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A b s t r a c t 

Median smoothing, a filtering technique with wide application in digital signal and image processing, 

involves replacing each sample in a grid with the median of the samples within some local neighborhood. As 

implemented on conventional computers, this operation is extremely expensive in both computation and 

communication resources. This paper defines the running order statistics (ROS) problem, a generalization of 

median smoothing. It then summarizes some of the issues involved in the design of special purpose devices 

implemented with very large scale integration (VLSI) technology. Finally, it presents algorithms designed for 

VLSI implementation which solve the ROS problem and are efficient with respect to hardware resources, 

computation time, and communication bandwidth. 
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1 . I n t r o d u c t i o n 

Median smoothing [16] is a filtering operation, widely used in digital signal and image processing, which 

involves replacing each sample value with the median of the values found within some neighborhood of itself. 

In the two dimensional image processing case, this typically means taking the median of 25 to 100 numbers 

for each of 10 5 to 10 6 pixels. As a result, the computation and memory communication resources required to 

implement this operation on a conventional computer arc very large. 

The development of very large scale integration (VLSI) technology has made feasible the production of 

relatively inexpensive, highly parallel special-purpose computing engines [4,10] for the implementation of 

computationally demanding operations. VLSI algorithms have been designed and some prototypes 

implemented for such applications as pattern matching [3], convolution in image processing [8], and relational 

database operations [6]. This paper presents efficient VLSI algorithms which solve the running order statistics 

(ROS) problem, a generalization of median smoothing. 

Section 1.1 defines the running order statistics problem, and mentions some of its applications. Section 1.2 

explains the principles underlying the algorithm designs presented, and Section 1.3 describes the approach 

used in analyzing the complexity of such algorithms. Section 2 describes a VLSI algorithm for the one 

dimensional signal processing case. Section 3 gives an algorithm for die two dimensional image processing 

case, and describes the extension of that algorithm to problems of arbitrary dimension. Finally, Section 4 

reviews some of the important features of the algoridims described. 

1 . 1 . The Running Order Statistics Problem * 

The running order statistics problem is a generalization of the median smoothing problem. Median 

smoothing has been widely used in speech and image processing [1,13], especially in the elimination of 

outliers, spurious values caused by noise or other technical error. Median filtering has several properties 

which are particularly useful in image processing. One is that the operation does not introduce intermediate 

pixel values not found in the original image, as convolution methods may, and hence preserves sharp region 

boundaries. Also, since the median of a group of numbers is generally insensitive to the presence of a small 

number of outliers, median smoothing is not subject to the problem of artifact ringing, the propagation of an 

erroneous value through a region of an image. For this reason, median smoothing is sometimes used as a 

preprocessing step before an image is filtered by other means. 

The median smoothing problem can be generalized by considering order statistics other than the median; 

while the median of k numbers is the one having rank (k + l ) / 2 (for odd it), we can consider asking for the 

element having some arbitrary rank r. We will say that an instance of the running order statistics problem has 
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dimension n if the array of numbers to be filtered has n dimensions. For the sake of simplicity, we will require 

that the neighborhood around each element over which statistics are taken be in the form of an /z-dimensional 

hypercube with odd edge length centered on that element, and we will say that an instance is of order k if the 

hypercube has edge length k. 

Formally, the n-dimensional running order statistics problem of order for odd k, is: Given an n-

dimensional array of values [a. . . ] whose size in dimension d is sd (so that 1 < id < sj, and a set of 
1' 2 n 

ranks/?; compute, for each r € R and each index tuple [iv z' 2 , . . . , i J such that each subscript id is in the range 

(k + l ) / 2 < id < sd - (k - l ) /2 , the element having numerical rank r among the set of elements 

{a. j j such that | j d — id \ <(k — l ) / 2 for each dimension d}. Note that this formulation begs the 

question of how to handle elements which are too close to an edge of the array to be at the center of a 

complete hypercube; Tukey [16] gives a number of possible solutions to this problem. 

Section 2 describes a VLSI algorithm for the one dimensional ROS problem. The structure described is 

based on the same idea as Leiserson's systolic priority queue [9], and is presented here mainly in order to lay 

the groundwork for the discussion of the second algorithm. The second algorithm, described in Section 3, 

solves the two dimensional ROS problem, and may be extended to handle problems of arbitrary dimension. 

