 

deviations common in this context, and by implication a set of parsing flexibilities needed to deal with 
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them. 

2 . 1 . C o m m u n i c a t i o n w i t h a L i m i t e d - D o m a i n S y s t e m 

In the remainder of this paper, we will focus on a restricted type of communication situation, that 

between a limited-domain system and its user, and on the parsing flexibilities needed by such a 

system to cope with the user's inevitable grammatical deviations. Examples of the type of system we 

have in mind are data-base retrieval systems, electronic mail systems, medical diagnosis systems, or 

any systems operating in a domain so restricted that they can completely understand any relevant 

input a user might provide. In short, exactly the kind of system that is normally used for work in 

applied natural language processing. There are several points to be made. 

First, although such systems can be expected to parse and understand anything relevant to their 

domain, their users cannot be expected to confine themselves to relevant input. As Bobrow et. al. [2] 

note, users often explain their underlying motivations or otherwise justify their requests in terms quite 

irrelevant to the domain of the system. The result is that such systems cannot expect to parse all their 

input even with the use of flexible parsing techniques. 

Secondly, a flexible parser is just part of the conversational component of such a system, and 

cannot solve all parsing problems by itself. For example, if a parser can extract two coherent 

fragments from an otherwise incomprehensible input, the decisions about what the system should do 

next must be made by another component of the system. A decision on whether to jump to a 

conclusion about what the user intended, to present him with a set of alternative interpretations, or to 

profess total confusion, can only be made with information about the history of the conversation, 

beliefs about the user's goals, and measures of plausibility for any given action by the user. See [7] 

for more discussion of this broader view of graceful interaction in man-machine communicat ion. 

Suffice it to say that we assume a flexible parser is just one component of a larger system, and that 

any incomprehensions or ambiguities that it finds are passed on to another component of the system 

with access to higher-level information, putting it in a better position to decide what to do next. 

Finally, we assume that, as usual for such systems, input is typed, rather than spoken as is normal 

in human conversations. This simplifies low-level processing tremendously because key-strokes 

unlike speech wave-forms are unambiguous. On the other hand, problems like misspelling arise, and 

a flexible parser cannot assume that segmentation into words by spaces and carriage returns will 

always be correct. However, such input is still one side of a conversation, rather than a polished text 

in the manner of most written material. As such, it is likely to contain many of the same type of errors 

normally found in spoken conversations. 



Types of Grammatical Deviation 3 

2 . 2 . M i s s p e l l i n g 

Misspelling is perhaps the most common form of grammatical deviation in written language. 

Accordingly, it is the form of ungrammaticality that has been dealt with the most by language 

processing systems. PARRY [11], LIFER [8], and numerous other systems have tried to correct 

misspelt input from their users. 

An ability to correct spelling implies the existence of a dictionary of correctly spelled words. An 

input word not found in the dictionary is assumed to be misspelt and is compared against each of the 

dictionary words. If a dictionary word comes close enough to the input word according to some 

criteria of lexical matching, it is used in place of the input word. 

Spelling correction may be attempted in or out of context. For instance, there is only one 

reasonable correction for "relavent" or for "seperate", but for an input like " u n " some kind of context 

is typically necessary as in "I ' l l see you un Apr i l " or "he was shot with the stolen un . " In effect, 

context can be used to reduce the size of the dictionary to be searched for correct words. This both 

makes the search more efficient and reduces the possibility of multiple matches of the input against 

the dictionary. The LIFER [8] system uses the strong constraints typically provided by its semantic 

grammar in this way to reduce the range of possibilities for spelling correct ion. 

A particularly troublesome kind of spelling error results in a valid word different from the one 

intended, as in "show me on of the messages". Clearly, such an error can only be corrected through 

comparison against a contextually determined vocabulary. 

2 .3 . Nove l W o r d s 

Even accomplished users of a language will sometimes encounter words they do not know. Such 

situations are a test of their language learning skills. If one didn't know the word " fawn" , one could at 

least decide it was a colour from "a fawn coloured sweater". If one just knew the word as refering to 

a young deer, one might conclude that it was being used to mean the colour of a young deer. In 

general, beyond making direct inferences about the role of unknown words from their immediate 

context, vocabulary learning can require arbitrary amounts of real-world knowledge and inference, 

and this is certainly beyond the capabilit ies of present day artificial intelligence techniques (though 

see Carbonell [4] for work in this direction). 

