NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

M-CS-81-135

University Libraries ’
C_arnegie Mellon Univers:ty R Jrlx
Pittsburgh PA 15213-3890

‘ wl-12
OPS5 User’s Manual . o
e D

July 1981

Charles L. Forgy
Department of Computer Science
Carnegie-Meflon University

Pittsburgh, Pennsylvania 15213

Abstract: This is a combination introductory and reference manual for OPSS, a programming language for
production systems. OPSS is used primarily for applications in the areas of artificial intelligence, cognitive

psychology, and expert systems. OPSS interpreters have been implemented in LISP and BLISS.

Copyright © 1981 Charles L. Forgy

*This research was sponsored by the Defense Advanced Research Projects Agency (DOD). ARPA Order
No. 3597, monitored by the Air Force Avionics Laboratory under Contract F33615-78-C-1551.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, cither expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

Table of Contents
1. Introduction

1.1. The Production System Architecture
1.2. OPS85’s Working Memory

1.3. OPS5’s Production Memory

1.4, The OPSS Lexical System

1.5. Acknowledgements

2. Working Memory

2.1. Organization of Working Memory
2.2. Time Tags
2.3. Scalar Values
2.3.1. Numbers
2.3.2, Symbolic Atoms
2.3.3. Case
2.4, The Standard Structured Types
2.4.1. Attribute-Value EFlements
2.4.1.1. Declarations
2.4.1.2. Error Checking
2.4.2. Vector Elements
2.5. Details of Implementation
2.5.1. Attribute-Value Elements
2.5.2. Vector Attributes
2.5.3. The Operator t
2.5.4. Default Values
2.6. User-Defined Representations

3. Production Memory

3.1. Organization of the Memory
3.2. Production Names
3.3. The Production

4. The LHS

4.1. The Condition Element
4.1.1. Terms
4.1.2. The Operator t
4.1.3. Values
4.1.3.1. Constants
4.1.3.2. Variables
4.1.3.3. Disjunctions
4.1.3.4. The Operator //
4,1.3.5. Predicates
4.1.3.6. Conjunctions
4.2, The LHS as a Whole
4.2.1. Negated and Non-negaied Condition Elements
4.2.2. Element Variables

423, Length of an LHS
5. The RHS

5.1. Element Designators
5.2. Patterns
5.2.1. Terms
5.2.2. Evaluating Terms
5.2.3. The Operator *
5.2.4. Constants
5.2.5. Variables
5.2.6. The Operator //
5.2.7. RHS Functions
5.2.7.1. substr
5.2.7.2. genatom
5.2,7.3. compute
5.2.7.4. litval
5.2.7.5. accept
5.2.7.6. acceptline
5.3. Actions
5.3.1. make
5.3.2. remove
5.3.2.1. Flement Designators and remove
5.3.2.2. Multiple remove’s of an Element
5.3.3. modify
5.3.3.1. Flement Designators and modify
5.3.3.2. Multiple modify’s of an Element
5.3.4. openfile
5.3.5. closefile
5.3.6. default
5.3.7. write
5.3.7.1. Special Functions for write
5.3.7.2.crif '
5.3.7.3. wabto
5.3.7.4. rjust
538.call
5.3.9. halt
5.3.10. bind
5.3.11.cbind
5.3.12. build

6. The Recognize-Act Cycle

6.1. Conllict Resolution

6.1.1. The LEX Strategy

6.1.2. The MEA Strategy

6.1.3. Which Instantiations to Discard
6.2. Act
6.3. Match

21
23

23
23
24
24
24
25
25
25
25
25
26
26
27
27
27
28
28
28
29
29
29
30
30
30
i1
31
32
32
32
33
33
34
34
34
34
34

37

37
33
38
39
40
40

7. User-Defined Actions and Functions

7.1. Declarations
7.2, Actions
7.2.1. $parameter
7.2.2. $parametercount
7.2.3. Sassert
7.2.4, $tab
7.2.5. $value
7.2.6. Sreset
7.2.7. Sifile and $ofile
7.3. Functions
7.3.1. Svarbind
7.3.2. $litbind
7.4. Atoms
74.1. Seql
7.4.2, $symbol
7.4.3. $intern
7.4.4. $cvan and $cvna

‘8. Using the OPSS5 Interpreter

8.1. The Top Level
3.1.1. make
8.1.2. remove
8.1.3. openfile
8.1.4. closefile
8.1.5, default
8.1.6. call
8.1.7. run
8.1.8. ppwm
8.1.9. wm
8.1.10. pm
8.1.11.cs
3.1.12. matches
3.1.13. strategy
2.1.14. watch
3.1.15. pbreak
8.1.16. exit
8.1.17. excise
8.1.18. back

8.2. Loading a Production System

Appendix]. Syntax of OPS5
Index '

1. Introduction

OPS5 is a member of the class of programming languages known as production systems. It is used
primarily for applications in the areas of artificial intelligence, expert systems, and cognitive psychology. This
manual is a combination introductory and reference manual for OPSS. The rest of Section 1 provides an
overview of the language. Sections 2 through 8 describe the language and its interpreter in detail. 1o ailow
the new user to read the manual straight through, the material has been organized in a top-down fashion. To
allow the experienced user to answer detailed questions quickly, the manual has been divided into short

sections describing individual features of the language, and an index has been provided.

Three interpreters for OPSS have been written, one in BLISS [1], one in MACLISP [3], and one in FRANZ
LISP[3]. Ascould be expected, there are a few incompatibilities between the interpreters. The manual points

out the differences between the three interpreters.

1.1. The Production System Architecture

A production system is a program composed entirely of conditional statements called productions. These
productions operate on expressions stored in a global data base called working memory. The productions are
stored in a separate memory called production memory. The production is similar to the [f-Then statement of
conventional programming languages: a produétion that contains n conditions C, through C, and m actions

A through A_ means

When working memory is such that C1 through Cn are true simultaneously,
then actions A; through A_ should be exzcuted.

The condition part of a production is usually called its LHS (left hand side), and the action part is called its
RHS {right hand side).

The production system interpreter executes a production system by performing a sequence of operations

called the recognize-act cycle:

1. Match} Evaluate the LHSs of the productions to determine which are satisfied given the current
contents of working memory.

2. [Conflict resolution] Select one production with a satisfied LHS. If no productions have satisfied
LHSs, halt the interpreter.

3. [Act] Perform the actions specified in the RHS of the sclected production.

4, Go to step L.

Production systems differ from conventional programs in two major respects. The first is that the

production system uses a different method for encoding the state of a computation. A conventional progran
encodes state by assigning values to local and global variables. A production system encodes state by putting
expressions in the system’s global working memory. The other difference between production systems and
conventional programs is the way flow of control is managed. A conventional program uses sequcntial
execution of statements plus a number of control constructs including subroutine calls, locps, and conditionat
branching. A production system uses LHS satisfaction. Each production’s LHS is a description of the states
in which the production is applicable; the LHS becomes true when there is some information in working
memory that the production can process. When the interpreter performs the match process, it is in effect
searching for a production that knows how to process the data that is in working memory. When it finds that
production and exccutes its RHS, working memory is changed, and so on the next cycle, the interpreter

performs the match again to find a production that can handle the new data.

1.2. OPS5’s Working Memory

In OPSS, the most commonly used representation for information in working memory is the attribute-value
representation. This representation is oriented towards describing objects and relations among objects; that
is, even though it (like most representations) can be used for many other purposes, it is most naturally used to
describe objects and relations. In this representation, every element in working memory consists of an object
and a collection of associated attribute-value pairs. For example, in this representation, a single working
memory element might indicate that blockl is a red block weighing 500 grams, measuring 100 mm on a side.

The element would be

{block
+name blockl
tcolor red
1mass 500
+length C100
+width 100
+height 100)

As this shows, an element consists of a class name (b1o¢k in this case) followed by some number of attributes

and values, with everything enclosed in parentheses. Attributes are distinguished by being preceded with the

operator *.

1.3. OPS5’s Production Memory

The LHS of a production consists of one or more patterns; i.e., one or more expressions that describe
working memory elements, During the match part of the recognize-act cycle, the interpreter compares each
pattern with the elementis in working memory {0 determine if the pattern matches any of them. The pattern is
considered satisfied if it matches at least one element. If all the patterns in a production’s LHS are satisfied,

the LHS is satisfied.

