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1 . Introduction 
OPS5 is a member of the class of programming languages known as production systems. It is used 

primarily for applications in the areas of artificial intelligence, expert systems, and cognitive psychology. This 

manual is a combination introductory and reference manual for OPS5. The rest of Section 1 provides an 

overview of the language. Sections 2 through 8 describe the language and its interpreter in detail. To allow 

the new user to read the manual straight through, the material has been organized in a top-down fashion. To 

allow the experienced user to answer detailed questions quickly, the manual has been divided into short 

sections describing individual features of the language, and an index has been provided. 

Three interpreters for OPS5 have been written, one in BLISS [1], one in MACLISP [9], and one in FRANZ 

LISP [3]. As could be expected, there are a few incompatibilities between the interpreters. The manual points 

out the differences between the three interpreters. 

1.1. The Production System Architecture 
A production system is a program composed entirely of conditional statements called productions. These 

productions operate on expressions stored in a global data base called working memory. The productions are 

stored in a separate memory called production memory. The production is similar to the If-Then statement of 

conventional programming languages: a producdon that contains n conditions C x through C n and m actions 

A x through A m means 

When working memory is such that C x dirough C n are true simultaneously, 
then actions A, through A should be executed. 1 v m 

The condition part of a production is usually called its LHS (left hand side), and the action part is called its 

RHS (right hand side). 

The production system interpreter executes a production system by performing a sequence of operations 

called the recognize-act cycle: 

1. [Match] Evaluate the LHSs of the productions to determine which are satisfied given the current 
contents of working memory. 

2. [Conflict resolution] Select one production with a satisfied LHS. If no productions have satisfied 
LHSs, halt the interpreter. 

3. [Act] Perform the actions specified in the RHS of the selected production. 

4. Go to step 1. 

Production systems differ from conventional programs in two major respects. The first is that the 
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production system uses a different method for encoding the state of a computation. A conventional program 

encodes state by assigning values to local and global.variables. A production system encodes state by putting 

expressions in the system's global working memory. The other difference between production systems and 

conventional programs is the way flow of control is managed. A conventional program uses sequential 

execution of statements plus a number of control constructs including subroutine calls, loops, and conditional 

branching. A production system uses LHS satisfaction. Each production's LHS is a description of the states 

in which the production is applicable; the LHS becomes true when there is some information in working 

memory that the production can process. When the interpreter performs the match process, it is in effect 

searching for a production that knows how to process the data that is in working memory. When it finds that 

production and executes its RHS, working memory is changed, and so on the next cycle, the interpreter 

performs the match again to find a production that can handle the new data. 

1.2. OPSS ' s Working Memory 
In OPS5, the most commonly used representation for information in working memory is the attribute-value 

representation. This representation is oriented towards describing objects and relations among objects; that 

is, even though it (like most representations) can be used for many other purposes, it is most naturally used to 

describe objects and .relations. In this representation, every element in working memory consists of an object 

and a collection of associated attribute-value pairs. For example, in this representation, a single working 

memory element might indicate that blockl is a red block weighing 500 grams, measuring 100 mm on a side. 

The element would be 
(block 

tname blockl 
t c o l o r red 
tmass 500 
t l e n g t h ,100 
twidth 100 
the igh t 100) 

As this shows, an element consists of a class name (bl ock in this case) followed by some number of attributes 

and values, with everything enclosed in parentheses. Attributes are distinguished by being preceded with the 

operator *. 

1.3. OPS5 ' s Production Memory 
The LHS of a production consists of one or more patterns; i.e., one or more expressions that describe 

working memory elements. During the match part of the recognize-act cycle, the interpreter compares each 

pattern with the elements in working memory to determine if the pattern matches any of them. The pattern is 

considered satisfied if it matches at least one element. If all the patterns in a production's LHS are satisfied, 

the LHS is satisfied. 
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Patterns are abstract representations of working memory elements. One way a pattern can be an 

abstraction of a working memory element is to contain fewer attributes and values than the element. Such a 

pattern will match any working memory element that contains the information in the pattern. (It does not 

matter how much more information the working memory element contains.) Thus the pattern 
(block t c o l o r red) 

would match the working memory element 
(block 

tname blockl 
t c o l o r red 
tmass 500 
t l ength 100 
twidth 100 
the ight 100) 

Another way a pattern can be an abstraction of a working memory element is to contain incompletely 

specified values. OPS5 provides special pattern operators that can be used to specify values at various levels 

of detail. The most important operator is the variable. A variable is any symbol tiiat begins with the character 

< and ends with the character > for example, <x> or <status>. A variable in a pattern may match 

anything, but if a variable occurs more dian once in a production, it must match the same value everywhere. 

Thus if a cube is defined to be a block whose three sides are the same length, the following pattern will match 

only cubes. 
(block t l eng th <x> twidth <x> t h e i g h t <x>) 

The RHS of a production consists of an unconditional sequence of actions. OPS5's set of action types 

includes actions to manipulate working memory, actions to perform input and output, actions to add new 

productions to production memory, and others. The most important of the actions are the ones to manipulate 

working memory. The action make is used to create and add new elements. A make action consists of an 

open parenthesis, the symbol make, a description of the element to create, and a close parenthesis. The 

description of the element is similar in form to the patterns in the LHS. For example, the following would 

create the element for blockl shown above. 
(make block 

tname blockl 
t c o l o r red 
tmass 500 
t l eng th 100 
twidth 100 
the igh t 100) 

The action remove is used to delete elements from working memory. A remove action consists of an open 
parenthesis, the symbol remove, a pointer to the element to delete, and a close parenthesis. The following 
for example would delete the element matching the third pattern of the production's LHS. 

(remove 3) 
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The action mod i f y is used to change one or more values of an existing element. A mod i f y action consists of 

an open parenthesis, the symbol modify, a pointer to the element to change, a description of the changes to 

make, and a close parenthesis. The following for example would change the s t a t u s of the element 

matching the first pattern in the LHS t o s a t i s f i e d . 

(modify 1 t s t a t u s s a t i s f i e d ) 

A production consists of an open parenthesis, the symbol p, a name, the LHS of the production, the symbol 

—>, the RHS, and a close parenthesis. The following is a typical (though quite small) OPS5 production. The 

text after the semicolon on each line is a comment. 
(p f ind-co lored-b lock 

(goal 
t s t a t u s a c t i v e 
t type f ind 
t o b j e c t block 
t c o l o r <z>) 

(block 
t c o l o r <z> 
tname <block>) 

—> 
(make r e s u l t 

tpo in ter <block>) 
(modify 1 

t s t a t u s s a t i s f i e d ) ) 

If there i s a goal 
which i s a c t i v e 
to f ind 
a block 
of a c e r t a i n color 
And there i s a block 
of that co lor 

Then make an .element 
to point to the block 
And change the goal 
marking i t s a t i s f i e d 

1.4. The OPS5 Lexical System 
The input to OPS5 is completely free format. Spaces, tabs, and new lines may be used at will to improve 

the readability of productions and working memory elements; the interpreter uses the parentheses to 

determine where units begin and end. In addition, comments like those shown above may be used anywhere; 

when the interpreter reads a line containing a semicolon, it discards everything from the semicolon to the end 

of the line. The above production could also have been written 
(p f ind-co lored-b lock 

(goal t s t a t u s a c t i v e t type f ind t o b j e c t block 
t c o l o r <z>) 

(block t c o l o r <z> tname <block>) 
—> 
(make r a s u l t tpo in ter <block>) 
(modify 1 t s t a t u s s a t i s f i e d ) ) 

1.5. Acknowledgements 
The first language in the OPS family [4, 5] was designed in 1975 at Carnegie-Mellon University by Charles 

Forgy, John McDermott, Allen Newell, and Michael Rychener. The design of the language was influenced 

by earlier production systems languages, including PSG [10] and PSNLST [11]. Since 1975 OPS has been 
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revised several times as better representations and more efficient interpreters have been developed [6, 7,12]. 

Many people have contributed to the development of OPS, including the members of the CMU production 

systems, expert systems, and cognitive psychology groups, as well as the members of Digital Equipment 

Corporation's expert systems group. 
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2. Working Memory 
Working memory is a set of ordered pairs 

<Time tag, Working memory elemenO 

A working memory element is a structure (usually a vector or record) of scalar values. The time tag is a 

unique numerical identifier that is supplied by the interpreter. 

2.1. Organization of Working Memory 
OPS5, like most programming languages, provides both scalar (sometimes called atomic) data types and 

structured data types. The elements in working memory may not be scalars. (However, it is legal to have a 

structure that contains only a single scalar value.) 

The number of elements in working memory varies dynamically at run time. With the LISP-based 

interpreter, working memory may grow arbitrarily large. With the BLISS-based interpreter, a maximum size 

for the memory is established when the interpreter is installed; the current limit is 1023 elements. 

2.2. Time Tags 
Every element in working memory has an associated integer called the element's time tag. This integer 

indicates when the element was created or last modified; the elements with larger time tags were more 

recently created or modified. No two elements have the same time tag. Time tags are used in conflict 

resolution, and they are used to designate elements by many of the facilities that communicate with the user 

(see Section 8.1). 