1.2. Systolic Algorithms 

The chief performance advantage offered by VLSI technology is the availability of massive parallelism, 

achieved by the harnessing together of many processing units. The exploitation of this potential requires 

more than the creation of the raw processing power to solve a problem. It is also necessary to provide for data 

transfer between individual processing units and between the processing units and mass storage. The need for 

mass storage persists even in the face of advances in miniaturization; technological forecasts [11,12] make it 

clear that it will not be possible to have a number of processors comparable to the number of data items used 

by an application at any time in the foreseeable future. Thus, the communication architecture of a system is a 

dominating factor in its performance. 

Figure 1 schematizes a common computer system structure, the "von Neumann" architecture, in which a 

processing unit, P, receives data and instructions from a memory unit, M, and returns the results of its 

computations to the memory. This architecture has the disadvantage that, for most computations, the 

operation rate achievable is limited not only by the speed of the processor but also by the bandwidth of the 

processor-memory communications link. This limitation is commonly referred to as the "von Neumann 

bottleneck". 

One solution to this problem is the concept of systolic arrays [5,7]. A systolic array is a collection of-
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M 

the "von Neumann bottleneck" 

P 

Figure 1: Standard von Neumann system architecture 

relatively simple processing units, either all of the same type or a mixture of a few different types, which are 

connected by a simple communications network and operate in parallel1. The performance advantage of a 

systolic array architecture, as illustrated in Figure 2, is that it uses each datum retrieved from memory many 

times without having to store and retrieve intermediate results, thus potentially allowing speedups relative to 

memory bandwidth which are proportional to the number of processors used. 

M 

^ P H P P H P 

Figure 2: Systolic system architecture 

In order for fabrication of a systolic system to be reasonable in practice, the communication structure which 

connects the processors must be simple and regular. In particular, a linear pipeline structure, as illustrated in 

Figure 2, has several important features. First, it requires memory bandwidth which is independent of the 

size of the array, as contrasted with a two dimensional structure. Second, a large pipeline can be constructed 

simply by concatenation of smaller pipelines. Finally, since the interface of a linear pipeline to the outside 

Fhe examples in this paper will be discussed in'terms of fully synchronous operations for the sake of simplicity, but they could be 
broken up into self-timed segments [14] communicating by some protocol while maintaining the same asymptotic performance achieved 
synchronously. 
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'orld is of bounded size, increases in .integrated circuit density can be exploited while retaining constant chip 

pinout by laying out pipeline segments on chips in zigzag fashion. 

1.3. Complexity Measures for VLSI 

In order to obtain size and performance measurements for the machines proposed here, we require a model 

of VLSI technology which is amenable to asymptotic complexity analysis. Thompson [15], among others, 

proposes such a model. The analyses carried out here rest on a simplified version of Thompson's model. The 

pertinent features of the model are as follows: 

• Logic gates of constant fan-in and fan-out require constant area and switch in constant time. 

• A constant-width wire of any length can be driven in constant time by drivers which can be 
implemented in area proportional to the wire's length. In particular, this means that wires occupy 
area proportional to their length. 

Given these elements, we can obtain asymptotic measures of the resources required to apply an algorithm 

to a problem of some specified size. We will be concerned with the area required for the implementation of 

an algorithm, which translates roughly to its hardware cost, and with the time required to perform the 

algorithm. 

2 . A lgor i thm for t h e O n e D i m e n s i o n a l R O S P r o b l e m 

This section describes a VLSI algorithm which, for the order k one dimensional running order statistics 

problem, yields any particular running order statistic of a vector of length m in time 0{m), while occupying 

area 0(k). The algorithm makes a left-to-right sweep over the input sequence, computing the required order 

statistic of each contiguous subsequence of length k. The hardware structure of the algorithm is a pipeline 

consisting of k cells, which hold the k values under consideration at each step. The idea is to keep the k 

elements in order, so that elements having particular ranks may be extracted from corresponding positions in 

the pipeline, and to update the contents of the pipeline at step n by deleting an_ k and inserting an. 