Patierns are abstract representations of working memory elements. One way a pattern can be an
abstraction of a working memory element is to contain fewer attributes and values than the element Such a
pattern will match any working memory clement that contains the information in the pattern. (It does not

matter how much more information the working memory clement contains.) Thus the pattern
{(block tcolor red)

would match the working memory clement

{block
thame tlockl
tcolor red
tmass 500
+length 100
twidth 100
theight 100)

Another way a pattern can be an abstraction of a working memory element is to contain incompletely
specified values. OPSS provides special pattern operators that can be used to specify values at various levels
of detail. The most impottant operator is the variable. A variable is any symbol that begins with the character
< and ends with the character > - for example, <x> or {status>. A variable in a pattern may match
anything, but if a variable occurs more than once in a production, it must maich the same value everywhere.
Thus if a cube is defined to be a block whose three sides are the same length, the following pattern will match

only cubes.
(block +1angth <x> twidth <x> theight <x>)

The RHS of a production consists of an unconditional sequence of actions. OPS5's set of action types
includes actions to manipulate working memory, actions to perform input and output, actions to add new
productions to production memory, and others. The most important of the actions are the ones to manipulate
working memory. The action make is used to create and add new elements. A make action consists of an
open parcnthesis, the symbol make, a description of the element to create, and a close parenthesis. The
description of the element is similar in form to the patterns in the L.HS. For example, the following would

create the element for blockl shown above,
{(make block

tname blockl
+color red
t*mass 6500
+length 100
twidth 140
theight 100)

The action remove is used to delete elements from warking memory. A remove action consists of an open
parenthesis, the symbol remove, a pointer to the element to delete, and a close parenthesis. The following

for exampie would delete the element maiching the third pattern of the production’s LHS.
(remove 3)

'The action modify is used to change one or more valucs of an existing ¢lement. A mod ify action consists of
an open parenthesis, the symbol mod1fy, a pointer to the element to change, a description of the changes to
make, and a close parenthesis. The following for example would change the status of the element

matching the first pattern in the LHS to satisfied.
(modify 1 tstatus satisfied)

A production consists of an open parenthesis, the symbol p, a name, the LHS of the production, the symbol
-->, the RHS, and aclose pqrenthesis. The following is a typical (though quite small) OPSS5 production. The

text after the semicolon on each line is a comment.
(p find-colored-block

{goal If there is a goal
tstatus active which 1s active
+type find to find
tobject block a block

of a certain color
And there is a block
of that color

tcolor <22)
{block
tcolor <2z>
+name <block>)
--=>
(make result ; Then make an .element
t+pointer <block>) to point to the block
(modify 1 And change the goal
+status satisfied)) marking it satisfied

w4 We Wwe we ws wE Wwe

- w2 wr o

1.4. The OPS5 Lexical System

The input to OPSS5 is completely free format. Spaces, tabs, and new lines may be used at will to improve
the readability of productions and working memory elements; the interpreter uses the parentheses to
determine where units begin and end. In addition, comments like those shown above may be used anywhere;
when the interpreter reads a line containing a semicolon, it discards everything from the semicolon to the end

of the line. The above production could also have been written

(p find-colored-block
{goal tstatus active +type find tobject block
tcolor <z>)
(block t+color <22 tname <block>)
-->
(make result tpointar <block>)
(modify 1 +status satisfied))

1.5. Acknowledgements

The first language in the OPS family [4, 5] was designed in 1975 at Carnegie-Mellon University by Charles
Forgy, John McDermott, Allen Newell, and Michael Rychener. The design of the language was influenced
by carlier production systems languagcs, including PSG {10} and PSNLST {11]. Since 1975 OPS has been

revised several times as beuter representations and more cfficient interpreters have been developed (6, 7, i2).
Many people have contributed to the development of OPS, including the members of the CMU production
systems, expert systems, and cognitive psychology groups, as well as the members of Digital Equipment

Corporation’s expert systems group.

2. Working Memory

Working memory is a set of ordered pairs
{Time tag, Working memory element>

A working memory element is a structure {usually a vector or record) of scalar valucs. The time tag is a

unique numerical identifier that is supplied by the interpreter.

2.1. Organization of Working Memory
OPSS, like most programming languages, provides both scalar (sometimes called atomic} data types and
structured data types. The elements in working memory may not be scalars. (However, it is legal to have a

structure that contains only a single scalar value.)

The number of elements in working memory varies dynamically at run time. With the LISP-based
‘interpreter, working memory may grow arbitrarily large. With the BLISS-based interpreter, a maximum size

for the memory is established when the interpreter is installed; the current limit is 1023 elements.

2.2. Time Tags

Every element in working memory has an associated integer called the element’s /ime /ag. This integer
indicates when the element was created or last modified; the elements with larger time tags were more
recently created or modificd. No two elements have the same time tag. Time tags are used in conflict
resolution, and they are used to designate elements by many of the facilities that communicate with the user

(see Section 8.1).

2.3. Scalar Values

OPS5 provides two scalar data types: numbers and symbeolic atoms.

2.3.1. Numbers

The numeric type on the LISP-based interpreters for OPSS includes both floating point and fixed point'
numbers. (The interpreters will make the appropriate conversions when mixed mode expressions are
evaluated.) The BLISS-based interpreter allows only fixed point numbers to be used. Fixed point numbers
consist of an optional sign, one or more decimal digits, and an optional decimal point. Valid fixed point

numbers include

0
0.
-7
-7.

A floating point number consists of an pptonal sign, zero or more decimal digits, a decimal point, zero or
more digits after the decimal point, and an optional ¢xponent, consisting of the letter "e” followed by a signed
or unsigned integer. The number must include either an exponent ot a digit after the decimal point; if it

contains neither the interpreter will take it to be an integer. Typical floating point numbers include

0.0

.06
6.02e-23
-1.812

The computer on which OPSS is run determines the legal range for fixed and floating peint numbers and the

number of digits of precision in floating point numbers.

2.3.2. Symbelic Atoms
A symbolic atom is any sequence of characters that does not constitute a number and that is treated as a
single unit by the production system. Examples of symbolic atoms include

a
nil

4-7-786
Some non-printing characters such as escape (ASCIT 33 octal) or control-C (ASCII 3 octal) cannot
conveniently be used in atom names. In addition, on the BLISS-based interpreters, symbolic atoms must not
contain the character '. But with this exception, all printing characters and many non-printing characters

such as space and tab can be used.

Some characters will be incorporated into atoms only if they are quoted. If they are used unquoted they
are taken to be operators or separators. The characters that need to be quoted include (but are not limited to)
space, tab, period, comma, Uparrow ("1"), left and right braces ("{}"), and left and right parentheses (" ()").
Different LISP interpreters provide different mechanisms for quoting characters. The best mechanism to use
in OPSS is probably the vertical bar (the character |) because it is understood by all the OPSS interpreters. In
all the interpreters, everything that occurs between two vertical bars constitutes an atom. Thus the atom }))
would be entered {)))1].

2.3.3. Case
The MACLISP-based interpreter and the BLISS-based interpreter do case folding; that is, they convert
lower case characters to upper case on input. The FRANZ LISP-based interpreter does not do case folding.

Thus on that interpreter, p and P arc distinct atoms. All commands to the FRANZ LISP-based interpreter

must be given in lower case.

2.4, The Standard Structured Types
OPSS5 provides two non-scalar data types, plus a mechanism which allows the uscr to implement other non-

scalar types. The standard types are attribute-valuc clements and vectors.

2.4.1. Attribute-Value Elements

An attribute-value element consists of a class name and some number of attribute-value pairs, with
everything enclosed in parentheses. Attributes are symbolic atoms, and values are either scalars or scquences
of scalars. An attribute-value clement may not contain more than 126 values. The following is a typical

element.
{goal tstatus active +type find tobject block tcolor red)

The class name of this element is goal. Its attributes arc status, type, object, and color; the
corresponding attributes are active, find, object, and red. The prefix operator t is used to distinguish

attributes from values.

The order in which attribute-value pairs are specified is not significant. Thus this element could also have
been written say
(goa) +color red tobject block +status active +type find)

2.4.1.1. Declarations

Attribute names must be declared before they can be used. The usual way to declare names is with
Titeralize. (Another method is described in Section 2.6.) A t1teralize declaration indicates which
attributes will be used in clements of a given class. A declaration consists of the atom 1iteralize, a class
name, and the attributes for that class, all enclosed in parentheses. For the goal shown above, a declaration
like the following would be given.

{1iteralize goal
status

type
object
color)

This indicates that elements of class goa can have the attributes status, type, object, and color.

An attribute may have only one scalar value at a tirme unless it has appeared in a vector-attributs
declaration. A vector attribute may have one, two, three, or more values; the only restriction is that the total
size of the working memory element may not exceed 126 values. The number of values assigned to a vector
attribute may vary dynamically at run time. The declaration consists of the atom vector-attribute and
onc or more ateribuie names, all enclosed in parentheses. For example, if contents was to be made a vector

attribute, it would be declared

(vector-attribute contents)
For an example of a vector attribute, consider a production system to solve the Towers of Hanoi problem
The vector attribute contents could be used to indicate which disks were on a given peg.

(peg

tname peg2
tcontents diskl disk3 disk4 diskb)

Two restrictions apply to vector attributes.

e An element class may not have more than one vector attribute.

e The vector attribute declaration is global, Each attribute is either a scalar attribute everywhere it
is used o a vector attribute everywhere it is used. It is not possible for an attribute to be a scalar
attribute in one element class and a vector attribute in another.

24.1.2. Error Checking

OPS5 does not perform extensive error checking of attribute-value elements. It will permit attributes to be
used with element classes they were not declared for, and it will aillow the user to treat scalar attributes as
vector attributes. It cannot check for errors like these because atiribute-value elements are implemented

using a general mechanism that is also available to the user (see Section 2.6).

2.4.2. Vector Elements

The vector representation is used for data that needs to be represented as a sequence of symbols. An
clement in this representation consists of an open parenthesis, a sequence of atoms and numbers, and a close
parenthesis. One common use for this representation is to hold input from the user. The element shown

below for example might be a command given to a system for algebraic manipulation.
(differentiate sexpression 4 wri x)

Vector working memory elements do not have to be declared. Vectors can vary in length at run time. A

vector cannot contain more than 127 values.

2.5. Details of Implementatlon

In the OPSS interpreter, all working memory elements are stored as ordered lists or vectors of values.
Attribute-value representations are implemented by mapping ficld names into indices. The lists shrink and
grow as necessary when the elements are modified. An element may not grow 1o more than 127 values,

however.

10

2.5.1. Attribute-Value Elements

In an atiribute-value element, the class name is stored in the first field of the element, and the value of each
attribute is stored in a ficld that is assigned to the attribute. For example, on one run of a production system
object might be assigned 2, status assigned 3. color assigned 4, and type assigned 5. Then the

working memory element
(goal tstatus active +type find tobject block t+color red)

would be stored internally

Each rectangle here represents one field in the working memory element.

The assignment of ficld numbers to attributes is performed by the interpreter when the Titeralize
declarations are processed. The number assigned 10 each attribute is global; if attribute A has number N in

one element class, it will have number N in every class it occurs in.

