
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-81-105

Testing and Debugging

Custom integrated Circuits

Edward H. Frank

Robert F. Sproull

Department of Computer Science

Carnegie -Mellon University

Pittsburgh, PA 15213

February 1981

Abstract

Although designing custom integrated circuits does not seem to be any harder than writ ing computer
programs, debugging integrated circuit designs is much more cumbersome than testing and
debugging programs. In this paper we examine some of the tradit ional approaches to testing and
debugging integrated circuits and then describe how access to internal state, and simulation can
make testing and debugging custom IC designs at least as easy as testing and debugging software.

Copyright © 1981 Edward Frank and Robert Sproull

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-78-C-1551.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

I

Table of Contents
1. Introduction 1
2. Terminology 2

2.1 . Testing and debugging 2
2.2. Integrated circuits 2
2.3. Integrated circuit designs 2
2.4. Statefull and stateless chips 3

3. A comparison of techniques for testing and debugging programs and integrated circuits 4
3.1 . Checking syntax 4
3.2. Checking semantics 6

3.2.1. Designing to reduce errors 9
3.3. Checking performance 9

4. Current techniques for testing and debugging integrated circuits 10
4 .1 . Testing and debugging IC designs 10
4.2. Testing and debugging product ion IC's 15

4.2.1. Testing inputs and outputs 15
4.2.2. Accessing internal state 17

5. Future trends in IC debugging and testing 20
5 .1 . Designing to reduce errors 20

5.1.1. Microcode 20
5.1.2. The CMU Design Automation System 24

5.2. Design for testability and debuggabil i ty 24
5.2.1. In-situ testing 25
5.2.2. Muffler extensions 27
5.2.3. On-chip signature analysis 29
5.2.4. On-chip or on-wafer testers 30
5.2.5. Summary of access to internal state 30

5.3. Organizing and using a debugging system 31
5.3.1. Names 31
5.3.2. Organizing simulations 32
5.3.3. Debugging strategies 33
5.3.4. Debugging at CMU 33

6. Conclusions 34

1

1. Introduction
The revolution heralded by the book Introduction to VLSI Systems [Mead 80] has made it possible

for designers with little previous experience in hardware or integrated circuit design to create

complex custom integrated circuits in a matter of weeks or months. Moreover, the mult iproject-chip

(MPC) technique that fabricates many designs together on the same wafer to reduce fabrication costs

has been very successful, returning packaged chips to designers as soon as a month after the final

design is submitted [Conway 80].

Although designing this sort of custom integrated circuit does not seem to be more diff icult than

programming, we have found that testing and debugging these chips is a much more cumbersome

task. We use the word cumbersome to indicate that we believe there is fundamentally very little

difference between testing and debugging programs and testing and debugging integrated circuits.

Yet as practiced today, checking the design and fabrication of integrated circuits is a much more

primitive art.

As computer scientists designing custom systems on si l icon, we want to decrease the time required

to reduce an abstract specif ication to a working implementation. This is in contrast to the usual

situation in industry where the overriding concern is reducing manufacturing costs. However, as

microprocessors and other complicated systems begin to require mill ion-dollar investments in design,

reducing the time required to get the first chip working is becoming increasingly important to industry

as well.

The problem, therefore, is how to make testing and debugging custom integrated circuits at least as

easy as testing and debugging programs. This paper explores this problem in four major sections.

Section 2 discusses the terminology we use and gives the reader who is unfamiliar with integrated

circuit design some background. Section 3 compares and contrasts the efforts required to test and

debug programs and integrated circuits. Section 4 describes the current state of the art and section 5

presents some ideas for simplifying chip testing and debugging. Some of the sections in this paper

have appeared in part in [Frank 80a] .

While this paper concentrates on testing and debugging integrated circuits, most of the techniques

presented are directly applicable to testing printed-circuit boards and other hardware assemblies as

well. In fact, some of the techniques we shall discuss originated as board-testing methods. We

believe that testing and debugging integrated circuits is more interesting than testing and debugging

non-integrated systems because it is extremely diff icult to probe the insides of a chip directly.

2 TESTING AND DEBUGGING C U S T O M INTEGRATED C I R C U I T S

2. Terminology

2 . 1 . T e s t i n g a n d d e b u g g i n g

Testing is the process of detecting errors and debugging is the art of determining the exact nature

and location of suspected errors and removing them (paraphrased from [Myers 79]). We shall term

the object being tested or debugged the unit under test. In the case of integrated circuits there are

actually two kinds of errors: first, the design of the integrated circuit may be incorrect and second, the

fabrication of the chip that physically realizes the design may be f lawed. Hence there are two forms of

testing and debugging that must take place: first, testing and debugging the chip design and second,

testing and debugging physical chips, typically in large numbers as part of a manufactur ing process.

2 . 2 . I n t e g r a t e d c i r c u i t s

Integrated circuits, or /C's, or chips, are fabricated from a piece of sil icon and geometr ic masks that

indicate where the sil icon should be altered in order to create components such as transistors, wires,

and bonding pads. Integrated circuits are fabricated on a wafer that is three or four inches in

diameter and may contain as many as a hundred chips or dice, each about one centimeter square. 1

After the wafer is fabricated, the dice are cut apart and packaged in carriers that may be easily

mounted on printed-circuit boards. Connections between the carrier and the chip are made using

bonding wires that attach bonding pads on the chip to pins on the carriers; typically, carriers have

from 14 to 64 pins.

The fabrication process can be likened to printing, where the masks serve the role of printing plates

and the wafer the role of paper. The job of the chip designer is to specify the precise geometry of the

masks, which determine the details of component fabrication, placement, and connect ion on the

wafer.

2 . 3 . I n t e g r a t e d c i r c u i t d e s i g n s

Although chip fabrication is controlled principally by mask geometry, the task of designing an

integrated circuit usually employs several additional kinds of specif ications. Throughout this paper

we will use the phrases integrated circuit design or chip design to indicate all of the specif icat ions

which a designer might use when designing a custom integrated circuit. Van Cleemput [vanCleemput

79] has broken these specifications into three different hierarchies:

I . T h e behavioral hierarchy specifies the functional operation of a design, including
performance requirements such as speed or power consumption. A hardware

1 T h e reader interested in a more detailed description of the steps required to fabricate a chip is referred to [Mead 80] and

[Hon 80a].

TERMINOLOGY 3

description language such as ISPS [Barbacci 77] might be used to record some of the
behavioral specif ications.

2. The structural hierarchy or logical hierarchy describes how the design is partit ioned into
different logical pieces and how these pieces are interconnected. A common device for
il lustrating the structural organization of a system is the block diagram.

3. The physical hierarchy describes how the design is physically implemented. For
example, the surface of a microprocessor chip may be divided into separate regions for
an ALU, for a memory, and for a control ROM. In turn, the memory is divided spatially into
identical rows of "words. " A word is divided into identical "cel ls ," each of which stores a
single bit. In large designs, the physical hierarchy extends upward from the chip to
carriers, boards, cages, racks, and cabinets. Of particular interest to the designer is the
first s/7/con-the first chip to be fabricated from a completed design.

These are three different hierarchical representations of the same design, and as a consequence

interact strongly. For example, the speed of a circuit, determined by a behavioral specif icat ion,

depends on the sizes of transistors and wires that implement it, determined by a physical

specif icat ion.

From the point of view of testing and debugging, behavioral specif ications are of greatest interest.

One breakdown of the behavioral hierarchy might be:

• An abstract specif ication written in a language such as Alphard [Wulf 76] or something as
simple as "I want a chip to interpret P A S C A L "

• A high level specif ication in a register-transfer language such as ISPS.

• A low-level specif ication that describes the behavior of computat ions in terms of
interconnections of individual transistors or gates. The mask geometry and the chip itself
reflect precisely this lowest-level specif icat ion.

In addit ion to checking chip behavior, debugging and testing real systems often requires checking

aspects of the physical specif ications as wel l . In particular, the chip designer must verify that her

design meets certain design rules for the particular fabrication process to be used.

2 . 4 . S t a t e f u l l a n d s t a t e l e s s c h i p s

We have found it useful to classify designs based on the amount of state recorded internally in the

design. A stateless chip is one that has no internal state. Its outputs can be described by logic

equations written in terms of its inputs, and can be generated by combinatorial logic on the chip. A

statefull chip is one that has a good deal of internal state that cannot be observed directly by sensing

output pins. We term this state revealed if there is some way to report each bit of state to an output

pin independently of all other state, or concealed if there is no way to detect the state externally

except in a way that depends on other internal state.

4 TESTING AND DEBUGGING C U S T O M INTEGRATED C I R C U I T S

3. A comparison of techniques for testing and debugging
programs and integrated circuits

One often hears that software and hardware are two different ways of implementing the same thing.

Indeed, it is possible to convert an abstract specif ication of a digital computat ion to a program for a

general-purpose computer or to an IC design. The techniques and tools for carrying out these

implementations are similar in many respects and different in others. One area where differences

arise is in testing and debugging the two implementations.

Whether testing and debugging programs or chips there are usually three areas of concern:

checking syntax, checking semantics, and checking performance. .

3 . 1 . C h e c k i n g s y n t a x

The syntax of a design is checked by some process that is responsible for convert ing it into an

executable object. A compiler normally checks the syntax of a program in part to ensure that the

compiler will generate code that correctly implements the programmer's specif ication as given in the

program. Checking program syntax is usually straightforward since programming languages are

designed with computer processing and syntax checking in mind.

Some of the constraints on hardware designs have a simple syntactic flavor. For example, design

rules for TTL circuits forbid wiring two output pins together, and forbid loading an output with more

than a specif ied current. These rules can be checked easily by computer-aided design (CAD) systems

that are given a descript ion of the design and the properties of the TTL parts used.

The integrated circuit fabrication process imposes additional syntactic rules on a design. These

rules are intended to describe the class of designs that the fabrication process will implement

correctly. The rules are more complex than programming-language syntax rules because the

fabrication process is limited by physical, pattern-replication, and performance constraints that do not

always admit a simple fabrication syntax. Instead, the design rules that must be followed to ensure

proper fabrication are often complex and diff icult to check mechanically. To make matters worse, the

amount of information to be checked is usually many orders of magnitude more than that in a

computer program: the pattern-matching cell of [Foster 80] (see Figures 3 - 1 , 3-2, 3-3) can be

specified with three simple statements in a logical notation, but requires approximately 1500

fabrication rule checks for a circuit containing only 13 transistors. Fabrication rules are generally

geometric in nature, but also depend on electrical propert ies. 2 Until very recently design rule-

checking was often done by eye: studying large plots of masks, even for very big chips. Computer

2 A typical design rule is 'Metal wires must be n microns wide and must be separated by at least k microns, unless the wires
carry the same signal, in which case they may be arbitrarily close together.'