The updating is effected by passing messages from cell to cell down the pipeline; at each step, the left end 

of the pipeline receives a series of messages, and passes them to its right. First, a message is sent down the line 

which seeks out a ,, the element to be deleted from the array, and causes it to be deleted. This is followed 
n— K 

by a message containing an, the new value to be inserted, which passes down the line until it reaches its 

appropriate position in order, at which point the value is inserted. High throughput is achieved by pipelining 

the processing of the messages, so that many messages are active in the pipeline at one time, each in a separate 

cell. 
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2 . 1 . Description of the Algorithm 

The algorithm consists of a linear .pipeline of k cells. Each cell deals with two pieces of information, a 

stored value and a message. The message, in turn, has two components, an action and a message value. In each 

cycle of the machine, each cell receives a message from the left, updates its stored value (possibly consulting its 

right neighbor's stored value), and passes a message to the right. In essence, the algorithm works by sending, 

at each step, a message down the pipeline to delete the element which becomes obsolete at that step, followed 

by a message to add the new element. Thus at step n, the n-kth- element is deleted, and the nth is added. A 

deletion message travels down the pipe until its message value matches the stored value of the receiving cell, 

at which time that cell overwrites its stored value with that of its right neighbor, and passes a message to the 

right which will cause the remaining stored values in the pipe to shift left. An insertion message moves to the 

right until it reaches a cell whose stored value matches or exceeds the message value, at which time that cell 

replaces its stored value with the message value, and sends to the right a message to insert its old stored value. 

The algorithm uses four action types: delete, which specifies an element to be deleted; pull, which causes a 

cell to perform a left shift; insert, which specifies a new element to be added; and wait, meaning "do 

nothing", which is necessary to provide a gap between an insertion and a deletion. The computation that each 

cell performs in each timé step depends on action as follows: 

delete: If message value does not match stored value, pass on the same message. If they do match, 
set stored value to the stored value of the cell to the right, and pass the message [pull], 

pull: Set stored value to the stored value of the cell to the right, and pass the message [pull]. 

insert: If message value > stored value, pass along the same message. Otherwise, set stored value to 
message value, and pass the message [insert old stored value], 

wait: Pass the message along. 

Each step in the execution of the algorithm takes three machine cycles, in each of which a message is 

injected into the left end of the pipeline. At step n, the sequence of messages injected is as follows: 

[ d e l e t e k ] 

[insert 

[wait] 

Initially, the pipeline is primed by setting each action to wait, each stored value to the maximum value 

possible, and taking al_k, a2_k,..., aQ to have this maximum value. During the operation of the algorithm, 

the rightmost cell receives a maximum value when it attempts to read its right neighbor's value. The element 
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having rank r among an__k+l,..a can* be read from cell r during machine cycle 3/2+r—1, while it holds 

the wait message issued immediately after the message [insert a j . The rank of the item to be read could be 

either fixed in hardware or selected in a previous set-up phase. The value itself could be either put onto an 

output bus or passed, cell by cell, to the right end of the pipeline as an additional message component. More 

than one ROS could be computed simultaneously at the cost of extra hardware and time. One way to achieve 

this would be to use the count-result mechanism discussed in Section 3. 

A check of the correctness of the algorithm can be carried out by checking two assertions. The first is that 

the abstract sequence of operations specified by the messages injected yields the desired result; that is, that the 

processing of a particular message, in the absence of other messages, leaves the pipeline in the intended state. 

The second condition that the pipelining of the operations is carried out correctly, in that each message causes 

each cell to perform the same computation in both the pipelined and non-pipelined cases. 

In order to check the correctness of the operation sequence, consider the computation performed by an 

ordinary uniprocessor simulating the systolic algorithm by simulating, for each message in turn, the effects of 

that message as it travels the entire length of the array; that is, each message is propagated through the array 

before the simulation of the next message is begun. In the course of such a simulation, the element holding 

rank ramong a n _ k + 1 , . . . , an is held in cell rafter the propagation of the message [insert a j . 

Turning to the issue of pipelining, note that only the delete and pull messages can possibly cause problems, 

since neither of the other message types causes a cell to refer to the values stored by any other cell. However, 

such a message is always immediately preceded by a wait message; thus the cell to the right, whose stored 

value will be accessed, is in the state that* it would reach after the preceding insert message had been 

propagated in the uniprocessor simulation. Therefore, the results of the pipelined computation are the same 

as those of the serial computation. 