2.5.2. Yector Attributes
Vector attributes are implemented by assigning the vector attribute a higher number than any other
attribute in the class. (If a vector attribute is used in more than one class, it is assigned a number that is higher
than any other attribute in any of the classes.) This allows the tail of the element to be dedicated to the vector
attribute. The values of the attribute consist of the vatue in its assigned field plus all the succeeding values to
the end of the element. Thus if name was assigned 2 and conteants was assigned 3, then the element
(peg
tname peg2
tcontents diskl disk3 disk4 disks)

would be stored

11

Since OPSS allows clements to grow ahd shrink dynamically at run time, the number of values assigned to

a vector attribute can vary dynamicatly.

2.5.3. The Operator +
Since attributes are mapped by the interpreter into field numbers, the operator * is essentiaily an index

operator. To interpret
tatt

OPS5 converts att into an integer, and then uses that integer to index into the working memory element.

The operator * can also be used with numeric arguments. For example,
17

This designates the seventh value in an clement.

Although it is common practice to write + immediately adjacent to the attribute (or number) this is not

required. Blanks, tabs, and other non-printing characters can be put between the + and the attribute.

2.5.4. Default Values

In OPSS it is legal to read the value in a field that has not reccived a value, (Sections 4 and 5 explain how
productions read values from elements.) By default, every field in an element has the value nil until the
production system changes it to something else. For consistency, the interpreter also returns ni1 if the
production system reads beyond the end of the element {e.g., reading field 20 of an element that has values
only in fields 1 through 10). It is not legal, however, t0 read non-existent fields; an attempt to read fields less

than 1 or greater than 127 is an error.

2.6. User-Defined Representations
The declaration 1iteral is provided to allow users to implement their own representations. The
declaration is used to assign numbers to attributes. A 1 jteral declaration consists of an open parenthesis,

the symbol 11teral, some number of triples of the form
attribute = number

followed by a close parenthesis. For example

12

(1iteral
status = 2
type = 3
object = 4
color = B)

If a production system contains both 1iteral and Titeralize declarations, the interpreter will process
the Titeral declarations first (even if they are not written first). Then, if is possible, it will use the explicit
1iteral assignments for the attributes that occur in both 11teral and 1iteralize declarations. Ifitis

not possible to accommodate the explicit assignments, an error message will be printed.

The declaration 1iteral should be used only when 1iteratlize cannot be used, because Titeral has
two severe limitations. First, it is easy to make a mistake with 1iteral and assign the same number to two
attributes that were supposed to be distinct. This can cause obscure bugs in the production system. Second,
literal does not provide enough information for the working memory element printer to work properly.
"When 1iteralize is used, elements are printed in attribute-value format; when 1iteral is used,

elements must be printed as lists.

13

14

3. Production Memory

An OPSS5 production memory consists of a set of productions.

3.1. Organization of the Memory
There is no structure imposed on production memory. In particular, the productions are not grouped into
subroutines; any production can fire at any time. Furthermore, the order in which productions are entercd

into the system is not important.

Production memory can contain arbitrarily many productions. The only limit is the amount of memory

available on the computer to store the productions.

3.2. Production Names

The name of a production must be a symbolic atom. The atom n11 should not be used.

Two productions may not have the same name. If the user enters a preduction that has the same name as

an existing production, the existing production is removed from production memory.,

3.3. The Production
A production consists of (1) an open parenthesis, (2) the symbol p, (3) the name of the production, (4) the
L.HS of the production, {5) the symbol -->, (6) the RHS of the production, and (7) a close parenthesis. The

production shown in Section 1.3 is typical.

{p find-colorsd-block
(goal +status active ttype find tobject block
tcolor <23)
(block tcolor <20 tname <block>)
-->
(make result tpointer <block>)
(modify 1 tstatus satisfied))

15

16

4. The LHS

As Section 3.3 explained, the LHS of a production is everything between the production’s name and the

symbol =->. An LHS is a collection of patterns called condition elements.

4.1. The Condiiion Element

A condition element is a pattern to maich a working memory element; it consists of an open parenthesis,
some number of forms to specify attributes and values, and a close parenthesis. The forms are called
condition element terms. A condition clement is considered to match a working memory clement if every

term in the condition element marches the corresponding part of the working memory element.

4.1.1. Terms

A condition clement term can be either

e The operator + followed by an attribute and a specification of a value {OPSS provides a varicty of
ways to specify values in condition clements -- see below)

e The operator + followed by a number and a specification of a value, or

o Just a specification of a value.

4.1.2. The Operator
The interpreter applies three rules to determine which value in a working memory element a term should
be compared to.

1. If the term countains 4 and an atiribute name or a number, compare the term 1o the value in the
indicated field in the working memory element.

2. If a term Ta that contains no + is preceded by another term Tp, move to the position immediately
after the position used for Tp, and compare Ta to the value there.

3. If a term that contains no * is not preceded by another term, compare the term to the value in the
first field in the working memory element.

To see how these rules work with vector and attribute-value representations, consider the foilowing
condition elements. In these elements, al and a2 are attributes, and v1 through v6 are values.

{v1v2v3)
(v4 tal v5 ta2 v6)

In the first condition element, by Rule 3, when vl is processed it will be compared to the first value in the
working memory element. By Rule 2, v2 will be compared to the second value, and by the same rule, v3 will

be compared to the third value. Thus the rules cause vector style condition elements to be processed

17

correctly. In the second condition clement, by Rule 3, v4 will be compared to the first value in the working
memory element. By Rule 1, v5 will be compared to the valuc in the field for al, and by the same rule, v6 will
be compared to the value in the field for a2. Thus the rules also cause attribute-value style condition elements

to be processed properly.

4.1.3. Values
The values in condition element terms can be specified as constants or by using the pattern operators
provided by OPS5.

4.1.3.1. Constanis

Symbolic atoms and numbers may occur in condition elements as well as in working memory elements. A
symbolic atom in a condition element matches a symbolic atom in a working memory ¢lement if the
sequences of characters composing the two elements are identical. A number in a condition element maiches

a number in a working memory element if the algebraic difference of the two is zero.

4.1.3.2. Variables

A variable in OPS5 is any symbolic atom whose first character is < and whose final character is >; for
example, <x> or {status>. A variable will match any symbolic atom or number, but if a variable occurs
more than once in an LHS, all occurrences must match the same value. A variable is said to be bound to the

value it maiches.

4.1.3.3. Disjunctions -
The brackets << and >> specify that any of the contained values is acceptable as a match., Thus the
following
<< nil 17 >

will match either ni% or 17.

These brackets implicitly quote the symbols that they contain. Thus the following
<L x> Ly> >
would match not the binding of <x> or <y>, but rather the symbols <x> or <y>. The brackets will also

quote + and all the pattern operators that are described below.

4.1.3.4. The Operator 7/

The prefix operator // is used to quote single symbols in condition elements. For cxample, to match the

symbol <x> rather than the binding of the variable <x>, the following is used.
/<X

18

For another example, to match the symbel /7 the following is used
/17

This operator can also be used to quote *, the brackets << and >>, and the other operators defined below.

4.1.3.5. Predicates
OPSS has seven prefix operators called predicates which are used with constants and variables. The

predicates are

<O
{=>
<
=
p
>

The first occurrence of a variable cannot be preceded by any predicate other than =. (This restriction is

necessary because the ﬁrsi occurrence of the variabte establishes the binding for the variable.)

The predicate <> is the not-equal predicate. If vall is a variable or constant,

& vall

will match any value except the values that are matched by
vall

The predicate = is provided only for completeness; if val2 is a constant or variable
= val?

is exactly equivalent to
val2

The predicate <=> is the same type predicate. If val3 is a number or a variable bound to a number,
<=> val3

will match any number, If val4 is a symbolic atom or a variable bound to a symbolic atom,
{=> val4

will match any symbolic atom.

The remaining predicates, €, <=, >=, and > are uscd only with numbers and with variables that are bound
to numbers. They maich, respectively, numbers that are less than, less than or equal to, greater than or equal

10, or greater than the value in the condition element term. For example,
<0

will match any negative number,

19

4.1.3.6. Conjunctions
The braces { and } arc used to indicate that a value in a working memory element must match several
things simultancously. For example, to indicate that a value must be greater than zero, but less than ten, the

following would be used.
{>0 < 10}

Braces may contain constants, variables, either of these preceded by predicates, the operator //, and the
brackets << and >>.

Braces are often used with variables. The braces allow specifying some restrictions on a value and binding

a variable to the value that meets the restrictions. For example,
{¢<< abecd><x>}
Will match a, b, ¢, or d and bind the value that is matched to <x>. As another example,
{{y> <O x>}
will match anything that is not equal to the current binding of <x> and bind the value that is matched to <y>.

As a limiting case, empty braces place no restrictions on the value matched. Thus they can be used as place
holders in a condition element. For example, the condition element
(x> {} <x>)
will match any working memory element whose first and third values are equal, regardless of what the second

value is.

4.2. The LHS as a.-Whole
The condition elements in an LHS may be negated or not, and the non-negated condition elements may

have variables bound to them.

4.2.1. Negated and Non-negated Condition Elements
A condition element may be negated by preceding it with the operator -. An LHS consists of one non-
negated condition element followed by zero or more negated or non-negated condition elements. An LHS is

satisfied when
o There exist working memory ¢lements that match all the non-negated condition elements, and
o There exist no working memory elements that match the negated condition elements.

Thus if P1, P2, and P3 are condition elements, the LHS
Pl P2 -P3

is satisfied only when working memory contains somcthing matching P1, something matching P2, and

20

nothing maiching P3.