2.3. Scalar Values 
OPS5 provides two scalar data types: numbers and symbolic atoms. 

2.3.1. Numbers 

The numeric type on the LISP-based interpreters for OPS5 includes both floating point and fixed point 

numbers. (The interpreters will make the appropriate conversions when mixed mode expressions are 

evaluated.) The BLISS-based interpreter allows only fixed point numbers to be used. Fixed point numbers 

consist of an optional sign, one or more decimal digits, and an optional decimal point. Valid fixed point 

numbers include 



A floating point number consists of an optional sign, zero or more decimal digits, a decimal point, zero or 

more digits after the decimal point, and an optional exponent, consisting of the letter "e" followed by a signed 

or unsigned integer. The number must include either an exponent or a digit after the decimal point; if it 

contains neither the interpreter will take it to be an integer. Typical floating point numbers include 

0.0 
.05 
6 .020-23 
-1 .812 

The computer on which OPS5 is run determines the legal range for fixed and floating point numbers and the 

number of digits of precision in floating point numbers. 

2.3.2. Symbolic Atoms 
A symbolic atom is any sequence of characters that does not constitute a number and diat is treated as a 

single unit by the production system. Examples of symbolic atoms include 

a 
n i l 

4-7-76 
Some non-printing characters such as escape (ASCII 33 octal) or control-C (ASCII 3 octal) cannot 

conveniently be used in atom names. In addition, on the BLISS-based interpreters, symbolic atoms must not 

contain the character 1 . But with this exception, all printing characters and many non-printing characters 

such as space and tab can be used. 

Some characters will be incorporated into atoms only 4f they are quoted. If they are used unquoted they 

are taken to be operators or separators. The characters that need to be quoted include (but are not limited to) 

space, tab, period, comma, uparrow ("t"), left and right braces ("{}"), and left and right parentheses ("()"). 

Different LISP interpreters provide different mechanisms for quoting characters. The best mechanism to use 

in OPS5 is probably the vertical bar (the character |) because it is understood by all the OPS5 interpreters. In 

all the interpreters, everything that occurs between two vertical bars constitutes an atom. Thus the atom ) ) ) 

would be entered | ) ) ) | . 

2.3.3. Case 
The MACLISP-based interpreter and the BLISS-based interpreter do case folding; that is, they convert 

lower case characters to upper case on input. The FRANZ LISP-based interpreter does not do case folding. 

Thus on that interpreter, p and P are distinct atoms. All commands to the FRANZ LISP-based interpreter 

must be given in lower case. 
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2.4. The Standard Structured Types 
0PS5 provides two non-scalar data types, plus a mechanism which allows the user to implement other non-

scalar types. The standard types are attribute-value elements and vectors. 

2.4.1. Attribute-Value Elements 

An attribute-value element consists of a class name and some number of attribute-value pairs, with 

everything enclosed in parentheses. Attributes are symbolic atoms, and values are either scalars or sequences 

of scalars. An attribute-value element may not contain more than 126 values. The following is a typical 

element 
(goal t s t a t u s a c t i v e t type f ind t o b j e c t block t c o l o r red) 

The class name of this element is goal. Its attributes are s ta tus , type, object , and color; the 

corresponding attributes are ac t ive , find, object , and red. The prefix operator t is used to distinguish 

attributes from values. 

The order in which attribute-value pairs are specified is not significant. Thus this element could also have 

been written say 
(goal t c o l o r red t o b j e c t block t s t a t u s a c t i v e t type f ind) 

2.4.1.1. Declarations 

Attribute names must be declared before they can be used. The usual way to declare names is with 

11 tera l ize . (Another method is described in Section 2.6.) A 1 i t era l i ze declaration indicates which 

attributes will be used in elements of a given class. A declaration consists of the atom 1 i t era l ize , a class 

name, and the attributes for that class, all enclosed in parentheses. For the goal shown above, a declaration 

like the following would be given. 
( l i t e r a l i z e goal 

s t a t u s 
type 
objec t 
co lor ) 

This indicates that elements of class goal can have the attributes s ta tus , type, object , and color. 

An attribute may have only one scalar value at a time unless it has appeared in a v e c t o r - a t t r i b u t e 
declaration. A vector attribute may have one, two, three, or more values; the only restriction is that the total 

size of the working memory element may not exceed 126 values. The number of values assigned to a vector 

attribute may vary dynamically at run time. The declaration consists of the atom v e c t o r - a t t r i b u t e and 

one or more attribute names, all enclosed in parentheses. For example, if contents was to be made a vector 

attribute, it would be declared 
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( v e c t o r - a t t r i b u t e contents ) 
For an example of a vector attribute, consider a production system to solve the Towers of Hanoi problem. 

The vector attribute contents could be used to indicate which disks were on a given peg. 

(peg 
tname peg2 
t content s d i s k l disk3 d1sk4 disk5) 

Two restrictions apply to vector attributes. 

• An element class may not have more than one vector attribute. 

• The vector attribute declaration is global. Each attribute is either a scalar attribute everywhere it 
is used or a vector attribute everywhere it is used. It is not possible for an attribute to be a scalar 
attribute in one element class and a vector attribute in another. 

2.4.1.2. Error Checking 
OPS5 does not perform extensive error checking of attribute-value elements. It will permit attributes to be 

used with element classes they were not declared for, and it will allow the user to treat scalar attributes as 

vector attributes. It cannot check for errors like these because attribute-value elements are implemented 

using a general mechanism that is also available to the user (see Section 2.6). 

2.4.2. Vector Elements 
The vector representation is used for data that needs to be represented as a sequence of symbols. An 

element in this representation consists of an open parenthesis, a sequence of atoms and numbers, and a close 

parenthesis. One common use for this representation is to hold input from the user. The element shown 

below for example might be a command given to a system for algebraic manipulation, 

( d i f f e r e n t i a t e express ion 4 wrt x) 

Vector working memory elements do not have to be declared. Vectors can vary in length at run time. A 

vector cannot contain more than 127 values. 

2.5. Details of Implementation 
In the OPS5 interpreter, all working memory elements are stored as ordered lists or vectors of values. 

Attribute-value representations are implemented by mapping field names into indices. The lists shrink and 

grow as necessary when the elements are modified. An element may not grow to more than 127 values, 

however. 
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2.5.1. Attribute-Value Elements 
In an attribute-value element, the class name is stored in the first field of the element, and the value of each 

attribute is stored in a field that is assigned to the attribute. For example, on one run of a production system 

object might be assigned 2, s t a t u s assigned 3, color assigned 4, and type assigned 5. Then the 

working memory element 
(goal t s t a t u s a c t i v e t type f ind t o b j e c t block t c o l o r red) 

would be stored internally 

I g o a l | 

| block | 

| a c t i ve | 

| red | 

| find | 

Each rectangle here represents one field in the working memory element 

The assignment of field numbers to attributes is performed by the interpreter when the l i t e r a l i z e 

declarations are processed. The number assigned to each attribute is global; if attribute A has number N in 

one element class, it will have number N in every class it occurs in. 

2.5.2. Vector Attributes 

Vector attributes are implemented by assigning the vector attribute a higher number than any other 

attribute in the class. (If a vector attribute is used in more than one class, it is assigned a number that is higher 

than any other attribute in any of the classes.) This allows the tail of the element to be dedicated to the vector 

\ attribute. The values of the attribute consist of the value in its assigned field plus all the succeeding values to 

the end of the element. Thus if name was assigned 2 and contents was assigned 3, then the element 

(peg 
tname peg2 
^contents d l s k l disk3 disk4 disk5) 

would be stored 

I peg | 

i Peg2 | 

| d i s k l | 

| d i sk3 j 
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I d i sk4 | 

| d iskS | 

Since 0PS5 allows elements to grow ahd shrink dynamically at run time, die number of values assigned to 

a vector attribute can vary dynamically. 

15.3. The Operator t 
Since attributes are mapped by the interpreter into field numbers, the operator t is essentially an index 

operator. To interpret 
t a t t 

OPS5 converts a t t into an integer, and then uses that integer to index into the working memory element 

The operator t can also be used with numeric arguments. For example, 

t7 
This designates the seventh value in an element 

Although it is common practice to write f immediately adjacent to the attribute (or number) this is not 

required. Blanks, tabs, and other non-printing characters can be put between the t and the attribute. 

2.5.4. Default Values 
In OPS5 it is legal to read the value in a field that has not received a value. (Sections 4 and 5 explain how 

productions read values from elements.) By default, every field in an element has the value n i l until the 

production system changes it to something else. For consistency, the interpreter also returns n i l if the 

production system reads beyond the end of the element (e.g., reading field 20 of an element that has values 

only in fields 1 through 10). It is not legal, however, to read non-existent fields; an attempt to read fields less 

than 1 or greater than 127 is an error. 

2.6. User-Defined Representations 
The declaration l i t e r a l is provided to allow users to implement their own representations. The 

declaration is used to assign numbers to attributes. A. l i t e r a l declaration consists of an open parenthesis, 

the symbol l i t e r a l , some number of triples of the form 

attribute = number 

followed by a close parenthesis. For example 
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( 1 i t e r a l 
s t a t u s = 2 
type = 3 
objec t a 4 
color = 5) 

If a production system contains bodi 1 i t era l and 1 i t era l i ze declarations, die interpreter will process 

the 1 i t era l declarations first (even if they are not written first). Then, if is possible, it will use the explicit 

l i t e r a l assignments for the attributes that occur in both l i t e r a l and l i t e r a l l ze declarations. If it is 

not possible to accommodate the explicit assignments, an error message will be printed. 

