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1. Introduction 
The revolution heralded by the book Introduction to VLSI Systems [Mead 80] has made it possible 

for designers with little previous experience in hardware or integrated circuit design to create 

complex custom integrated circuits in a matter of weeks or months. Moreover, the mult iproject-chip 

(MPC) technique that fabricates many designs together on the same wafer to reduce fabrication costs 

has been very successful, returning packaged chips to designers as soon as a month after the final 

design is submitted [Conway 80]. 

Although designing this sort of custom integrated circuit does not seem to be more diff icult than 

programming, we have found that testing and debugging these chips is a much more cumbersome 

task. We use the word cumbersome to indicate that we believe there is fundamentally very little 

difference between testing and debugging programs and testing and debugging integrated circuits. 

Yet as practiced today, checking the design and fabrication of integrated circuits is a much more 

primitive art. 

As computer scientists designing custom systems on si l icon, we want to decrease the time required 

to reduce an abstract specif ication to a working implementation. This is in contrast to the usual 

situation in industry where the overriding concern is reducing manufacturing costs. However, as 

microprocessors and other complicated systems begin to require mill ion-dollar investments in design, 

reducing the time required to get the first chip working is becoming increasingly important to industry 

as well. 

The problem, therefore, is how to make testing and debugging custom integrated circuits at least as 

easy as testing and debugging programs. This paper explores this problem in four major sections. 

Section 2 discusses the terminology we use and gives the reader who is unfamiliar with integrated 

circuit design some background. Section 3 compares and contrasts the efforts required to test and 

debug programs and integrated circuits. Section 4 describes the current state of the art and section 5 

presents some ideas for simplifying chip testing and debugging. Some of the sections in this paper 

have appeared in part in [Frank 80a] . 

While this paper concentrates on testing and debugging integrated circuits, most of the techniques 

presented are directly applicable to testing printed-circuit boards and other hardware assemblies as 

well. In fact, some of the techniques we shall discuss originated as board-testing methods. We 

believe that testing and debugging integrated circuits is more interesting than testing and debugging 

non-integrated systems because it is extremely diff icult to probe the insides of a chip directly. 
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2. Terminology 

2 . 1 . T e s t i n g a n d d e b u g g i n g 

Testing is the process of detecting errors and debugging is the art of determining the exact nature 

and location of suspected errors and removing them (paraphrased from [Myers 79]). We shall term 

the object being tested or debugged the unit under test. In the case of integrated circuits there are 

actually two kinds of errors: first, the design of the integrated circuit may be incorrect and second, the 

fabrication of the chip that physically realizes the design may be f lawed. Hence there are two forms of 

testing and debugging that must take place: first, testing and debugging the chip design and second, 

testing and debugging physical chips, typically in large numbers as part of a manufactur ing process. 

2 . 2 . I n t e g r a t e d c i r c u i t s 

Integrated circuits, or /C's, or chips, are fabricated from a piece of sil icon and geometr ic masks that 

indicate where the sil icon should be altered in order to create components such as transistors, wires, 

and bonding pads. Integrated circuits are fabricated on a wafer that is three or four inches in 

diameter and may contain as many as a hundred chips or dice, each about one centimeter square. 1 

After the wafer is fabricated, the dice are cut apart and packaged in carriers that may be easily 

mounted on printed-circuit boards. Connections between the carrier and the chip are made using 

bonding wires that attach bonding pads on the chip to pins on the carriers; typically, carriers have 

from 14 to 64 pins. 

The fabrication process can be likened to printing, where the masks serve the role of printing plates 

and the wafer the role of paper. The job of the chip designer is to specify the precise geometry of the 

masks, which determine the details of component fabrication, placement, and connect ion on the 

wafer. 

2 . 3 . I n t e g r a t e d c i r c u i t d e s i g n s 

Although chip fabrication is controlled principally by mask geometry, the task of designing an 

integrated circuit usually employs several additional kinds of specif ications. Throughout this paper 

we will use the phrases integrated circuit design or chip design to indicate all of the specif icat ions 

which a designer might use when designing a custom integrated circuit. Van Cleemput [vanCleemput 

79] has broken these specifications into three different hierarchies: 

I . T h e behavioral hierarchy specifies the functional operation of a design, including 
performance requirements such as speed or power consumption. A hardware 

1 T h e reader interested in a more detailed description of the steps required to fabricate a chip is referred to [Mead 80] and 

[Hon 80a]. 
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description language such as ISPS [Barbacci 77] might be used to record some of the 
behavioral specif ications. 

2. The structural hierarchy or logical hierarchy describes how the design is partit ioned into 
different logical pieces and how these pieces are interconnected. A common device for 
il lustrating the structural organization of a system is the block diagram. 

3. The physical hierarchy describes how the design is physically implemented. For 
example, the surface of a microprocessor chip may be divided into separate regions for 
an ALU, for a memory, and for a control ROM. In turn, the memory is divided spatially into 
identical rows of "words. " A word is divided into identical "cel ls ," each of which stores a 
single bit. In large designs, the physical hierarchy extends upward from the chip to 
carriers, boards, cages, racks, and cabinets. Of particular interest to the designer is the 
first s/7/con-the first chip to be fabricated from a completed design. 

These are three different hierarchical representations of the same design, and as a consequence 

interact strongly. For example, the speed of a circuit, determined by a behavioral specif icat ion, 

depends on the sizes of transistors and wires that implement it, determined by a physical 

specif icat ion. 

From the point of view of testing and debugging, behavioral specif ications are of greatest interest. 

One breakdown of the behavioral hierarchy might be: 

• An abstract specif ication written in a language such as Alphard [Wulf 76] or something as 
simple as "I want a chip to interpret P A S C A L " 

• A high level specif ication in a register-transfer language such as ISPS. 

• A low-level specif ication that describes the behavior of computat ions in terms of 
interconnections of individual transistors or gates. The mask geometry and the chip itself 
reflect precisely this lowest-level specif icat ion. 

In addit ion to checking chip behavior, debugging and testing real systems often requires checking 

aspects of the physical specif ications as wel l . In particular, the chip designer must verify that her 

design meets certain design rules for the particular fabrication process to be used. 

2 . 4 . S t a t e f u l l a n d s t a t e l e s s c h i p s 

We have found it useful to classify designs based on the amount of state recorded internally in the 

design. A stateless chip is one that has no internal state. Its outputs can be described by logic 

equations written in terms of its inputs, and can be generated by combinatorial logic on the chip. A 

statefull chip is one that has a good deal of internal state that cannot be observed directly by sensing 

output pins. We term this state revealed if there is some way to report each bit of state to an output 

pin independently of all other state, or concealed if there is no way to detect the state externally 

except in a way that depends on other internal state. 
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3. A comparison of techniques for testing and debugging 
programs and integrated circuits 

One often hears that software and hardware are two different ways of implementing the same thing. 

Indeed, it is possible to convert an abstract specif ication of a digital computat ion to a program for a 

general-purpose computer or to an IC design. The techniques and tools for carrying out these 

implementations are similar in many respects and different in others. One area where differences 

arise is in testing and debugging the two implementations. 

Whether testing and debugging programs or chips there are usually three areas of concern: 

checking syntax, checking semantics, and checking performance. . 

3 . 1 . C h e c k i n g s y n t a x 

The syntax of a design is checked by some process that is responsible for convert ing it into an 

executable object. A compiler normally checks the syntax of a program in part to ensure that the 

compiler will generate code that correctly implements the programmer's specif ication as given in the 

program. Checking program syntax is usually straightforward since programming languages are 

designed with computer processing and syntax checking in mind. 

Some of the constraints on hardware designs have a simple syntactic flavor. For example, design 

rules for TTL circuits forbid wiring two output pins together, and forbid loading an output with more 

than a specif ied current. These rules can be checked easily by computer-aided design (CAD) systems 

that are given a descript ion of the design and the properties of the TTL parts used. 