4.2.2. Element Variables
A variable may be bound to the working memory clement that matches a non-negated condition element
through the use of the {3} braces. The condition clement and the variable are placed inside the braces; for
example
{ <c2> (block tcolor <z>}) }
or
{ (block tcolor (2>} <c2> }

These two lines are exactly equivalent.

These variables, which are called element variables, are not treated like the other variables. A given
element variable can appear only once in an LHS. Thus element variables can only be bound on the LHS;
they cannot be tested. An I.LHS may contain both an ordinary variable and an ¢lement variable with the same

pame:; OPSS will not confuse the two since the contexts they ceeur in are distnct.

4.2.3. Length of an LHS
On the LISP-based interpreters, LHSs can contain arbitrarily many negated and non-negated condition
elements. On the BLISS-based interpreter, there is a limit of sixteen non-negated condition elements per

LHS. There is no limit on the number of negated condition elements an LHS may contain, however.

21

22

5. The RHS

The RHS of a production is cverything in the production after the -=>. The RHS consists of an
unconditional sequence of commands called acrions. An action consists of an open parenthesis, the action

type, the arguments to the action, and a close parenthesis. The actions in the production in Section 1.3 are

{make result tpointer <block>)
{modify 1 +status satisfied)

The action types here are make and mod ify; everything else constitutes the arguments (o the actions.

OPS5 provides twelve action types: make, remove, and modify to change working memory;
openfile, closefile, and default to manipulate files; write to output information; bind and
cbind to assign values to variables; cal1l to cail user-written subroutines; halt to cause the interpreter to
stop firing productions; and bui1d to add preductions to production memory. Sections 5.1 and 5.2 explain

how the arguments to these actions are evaluated. Section 3.3 describes the actions.

5.1.Element Designators

Some of the actions and functions in OPSS refer to working memory elements. Working memory clements
may be designated either by number or by use of clement variables (see Section 4.2.2). Ifan clement variable
is used, it refer§ to the working memory element that it was bound to in the LHS. (Element variables can be
bound explicitly in the RHS -- see Section 5.3.11. If the variable has been given an explicit binding, that
binding is used.) If a number K is used, it refers to the e¢lement maitching the Kth non-negated condition
- clement in the LHS. It is important to note that the interpreterv does not count negated condition elements

when it is evaluating a numeric element designator. Thus in the RHS of the following production
(p ex1

(...} <c>}
)

The clement variable <¢> and the numeric element designator 2 both refer to the same working memory

(...)
- ()
(
--> .

element ~- the one matching the tast condition clement in the LHS.

5.2. Patterns
Many of the RHS actions take patterns like condition elements as arguments. The make action. which is

described in Section 5.3.1, is typical; its only argument is a pattern. For instance,

(make block tname blockl tcolor red tmass 500 tlength 100
twidth 100 theight 100)

When the interpreter evaluates a pattern in the RHS, it instantiates the pattern into an element by replacing

variables with the valucs they are bound to, suppiving default values for unspecified parts of the element, etg,

23

The element that results does not necessarily get put into working memory. Some of the actions put the

element in working memory; some use it for other purposes and then delete it. The clement that is built is

called the result element.

5.2.1. Terms
An RHS pattern, like a condition element, consists of a sequence of terms. An RHS term can be

e The operator * followed by an attribute and a specification of a value,

e The operator + followed by a number and a specification of a value,
e The operator + followed by a variable and a specification of a value (this is not allowed in the

LHS), or

o Just a specification of a value.

5.2.2. Evaluating Terms
In outline, the process of instantiating a pattern is

1. Fill the result element entirely with n{1.
2 Evaluate each term in the pattern in order from left to right, changing the result element as the

term indicates.

5.2.3. The Operator t
The interpreter uses three rules to determine which position in the result element a term refers to.}

o Ifa term contains 4+ and an attribute name or a number, move to the indicated field and change its

value as the term specifies.

e If a term Ta that does not contain + is preceded by another term Tp, move to the position
immediately after the position used for Tp and change its value as Ta specifies.

o If a term that does not contain + is not preceded by any other term., change the first field in the

result element as the term specifies.

1'l‘he:se fales are like the ones used in processing patterns in the LHS. See section 4.1.2.

24

5.2.4. Constunts
Symbolic atoms and numbers are copied into the result elemcnt without change. Thus if
(maks ... t4 nil +6 0 ...)

is evaluated, position 4 of the clement is set to n41, and position 5 to 0.

5.2.5. Variables
When a variable in an RHS pattern is evaluated, the binding of the variable is copied into the result

element. Thus if <x> is bound to n11, when the following is evaluated
(make ... 18 <x> ...)

position 6 of the element is given the value ni1.

5.2.6. The Operator //
The symbol // is used to keep symbols from being evaluated. If sym is any symbol,
// sym

causes sym to be placed directly into the result etement. Thus if
(make ... *7 // ¢t +8 // Lz> 9 /7 /L)

is evaluated, position 7 is given the value *, position 8 is given the value <z>, and position 9 is given the value
//.

5.2.7. RHS Functions _
An RHS function is a subroutine that puts one or more values into the result element. The syntax of an
RHS function call is like the syntax of an action: an open parenthesis, the name of the function, the

arguments to the function if any, and a close parenthesis.

5.2.7.1. subsir

The function substr extracts a sequence of values from an existing working memory ¢lement and puts
the values in the result element The function takes three arguments. The first argument is an element
designator. {See Section 5.1.) This argument indicates which working memory element is to be examined to
get the values. The second argument should 'be an integer, an attribute name, or a variable that is bound to an
integer or attribute name. This argument indicates the first value that is to be extracted. The third argument
should be an integer, an attribute name, a variable that is bound to an integer or attribute name, ot the symbaol
inf. This argument indicates the final value to extract. For example, if <w> isboundto(a b ¢ d e),
then evaluating

(make ... t10 (substr <w> 3 3) ...)

will cause the atom ¢ to be copied into position 10 of the result cliement. When more than one value is

25

extracied, the values are placed in contiguous fields in the element; thus

(make ... t11 (substr <w> 2 4) ...)
will cause b 1o be copied into position 11, ¢ to be copied into position 12, and d 1o be copied into position 13.
The special symbol inf indicates that substr is to continue taking values undl it reaches the end of the
element it is extracting them from. Thus

(make ... +14 (substr <w> 4 iaf}) ...)

will copy d into position 14 and e into position 15,

The function substr can be used to extract information from attribute-value elements, but it should be

used carefully. Itis legal to call substr to copy all the valuesin a certain range -- for example, to use
(substr 3 status object)

to copy ail the values from the valuc of status to the value of object -- but this is a questionable practice.
If the interpreter assigns numbers to attributes, the positions of status and object may vary from run to
run: in fact, on some runs status may come after object. There are two safe uses of substr with
attribute-value elements however. The first is to extract the value of a particular attribute, If the same
attribute name is used for the second and third arguments, substr will return just the value of that attribute.
For example, the following would be used to copy the from value of one element into the to field of

another.
(make ... tto (substr <x> from from) ...)

The other safe use with attribute-value elements is copying an entire element. For example, executing
(make ... *t1 (substr <z> 1 inf) ...)

copies all the values of element <z> into the corresponding fields of the result element.

5.2.7.2. genatom
The function genatom creates a new symbolic atom and puts it in the result element. This function takes

no arguments, so a call on it always has the form (genatom).

5.2.7.3. compute

The function compute evaluates arithmetic expressions. The expressions can contain five operators, +, -,
* 7/, and \\, which denote respectively addition, subtraction, multiplication, division, and modulus.
Standard infix notation is used, but operator precedence is not used; compute evaluates the operators from
right to left. Parentheses can be used to override the right to left evaluation. Only numbers and variables that
are bound to numbers can be used in the expressions. Typical calls on computae include

(compute <x> + 1)
(compute (*) - 4 * <a> * <c2)

26

5.2.7.4. litval

The function 1itval puts into the result element the number which has been assigned to an attribute
name. That is, if a is an attribute name, then (1itval a) determines the number of the ficld that is used
for attribute & and puts the number into the result element. The function takes one argument, which
normally is an attribute name or a variable which is bound to an attribute name. The function will also accept

numbers or variables bound to numbers: when it is called with such an argument, it returns the number,

5.2.7.5. accept
The function accept takes input from the user and puts it into the result element. The function takes
either one or zero arguments. If it has an argument, the argument must be a symbolic atom or a variable that

is bound to a symbolic atom. The following are legal calls on accept

(accept)
(accept infile)
(accapt <x>)

If accept is called with no arguments, it takes its input from the current default input stream. (See Section
5.3.6.) Ifit is called with an argument, accept takes its input from the file that has been associated with the

atom. (See Section 5.3.4.)

The function will read either a single atom or a list. When it reads a list, it strips the parentheses from the
list and puts the atoms of the list into the result element. The interpreter determines whether it is to read a list
or a single atom by inspecting the first printing character in the input. If the interpreter eacounters (, it
expécts to read a list, so it does not stop reading until it reaches). If it encounters any other printing

character, it reads only one atom.

If accept is asked to read beyond the end of a file, it puts the atom end-of-f1ile in the result element.
In the LISP-based interpreters, if the end of the file is reached while a list is being read, a LISP error will

CCCUr.

5.2.7.6. acceptline
The function acceptlina is also used to read input. The difference between accept and acceptlinag
is that the latter always reads exactly one line of input. The function reads ¢verything on the line, removes

any parentheses that are there, and puts the atoms into the result element.