There is, however, a very common special subclass of novel words that is well within the 

capabilities of present day systems: unknown proper names. Given an appropriate context, either 

sentential or discourse, it is relatively straightforward to parse unknown words into the names of 

people, places, etc. Thus in "send copies to Moledeski Chiselov" it is reasonable to conclude from 

the local context that "Moledeski" is a first name, "Chiselov" is a surname, and together they identify 
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a person (the intended recipient of the copies). Strategies like this were used in the POLITICS [5], 

FRUMP [6], and PARRY [11 ] systems. 

Since novel words are by definition not in the known vocabulary, how can a parsing system 

distinguish them from misspellings? In most cases, the novel words will not be close enough to known 

words to allow successful correct ion, as in the above example, but this is not always true; an unknown 

first name of " A l " could easily be corrected to "a l l " . Conversely, it is not safe to assume that 

unknown words in contexts which allow proper names are really proper names as in: "send copies to 

al managers". In this example, " a l " probably should be corrected to "a l l " . In order to resolve such 

cases it may be necessary to check against a list of referents for proper names, if this is known, or 

otherwise to consider such factors as whether the initial letters of the words are capitalized. 

As far as we know, no systems yet constructed have integrated their handling of misspelt words 

and unknown proper names to the degree outlined above. However, the COOP [9] system allows 

systematic access to a data base containing proper names without the need for inclusion of the words 

in the system's parsing vocabulary. 

2 . 4 . E r r o n e o u s s e g m e n t i n g m a r k e r s 

Written text is segmented into words by spaces and new lines, and into higher level units by 

commas, periods and other punctuation marks. Both classes, especially the second, may be omitted 

or inserted speciously. Spoken language is also segmented, but by the quite different markers of 

stress, interaction and noise words and phrases; we will not consider those further here. 

Incorrect segmentation at the lexical level results in two or more words being run together, as in 

"runtogether", or a single word being split up into two or more segments, as in " tog ether" or 

(inconveniently) " to get her", or combinations of these effects as in "runto geth er". In all cases, it 

seems natural to deal with such errors by extending the spelling correction mechanism to be able to 

recognize target words as initial segments of unknown words, and vice-versa. As far as we know, no 

current systems deal with incorrect segmentation into words. 

The other type of segmenting error, incorrect punctuation, has a much broader impact on parsing 

methodology. Current parsers typically work one sentence at a time, and assume that each sentence 

is terminated by an explicit end of sentence marker. A flexible parser must be able to deal with the 

potential absence of such a marker, and recognize the sentence boundary regardless. It should also 

be able to make use of such punctuation if it is used correctly, and to ignore it if it is used incorrectly. 

Instead of punctuat ion, many interactive systems use carriage-return to indicate sentence 

termination. Missing sentence terminators in this case correspond to two sentences on one line, or to 
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the typing of a sentence without the terminating return, while specious terminators correspond to 

typing a sentence on more than one line. 

2 .5 . B roken -O f f and Res ta r t ed U t t e r a n c e s 

In spoken language, it is very common to break off and restart all or part of an utterance: 

I want to — Could you tell me the name? 
Was the man ~ e r - the official here yesterday? 

Usually, such restarts are signalled in some way, by "u rn " or "er" , or more explicitly by " let 's back 

up" or some similar phrase. 

In written language, such restarts do not normally occur because they are erased by the writer 

before the reader sees them. Interactive computer systems typically provide facilities for their users to 

delete the last character, word, or current line as though it had never been typed, for the very purpose 

of allowing such restarts. Given these signals, the restarts are easy to detect and interpret. However, 

sometimes users fail to make use of these signals. Sometimes, for instance, input not containing a 

carriage-return can be spread over several lines by intermixing of input and output. A flexible parser 

should be able to make sense out of "obvious" restarts that are not signalled, as in: 

delete the show me all the messages from Smith 

2 . 6 . F r a g m e n t a r y and O t h e r w i s e E l l i p t i ca l I npu t 

Naturally occuring language often involves utterances that are not complete sentences. Often the 

appropriateness of such fragmentary utterances depends on conversational or physical context as in: 

A: Do you mean Jim Smith or Fred Smith? 

B: Jim 

A: Send a message to Smith 
B: OK 

A: with copies to Jones 

A flexible parser must be able to parse such fragments given the appropriate context. 