The declaration l i t e r a l should be used only when l i t e r a l i z e cannot be used, because l i t e r a l has 

two severe limitations. First, it is easy to make a mistake with 1 i t era l and assign the same number to two 

attributes that were supposed to be distinct. This can cause obscure bugs in the production system. Second, 

1 i t era l does not provide enough information for the working memory element printer to work properly. 

When l i t e r a l i z e is used, elements are printed in attribute-value format; when l i t e r a l is used, 

elements must be printed as lists. 
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3. Production Memory 
An 0PS5 production memory consists of a set of productions. 

3.1. Organization of the Memory 
There is no structure imposed on production memory. In particular, the productions are not grouped into 

subroutines; any production can fire at any dme. Furthermore, the order in which productions are entered 

into the system is not important. 

Production memory can contain arbitrarily many productions. The only limit is the amount of memory 

available on the computer to store the productions. 

3.2. Production Names 
The name of a production must be a symbolic atom. The atom n i 1 should not be used. 

Two productions may not have the same name. If the user enters a production that has the same name as 

an existing production, the existing production is removed from production memory. 

3.3. The Production 
A production consists of (1) an open parenthesis, (2) the symbol p, (3) the name of the production, (4) the 

LHS of the production, (5) the symbol —>, (6) the RHS of the production, and (7) a close parenthesis. The 

production shown in Section 1.3 is typical. 
(p f ind-co lored-b lock 

(goal t s t a t u s a c t i v e t type find t o b j e c t block 
t c o l o r <z>) 

(block t c o l o r <z> tname <block>) 
—> 
(make r e s u l t tpo in ter <block>) 
(modify 1 t s t a t u s s a t i s f i e d ) ) 
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4. The LHS 
As Section 3.3 explained, the LHS of a production is everything between the production's name and the 

symbol —>. An LHS is a collection of patterns called condition elements. 

4,1. The Condition Element 
A condition element is a pattern to match a working memory element; it consists of an open parenthesis, 

some number of forms to specify attributes and values, and a close parenthesis. The forms are called 

condition element terms. A condition element is considered to match a working memory element if every 

term in the condition element matches the corresponding part of the working memory element 

4.1.1. Terms 

A condition element term can be either 

• The operator t followed by an attribute and a specification of a value (OPS5 provides a variety of 
ways to specify values in condition elements - see below) 

• The operator t followed by a number and a specification of a value, or 

• Just a specification of a value. 

4.1.2. The Operator t 

The interpreter applies three rules to determine which value in a working memory element a term should 

be compared to. 

1. If the term contains t and an attribute name or a number, compare the term to the value in the 
indicated field in the working memory element 

2. If a term Ta that contains no t is preceded by another term Tp, move to the position immediately 
after the position used for Tp, and compare Ta to the value there. 

3. If a term that contains no f is not preceded by another term, compare the term to the value in the 
first field in the working memory element. 

To see how these rules work with vector and attribute-value representations, consider the following 

condition elements. In these elements, al and a2 are attributes, and vl through v6 are values. 
(vlv2 v3) 

(v4 tal v5 ta2 v6) 

In the first condition element by Rule 3, when vl is processed it will be compared to the first value in the 

working memory element. By Rule 2, v2 will be compared to the second value, and by the same rule, v3 will 

be compared to the third value. Thus the rules cause vector style condition elements to be processed 
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correctly. In the second condition element, by Rule 3, v4 will be compared to the first value in die working 

memory element. By Rule 1, v5 will be compared to the value in the field for al, and by the same rule, v6 will 

be compared to the value in die field for a2. Thus the rules also cause attribute-value style condition elements 

to be processed properly. 

4.1.3. Values 

The values in condition element terms can be specified as constants or by using the pattern operators 

provided by OPS5. 

4.1.3. L Constants 
Symbolic atoms and numbers may occur in condition elements as well as in working memory elements. A 

symbolic atom in a condition element matches a symbolic atom in a working memory element if the 

sequences of characters composing the two elements are identical. A number in a condition element matches 

a number in a working memory element if the algebraic difference of the two is zero. 

4.1.3.2. Variables 
A variable in OPS5 is any symbolic atom whose first character is < and whose final character is >; for 

example, <x> or <status>. A variable will match any symbolic atom or number, but if a variable occurs 

more than once in an LHS, all occurrences must match the same value. A variable is said to be bound to the 

value it matches. 

4.1.3.3. Disjunctions 
The brackets « and » specify that any of the contained values is acceptable as a match. Thus the 

following 
« n i l 17 » 

will match either n i l or 17. 

These brackets implicitly quote the symbols that they contain. Thus the following 

« <x> <y> » 

would match not the binding of <x> or <y>, but rather die symbols <x> or <y>. The brackets will also 

quote t and all the pattern operators that are described below. 

4.1.3.4. The Operator// 
The prefix operator / / i s used to quote single symbols in condition elements. For example, to match the 

symbol <x> rather than the.binding of the variable <x>, the following is used. 

/ / <x> 
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For another example, to match the symbol / / the following is used 
/ / / / 

This operator can also be used to quote t, the brackets << and » , and the other operators defined below. 

4.1.3J. Predicates 

OPS5 has seven prefix operators called predicates which are used with constants and variables. The 

predicates are 
a 
<> 
<=> 
< 
<• 
>-
> 

The first occurrence of a variable cannot be preceded by any predicate other than =. (This restriction is 

necessary because the first occurrence of the variable establishes the binding for the variable.) 

The predicate <> is the not-equal predicate. If vail is a variable or constant, 
<> vail 

will match any value except the values that are matched by 
vail 

The predicate • is provided only for completeness; if val2 is a constant or variable 
= val2 

is exactly equivalent to 

val2 

The predicate <=> is the same type predicate. If val3 is a number or a variable bound to a number, 
<»> val3 

will match any number. If val4 is a symbolic atom or a variable bound to a symbolic atom, 

<=> val4 

will match any symbolic atom. 

The remaining predicates, <,<»,>•, and > are used only with numbers and with variables that are bound 
to numbers. They match, respectively, numbers that are less than, less than or equal to, greater than or equal 
to, or greater than the value in the condition element term. For example, 

< 0 
will match any negative number. 
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4f.l.3.6. Conjunctions 
The braces { and } are used to indicate that a value in a working memory element must match several 

things simultaneously. For example, to indicate that a value must be greater tiian zero, but less than ten, the 

following would be used. 
{> 0 < 10} 

Braces may contain constants, variables, either of these preceded by predicates, the operator / / , and die 

brackets « and » . 

Braces are often used with variables. The braces allow specifying some restrictions on a value and binding 

a variable to the value that meets the restrictions. For example, 
{ « a b c d » <x>} 

Will match a, b, c, or d and bind the value that is matched to <x>. As another example, 

{<y> <> <x>} 
will match anything that is not equal to the current binding of <x> and bind the value that is matched to <y>. 

As a limiting case, empty braces place no restrictions on the value matched. Thus they can be used as place 

holders in a condition element For example, the condition element 

(<x> { } < x » 

will match any working memory element whose first and third values are equal, regardless of what the second 

value is. 

4.2. The LHS as aJ/Vhole 
The condition elements in an LHS may be negated or not, and the non-negated condition elements may 

have variables bound to them. 

4.2.1. Negated and Non-negated Condition Elements 

A condition element may be negated by preceding it with the operator An LHS consists of one non-

negated condition element followed by zero or more negated or non-negated condition elements. An LHS is 

satisfied when 

• There exist working memory elements that match all the non-negated condition elements, and 

• There exist no working memory elements that match the negated condition elements. 

Thus if PI, P2, and P3 are condition elements, the LHS 

PI P2 -P3 

is satisfied only when working memory contains something matching PI, something matching P2, and 
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nothing matching P3. 

4.2.2. Element Variables 
A variable may be bound to the working memory element that matches a non-negated condition element 

through the use of the {} braces. The condition element and the variable are placed inside the braces; for 

example 
{ <c2> (block t c o l o r <z>) } 

or 
{ (block t c o l o r <z>) <c2> } 

These two lines are exacdy equivalent 

These variables, which are called element variables, are not treated like the other variables. A given 

element variable can appear only once in an LHS. Thus element variables can only be bound on the LHS; 

they cannot be tested. An LHS may contain both an ordinary variable and an element variable with the same 

name; OPS5 will not confuse the two since the contexts they occur in are distinct. 

4.2.3. Length of an LHS 
On the LISP-based interpreters, LHSs can contain arbitrarily many negated and non-negated condition 

elements. On the BLISS-based interpreter, there is a limit of sixteen non-negated condition elements per 

LHS. There is no limit on the number of negated condition elements an LHS may contain, however. 
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5. The RHS 
The RHS of a production is everything in die production after the - -> . The RHS consists of an 

unconditional sequence of commands called actions. An action consists of an open parenthesis, the action 

type, the arguments to the action, and a close parenthesis. The actions in die production in Section 1.3 are 
(make r e s u l t tpo in ter <block>) 
(modify 1 t s t a t u s s a t i s f i e d ) 

The action types here are make and modify; everything else constitutes the arguments to the actions. 