This function takes any number of arguments. If the first argument is associated with an input file (see
Section 5.3.4) acceptline takes the input from that file; otherwise, it takes the input from the current
default input stream {sec Scction 5.3.6). The rest of the arguments are used when a aull line is read or when

acceptline trics to read beyond the.end of a file. A nuil line is a line that contains no characters other than

27

spaces and tabs. When acceptiine encounters a null linc or the end of a file, it puts its arguments into the
result element. (If the first argument is not the name of a file, it is put in the result element along with the
other arguments.) Thus when the function

(acceptline nothing read)

is evaluated, the interpreter will read the default input {(assuming that nothing is not associated to a file) and

then put into the result element either one line of input or the two atoms nothing and read.

5.3. Actions
1hezmdonsh10PSSan:make,ramove,mod1fy,openf11e,ciosefile,defau]t,write,ca1L
halt, bind, cbind, and build.

5.3.1. make
The action make creates new elements and adds them to working memory. The argument to make is an
RHS pattern; it is evaluated as described in Section 5.2. A typical example of a make action is
(maks result tpointer <block>)
If <b1ock> was bound to block, this action would add to working memory the element
(result tpointer blockl)
A bigger example of make was shown before:
(make block

+name blockl
tcolor red
tmass 500
+langth 100
+width 100
theight 100)
which puts into working memory the element
{block
t+name blockl
tcolor red
+mass B00
+length 100
+width 100
theight 100)

5.3.2. remove
The action remove is used to delete elements from working memory. Any number of arguments may be
given to remove; the arguments must be element designators. When the action is executed, the indicated
working memory elements are deleted from working memory. A typical cali on remove is
(remove 1 <cd>)

28

5.3.2.1. Element Designators and remove
Deleting working memory elements does not change the bindings of clement variables or of numeric
element designators. Thus in the following RHS, the two calls on substr return the same value, even

though element <¢> is delcted between the two calls.

(... ==>
{(make ... (substr <c> 5 10))
{remove <c>)
(make ... (substr <c> 5 10)))

5.3.2.2. Multiple remove’s of an Element
It is legal to call remove with the same argument more than once in an RHS. When the interpreter

encounters this situation, it executes the first remove and then ignores the rest.

5.3.3. modify

The action mod1fy is used to change one or more values in an existing working memory clement. It takes
as arguments a condition element designator and an RHS pattern. It removes the old form of the designated
element from working memory, changes it as the pattern specifies, and then puts it back into working

memory. For example, when the modify in the following production executes

(p find-colored-block
(goal t+status active ttype find tobject block
tcolar <2>)
(block tcolor <z> tname <block>)
-=>
(make result +pointer <block>)
(modify 1 +status satisfied))

it deletes the element that matched the first condition element -- say

(goal tstatus active ttype fTind tobject block +color red)
and replaces it with a similar element

{goal tstatus satisfied ttype find tobject block +color red)

It is possible to change more than one value in a modify action. The following, for example, is a legal
action
{modify 3 +status followed tvalue <{response> +id <newid>)

The action modify is defined to be equivalent to a remove followed by amake. The action
(modify designator pattern)
does preciscly what the two actions

(ramove designator)
(make (substr designator 1 inf) pattern)

29

would do.” Thus the action
(modify 3 tstatus followed tvalue <{response> +id <newid>)
is equivalent to :

(remove 3)
(make (substr 3 1 inf) t+status followed t+value <responsa>
+id <newid>)

5.3.3.1. Element Designators and modify
Modifying elemenis does not change the bindings of element variables or of numeric ¢lement designators.

Thus in the following RHS, the two calls on substr both return the same result,

(... ==>
(make ... (substr <c> 6 10))
(modify <c> t7 nil)
(make ... (substr <c> & 10}))

5.3.3.2. Multiple modify's of an Element

It is legal to modify an element more than once in an RHS. Thatis, an RHS like the following is legal.

(.00 ==>
(modify <x> 2 0)
(modify <x> 12 1))

To understand what happens in this case, recall that modify is defined to be equivalent to a remove

followed by a make. Thus this RHS is equivalent to

(... ==>
(remove <x2)
(make (substr <x> 1 inf) 2 0)
(remove <x>)
(make (substr <x> 1 inf) *2 1))

As explained in the previous section, the binding of <x> remains unchanged while the RHS executes. Thus
the two calls on make produce two clements that are identical except for their second subelements. As
explained in Section 5.3.2, if remove is called more than once with the same argument, the second and later
calls have no effect. Thus the second remove here is a no op. In short then, the two calls on modify result

in the original element being deleted from working memory and replaced by two slightly different copies.

5.3.4. openfile

The action openfile is used to open files and associate names with the files. The action takes an RHS
pattern as its argument. After the pattern is evaluated, the first three fields in the result clement should
contain values. The first value should be a symbolic atom; this is the name that the production system will

use to refer to the file. The second value should be a valid file name for the system on which OPSS5 is being

2If the pattern does not begin with the operator *, then it is necessary io put +1 between the substr and the pattern inmake.

30

run. The third value should be either in or out; this vaiue indicates whether the file is to be opencd for
input or output. A typical use of outfileis

(openfile tracefile |trace.rll| out)
This opens the file trace. r11 for output and associates the name tracef i1e with the open file.

The atom n41 cannot be used as the first argument to openf ile. This atom is used to refer to the user's

terminal (see Section 5.3.6}

8.3.5. closefile

The action c1osef {1e is used to close files that have been opened with openf11e. This action takes an
RHS pattern as its argument. The pattern should evaluate to one or more symbolic atoms. These atoms
should be names which have been associated with files by opanfile. When ¢closef il1e is executed, the
operating system is called.to close the files and the associations between the names and the files are removed.

Thus to close the file that was opened in the example above, the following would be executed
{closafile tracefile)

It is important that output files be closed before the OPSS interpreter is exited. On some systems, the files

will be lost if they are not closed.

5.3.6. default

The action default is used to control where write and the trace routines print their information and
where accept afd acceptline read their information. This action takes an RHS pattern as its argument.
After the pattern is evaluated, the first two positions in the result element should contain values. The first
position should contain either n41 or a symbolic atom that has been associated with a file by openfile.
The second position should contain either trace, write, or accapt; the value in this position determines
which default is being set. (The atom acceptline is not a valid value for the second position;
acceptline reads from the same default file as accept.) As an example of its use, to make the file that
was opened in the example in Section 5.3.4 be the default for trace information, the following would be

exccuted.
(default tracefile trace)

If the second argument to default is ni1, then the default is set to the user’s terminal. Thus to undo the

effects of the previous call to default. the following wouid be used
(default nil trace)

31

5.3.7. write

The action write is used to output information from the production system. The action takes an RHS
pattern as its argument. It instantiates the pattern and then prints the values in the result element on the
user’s terminal or a file. (Thus the pattern should be in vector format; if it is in attribute-value format, the

information will come out in a jumbled order that depends on the assignment of numbers to attribute names.)

If the value in the first field of the result element has been associated with an output file by apenfile, the
information will be written to that file. If the value has not been associated to an output file, the information
will be written to the current default stream for wed te. The value in the first position is not printed ifitisa

file specifier.

As explained in the following sections, the uscr can specify printer control information in write. When
information is not supplied, write prints its values on the current output line, putting one space between

values.

5.3.7.1. Special Functions for write
Three functions, cr1f, tabto, and rjust are provided for use with writa. Itis possible to call these

functions within make, mod1ify, or other action, but this is not recommended.

In some implementations of the OPSS interpreter these functions place only a single value into the result
element; in other implementations they place two. Nonetheless, production systems will always give the same

results provided the operator + is not used in write. .

5372 ¢rlf
The function ¢r1f puts into the result element a value that will cause wr jte to begin a new line when it
encounters the atom. The function takes no arguments, 5o a call on it has the form (¢r1f). As an example
of its use, the following action
(write (crif) a b ¢ {(crlf) (crif) d o)
will cause the interpreter to begin a new line, printa b ¢, skip a line (by executing the operation to begin a
new line twice), and then print d e f. Thus the output is

abe

de f

32

3.3.7.3. tubto
The function tabto places values into the result element that cause the write action to move to a
specified column. The function takes one argument, the column number. The argument must be a numeric

atom or a variable that is bound to a numeric atom. Typical calls on tabto are

(tabto 30)
(tabto <x>)

If the specified column is to the left of the last column printed, a new line is begun. Thus the action
{(write (crif) (tabto 5) * {tabto 3) * (tabto 1) *)

would print

.
-
»

The action
(write (cr1f) (tabto 1) * (tabto 3) * (tabto 5) *}

would print
* % =

5.3.7.4. rjust

The function rjust is used to print values flush-right in fields of specified widths. The function takes one
argument, an indication of the width of the field. The argument must be a numeric atom or a variable that
evaluates to a numeric atom. When the action is evaluated it places print-control information in the result
element. When write processes the information, it allocates a field of the indicated width beginning at the
next available position on the output line. Then write determines the number of characters that the next
value to be printed will need and prints enough blanks to cause the value to be right justified in the field.
Thus the action

(write (crl1f) (tabto 10) (rjust 10) abc)

will cause a to be printed in column 18, b in column 19, and ¢ in column 20. This action is equivalent to
(write (crl1f}) (tabto 18) abc)

If the value to be printed is wider than the field, write reverts to the normal mode of printing. That is, it

prints a single space and then the value,

The action must immediately precede a printable value. That is, it rust not precede a catl on er1f,

tabto, or rjust. However, it is legal for rjust to follow cr1f or tabto.