There is a question here of what such fragments should be parsed into. Parsing systems which 

have dealt with the problem have typically assumed that such inputs are ellipses of complete 

sentences, and that their parsing involves finding that complete sentence, and parsing it. Thus the 

sentence corresponding to " J im" in the example above would be " I mean J im" . Essentially this view 

has been taken by the LIFER [8] and GUS [2] systems. An alternative view is that such fragments are 

not ellipses of more complete sentences, but are themselves complete utterances given the context in 

which they occur, and should be parsed as such. We have taken this view in our approach to flexible 

parsing, as we will explain more fully below. Carbonell (personal communication) suggests a third 

view appropriate for some fragments: that of an extended case frame. In the second example above, 
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for instance, A's "with copies to Jones" forms a natural part of the case frame established by "send a 

message to Smith" . Yet another approach to fragment parsing is taken in the PLANES system [12] 

which always parses in terms of major fragments rather than complete utterances. This technique 

relies on there being only one way to combine the fragments thus obtained, which may be a 

reasonable assumption for many limited domain systems. 

Ellipses can also occur without regard to context. A type that interactive systems are particularly 

likely to face is crypticness in which articles and other non-essential words are omitted as in "show 

messages after June 17" instead of the more complete "show me all messages dated after June 17". 

Again, there is a question of whether to consider the cryptic input complete, which would mean 

modifying the system's grammar, or whether to consider it ell iptical, and complete it by using flexible 

techniques to parse it against the complete version as it exists in the standard grammar. 

Other common forms of ellipses are associated with conjunction as in: 

John got up and [John] brushed his teeth. 
Mary saw Bill and Bill [saw] Mary. 

Fred recognized [the building] and [Fred] walked towards the building. 

Since conjunctions can support such a wide range of ellipsis, it is generally impractical to recognize 

such utterances by appropriate grammar extensions. Efforts to deal with conjunction have therefore 

depended on general 'mechanisms which supplement the basic parsing strategy, as in the LUNAR 

system [15], or which modify the grammar temporarily, as in the work of Kwasny and Sondheimer [10]. 

We have not attempted to deal with this type of ellipsis in our parsing system, and will not discuss 

further the type of flexibility it requires. 

2 .7 . I n t e r j e c t e d P h r a s e s , O m i s s i o n , and S u b s t i t u t i o n 

Sometimes people interject noise or other qualifying phrases into what is otherwise a normal 

grammatical f low as in: 

I want the message dated I think June 17 

Such interjections can be inserted at almost any point in an utterance, and so must be dealt with as 

they arise by flexible techniques. 

It is relatively straightforward for a system of limited comprehension to screen out and ignore 

standard noise phrases such as "I th ink" or "as far as I can te l l " . More troublesome are interjections 

that cannot be recognized by the system, as might for instance be the case in 
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Display [just to refresh my memory] the message dated June 17. 
I want to see the message [as I forgot what it said] dated June 17. 

where the unrecognized interjections are bracketed. A flexible parser should be able to ignore such 

interjections. There is always the chance that the unrecognized part was an important part of what 

the user was trying to say, but clearly, the problems that arise from this cannot be handled by a 

parser. 

Omissions of words (or phrases) from the input are closely related to cryptic input as discussed 

above, and one way of dealing with cryptic input is to treat it as a set of omissions. However, in cryptic 

input only inessential information is missed out, while it is conceivable that one could also omit 

essential information as in: 

Display the message June 17 

Here it is unclear whether the speaker means a message dated on June 17 or before June 17 or after 

June 17 (we assume that the system addressed can display things immediately, or not at all). If an 

omission can be narrowed down in this way, the parser should be able to generate all the alternatives 

(for contextual resolution of the ambiguity or for the basis of a question to the user). If the omission 

can be narrowed down to one alternative then the input was merely cryptic. 

Besides omitting words and phrases, people sometimes substitute incorrect or unintended ones. 

Often such substitutions are spelling errors and should be caught by the spelling correction 

mechanism, but sometimes they are inadvertent substitutions or uses of equivalent vocabulary not 

known to the system. This type of substitution is just like an omission except that there is an 

unrecognized word or phrase in the place where the omitted input should have been. For instance, in 

" the message over June 17" , "over" takes the place of "da ted" or "sent after" or whatever else is 

appropriate at that point. If the substitution is of vocabulary which is appropriate but unknown to the 

system, parsing of substituted words can provide the basis of vocabulary extension. 