A COMPARISON OF TECHNIQUES FOR TESTING AND DEBUGGING PROGRAMS
AND INTEGRATED CIRCUITS 5

p o u l NOT p i n

NOT s i n

d ^ 7 ^ _ d i n N A N D (p i n - s i n)
r

Pout

Sin

F igu re 3 - 1 : The logical connect ions and operation of the comparator cell of a pattern-matching
pipeline. The arrows are labeled with the symbol 9 to indicate that the outputs are c locked.

clock

s n u . < -

<IC

- > Po

JT<

clock

F igu re 3 - 2 : A circuit d iagram of the comparator cel l . Note the use of pass transistors gated by the
c lock signal to provide storage.

programs to check geometr ic rules are now in widespread use, al though they often require hours or

days of computer t ime to check large designs [Baker 80, Haken 80, McCaw 79]. Because the

complexit ies of the fabr icat ion process cannot be encoded in geometr ic rules alone, these programs

often report "e r ro rs " that an engineer familiar with fabrication can determine to be benign.

6 TESTING AND DEBUGGING C U S T O M INTEGRATED C I R C U I T S

F igu re 3 - 3 : The layout of the comparator cei l . Transistors are formed wherever dif fusion and
polysil icon cross. The overall p lacement of components is similar to that in the circui t d iagram of
Figure 3-2

3 . 2 . C h e c k i n g s e m a n t i c s

The only way to determine whether a design funct ions correct ly is to demonstrate that a high-level

specif icat ion of it is equivalent to a lower-level speci f icat ion. This process may be repeated to show

that the most abstract, high-level speci f icat ion of a computat ion is equivalent to the lowest-level

implementation descr ipt ion. Two broad classes of techniques are used to demonstrate equivalence:

testing and verification. Veri f icat ion checks formally that the input-output relation of an

implementation always corresponds to that of another specif icat ion of the computat ion. A

computat ion is tested by presenting test input data to an executable representat ion of it and then

checking that the output data meets the input-output speci f icat ion. Whi le verif ication determines that

the implementat ion works for all input data, test ing must select a part icular set of input data for t r ia ls . 3

In both cases, the correctness of the implementat ion is determined with respect to a more abstract or

Veri f icat ion is not very different from simulation: it amounts to a symbolic simulation of the computation, wh ere.thesymbols
stand for arbitrary, unknown data values. The verification simulates the implementation on unknown data. See [Darnnger 79]
for a discussion of the use of symbolic simulation for IC verification.

A C O M P A R I S O N OF TECHNIQUES FOR TESTING AND DEBUGGING P R O G R A M S

AND INTEGRATED C I R C U I T S 7

This unfortunate situation arises because fabricating high density integrated circuits is a delicate process that may
introduce errors. For example, impurities such as dust may contaminate the silicon during fabrication resuming m defects such
as broken wires or non-functional transistors. It is not unusual for complex circuits to yield as few as 3% wc -mg parts out of a
fabrication batch.

higher-level specif ication of its funct ion. Ultimately, the correctness of the most abstract specif ication

cannot be verified formally, but requires the designer or client to stipulate: "Yes, that specif ication

correctly describes what I want the system to do . " These techniques succeed at most in bui lding our

conf idence that the implementation is correct, never in proving that it is right.

In practice, construct ing correct computer programs depends heavily on testing. If one

programmer writes a program to compute sin 0, another may write a test program that calls the sin

program using various test values of 0 to try to increase conf idence that the sin program works

correctly. The program tests wel l-known values such as 0 = nm/4, checks tr igonometric identities

such as sin 0 = sin {0 + 2<n) and sin 20 = 2 sin 0 sin (0 + TT/2) for various values of 0, and perhaps

checks that sin 0 increases monotonical ly for - t t / 2 < 0 < TT/2. If instead of a program we have a chip

that computes sin 0, the same sort of test program can be devised. The test will increase our

conf idence that the software or hardware to compute sin is correct.

An important dif ference between testing software and hardware is that the software test determines

not only that the design is correct, but that all present and future instances of the same program are

correct. This advantage arises because we can copy software reliably from memory to disk to tape,

using coding and redundancy techniques to ensure perfect copies. By contrast, testing a sin chip can

determine only that the individual chip works correctly. If the chip works, we can conclude that the

design is correct, but we cannot conclude that it can be manufactured repeatedly without er ror . 4

Hence the process of debugging chips is complicated. We must determine which errors we find in a

chip are due to design mistakes and which are the result of bad fabricat ion. This is as hard as trying to

debug a program when the compiler is randomly introducing errors into the compiled code!

Although a test program may determine that a unit under test does not funct ion properly, the

designer must still locate the design flaw. A programmer will often use a debugger to help locate the

flaws in a program. The debugger allows her to access internal state of the program at various times

during its execution, and perhaps to interrupt execution by inserting breakpoints. Sometimes

debugging must be anticipated, so that the compiler can generate special code that helps the

debugger access the program state. If no debugger is available, the programmer often inserts "pr int

statements" to reveal state within the program.

Many of these same debugging techniques are used for hardware. If the probes of a logic analyzer

are connected to various signals on a printed-circuit board, the analyzer will display a history of the

digital states of these signals. The analogue of breakpoints is obtained by triggering the analyzer to

8 TESTING AND DEBUGGING C U S T O M INTEGRATED C I R C U I T S

stop (or start) displaying when a particular combination of signals is detected. Because the analyzer

has a small memory to record a history of 100 or so previous states of the probed signals, an engineer

can observe what happened before the logic analyzer was tr iggered as well as after. Unfortunately,

these techniques break down for debugging IC's because we cannot readily attach probes to signals

within the chip. To use these techniques, we must arrange to reveal all the state within a chip (see

sections 4.2.2 and 5). Like the compiler or programmer who includes special code for debugging,

these techniques require incorporating into the design special hardware for debugging.

Unfortunately, once the design is debugged, it is usually not practical to recompile it to remove the

extra hardware inserted primarily for debugging. This may not a problem if the extra debugging

hardware can also be used for production testing.

Both hardware and software are plagued by errors that occur only infrequently, or are hard to

stimulate, or defy tracing back to an understandable cause. Both hardware and software debuggers

can lay "bug t raps" or "data-structure checkers" [Simonyi 76] for errors by assembling special

hardware or software to detect a combination of events that is suspicious. This practice is

straightforward with software, which can be easily modified and recompiled. Attaching bug traps to

printed-circuit boards is less straightforward, but feasible. But for integrated circuits, installing a bug

trap depends on designing and fabricating a new chip. Unless all imaginable bug traps are designed

in at the outset, an unlikely possibility, laying traps within a single IC is not feasible.

The debugging process depends on correcting errors in the design and testing it again. When a

programmer finds and corrects an error in a program it is usually only a couple of minutes until she

has a new executable program which she can test again. While it may not take any longer to detect

and correct an error in an integrated circuit design, it will take at least several weeks to get back a

fabricated ch ip . 5 To compensate for the fabrication delays, the integrated-circuit designer relies

heavily on simulation. A computer-readable specif ication of the chip can be changed in a few

minutes, and the function of the chip tested again by simulation based on the new specif ication. If the

simulation can mimic the behavior of the fabricated circuit exactly, all of the design errors could be

found. Unfortunately, exact simulations of electrical behavior require enormous amounts of

computat ion, and the designer usually compromises by simulating the design "at the logic level."

Simulation also helps to distinguish design errors from manufacturing flaws. If a chip is tested and

found not to work even though a simulation is correct, the designer immediately suspects that the

particular chip selected was flawed during manufacture and tries another chip.

5 l n the case of MPC79 turnaround time was one month. For MPC580 turnaround time was two months. Producing silicon
wafers is "a complex procedure that involves over 40 individual steps (for silicon-gate NMOS) and roughly 50 hours of process
time... The 50 hours of processing are typically spread over a month of calendar time because of the frequent inspections and
economic realities of achieving high fab line throughput." [Hon 80b]

A C O M P A R I S O N OF TECHNIQUES FOR TESTING AND DEBUGGING P R O G R A M S

AND INTEGRATED C I R C U I T S 9

3 . 2 . 1 . D e s i g n i n g to r e d u c e e r r o r s

Designers of both hardware and software systems strive to reduce errors in a design by adopting

design styles that help avoid mistakes. Synthesizing complex designs from already-tested modules is

the most common technique. Current trends in programming-language design stress facilities for

designing and coding modules separately and for carefully control l ing the sharing of specif ication

and implementation information among modules (e.g. MESA [Mitchell 79] or Ada [DOD 80].

Modularity is also an important part of digital system design. Engineers design printed-circuit

boards that use integrated circuit modules from families that strive for interconnection compatibil i ty

(e.g., TTL, ECL). More recently, entire boards have become modules in systems organized around

popular back-plane busses such as the DEC Q-Bus or the Intel Multibus. The modules have well-

defined interfaces that are convenient to use. Moreover, each module may be tested individually, so

that subsequent debugging and testing is conf ined to the program or circuit that employs these

modules.

Modular structure within integrated circuits is also useful. The MPC projects designed by students

and researchers in universities have used modules from a cell library that provides commonly-used

circuits such as connect ion pads and output drivers. A popular chip design technique in industry is

the standard cell approach, where the designer constructs integrated circuits by specifying the

locations and interconnect ions of particular standard cells, whose designs are obtained from a cell

l ibrary [Preas 77]. Although chips implemented using standard cells do not make efficient use of the

si l icon area available, they are much easier to debug because the modules, i.e., standard cells, have

already been tested.

It is important to test all aspects of electronic modules that are crit ical to their correct funct ioning in

the assembly. It is all too common to test integrated circuits in situations that are not as demanding as

those in the final circuit. For example, a circuit output may be loaded more heavily in the assembly

than in the test because it connects to more places. This may have enough effect on the performance

of the module to cause the assembly to fail. This problem can also come up in software if the program

used to test a module does not cover all of the module's specif ications. It is for this reason that the

module and the test program are often written by different people, both referring to the same

specif icat ion.

3 . 3 . C h e c k i n g p e r f o r m a n c e

It is not sufficient for a program or chip to function cor rec t ly - i t must also perform adequately.

Al though experimental designs may have few performance requirements, often the most important

aspect of a commercial product is its performance. For the programmer to measure the gross

performance of a program she usually runs some test cases and measures the CPU time used.