33

5.3.8. cull

The action ea11 is used to call subroutines written by the user. The action takes as arguments the name of
a subroutine and an RHS pattern. It instantiates the pattern and then calls the subroutine. The subroutine
can interrogate the OPSS interpreter to determine what information is in the resuit element. (See Section 7

for more information about the interaction between OPSS and the subroutine.}

5.3.9. halt
The action ha1t sets an internal flag in the interpreter that causes the interpreter to stop firing productions
after completing the recognize-act cycle in progress. The action takes no arguments; a call on halt always

takes the following form.
(halt)

5.3.10. bhind

The action bind is used to assign values to variables. There are two forms of calls on bind. In the more
general form bind is given two arguments: a variable and an RHS pattern. It evaluates the pattern and then
assigns to the variable the value that is in position 1 of the result element. For example, to add 1 to the

binding of <x>, the following would be executed.
(bind <x> (compute <x> + 1))

‘In the other form of bind, the action is given only one argument -- the variable to be bound. When this

action is executed, a new symbolic atom is created and assigned to the variable. Thus the action
(bind <2>)

is equivalent to
(bind <z> (genatom))

5.3.11. chind
The action cbind is used to assign values to element variables. The action takes only one argument, the

variable. A typical call is
(cbind <c>)
The variable is bound to the last element that was added to working memory (by make, modify, or

infrequently ca11). The result of executing ¢b1nd before the RHS has added an element is undefined.

5.3.12. build
The action bui 1d is supported only by the LISP-based interpreters for OPSS. This action is used to add a
new production to production memory while the system is executing. Because some of the variables, actions,

and functions in the argument to build are meant o be evaluated when the action is performed, while

34

others are meant o be incorporated as they are in the new production, bui1d cannot use the ordinary OPS35
argument evaluation mechanism. Instead, when bui14d is evaluated, all its arguments are treated as constants
unless they are preceded by the special unquote operator, \\. The arguments to bui1d should evaluate to a

symbolic atom {the production’s name), a scquence of condition elements, the atom =-->, and a sequence of
actions.

35

36

6. The Recognize-Act Cycle

By convention, the steps in the recognize-act cycle are usually said to occur in the following order:

1. {Match] Evaluate the L.HSs of the productions to determine which are satisfied given the current
contents of working memory.

2. [Conflict Resolution] Select one production with a satisfied LHS. If no productions have satisfied
LHSs, return control to the user.

3. [Act] Perform the actions specified in the RHS of the selected production.
4_Ifa halt action was performed, return control to the user; otherwise go to step L.

In the OPSS5 interpreter, the cycle has been changed to:

1. [Conflict Resolution] Select one production with a satisfied LHS. If no productions have satisfied
LHSs, return control to the user.

2. [Act] Perform the actions specified in the RHS of the selected production.

3. [Match] Evaluate the LHSs of the productions to determine which are satisfied given the current
contents of working memory.

4. If a halt action was performed, return control to the user; otherwise go to step 1.

The OPS5 cycle is more convenient for the user because when the cycle ends, the conflict set is consistent with

the current contents of working memory.

6.1. Conflict Resolution

The output of the match process, and the input to conflict resolution, is a set called the conflict set. The

objects in the conflict set are called instantiations. An instantiation is an ordered pair of a production name

and a list of working memory elements satisfying the production’s LHS. During conflict resolution the

mterpreter examines the conflict set to find an instantiation which dominates all the others under the ordering

rules kisted below. The dominant instantiation will be executed in the act phase of the ¢cycle.

A set of ordering rules for instantiations is called a conflict resolution strategy. OPSS5 provides two

strategies called LEX and MEA. Although these strategies are rather complex to describe, what they achieve

1s simple:
¢ Both stratcgies prevent instantiations from exccuting more than once. Farly production systems
were subject to trivial loops in which the interpreter fired a production on the same data

indefinitely. The OPSS strategies contain a mechanism to prevent these loops.

e They make production systems attend to the most recent data in working memory. This makes

L)

production systems casier to program because dircction is given to the system’s processing; once
the system begins a subtask it is unlikely to be distracted by anything left over from carlicr tasks.
The difference between LEX and MEA is that MEA makes the system more sensitive to recent
tasks. With the MEA strategy, the system cannot be distracted from its current task.

o They give preference to productons with more specific LHSs. Since productions with more
specific LHSs are satisfied in fewer cases, they are morc likely to be appropriate for those cases in
which they are satisfied. More specific productions are therefore chosen when they are availabie.

These three things are important because they make it easy to add productions to an existing set and have the

new productions fire at the right time, and because they make it easy to simulate common control constructs

such as loops and subroutine calls. See [8] for a defense of these assertions.

6.1.1. The LEX Strategy
The LEX conflict resolution sirategy contains four rules which are applied in order to find the instantiation

that dominates under them.

1 Discard from the conflict set the instantiations that have already fired. If there are no
instantiations that have not fired, conflict resolution fails and no instantiation is selected.

2 Order the instantiations on the basis of the recency of the working memory ¢lements, using the
following algorithm to compare pairs of instantiations: First compare the most recent elements
from the two instantiations. If one element is more recent than the other, the instantiation
containing that element dominates. If the two elements are equally recent, compare the second
most recent elements from the instantiations. Continue in this manner either until one element of
one instantiation is found to be more recent than the corresponding element in the other
instantiation, or until no elements remain for one instantiation. If one instantiation is exhausted
hefore the other, the instantiation not exhausted dominates; if the two instantiations are exhausted
at the same time, neither dominates.

3.If no one instantiation dominates all the others under the previous rule, compare the dominant
instantiations on the basis of the specificity of the LHSs of the productions. Count the number of
tests {for constants and variables) that have to be made in finding an instantiation for the LHS.
The LHSs that require more tests dominate.

4. If no single instantiation dominates after the previous rule, make an arbitrary selection of the
dominant instantiation.

6.1.2. The MEA Strategy
The MEA strategy differs from LEX in that another rule has been added after the first. The rule that was

second had to be modified slightly to accommodate the new rule. The rules for MEA are:

1. Discard from the conflict set the instantiations that have already fired. If there are no
instantiations that have not fired, conflict resotution fails and no instantiation is sclected.

38

2. Compare the recencies of the working memory clements matching the first condition elements of
the instantiations. The instantiations using the most recent working memory elements dominate.

3. Order the instantiations on the basis of the recencies of the remaining working memory clements,
using the foilowing algorithm to compare pairs of instantiations: First compare the most recent
elements from the two instantiations. If one element is more recent than the other, the
instantiation containing that element dominates. [f the two clements arc equally recent, compare
the second most recent elements from the instantiations. Continue in this manner either until one
element of one instantiation is found to be more recent than the corresponding element in the
other instantiation, or untl no elements remain for one instantiation. If one instantiation is
exhausted before the other, the instantiation not exhausted dominates; if the two instantiations are
exhausted at the same time, neither dominates.

4. If no one instantiation dominates all the others under the previous rule, compare the dominant
instantiations on the basis of the specificity of the LHSs of the productions. Count the number of
tests (for constants and variables) that have to be made in finding an instantiation for the LHS.
The LHSs that require more tests dominate.

5. If no single instantiation dominates after the previous rule, make an arbitrary selection of the
dominant instantiation.

6.1.3. Which Instantiations to Discard

The first rule in both strategies specifies that instantiations that have already fired are to be discarded.
Implementing this rule requires that a precise definition of equality for instantiations be chosen; and this in
turn requires that a precise definition of equality for working memory ¢lements be chosen, In QPSS the latter
is simple: Working memory elements X and Y are equal if they have equal time tags. The former is
somewhat more complex; the definition of equality for instantiations that is used in OPS3 is: Instantiations A

and B are equal if

e A and B are instantiations of the same production,
e A and B contain the same list of working memory elements, and

o If A was in the conflict set at time Ta and B was in the conflict set at time Tb, there is no time Tc
between Ta and Tb such that A and B were not in the conflict set at time Tec.
The last item here probably requires an explanation. It is needed for productions that contain negated
condition elements. It is possible for such a production to be satisfied by some list of working memory
elements (instantiation A), become unsatisfied because something enters working memory that matches the
negated condition element, and then become satisfied again on the original list of elements when the new

element is deleted {instantiation B). The third rule is included so that the production will be able to respond

to these changes by firing a second time.

39

6.2. Act
In the act phasc of the cycle, the actions in the chosen production are executed onc at a time, in the order
they are written. Actions take effect immediately. Hence if an RHS contains several make or modify

actions, the element added by the last action in the RHS is more recent than the elements added by the rest.

6.3. Match
During the match, the interpreter determines every instantiation of every production. That is, it finds every
production that is instantiatéd, and if any of the productions can be instantiated by more than one list of

working memory elements, it finds every list of elements. It puts the instantiations into the conflict set.

40

7. User-Defined Actions and Functions
The OPSS5 interpreters allow uscrs to write their own actions and functions. The BLISS-based interpreter
will call routines written in BLISS (or any other language that uses the BLISS subroutine calling

conventions); the LISP-based interpreter will call routines written in LISP.

7.1. Declarations

The user’s routines must be declared to the interpreter before they are used in an RHS, The syntax of the
declaration is: an open parenthesis, the atom external, one or more routine names, and a close
parenthesis. Any number of routines may be declared external in one declaration, and any number of
declarations may be made in a production system. Thus to declare min and max, either of the following

could be used:

(external
min
max)

or

(external min)
(external max)

7.2. Actions

User-defined actions are called, using ¢al1, from the RHS of a prbduction or from the top level (see
Sections 5.3.8 and 8.1.6). The routine should take no arguments, and it should return no values (if values are
returned they are ignored). All communication between the interpreter and the routine is accomplished

through use of the functions described below.

7.2.1, $parameter

The second argument to the cal? action is an RHS pattern, which is instantiated into the result element
before the user’s routine is called. The function $parameter allows the routine to read values out of the
element. The function takes one argument, an integer; when it is called with the argument K, it returns the
value in the Kth field in the element. Thus to get the first value in the element, a routine written in LISP

would execute
($parametsr 1)
and an action written in BLISS would execute
$parameter{1)
Following the usual OPS5 convention, when $parameter is called to access a ficld that was not explicidy

given a value, it returns ni1. It is considered an error, however, to access a non-existent ficld {i.e., to use an

41

index less than 1 or greater than 127).