The integrated circuit fabrication process imposes additional syntactic rules on a design. These 

rules are intended to describe the class of designs that the fabrication process will implement 

correctly. The rules are more complex than programming-language syntax rules because the 

fabrication process is limited by physical, pattern-replication, and performance constraints that do not 

always admit a simple fabrication syntax. Instead, the design rules that must be followed to ensure 

proper fabrication are often complex and diff icult to check mechanically. To make matters worse, the 

amount of information to be checked is usually many orders of magnitude more than that in a 

computer program: the pattern-matching cell of [Foster 80] (see Figures 3 - 1 , 3-2, 3-3) can be 

specified with three simple statements in a logical notation, but requires approximately 1500 

fabrication rule checks for a circuit containing only 13 transistors. Fabrication rules are generally 

geometric in nature, but also depend on electrical propert ies. 2 Until very recently design rule-

checking was often done by eye: studying large plots of masks, even for very big chips. Computer 

2 A typical design rule is 'Metal wires must be n microns wide and must be separated by at least k microns, unless the wires 
carry the same signal, in which case they may be arbitrarily close together.' 
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F igu re 3 - 1 : The logical connect ions and operation of the comparator cell of a pattern-matching 
pipeline. The arrows are labeled with the symbol 9 to indicate that the outputs are c locked. 
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F igu re 3 - 2 : A circuit d iagram of the comparator cel l . Note the use of pass transistors gated by the 
c lock signal to provide storage. 

programs to check geometr ic rules are now in widespread use, al though they often require hours or 

days of computer t ime to check large designs [Baker 80, Haken 80, McCaw 79]. Because the 

complexit ies of the fabr icat ion process cannot be encoded in geometr ic rules alone, these programs 

often report "e r ro rs " that an engineer familiar with fabrication can determine to be benign. 
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F igu re 3 - 3 : The layout of the comparator cei l . Transistors are formed wherever dif fusion and 
polysil icon cross. The overall p lacement of components is similar to that in the circui t d iagram of 
Figure 3-2 

3 . 2 . C h e c k i n g s e m a n t i c s 

The only way to determine whether a design funct ions correct ly is to demonstrate that a high-level 

specif icat ion of it is equivalent to a lower-level speci f icat ion. This process may be repeated to show 

that the most abstract, high-level speci f icat ion of a computat ion is equivalent to the lowest-level 

implementation descr ipt ion. Two broad classes of techniques are used to demonstrate equivalence: 

testing and verification. Veri f icat ion checks formally that the input-output relation of an 

implementation always corresponds to that of another specif icat ion of the computat ion. A 

computat ion is tested by presenting test input data to an executable representat ion of it and then 

checking that the output data meets the input-output speci f icat ion. Whi le verif ication determines that 

the implementat ion works for all input data, test ing must select a part icular set of input data for t r ia ls . 3 

In both cases, the correctness of the implementat ion is determined with respect to a more abstract or 

Veri f icat ion is not very different from simulation: it amounts to a symbolic simulation of the computation, wh ere.thesymbols 
stand for arbitrary, unknown data values. The verification simulates the implementation on unknown data. See [Darnnger 79] 
for a discussion of the use of symbolic simulation for IC verification. 
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This unfortunate situation arises because fabricating high density integrated circuits is a delicate process that may 
introduce errors. For example, impurities such as dust may contaminate the silicon during fabrication resuming m defects such 
as broken wires or non-functional transistors. It is not unusual for complex circuits to yield as few as 3% wc -mg parts out of a 
fabrication batch. 

higher-level specif ication of its funct ion. Ultimately, the correctness of the most abstract specif ication 

cannot be verified formally, but requires the designer or client to stipulate: "Yes, that specif ication 

correctly describes what I want the system to do . " These techniques succeed at most in bui lding our 

conf idence that the implementation is correct, never in proving that it is right. 

In practice, construct ing correct computer programs depends heavily on testing. If one 

programmer writes a program to compute sin 0, another may write a test program that calls the sin 

program using various test values of 0 to try to increase conf idence that the sin program works 

correctly. The program tests wel l-known values such as 0 = nm/4, checks tr igonometric identities 

such as sin 0 = sin {0 + 2<n) and sin 20 = 2 sin 0 sin (0 + TT/2) for various values of 0, and perhaps 

checks that sin 0 increases monotonical ly for - t t / 2 < 0 < TT/2. If instead of a program we have a chip 

that computes sin 0, the same sort of test program can be devised. The test will increase our 

conf idence that the software or hardware to compute sin is correct. 

An important dif ference between testing software and hardware is that the software test determines 

not only that the design is correct, but that all present and future instances of the same program are 

correct. This advantage arises because we can copy software reliably from memory to disk to tape, 

using coding and redundancy techniques to ensure perfect copies. By contrast, testing a sin chip can 

determine only that the individual chip works correctly. If the chip works, we can conclude that the 

design is correct, but we cannot conclude that it can be manufactured repeatedly without er ror . 4 

Hence the process of debugging chips is complicated. We must determine which errors we find in a 

chip are due to design mistakes and which are the result of bad fabricat ion. This is as hard as trying to 

debug a program when the compiler is randomly introducing errors into the compiled code! 

Although a test program may determine that a unit under test does not funct ion properly, the 

designer must still locate the design flaw. A programmer will often use a debugger to help locate the 

flaws in a program. The debugger allows her to access internal state of the program at various times 

during its execution, and perhaps to interrupt execution by inserting breakpoints. Sometimes 

debugging must be anticipated, so that the compiler can generate special code that helps the 

debugger access the program state. If no debugger is available, the programmer often inserts "pr int 

statements" to reveal state within the program. 

Many of these same debugging techniques are used for hardware. If the probes of a logic analyzer 

are connected to various signals on a printed-circuit board, the analyzer will display a history of the 

digital states of these signals. The analogue of breakpoints is obtained by triggering the analyzer to 
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stop (or start) displaying when a particular combination of signals is detected. Because the analyzer 

has a small memory to record a history of 100 or so previous states of the probed signals, an engineer 

can observe what happened before the logic analyzer was tr iggered as well as after. Unfortunately, 

these techniques break down for debugging IC's because we cannot readily attach probes to signals 

within the chip. To use these techniques, we must arrange to reveal all the state within a chip (see 

sections 4.2.2 and 5). Like the compiler or programmer who includes special code for debugging, 

these techniques require incorporating into the design special hardware for debugging. 

Unfortunately, once the design is debugged, it is usually not practical to recompile it to remove the 

extra hardware inserted primarily for debugging. This may not a problem if the extra debugging 

hardware can also be used for production testing. 

Both hardware and software are plagued by errors that occur only infrequently, or are hard to 

stimulate, or defy tracing back to an understandable cause. Both hardware and software debuggers 

can lay "bug t raps" or "data-structure checkers" [Simonyi 76] for errors by assembling special 

hardware or software to detect a combination of events that is suspicious. This practice is 

straightforward with software, which can be easily modified and recompiled. Attaching bug traps to 

printed-circuit boards is less straightforward, but feasible. But for integrated circuits, installing a bug 

trap depends on designing and fabricating a new chip. Unless all imaginable bug traps are designed 

in at the outset, an unlikely possibility, laying traps within a single IC is not feasible. 

The debugging process depends on correcting errors in the design and testing it again. When a 

programmer finds and corrects an error in a program it is usually only a couple of minutes until she 

has a new executable program which she can test again. While it may not take any longer to detect 

and correct an error in an integrated circuit design, it will take at least several weeks to get back a 

fabricated ch ip . 5 To compensate for the fabrication delays, the integrated-circuit designer relies 

heavily on simulation. A computer-readable specif ication of the chip can be changed in a few 

minutes, and the function of the chip tested again by simulation based on the new specif ication. If the 

simulation can mimic the behavior of the fabricated circuit exactly, all of the design errors could be 

found. Unfortunately, exact simulations of electrical behavior require enormous amounts of 

computat ion, and the designer usually compromises by simulating the design "at the logic level." 

Simulation also helps to distinguish design errors from manufacturing flaws. If a chip is tested and 

found not to work even though a simulation is correct, the designer immediately suspects that the 

particular chip selected was flawed during manufacture and tries another chip. 

5 l n the case of MPC79 turnaround time was one month. For MPC580 turnaround time was two months. Producing silicon 
wafers is "a complex procedure that involves over 40 individual steps (for silicon-gate NMOS) and roughly 50 hours of process 
time... The 50 hours of processing are typically spread over a month of calendar time because of the frequent inspections and 
economic realities of achieving high fab line throughput." [Hon 80b] 
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3 . 2 . 1 . D e s i g n i n g to r e d u c e e r r o r s 

Designers of both hardware and software systems strive to reduce errors in a design by adopting 

design styles that help avoid mistakes. Synthesizing complex designs from already-tested modules is 

the most common technique. Current trends in programming-language design stress facilities for 

designing and coding modules separately and for carefully control l ing the sharing of specif ication 

and implementation information among modules (e.g. MESA [Mitchell 79] or Ada [DOD 80]. 

Modularity is also an important part of digital system design. Engineers design printed-circuit 

boards that use integrated circuit modules from families that strive for interconnection compatibil i ty 

(e.g., TTL, ECL). More recently, entire boards have become modules in systems organized around 

popular back-plane busses such as the DEC Q-Bus or the Intel Multibus. The modules have well-

defined interfaces that are convenient to use. Moreover, each module may be tested individually, so 

that subsequent debugging and testing is conf ined to the program or circuit that employs these 

modules. 

Modular structure within integrated circuits is also useful. The MPC projects designed by students 

and researchers in universities have used modules from a cell library that provides commonly-used 

circuits such as connect ion pads and output drivers. A popular chip design technique in industry is 

the standard cell approach, where the designer constructs integrated circuits by specifying the 

locations and interconnect ions of particular standard cells, whose designs are obtained from a cell 

l ibrary [Preas 77]. Although chips implemented using standard cells do not make efficient use of the 

si l icon area available, they are much easier to debug because the modules, i.e., standard cells, have 

already been tested. 