OPS5 provides twelve action types: make, remove, and modify to change working memory; 

openf i l e , c l o s e f i l e , and de fau l t to manipulate files; wri te to output information; bind and 

cbind to assign values to variables; c a l l to call user-written subroutines; ha l t to cause the interpreter to 

stop firing productions; and bu1 Id to add productions to production memory. Sections 5.1 and 5.2 explain 

how the arguments to these actions are evaluated. Section 5.3 describes the actions. 

5.1. Element Designators 
Some of the actions and functions in OPS5 refer to working memory elements. Working memory elements 

may be designated eitiier by number or by use of element variables (see Section 4.2.2). If an element variable 

is used, it refers to the working memory element that it was bound to in the LHS. (Element variables can be 

bound explicitly in the RHS - see Section 5.3.11. If the variable has been given an explicit binding, that 

binding is used.) If a number K is used, it refers to the element matching the Kth non-negated condition 

* element in the LHS. It is important to note that the interpreter does not count negated condition elements 

when it is evaluating a numeric element designator. Thus in the RHS of the following production 

(p ex l 
(...) - (...) 

{ ( . . . ) <c>} 
- > . . . ) 

The element variable <c> and the numeric element designator 2 both refer to the same working memory 

element - the one matching the last condition element in the LHS, 

5.2. Patterns 
Many of the RHS actions take patterns like condition elements as arguments. The make action, which is 

described in Section 5.3.1, is typical; its only argument is a pattern. For instance, 
(make block tname blockl t c o l o r red tmass 500 t l ength 100 

twidth 100 the igh t 100) 
When the interpreter evaluates a pattern in the RHS, it instantiates the pattern into an element by replacing 

variables with the values they are bound to, supplying default values for unspecified parts of die element, etc. 
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The element that results does not necessarily get put into working memory. Some of the actions put die 

element in working memory; some use it for other purposes and then delete it. The element that is built is 

called the result element. 

5.2.1. Terms 
An RHS pattern, like a condition element, consists of a sequence of terms. An RHS term can be 

• The operator t followed by an attribute and a specification of a value, 

• The operator * followed by a number and a specification of a value, 

• The operator t followed by a variable and a specification of a value (this is not allowed in the 
LHS), or 

• Just a specification of a value. 

5.2.2. Evaluating Terms 
In outline, the process of instantiating a pattern is 

1. Fill the result element entirely with n i l . 

2. Evaluate each term in the pattern in order from left to right, changing the result element as the 
term indicates. 

5.2.3. The Operator t 
The interpreter uses three rules to determine which position in the result element a term refers to. 1 

• If a term contains t and an attribute name or a number, move to the indicated field and change its 
value as the term specifies. 

• If a term Ta that does not contain t is preceded by another term Tp, move to the position 
immediately after the position used for Tp and change its value as Ta specifies. 

• If a term that does not contain t is not preceded by any other term, change the first field in the 
result element as the term specifies. 

hriese rules are like the ones used in processing patterns in the LHS. See section 4.1.2. 
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5.2.4. Constants 
Symbolic atoms and numbers are copied into the result element without change. Thus if 

(make . . . t4 n i l t5 0 . . . ) 
is evaluated, position 4 of the element is set to n i 1, and position 5 to 0. 

5.2.5. Variables 
When a variable in an RHS pattern is evaluated, the binding of the variable is copied into the result 

element Thus if <x> is bound to ni 1, when the following is evaluated 

(make . . . t6 <x> • • . ) 
position 6 of the element is given the value n i l . 

5.2.6. The Operator / / 

The symbol / / is used to keep symbols from being evaluated. If sym is any symbol, 

/ / sym 

causes sym to be placed directly into the result element Thus if 
(make . . . t7 / / t t8 / / <z> t9 / / / / . . . ) 

is evaluated, position 7 is given the value t, position 8 is given the value <z>, and position 9 is given the value 

//. 

5.2.7. RHS Functions 

An RHS function is a subroutine that puts one or more values into the result element The syntax of an 

RHS function call is like the syntax of an action: an open parenthesis, the name of the function, the 

arguments to the function if any, and a close parenthesis. 

5.2.7. A substr 

The function substr extracts a sequence of values from an existing working memory element and puts 

the values in the result element The function takes three arguments. The first argument is an element 

designator. (See Section 5.1.) This argument indicates which working memory element is to be examined to 

get the values. The second argument should be an integer, an attribute name, or a variable that is bound to an 

integer or attribute name. This argument indicates the first value that is to be extracted. The third argument 

should be an integer, an attribute name, a variable that is bound to an integer or attribute name, or the symbol 

inf. This argument indicates the final value to extract. For example, if <w> is bound to (a b c d e) , 

then evaluating 

(make . . . t i o ( substr <w> 3 3) . . . ) 

will cause the atom c to be copied into position 10 of the result element When more than one value is 
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extracted, die values are placed in contiguous fields in die element; dius 
(make . . . t i l ( substr <w> 2 4) . . . ) 

will cause b to be copied into position 11, c to be copied into position 12, and d to be copied into position 13. 

The special symbol inf indicates that substr is to continue taking values until it reaches the end of the 

element it is extracting them from. Thus 

(make . . . t l 4 ( substr <w> 4 in f ) . . . ) 

will copy d into position 14 and e into position 15. 

The function substr can be used to extract information from attribute-value elements, but it should be 

used carefully. It is legal to call substr to copy all the values in a certain range -- for example, to use 

( substr 3 s t a t u s objec t ) 

to copy all the values from the value of s t a t u s to the value of objec t - but this is a questionable practice. 

If the interpreter assigns numbers to attributes, the positions of s t a t u s and objec t may vary from run to 

run; in fact, on some runs s t a t u s may come after object . There are two safe uses of substr with 

attribute-value elements however. The first is to extract the value of a particular attribute. If the same 

attribute name is used for the second and third arguments, substr will return just the value of that attribute. 

For example, the following would be used to copy the from value of one element into the to field of 

another. 
(make . . . t t o ( substr <x> from from) . . . ) 

The other safe use with attribute-value elements is copying an entire element For example, executing 
(make . . . t l ( substr <z> 1 in f ) . . . ) 

copies all the values of element <z> into the corresponding fields of the result element 

5,27.2 genatom 

The function genatom creates a new symbolic atom and puts it in the result element. This function takes 

no arguments, so a call on it always has the form (genatom). 

5.27.5. compute 
The function compute evaluates arithmetic expressions. The expressions can contain five operators, +, 

*, / / , and \ \ , which denote respectively addition, subtraction, multiplication, division, and modulus. 

Standard infix notation is used, but operator precedence is not used; compute evaluates the operators from 

right to left. Parentheses can be used to override the right to left evaluation. Only numbers and variables that 

are bound to numbers can be used in the expressions. Typical calls on compute include 

(compute <x> + 1) 
(compute (<b> * <b>) - 4 * <a> * <c>) 
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5.17A litval 
The function l i t v a l puts into the result element the number which has been assigned to an attribute 

name. That is, if a is an attribute name, then (1 i tval a) determines the number of the field that is used 

for attribute a and puts the number into the result element The function takes one argument, which 

normally is an attribute name or a variable which is bound to an attribute name. The function will also accept 

numbers or variables bound to numbers; when it is called with such an argument, it returns the number. 

5.2.7.5. accept 
The function accept takes input from the user and puts it into the result element The function takes 

either one or zero arguments. If it has an argument, the argument must be a symbolic atom or a variable that 

is bound to a symbolic atom. The following are legal calls on accept 
(accept ) 
(accept i n f i l e ) 
(accept <x>) 

If accept is called with no arguments, it takes its input from the current default input stream. (See Section 

5.3.6.) If it is called with an argument, accept takes its input from the file that has been associated with the 

atom. (See Section 5.3.4.) 

The function will read either a single atom or a list. When it reads a list it strips the parentheses from the 

list and puts the atoms of the list into the result element The interpreter determines whether it is to read a list 

or a single atom by inspecting the first printing character in the input If the interpreter encounters (, it 

expects to read a list so it does not stop reading until it reaches ). If it encounters any other printing 

character, it reads only one atom. 

If accept is asked to read beyond the end of a file, it puts the atom end-of - f i 1 e in the result element 

In the LISP-based interpreters, if the end of the file is reached while a list is being read, a LISP error will 

occur. 

5.2.7.6. acceptline 
The function accept! ine is also used to read input The difference between accept and accept l i ne 

is that the latter always reads exactiy one line of input. The function reads everything on the line, removes 

any parentheses that are there, and puts the atoms into the result element 

This function takes any number of arguments. If the first argument is associated with an input file (see 

Section 5.3.4) a ccep t l ine takes the input from that file; otherwise, it takes the input from the current 

default input stream (see Section 5.3.6). The rest of the arguments are used when a null line is read or when 

acceptl i ne tries to read beyond the.end of a file. A null line is a line that contains no characters other than 
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spaces and tabs. When accept 1 i ne encounters a null line or the end of a file, it puts its arguments into the 

result element. (If the first argument is not the name of a file, it is put in the result element along with the 

other arguments.) Thus when the function 

( a c c e p t l i n e nothing read) 

is evaluated, the interpreter will read the default input (assuming that not hi ng is not associated to a file) and 

then put into the result element either one line of input or the two atoms nothing and read. 

5.3. Actions 

The actions in OPS5 are make, remove, modify, openf i l e , c l o s e f i l e , default , write , c a l l , 

halt , bind, cbind, and build. 