10 TESTING AND DEBUGGING C U S T O M INTEGRATED C I R C U I T S

Similarly, the IC designer can " turn up the clock speed" until a chip stops working.

Observations of gross performance are usually not sufficient to improve performance. The designer

usually needs to locate bott lenecks in the system. For many programs we can recompile to request

statement execution counts to determine where the program spends its time [Knuth 71]. Often,

however, clues to performance bugs are best determined by measurements of particular properties of

an algori thm, such as the occupancy of a hash table, the length of a list of free-storage blocks, or the

length of a run-queue in an operating system. In these cases, the facilities to collect measurements

must be incorporated into the design of the software. Much the same situation applies to hardware.

Sometimes we can find performance bugs by observing activity on easily-accessible signals such as

memory busses. More often, measurement facilities must be incorporated into the design. The

execution speed of operations on a chip can be measured by incorporating special circuits (e.g.

[Frank 81]) in the design or by simulating the chip in enough detail using model t ime accurately.

Often t iming information alone is insufficient. The designer of a cache chip, for example, will need to

collect cache performance statistics such as the number of cache references, the number of main

memory references, the number of reads, the number of writes, etc.. These usage-dependent

statistics are required to determine whether the overall cache design performs as well as it should.

4. Current techniques for testing and debugging integrated
circuits

This section explores the specialized techniques that have evolved for testing and debugging

integrated circuits. The presentation is in two parts: techniques used dur ing design, and those used

in manufacturing. In both cases, we shall conf ine our attention to the problems of checking

semantics, i.e., that the circuit operates correctly, and performance, i.e., that the circuit operates fast

enough.

The discussion that follows emphasizes statefull chips and almost completely ignores stateless

ones. Verifying the correct operation of a design or of a manufactured instance of a combinatorial

circuit is straightforward, and is subsumed by techniques required by more complex statefull chips.

4 . 1 . T e s t i n g a n d d e b u g g i n g IC d e s i g n s

The fundamental problem with testing and debugging designs is that there is no way to exercise the

design thoroughly before it is fabricated. As we mentioned in section 3.2, simulation tools are used to

build conf idence that the final design will perform properly. The most common simulations are

performed with software that works from some form of machine-readable descript ion of the design.

Examples of common simulations used are:

• Register transfer level (RTL). A typical simulator of this kind is ISPS [Barbacci 77], which

CURRENT TECHNIQUES FOR TESTING AND DEBUGGING INTEGRATED CIRCUITS 11

allows a designer to describe a system at a high level. Storage structures such as
registers and memory are declared explicitly. Control flow is also described explicitly,
while dataflow is implicit. ISPS allows the descript ion of parallel processes.

• Logic level. Circuits are described at the logic level in terms of AND and OR gates or
modules such as TTL packages. Dataflow is represented explicitly by wir ing connections,
whereas control flow is implicit. Example: SALOGS [Case 78].

• Gate level. This is very similar to logic level simulation except that circuits are usually
represented in terms of transistors or very primitive gates rather than logic functions.
Example: MOSSIM [Bryant 80].

• Timing level. A timing simulator may use either logic or gate descript ions of a circuit.
Timing simulation is similar to gate/ log ic simulation, but simulates the delays of circuits
and wires in addition to their functional properties. Examples: MOTIS [Chawla 75],
SCALD [McWil l iams80], and FETS [Frank 80b].

• Circuit level. Circuit simulation predicts the electronic behavior of a circuit, given detailed
values for all components such as transistor parameters, resistance of wires, and
capacitances. The most popular simulator of this kind is SPICE [Dowell 79]. Circuit
simulation is extremely helpful for predicting performance and for analyzing complex
analog circuits such as the sense amplifiers in dynamic MOS memories.

By way of example, Figures 4 - 1 , 4-2, 4-3 show descript ions of the pattern-matching cell of [Foster 80]

(see Figure 3-3) presented to different simulators. Also shown are outputs of the simulations. The

input data presented to the simulations was: [Pin = 1, Sin = 0, Din = 1, Clock = 1] fol lowed by [Pin

= 1, Sin = 0, Din = 1, Clock = 0] .

As the level of detail in the simulation increases toward the bottom of the above list, the complexity

of the simulation calculations increases, thus requiring more computer time and memory. As a

consequence, the more detailed simulation techniques cannot practically be applied to complex

designs. While ISPS can simulate entire computers (e.g., PDP-11 or VAX-11), SPICE is limited to a

few hundred transistors unless supercomputers are used to run it. Recently, techniques have been

developed for multi-level simulators that-simulate in detail only those nodes that.are active at a given

instant and moreover allow the designer to specify different levels of simulation detail for different

nodes. For example, using only a circuit-level specif ication of a chip, the SPLICE [Newton 79]

simulator is able to simulate an IC design at the gate, t iming, and circuit levels.

Many designs are debugged using special-purpose simulations. Frequently, a TTL breadboard of a

chip is built so that both the functional and performance aspects of the design can be studied

extensively. Moreover, a breadboard simulation can be operated at the same speed as the eventual

design and can be used for developing the hardware that will surround the ultimate part and the

software that will operate it.

Special-purpose software simulations are also very valuable. Programs may be written in any

12 TESTING AND DEBUGGING C U S T O M INTEGRATED C I R C U I T S

Comparator :«
BEGIN
•• Input.pins ••{US}
CL0CK<0>, !A global clock signal
PIN<0>, ! input pattern bit
SIN<0>. Jinput string bit
DIN<0> lcompare result from above
•• positive.comparator.cell.on ••{US}
PosComp.nn\Pos1tive.Comparator.nn

(PIN.H.nn<0>{REF},SIN.H.nn<0>{REF}.DIN.H.nn<0>{REF}):«
BEGIN
•• local.registers »»{US}
POUT.L.nn<0>. !Our output P register
SOUT.L.nn<0>. !Our output S register
DOUT.L.nn<0> !0ur output 0 register
•• parallel.actions **{US}
PosComp.action.nn {MAIN} :•

BEGIN
IF CLOCK EQL 1 *> POUT.L.nn _ NOT PIN.H.nn:
IF CLOCK EQL 1 *> SOUT.L.nn _ NOT SIN.H.nn;
IF CLOCK EQL 1 »>

DOUT.L.nn _ NOT (DIN.H.nn AND (PIN.H.nn EQL SIN.H.nn))
END

END
•• the.main.action **{US}
Main.Action {MAIN}

BEGIN
REPEAT

8EGIN
PosComp.nn(PIN,SIN,DIN)
END

END
END

Report:
ft Head of POSCOMP.ACTION.NN
CLOCK-#l
5IN.H.NN-#0
PIN.H.NN-#1
OIN.H.NN-#l
S0UT.L.NN-#0
POUT.L.NN-#0
00UT.L.NN«#0

Report:
ft Tail of POSCOMP.ACTION.NN
CLOCK-#l
SIN.H.NN«#0
PIN.H.NN«#1
DIN.H.NN»#1
S0UT.L.NN»#1
POUT.L.NN«#0
D0UT.L.NN»#1

Report:
ft Head of POSCOMP.ACTION.NN
CLOCK*#0
SIN.H.NN-#0
PIN.H.NN*#1
DIN.H.NN-#1
S0UT.L.NN-#1
POUT.L.NN-#0
DOUT.L.NN-#l

Report:
9 Tail of POSCOMP.ACTION.NN
CLOCK-#0
S1N.H.NN«#0
PIN.H.NN«#1
DIN.H.NN-fl
S0UT.L.NN»#1
POUT.L.NN«#0
DOUT.L.NN«#l

F i g u r e 4 - 1 : Register-transfer level s imulat ion (ISPS), (a) the input specif icat ion for the comparator
cel l , c.f. the 3-line logical notat ion of Figure 3 - 1 . (b) A sequence of four output reports showing the
states of the signals.

CURRENT TECHNIQUES FOR TESTING AND DEBUGGING INTEGRATED CIRCUITS 13

(0(1 Dl/fT Ne)(L 27 60)(P 1 G)(P 5 S)(P 12 D))
(D(I D2)(JT ResUp)(L -3 57)(P 8 0))
(D(I D3)(T ResUp)(L 135 57)(P 10 D))
(D(l D4)(T Ne)(L -42 48)(P 1 G)(P 13 S)(P 17 D))
(D(I D5)(T Ne)(L 51 30)(P 10 G)(P 8 S)(P 40 0))
(0(1 D6)(T pdNe)(L -9 27)(P 13 G)(P 8 0))
(D(I 07)(T pdNe)(L 129 27)(P 36 G)(P 10 D))
(D(I 08)(T Ne)(L 204 24)(P 1 G)(P 36 S)(P 45 D))
(0(1 D9)(T Ne)(L 96 9)(P 8 G)(P 10 S)(P 40 0))
(0(1 D10)(T pdNe)(L 39 -18)(P 40 G)(P 58 0))
(D(I D11)(T ResUp)(L 93 -27)(P 40 D))
(D(I D12)(T Ne)(L 39 -30)(P 12 G)(P 58 S)(P 64 D))
(0(1 D13)(T ResUp)(L 51 -48)(P 64 0))

(N(I Ml CL0CK_H)(C 1))
(N(I N5 DIN H.nn)(C 5))
(N(I N8 P0UT_l.nn)(C 8))
(N(I N10 S0UT_L.nn)(C 10))
(N(I N12)(C 12))
(N(I N13)(C 13))
(N(I N17 PIN H.nn)(C 17))
(N(I N36)(C 36))
(N(I N40)(C 40))
(N(I M45 SIN H.nn)(C 45))
(N(I N56)(C 55))
(N(I N58)(C 58))
(N(I N64 DOUT_L.nn)(C 64))

CLOCK.H

PIN.H.nn

SIN.H.nn

DIN.H.nn

P O U T . L n n

S O U T . L n n
/

DOUT.L.nn

F igu re 4 - 2 : Gate-level t iming simulat ion (FETS). (a) The input specif icat ion listing all transistors and
their interconnect ions, (b) A display of the behavior of internal signals. This example show one c lock
period.