It is important to test all aspects of electronic modules that are crit ical to their correct funct ioning in 

the assembly. It is all too common to test integrated circuits in situations that are not as demanding as 

those in the final circuit. For example, a circuit output may be loaded more heavily in the assembly 

than in the test because it connects to more places. This may have enough effect on the performance 

of the module to cause the assembly to fail. This problem can also come up in software if the program 

used to test a module does not cover all of the module's specif ications. It is for this reason that the 

module and the test program are often written by different people, both referring to the same 

specif icat ion. 

3 . 3 . C h e c k i n g p e r f o r m a n c e 

It is not sufficient for a program or chip to function cor rec t ly - i t must also perform adequately. 

Al though experimental designs may have few performance requirements, often the most important 

aspect of a commercial product is its performance. For the programmer to measure the gross 

performance of a program she usually runs some test cases and measures the CPU time used. 
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Similarly, the IC designer can " turn up the clock speed" until a chip stops working. 

Observations of gross performance are usually not sufficient to improve performance. The designer 

usually needs to locate bott lenecks in the system. For many programs we can recompile to request 

statement execution counts to determine where the program spends its time [Knuth 71]. Often, 

however, clues to performance bugs are best determined by measurements of particular properties of 

an algori thm, such as the occupancy of a hash table, the length of a list of free-storage blocks, or the 

length of a run-queue in an operating system. In these cases, the facilities to collect measurements 

must be incorporated into the design of the software. Much the same situation applies to hardware. 

Sometimes we can find performance bugs by observing activity on easily-accessible signals such as 

memory busses. More often, measurement facilities must be incorporated into the design. The 

execution speed of operations on a chip can be measured by incorporating special circuits (e.g. 

[Frank 81]) in the design or by simulating the chip in enough detail using model t ime accurately. 

Often t iming information alone is insufficient. The designer of a cache chip, for example, will need to 

collect cache performance statistics such as the number of cache references, the number of main 

memory references, the number of reads, the number of writes, etc.. These usage-dependent 

statistics are required to determine whether the overall cache design performs as well as it should. 

4. Current techniques for testing and debugging integrated 
circuits 

This section explores the specialized techniques that have evolved for testing and debugging 

integrated circuits. The presentation is in two parts: techniques used dur ing design, and those used 

in manufacturing. In both cases, we shall conf ine our attention to the problems of checking 

semantics, i.e., that the circuit operates correctly, and performance, i.e., that the circuit operates fast 

enough. 

The discussion that follows emphasizes statefull chips and almost completely ignores stateless 

ones. Verifying the correct operation of a design or of a manufactured instance of a combinatorial 

circuit is straightforward, and is subsumed by techniques required by more complex statefull chips. 

4 . 1 . T e s t i n g a n d d e b u g g i n g IC d e s i g n s 

The fundamental problem with testing and debugging designs is that there is no way to exercise the 

design thoroughly before it is fabricated. As we mentioned in section 3.2, simulation tools are used to 

build conf idence that the final design will perform properly. The most common simulations are 

performed with software that works from some form of machine-readable descript ion of the design. 

Examples of common simulations used are: 

• Register transfer level (RTL). A typical simulator of this kind is ISPS [Barbacci 77], which 
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allows a designer to describe a system at a high level. Storage structures such as 
registers and memory are declared explicitly. Control flow is also described explicitly, 
while dataflow is implicit. ISPS allows the descript ion of parallel processes. 

• Logic level. Circuits are described at the logic level in terms of AND and OR gates or 
modules such as TTL packages. Dataflow is represented explicitly by wir ing connections, 
whereas control flow is implicit. Example: SALOGS [Case 78]. 

• Gate level. This is very similar to logic level simulation except that circuits are usually 
represented in terms of transistors or very primitive gates rather than logic functions. 
Example: MOSSIM [Bryant 80]. 

• Timing level. A timing simulator may use either logic or gate descript ions of a circuit. 
Timing simulation is similar to gate/ log ic simulation, but simulates the delays of circuits 
and wires in addition to their functional properties. Examples: MOTIS [Chawla 75], 
SCALD [McWil l iams80], and FETS [Frank 80b]. 

• Circuit level. Circuit simulation predicts the electronic behavior of a circuit, given detailed 
values for all components such as transistor parameters, resistance of wires, and 
capacitances. The most popular simulator of this kind is SPICE [Dowell 79]. Circuit 
simulation is extremely helpful for predicting performance and for analyzing complex 
analog circuits such as the sense amplifiers in dynamic MOS memories. 

By way of example, Figures 4 - 1 , 4-2, 4-3 show descript ions of the pattern-matching cell of [Foster 80] 

(see Figure 3-3) presented to different simulators. Also shown are outputs of the simulations. The 

input data presented to the simulations was: [Pin = 1, Sin = 0, Din = 1, Clock = 1] fol lowed by [Pin 

= 1, Sin = 0, Din = 1, Clock = 0] . 

As the level of detail in the simulation increases toward the bottom of the above list, the complexity 

of the simulation calculations increases, thus requiring more computer time and memory. As a 

consequence, the more detailed simulation techniques cannot practically be applied to complex 

designs. While ISPS can simulate entire computers (e.g., PDP-11 or VAX-11), SPICE is limited to a 

few hundred transistors unless supercomputers are used to run it. Recently, techniques have been 

developed for multi-level simulators that-simulate in detail only those nodes that.are active at a given 

instant and moreover allow the designer to specify different levels of simulation detail for different 

nodes. For example, using only a circuit-level specif ication of a chip, the SPLICE [Newton 79] 

simulator is able to simulate an IC design at the gate, t iming, and circuit levels. 

Many designs are debugged using special-purpose simulations. Frequently, a TTL breadboard of a 

chip is built so that both the functional and performance aspects of the design can be studied 

extensively. Moreover, a breadboard simulation can be operated at the same speed as the eventual 

design and can be used for developing the hardware that will surround the ultimate part and the 

software that will operate it. 

Special-purpose software simulations are also very valuable. Programs may be written in any 
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Comparator :« 
BEGIN 
•• Input.pins ••{US} 
CL0CK<0>, !A global clock signal 
PIN<0>, ! input pattern bit 
SIN<0>. Jinput string bit 
DIN<0> lcompare result from above 
•• positive.comparator.cell.on ••{US} 
PosComp.nn\Pos1tive.Comparator.nn 

(PIN.H.nn<0>{REF},SIN.H.nn<0>{REF}.DIN.H.nn<0>{REF}):« 
BEGIN 
•• local.registers »»{US} 
POUT.L.nn<0>. !Our output P register 
SOUT.L.nn<0>. !Our output S register 
DOUT.L.nn<0> !0ur output 0 register 
•• parallel.actions **{US} 
PosComp.action.nn {MAIN} :• 

BEGIN 
IF CLOCK EQL 1 *> POUT.L.nn _ NOT PIN.H.nn: 
IF CLOCK EQL 1 *> SOUT.L.nn _ NOT SIN.H.nn; 
IF CLOCK EQL 1 »> 

DOUT.L.nn _ NOT (DIN.H.nn AND (PIN.H.nn EQL SIN.H.nn)) 
END 

END 
•• the.main.action **{US} 
Main.Action {MAIN} 

BEGIN 
REPEAT 

8EGIN 
PosComp.nn(PIN,SIN,DIN) 
END 

END 
END 

Report: 
ft Head of POSCOMP.ACTION.NN 
CLOCK-#l 
5IN.H.NN-#0 
PIN.H.NN-#1 
OIN.H.NN-#l 
S0UT.L.NN-#0 
POUT.L.NN-#0 
00UT.L.NN«#0 

Report: 
ft Tail of POSCOMP.ACTION.NN 
CLOCK-#l 
SIN.H.NN«#0 
PIN.H.NN«#1 
DIN.H.NN»#1 
S0UT.L.NN»#1 
POUT.L.NN«#0 
D0UT.L.NN»#1 

Report: 
ft Head of POSCOMP.ACTION.NN 
CLOCK*#0 
SIN.H.NN-#0 
PIN.H.NN*#1 
DIN.H.NN-#1 
S0UT.L.NN-#1 
POUT.L.NN-#0 
DOUT.L.NN-#l 

Report: 
9 Tail of POSCOMP.ACTION.NN 
CLOCK-#0 
S1N.H.NN«#0 
PIN.H.NN«#1 
DIN.H.NN-fl 
S0UT.L.NN»#1 
POUT.L.NN«#0 
DOUT.L.NN«#l 