Complexity analysis of a VLSI algorithm is concerned with two measures: the area required to implement 

the algorithm, and the time that it takes to perform a computation. In this case, assuming that the precision of 

the numbers to be processed is fixed, so that each comprises a constant number of bits, the area required by 

each cell is a constant, independent of k. Thus the area required for the entire algorithm is proportional to K 

since it consists of k constant-size cells. The time required to process a sequence of numbers is equal to the 

product of the number of cycles required to pass the sequence through the machine and the time required to 

perform a machine cycle. A sequence of length m requires 3x(m+k) machine cycles, and cycle time is 

constant, regardless of the value of k. Thus, assuming that m»k, a sequence of m numbers can be processed 

in time 0(m). 
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2 .2 . An Example 

Figure 3 shows five stages in the operation of the algorithm for order five, when presented with input 

containing the subsequence 

. . . , 8 , 5 , 4 , 6 , 2 , 9 , 1 , 3 , . . . 

beginning just after the message [insert 1] has been injected into the left end of the pipeline. 

The behavior caused by delete messages is demonstrated by the message [delete 5] which is in the second 

cell from the left in the top snapshot; the message is passed to the right until it reaches a cell whose stored 

value is 5 (the third cell, in this case), at which point the 5 is overwritten with the value to the right. A pull 

message is then sent to the right; this causes the remaining elements in the pipeline to shift to the left. At the 

right end of the pipeline, a maximum value is shifted in as "filler", to be shifted out later. 

Two cases in the example summarize the effect of insert messages. The message [insert 1] which is in the 

leftmost cell in the top snapshot causes that cell to set its stored value to 1, and to pass its previous stored 

value of 2 to the right to be inserted. This effect ripples down the pipeline, essentially causing the elements 

stored to shift to the right. When an insert message reaches the rightmost cell of the pipeline, as the message 

[insert 9] does in the second snapshot, the value held in the message replaces the maximum value left in that 

cell by the previous delete or pull message. 

3 . A lgor i thm for t h e T w o D i m e n s i o n a l R O S P r o b l e m 

This section presents an algorithm for the two dimensional running order statistic problem which may be 

extended to handle ROS problems of arbitrary dimension. In the two dimensional case, the algorithm yields 

a set of s order statistics of order k for a matrix with m elements in time 0(mslog log £), while occupying area 

0(f^\og k). Like the algorithm presented for the one dimensional problem, this algorithm is based on a linear 

array of cells, down which messages are passed to maintain an ordered sequence of values. 

As in the algorithm of Section 2, many messages are processed simultaneously, in separate cells. The 

algorithm for the two dimensional problem has an additional level of parallelism, however, in that it operates 

on data belonging to k squares of size kxk simultaneously. Essentially, the algorithm sweeps a rectangular 

window of 2k— 1 rows and k columns across the array, and at each step produces order statistics for the k 

overlapping kx k squares contained in such a rectangle. 

Since the algorithm works on more than one square at a time, each array value is tagged with a row 

number, ranging from 1 to 2k—1, in order to make it possible to calculate to which squares it belongs. Also, 

since the mixing of values from different squares makes it impossible to compute results just by reading the 
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message action 

message value 

insert 

1 

delete 

5 

wait insert 

9 

delete 

8 

stored value 2 4 5 6 8 

• * 

message action 

message value 

stored value 

message action 

message value 

stored value 

wait insert 

2 

delete 

5 

wait insert 

9 

message action 

message value 

stored value 

message action 

message value 

stored value 

1 4 5 6 max 

message action 

message value 

stored value 

message action 

message value 

stored value 

message action 

message value 

stored value 

message action 

message value 

stored value 

delete 

4 

wait insert 

4 

pull wait 

message action 

message value 

stored value 

message action 

message value 

stored value 1 2 6 6 9 

message action 

message value 

stored value 

insert 

3 

delete 

4 

wait insert 

6 

pull message action 

message value 

stored value 1 2 4 9 9 

message action 

message value 

stored value 

wait insert 

3 

delete 

4 

wait insert 

9 

message action 

message value 

stored value 1 2 4 6 max 

Figure 3: Example of the one dimensional algorithm 
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contents of particular cells at particular times, order statistics are gathered by special messages which count 

the number of elements in a given square up to a specified rank, then pass the value having that rank to the 

end of the pipeline as the result. 