14 TESTING AND DEBUGGING CUSTOM INTEGRATED CIRCUITS

.option nonode nopage noacct nomod nolist

.width in»80 out*80
vds 1 0 dc 5
vpin 2 0 pwl(0ns 5)
vsin 5 0 pwl(0ns 0)
vdin 9 0 pwl(0ns 5)
vclk 13 0 pwl(0ns 0 10ns 0 11ns 5 30ns 5 31ns 0)
•
nil 2 13 3 0 menn l=6u w«6u
m2 1 4 4 0 raden l»18u w=6u
m3 4 3 0 0 menn l«6u w»18u
m4 1 8 8 0 mden l»24u w«6u
m5 8 7 4 0 menn l*6u w*24u
m6 8 4 7 0 menn l*6u w»24u
m7 1 7 7 0 mden l«18u w*6u
m8 7 6 0 0 menn l«6u w«18u
m9 5 13 6 0 menn l«6u w«6u
mlO 11 8 0 0 menn l«6u w«18u
mil 12 10 11 0 menn l*6u w«18u
m!2 9 13 10 0 menn l*6u w*6u
ml3 1 12 12 0 mden l«24u w*6u

••*•• NMOS ENHANCEMENT-NOMINAL •••••
.model menn nraos nsub«lel5 nss»-2.35ell
•xj»lu ld«.8u ngate*le23 gamma*.43 nfs«lell 1ambda«le-7
+uo»80D ucrit»6e4 uexp«.25 utra«.5 cbd«21e-5 cbs*21e-5 js«2e-5

NMOS DEPLETION-NOMINAL
.model mden nmos nsub«lel5 nss»7.05ell
+xj«lu ld«.8u ngate«le23 lambda«le-7
•uo«800 ucr1t»6e4 uexp«.25 utra«.5 cbd»21e-5 cbs«21e-5 js«2e-5
•
.plot tran v(13) v(12)
.trans Ins 40ns
.end

c > >

O O O O O O O
» o o o o o o o o o o o o o o o o <

ooooooooooo.o.o.o^uai^.o^^ui i r iu i^o.o^uj in.ninoooooooooo -
° 2 2 2 2 2 2 2 2 2 2 S S S S S S S S o o S S S S S S S S S S o S S S S S S S o o 5

i n n « 10 (O r

F i g u r e 4 - 3 : Circuit-level s imulat ion (SPICE), (a) A descr ipt ion of circuit components and their
interconnections. This descr ipt ion contains almost identical information to that of Figure 4-2a. (b)
Output from SPICE. The + indicates the waveform of the DOUT signal. The * indicates the
waveform of the c l o c k signal. The x is used when* * and + overlap.

C U R R E N T TECHNIQUES FOR TESTING AND DEBUGGING INTEGRATED C I R C U I T S 15

convenient programming language to explore various aspects of a design. These simulations are

generally used to explore widely varied design alternatives rather than to model detailed behavior of

the design. The example shown in Figure 4-1 need not be programmed in ISPS-any convenient

language will do. Furthermore, as discussed in Section 5.1.1, microcode can be simulated

independently of the rest of chip.

4 . 2 . T e s t i n g and d e b u g g i n g p r o d u c t i o n IC ' s

The goal of product ion testing is to determine quickly whether or not a chip has been fabricated

correctly. Many of the techniques developed to test parts are also used to help debug a design once

the first silicon instance of the design is fabricated.

The integrated-circuit industry distinguishes between two kinds of testing: characterization and

acceptance testing. Characterization carefully measures the behavior of a chip: power dissipation;

input and output currents; variations with temperature, humidity, and supply voltage; vibration and

radiation resistance; etc. These measurements are used to determine whether the design and the

manufactur ing process are tuned suitably to produce parts with the desired specif ications. They are

also used to determine why flawed parts fail in order to improve the design or alter the product ion

process in an attempt to produce a greater proport ion of working parts. Once a product ion line is

operating smoothly, characterization may be used only for occasional samples.

An acceptance test is applied to each part that is manufactured to determine whether it operates

correct ly and should be sold. Tests are often performed by probing a wafer before it is diced and

packaged, so that non-functional die are not packaged. Once packaged, the chip is tested again.

The test is either a " g o / n o - g o " test for acceptance or a classification test that sorts parts based on

their speed.

4 . 2 . 1 . T e s t i n g i n p u t s and o u t p u t s

Testing methods developed for simple chips aim to exercise all circuits and wires within the chip to

gain conf idence that the chip works. The functional correctness of a stateless chip can be tested by

stimulating it with all possible input values and observing the outputs. The test is driven by a set of

test vectors, each of which records the digital values of the inputs and the digital values of the

expected outputs. If a stateless chip has n input pins, 2n test vectors must be tried if the test is to be

exhaustive.

Various methods are used to implement test-vector testing (based on [Hayes 80]):

• Stored response testing which applies prestored test vectors to the inputs of a chip and
compares the outputs of the chip to prestored results. The Megatest Q2 [Megatest 80] is
typical of this class of testing machines.

16 TESTING AND DEBUGGING C U S T O M INTEGRATED C I R C U I T S

• Comparison testing applies test vectors to the inputs of two chips: the chip under test and
a known working chip called the gold unit. The outputs of the two chips are continuously
compared.

• Algorithmic testing in which test data is computed each time the unit under test is tested
is perhaps the most powerful technique because of its flexibility and the compact
representation of the test. Algorithmic testers allow us to write programs to generate the
input-output pairs dynamically instead of having to enumerate the test data beforehand.
However, in order to test chips at high speed, a good deal of computat ion power is
required.

Exhaustive testing becomes difficult or impossible when chips have substantial internal state. An

exhaustive test will require that every combinat ion of input signals and internal states be tr ied, or 2n + s

combinations, where s is the number of bits saved inside the chip. To make matters worse, several

steps may be required to obtain a particular internal state. A typical integrated-circuit memory chip

(r? = 10 and s = 16000) simply cannot be tested exhaustively: it would require 1 0 4 8 0 0 steps, or 1 0 4 7 8 4

years at 100 ns per test!

Rarely is it really necessary to test chips exhaustively, because every output does not depend on

every input and every bit of state. Rather, we assume a failure mechanism within the chip that is

simpler than the sort tested by exhaustion. One approach to reducing test t ime is to hypothesize

failure mechanisms based on the physical structure of the chip. A common restriction is to test

whether each internal signal on the chip is "s tuck at 0 " or "stuck at 1 " due to manufacturing flaws.

Algorithms such as Roth's D algorithm [Roth 67, Breuer 76] when given a combinational logic

function can automatically generate all of the tests required to verify that no internal signal is stuck.

For each internal signal, the algorithm postulates that the signal is stuck and tries to find an input

vector that causes an output to be inverted because of the failure. For chips with very regular

designs, deriving test vectors for stuck-at condit ions is straightforward, even if it cannot be done

automatically. For example, most of the stuck-at tests for a memory chip are those that simply test

whether each individual bit in the memory can be set to 0 or 1. For complex ch ips without a regular

structure, deriving test vectors can be very difficult. The integrated-circuit industry today believes

that one of its major problems in chip design is the design of a suitable set of acceptance test vectors.

The reader is refered to [Muehldorf 81] for a more detailed discussion of fault modeling and test

pattern generation.

Testing a complex chip may require many thousand test vectors, which are costly to store and

compare at high speed. A compression technique called signature analysis can be used to hash the

sequence of test outputs, which may be several thousand bits, into a small "s ignature" that may

contain only 16 bits [Frohwerk 77]. The inputs to stimulate a chip can come from an inexpensive ROM

memory. After several thousand tests are appl ied, we examine the signature to see if it matches a pre-

CURRENT TECHNIQUES FOR TESTING AND DEBUGGING INTEGRATED C I R C U I T S 17

stored correct value. This technique has been used quite successfully with printed circuit boards,

especially those that are part of a computer. The computer executes a test program while the

signature of a particular wire on the PC board is measured with a test instrument. The signature is

then compared to the value that the test should yield.

4 . 2 . 2 . A c c e s s i n g i n t e r n a l s t a t e

Debugging and testing complex chips that contain a lot of internal state depends on accessing the

internal state easily. The time required to test a complex chip can be drastically reduced if the internal

state of the chip can be set and revealed easily during testing. Access to internal state (AIS) allows us

to decompose a complex chip into a number of very simple subparts for testing purposes, thus

avoiding the combinatorial explosion of all combinations of input and internal state values. Moreover,

access to internal state can reveal to the external tester the state of an internal signal that might

otherwise be inaccessible or accessible only by very indirect means. Internal signals that are not

easily accessible may require a very complex set of test steps to determine whether the signal is stuck

or operable.

Some chips are designed so that access to internal state requires no special circuitry. For example,

a memory chip provides reasonably direct mechanisms for reading and writ ing every bit in the

memory. Although these mechanisms depend on correct operation of a certain amount of addressing

circuitry, these circuits represent only a tiny fraction of the entire chip. Consider by contrast a

microprocessor's instruction register that contains a copy of the instruction being executed. The

register is not externally accessible, even indirectly. Although we can observe externally some effects

of an instruction's execution, we will almost certainly not be able to decide based on these

observations whether the instruction register operates correct ly under all c i rcumstances.

Scan-in/scan-out The most popular technique for accessing internal state is to link all such state in

a long shift register. The state can be shifted into the chip, a test executed, and the new state shifted

out; hence the name scan- in/scan-out (SISO). The idea has old origins: early IBM 360 models wrote

several thousand bits of internal processor state on a magnetic tape whenever a hardware error was

detected. The tape could then be analyzed to find the error. More recently, DEC and Evans and

Sutherland have used shift registers to reveal state that would otherwise be hidden on printed-circuit

boards in a large, complex system such as a VAX-11/780 processor or a real-time hidden surface

eliminator. In addition to providing diagnostic help, the shift register can also be used to configure

the system by setting internal state that governs its performance, for example, control registers that

enable and disable memory modules.

The use of scan- in/scan-out in integrated circuits has been exploited by IBM, where it goes by the

names Level Sensitive Scan Design (LSSD) or Shift Register Latch (SRL) (see Figure 4-4) [Williams

18
T E S T I N G AND DEBUGGING C U S T O M INTEGRATED C I R C U I T S

73, Eichelberger 78]. This technique was developed for chips designed with the Electronic Design

System (EDS) in order to systematize and reduce the testing requirements for custom chips designed

by hundreds of engineers within IBM. As a result, a single testing philosophy and one kind of testing

hardware applies to vastly dif ferent chips. Moreover, when the chips are combined into larger

systems, the shift registers can all be chained together to make the state of entire boards available for

fault d iagnosis.

o c LI -LI

L2

• L2

F i g u r e 4 - 4 : The shift-register latch (SRL) used by IBM to provide access to internal state. In normal
use, input data is presented at D, c lock (actually a latching hold signal) at C, and output is available at
+ L 1 . These latches are connected into a shift register by connect ing + L 2 (SHIFT DATA OUT) to I
(SHIFT DATA IN) of the next latch. The hold signals A and B are used alternately to shift data f rom L1
to L2 and to the next L 1 , and so for th. Signals A and B can be generated on-chip from a single SHIFT
CLOCK s ignal . Figure from [Eichelberger 78].