F i g u r e 4 - 1 : Register-transfer level s imulat ion (ISPS), (a) the input specif icat ion for the comparator 
cel l , c.f. the 3-line logical notat ion of Figure 3 - 1 . (b) A sequence of four output reports showing the 
states of the signals. 
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(0(1 Dl/fT Ne)(L 27 60)(P 1 G)(P 5 S)(P 12 D)) 
(D(I D2)(JT ResUp)(L -3 57)(P 8 0)) 
(D(I D3)(T ResUp)(L 135 57)(P 10 D)) 
(D(l D4)(T Ne)(L -42 48)(P 1 G)(P 13 S)(P 17 D)) 
(D(I D5)(T Ne)(L 51 30)(P 10 G)(P 8 S)(P 40 0)) 
(0(1 D6)(T pdNe)(L -9 27)(P 13 G)(P 8 0)) 
(D(I 07)(T pdNe)(L 129 27)(P 36 G)(P 10 D)) 
(D(I 08)(T Ne)(L 204 24)(P 1 G)(P 36 S)(P 45 D)) 
(0(1 D9)(T Ne)(L 96 9)(P 8 G)(P 10 S)(P 40 0)) 
(0(1 D10)(T pdNe)(L 39 -18)(P 40 G)(P 58 0)) 
(D(I D11)(T ResUp)(L 93 -27)(P 40 D)) 
(D(I D12)(T Ne)(L 39 -30)(P 12 G)(P 58 S)(P 64 D)) 
(0(1 D13)(T ResUp)(L 51 -48)(P 64 0)) 

(N(I Ml CL0CK_H)(C 1)) 
(N(I N5 DIN H.nn)(C 5)) 
(N(I N8 P0UT_l.nn)(C 8)) 
(N(I N10 S0UT_L.nn)(C 10)) 
(N(I N12)(C 12)) 
(N(I N13)(C 13)) 
(N(I N17 PIN H.nn)(C 17)) 
(N(I N36)(C 36)) 
(N(I N40)(C 40)) 
(N(I M45 SIN H.nn)(C 45)) 
(N(I N56)(C 55)) 
(N(I N58)(C 58)) 
(N(I N64 DOUT_L.nn)(C 64)) 

CLOCK.H 

PIN.H.nn 

SIN.H.nn 

DIN.H.nn 

P O U T . L n n 

S O U T . L n n 
/ 

DOUT.L.nn 

F igu re 4 - 2 : Gate-level t iming simulat ion (FETS). (a) The input specif icat ion listing all transistors and 
their interconnect ions, (b) A display of the behavior of internal signals. This example show one c lock 
period. 
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.option nonode nopage noacct nomod nolist 

.width in»80 out*80 
vds 1 0 dc 5 
vpin 2 0 pwl(0ns 5) 
vsin 5 0 pwl(0ns 0) 
vdin 9 0 pwl(0ns 5) 
vclk 13 0 pwl(0ns 0 10ns 0 11ns 5 30ns 5 31ns 0) 
• 
nil 2 13 3 0 menn l=6u w«6u 
m2 1 4 4 0 raden l»18u w=6u 
m3 4 3 0 0 menn l«6u w»18u 
m4 1 8 8 0 mden l»24u w«6u 
m5 8 7 4 0 menn l*6u w*24u 
m6 8 4 7 0 menn l*6u w»24u 
m7 1 7 7 0 mden l«18u w*6u 
m8 7 6 0 0 menn l«6u w«18u 
m9 5 13 6 0 menn l«6u w«6u 
mlO 11 8 0 0 menn l«6u w«18u 
mil 12 10 11 0 menn l*6u w«18u 
m!2 9 13 10 0 menn l*6u w*6u 
ml3 1 12 12 0 mden l«24u w*6u 

••*•• NMOS ENHANCEMENT-NOMINAL ••••• 
.model menn nraos nsub«lel5 nss»-2.35ell 
•xj»lu ld«.8u ngate*le23 gamma*.43 nfs«lell 1ambda«le-7 
+uo»80D ucrit»6e4 uexp«.25 utra«.5 cbd«21e-5 cbs*21e-5 js«2e-5 

NMOS DEPLETION-NOMINAL 
.model mden nmos nsub«lel5 nss»7.05ell 
+xj«lu ld«.8u ngate«le23 lambda«le-7 
•uo«800 ucr1t»6e4 uexp«.25 utra«.5 cbd»21e-5 cbs«21e-5 js«2e-5 
• 
.plot tran v(13) v(12) 
.trans Ins 40ns 
.end 

c > > 

O O O O O O O 
» o o o o o o o o o o o o o o o o < 

ooooooooooo.o.o.o^uai^.o^^ui i r iu i^o.o^uj in.ninoooooooooo -
° 2 2 2 2 2 2 2 2 2 2 S S S S S S S S o o S S S S S S S S S S o S S S S S S S o o 5 

i n n « 10 (O r 

F i g u r e 4 - 3 : Circuit-level s imulat ion (SPICE), (a) A descr ipt ion of circuit components and their 
interconnections. This descr ipt ion contains almost identical information to that of Figure 4-2a. (b) 
Output from SPICE. The + indicates the waveform of the DOUT signal. The * indicates the 
waveform of the c l o c k signal. The x is used when* * and + overlap. 
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convenient programming language to explore various aspects of a design. These simulations are 

generally used to explore widely varied design alternatives rather than to model detailed behavior of 

the design. The example shown in Figure 4-1 need not be programmed in ISPS-any convenient 

language will do. Furthermore, as discussed in Section 5.1.1, microcode can be simulated 

independently of the rest of chip. 

4 . 2 . T e s t i n g and d e b u g g i n g p r o d u c t i o n IC ' s 

The goal of product ion testing is to determine quickly whether or not a chip has been fabricated 

correctly. Many of the techniques developed to test parts are also used to help debug a design once 

the first silicon instance of the design is fabricated. 

The integrated-circuit industry distinguishes between two kinds of testing: characterization and 

acceptance testing. Characterization carefully measures the behavior of a chip: power dissipation; 

input and output currents; variations with temperature, humidity, and supply voltage; vibration and 

radiation resistance; etc. These measurements are used to determine whether the design and the 

manufactur ing process are tuned suitably to produce parts with the desired specif ications. They are 

also used to determine why flawed parts fail in order to improve the design or alter the product ion 

process in an attempt to produce a greater proport ion of working parts. Once a product ion line is 

operating smoothly, characterization may be used only for occasional samples. 

An acceptance test is applied to each part that is manufactured to determine whether it operates 

correct ly and should be sold. Tests are often performed by probing a wafer before it is diced and 

packaged, so that non-functional die are not packaged. Once packaged, the chip is tested again. 

The test is either a " g o / n o - g o " test for acceptance or a classification test that sorts parts based on 

their speed. 

4 . 2 . 1 . T e s t i n g i n p u t s and o u t p u t s 

Testing methods developed for simple chips aim to exercise all circuits and wires within the chip to 

gain conf idence that the chip works. The functional correctness of a stateless chip can be tested by 

stimulating it with all possible input values and observing the outputs. The test is driven by a set of 

test vectors, each of which records the digital values of the inputs and the digital values of the 

expected outputs. If a stateless chip has n input pins, 2n test vectors must be tried if the test is to be 

exhaustive. 

Various methods are used to implement test-vector testing (based on [Hayes 80]): 

• Stored response testing which applies prestored test vectors to the inputs of a chip and 
compares the outputs of the chip to prestored results. The Megatest Q2 [Megatest 80] is 
typical of this class of testing machines. 
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• Comparison testing applies test vectors to the inputs of two chips: the chip under test and 
a known working chip called the gold unit. The outputs of the two chips are continuously 
compared. 

• Algorithmic testing in which test data is computed each time the unit under test is tested 
is perhaps the most powerful technique because of its flexibility and the compact 
representation of the test. Algorithmic testers allow us to write programs to generate the 
input-output pairs dynamically instead of having to enumerate the test data beforehand. 
However, in order to test chips at high speed, a good deal of computat ion power is 
required. 

Exhaustive testing becomes difficult or impossible when chips have substantial internal state. An 

exhaustive test will require that every combinat ion of input signals and internal states be tr ied, or 2n + s 

combinations, where s is the number of bits saved inside the chip. To make matters worse, several 

steps may be required to obtain a particular internal state. A typical integrated-circuit memory chip 

(r? = 10 and s = 16000) simply cannot be tested exhaustively: it would require 1 0 4 8 0 0 steps, or 1 0 4 7 8 4 

years at 100 ns per test! 

Rarely is it really necessary to test chips exhaustively, because every output does not depend on 

every input and every bit of state. Rather, we assume a failure mechanism within the chip that is 

simpler than the sort tested by exhaustion. One approach to reducing test t ime is to hypothesize 

failure mechanisms based on the physical structure of the chip. A common restriction is to test 

whether each internal signal on the chip is "s tuck at 0 " or "stuck at 1 " due to manufacturing flaws. 

Algorithms such as Roth's D algorithm [Roth 67, Breuer 76] when given a combinational logic 

function can automatically generate all of the tests required to verify that no internal signal is stuck. 

For each internal signal, the algorithm postulates that the signal is stuck and tries to find an input 

vector that causes an output to be inverted because of the failure. For chips with very regular 

designs, deriving test vectors for stuck-at condit ions is straightforward, even if it cannot be done 

automatically. For example, most of the stuck-at tests for a memory chip are those that simply test 

whether each individual bit in the memory can be set to 0 or 1. For complex ch ips without a regular 

structure, deriving test vectors can be very difficult. The integrated-circuit industry today believes 

that one of its major problems in chip design is the design of a suitable set of acceptance test vectors. 