2 . 8 . A g r e e m e n t Fa i lu re 

It is not uncommon for people to fail to make the appropriate agreement between the various parts 

of a noun or verb phrase as in : 

I wants to send a messages to Jim Smith. 

The appropriate action is to ignore the lack of agreement, and Weischedel and Black [13] describe a 

method for relaxing the predicates in an ATN which typically check for such agreements. However, it 

is generally not possible to conclude locally which value of the marker (number or person) for which 

the clash occurs is actually intended. We considered examples in which the disagreement involves 

more than inflections (as in " the message over June 17") in the section on substitutions. 
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2 .9 . I d i oms 

Idioms are phrases whose interpretation is not what would be obtained by parsing and interpreting 

them constructively in the normal way. They may also not adhere to the standard syntactic rules. 

Idioms must thus be parsed as a whole in a pattern matching kind of mode. Parsers based purely on 

pattern matching, like that of PARRY [11], thus are able to parse idioms naturally, while others must 

either add a preprocessing phrase of pattern matching as in the LUNAR system [15], or mix specific 

patterns in with more general rules, as in the work of Kwasny and Sondheimer [10]. Semantic 

grammars [3, 8] provide a relatively natural way of mixing idiomatic and more general patterns. 

2 . 1 0 . User S u p p l i e d Changes 

In normal human conversation, once something is said, it is said and cannot be changed, except 

indirectly by more words which refer back to the original ones. In interactively typed input, there is 

always the possibility that a user may notice an error he has made and go back and correct it himself, 

without waiting for the system to pursue its own, possibly slow and ineffective, methods of correct ion. 

With appropriate editing facilities, the user may do this without erasing intervening words, and, if the 

system is processing his input on a word by word basis, may thus alter a word that the system has 

already processed. A flexible parser must be able to take advantage of such user provided 

corrections to unknown words, and to prefer them over its own corrections. It must also be prepared 

to change its parse if the user changes a valid word to another different but equally valid word. 

3. An Approach to Flexible Parsing 
Most current parsing systems are unable to cope with most of the kinds of grammatical deviation 

outlined above. This is because typical parsing systems attempt to apply their grammar to their input 

in a rigid way, and since deviant input, by definit ion, does not conform to the grammar, they are 

unable to produce any kind of parse for it at all. Attempts to parse more flexibly have typically 

involved parsing strategies to be used after a top-down parse using an ATN [14] or similar transition 

net has failed. Such efforts include the ellipsis and paraphrase mechanisms of LIFER [8] , the 

predicate relaxation techniques of Weischedel and Black [13], and several of the devices for 

extending ATN's proposed by Kwasny and Sondheimer [10]. 

We have constructed a parser, FlexP, which can apply its grammar to its input flexibly, and thus 

deal with the grammatical deviations discussed in the previous section. We should emphasize, 

however, that FlexP is designed to be used in the interface to a restricted-domain system. As such, it 

is intended to work from a domain-specific semantic grammar, rather than one suitable for broader 

classes of input. FlexP thus does not embody a solution for flexible parsing of natural language in 

general. In describing FlexP, we will note those of its techniques that seem unlikely to scale up to use 
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with more complex grammars with wider coverage. 

We have adopted in FlexP an approach to flexible parsing based not on ATN's, but closer to the 

pattern-matching parser of the PARRY system [11], possibly the most robust parser yet constructed. 

Our approach is based on several design decisions: 

• b o t t o m up rather than top-down parsing: This aids in the parsing of fragmentary 
utterances, and in the recognition of interjections and restarts. 

• p a t t e r n m a t c h i n g : This is essential for idioms, and also aids in the detection of 
omissions and substitutions in non-idiomatic phrases. 

• p a r s e s u s p e n s i o n a n d c o n t i n u a t i o n : The ability to suspend a parse and later resume 
its processing is important for interjections, restarts, and non-explicit terminations. 

In the remainder of this section we examine and justify these design decisions in more detail. 

3 . 1 . B o t t o m - U p Pars ing 

Our choice of a bottom-up strategy is based on our need to recognize isolated sentence fragments. 