One of the charms of SISO is that very few pins are required to access the internal state. The IBM

design arranges that each bit of internal state is saved in two latches, one normal one and one that is

used to create a shift register. Three signals are required to set and retrieve the internal state: SHIFT

DATA IN, SHIFT PATA OUT, and SHIFT CLOCK. Even fewer pins are required in the TRIMOS3US des ign,

wh ich has two pins for shift register input and output, but encodes the shift c locks on a bus that is

shared by all chips and normally devoted to other uses [Suther land 79] .

Mufflers. Another method for accessing internal state was used in the des ign of the Dorado

processor [Lampson 80] . The packaging constraints of the processor resemble those of an

integrated circui t : probes cannot be at tached to the pr inted-circui t boards because they are very

CURRENT TECHNIQUES FOR TESTING AND DEBUGGING INTEGRATED CIRCUITS 19

closely spaced and because they cannot be operated when extended from the backplane due to

signal t iming problems. To observe internal signals, the designers arranged to use a set of selectors,

termed mufflers, to select a single internal signal that is to be reported externally. The contro l of the

selectors and the observat ion of the external signal are accompl ished with a diagnost ic computer

at tached via an umbi l ical cord for test ing or debugg ing.

The muffler scheme is designed to use only three pins on each board : an ADDRESS pin, an ADDRESS-

SHIFT pin and a DATA pin (see Figure 4-5).

Connections
From

Internal
State Bits

v

8:1 Tri-State
Multiplexor

Tri-
State

Output

Enable

Select

Shift Register

DATA

53

— * A d d r e s s

Address-Shift

F i g u r e 4 - 5 : A TTL schemat ic representat ion of a muffler. The shift register is loaded with the
address of a signal to sense. The AND gate will enable the one mult iplexor that connects to the
addressed s ignal , thus gat ing the signal onto the DATA wire. All three pins are bussed together, so
that an arbi t rary number of muff lers can be connec ted using only three wires.

These three signals are bussed together on the backplane. Each bit of internal state is given a unique

n-bit address; addresses are presented in bit-serial form simultaneously to all boards in parallel using

the ADDRESS and ADDRESS-SHIFT signals. Each board decodes the addresses and enables a selector

that gates the desired signal onto the single-bit DATA bus. A single bit of internal state can be

accessed in n address-shif t cycles, which enter its address. By clever address permutat ions, however,

20 TESTING A N D DEBUGGING C U S T O M INTEGRATED C I R C U I T S

all 2n addressable state bits can be read out in 2n address-shift cycles. For complete state readout,

therefore, mufflers and SISO require the same number of c lock cycles, yet the muffler can access a

single bit of state far faster than SISO can.

Both the SISO and muffler techniques require a small amount of extra hardware to access internal

state. IBM estimates that roughly 20% of a chip is devoted to SISO mechanisms, al though very often

the latches required for the shift register are also used dur ing normal operat ion. The muffler

overhead, as used in the Dorado, is much lower than this, but the mufflers do not report as much

internal state as IBM requires. SISO can be used both for reading and setting state, while the mufflers

in the Dorado are used only to read state. Both schemes are able to reduce testing times and ease

debugging signif icantly using only a few precious pins.

5. Future trends in IC debugging and testing
In this sect ion, we explore the trends likely to inf luence testing and debugging in the near future.

We tend to place greater emphasis on debugging, since we are more concerned with reducing design

time than with the product ion of large numbers of chips. We also present a few new methods for

testing and debugging integrated circuits and descr ibe briefly the work underway at CMU.

5 . 1 . D e s i g n i n g t o r e d u c e e r r o r s

The effort required to debug a design can be reduced by using design techniques that help avoid

errors or that make errors particularly easy to detect, track down, and fix. An error may be diff icult to

fix if the remedy requires redesigning a great many associated circuits or if the fix requires a new

circuit layout that causes changes to propagate to other parts of the chip, thus necessitating still more

layout work.

5 . 1 . 1 . M i c r o c o d e

The most dramatic technique of this sort is the use of microcode control of some "execut ion

machine." The microcode can be written in a reasonably high-level language (at or above the

register-transfer level) [Hennesy 8 1 , Gehringer 80, Gosling 80, Steele 80] and simulated extensively.

The simulations can be made to execute very rapidly, for example by compi l ing executable code f rom

the microcode source. The simulations may suggest alterations in the structure of the execut ion

machine, which need not have been designed in detail at the t ime the microcode is written and tested.

Once the execution machine is designed, it can be simulated separately using lower-level simulat ions

to build conf idence that microcode will be executed properly.

When the design of the execution machine is complete, the microcode can be compi led direct ly

into ROM or PLA layouts that provide microinstruct ion memory on the chip. Techniques for reducing

FUTURE TRENDS IN IC DEBUGGING AND T EST IN G 21

the size of the microinstruct ion memory, such as nanocode [Stritter 78], can also be handled by this

compi lat ion step. The designer need never deal with the complexit ies of these s t ruc tu res- the original

microcode source is the lowest-level representation of the control structure that she needs to

manipulate.

The microinstruct ion memory can be easily fitted with AIS testing connect ions. All that is needed is

a way to set and read the microinstruct ion memory address register (MAR) and to set and read the

microinstruct ion register (MIR, the output of the microinstruct ion memory). These paths allow us to

test the contents of the microinstruct ion memory exhaustively in a very short t ime. Moreover, they

provide a way to test the execut ion machine: by loading values into MIR using AIS, the machine can

be stepped through any series of operat ions, regardless of the contents of the microinstruct ion

memory. During debugging, if an error is found in a microcode word , the correct microcode values

can be substituted by the AIS mechanism each t ime the word is fetched, thus al lowing the chip to be

tested in spite of the error. A microprocessor designed with microcoded control may devote 50% or

more of the chip area to microinstruct ion memory. The MAR and MIR registers and their test

connect ions const i tute a clean division of the chip into two parts, which may be tested or debugged

separately.

The impact of microcoded contro l on the design and debugging of chips can be il lustrated by

compar ing the history of two 16-bit microprocessors that have complex control requirements: the

MC68000 [Motorola 79, Stritter 79] and the Z8000 [Zi log 79, Peuto 79]. The MC68000 was designed

using microcoded contro l , while the Z8000 uses combinator ial logic for its contro l . Al though the

MC68000 was fabricated using a somewhat denser and faster technology than the Z8000, this

dif ference is not important. The overall architectural complexity of the two microprocessor chips is

comparable. Figures 5-1 and 5-2 show the actual chip layouts, i l lustrating the obvious regular

microcode memories in the MC68000. As seen in Table 5-1 the most str iking test imony to the

advantages of microcoded design is the fact that the Z8000 required three t imes as many months to

produce a working product ion version (i.e. a chip with no known bugs) as the MC68000. The various

forms of simulations of the MC68000 and the test logic on the chip itself made it possible to examine

essentially all internal signals in order to locate the source of errors. Moreover, even bugs which did

not originate in the microcode of the MC68000 could often be fixed using microcode instead of

eliminating the true source of the error by redesign. On the other hand, locating the sources of bugs

in the Z8000 was often tedious and required diff icult changes to the random-logic control .

Quite apart from testing and debugging eff iciencies, use of microcode offers substantial savings in

layout effort as wel l . Even though the MC68000 has four times as many transistors as the Z8000, both

chips required approximately the same amount of effort to design and lay out.

22
TESTING AND DEBUGGING CUSTOM INTEGRATED CIRCUITS

il

F i g u r e 5 - 1 : Photomicrograph of the MC68000. Courtesy Motorola

FUTURE TRENDS IN IC DEBUGGING AND TESTING 23

F i g u r e 5 - 2 : Photomicrograph of the Z8000. Courtesy Zilog, Inc.

24 TESTING AND DEBUGGING C U S T O M INTEGRATED C I R C U I T S

Motorola MC68000 Ziloq Z8000

Design parameters:
Elapsed time to first silicon
Design time
Layout time
Lambda
Chip size
Number of transistors
Number of transistors/

Number of designed transistors
Debugging parameters:

Elapsed debugging time
Number of mask sets
Percent of chip design simulated

at any level
Percent of chip area devoted

to test structures

30 months
100 man months
70 man months
1.75fxm
246 mils x 281 mils
68000

6 74:1

6 months
3

100%

4%

8

30 months
60 man-months
70 man-months
2/xm
238 mils x 256 mils
17500

5:1 (estimate)

18 months
3

20%

0%

Table 5 - 1 : A comparison of the MC68000, and Z8000 design efforts. Data supplied by Tom Gunter
of Motorola, Inc., Bernard Peuto of Zilog, lnc.t and Skip Stritter of Nestar Systems, Inc.

5 . 1 . 2 . The CMU Design Automation System

Microcode is one way in which we can automatically generate an integrated circuit from a high-level

specif icat ion. Another approach has been used in the CMU Design Automation System (CMUDA)

[Parker 78]. Instead of writ ing microcode to implement a particular appl ication, the designer

describes her task using the ISPS hardware descript ion language. Given this ISPS specif ication and

information about the particular high-level implementation style desired, the CMUDA system can

generate a low-level implementation of a chip using standard cells. In addit ion, a system such as

CMUDA could also automatically generate AIS for all of the internal state it allocates on the chip.

5 . 2 . Design for testabi l i ty and debuggabi l i ty

If a system cannot be designed using a style that reduces the number of errors or makes testing

inherently simple, it can nevertheless incorporate features that aid debugging and testing. Industrial

response to the increasing difficulty of testing complex chips has been to emphasize design for

testability. In our environment, it is more important to design chips that can be debugged easily

because we cannot afford the time or expense of iterating a chip design to eliminate design errors.

We observed in section 3.2 that techniques for debugging software modules require two primitives:

access to internal state in the module and the ability to stop execution (breakpoints). These two

functions can be offered to the hardware debugger as well by designing the chip with suff icient

^ h i s is actually the weighted average of three different ratios. 50000 transistors sites are in PLA/ROM structures with a ratio
of 50:1. 5000 transistors sites are in the registers with a ratio of 500:1, and 13000 transistors sites are in random logic with a
ratio of 5:1.

7 T i m e from first silicon to a working production version (i.e. no known bugs) of the chip.

8 l n addition, there also exists a TTL implementation of the MC68000 which is 100% functionally equivalent to the chip.

FUTURE T R E N D S IN IC DEBUGGING AND TESTING 2 5

access to internal state information and by debugging a chip with a driver that can single-step a

sequence of operat ions. 9 Thus we see that access to internal state is useful for debugging as well as

for test ing.