The reader is refered to [Muehldorf 81] for a more detailed discussion of fault modeling and test 

pattern generation. 

Testing a complex chip may require many thousand test vectors, which are costly to store and 

compare at high speed. A compression technique called signature analysis can be used to hash the 

sequence of test outputs, which may be several thousand bits, into a small "s ignature" that may 

contain only 16 bits [Frohwerk 77]. The inputs to stimulate a chip can come from an inexpensive ROM 

memory. After several thousand tests are appl ied, we examine the signature to see if it matches a pre-
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stored correct value. This technique has been used quite successfully with printed circuit boards, 

especially those that are part of a computer. The computer executes a test program while the 

signature of a particular wire on the PC board is measured with a test instrument. The signature is 

then compared to the value that the test should yield. 

4 . 2 . 2 . A c c e s s i n g i n t e r n a l s t a t e 

Debugging and testing complex chips that contain a lot of internal state depends on accessing the 

internal state easily. The time required to test a complex chip can be drastically reduced if the internal 

state of the chip can be set and revealed easily during testing. Access to internal state (AIS) allows us 

to decompose a complex chip into a number of very simple subparts for testing purposes, thus 

avoiding the combinatorial explosion of all combinations of input and internal state values. Moreover, 

access to internal state can reveal to the external tester the state of an internal signal that might 

otherwise be inaccessible or accessible only by very indirect means. Internal signals that are not 

easily accessible may require a very complex set of test steps to determine whether the signal is stuck 

or operable. 

Some chips are designed so that access to internal state requires no special circuitry. For example, 

a memory chip provides reasonably direct mechanisms for reading and writ ing every bit in the 

memory. Although these mechanisms depend on correct operation of a certain amount of addressing 

circuitry, these circuits represent only a tiny fraction of the entire chip. Consider by contrast a 

microprocessor's instruction register that contains a copy of the instruction being executed. The 

register is not externally accessible, even indirectly. Although we can observe externally some effects 

of an instruction's execution, we will almost certainly not be able to decide based on these 

observations whether the instruction register operates correct ly under all c i rcumstances. 

Scan-in/scan-out The most popular technique for accessing internal state is to link all such state in 

a long shift register. The state can be shifted into the chip, a test executed, and the new state shifted 

out; hence the name scan- in/scan-out (SISO). The idea has old origins: early IBM 360 models wrote 

several thousand bits of internal processor state on a magnetic tape whenever a hardware error was 

detected. The tape could then be analyzed to find the error. More recently, DEC and Evans and 

Sutherland have used shift registers to reveal state that would otherwise be hidden on printed-circuit 

boards in a large, complex system such as a VAX-11/780 processor or a real-time hidden surface 

eliminator. In addition to providing diagnostic help, the shift register can also be used to configure 

the system by setting internal state that governs its performance, for example, control registers that 

enable and disable memory modules. 

The use of scan- in/scan-out in integrated circuits has been exploited by IBM, where it goes by the 

names Level Sensitive Scan Design (LSSD) or Shift Register Latch (SRL) (see Figure 4-4) [Williams 
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73, Eichelberger 78]. This technique was developed for chips designed with the Electronic Design 

System (EDS) in order to systematize and reduce the testing requirements for custom chips designed 

by hundreds of engineers within IBM. As a result, a single testing philosophy and one kind of testing 

hardware applies to vastly dif ferent chips. Moreover, when the chips are combined into larger 

systems, the shift registers can all be chained together to make the state of entire boards available for 

fault d iagnosis. 

o c LI -LI 

L2 

• L2 

F i g u r e 4 - 4 : The shift-register latch (SRL) used by IBM to provide access to internal state. In normal 
use, input data is presented at D, c lock (actually a latching hold signal) at C, and output is available at 
+ L 1 . These latches are connected into a shift register by connect ing + L 2 (SHIFT DATA OUT) to I 
(SHIFT DATA IN) of the next latch. The hold signals A and B are used alternately to shift data f rom L1 
to L2 and to the next L 1 , and so for th. Signals A and B can be generated on-chip from a single SHIFT 
CLOCK s ignal . Figure from [Eichelberger 78]. 

One of the charms of SISO is that very few pins are required to access the internal state. The IBM 

design arranges that each bit of internal state is saved in two latches, one normal one and one that is 

used to create a shift register. Three signals are required to set and retrieve the internal state: SHIFT 

DATA IN, SHIFT PATA OUT, and SHIFT CLOCK. Even fewer pins are required in the TRIMOS3US des ign, 

wh ich has two pins for shift register input and output, but encodes the shift c locks on a bus that is 

shared by all chips and normally devoted to other uses [Suther land 79] . 

Mufflers. Another method for accessing internal state was used in the des ign of the Dorado 

processor [Lampson 80] . The packaging constraints of the processor resemble those of an 

integrated circui t : probes cannot be at tached to the pr inted-circui t boards because they are very 
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closely spaced and because they cannot be operated when extended from the backplane due to 

signal t iming problems. To observe internal signals, the designers arranged to use a set of selectors, 

termed mufflers, to select a single internal signal that is to be reported externally. The contro l of the 

selectors and the observat ion of the external signal are accompl ished with a diagnost ic computer 

at tached via an umbi l ical cord for test ing or debugg ing. 

The muffler scheme is designed to use only three pins on each board : an ADDRESS pin, an ADDRESS-

SHIFT pin and a DATA pin (see Figure 4-5). 

Connections 
From 

Internal 
State Bits 

v 

8:1 Tri-State 
Multiplexor 

Tri-
State 

Output 

Enable 

Select 

Shift Register 

DATA 

53 

— * A d d r e s s 

Address-Shift 

F i g u r e 4 - 5 : A TTL schemat ic representat ion of a muffler. The shift register is loaded with the 
address of a signal to sense. The AND gate will enable the one mult iplexor that connects to the 
addressed s ignal , thus gat ing the signal onto the DATA wire. All three pins are bussed together, so 
that an arbi t rary number of muff lers can be connec ted using only three wires. 

These three signals are bussed together on the backplane. Each bit of internal state is given a unique 

n-bit address; addresses are presented in bit-serial form simultaneously to all boards in parallel using 

the ADDRESS and ADDRESS-SHIFT signals. Each board decodes the addresses and enables a selector 

that gates the desired signal onto the single-bit DATA bus. A single bit of internal state can be 

accessed in n address-shif t cycles, which enter its address. By clever address permutat ions, however, 
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all 2n addressable state bits can be read out in 2n address-shift cycles. For complete state readout, 

therefore, mufflers and SISO require the same number of c lock cycles, yet the muffler can access a 

single bit of state far faster than SISO can. 

Both the SISO and muffler techniques require a small amount of extra hardware to access internal 

state. IBM estimates that roughly 20% of a chip is devoted to SISO mechanisms, al though very often 

the latches required for the shift register are also used dur ing normal operat ion. The muffler 

overhead, as used in the Dorado, is much lower than this, but the mufflers do not report as much 

internal state as IBM requires. SISO can be used both for reading and setting state, while the mufflers 

in the Dorado are used only to read state. Both schemes are able to reduce testing times and ease 

debugging signif icantly using only a few precious pins. 

5. Future trends in IC debugging and testing 
In this sect ion, we explore the trends likely to inf luence testing and debugging in the near future. 

We tend to place greater emphasis on debugging, since we are more concerned with reducing design 

time than with the product ion of large numbers of chips. We also present a few new methods for 

testing and debugging integrated circuits and descr ibe briefly the work underway at CMU. 

5 . 1 . D e s i g n i n g t o r e d u c e e r r o r s 

The effort required to debug a design can be reduced by using design techniques that help avoid 

errors or that make errors particularly easy to detect, track down, and fix. An error may be diff icult to 

fix if the remedy requires redesigning a great many associated circuits or if the fix requires a new 

circuit layout that causes changes to propagate to other parts of the chip, thus necessitating still more 

layout work. 

5 . 1 . 1 . M i c r o c o d e 

The most dramatic technique of this sort is the use of microcode control of some "execut ion 

machine." The microcode can be written in a reasonably high-level language (at or above the 

register-transfer level) [Hennesy 8 1 , Gehringer 80, Gosling 80, Steele 80] and simulated extensively. 

The simulations can be made to execute very rapidly, for example by compi l ing executable code f rom 

the microcode source. The simulations may suggest alterations in the structure of the execut ion 

machine, which need not have been designed in detail at the t ime the microcode is written and tested. 

Once the execution machine is designed, it can be simulated separately using lower-level simulat ions 

to build conf idence that microcode will be executed properly. 

When the design of the execution machine is complete, the microcode can be compi led direct ly 

into ROM or PLA layouts that provide microinstruct ion memory on the chip. Techniques for reducing 
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the size of the microinstruct ion memory, such as nanocode [Stritter 78], can also be handled by this 

compi lat ion step. The designer need never deal with the complexit ies of these s t ruc tu res- the original 

microcode source is the lowest-level representation of the control structure that she needs to 

manipulate. 