7.2.2. Sparametercount

The function $parametercount returns an integer; the integer is the number of the last field in the
result element that received a value. Thus if the ¢a11 did not contain the operator +, this function indicates
how many values were put into the result element. (Generally, * is not used with ca11.) The function takes

no arguments.

7.2.3. Sassert

Some of the actions written by users add elements to working memory. The actions put an element in
working memory by clearing the result element (see Section 7.2.6), putting the new values in the result
element (see Sections 7.2.5 and 7.2.4), and then executing the function s$assart. The function $assert
copies the result element into working memory. After it is copied into working memory, the result element
can be cleared again and another collection of values assembled there. The function $assert takes no

arguments.

7.2.4. $tab

The function $tab controls where the next value will be placed in the result element. This function takes
one argument, which should be either an integer or a symbolic atom which has been assigned an integer in a
1iteralize or 14teral declaration. When $tab is executed it informs the interpreter that the next value

put into the result element should go into the indicated field.

7.2.5. Svalue

The function $value is used to put one symbolic atom or number into the result element. It is called with
one argument, the value to put in. If no $tab has been executed since the last call on $value, it puts the
value in the field just after the one used on the previous call. If $tab has been executed since the last call on
$value, it puts the value in the field that $tab designated. If no calls on either $tab or $value have been
made since the result element was cleared, the value is placed in the first field. (These rules for deciding

where to put values are equivalent to the rules used for terms in the RHS -- see Section 5.2.3.)

7.2.6. Sreset

The function $reset is used to remove the information currently in the result element. This function

takes no arguments. 1t should be noted that $assert does not automatically perform a $reset.

42

7.2.7. $ifiie and Sofile

The functions $if11e and $ofile are used to access files that were opened with openfile. The
function $1f119 takes a single argument, which should be a symbolic atom that is associated with an open
file. That is, the atom should have occurred as the first argument to openf {1e. If the atom is associated with
a file that is currently open for input, the file is returned. (More precisely, in FRANZ LISP, a port is
returned; in MACLISP, a file object is returned; and in BLISS, the address of an XPORT 0B is returned
[2].) If the atom is not associated with a file that is open for input, a failure signal is returned: in LISP, the
atom ni1 is returned, and in BLISS, the XPORT value xpo$k_failure is returned. The function $of1ile

is identical except that it returns files that are open for output.

7.3. Functions
The syntax of a call on a user-written function is identical to the syntax of a call on a standard function:
The call consists of an open parenthesis, the name of the function, the arguments to the function (if any), and

a close parenthesis.

The conventions for passing arguments to functions are not the same in the LISP- and BLISS-based
_ interpreters. In the BLISS-based interpreter, the arguments are evaluated (i.e., OPS5 variables are replaced
by their bindings) and then they are passed using the ordinary BLISS parameter passing mechanism. Thus if
the function in the RHS has three parameters, the BLISS routine is called with three arguments. In the LISP-
based interpreter, the arguments arc passed unevaluated. The LISP routine must be a fexpe. If the LISP
routine needs the arguments to be evaluated, it calls routines in the interpreter o perform the evaluation.

(See the two sections immediately following.)

RHS functions do not return values using the normal value return mechanism of LISP or BLISS. (If values
are returned with the normal mechanism, OPS5 discards them.) Instead, values are returned using the

function $value described in Section 7.2.5.

7.3.1. $varbind
The function S_varb‘lnd is provided in the LLISP-based interpreter to allow RHS functions to evaluate
their arguments. This function takes one argument. If the argument is a bound variable, the binding of the

variable is returned. If the argument is not a bound variable, the argument is returned unchanged.

43

7.3.2. $lithind
The function $11tb1ind is provided in both the LISP- and BLISS-based interpreters. This function takes
one argument. If the argument has been assigned anumber in a Titeral or 1iteralize declaration, the

number is returned. If the argument has not been assigned a number, the argument is returned unchanged.

7.4. Atoms

The scalar values in the LISP-based interpreters are ordinary LISP atoms, so user-supplied routines can
process them using the usual LISP functions. The scalar values in the BLISS-based interpreters are data types
that are implemented in the OPS5 interpreter, so user-supplied routines must call routines in the interpreter

to process them. The following are the necessary routines.

7.4.1. $eql
An atom in the BLISS-based interpreter is a one word value (32 or 36 bits, depending on the computer
being used). To compare two atoms for equality, the routine $eql is used. The routine takes two

parameters, the atoms to compare. It returns a true value if the atoms are the same type and

o They are symbolic atoms that consist of the same string of characters, or

o They are numeric atoms whose algebraic difference is zero.

7.4.2. $symbol
The routine $symbo1 is used to test the type of ators. It takes a single parameter, the atom to test. The

routine returns a true value if the atom is a symbolic atom, and a false value if it is a numeric atom.

7.4.3. Sintern
The routine $intern is used to convert a string of characters into a symbolic atom. [t takes two
parameters, a BLISS character string pointer and a count of the number of characters in the string. It returns

the symbolic atom that represents the string.

7.4.4. Scvan and $cvna
The routines $cvan and $cvna are used to convert between numeric atoms and ordinary BLISS integers.
Roth routines take a single parameter. The routine $cvan takes an atom as its parameter and returns an

ordinary integer. The routine $cvna takes an ordinary number and returns a numeric atom.

8. Using the OPS5 Interpreter

This section explains how to load a production system into the interpreter and how to run the production

systemn after it is loaded.

8.1. The Top Level

After OPSS is installed on a system, it is invoked as any other program on the system is. When the
interpreter starts, it begins executing the top level routine. When the production system stops executing for
any reason, the interpreter returns to the top level routine. This routine allows the user to add productions to
preduction memory (in LISP only), to put elements into working memory, to inspect the state of the

production systern, to start the production system executing, etc. The top level routine is

1. Read a command from the user,
2. Execute the command.

3. Goto 1.
The following sections describe the commands that the OPSS interpreter supports.3
The syntax of all commands is the same: A command consists of an open parenthesis, the name of the
command, the arguments to the command if any, and a close parenthesis. On the BLISS-based interpreter, if
the command does not have arguments, the parentheses may be omitted. The commands are free format; end

of line is treated like a space.

8.1.1. make

The action make can be executed at the top level as well as in a production’s RHS. If the user types
{make start)

the element

(start)
will be created and placed into working memory. At the top level, make will not accept variables, the
operator //, or functions as arguments. Constant symbols and numbers, +, and literalized atoms are

acceptable as arguments.

When make is executed, the match process is performed, and the conflict set is updated.

l'[‘he OPS5 interpreters that are written in LISP use the normal LISP top level. Thus in these interpreters the user can execute any
LISP command. However, the interpreter wnitten in BLISS accepts only the commands listed here.

45

8.1.2. remove
The action remove may also be executed at the top level. However, since variables cannot be used at the

top level, remove uses a different method to designate the elements to delete. If the user types
(remove *)

the interpreter deletes everything from working memory. If the user gives one or more numbers as

arguments, the clements having those time tags are deleted. Thus typing
(remove 117 118)

will cause elements with time tags 117 and 118 to be deleted.

When remove is executed, the match process is performed, and the conflict set is updated.

8.1.3. openfile
The action openf 11e may be executed at the top level as well as in the RHS of a production. It has the
same effect as openfile in the RHS. When called at the top level, its argument should not contain

variables, the operator //, or function calls.

8.1.4. closefile
The action ¢1osef 11e may be executed at the top level as well as in the RHS of a production. It has the
same effect as closefile in the RHS. When called at the top level, its argument should not contain

variables, the operator //, or function calls.

8.1.5. default
The action default may be exccuted at the top level as well as in the RHS of a production. It has the
same effect as default in the RHS. When called at the top level, its argument should not contain variables,

the operator //, or function calls.

8.1.6. call

The action ca11 can also be used at the top level. Like the RHS command ¢al1 (see Section 5.3.8) this
command is used to invoke user-defined subroutines. Its arguments should be a routine name and an
optional pattern like the patterns given 1o make at the top level. The pattern shoﬁld not contain variables, the
operator //, or function calls. The interpreter instantiates the pattern and invokes the routine. The routine

must have been declared external.

46

8.1.7. tun
The command run causes the interpreter to execute a production system. If the user types
(run)
the production system is allowed to execute until it halts or a breakpoint is reached (see Section 8.1.15). If the
user gives a numeric argument to run the interpreter will automatically halt afier that many cycles. Thus
entering
(run 100)
will cause the interpreter to run 100 cycles and halt. (Of course, the system may not execute the full 100

eycles, because the conflict set may become empty, a production may execute the halt action, etc.)

8.1.8. ppwm
The command ppwm is one of two commands to print working memory elements. (See also wm, below.)

This command takes a pattern like a condition element; it prints all the elements matching the pattern, For
exampie

(ppwm goal t+status active)
will print all the active goals. When ppwm is called with a null pattern, as in

(ppwm)
it prints every element in working memory. The pattern can contain constant symbols and numbers, the
operator +, and literalized atoms. [t should not contain variables, predicates, the operator //, or the two
kinds of brackets ({ } and << >>).

8.1.9. wm

The command wm, like ppwm, is a command to print working memory elements. It differs from ppwm in
the kind of arguments it takes. This command takes a list of time tags and prints the elements with those time
tags. It is useful because some of the other OPS5 commands print time tags rather than working memory

elements to save space; wm is used to expand the time tags into the elements they represent. Thus
(wm 5 6 7)

causes the interpreter to print the three elements whose time tags are 5, 6, and 7. When wm is given with no

arguments, as in
{wm)

the interpreter prints the entire contents of working memaory, as ppwm with no arguments does.