5.3.1. make 
The action make creates new elements and adds them to working memory. The argument to make is an 

RHS pattern; it is evaluated as described in Section 5.2. A typical example of a make action is 
(make r e s u l t tpo inter <block>) 

If <bl ock> was bound to bl ockl, this action would add to working memory the element 
( r e s u l t tpo in ter b lock l ) 

A bigger example of make was shown before: 
(make block 

tname b lockl 
t c o l o r red 
tmass 500 
t l eng th 100 
twidth 100 
t h e i g h t 100) 

which puts into working memory the element 
(block 

tname blockl 
t c o l o r red 
tmass 500 
t l eng th 100 
twidth 100 
t h e i g h t 100) 

5.3.2. remove 

The action remove is used to delete elements from working memory. Any number of arguments may be 

given to remove; the arguments must be element designators. When the action is executed, the indicated 

working memory elements are deleted from working memory. A typical call on remove is 

(remove 1 <c3>) 
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5.3.2'./. Element Designators and remove 
Deleting working memory elements does not change the bindings of element variables or of numeric 

element designators. Thus in the following RHS, the two calls on substr return the same value, even 

though element <c> is deleted between the two calls. 

( . . . - - > 
(make . . . ( substr <c> 5 10)) 
(remove <c>) 
(make . . . ( substr <c> 5 10 ) ) ) 

5.3.2.2. Multiple remove's of an Element 
It is legal to call remove with the same argument more than once in an RHS. When the interpreter 

encounters this situation, it executes the first remove and then ignores the rest. 

5.3.3. modify 
The action modify is used to change one or more values in an existing working memory element It takes 

as arguments a condition element designator and an RHS pattern. It removes the old form of the designated 

element from working memory, changes it as the pattern specifies, and then puts it back into working 

memory. For example, when the modify in the following production executes 
(p f ind-co lored-b lock 

(goal t s t a t u s a c t i v e t type f ind t o b j e c t block 
t c o l o r <z>) 

(block t c o l o r <z> tname <block>) 
—> 
(make r e s u l t tpo in ter <block>) 
(modify 1 t s t a t u s s a t i s f i e d ) ) 

it deletes the element that matched the first condition element - say 
(goal t s t a t u s a c t i v e t type f ind t o b j e c t block t c o l o r red) 

and replaces it with a similar element 
(goal t s t a t u s s a t i s f i e d t type f ind t o b j e c t block t c o l o r red) 

It is possible to change more than one value in a modify action. The following, for example, is a legal 

action 
(modify 3 t s t a t u s fol lowed tva lue <response> t i d <newid>) 

The action modify is defined to be equivalent to a remove followed by a make. The action 
(modify designator pattern) 

does precisely what the two actions 
(remove designator) 
(make ( substr designator 1 in f ) pattern) 
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would do. 2 Thus the action 
(modify 3 t s t a t u s fol lowed tva lue <response> f id <newid>) 

is equivalent to 
(remove 3) 
(make ( substr 3 1 in f ) t s t a t u s fol lowed tva lue <response> 

t i d <newid>) 

5.3.3.1. Element Designators and modify 
Modifying elements does not change the bindings of element variables or of numeric element designators. 

Thus in the following RHS, the two calls on substr both return the same result 

( . . . - -> 
(make . . . ( substr <c> 5 10)) 
(modify <c> +7 n i l ) 
(make . . . ( substr <c> 5 1 0 ) ) ) 

5.3.3.2. Multiple modify *s of an Element 
It is legal to modify an element more than once in an RHS. That is, an RHS like the following is legal. 

( . . . -->• 
(modify <x> *2 0) 
(modify <x> *2 1 ) ) 

To understand what happens in this case, recall that modify is defined to be equivalent to a remove 

followed by a make. Thus this RHS is equivalent to 

( . . . — > 
(remove <x>) 
(make ( substr <x> 1 in f ) t 2 0) 
(remove <x>) 
(make ( substr <x> 1 in f ) *2 1 ) ) 

As explained in the previous section, the binding of <x> remains unchanged while the RHS executes. Thus 

the two calls on make produce two elements that are identical except for their second subelements. As 

explained in Section 5.3.2, if remove is called more than once with the same argument the second and later 

calls have no effect Thus the second remove here is a no op. In short then, the two calls on modify result 

in the original element being deleted from working memory and replaced by two slightly different copies. 

5.3.4. openfile 

The action openf i l e is used to open files and associate names with the files. The action takes an RHS 

pattern as its argument. After the pattern is evaluated, the first three fields in the result element should 

contain values. The first value should be a symbolic atom; this is the name that the production system will 

use to refer to the file. The second value should be a valid file name for the system on which OPS5 is being 

2 If the pattern does not begin with the operator *, then it is necessary to put M between the s u b s t r and the pattern in make. 
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run. The third value should be either in or out; this value indicates whether the file is to be opened for 

input or output. A typical use of outf 11 e is 

( o p e n f i l e t r a c e f i l e [ t r a c e . r l l | out) 
This opens the file t r a c e . r 11 for output and associates the name t race f i 1 e with the open file. 

The atom n i l cannot be used as the first argument to openf i l e . This atom is used to refer to die user's 

terminal (see Section 5.3.6). 

5.3.5. closefile 
The action cl osef 11 e is used to close files that have been opened with openf 11 e. This action takes an 

RHS pattern as its argument. The pattern should evaluate to one or more symbolic atoms. These atoms 

should be names which have been associated with files by openf i l e . When c l o s e f i l e is executed, the 

operating system is called.to close the files and the associations between the names and the files are removed. 

Thus to close the file that was opened in the example above, the following would be executed 

( c l o s e f i l e t r a c e f i l e ) 

It is important that output files be closed before the OPS5 interpreter is exited. On some systems, the files 

will be lost if they are not closed. 

5.3.6. default 
The action de fau l t is used to control where wr i te and the trace routines print their information and 

where accept ami a c c e p t l i n e read their information. This action takes an RHS pattern as its argument. 

After the pattern is evaluated, the first two positions in die result element should contain values. The first 

position should contain either n i l or a symbolic atom that has been associated with a file by openf l i e . 

The second position should contain either trace, write, or accept; the value in this position determines 

which default is being set. (The atom a c c e p t l i n e is not a valid value for the second position; 

accept! i ne reads from the same default file as accept.) As an example of its use, to make the file that 

was opened in the example in Section 5.3.4 be the default for trace information, the following would be 

executed. 
( d e f a u l t t r a c e f i l e t race ) 

If the second argument to def aul t is n i l , then the default is set to the user's terminal. Thus to undo the 
effects of the previous call to def aul t, the following would be used 

( d e f a u l t n i l t race ) 
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5.3.7. write 

The action wri te is used to output information from the production system. The action takes an RHS 

pattern as its argument. It instantiates the pattern and then prints the values in the result element on the 

user's terminal or a file. (Thus the pattern should be in vector format; if it is in attribute-value format, the 

information will come out in a jumbled order that depends on the assignment of numbers to attribute names.) 

If the value in the first field of the result element has been associated with an output file by openf i 1 e, the 

information will be written to that file. If the value has not been associated to an output file, the information 

will be written to the current default stream for wr i te . The value in the first position is not printed if it is a 

file specifier. 

As explained in the following sections, the user can specify printer control information in wri te . When 

information is not supplied, wri te prints its values on the current output line, putting one space between 

values. 

5.5.7.1. Special Functions for write 

Three functions, crlf , tabto, and r j u s t are provided for use with write . It is possible to call these 

functions within make, modify, or other action, but this is not recommended. 

In some implementations of the OPS5 interpreter these functions place only a single value into the result 

element; in other implementations they place two. Nonetheless, production systems will always give the same 

results provided the operator t is not used in wr 11e. 

117.2. crlf 
The function c r l f puts into the result element a value that will cause wri te to begin a new line when it 

encounters the atom. The function takes no arguments, so a call on it has the form ( c r l f ) . As an example 

of its use, the following action 
(wri te ( c r l f ) a b c ( c r l f ) ( c r l f ) d e f ) 

will cause the interpreter to begin a new line, print a b c, skip a line (by executing the operation to begin a 

new line twice), and then print d e f. Thus the output is 

a b c 

d e f 
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5.3.7.3. tabto 
The function tabto places values into the result element that cause the wri te action to move to a 

specified column. The function takes one argument, the column number. The argument must be a numeric 

atom or a variable that is bound to a numeric atom. Typical calls on tabto are 
( tabto 30) 
( tabto <x>) 

If the specified column is to the left of the last column printed, a new line is begun. Thus die action 
(wri te ( c r l f ) ( tabto 5) * ( tabto 3) * ( tabto 1) *) 

would print 

The action 
(wri te ( c r l f ) ( tabto 1) * ( tabto 3) * ( tabto 5) • ) 

would print 
« * * 

5.3J J. rjust 
The function r j u s t is used to print values flush-right in fields of specified widths. The function takes one 

argument, an indication of the width of the field. The argument must be a numeric atom or a variable that 

evaluates to a numeric atom. When the action is evaluated it places print-control information in the result 

element. When wr i t e processes the information, it allocates a field of the indicated width beginning at the 

next available position on the output line. Then wri te determines the number of characters that the next 

value to be printed will need and prints enough blanks to cause the value to be right justified in the field. 