The microinstruct ion memory can be easily fitted with AIS testing connect ions. All that is needed is 

a way to set and read the microinstruct ion memory address register (MAR) and to set and read the 

microinstruct ion register (MIR, the output of the microinstruct ion memory). These paths allow us to 

test the contents of the microinstruct ion memory exhaustively in a very short t ime. Moreover, they 

provide a way to test the execut ion machine: by loading values into MIR using AIS, the machine can 

be stepped through any series of operat ions, regardless of the contents of the microinstruct ion 

memory. During debugging, if an error is found in a microcode word , the correct microcode values 

can be substituted by the AIS mechanism each t ime the word is fetched, thus al lowing the chip to be 

tested in spite of the error. A microprocessor designed with microcoded control may devote 50% or 

more of the chip area to microinstruct ion memory. The MAR and MIR registers and their test 

connect ions const i tute a clean division of the chip into two parts, which may be tested or debugged 

separately. 

The impact of microcoded contro l on the design and debugging of chips can be il lustrated by 

compar ing the history of two 16-bit microprocessors that have complex control requirements: the 

MC68000 [Motorola 79, Stritter 79] and the Z8000 [Zi log 79, Peuto 79]. The MC68000 was designed 

using microcoded contro l , while the Z8000 uses combinator ial logic for its contro l . Al though the 

MC68000 was fabricated using a somewhat denser and faster technology than the Z8000, this 

dif ference is not important. The overall architectural complexity of the two microprocessor chips is 

comparable. Figures 5-1 and 5-2 show the actual chip layouts, i l lustrating the obvious regular 

microcode memories in the MC68000. As seen in Table 5-1 the most str iking test imony to the 

advantages of microcoded design is the fact that the Z8000 required three t imes as many months to 

produce a working product ion version (i.e. a chip with no known bugs) as the MC68000. The various 

forms of simulations of the MC68000 and the test logic on the chip itself made it possible to examine 

essentially all internal signals in order to locate the source of errors. Moreover, even bugs which did 

not originate in the microcode of the MC68000 could often be fixed using microcode instead of 

eliminating the true source of the error by redesign. On the other hand, locating the sources of bugs 

in the Z8000 was often tedious and required diff icult changes to the random-logic control . 

Quite apart from testing and debugging eff iciencies, use of microcode offers substantial savings in 

layout effort as wel l . Even though the MC68000 has four times as many transistors as the Z8000, both 

chips required approximately the same amount of effort to design and lay out. 
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il 

F i g u r e 5 - 1 : Photomicrograph of the MC68000. Courtesy Motorola 
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F i g u r e 5 - 2 : Photomicrograph of the Z8000. Courtesy Zilog, Inc. 
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Motorola MC68000 Ziloq Z8000 

Design parameters: 
Elapsed time to first silicon 
Design time 
Layout time 
Lambda 
Chip size 
Number of transistors 
Number of transistors/ 

Number of designed transistors 
Debugging parameters: 

Elapsed debugging time 
Number of mask sets 
Percent of chip design simulated 

at any level 
Percent of chip area devoted 

to test structures 

30 months 
100 man months 
70 man months 
1.75fxm 
246 mils x 281 mils 
68000 

6 74:1 

6 months 
3 

100% 

4% 

8 

30 months 
60 man-months 
70 man-months 
2/xm 
238 mils x 256 mils 
17500 

5:1 (estimate) 

18 months 
3 

20% 

0% 

Table 5 - 1 : A comparison of the MC68000, and Z8000 design efforts. Data supplied by Tom Gunter 
of Motorola, Inc., Bernard Peuto of Zilog, lnc.t and Skip Stritter of Nestar Systems, Inc. 

5 . 1 . 2 . The CMU Design Automation System 

Microcode is one way in which we can automatically generate an integrated circuit from a high-level 

specif icat ion. Another approach has been used in the CMU Design Automation System (CMUDA) 

[Parker 78]. Instead of writ ing microcode to implement a particular appl ication, the designer 

describes her task using the ISPS hardware descript ion language. Given this ISPS specif ication and 

information about the particular high-level implementation style desired, the CMUDA system can 

generate a low-level implementation of a chip using standard cells. In addit ion, a system such as 

CMUDA could also automatically generate AIS for all of the internal state it allocates on the chip. 

5 . 2 . Design for testabi l i ty and debuggabi l i ty 

If a system cannot be designed using a style that reduces the number of errors or makes testing 

inherently simple, it can nevertheless incorporate features that aid debugging and testing. Industrial 

response to the increasing difficulty of testing complex chips has been to emphasize design for 

testability. In our environment, it is more important to design chips that can be debugged easily 

because we cannot afford the time or expense of iterating a chip design to eliminate design errors. 

We observed in section 3.2 that techniques for debugging software modules require two primitives: 

access to internal state in the module and the ability to stop execution (breakpoints). These two 

functions can be offered to the hardware debugger as well by designing the chip with suff icient 

^ h i s is actually the weighted average of three different ratios. 50000 transistors sites are in PLA/ROM structures with a ratio 
of 50:1. 5000 transistors sites are in the registers with a ratio of 500:1, and 13000 transistors sites are in random logic with a 
ratio of 5:1. 

7 T i m e from first silicon to a working production version (i.e. no known bugs) of the chip. 

8 l n addition, there also exists a TTL implementation of the MC68000 which is 100% functionally equivalent to the chip. 
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access to internal state information and by debugging a chip with a driver that can single-step a 

sequence of operat ions. 9 Thus we see that access to internal state is useful for debugging as well as 

for test ing. 

The remainder of this section explores ways to design access to internal state to ease both 

debugging and test ing. The final paragraphs (section 5.2.5) contain a summary of the kinds of 

internal state that should be made available externally. 

5 . 2 . 1 . I n - s i t u t e s t i n g 

A chip can be designed so that AIS access can be used to test a chip even after it is soldered into a 

printed-circuit board. The boards and systems built around these chips can then be tested as well . 

The key requirement is that the AIS access be able to decouple all of the pins from their normal 

connect ions (except for power and ground) and provide an externally-generated stimulus in place of 

the signals present on the pins. These funct ions can be provided by suitable design of the pin 

interface circuits, and are independent of the design of the rest of the chip. 

Figure 5-3 il lustrates schematical ly how the pin circuit module might be designed. Each signall ing 

pin is connected to the chip circuits with three wires: one that reports data coming in from the pin (IN), 

one that delivers data to be placed on the pin (OUT), and a third (DRIVE) that says whether the pin is to 

be driven. If the pin is used only as an output, it will always be dr iven; if it is used only as an input, it 

wil l never be dr iven; if it carries a bidirectional signal such as a bussed data wire, then the DRIVE signal 

will vary with t ime. Figure 5-4 shows how the testing and debugging circuits might work. The 

OPERATE signal couples the chip signals directly to the pin driver for normal operat ion. If OPERATE is 

not asserted, the pin and the chip internals are electrically separated. By asserting DEBUG CHIP, we 

couple the three chip signals to AIS connect ions that can sense the state of the DRIVE and OUT signals 

and control the state of the IN s ignal. 

This design can also be used to test the interconnect ions among chips in a large system. By 

asserting the DEBUG PINS s ignal, we couple the AIS connect ions to the pin driver signals. In this way, 

we can drive a single pin in the system and measure the state of all other pins to verify that each pin is 

connected properly to others. This test will uncover bad chip bonding, bad chip sockets, bad printed-

circuit boards, bad printed-circuit board sockets, and bad backplane wir ing. 

This scheme greatly simplif ies the design of a hardware tester, because we can decouple the 

testing of the pin electronics f rom the testing of the bulk of the chip. The chip funct ion is tested using 

This comment applies to sequential circuits. Asynchronous or self-timed designs have no global concept of sequence, so it 
is not possible to "stop" an entire circuit and to measure its state. However, such designs generally are composed of a number 
of smaller circuits, each of which is sequential [Seitz 80]. In this case, our comment applies to debugging the sequential 
components but not to debugging the asynchronous whole. 
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Chip 
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it 

~~3T 
AIS signals 

(a) 

Pad/P in 

pads for bonding 

a a g 13 t o p i n s 

chip internals "a 
"a 

(b) 

Figure 5 - 3 : In-situ testing by decoupl ing pins f rom the ch ip 's internal c ircui try, (a) The l o g L 
st ructure of the pin c ircui ts, (b) Pin c i rcui ts arrayed around the ch ip internals to connect to par 
Not ice that the AIS signals thread through all pin c i rcu i ts . 

only AIS access to the signals that connec t to the ch ip internals. For this test, the tester needs 

interface only to the few pins that cont ro l the AIS funct ions. Thus if individual d ie are being test 

before packaging, only a half-dozen points need to be p robed: power, g round , and four AIS signa . 