If an utterance which would normally be considered only a fragment of a complete sentence is to be 

recognized top-down, there are two approaches to take. First, the grammar can be altered so that the 

fragment is recognized as a complete utterance in its own right. This is undesirable because it can 

cause enormous expansion of the grammar, and because it becomes difficult to decide whether a 

fragment appears in isolation or as part of a larger utterance, especially if the possibility of missing 

end of sentence markers also exists. The second option is for the parser to infer from the 

conversational context what grammatical sub-category (or sequence of sub-categories) the fragment 

might fit into, and then to do a top-down parse from that sub-category. This essentially is the tactic 

used in the GUS [2] and LIFER [8] systems. This strategy is clearly better than the first one, but has 

two problems; first of predicting all possible sub-categories which might come next, and secondly, of 

inefficiency if a large number are predicted. Kwasny and Sondheimer [10] use a combination of the 

two strategies by temporarily modifying an ATN grammar to accept fragment categories as complete 

utterances at the times they are contextually predicted. 

Bottom-up parsing avoids the problem of predicting what sub-categories may occur. If a fragment 

fitting a given sub-category does occur, it is parsed as such whatever the context. However, if a given 

input can be parsed as more than one sub-category, the bottom-up approach would have to produce 

them all, even if only one would be predicted top-down. In a system of limited comprehension, 

fragmentary recognition is sometimes necessary because not all of an input can be recognized, rather 

than because of intentional ellipsis. Here, it is probably impossible to make predictions and 

bottom-up parsing is the only method that is likely to work. As described below, bottom-up strategies, 

coupled with suspended parses, are also helpful in recognizing interjections and restarts. 
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3 . 2 . P a t t e r n M a t c h i n g 

We have chosen to use a grammar of linear patterns rather than a transition network because 

pattern-matching meshes well with bottom-up parsing, because it facilitates recognition of utterances 

with omissions and substitutions, and because it is necessary anyway for the recognition of idiomatic 

phrases. 

The grammar of the parser is a set of rewrite or product ion rules whose left hand side is a linear 

pattern of constituents (lexical or higher level) and whose right hand side defines a result constituent. 

Elements of the pattern may be labelled optional or allow for repeated matches. We make the 

assumption, certainly true for the grammar we are presently working with, that the grammar will be 

semantic rather than syntactic, with patterns corresponding to idiomatic phrases or to object and 

event descriptions meaningful in some limited domain, rather than to general syntactic structures. 

Linear patterns fit well with bottom-up parsing because they can be indexed by any of their 

components, and because, once indexed, it is straightforward to confirm whether a pattern matches 

input already processed in a way consistent with the way the pattern was indexed. 

Patterns help with the detection of omissions and substitutions because in either case the relevant 

pattern can still be indexed by the remaining elements that appear correctly in the input, and thus the 

pattern as a whole can be recognized even if some of its elements are missing or incorrect. In the 

case of substitutions, such a technique can actually help focus the spelling correct ion, proper name 

recognit ion, or vocabulary learning techniques, whichever is appropriate, by isolating the substituted 

input and the pattern constituent which it should have matched. In effect, this allows the normally 

bottom-up parsing strategy to go top-down to resolve such substitutions. 

In normal left to right processing, it is not necessary to activate all the patterns indexed by every 

new word as it is considered. If a new word is accounted for by a pattern that has already been 

partially matched by previous input, it is likely that no other patterns need to be indexed and matched 

for that input. This heuristic alows FlexP's parsing algorithm to limit the number of patterns it tries to 

match. We should emphasize, however, that it is a heuristic, and while it has caused us no trouble 

with the limited-domain grammar we have been using, it is unclear how well it would transfer to a more 

complex grammar. FlexP's algorithm does, however, carry along multiple partial parses in other 

ambiguous cases, removing the need for any backtracking. 

3 .3 . Pa rse S u s p e n s i o n and C o n t i n u a t i o n 

FlexP employs the technique of suspending a parse with the possibility of later continuation to help 

with the recognit ion of interjections, restarts, and implicit terminations. The parsing algorithm works 

left to right in a breadth-first manner. It maintains a set of partial parses, each of which accounts for 
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the input already processed but not yet accounted for by a completed parse. The parser attempts to 

incorporate each new input into each of the partial parses. If this is successful, the partial parses are 

extended and may increase or decrease in number. If no partial parse can be extended, the entire set 

is saved as a suspended parse. 