Thus the action 
(wri te ( c r l f ) ( tabto 10) ( r j u s t 10) abc) 

will cause a to be printed in column 18, b in column 19, and c in column 20. This action is equivalent to 
(wri te ( c r l f ) ( tabto 18) abc) 

If the value to be printed is wider than the field, wr i t e reverts to the normal mode of printing. That is, it 

prints a single space and then the value. 

The action must immediately precede a printable value. That is, it must not precede a call on cr l f , 

tabto, or r just . However, it is legal for r jus t to follow c r l f or tabto. 
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5.3.8. call 
The action c a l l is used to call subroutines written by the user. The action takes as arguments the name of 

a subroutine and an RHS pattern. It instantiates the pattern and then calls the subroutine. The subroutine 

can interrogate the OPS5 interpreter to determine what information is in the result element. (See Section 7 

for more information about the interaction between OPS5 and the subroutine.) 

5.3.9. halt 
The action ha l t sets an internal flag in the interpreter that causes the interpreter to stop firing productions 

after completing the recognize-act cycle in progress. The action takes no arguments; a call on ha l t always 

takes the following form, 

( h a l t ) 

5.3.10. bind 
The action bi nd is used to assign values to variables. There are two forms of calls on bi nd. In the more 

general form bi nd is given two arguments: a variable and an RHS pattern. It evaluates the pattern and then 

assigns to the variable the value that is in position 1 of the result element For example, to add 1 to the 

binding of <x>, the following would be executed. 

(bind <x> (compute <x> + 1) ) 
In the other form of bind, the action is given only one argument - the variable to be bound. When this 
action is executed, a new symbolic atom is created and assigned to the variable. Thus the action 

(bind <z>) 

is equivalent to 
(bind <z> (genatom)) 

5.3.11. cbind 
The action cbind is used to assign values to element variables. The action takes only one argument, the 

variable. A typical call is 
(cbind <c>) 

The variable is bound to the last element that was added to working memory (by make, modify, or 

infrequently ca l l ) . The result of executing cbind before the RHS has added an element is undefined. 

5.3.12. build 
The action bulld is supported only by the LISP-based interpreters for OPS5. This action is used to add a 

new production to production memory while the system is executing. Because some of the variables, actions, 

and functions in the argument to bui ld are meant to be evaluated when the action is performed, while 
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others are meant to be incorporated as they arc in die new production, bui 1 d cannot use the ordinary OPS5 

argument evaluation mechanism. Instead, when bui 1 d is evaluated, all its arguments are treated as constants 

unless diey are preceded by the special unquote operator, \ \ . The arguments to bui 1 d should evaluate to a 

symbolic atom (the production's name), a sequence of condition elements, the atom —>, and a sequence of 

actions. 
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6. The Recognize-Act Cycle 
By convention, the steps in the recognize-act cycle are usually said to occur in the following order: 

1. [Match] Evaluate the LHSs of the productions to determine which are satisfied given the current 
contents of working memory. 

2. [Conflict Resolution] Select one production with a satisfied LHS. If no productions have satisfied 
LHSs, return control to the user. 

3. [Act] Perform the actions specified in the RHS of the selected production. 

4. If a hal t action was performed, return control to the user; otherwise go to step 1. 

In the OPS5 interpreter, the cycle has been changed to: 

1. [Conflict Resolution] Select one production with a satisfied LHS. If no productions have satisfied 
LHSs, return control to the user. 

2. [Act] Perform the actions specified in the RHS of the selected production. 

3. [Match] Evaluate the LHSs of the productions to determine which are satisfied given the current 
contents of working memory. 

4. If a hal t action was performed, return control to the user; otherwise go to step 1. 

The OPS5 cycle is more convenient for the user because when the cycle ends, the conflict set is consistent with 

the current contents of working memory. 

6.1. Conflict Resolution 
The output of the match process, and the input to conflict resolution, is a set called the conflict set. The 

objects in the conflict set are called instantiations. An instantiation is an ordered pair of a production name 

and a list of working memory elements satisfying the production's LHS. During conflict resolution the 

interpreter examines the conflict set to find an instantiation which dominates all the others under the ordering 

rules listed below. The dominant instantiation will be executed in the act phase of the cycle. 

A set of ordering rules for instantiations is called a conflict resolution strategy. OPS5 provides two 

strategies called LEX and ME A. Although these strategies are rather complex to describe, what they achieve 

is simple: 

• Both strategies prevent instantiations from executing more than once. Early production systems 
were subject to trivial loops in which the interpreter fired a production on the same data 
indefinitely. The OPS5 strategies contain a mechanism to prevent these loops. 

• They make production systems attend to the most recent data in working memory. This makes 
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production Systems easier to program because direction is given to die system's processing; once 
the system begins a subtask it is unlikely to be distracted by anything left over from earlier tasks. 
The difference between LEX and MEA is that MEA makes die system more sensitive to recent 
tasks. With the MEA strategy, the system cannot be distracted from its current task. 

• They give preference to productions with more specific LHSs. Since productions with more 
specific LHSs are satisfied in fewer cases, they are more likely to be appropriate for those cases in 
which they are satisfied. More specific productions are therefore chosen when diey are available. 

These three things are important because they make it easy to add productions to an existing set and have the 

new productions fire at the right time, and because they make it easy to simulate common control constructs 

such as loops and subroutine calls. See [8] for a defense of these assertions. 

6.1.1. The LEX Strategy 

The LEX conflict resolution strategy contains four rules which are applied in order to find the instantiation 

that dominates under them. 
1. Discard from the conflict set the instantiations that have already fired. If there are no 

instantiations that have not fired, conflict resolution fails and no instantiation is selected. 

2. Order the instantiations on the basis of the recency of the working memory elements, using the 
following algorithm to compare pairs of instantiations: First compare the most recent elements 
from the two instantiations. If one element is more recent than the other, the instantiation 
containing that element dominates. If the two elements are equally recent, compare the second 
most recent elements from the instantiations. Continue in this manner either until one element of 
one instantiation is found to be more recent than the corresponding element in the other 
instantiation, or until no elements remain for one instantiation. If one instantiation is exhausted 
before the other, the instantiation not exhausted dominates; if the two instantiations are exhausted 
at the same time, neither dominates. 

3. If no one instantiation dominates all the others under the previous rule, compare the dominant 
instantiations on the basis of the specificity of the LHSs of the productions. Count the number of 
tests (for constants and variables) that have to be made in finding an instantiation for the LHS. 
The LHSs that require more tests dominate. 

4. If no single instantiation dominates after the previous rule, make an arbitrary selection of the 
dominant instantiation. 

6.1.2. The MEA Strategy 
The MEA strategy differs from LEX in that another rule has been added after the first. The rule that was 

second had to be modified slightly to accommodate the new rule. The rules for MEA are: 

1. Discard from the conflict set the instantiations that have already fired. If there are no 
instantiations that have not fired, conflict resolution fails and no instantiation is selected. 
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2. Compare the recencies of the working memory elements matching the first condition elements of 
the instantiations. The instantiations using the most recent working memory elements dominate. 

3. Order the instantiations on the basis of the recencies of the remaining working memory elements, 
using the following algorithm to compare pairs of instantiations: First compare the most recent 
elements from the two instantiations. If one element is more recent than die other, the 
instantiation containing diat element dominates. If the two elements arc equally recent, compare 
the second most recent elements from the instantiations. Continue in this manner either until one 
element of one instantiation is found to be more recent than the corresponding element in the 
other instantiation, or until no elements remain for one instantiation. If one instantiation is 
exhausted before the other, the instantiation not exhausted dominates; if the two instantiations are 
exhausted at the same time, neither dominates. 

4. If no one instantiation dominates all the others under the previous rule, compare the dominant 
instantiations on the basis of the specificity of the LHSs of the productions. Count the number of 
tests (for constants and variables) that have to be made in finding an instantiation for the LHS. 
The LHSs that require more tests dominate. 

5. If no single instantiation dominates after the previous rule, make an arbitrary selection of the 
dominant instantiation. 

6.1.3. Which Instantiations to Discard 

The first rule in both strategies specifies that instantiations that have already fired are to be discarded. 

Implementing this rule requires that a precise definition of equality for instantiations be chosen; and this in 

turn requires that a precise definition of equality for working memory elements be chosen. In OPS5 the latter 

is simple: Working memory elements X and Y are equal if they have equal time tags. The former is 

somewhat more complex; the definition of equality for instantiations that is used in OPS5 is: Instantiations A 

and B are equal if 

• A and B are instantiations of the same production, 

• A and B contain the same list of working memory elements, and 

• If A was in the conflict set at time Ta and B was in the conflict set at time Tb, there is no time Tc 
between Ta and Tb such that A and B were not in the conflict set at time Tc. 

The last item here probably requires an explanation. It is needed for productions that contain negated 

condition elements. It is possible for such a production to be satisfied by some list of working memory 

elements (instantiation A), become unsatisfied because something enters working memory that matches the 

negated condition element, and then become satisfied again on the original list of elements when the new 

element is deleted (instantiation B). The third rule is included so that the production will be able to respond 

to these changes by firing a second time. 
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6.2. Act 
In the act phase of the cycle, the actions in the chosen production are executed one at a time, in the order 

they are written. Actions take effect immediately. Hence if an RHS contains several make or modify 

actions, the element added by the last action in the RHS is more recent than the elements added by the rest 

6.3. Match 
During the match, the interpreter determines every instantiation of every production. That is, it finds every 

production that is instantiated, and if any of the productions can be instantiated by more than one list of 

working memory elements, it finds every list of elements. It puts the instantiations into the conflict set 
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7. User-Defined Actions and Functions 
The OPS5 interpreters allow users to write their own actions and functions. The BLISS-based interpreter 

will call routines written in BLISS (or any other language that uses the BLISS subroutine calling 

conventions); the LISP-based interpreter will call routines written in LISP. 