The remainder of this section explores ways to design access to internal state to ease both

debugging and test ing. The final paragraphs (section 5.2.5) contain a summary of the kinds of

internal state that should be made available externally.

5 . 2 . 1 . I n - s i t u t e s t i n g

A chip can be designed so that AIS access can be used to test a chip even after it is soldered into a

printed-circuit board. The boards and systems built around these chips can then be tested as well .

The key requirement is that the AIS access be able to decouple all of the pins from their normal

connect ions (except for power and ground) and provide an externally-generated stimulus in place of

the signals present on the pins. These funct ions can be provided by suitable design of the pin

interface circuits, and are independent of the design of the rest of the chip.

Figure 5-3 il lustrates schematical ly how the pin circuit module might be designed. Each signall ing

pin is connected to the chip circuits with three wires: one that reports data coming in from the pin (IN),

one that delivers data to be placed on the pin (OUT), and a third (DRIVE) that says whether the pin is to

be driven. If the pin is used only as an output, it will always be dr iven; if it is used only as an input, it

wil l never be dr iven; if it carries a bidirectional signal such as a bussed data wire, then the DRIVE signal

will vary with t ime. Figure 5-4 shows how the testing and debugging circuits might work. The

OPERATE signal couples the chip signals directly to the pin driver for normal operat ion. If OPERATE is

not asserted, the pin and the chip internals are electrically separated. By asserting DEBUG CHIP, we

couple the three chip signals to AIS connect ions that can sense the state of the DRIVE and OUT signals

and control the state of the IN s ignal.

This design can also be used to test the interconnect ions among chips in a large system. By

asserting the DEBUG PINS s ignal, we couple the AIS connect ions to the pin driver signals. In this way,

we can drive a single pin in the system and measure the state of all other pins to verify that each pin is

connected properly to others. This test will uncover bad chip bonding, bad chip sockets, bad printed-

circuit boards, bad printed-circuit board sockets, and bad backplane wir ing.

This scheme greatly simplif ies the design of a hardware tester, because we can decouple the

testing of the pin electronics f rom the testing of the bulk of the chip. The chip funct ion is tested using

This comment applies to sequential circuits. Asynchronous or self-timed designs have no global concept of sequence, so it
is not possible to "stop" an entire circuit and to measure its state. However, such designs generally are composed of a number
of smaller circuits, each of which is sequential [Seitz 80]. In this case, our comment applies to debugging the sequential
components but not to debugging the asynchronous whole.

2 6
T E S T I N G A N D D E B U G G I N G C U S T O M INTEGRATED C I R C U I T S

Chip

enable

out

it

~~3T
AIS signals

(a)

Pad/P in

pads for bonding

a a g 13 t o p i n s

chip internals "a
"a

(b)

Figure 5 - 3 : In-situ testing by decoupl ing pins f rom the ch ip 's internal c ircui try, (a) The l o g L
st ructure of the pin c ircui ts, (b) Pin c i rcui ts arrayed around the ch ip internals to connect to par
Not ice that the AIS signals thread through all pin c i rcu i ts .

only AIS access to the signals that connec t to the ch ip internals. For this test, the tester needs

interface only to the few pins that cont ro l the AIS funct ions. Thus if individual d ie are being test

before packaging, only a half-dozen points need to be p robed: power, g round , and four AIS signa .

Once the ch ip is determined to work, the pin dr ivers are tested separately, using AIS to dr ive a pin and

using a s imple multiplex switch on the hardware tester to verify the operat ion of the pin under test.

The effect of the circui try that decouples the ch ip f rom the p ins is to place a sentinel at a key

interface in a digi tal system. It is analogous to t rac ing a sof tware procedure by examining all cal ls to

it, the cal l ing parameters, and the return values. The sent inel need not be used only to cont ro l ch ip

pins. For example, we could design pr inted-c i rcui t boards so that each pin on the board connector is

F U T U R E T R E N D S IN IC DEBUGGING AND T E S T I N G 2 7

debug
chip

r

enable
4

Chip
internals

out

- r

AIS
signals

operate
chip

A s

debug
pins

r Pad/P in

tristate
driver

F i g u r e 5 - 4 : A sketch of the pin c i rcui t for decoupl ing the chip internals f rom the pins. If the OPERATE
signal is h igh, the pins are connected to the chip internals. Otherwise, if DEBUG CHIP is asserted, the
chip internals are dr iven and sensed by three bits of state (S) accessible using an AIS mecahnism.
Alternatively, if DEBUG PINS is asserted, the three bits of state contro l the pfn only, thus al lowing ch ip-
to-chip in terconnect ions to be tested. Each bit of state S has contro ls that al low it to be loaded from
its inputs, to be read off the chip or to be set f rom of the ch ip . 1

driven in this way, perhaps using an integrated circui t that convenient ly packages the funct ions

sketched in Figure 5-4. The board itself might conta in convent ional TTL packages that have no

provision for AIS connect ions.

5 . 2 . 2 . M u f f l e r e x t e n s i o n s

Al though the muffler design was used only to read internal state and not to set it, a simple extension

in MOS technology will make the technique bid i rect ional . Figure 5-5 shows how MOS switches can

connect the DATA wire to the bit of state to be sensed (READ s ignal asserted) or set (READ s ignal not

asserted). This design has a number of advantages over SISO:

• Bits of state can be set individually. Even though the READ s ignal is appl ied to all bits of
state, the circui t can be designed so that only that bit with the select ion switch closed will
be al tered. (For example, if READ is normally h igh, the wire R will be normally charged to
the state S, so that even when READ is brought low, the state will be set to R = S unless the
selector swi tch is c losed, in which case it wil l be set to the value on the data wire.)

• A single bit of state is constant ly reported externally, and can thus be observed at high
speed. By contrast, a shift chain will require hundreds of shifts to observe each value of
an internal s ignal. This ability to sense a signal constant ly gives rise to the next two

2 8
TEST IN G AND DEBUGGING C U S T O M INTEGRATED C I R C U I T S

to other bits of
internal state

r

Address
shift out

internal
"data" bus

ZL_L

Decoder

' Data

Read

Shift register

Address
shift in

* Address
shift clock

F i g u r e 5 -5 : Extensions to the muffler scheme. A bit of internal state can be sensed (READ high) or
set (READ low) via the DATA p in. In order to al low many separate chips to use muff lers, the muff ler
address shift registers are l inked on a chain using ADDRESS SHIFT IN and ADDRESS SHIFT OUT. The
remaining pins are bussed together for all mufflers.

advantages as wel l .

• The signature-analysis idea can be used for test ing. The DATA pin is connected to a
s ignature-comput ing circuit in the tester, and the muffler address is set to select a
part icular internal signal. Now the system is put through a f ixed test sequence and the
signature is computed and compared with a known good value. Note that dur ing this test,
the system can be operated at full speed.

• The muffler can be set to select report ing of an internal signal that yields useful
performance information. (This idea was used on the Dorado [McDaniel 80].) Because
we can observe internal events at full speed, we can operate the system normally and
count events, measure arrival-time statistics, etc.

FUTURE TRENDS IN IC DEBUGGING AND TESTING 2 9

The muffler appears to have a disadvantage compared to SISO in that a fixed address is required to

address each bit. This property would appear to make it infeasible for use on chips, because all

instances of a particular chip type in a system would decode the same muffler addresses and report

data concurrently. This problem can be remedied by putting the muffler address bits on a shift

register and arranging that a chip will drive the data wire only if it detects an odd address. Thus if

each chip has an n-bit address shift register, it can connect 2 n A different signals to the data wire. A

system with m chips will have a shift chain that is only mn bits long that provides access to s = m2 n" 1

bits of internal state. By contrast, if the internal state is connected directly to the shift register (SISO),

the shift register needs to be s bits long, or a factor of 2nA/n longer than the muffler chain. These

comparisions show that the muffler allows quick access to a particular bit, but also show that SISO

provides a faster mechanism to obtain the entire accessible state of the system.

The pin requirements of the two schemes must also be compared. The SISO technique (Figure 4-4)

can be operated with three pins: SHIFT DATA IN, SHIFT DATA OUT, and SHIFT CLOCK. The first two pins

are chained from chip to chip and the other is are bussed together. The simplest muffler scheme

requires five pins: ADDRESS SHIFT IN, ADDRESS SHIFT OUT, ADDRESS SHIFT CLOCK, DATA, and READ. The

first two pins are chained from chip to chip and the remaining three are bussed together. However,

the READ pin can be avoided by using the ADDRESS SHIFT CLOCK pin as the READ signal. While the

ADDRESS SHIFT CLOCK is high, an internal bit is read onto the DATA bus; while it is low the same bit is

written from the bus. Thus the standard cycle for shifting in addresses will read and re-write a number

of internal bits. If we ever want to change the internal state, we simply arrange to place the new value

on the DATA wire while the ADDRESS SHIFT CLOCK is low.

5 . 2 . 3 . On-chip s ignature analysis

One of the diff icult ies with SISO testing is that a great many shift steps are required to read out an

internal state and that the operation of the system must be halted while this shift ing is done. An

alternative is to build on-chip signature checkers to reduce the amount of data that must be reported

externally. Although the muffler mechanism allows checking a single signature while the circuit

operates at full speed, on-chip signature checking could check many different signals at once. These

could be checked with separate signature generators or with a single circuit that hashes together the

states of several signals at once.

In addition to generating signatures on the chip, we might also consider including an on-chip ROM

that contains known good signatures to verify the computed signatures.

A scheme called BILBO (Built-in Logic Block Observer) [Koenemann 79] incorporates many of

these ideas and can be used to generate pseudo-random test patterns as well.

30 TESTING AND DEBUGGING CUSTOM INTEGRATED CIRCUITS

5 . 2 . 4 . O n - c h i p or o n - w a f e r t e s t e r s

Imagine that instead of receiving a single die back from fabricat ion, the designer received an entire

test system in the form of a wafer to which she had only to connect power and a terminal (via a

standard RS-232 interface). The wafer contains several copies of the designer's chip, some of which

are already interfaced to a special test system. The test system provides the designer with convenient

hardware and software for performing tests on the chip. Assuming the designer provided ways of

accessing internal state, the test system can be programmed to set and retrieve this state, and

moreover, can be connected to a larger computer for more sophisticated testing. There are several

advantages to a test system of this kind:

• Custom IC designers do not have to buy or build their own testing systems. Moreover,
they are able to take advantage of common development on one test system, a new
version of which they get every time they fabricate a new chip.

• Even signals which are not going to be connected to pins could be connected to the test
system. This would greatly enhance the ability to test and debug the chip.