There are several possible explanations for input mismatch, i.e. the failure of the next input to 

extend a parse. 

• The input could be an implicit termination, i.e. the start of a new top-level utterance, and 
the previous utterance should be assumed complete. 

• The input could be a restart, in which case the active parse should be abandoned and a 
new parse started from that point. 

• The input could be the start of an interjection, in which case the active parse should be 
temporarily suspended, and a new parse started for the interjection. 

It is not possible, in general, to distinguish between these cases at the time the mismatch occurs. If 

the active parse is not at a possible termination point, then input mismatch cannot indicate implicit 

termination, but may indicate either restart or interjection. It is necessary to suspend the active parse 

and wait to see if it is continued at the next input mismatch. On the other hand, if the active parse is at 

a possible termination point, input mismatch does not rule out interjection or even restart. In this 

situation, our algorithm tentatively assumes that there has been an implicit termination, but suspends 

the active parse anyway for subsequent potential continuation. 

Note also that the possibility of implicit termination provides justification for the strategy of 

interpreting each input immediately it is received. If the input signals an implicit termination, then the 

user may well expect the system to respond immediately to the input thus terminated. 

4. Details of FlexP 
This section describes how FlexP achieves the flexibilities discussed earlier. The implementation 

described is being used as the parser for an intelligent interface to a multi-media message system [1]. 

The intelligence in this interface is concentrated in a User Agent which mediates between the user 

and the underlying tool system. The Agent ensures that the interaction goes smoothly by, among 

other things, checking that the user specifies the operations he wants performed and their parameters 

correctly and unambiguously, conducting a dialogue with the user if problems arise. The role of FlexP 

as the Agent's parser is to transform the user's input into the internal representations employed by the 

Agent. Usually this input is a request for action by the tool or a description of objects known to the 

tool. Our examples are drawn from that context. 
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4 . 1 . P r e l i m i n a r y Examp le 

Suppose the u$er types 

display new messages 

Interpretation begins as soon as any input is available. The first word is used as an index into the 

store of rewrite rules. Each rule gives a pattern and a structure to be produced when the pattern is 

matched. The components of the structure are built from the structures or words which match the 

elements of the pattern. The word "display" indexes the rule: 

( p a t t e r n : ( D i s p l a y Message D e s c r i p t i o n ) 
r e s u l t : [ S t r u c t u r e T y p e : Ope r a t i o n R e q u e s t 

O p e r a t i o n : D i s p l a y 
Message: ( F i l l e r M e s s a g e D e s c r i p t i o n ) ] 

Using this rule the parser constructs the partial parse tree 

( D i s p l a y M e s s a g e D e s c r i p t i o n ) 
I 
I 

d i s p l a y 

We call the partially-instantiated pattern which labels the upper node a hypothesis. It represents a 

possible interpretation for a segment of input. 

The next word "new" does not directly match the hypothesis, but since "new" is a MsgAdj (an 

adjective which can modify a description of a message), it indexes the rule: 

( p a t t e r n : ( ?De t *MsgAdj MsgHead *MsgCase) 
r e s u l t : [ S t r u c t u r e T y p e : M e s s a g e D e s c r i p t i o n 

Components : - ] ) 

Here, " ? " means optional, and " * " means repeatable. For the sake of clarity, we have omitted other 

prefixes which distinguish between terminal and non-terminal pattern elements. The result of this rule 

fits the current hypothesis, so extends the parse as follows: 

( D i s p l a y M e s s a g e D e s c r i p t i o n ) 
i i 
i i 
| (?Det *MsgAdj MsgHead *MsgCase) 
I I 
I I 

d i s p l a y new 

The hypothesis is not yet fully confirmed even though all the elements are matched. Its second 

element matches another lower level hypothesis which is only incompletely matched. This lower 

pattern becomes the current hypothesis because it predicts what should come next in the input 

stream. 
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The third input matches the category MsgHead (head noun of a message description) and so fits 

the current hypothesis. This match fills the last non-optional slot in that pattern. By doing so it makes 

the current hypothesis and its parent pattern potentially complete. When the parser finds a potentially 

complete phrase whose result is of interest to the Agent (and the parent phrase in this example is in 

that category), the result is constructed and sent. However, since the parser has not seen a 

termination signal, this parse is kept active. The input seen so far may be only a prefix for some 

longer utterance such as "display new messages about ADA". In this case "about ADA" would be 

recognized as a match for MsgCase (a prepositional phrase that can be part of a message 

description), the parse would be extended, and a revision of the previous structure sent to the Agent. 