Once the ch ip is determined to work, the pin dr ivers are tested separately, using AIS to dr ive a pin and 

using a s imple multiplex switch on the hardware tester to verify the operat ion of the pin under test. 

The effect of the circui try that decouples the ch ip f rom the p ins is to place a sentinel at a key 

interface in a digi tal system. It is analogous to t rac ing a sof tware procedure by examining all cal ls to 

it, the cal l ing parameters, and the return values. The sent inel need not be used only to cont ro l ch ip 

pins. For example, we could design pr inted-c i rcui t boards so that each pin on the board connector is 
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F i g u r e 5 - 4 : A sketch of the pin c i rcui t for decoupl ing the chip internals f rom the pins. If the OPERATE 
signal is h igh, the pins are connected to the chip internals. Otherwise, if DEBUG CHIP is asserted, the 
chip internals are dr iven and sensed by three bits of state (S) accessible using an AIS mecahnism. 
Alternatively, if DEBUG PINS is asserted, the three bits of state contro l the pfn only, thus al lowing ch ip-
to-chip in terconnect ions to be tested. Each bit of state S has contro ls that al low it to be loaded from 
its inputs, to be read off the chip or to be set f rom of the ch ip . 1 

driven in this way, perhaps using an integrated circui t that convenient ly packages the funct ions 

sketched in Figure 5-4. The board itself might conta in convent ional TTL packages that have no 

provision for AIS connect ions. 

5 . 2 . 2 . M u f f l e r e x t e n s i o n s 

Al though the muffler design was used only to read internal state and not to set it, a simple extension 

in MOS technology will make the technique bid i rect ional . Figure 5-5 shows how MOS switches can 

connect the DATA wire to the bit of state to be sensed (READ s ignal asserted) or set (READ s ignal not 

asserted). This design has a number of advantages over SISO: 

• Bits of state can be set individually. Even though the READ s ignal is appl ied to all bits of 
state, the circui t can be designed so that only that bit with the select ion switch closed will 
be al tered. (For example, if READ is normally h igh, the wire R will be normally charged to 
the state S, so that even when READ is brought low, the state will be set to R = S unless the 
selector swi tch is c losed, in which case it wil l be set to the value on the data wire.) 

• A single bit of state is constant ly reported externally, and can thus be observed at high 
speed. By contrast, a shift chain will require hundreds of shifts to observe each value of 
an internal s ignal. This ability to sense a signal constant ly gives rise to the next two 
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to other bits of 
internal state 

r 

Address 
shift out 

internal 
"data" bus 

ZL_L 

Decoder 

' Data 

Read 

Shift register 

Address 
shift in 

* Address 
shift clock 

F i g u r e 5 -5 : Extensions to the muffler scheme. A bit of internal state can be sensed (READ high) or 
set (READ low) via the DATA p in. In order to al low many separate chips to use muff lers, the muff ler 
address shift registers are l inked on a chain using ADDRESS SHIFT IN and ADDRESS SHIFT OUT. The 
remaining pins are bussed together for all mufflers. 

advantages as wel l . 

• The signature-analysis idea can be used for test ing. The DATA pin is connected to a 
s ignature-comput ing circuit in the tester, and the muffler address is set to select a 
part icular internal signal. Now the system is put through a f ixed test sequence and the 
signature is computed and compared with a known good value. Note that dur ing this test, 
the system can be operated at full speed. 

• The muffler can be set to select report ing of an internal signal that yields useful 
performance information. (This idea was used on the Dorado [McDaniel 80].) Because 
we can observe internal events at full speed, we can operate the system normally and 
count events, measure arrival-time statistics, etc. 
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The muffler appears to have a disadvantage compared to SISO in that a fixed address is required to 

address each bit. This property would appear to make it infeasible for use on chips, because all 

instances of a particular chip type in a system would decode the same muffler addresses and report 

data concurrently. This problem can be remedied by putting the muffler address bits on a shift 

register and arranging that a chip will drive the data wire only if it detects an odd address. Thus if 

each chip has an n-bit address shift register, it can connect 2 n A different signals to the data wire. A 

system with m chips will have a shift chain that is only mn bits long that provides access to s = m2 n" 1 

bits of internal state. By contrast, if the internal state is connected directly to the shift register (SISO), 

the shift register needs to be s bits long, or a factor of 2nA/n longer than the muffler chain. These 

comparisions show that the muffler allows quick access to a particular bit, but also show that SISO 

provides a faster mechanism to obtain the entire accessible state of the system. 

The pin requirements of the two schemes must also be compared. The SISO technique (Figure 4-4) 

can be operated with three pins: SHIFT DATA IN, SHIFT DATA OUT, and SHIFT CLOCK. The first two pins 

are chained from chip to chip and the other is are bussed together. The simplest muffler scheme 

requires five pins: ADDRESS SHIFT IN, ADDRESS SHIFT OUT, ADDRESS SHIFT CLOCK, DATA, and READ. The 

first two pins are chained from chip to chip and the remaining three are bussed together. However, 

the READ pin can be avoided by using the ADDRESS SHIFT CLOCK pin as the READ signal. While the 

ADDRESS SHIFT CLOCK is high, an internal bit is read onto the DATA bus; while it is low the same bit is 

written from the bus. Thus the standard cycle for shifting in addresses will read and re-write a number 

of internal bits. If we ever want to change the internal state, we simply arrange to place the new value 

on the DATA wire while the ADDRESS SHIFT CLOCK is low. 

5 . 2 . 3 . On-chip s ignature analysis 

One of the diff icult ies with SISO testing is that a great many shift steps are required to read out an 

internal state and that the operation of the system must be halted while this shift ing is done. An 

alternative is to build on-chip signature checkers to reduce the amount of data that must be reported 

externally. Although the muffler mechanism allows checking a single signature while the circuit 

operates at full speed, on-chip signature checking could check many different signals at once. These 

could be checked with separate signature generators or with a single circuit that hashes together the 

states of several signals at once. 

In addition to generating signatures on the chip, we might also consider including an on-chip ROM 

that contains known good signatures to verify the computed signatures. 

A scheme called BILBO (Built-in Logic Block Observer) [Koenemann 79] incorporates many of 

these ideas and can be used to generate pseudo-random test patterns as well. 
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5 . 2 . 4 . O n - c h i p or o n - w a f e r t e s t e r s 

Imagine that instead of receiving a single die back from fabricat ion, the designer received an entire 

test system in the form of a wafer to which she had only to connect power and a terminal (via a 

standard RS-232 interface). The wafer contains several copies of the designer's chip, some of which 

are already interfaced to a special test system. The test system provides the designer with convenient 

hardware and software for performing tests on the chip. Assuming the designer provided ways of 

accessing internal state, the test system can be programmed to set and retrieve this state, and 

moreover, can be connected to a larger computer for more sophisticated testing. There are several 

advantages to a test system of this kind: 

• Custom IC designers do not have to buy or build their own testing systems. Moreover, 
they are able to take advantage of common development on one test system, a new 
version of which they get every time they fabricate a new chip. 

• Even signals which are not going to be connected to pins could be connected to the test 
system. This would greatly enhance the ability to test and debug the chip. 

The on-wafer tester is an excellent example of a hardware module fabricated along with a design to 

help debug or characterize the design. A less powerful example of such a debugging module is a 

timing sampler [Frank 81] which accurately measures the t ime of occurrence of an on-chip signal. 

5 . 2 . 5 . Summary of access to internal s tate 

To take full advantage of the many uses of access to internal state, systems must be designed so 

that the appropriate internal signals can be examined. For example: 

• Manufacturing testing. Access is needed to any state that cannot be set or read easily by 
the normal input /output pins of the chip. It is possible to analyze a gate-level design to 
determine whether each signal can be controlled from the outside (i.e., set to both binary 
values) and whether each signal can be observed f rom outside. Programs such as 
TMEAS [Grason 79] can analyze a circuit and report how diff icult it is to control and 
observe signals internal to the circuit. If an important internal signal is found to be hard to 
control and /o r observe, the circuit can be redesigned to improve its testability. 

• System testing. Extra provisions, such as those described in section 5.2.1, are needed to 
test an entire system without removing components . 

• Debugging. The needs of debugging may exceed those of testing. For example, we may 
wish to be sure that the entire internal state of a chip can be set to a given value for 
debugging, while testing requires only that the state of small portions under test be 
control led. 

• Performance measurement. Signals that are important for performance measurement 
must be sensed directly, whether or not they are needed for testing and debugging. The 
reason is that if only a single signal is being reported (e.g., using mufflers), we can 
measure the activity on only the one signal. Thus a "dir ty miss" signal in a cache must be 
available as a single signal; we will not be able to detect "d i r ty" and "miss" separately 
and perform the AND function in the performance monitor. 
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• Initialization and configurat ion. As we observed in section 4.2.2, paths for sett ing internal 
state can be used to configure or initialize a system. We can enable or disable individual 
chips, load memories for microcode or table-lookup functions, etc. These requirements 
may demand that more signals be accessible via AIS paths. If the in-situ methods are 
used (section 5.2.1), they allow chips to be operated completely independently of their 
environment, and thus clearly provide full initialization and configurat ion cont ro l . 

