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Abstract 

This paper introduces a new programmable building-block for recognition of regular languages. 

By combining three types of basic cells a circuit for recognizing any regular language can be 

constructed or "programmed" automatically from the regular expression describing that language. 

Recognizers built in this way are efficient pipeline circuits that have constant response time and avoid 

broadcast. In addition, the paper proposes the use of a single, regular layout, called the PRA 

(programmable recognizer array), that can be "personal ized" to recognize the language specified by 

any regular expression. PRA's provide compact reconfigurable layouts for recognizer circuits, 

requiring only 0(n log n) area for regular expressions of length n. 

UNIVERSITY LIBRARIES 

CARNEGIE-MELLON UNIVERSITY 

P ITTSBURGH. PENNSYLVANIA 15213 



2 

1 . Introduction 
Construction of future VLSI systems will rely on the use of programmable building-blacks. A 

building-block consists of a set of cell designs together with rules for combining the cells into larger 

circuits, and for using these circuits in large systems. The PLA (programmable logic array) for 

example, is a programmable building-block frequently used for implementing random logic. Because 

the structure of a building-block is fixed and prespecified, layout generators, simulators and other 

high-level design tools can be used effectively. Thus usmg building-blocks helps manage the 

complexity of VLSI design. A programmable building-block can be "personal ized" to realize various 

functions. If building-blocks are programmable, designers can proceed to high-level designs before 

all the low-level functions are specified. This often speeds up the design process and increases the 

flexibility of the final system. These advantages of using programmable building-blocks have already 

been demonstrated in several recent projects [4, 8]. This paper proposes a new programmable 

building-block for constructing efficient circuits that recognize regular languages. 

Regular languages are precisely those languages that can be recognized by finite-state machines 

(see, e.g., [5]). They are well suited for describing identifiers in a programming language or patterns 

to be matched by a text editor, and for modeling processes associated with electronic circuits and 

nervous systems. Language recognizers are often used as components in larger systems, such as 

controllers and sequencers. For example, Haskin [3] has recently suggested using language 

recognizers as term matchers in special-purpose database machines. We show that by combining 

some basic building-blocks a recognizer circuit for a language-can be constructed automatically from 

the regular expression describing that language, and a circuit so constructed can itself be a building-

block for constructing larger systems. 

2. Basic Ideas 
To motivate the construction of recognizer circuits using this building block we present several 

examples of increasing complexity. Our first example is a linear pipeline that can recognize 

concatenations. Figure 2-1 shows a pipeline that recognizes any three character pattern. Before the 

computation starts, the pipeline is loaded with the pattern ABC , one pattern character at each 

recognizer cell. During the computation the cells are synchronized to operate together on discrete 

clock ticks, or beats. On each beat, the text to be matched moves through the pipeline from right to 

left, and the results of the match move from left to right. Data in both streams are separated by one 

cell to permit each character to meet every result. On each beat, every cell that is active compares its 

prestored pattern character with the text character received from its right, then sends the text 

character on to its left. The cell AND'S this comparison result with the result received from the left, 



3 

and sends the new result to the right. The result of comparing a text string with the pattern is 

available from the pipeline on the beat after the last text character is input, thus a constant response 

time is achieved. Figure 2-1 traces the action of the pipeline for several beats. Cell contents on each 

beat are shown underneath the corresponding cells. 
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Figure 2 - 1 : Circuit Programmed for the Expression ABC 
Our second example is a tree-structured pipeline that can recognize any regular expression 

consisting of a union of several concatenations followed by a single concatenation. Figure 2-2 shows 

a tree-structured pipeline programmed* to recognize the language generated by expression 

(AB + C)DE . This is an obvious extension of the linear pipeline in Figure 2-1: characters fan out to both 

branches of the tree when they reach the " + " node, and results from the two branches go through 

an OR gate at that node. Neither characters nor results are stored in the " + " node; they just pass 

right through. Once again, the result of matching a text string against the pattern is available one 

beat after the last text character goes into the pipe. 

This pipeline scheme cannot be extended in the obvious way to expressions such as A (BC + D)E, 

which contain a union preceded by a concatenation. If we try to use a pipeline like that in Figure 2-3, 

where characters and results flow around both branches of the loop, it is impossible to maintain 

synchronization when the branches differ in length. Instead we must add a third data stream called 

the enable stream, as shown in Figure 2-4. In addition to coordinating the CHR and RES data streams, 

this new stream will serve the function of the "anchor" or " \ " in previous recognizers [2, 7], 

permitting matching at selected positions within the text stream. On each beat the enable stream 
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1 - » -> 
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3> 0 RES (result) 

D CHR(text ) 

Figure 2 -2 : Circuit Programmed for the Expression (AB + C)DE 

moves from right to left, and is fed into the result stream at the end of each branch. As in the other two 

streams, data in the enable stream are separated by one cell. 