3 . 1 . Description of the Algorithm 

As before, the structure on which the algorithm is based is a pipeline. For the two dimensional case, the 

pipeline consists ofUp'—k cells, each divided into two sections, a stored section and a message section. As 

before, in each machine cycle each cell in die pipeline examines a message from its left neighbor, updates its 

stored data (possibly consulting its right neighbor's stored data), and sends a message to its right neighbor to 

be processed by it during the next cycle. 

Each cell's stored data has two components: a row, which tells from which of the 2k— 1 rows of data 

currently being considered the value was drawn; and a value, representing one of the a... A message, on the 

other hand, has four components: an action, specifying the computation to be performed by a cell; a count, 

which is used in gathering statistics; and a row and a value, as in the stored data. 

The algorithm makes use of six different actions: delete, pull, insert, and wait, all of which operate similarly 

to their counterparts in the one dimensional algorithm; count, which is sent through the pipeline to find the 

element within a kxk square which has a given rank; and result, which is used to pass the result of a counting 

operation through to the end of the pipeline. The computations specified by each action are as follows: 

delete: If message row and message value match stored row and stored value, then set stored row and 
value to those of the cell to the right, and pass the message [pull]. Otherwise, pass the 
message along unchanged. 

pull: Set stored row and value to those of the cell to the right, and pass along the message [pull]. 

insert: If message value > stored value, pass the message along unchanged. Otherwise, set stored 
row and value to those of the message, and pass the message [insert old stored row, old 
stored value], 

wait: Pass the message along. 

count: If message row— k < stored row < message row and message count > 1, then pass the 
message [count message count— 1, message row]. If stored row is in this range and message 
count -1, then pass the message [result stored value], 

result: Pass the message along. 

When applied to a matrix with r rows and c columns, the algorithm makes r/k passes across the columns of 
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the matrix, reading rows (n-l)xk-\-l through ( / 2 + l ) x k - l and yielding order statistics for the squares 

whose first rows are numbered (n- l)xk+1 through nxk during the nth pass. In other words, it reads rows in 

the intervals 1 . . 2k— 1, k+1.. 3k— 1 , . . . , calculating order statistics for the squares whose first rows fall in 

the intervals 1 . . k, k+1 . . 2k, and so forth. Each pass across the columns takes c steps, in each of which 

2k— 1 numbers are deleted from the queue, 2k— 1 are added, and sxk count messages are injected in order to 

find s order statistics in each of the k squares being scanned. As in the one dimensional algorithm, the queue 

is initialized with maximum values before each pass is begun. 

A check of the correctness of the algorithm can be performed in the style of Section 2.1. Again, 

consideration of a uniprocessor simulation makes it apparent that the sequence of operations applied compute 

the correct results, and the demonstration of the correctness of the algorithm's pipelining is identical. 

The complexity of the algorithm, though, is more complicated than that of the algorithm for the one 

dimensional case, because each cell must handle numbers ranging up to O(fP'). In particular, each cell must 

be capable of performing comparison and subtraction operations on these numbers. By encoding the 

numbers in 2's-complement binary notation, both of these operations can be expressed in terms of addition 

and testing for zero value of 0(log £)-bit numbers. Brent and Kung [2] describe a general adder design which 

yields 6-bit adders requiring area 0(b) and time 0(log b). Substituting log k for 6, the necessary additions can 

be performed in area 0(log k) and time 0(log log k). Testing for zero value can be performed with a binary 

tree of OR gates in area 0(\ogk) and time <9(loglog&). Thus, since each of 2k2 —k cells requires area 

proportional to log/:, the entire linear array requires area 0(l^\ogk). The time to process m numbers, 

computing s order statistics for each square, can be calculated as 0(ms) machine cycles multiplied by a cycle 

time proportional to log log K yielding the result 0(ms\og log k). 

The algorithm may be extended to handle problems of any dimension n by using a (2k-l)n~lk cell 

pipeline, and sweeping the array with a hyperwindow which has width k in the direction of the sweep and 

width 2k-1 in every other direction. At each step in the sweep, the algorithm would read (2k-l)72-1 values 

and produce kn~l sets of order statistics. Each value in the pipeline would be accompanied by n-1 numbers 

indicating to which hypercubes, among the kn~1 contained in the window, the value belongs. 