4 . 2 . U n r e c o g n i z e d W o r d s 

When an input word cannot be found in the dictionary, spelling correction is attempted in a 

background process which runs at lower priority than the parser. The input word and a list of 

possibilities derived from the current hypothesis are passed as arguments. For example: 

display the new messaegs 

produces the partial parse 

( D i s p l a y M e s s a g e D e s c r i p t i o n ) 
I I 
I I 
| (?Det *MsgAdj MsgHead *MsgCase) 
I I I 
I I I 

d i s p l a y the new 

The lower pattern is the current hypothesis and has two elements eligible to match the next input. 

Another MsgAdj could be matched. A match for MsgHead would also fit. Both elements have 

associated lists of keywords known to occur in phrases which match them. The one for MsgHead 

includes the word "messages", and the spelling corrector passes this back to the parser as the most 

likely interpretation. 

In some cases the spelling corrector produces several likely alternatives. The parser handles such 

ambiguous words using the same mechanisms which accommodate phrases with ambiguous 

interpretations That is, alternative interpretations are carried along until there is enough input to 

discriminate those which are plausible from those which are not. The details are given in the next 

sect ion. 

The user may also correct the input text himself. These changes are handled in much the same 

way as those proposed by the spelling corrector. Of course, these user-supplied changes are given 

priority, and parses built using the former version must be modified or discarded. 

UNIVFRSiH LIBRARIES^ 
(V^*.!cn;r-ME! 10N UNIVERSITY 

PinSSURGH.PtNNSYLVANlA 15213 
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Spelling correct ion is run as a separate, lower priority process because a reasonable parse may be 

produced even without a proper interpretation for the unknown word. Since spelling correction can 

involve rather t ime-consuming searches, this work is best done when the parser has no better 

alternatives to explore. 

4 . 3 . A m b i g u o u s Inpu t 

In the first example there was only one hypothesis about the structure of the input. More generally, 

there may be several hypotheses which provide competing interpretations about what has already 

been seen and what will appear next. Until these partial parses are found to be inconsistent with the 

actual input, they are carried along as part of the active parse. Therefore the active parse is a set of 

partial parse trees each with a top-level hypothesis about the overall structure of the input so far and a 

current hypothesis concerning the next input. The actual implementation allows sharing of common 

structure among competing hypotheses and so is more efficient than this description suggests. 

The input 

were there any messages on 

could be completed by giving a date ("...on Tuesday") or a topic ("...on ADA") . Consequently, the 

sub-phrase "any messages o n " results in two partial parses: 

( ? D e t *MsgAdj MsgHead *MsgCase) 
I I I 
I I I 

any messages (On D a t e ) 

on 
and 

(?Det *MsgAdj MsgHead *MsgCase) 
I I I 
I I I 

any messages (On T o p i c ) 

on 

If the next input were "Tuesday" it would be consistent with the first parse, but not the second. Since 

one of the alternatives does account for the input, those that do not may be discarded. On the other 

hand, if all the partial parses fail to match the input, other action is taken. We consider such situations 

in the section on suspended parses. 

As a general strategy, we carry several possible interpretations only as long as there is no clear 

best alternative. In particular no flexible parsing techniques are used to support parses for which 
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there are plausible alternatives under normal parsing. This heuristic helps achieve the efficiency 

required for real-time response, but could conceivably fail to find appropriate parses. We have not 

encountered such circumstances with the small domain-specific semantic grammar we have been 

using. 

4 . 4 . F l ex i b l e M a t c h i n g 

The only flexibility described so far is that allowed by the optional elements of patterns. If 

omissions can be anticipated, allowances may be built into the grammar. In this section we show how 

other omissions may be handled and other flexibilities achieved by allowing additional freedom in the 

way an item is allowed to match a pattern. There are two ways in which the matching criteria may be 

relaxed, namely 

• relax consistency constraints, e.g. number agreement 

• allow out of order matches 

Consistency constraints are predicates which are attached to rules. They assert relationships 

which must hold among the items which fill the pattern. These constraints allow context-sensitive 

construct ions in the grammar. Such predicates are commonly used for similar purposes by ATN 

parsers [14] and the flexibility achieved by relaxing these constraints has been explored before [13]. 