It is important to emphasize that a special AIS mechanism is not always the best way to access 

internal state. What is required is that there be some way to set and reveal the state. Consider, for 

example, a 16K dynamic MOS RAM chip. It has 16,384 bits of internal state in its memory, 128 bits of 

state in its sense amplifiers, and 14 bits of state in its two address registers. The 128 bits of sense 

amplifier state can be read out of the chip by a series of operations on the pins (page-mode CAS 

cycles). Likewise, the 16,384 bits stored in the memory can be read (conventional RAS, CAS cycles). 

Unfortunately, the contents of the address registers cannot be detected outside the chip, and to make 

matters worse, the operations for reading the other state destroy the contents of these registers. 

5 .3 . Organizing and using a debugging system 

Tools for debugging a design can be integrated into the system used to design the chip itself. In the 

early stages of a design, the designer debugs using simulations, while in the later stages, the 

debugging and testing are performed on the chip itself. The chip simply represents the most accurate 

simulation of the design. 

This approach leads the designer to build programs for testing and debugging from the very 

beginning of the design. The test programs written to explore high-level simulations are equally 

applicable at lower levels, even when first si l icon is obtained. To achieve this effect, we need to cast 

all of the simulation levels used during the design into a common framework. The fol lowing sections 

outline how this can be accomplished. 

5 . 3 . 1 . Names 

A standard use of signal names links all levels of a design. In this way, a funct ional simulation at 

one level can be compared to a simulation at another level. In higher-level abstractions, many signals 

may be treated as one name, such as a register that need not name its bits. At the lowest level, 

geometry for a design may have very complex paths for a single signal (e.g., a c lock). The details of 

the routing and placement of these paths may have a profound effect on the performance of the 

design, but from the point of view of a functional simulation, they consti tute one signal. 

The hierarchical nature of design specif ications gives rise to a hierarchical notat ion for names. A 

10-bit shift register composed of ten identical cells would give rise to names such as "celH.shi f t - in" , 

"cel l2.shif t- in" and " ce lh .g round" , where the first part of the name identifies an instance of the shifter 

cell and the second a signal name within that cel l . 

UNIVERSITY LIBRARIESX 

Pittsburgh, Pennsylvania 15213 
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5 . 3 . 2 . O r g a n i z i n g s i m u l a t i o n s 

Simulations at different levels can all be organized to have identical interfaces. A simulator takes in 

a set of signal names and new values, computes until this new set of inputs creates a stable state, and 

then stops. Output signals that change may be reported from the simulation, or the simulation can 

simply stand ready to respond to requests to report the state of various internal signals. Using these 

primitives, debuggers can be built that provide all of the conveniences of software debuggers, such as 

printing out variable values and stopping at breakpoints, as well as all the conveniences of hardware 

debuggers, such as tracing signal values as a funct ion of t ime. 

We believe that simulations at three different levels of detail will suffice for our designs: 

• High-level simulations, written in a programming language chosen for convenience by the 
designer. If the designer is also using a programming-language environment to help 
construct or simulate additional representations of the chip (e.g., microcode, or programs 
to "assemble" the chip [Johannsen 79, Steele 80]), the same environment is likely to be 
chosen for simulations. In this way, name correspondances are particularly easy to 
ma in ta in . 1 0 

• Functional simulation of the chip circuit, with t iming information retained. The chip 's 
circuit is extracted by analyzing the mask geometry. In this way, any errors in the 
"automat ic" algorithms of a design system (e.g., automatic PLA or ROM generation) can 
be detected by the simulation. Once extracted, the circuit can often be simplif ied greatly 
by analyzing it for common patterns (e.g., gates, or NOR-NOR combinat ions often used in 
PLA's, or even entire cells of a known kind), and then using more efficient simulations for 
the regular structures identified. In this way, we believe that functional (and timing) 
simulation of an entire complex chip is feasible. 

• The chip itself, operated by a tester that can control its inputs and observe its outputs, 
and that can measure output t imings fairly accurately. In order to report internal state, as 
required by the general model of our simulations, the designer must provide access 
procedures that specify the steps required to read and set state. Often, these procedures 
will simply invoke an AIS mechanism designed into the chip. Sometimes the access 
procedures will specify sequences of operations on the normal pins that can be used to 
access internal state (e.g., reading a memory location in a conventional semiconductor 
memory). Note that the access procedures may themselves be debugged by functional 
simulation. 

This structure also illustrates one of the advantages of simulation: the functional simulation allows 

access to all internal signals, even ones that cannot be sensed with an AIS mechanism designed into 

the chip. 

The structure itself eases debugging: each simulation operates on a different representation of the 

chip. As we put these simulations through a test sequence, the debugging software can compare the 

results at the different levels. Before a chip is fabricated, the first two levels are compared; when a 

1 0 l t is for this reason that languages designed to describe hardware easily may not be the best ones to use for high-level 
representations. The designer will also need to write simulations, test programs, etc. 
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chip is available, all three levels are used. This is an advantage not commonly available to the 

software debugger, as she has not prepared even two different representations of her module that 

can be simulated. 

5 . 3 . 3 . Debugging strategies 

The primitives outl ined in the previous section can be employed in several debugging strategies. 

Although many of these strategies are identical to those commonly used for debugging software, the 

addit ional strategies described in this section are particularly appl icable to hardware debugging. 

Checkpoints. Access to internal state allows us to record the state of a simulation at any level and to 

restore that same state later. If an error is detected after a several simulation steps, we can reload the 

original state and simulate again, examining more internal state to catch the error as it occurs. 

Moreover, it may be possible to set the state of a simulation from state checkpointed from a simulat ion 

at a different level. 

Searching. Simonyi [Simonyi 76] has suggested using binary search and checkpoints as a 

systematic way of t racking down errors, a technique usually pract iced intuitively by programmers. The 

general idea is to track down errors by retrieving state before and after an error occurs and gradually 

narrowing down the window that contains the error until the window is only one c lock cycle long. 

Patching errors. Access to internal state al lows us to " p a t c h " internal errors in a chip. Whenever 

the functional simulator determines that a bit of state will not be set correct ly by the unit under test, 

the AIS mechanism can be summoned to change the bit, and then the chip testing can proceed. In 

particular, microcode bugs can be fixed this way. The effect is to be able to check out a great deal of 

the chip 's funct ions even though errors are known to exist. 

5 . 3 . 4 . Debugging at CMU 

At CMU, we are bui lding a structure "for debugging chip designs that is based on the phi losophy 

described in this sect ion. The basic parts are shown in Figure 5-6. We assume that the designer may 

use one of a number of design systems to write high-level simulations and to develop mask geometry, 

which is output in a standard form (CIF [Sproull 80]). The geometry drives the fabricat ion process that 

builds a chip that is inserted in a tester. The tester need not be located in our laboratory; indeed, we 

are planning to access via the ARPANET a tester being built at Caltech [DeBenedict is 80]. The same 

CIF geometry drives a circuit extractor that determines a circuit for the FETS functional and t iming 

simulator. We have chosen to extract the circuit for several reasons: (1) because the funct ional 

simulation and the fabricated chip are built f rom the same data, it is more likely that the simulation will 

reflect errors in the chip itself; (2) the technique does not require a high-level design system to 

provide a circuit representation of the des ign- indeed, many design techniques bypass this 

representation altogether; (3) the extract ion technique can be applied to any design, regardless of the 
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design style or representations of the design system used to construct it. 

Debugging and test programs are constructed in a convenient programming environment and 

access the three levels of simulation using a common interface. All of the standard facilit ies of a high-

level language are thus available for writ ing test programs. The debugger provides a user interface 

and displays of internal state that are common to all of the simulations. 

6. Conclusions 
The MC68000 experience suggests that chip design is beginning to use concepts of modularity so 

familiar in software design to help reduce design errors. By using access to internal state and 

simulat ion, it is possible for the integrated-circuit designer to debug chips as easily as programmers 

debug software modules. Moreover, it appears that the chip designer may be better off than the 

programmer by simulating several different representations of the chip to validate a design. 

There are, however, some dark c louds on this rosy horizon. We have conf ined our attention to 

testing synchronous sequential systems. As Seitz points out, the second half of the integrated circui t 

revolution wil l require chips composed of asynchronous elements [Seitz 80] . Al though these 

elements may be synchronous internally, testing the entire chip will require grappl ing with an 

asynchronous system. Seitz argues that the only hope in preventing design errors is to use only legal 

composi t ions of proven elements. This may solve the design problem, but how are the circuits to be 

tested in manufacture? 
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F i g u r e 5 - 6 : The organizat ion of a system for debugging chip designs. Three levels of simulation are 
per formed: high-level; funct ional and t iming; and the chip itself, operated by a tester. Debugging and 
test sof tware controls all three simulat ions identically. 
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