7.1. Declarations 
The user's routines must be declared to the interpreter before they are used in an RHS. The syntax of the 

declaration is: an open parenthesis, the atom external , one or more routine names, and a close 

parenthesis. Any number of routines may be declared external in one declaration, and any number of 

declarations may be made in a producdon system. Thus to declare min and max, either of the following 

could be used: 
(external 

m1n 
max) 

or 
(external min) 
(external max) 

7.2. Actions 
User-defined actions are called, using c a l l , from the RHS of a production or from the top level (see 

Sections 5.3.8 and 8.1.6). The routine should take no arguments, and it should return no values (if values are 

returned they are ignored). All communication between the interpreter and the routine is accomplished 

through use of the functions described below. 

7.2.1. Sparameter 

The second argument to the ca 11 action is an RHS pattern, which is instantiated into the result element 

before the user's routine is called. The function Sparameter allows the routine to read values out of the 

element. The function takes one argument, an integer; when it is called with the argument K, it returns the 

value in the Kth field in the element. Thus to get the first value in the element, a routine written in LISP 

would execute 
(Sparameter 1) 

and an action written in BLISS would execute 
Sparameter(l) 

Following the usual OPS5 convention, when Sparameter is called to access a field that was not explicidy 

given a value, it returns n i l . It is considered an error, however, to access a non-existent field (i.e., to use an 
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index less than 1 or greater than 127). 

7.2.2. Sparametercount 
The function Sparametercount returns an integer; the integer is the number of the last field in the 

result element that received a value. Thus if the cal 1 did not contain die operator t, this function indicates 

how many values were put into the result element. (Generally, t is not used with ca l l . ) The function takes 

no arguments. 

7.2.3. Sassert 
Some of the actions written by users add elements to working memory. The actions put an element in 

working memory by clearing the result element (see Section 7.2.6), putting the new values in the result 

element (see Sections 7.2.5 and 7.2.4), and then executing the function Sassert . The function Sas ser t 

copies the result element into working memory. After it is copied into working memory, the result element 

can be cleared again and another collection of values assembled there. The function Sasser t takes no 

arguments. 

7.2.4. Stab 
The function Stab controls where the next value will be placed in the result element This function takes 

one argument, which should be either an integer or a symbolic atom which has been assigned an integer in a 

1 i t era l i z e or 11 t e r a l declaration. When Stab is executed it informs the interpreter that the next value 

put into the result element should go into the indicated field. 

7.2.5. Svalue 
The function Sval ue is used to put one symbolic atom or number into the result element It is called with 

one argument, the value to put in. If no Stab has been executed since the last call on Sval ue, it puts the 

value in the field just after the one used on the previous call. If Stab has been executed since the last call on 

Sval ue, it puts the value in the field that Stab designated. If no calls on either Stab or Svalue have been 

made since the result element was cleared, the value is placed in the first field. (These rules for deciding 

where to put values are equivalent to the rules used for terms in the RHS - see Section 5.2.3.) 

7.2.6. Sreset 
The function Sreset is used to remove the information currently in the result element. This function 

takes no arguments. It should be noted that Sasser t does not automatically perform a Sreset . 
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7.2.7. Sifiie and Sofile 

The functions $ i f H e and S o f i l e are used to access files that were opened with openf i l e . The 

function S i f i i e takes a single argument, which should be a symbolic atom that is associated with an open 

file. That is, the atom should have occurred as the first argument to openf 11 e. If the atom is associated with 

a file that is currently open for input, the file is returned. (More precisely, in FRANZ LISP, a port is 

returned; in MACLISP, a file object is returned; and in BLISS, the address of an XPORT IOB is returned 

[2].) If the atom is not associated with a file that is open for input, a failure signal is returned: in LISP, the 

atom ni 1 is returned, and in BLISS, the XPORT value xpo$k_f ai 1 ure is returned. The function $of i 1 e 

is identical except that it returns files that are open for output. 

7.3. Functions 
The syntax of a call on a user-written function is identical to the syntax of a call on a standard function: 

The call consists of an open parenthesis, the name of the function, the arguments to the function (if any), and 

a close parenthesis. 

The conventions for passing arguments to functions are not the same in the LISP- and BLISS-based 

interpreters. In the BLISS-based interpreter, the arguments are evaluated (i.e., OPS5 variables are replaced 

by their bindings) and then they are passed using the ordinary BLISS parameter passing mechanism. Thus if 

the function in the RHS has three parameters, the BLISS routine is called with three arguments. In the LISP-

based interpreter, the arguments are passed unevaluated. The LISP routine must be a f expr. If the LISP 

routine needs the arguments to be evaluated, it calls routines in the interpreter to perform the evaluation. 

(See the two sections immediately following.) 

RHS functions do not return values using the normal value return mechanism of LISP or BLISS. (If values 

are returned with the normal mechanism, OPS5 discards them.) Instead, values are returned using the 

function Sval ue described in Section 7.2.5. 

7.3.1. Svarbind 

The function Svarbind is provided in the LISP-based interpreter to allow RHS functions to evaluate 

their arguments. This function takes one argument. If the argument is a bound variable, the binding of the 

variable is returned. If the argument is not a bound variable, the argument is returned unchanged. 
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7.3.2. SHtbind 
The function $1 i tb 1 nd is provided in both the LISP- and BLISS-based interpreters. This function takes 

one argument. If the argument has been assigned a number in a 1 i t era l or 1 i t e r a l 1 ze declaration, the 

number is returned. If the argument has not been assigned a number, the argument is returned unchanged. 

7.4. Atoms 
The scalar values in the LISP-based interpreters are ordinary LISP atoms, so user-supplied routines can 

process them using the usual LISP functions. The scalar values in the BLISS-based interpreters are data types 

that are implemented in the OPS5 interpreter, so user-supplied routines must call routines in the interpreter 

to process them. The following are the necessary routines. 

7.4.1. $eql 
An atom in the BLISS-based interpreter is a one word value (32 or 36 bits, depending on the computer 

being used). To compare two atoms for equality, the routine Seql is used. The routine takes two 

parameters, the atoms to compare. It returns a true value if the atoms are the same type and 

• They are symbolic atoms that consist of the same string of characters, or 

• They are numeric atoms whose algebraic difference is zero. 

7.4.2. Ssymbol 
The routine Ssymbol is used to test the type of atoms. It takes a single parameter, the atom to test, 

routine returns a true value if the atom is a symbolic atom, and a false value if it is a numeric atom. 

7.4.3. Sintera 
The routine $1nte rn is used to convert a string of characters into a symbolic atom. It takes two 

parameters, a BLISS character string pointer and a count of the number of characters in the string. It returns 

the symbolic atom that represents the string. 

7.4.4. Sevan and Scvna 
The routines Sevan and Scvna are used to convert between numeric atoms and ordinary BLISS integers. 

Both routines take a single parameter. The routine Sevan takes an atom as its parameter and returns an 

ordinary integer. The routine Scvna takes an ordinary number and returns a numeric atom. 
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8. Using the 0PS5 Interpreter 
This section explains how to load a production system into the interpreter and how to run the production 

system after it is loaded. 

8.1. The Top Level 
After OPS5 is installed on a system, it is invoked as any other program on the system is. When the 

interpreter starts, it begins executing the top level routine. When the production system stops executing for 

any reason, the interpreter returns to the top level routine. This routine allows the user to add productions to 

production memory (in LISP only), to put elements into working memory, to inspect the state of the 

production system, to start the production system executing, etc. The top level routine is 

1. Read a command from the user. 

2. Execute the command. 

3. Goto 1. 

The following sections describe the commands that the OPS5 interpreter supports.3 

The syntax of all commands is the same: A command consists of an open parenthesis, the name of the 

command, the arguments to the command if any, and a close parenthesis. On the BLISS-based interpreter, if 

the command does not have arguments, the parentheses may be omitted. The commands are free format; end 

of line is treated like a space. 

8.1.1. make 
The action make can be executed at the top level as well as in a production's RHS. If the user types 

(make s t a r t ) 
the element 

( s t a r t ) 

will be created and placed into working memory. At the top level, make will not accept variables, the 

operator / / , or functions as arguments. Constant symbols and numbers, t, and literalized atoms are 

acceptable as arguments. 

When make is executed, the match process is performed, and the conflict set is updated. 

The OPS5 interpreters that are written in LISP use the normal LISP top level. Thus in these interpreters the user can execute any 
LISP command. However, the interpreter written in BLISS accepts only the commands listed here. 
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8.1.2. remove 
The action remove may also be executed at the top level. However, since variables cannot be used at the 

top level, remove uses a different method to designate the elements to delete. If the user types 

(remove • ) 

the interpreter deletes everything from working memory. If the user gives one or more numbers as 

arguments, the elements having those time tags are deleted. Thus typing 

(remove 117 118) 
will cause elements with time tags 117 and 118 to be deleted. 