3 . 2 . An Example 

Figure 4 demonstrates the operation of the algorithm for order 3 (that is, taking order statistics over each 

3x3 square), when presented with input containing the block 
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action delete count count count insert delete wait insert pull wait insert delete wait insert pull 
count 5 4 2 

row 1 5 4 3 5 5 4 1 3 2 
value 33 32 31 36 35 43 41 
row 2 1 3 3 5 2 5 1 1 4 3 4 5 3 3 
value 19 21 23 26 28 30 31 33 33 34 37 38 39 43 43 

action insert delete count count count insert delete wait insert pull wait insert delete wait insert 
count 5 3 1 
row 1 1 5 4 3 5 5 4 3 3 3 
value 22 33 32 31 36 37 43 43 
row 2 1 3 

CO
 5 2 5 1 4 4 1 4 5 2 

value 19 21 23 26 28 30 31 33 34 34 35 38 39 41 max 

action wait insert delete count count count insert pull wait insert pull wait insert delete wait 
count 4 2 1 
row 1 1 5 4 3 5 4 4 3 
value 22 33 32 36 38 43 
row 2 1 3 3 •5 2 1 1 4 1 1 3 5 2 3 
value 19 21 23 26 28 30 33 33 34 35 35 37 39 41 43 

action delete wait insert delete count count result insert pull wait insert pull wait insert delete 
count CO

 2 -

row 2 1 1 5 4 3 m 1 4 5 3 
value 41 22 33 30 33 36 39 43 
row 2 1 3 3 5 2 5 4 4 1 3 3 4 2 

CO
 

value 19 21 23 26 28 30 32 34 34 35 37 37 38 41 43 

action insert delete wait insert delete count count result insert pull wait insert pull wait insert 
count 2 1 . 
row 2 2 3 1 5 4 3 4 CO

 2 
value 27 41 23 33 30 34 37 41 
row 2 1 1 3 5 2 5 1 1 1 4 4 4 5 
value 19 21 22 26 28 30 32 33 35 35 36 38 38 39 max 

Figure 4: Example of the two dimensional algorithm 
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17 33 21 35 22 
22 41 19 30 •27 
43 37 26 23 29 
18 34 38 36 40 
31 39 28 32 42. 

The algorithm moves from left to right across the data, and at each column position reads the new data and 

deletes the old data from top to bottom. In this example, the only order statistic considered is the median 

(thus each count message has its count field initially set to 5). The figure illustrates five machine cycles, 

beginning just after the message [delete row 1 value 33] has been injected. 

The handling of the insert, delete, wait, and pull messages is essentially the same as before. The actions 

specified by the count and result messages are illustrated by the progress of the count message which appears 

in the fourth cell from the left of the first snapshot. The stored value of 26, drawn from row 3, falls within the 

range (rows 1 to 4) of the count message. Thus, cell 5 of the second snapshot shows the same message with its 

count reduced by one. The stored value in this cell is from row 5, out of the range of this message, so the 

same message is passed unchanged to cell 6, as seen in the third snapshot. The value stored in cell 6 is drawn 

from row 2, within the range of the message; since the count is down to 1, this value is passed out in a result 

message, seen in cell 7 of the fourth snapshot. 

4 . C o n c l u s i o n 

In addition to providing cost-effective solutions to a computationally difficult family of problems, the 

algorithms described in this paper illustrate some important issues in the design of special-purpose parallel 

computing devices. First, because of their linear structure, they conserve memory bandwidth. The number of 

bits transferred in each cycle by the algorithm for the two dimensional problem grows as log k, rather than at 

least k as in the case of a two dimensional array of processors. Thus a large device can run with essentially the 

same memory bandwidth as & small device without wasting any of its processing power. Also, each value is 

retrieved from memory a small constant number of times (no more than 2 if a 2 £ 2 - k cell shift register is used 

to keep track of values to be deleted), so the total external communication required by the algorithm is small. 

This feature is the result of an economy of memory reference which is central to systolic algorithms: when a 

value is read from memory, at least half of the computations which depend on that value are performed. This 

is accompanied by a dual economy of computation: no two input values are ever compared more than a small 

constant number of times. 
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