The on-wafer tester is an excellent example of a hardware module fabricated along with a design to

help debug or characterize the design. A less powerful example of such a debugging module is a

timing sampler [Frank 81] which accurately measures the t ime of occurrence of an on-chip signal.

5 . 2 . 5 . Summary of access to internal s tate

To take full advantage of the many uses of access to internal state, systems must be designed so

that the appropriate internal signals can be examined. For example:

• Manufacturing testing. Access is needed to any state that cannot be set or read easily by
the normal input /output pins of the chip. It is possible to analyze a gate-level design to
determine whether each signal can be controlled from the outside (i.e., set to both binary
values) and whether each signal can be observed f rom outside. Programs such as
TMEAS [Grason 79] can analyze a circuit and report how diff icult it is to control and
observe signals internal to the circuit. If an important internal signal is found to be hard to
control and /o r observe, the circuit can be redesigned to improve its testability.

• System testing. Extra provisions, such as those described in section 5.2.1, are needed to
test an entire system without removing components .

• Debugging. The needs of debugging may exceed those of testing. For example, we may
wish to be sure that the entire internal state of a chip can be set to a given value for
debugging, while testing requires only that the state of small portions under test be
control led.

• Performance measurement. Signals that are important for performance measurement
must be sensed directly, whether or not they are needed for testing and debugging. The
reason is that if only a single signal is being reported (e.g., using mufflers), we can
measure the activity on only the one signal. Thus a "dir ty miss" signal in a cache must be
available as a single signal; we will not be able to detect "d i r ty" and "miss" separately
and perform the AND function in the performance monitor.

FUTURE TRENDS IN IC DEBUGGING AND TESTING 3 1

• Initialization and configurat ion. As we observed in section 4.2.2, paths for sett ing internal
state can be used to configure or initialize a system. We can enable or disable individual
chips, load memories for microcode or table-lookup functions, etc. These requirements
may demand that more signals be accessible via AIS paths. If the in-situ methods are
used (section 5.2.1), they allow chips to be operated completely independently of their
environment, and thus clearly provide full initialization and configurat ion cont ro l .

It is important to emphasize that a special AIS mechanism is not always the best way to access

internal state. What is required is that there be some way to set and reveal the state. Consider, for

example, a 16K dynamic MOS RAM chip. It has 16,384 bits of internal state in its memory, 128 bits of

state in its sense amplifiers, and 14 bits of state in its two address registers. The 128 bits of sense

amplifier state can be read out of the chip by a series of operations on the pins (page-mode CAS

cycles). Likewise, the 16,384 bits stored in the memory can be read (conventional RAS, CAS cycles).

Unfortunately, the contents of the address registers cannot be detected outside the chip, and to make

matters worse, the operations for reading the other state destroy the contents of these registers.

5 .3 . Organizing and using a debugging system

Tools for debugging a design can be integrated into the system used to design the chip itself. In the

early stages of a design, the designer debugs using simulations, while in the later stages, the

debugging and testing are performed on the chip itself. The chip simply represents the most accurate

simulation of the design.

This approach leads the designer to build programs for testing and debugging from the very

beginning of the design. The test programs written to explore high-level simulations are equally

applicable at lower levels, even when first si l icon is obtained. To achieve this effect, we need to cast

all of the simulation levels used during the design into a common framework. The fol lowing sections

outline how this can be accomplished.

5 . 3 . 1 . Names

A standard use of signal names links all levels of a design. In this way, a funct ional simulation at

one level can be compared to a simulation at another level. In higher-level abstractions, many signals

may be treated as one name, such as a register that need not name its bits. At the lowest level,

geometry for a design may have very complex paths for a single signal (e.g., a c lock). The details of

the routing and placement of these paths may have a profound effect on the performance of the

design, but from the point of view of a functional simulation, they consti tute one signal.

The hierarchical nature of design specif ications gives rise to a hierarchical notat ion for names. A

10-bit shift register composed of ten identical cells would give rise to names such as "celH.shi f t - in" ,

"cel l2.shif t- in" and " ce lh .g round" , where the first part of the name identifies an instance of the shifter

cell and the second a signal name within that cel l .

UNIVERSITY LIBRARIESX

Pittsburgh, Pennsylvania 15213

32 TESTING AND DEBUGGING CUSTOM INTEGRATED CIRCUITS

5 . 3 . 2 . O r g a n i z i n g s i m u l a t i o n s

Simulations at different levels can all be organized to have identical interfaces. A simulator takes in

a set of signal names and new values, computes until this new set of inputs creates a stable state, and

then stops. Output signals that change may be reported from the simulation, or the simulation can

simply stand ready to respond to requests to report the state of various internal signals. Using these

primitives, debuggers can be built that provide all of the conveniences of software debuggers, such as

printing out variable values and stopping at breakpoints, as well as all the conveniences of hardware

debuggers, such as tracing signal values as a funct ion of t ime.

We believe that simulations at three different levels of detail will suffice for our designs:

• High-level simulations, written in a programming language chosen for convenience by the
designer. If the designer is also using a programming-language environment to help
construct or simulate additional representations of the chip (e.g., microcode, or programs
to "assemble" the chip [Johannsen 79, Steele 80]), the same environment is likely to be
chosen for simulations. In this way, name correspondances are particularly easy to
ma in ta in . 1 0

• Functional simulation of the chip circuit, with t iming information retained. The chip 's
circuit is extracted by analyzing the mask geometry. In this way, any errors in the
"automat ic" algorithms of a design system (e.g., automatic PLA or ROM generation) can
be detected by the simulation. Once extracted, the circuit can often be simplif ied greatly
by analyzing it for common patterns (e.g., gates, or NOR-NOR combinat ions often used in
PLA's, or even entire cells of a known kind), and then using more efficient simulations for
the regular structures identified. In this way, we believe that functional (and timing)
simulation of an entire complex chip is feasible.

• The chip itself, operated by a tester that can control its inputs and observe its outputs,
and that can measure output t imings fairly accurately. In order to report internal state, as
required by the general model of our simulations, the designer must provide access
procedures that specify the steps required to read and set state. Often, these procedures
will simply invoke an AIS mechanism designed into the chip. Sometimes the access
procedures will specify sequences of operations on the normal pins that can be used to
access internal state (e.g., reading a memory location in a conventional semiconductor
memory). Note that the access procedures may themselves be debugged by functional
simulation.

This structure also illustrates one of the advantages of simulation: the functional simulation allows

access to all internal signals, even ones that cannot be sensed with an AIS mechanism designed into

the chip.

The structure itself eases debugging: each simulation operates on a different representation of the

chip. As we put these simulations through a test sequence, the debugging software can compare the

results at the different levels. Before a chip is fabricated, the first two levels are compared; when a

1 0 l t is for this reason that languages designed to describe hardware easily may not be the best ones to use for high-level
representations. The designer will also need to write simulations, test programs, etc.

FUTURE T R E N D S IN IC DEBUGGING A N D TESTING 3 3

chip is available, all three levels are used. This is an advantage not commonly available to the

software debugger, as she has not prepared even two different representations of her module that

can be simulated.

5 . 3 . 3 . Debugging strategies

The primitives outl ined in the previous section can be employed in several debugging strategies.

Although many of these strategies are identical to those commonly used for debugging software, the

addit ional strategies described in this section are particularly appl icable to hardware debugging.

Checkpoints. Access to internal state allows us to record the state of a simulation at any level and to

restore that same state later. If an error is detected after a several simulation steps, we can reload the

original state and simulate again, examining more internal state to catch the error as it occurs.

Moreover, it may be possible to set the state of a simulation from state checkpointed from a simulat ion

at a different level.

Searching. Simonyi [Simonyi 76] has suggested using binary search and checkpoints as a

systematic way of t racking down errors, a technique usually pract iced intuitively by programmers. The

general idea is to track down errors by retrieving state before and after an error occurs and gradually

narrowing down the window that contains the error until the window is only one c lock cycle long.

Patching errors. Access to internal state al lows us to " p a t c h " internal errors in a chip. Whenever

the functional simulator determines that a bit of state will not be set correct ly by the unit under test,

the AIS mechanism can be summoned to change the bit, and then the chip testing can proceed. In

particular, microcode bugs can be fixed this way. The effect is to be able to check out a great deal of

the chip 's funct ions even though errors are known to exist.

5 . 3 . 4 . Debugging at CMU

At CMU, we are bui lding a structure "for debugging chip designs that is based on the phi losophy

described in this sect ion. The basic parts are shown in Figure 5-6. We assume that the designer may

use one of a number of design systems to write high-level simulations and to develop mask geometry,

which is output in a standard form (CIF [Sproull 80]). The geometry drives the fabricat ion process that

builds a chip that is inserted in a tester. The tester need not be located in our laboratory; indeed, we

are planning to access via the ARPANET a tester being built at Caltech [DeBenedict is 80]. The same

CIF geometry drives a circuit extractor that determines a circuit for the FETS functional and t iming

simulator. We have chosen to extract the circuit for several reasons: (1) because the funct ional

simulation and the fabricated chip are built f rom the same data, it is more likely that the simulation will

reflect errors in the chip itself; (2) the technique does not require a high-level design system to

provide a circuit representation of the des ign- indeed, many design techniques bypass this

representation altogether; (3) the extract ion technique can be applied to any design, regardless of the

34 TESTING AND DEBUGGING CUSTOM INTEGRATED CIRCUITS

design style or representations of the design system used to construct it.

Debugging and test programs are constructed in a convenient programming environment and

access the three levels of simulation using a common interface. All of the standard facilit ies of a high-

level language are thus available for writ ing test programs. The debugger provides a user interface

and displays of internal state that are common to all of the simulations.

6. Conclusions
The MC68000 experience suggests that chip design is beginning to use concepts of modularity so

familiar in software design to help reduce design errors. By using access to internal state and

simulat ion, it is possible for the integrated-circuit designer to debug chips as easily as programmers

debug software modules. Moreover, it appears that the chip designer may be better off than the

programmer by simulating several different representations of the chip to validate a design.

There are, however, some dark c louds on this rosy horizon. We have conf ined our attention to

testing synchronous sequential systems. As Seitz points out, the second half of the integrated circui t

revolution wil l require chips composed of asynchronous elements [Seitz 80] . Al though these

elements may be synchronous internally, testing the entire chip will require grappl ing with an

asynchronous system. Seitz argues that the only hope in preventing design errors is to use only legal

composi t ions of proven elements. This may solve the design problem, but how are the circuits to be

tested in manufacture?