47

8.1.10. pm
The command pm displays productions on the user’s terminal. It is called with one or more production
names, and it prints the productions in a readable format. This command is not supported in the BLISS-

based interpreter.

8.1.11. cs

The command ¢s prints the current contents of the conflict set. The command does not accept arguments.

8.1.12. matches
The command matches prints the partial matches for productions. It is called with one or more

production names as its argument; for example
(matches find-colored-block)

It prints the time tags of the elements matching each condition element of each production; it prints the pairs
of working memory elements matching the first two condition elements; it prints the triples matching the first

three condition elements; and so forth.

8.1.13. strategy
The command strategy prints or sets the conflict resolution strategy being used. ' If the command is
given with no arguments, as in
(strategy)
it prints the current strategy (it will be either mea or 1ex). If the command
(strategy mea)
is given, it sets the current strategy to mea. If the command
(strategy lex)
is given, it sets the current strategy to 1ex. The only legal arguments to strategy are 1ex and mea.

The default strategy - that is, the one in effect when the interpreter starts -- is 19X.

8.1.14. watch
The command watch controls how much trace information the interpreter prints while it executes a
production system. If the user executes
(watch 0)
the system will print no trace information. If the user executes
(watch 1)

the system will print the name of each production that fires along with a list of the time tags of the elements

43

instantiating the production. If the uscr executes

(watch 2)
the interpreter will print the information of level 1, and it will print the elements that are added to or deleted
from working memory. If the user executes

{watch 3)
the interpreter will print the information of level 2, and it will print every change to the conflict set when it
happens. Level 3 of tracing is not supported in the LISP-based interpreters. If watch is called with no

arguments, it reports the current trace level,

8.1.15. pbreak

The command pbreak sets and removes breakpoints on the productions. If a breakpoint is set on a
production, the interpreter will halt and return to top level whenever that production fires. The production is
allowed to execute, but then the recognize-act cycle is exited. Giving the command pbreak with no
‘arguments causes the interpreter to print the names of the productions that have breakpoints set. Giving the

command with productions as arguments, as in
(pbreak ri16 ri7)

toggles the state of the listed productions: The productions that had breakpoints set have them removed; the

productions that did not have breakpoints have them set.

8.1.16. exit
The command exit causes the interpreter to cease operation and returns the user to the monitor, The

command does not take arguments.

In the BLISS-based interpreter, a control-Z character {ASCII 32 octal) is treated like the x 1t command.

8.1.17. excise
The command excise is used to delete productions from production memory. When excise is called,

its argument list should contain one or more production names,

§.1.18. back
The command back is supported only in the LISP-based interpreters. This command causes the

interpreter to restore the production system to an carlier state. The command takes one argument, 2 number

indicating how many recognize-act cycles to back up. Thus
(back 1)

causes the sysiem to back up 1 cycle. To save space, the interpreter maintains oniy enough information to

49

back up 32 cycles.

The commands back and run can be intermixed without confusing the interpreter. The following

sequence, for example, is legal.

(run 100)
(back 10)
(run 6)

(back 18)

If no productions have fired before, this will cause the interpreter to perform cycles 1 to 100, back up to the
state that existed afier cycle 90, run for another 5 cycles, and then back up to the state that existed after cycle
80.

8.2. Loading a Production System
When the BLISS-based OPSS interpreter is used, productions are compiled and linked with the interpreter
before the interpreter is started. Thus with this interpreter the system is always ready to run as soon as the

interpreter is started.

With the LISP-based OPSS interpreter, productions are usually defined after the interpreter is started. (In
fact, unless the user has saved his own core image, production memory will contain no productions when the
interpreter is started,) Productions are defined by typing in the declarations and the productions, by loading

files that contain the declarations and the productions, or both.

50

Appendix |
Syntax of OPS5
The following is a simplified BNF description of the syntax of OPSS. Terminals are printed in a Roman
type face, and non-terminals are printed in italics. The only nonstandard meta symbol used is the star ("*").

The star indicates that the preceding item is to be repeated zero or more times.

production = (p constant-symbolic-atom lhs --> rhs)
ths S posilive-ce ce*
ce HHE positive-ce
1= negative-ce
positive-ce S form
1= { element-variable form }
te= { form element-variable }
negative-ce Y - form
Jorm 1= { l(hs-term®)
ths-term 1= 1 constant-symbolic-atom ths-value
S + number lhs-value
1= ths-vaiue
lhs-value S { restriction* }
tr= restriction
restriction = << any-atom™® >>
1= predicate atomic-value
1= atomic-value
atomic-value 1= // any-atom
1= var-or-constant
var-or-constant 1= constant-symbolic-atom
S number
= variable
predicate i =
HHE 104
= <
.= {=
= D=
= >
= {=>
rhs 1= action*
action = { make rhs-term*)

{ remove elemeni-designuator®)
{ modify elemeni-designaior rhs-term*)

51

halt)

bind variable)

bind variable rhs-term*)

chind element-variable)

call constant-symbolic-atom rhs-term*®)
write rhs-term*)

openfile rhsierm*)

closefile rias-term*)

default rhs-ferm*)

build quoted-form*)

.
[}
— T pr— T P P

element-designator i:= number
1= element-variable

rhs-term t:= t var-or-constant ris-value
1= rhs-value

rhs-value 11= atomic-value
1= Sunction
function 1= 1itval varorconstant)
substr element-designator var-or-constant var-or-constant)
genatom)
crlf)
rjust varorconstant }
tabto var-orconstant)
accept)
accept varor-constant)
acceptline varorconstani*)
compute expression)
ser-defined-function

inn 1]
g —— T~ — i T

1]

user-defined-function (constant-symbolic-atom var-or-constant*)
number

variable

expression operator expression

(expression)

expression

u i

H

+

operator st

nou

//
AN

nou

\\ rhs-value
any-atom
(quoted-form*)

quoted-form

non o

Several terms have been left undefined: variable, element- variable, constant-symbolic-atom, any-atom, and
number. Symbolic atoms and numbers are described in Section 2. The two kinds of variables arc described in

Sections 4 and 5. The only thing that needs to be explained here is the difference between any-atom and

52

constant-symbolic-atom. The former is an atom that is trcated as a constant because it is quoted (with // or
<< >> usually). The latter is an atom that is treated as a constant because it does not have the form of a

variable or operator,

53

References
1. Digital Equipment Corporation. BLISS language guide. 1980.
2. Digital Equipment Corporation. XPORT programmer’s guide. 1980.
3. Foderaro, J. K. The FRANZ LISP manugal. University of California at Berketey, 1980.

4. Forgy, C. L. and McDermott, J. The OPS reference manual. Department of Computer Science, Carnegie-
Meilon University, 1976.

5. Forgy, C. L. and McDermott, J. OPS, a domain-independent production system. Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, 1977, pp. 933-939.

6. Forgy, C. L. and McDemmott, J. The OPS2 reference manual. Department of Computer Science,
Carnegie-Mellon University, 1978.

7. Forgy, C. L. OPS4 user’s manual. Department of Computer Science, Carnegie-Mellon University, 1979.

8. McDermott, J. and Forgy, C. L. Production system conflict resolution strategies. In Waterman, D, A. and
Hayes-Roth, F., Ed., Pattern-Direcied Inference Systems, Academic Press, New York, 1978, pp. 177-199.

9. MIT Al Lab and Project MAC. MACLISP manual. Massachusetts [nstitute of Technology, 1973.
10. Newell, A. PSG manual. Department of Computer Science, Carnegie-Mellon University, 1973.

11. Rychener, M. D. Production Systems asa Programming Language for Artificial Intelligence Applications.
Ph.D. Th., Carnegie-Mellon University, December 1976.

12. Rychener, M. D. OPS3 production system language tutorial and reference manual. Department of
Computer Science, Carnegie-Mellon University, 1930

54

Index

$assert 42

- Scvan 44
Scvna 44
$eqt 44
Sifile 43
$intern 44
$litbind 44
$ofile 43
Sparameter 41
Sparametercount 42
$reset 42
$tab 42
Svalue 42
$varbind 43

-2
-> 15

/7 18,25
;4

< 19

<« 18
<= 19
<=> 19
<19

= 19

> 19
>= 19
» 18

Accept 27

Acceptline 27

Act 1,40

Action 28,41

Atom 44

Attribute-value element 9, 11

Back 49
Bind 34
Build 34

Call 34, 41, 46, 47
Cbind M4

Closefile 31, 46
Comment 4

Compute 26

Condition element 17, 20
Conflict resolution 1, 37, 48
Conlflict set 37, 48
Constant 18, 25

Crf 32

Cs 48

Default 31, 46

Flement designator 23, 29, 30
Element variable 21, 23,29, 30
Excise 49

Exit 49

External 41

Function 25,43
Genatom 26
Halt 34

LEX 38,48

LHS 1,2,1517.20
Literal 12
Literalize 9

Litval 27

Make 28,45
Match 1,40
Matches 48
MEA 38,48
Modify 29

Negated condition element 20
Number 7,18, 25,44
Numeric element designator 23, 29, 30

Openfile 30, 46

P 15

Pattern 23

Pbreak 49

Pm 48

Ppwm 47

Production 1, 15

Production memeory 1,2, 15, 48,49

Recognize-act cycle 1,37
Remove 28,46

RHS 1,3,1523

Rust 33

Strategy 48
Substr 25
Symbolic atom 8, 18, 25, 44

Tabto 33

Term 17,24
Time tag 7
Top level 45

Variable 18,25
Vector clement 10
Vector-attribute 9

Watch 48
Wm 47

56

Working memory 1,2,7,47
Write 32

+ 912,17, 24
02
| 8

} w21