Figure 2-3: Obvious (Wrong) Extension of Tree for A(BC + D)E 

A correct pipeline for the expression A(BC + D)E is shown in Figure 2-4, together with a record of 

the contents of each cell for several consecutive beats. The 1's in boxes track a successful match 

through the pipeline from cell A to cell E. Notice that the text characters are sent through the " + " 

node to the A node, as well as to the c and D nodes. Thus on each beat, the same text character is in 

all three of those nodes, and on the next beat it is in the B node. The result from the A character cell 

fans out (through the " + " node) to the enable stream of both the BC and D branches of the tree. The 

match results from the A cell thus reach the result stream input to both the B and D cells in synchrony 

with the character string. 
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Figure 2-4: Correct Extension of Tree for A (BC + b )E 

As is shown in the next section, similar tree-structured recognizers can be built for any regular 

expression. Notice that, unlike the recognizers of Floyd and Ullman [1] and Mukhopadhyay [7], our 

circuits achieve a constant response time, and do not require broadcast of the text characters. Our 

recognizers are thus well suited to VLSI implementation, in which broadcast is slow, but local 

communication is fast. 
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3. Recognizers for Arbitrary Regular Expressions 
How can we construct a recognizer for an arbitrary regular expression? In this section we describe 

three types of basic cells and give a procedure for hooking them up to form any recognizer. 

Three kinds of cells are used in constructing recognizers: comparators for single characters, and 

combinational cells corresponding to the union (" + ") and Kleene closure ("„") operators. Each of 

the basic cells of a recognizer has one or more data paths passing through it, with three data streams 

on each data path. The CHR and ENB streams, which flow from right to left, carry the text characters 

and enable bits. The RES stream, which flows from left to right, carries the result bit. We can hook 

these cells together to form recognizers by connecting the data path at the right side of one cell to a 

data path at the left side of another cell. 

The character comparator is shown in Figure 3-1 , together with a symbol used in designing large 

recognizers. This cell is similar to the character comparator described by Foster and Kung [2]. On 

each beat, the cell performs these steps: 

1. Compare the text character with the stored pattern character x in the PAT register, AND 
that result with the RES register, and pass the one bit result to the right. 

2. Pass the CHR and ENB registers leftward and receive new contents from the right. 

3. Receive new contents for the RES register from the left. 

The cells for the " + " and operators contain only combinational logic, and are shown in Figures 3-

2 and 3-3. 

To construct recognizers for arbitrary regular expressions, these cells are combined into larger 

circuits. We use a new technique for combining the cells in which a context-free grammar describes 

A < ENB 

Figu re 3 - 1 : Character Comparator Cell 
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Figure 3 -3 : Operator Cell 

both the structure and function of the final circuit. Terminal symbols in the grammar correspond.to 

basic cells, and semantic actions attached to the productions of the grammar tell how to hook them 

together. 

To construct a recognizer for a regular expression, we parse the expression using the grammar: 

R:: = P | R P 

P: := <letter> | ( R f | (R + R) 

Each symbol of this grammar represents a kind of circuit. The <letters> represent the character 

comparator cells, for example, and the non-terminal symbol R represents a recognizer for a regular 

expression. Each production has an associated.semantic rule that tells how to connect the circuits 

on the right side of the production to form the circuit on the left side. Every time a production is used 

in parsing the regular expression, its semantic rule is used to add to the circuit. 
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This syntax-directed construction technique eases verification of functional correctness, and other 

properties of the resulting circuits. Proof of a single theorem for each production in the grammar will 

verify the correctness of any recognizer. We attach to each symbol in the grammar a predicate 

describing its circuit. For each production in the grammar, we then prove that if circuits satisfying the 

predicates on its right hand side are connected according to its semantic rule, then the resulting 

circuit satisfies the predicate on the left hand side. This verification technique promotes confidence 

that large recognizers will work as expected. 

4. PRA: Programmable Recognizer Array 
The pipeline circuits constructed above form ternary trees, so each of them can be laid out in an 

area efficient manner [1 ,6 ] . This section describes an alternative to the approach of individually 

laying out the tree corresponding to each recognizer circuit. We propose the use of a single, 

compact layout, called the PRA (programmable recognizer array), that can be personalized to 

recognize the language specified by any regular expression. Our methods are similar to those of 

Leiserson [6]. 

For a recognizer of size n, we lay out n basic cells on the bottom line of the array, and provide 

0( log n) channels in the top portion of the array for data paths parallel to the line, as shown in Figure 

4-1 (a). To configure the layout for a particular tree, we route the edges of the tree through the 

channels. Ternary trees have a constant separator theorem, so that by removing a single edge of the 

tree we can split it into two subtrees of roughly equal size. We~split the line of cells into two lines, one 

for each of the subtrees, and use one channel to route the data path corresponding to the removed 

edge between the two subtrees. We then apply the same procedure recursively to lay out the 

subtrees on their lines of cells. Figures 4-1 (b) and (c) show the same PRA "programmed" for two 

different regular expressions. 

A PRA of dimensions n by O(log n) can be programmed to recognize the language generated by any 

regular expression of length n. For the same problem a PLA implementation, as proposed by Floyd 

and Ullman [1], would require n by n area in the worst case. For recognizing languages described by 

large regular expressions, a number of small PRA'S can be combined using the syntactic method 

described earlier. 
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Figure 4 - 1 : (a) PR A before "personalization" 
(b) PR/A for UVW* + (Y + Z) 

(c) PRA for B*(C + D)*EF 

5- Conclusions 
This paper introduces a new programmable building-block for recognition of regular languages. 

The building-block can be formed (or "programmed") for any regular expression using a syntax-

directed construction method, which also allows easy and mechanical verification of circuit 

properties. Recognizers built using these building-blocks are efficient pipeline circuits that have 

constant response time and avoid broadcast. In addition, PRA's provide compact reconfigurable 

layouts, requiring only 0 (n log n) area for regular expressions of length n. Programmable recognizers 

should be included as one of the building-blocks in the I.C. designer's toolbox. 
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