Acknowledgements

The authors would like to thank all those who helped with this paper. Tom Gunter of Motorola Inc.

and Skip Stritter of Nestar Systems provided information on debugging the MC68000. Bernard Peuto

of Zi log Inc. provided information on debugging the Z8000. Mike Foster provided information required

to simulate his pattern-matching cel l . Alan Bell and Lynn Conway of Xerox-PARC provided the

inspiration for the section on wafer-scale test systems. Guy L. Steele Jr., Ivan E. Suther land, and

Hank Walker offered comments on drafts of the paper.

F i g u r e 5 - 6 : The organizat ion of a system for debugging chip designs. Three levels of simulation are
per formed: high-level; funct ional and t iming; and the chip itself, operated by a tester. Debugging and
test sof tware controls all three simulat ions identically.

36 TESTING AND DEBUGGING C U S T O M INTEGRATED C I R C U I T S

References

[Baker 80] Baker, C M . , and Terman, C.
Tools for verifying integrated circuit designs.
Lambda 1(3):22-31, Fourth Quarter, 1980.

[Barbacci 77] Barbacci , M.R.
The ISPS Language.
Technical Report, Carnegie-Mellon University, Computer Science Department,

1977.

[Breuer 76] Breuer, M.A., and Friedman, A.D.
Diagnosis and Reliable Design of Digital Systems.
Computer Science Press, Inc., Potomac, MD, 1976.

[Bryant 80] Bryant, R.E.
An algorithm for MOS logic simulation.
Lambda 1(3):46-54, Fourth Quarter, 1980.

[Case 78] Case, G.R., and Stauffer, J.D.
SALOGS-IV: a program to perform logic simulation and fault diagnosis.
In Proceedings of the 15th Design Automation Conference, pages 392-397. June,

1978.

[Chawla 75] Chawla, B.R., Gummel, H.K, and Kozak, P.
MOTIS - An MOS timing simulator.
IEEE Transactions on Circuits and Systems CAS-22(12):901-910, December, 1975.

[Conway 80] Conway, L , Bell, A., and Newell, M.
MPC79: A large-scale demonstrat ion of a new way to create systems in si l icon.
Lambda 1(2):10-19, Second Quarter, 1980.

[Darringer 79] Darringer, J.A.
The application of program verification techniques to hardware verif ication.
In Proceedings of the 16th Design Automation Conference, pages 375-381. June,

1979.

[DeBenedictis 80] DeBenedictis, E.P.
Caltech Arpa Tester Project.
Technical Report, California Institute of Technology, Deparment of Computer

Science, Apri l , 1980.

[DOD 80] Reference Manual for the Ada Programming Language
United States Department of Defense, 1980.

[Dowell 79] Dowell, R., and Newton, A.R., and Pederson, D.O.
SPICEt VAX version 2 user's guide
University of California, Berkeley, Department of EE and Computer Science, 1979.

[Eichelberger 78] Eichelberger, E.B., and Williams, T.W.
A logic design structure for LSI testability.
Journal of Design Automation and Fault Tolerant Computing 2(2):165-178, May,

1978.

3 7

[Foster 80]

[Frank 80a]

[Frank 80b]

[Frank 81]

[Frohwerk 77]

[Gehringer 80]

[Gosling 80]

[Grason 79]

[Haken 80]

[Hayes 80]

[Hennesy 81]

[Hon 80a]

Foster, M.J., and Kung, H.T.
Design of special-purpose VLSI chips: example and opinions.
In Proceedings of the 7th Annual Symposium on Computer Architecture, pages

300-307. May, 1980.

Frank, E.H., and Sproul l , R.F.
An approach to debugging custom integrated circuits.
Carnegie-Mellon University Computer Science Resarch Review , 1979-1980.

Frank, E.H.
FETS: Fast Eddie's Timing Simulator.
VLSI Document, Carnegie-Mellon University, 1980.
(in preparation).

Frank, E.H., and Sproul l , R.F.
Two timing samplers.

In Proceedings of the Second Caltech VLSI Conference. January, 1981.

Frohwerk, R.A.
Signature analysis: a new digital field service method.
Hewlett-Packard Journal :2-8, May, 1977.
Gehringer, E., and Vegdahl, S.
The CMIC microassembler and its software support.
In Jones, A.K., and Gehringer, E.F. (editors), The CM* Multiprocessor Project: A

Research Review, chapter 3.2pages 30-32. CMU, 1980.

Gosling, J. A.
The MUMBLE microcode compiler.
In Jones, A.K., and Gehringer, E.F. (editors), The CM* Multiprocessor Project: A

Research Review, chapter 3.3pages 32-37. CMU, 1980.

Grason, J.
TMEAS, a testability measurement program.
In Proceedings of the 16th Design Automation Conference, pages 156-161. June,

1979.

Haken, D.
A geometric design ru-le checker.

VLSI Document V053, Carnegie-Mellon University, June, 1980.

Hayes, J.P., and McCluskey, E.J.
Testability considerations in microprocessor-based design.
IEEE Computer 13(3):17-26, March, 1980.
Hennesy, J.L.
SLIM: a language for microcode description and simulation in VLSI.
In Proceedings of the Second Caltech VLSI Conference. January, 1981.

Hon, R.W., and Sequin, C.H.
A Guide to LSI Implementation.
SSL, Xerox Palo Alto Research Center, January, 1980.

UNIVERSITY LIBRARIES
CARNE61E-MELLGN UNIVERSITY

PITTSBURGH. PENNSYI VAftiA

3 d TESTING AND DEBUGGING C U S T O M INTEGRATED C I R C U I T S

[Hon 80b] Hon, R.W.,.
IC fabrication for the independent chip designer.
Lambda 1(1):6-9, First Quarter, 1980.

[Johannsen 79] Johannsen, D.
Bristle blocks: a si l icon compiler.
In Caltech Conference on VLSI, pages 303-310. January, 1979.

[Knu th71] Knuth, D.E.
An empirical study of FORTRAN programs.
Software - Practice and Experience 1(2):105-133,1971.

[Koenemann 79] Koenemann, B., Mucha, J., and Zwiehoff, G.
Built-in logic block observation techniques.
In Test Conference Proceedings, pages 37-41. October, 1979.

[Lampson 80] Lampson, B., and Pier, K. A.
A processor for a high-performance personal computer.
In Proceedings of the 7th Annual Symposium on Computer Architecture, pages

146-160. May, 1980.

[McCaw 79] McCaw, C.R.
Unified shapes checker - a checking tool for LSI.
In Proceedings of the 16th Design Automation Conference, pages 81-87. June,

1979.

[McDaniel 80] McDaniel, G.
private communicat ion.
1980.

[McWil l iams80] McWIIIiams, T.M.
Verification of t iming constraints on large digital systems.
In Proceedings of 17th Design Automation Conference, pages 139-147. June,

1980.

[Mead 80] Mead, C , and Conway, L.
Introduction to VLSI Systems.
Addison-Wesley, Reading, MA, 1980.

[Megatest 80] Q2/60 user's manual
Megatest Corp., 1980.

[Mitchell 79] Mitchell, J . G., Maybury, W., and Sweet, R.
Mesa Language Manual.
CSL 79-3, Xerox PARC, Apri l , 1979.

[Motorola 79] MC68000 reference manual
Motorola Inc., 1979.

[Muehldorf 81] Muehldorf, E.I., and Savkar, A.D.
LSI Logic Testing - An Overview.
IEEE Transactions on Computers C-30(1):1-17, January, 1981.

39

[Myers 79] Myers, G.J.
The Art of Software Testing.
Joh Wiley, 1979.

[Newton 79] Newton, A.R.
Techniques for the simulation of large-scale integrated circuits.
IEEE Transactions on Circuits and Systems CAS-26(9):741-749, September, 1979.

[Parker 78] Parker, A., Thomas, D., Siewiorek, D., Barbacci, M., Hafer, L , Leive, G., and Kim, J .
CMU Design Automation System: an example of automated data path design.
In Proceedings of the 16th Design Automation Conference, pages 73-80. June,

1978.

[Peuto 79] Peuto, B.
Architecture of a new microprocessor.
IEEE Computer 12(2): 10-21, February, 1979.

[Preas 77] Preas, B.T., and Gwyn, C.W.
Architecture for contemproary computer aids to generate IC mask layouts.
In Eleventh Annual Asilomar Conference on Circuits, Systems and Computers,

pages 353-361. November, 1977.

[Roth 67] Roth, J.P., Bouricius, W.C., and Schneider, P.R.
Programmed algorithms to compute tests to detect and distinguish between

failures in logic circuits.
IEEE Transactions of Electronic Computers EC-16(5):567-580, October, 1967.

[Seitz 80] Seitz, C.
System Timing.
In Introduction to VLSI Systems, chapter 7pages 218-254. Addison-Wesley, 1980.

[Simonyi 76] Simonyi, C.
Meta-programming: A software production method.
CSL 76-7, Xerox PARC, 1976.

[Sproull 80] Sproull, R.F., and Lyon, R.F.
A CIF Primer.
In A Guide to LSI Implementation, chapter 7pages 79-121. Xerox, 1980.

[Steele 80] Steele Jr., G.L., and Sussman, G.J.
Design of a LISP-based microprocessor.
Communications of the ACM 23(11), November, 1980.

[Stritter 78] Stritter, E.P., and Tredenick, N.
Microprogrammed implementation of a single chip microprocessor.
In Proceedings of the 11th Annual Microprogramming Workshop. December, 1978.

[Stritter 79] Stritter, E. P. and Gunter, T.
A microprocessor architecture for a changing wor ld: the Motorola 68000.
IEEE Computer 12(2): 10-21, February, 1979.

[Sutherland 79] Sutherland, I.E., Molnar, C.E., Sproull , R.S., and Mudge, J.C.
The Trimosbus.
In Proceedings of the Caltech Conference on VLSI, pages 395-427. January, 1979.

40 TESTING AND DEBUGGING C U S T O M INTEGRATED C I R C U I T S

[vanCleemput 79] vanCleemput, W.M.
Hierarchical Design for VLSI: Problems and Advantages.
In Proceedings of the Caltech Conference on VLSI, pages 259-274. January, 1979.

[Will iams 73] Will iams, M.J.Y., and Angell, J.B.
Enhancing testability of LSI circuits via test points and addit ional logic.
IEEE Transactions on Computers C-22(1):46-60, January, 1973.

[Wulf 76] Wulf, W.A., London, R.L, and Shaw, M.
An introduciton to the construct ion and verif ication of Alphard programs.
IEEE Transactions on Software Engineering SE-2(4):253-265, December, 1976.

[Zi log 79] Z8000 technical manual
Zilog Inc., 1979.