When remove is executed, the match process is performed, and the conflict set is updated. 

8.1.3. openfile 
The action openf 11 e may be executed at the top level as well as in the RHS of a production. It has the 

same effect as openf l i e in the RHS. When called at the top level, its argument should not contain 

variables, the operator / / , or function calls. 

8-1.4. closefile 
The action cl osef 11 e may be executed at the top level as well as in the RHS of a production. It has the 

same effect as c l o s e f i l e in the RHS. When called at the top level, its argument should not contain 

variables, the operator / / , or function calls. 

8.1.5. default 
The action def aul t may be executed at the top level as well as in the RHS of a production. It has the 

same effect as def aul t in the RHS. When called at the top level, its argument should not contain variables, 

the operator / / , or function calls. 

8.1.6. call 
The action cal 1 can also be used at the top level. Like the RHS command cal 1 (see Section 5.3.8) this 

command is used to invoke user-defined subroutines. Its arguments should be a routine name and an 

optional pattern like the patterns given to make at the top level. The pattern should not contain variables, the 

operator / / , or function calls. The interpreter instantiates the pattern and invokes the routine. The routine 

must have been declared external . 
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8.1.7. run 
The command run causes the interpreter to execute a production system. If the user types 

(run) 

the production system is allowed to execute until it halts or a breakpoint is reached (see Section 8.1.15). If the 

user gives a numeric argument to run the interpreter will automatically halt after that many cycles. Thus 

entering 
(run 100) 

will cause the interpreter to run 100 cycles and halt. (Of course, the system may not execute the full 100 

cycles, because the conflict set may become empty, a production may execute the hal t action, etc.) 

8.1.8. ppwm 
The command ppwm is one of two commands to print working memory elements. (See also wm, below.) 

This command takes a pattern like a condition element; it prints all the elements matching the pattern. For 

example 
(ppwm goal t s t a t u s a c t i v e ) 

will print all the active goals. When ppwm is called with a null pattern, as in 
(ppwm) 

it prints every element in working memory. The pattern can contain constant symbols and numbers, the 

operator t, and literalized atoms. It should not contain variables, predicates, the operator / / , or the two 

kinds of brackets ({ } and « » ) . 

8.1.9. wm 
The command wm, like ppwm, is a command to print working memory elements. It differs from ppwm in 

the kind of arguments it takes. This command takes a list of time tags and prints the elements with those time 
tags. It is useful because some of the other OPS5 commands print time tags rather than working memory 
elements to save space; wm is used to expand the time tags into the elements they represent. Thus 

(wm 5 6 7) 

causes the interpreter to print the three elements whose time tags are 5, 6, and 7. When wm is given with no 
arguments, as in 

(wm) 
the interpreter prints the entire contents of working memory, as ppwm with no arguments does. 
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8.1.10. pm 

The command pm displays productions on the user's terminal. It is called with one or more production 

names, and it prints the productions in a readable format. This command is not supported in the BLISS-

based interpreter. 

8.1.11. cs 
The command cs prints the current contents of the conflict set The command does not accept arguments. 

8.1.12. matches 
The command matches prints the partial matches for productions. It is called with one or more 

production names as its argument; for example 

(matches f ind-co lored-b lock) 

It prints the time tags of the elements matching each condition element of each production; it prints the pairs 

of working memory elements matching the first two condition elements; it prints the triples matching the first 

three condition elements; and so forth. 

8.1.13. strategy 
The command s t ra tegy prints or sets the conflict resolution strategy being used. If the command i: 

given with no arguments, as in 
( s t r a t e g y ) 

it prints the current strategy (it will be either me a or 1 ex). If the command 

( s t r a t e g y mea) 
is given, it sets the current strategy to mea. If the command 

( s t r a t e g y l e x ) 

is given, it sets the current strategy to 1 ex. The only legal arguments to s t r a t e g y are 1 ex and mea. 

The default strategy - that is, the one in effect when the interpreter starts - is lex. 

8.1.14. watch 
The command watch controls how much trace information the interpreter prints while it executes a 

production system. If the user executes 

(watch 0) 

the system will print no trace information. If the user executes 

(watch 1) 
the system will print the name of each production that fires along with a list of the time tags of the elements 
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instantiating the production. If the user executes 
(watch 2) 

the interpreter will print the information of level 1, and it will print the elements that are added to or deleted 
from working memory. If the user executes 

(watch 3) 

the interpreter will print the information of level 2, and it will print every change to the conflict set when it 

happens. Level 3 of tracing is not supported in the LISP-based interpreters. If watch is called with no 

arguments, it reports the current trace level. 

8.1.15. pbreak 

The command pbreak sets and removes breakpoints on the productions. If a breakpoint is set on a 
production, the interpreter will halt and return to top level whenever that production fires. The production is 
allowed to execute, but then the recognize-act cycle is exited. Giving the command pbreak with no 
arguments causes the interpreter to print the names of the productions that have breakpoints set Giving the 
command with productions as arguments, as in 

(pbreak r l6 r l 7 ) 

toggles the state of the listed productions: The productions that had breakpoints set have them removed; the 
productions that did not have breakpoints have them set 

8.1.16. exit 

The command e x i t causes the interpreter to cease operation and returns the user to the monitor. The 
command does not take arguments. 

In the BLISS-based interpreter, a control-Z character (ASCII 32 octal) is treated like the exi t command. 

8.1.17. excise 

The command e x c i s e is used to delete productions from production memory. When e x c i s e is called, 
its argument list should contain-one or more production names. 

8.1.18. back 

The command back is supported only in the LISP-based interpreters. This command causes the 
interpreter to restore the production system to an earlier state. The command takes one argument, a number 
indicating how many recognize-act cycles to back up. Thus 

(back 1) 

causes the system to back up 1 cycle. To save space, the interpreter maintains only enough information to 

49 



back up 32 cycles. 

The commands back and run can be intermixed without confusing the interpreter. The following 

sequence, for example, is legal. 
(run 100) 
(back 10) 
(run 5) 
(back 15) 

If no productions have fired before, this will cause the interpreter to perform cycles 1 to 100, back up to the 

state that existed after cycle 90, run for another 5 cycles, and then back up to the state that existed after cycle 

80. 

8.2. Loading a Production System 
When the BLISS-based OPS5 interpreter is used, productions are compiled and linked with the interpreter 

before the interpreter is started. Thus with this interpreter the system is always ready to run as soon as the 

interpreter is started. 

With the LISP-based OPS5 interpreter, productions are usually defined after the interpreter is started. (In 

fact, unless the user has saved his own core image, production memory will contain no productions when the 

interpreter is started.) Productions are defined by typing in the declarations and the productions, by loading 

files that contain the declarations and the productions, or both. 
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Appendix I 
Syntax of 0PS5 

The following is a simplified BNF description of the syntax of OPS5. Terminals are printed in a Roman 

type face, and non-terminals are printed in italics. The only nonstandard meta symbol used is the star ("*"). 

The star indicates that the preceding item is to be repeated zero or more dmes. 

::= ( p constant-symbolic atom Ihs --> rhs ) production 

Ihs 

ce 

positive-ce 

negative-ce 

form 

Ihs-term 

Ihs-value 

restriction 

atomic-value 

var-orconstant 

predicate 

rhs 

action 

positive-ce ce* 

positive-ce 
negative-ce 

form 
{ element-variable form } 
{ form element-variable } 

- form 

( Ihs-term* ) 

t constant-symbolic-atom Ihs-value 
t number Ihs-value 
Ihs-value 

{ restriction* } 
restriction 

« any-atom* » 
predicate atomic-value 
atomic-value 

// any-atom 
var-or-constant 

constant-symbolic-atom 
number 
variable 

< 

< = 

> 

< = > 

action* 
( make rhs-term* ) 
( remove element-designator* ) 
( modify element-designator rhs-term* 
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element-designator 

rhsrterm 

rhs-value 

function 

user-defined-function 

expression 

operator 

halt ) 
bind variable ) 
bind variable rhs-term* ) 
c b i n d element- variable ) 
call constant-symbolic-atom rhs-term* ) 
write rhs-tenn* ) 
openfile rhs-term* ) 
close file rhs-term* ) 
default rhs-term* ) 
build quoted-form* ) 

number 
element-variable 

t varorconstant rhs-value 
rhs-value 

atomic-value 
function 

( litval varorconstant ) 
( substr element-designator varorconstant var-or-constant ) 
( genatom ) 
( crlf ) 
( rjust varorconstant ) 
( tab to varorconstant ) 
( accept ) 
( accept varorconstant ) 
( acceptline varorconstant* ) 
( compute expression ) 
user defined-function 
( constant-symbolic-atom varorconstant* ) 

number 
variable 
expression operator expression 
( expression ) 

quoted-form 

// 
\\ 

\\ rhs-value 
anyatom 
( quoted-form* ) 

Several terms have been left undefined: variable, element-variable, constant-symbolic-atom, anyatom, and 

number. Symbolic atoms and numbers are described in Section 2. The two kinds of variables are described in 

Sections 4 and 5. The only thing that needs to be explained here is the difference between anyatom and 
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constant-symbolic-atom. The former is an atom that is treated as a constant because it is quoted (with / / o r 

« » usually). The latter is an atom that is. treated as a constant because it does not have the form of a 

variable or operator. 
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