The technique fits smoothly into FlexP but has not actually been needed or used in our current 

application. 

On the other hand, out of order matching is essential for the parser's approach to errors of 

omission, transposit ion, and substitution. Even when strictly interpreted, several elements of a 

pattern may be eligible to match the next input item. For example, in the pattern for a 

MessageDescription 

(?Det *MsgAdj MsgHead *MsgCase) 

each of the first three elements is initially eligible but the last is not. On the other hand, once 

MsgHead has been matched only the last element is eligible under the strict interpretation of the 

pattern. 

Consider the input 

display new about ADA 

The first two words parse normally to produce 
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( D i s p l a y M e s s a g e D e s c r i p t i o n ) 

I I 
I I 
| ( ? D e t *MsgAd j MsgHead *MsgCase) 
I I 
I I 

d i s p l a y new 

The next word does not fit that hypothesis. The two eligible elements predict either another message 

adjective or a MsgHead. The word "about" does not match either of these, nor can the parser 

construct any path to them using intermediate hypotheses. Since there are no other partial parses 

available to account for this input, and since normal matching fails, flexible matching is tried. 

First, previously skipped elements are compared to the input. In this example, the element ?Det is 

considered but does not match. Next, elements to the right of the eligible elements are considered. 

Thus MsgCase is considered even though the non-optional element MsgHead has not been matched. 

This succeeds and allows the partial parse to be extended to 

( D i s p l a y M e s s a g e D e s c r i p t i o n ) 
I I 
I I 
| ( ? D e t *MsgAd j MsgHead *MsgCase) 
I I I 
| | ( A b o u t t o p i c ) 
I I I 

d i s p l a y new a b o u t 

which correctly predicts the final input item. 

Unrecognizable substitutions are also handled by this mechanism. In the phrase 

display the new stuff about ADA 

the word "stuff" is not found in the dictionary so spelling correct ion is tried but does not produce any 

plausible alternatives. While spelling correct ion is underway, the remaining inputs can be parsed by 

simply omitting "stuff" and using the flexible matching procedure. Transpositions are handled 

through one application of flexible matching if the element of the transposed pair is optional, two 

applications if not. 

4 . 5 . S u s p e n d e d Pa rses 

Interjections are more common in spoken than in written language but do occur in typed input 

sometimes. To deal with such input, our design allows for blocked parses to be suspended rather 

than merely discarded. 

Users, especially novices, may embellish their input with words and phrases that do not provide 

essential information and cannot be specifically anticipated. Consider two examples: 
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display please messages dated June 17 
display for me messages dated June 17 

In the first case, the interjected word "p lease" could be recognized as a common noise phrase which 

means nothing to the Agent except possibly to suggest that the user is a novice. The second example 

is more difficult. Both words of the interjected phrase can appear in a number of legitimate and 

meaningful constructions; they cannot be ignored so easily. 

For the latter example, parse suspension works as fol lows. After the first word, the active parse 

contains a single partial parse: 

( D i s p l a y M e s s a g e D e s c r i p t i o n ) 
I 
I 

d i s p l a y 

The next word does not fit this hypothesis, so it is suspended. In its place, a new active parse is 

constructed. It contains several partial parses including 

( F o r P e r s o n ) and ( F o r T i m e l n t e r v a l ) 
I I 
I I 

f o r f o r 

The next word confirms the first of these, but the fourth word "messages" does not. When the 

parser finds that it cannot extend the active parse, it considers the suspended parse. Since 

"messages" fits, the active and suspended parses are exchanged and the remainder of the input 

processed normally, so that the parser recognizes "display messages dated June 17" as if it had 

never contained " f o r m e " . 

5. Conclusion 
When people use language naturally, they make mistakes and employ economies of expression 

that often result in language which is ungrammatical by strict standards. In particular, such 

grammatical deviations will inevitably occur in the input of a computer system which allows its user to 

employ natural language. Such a computer system must, therefore, be prepared to parse its input 

flexibly, if it is avoid frustration for its user. 

In this paper, we have attempted to outline the main kinds of flexibility a natural language parser 

intended for natural use should provide. We also described a bottom-up pattern-matching parser, 

FlexP, which exhibits these flexibilities, and which is suitable for restricted natural language input to a 

limited-domain system. 
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