
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

University Librarles
Carnegie Mellon University
Pittsburgh PA 1S213-389CCMU-CS-81-130

C . 2 ^

Systolic Algorithms for
Running Order Statistics

in Signal and Image Processing

Allan L. Fisher

Department of Computer Science

Carnegie-Mellon University

Pittsburgh, PA 15213

July, 1981

Copyright © 1981 Allan L. Fisher

This research was supported in part by the Office of Naval Research under Contracts N00014-76-C-0370, NR
048-659 and N00014-80-C-0236, NR 044-422, in part by the National Science Foundation under Grant
MCS 78-236-76 and a Graduate Fellowship, and in part by the Defense Advanced Research Projects Agency
under Contract F33615-78-C-1551 (monitored by the Air Force Office of Scientific Research).

A b s t r a c t

Median smoothing, a filtering technique with wide application in digital signal and image processing,

involves replacing each sample in a grid with the median of the samples within some local neighborhood. As

implemented on conventional computers, this operation is extremely expensive in both computation and

communication resources. This paper defines the running order statistics (ROS) problem, a generalization of

median smoothing. It then summarizes some of the issues involved in the design of special purpose devices

implemented with very large scale integration (VLSI) technology. Finally, it presents algorithms designed for

VLSI implementation which solve the ROS problem and are efficient with respect to hardware resources,

computation time, and communication bandwidth.

SYSTOLIC ALGORITHMS FOR RUNNING ORDER STATISTICS 1

1 . I n t r o d u c t i o n

Median smoothing [16] is a filtering operation, widely used in digital signal and image processing, which

involves replacing each sample value with the median of the values found within some neighborhood of itself.

In the two dimensional image processing case, this typically means taking the median of 25 to 100 numbers

for each of 10 5 to 10 6 pixels. As a result, the computation and memory communication resources required to

implement this operation on a conventional computer arc very large.

The development of very large scale integration (VLSI) technology has made feasible the production of

relatively inexpensive, highly parallel special-purpose computing engines [4,10] for the implementation of

computationally demanding operations. VLSI algorithms have been designed and some prototypes

implemented for such applications as pattern matching [3], convolution in image processing [8], and relational

database operations [6]. This paper presents efficient VLSI algorithms which solve the running order statistics

(ROS) problem, a generalization of median smoothing.

Section 1.1 defines the running order statistics problem, and mentions some of its applications. Section 1.2

explains the principles underlying the algorithm designs presented, and Section 1.3 describes the approach

used in analyzing the complexity of such algorithms. Section 2 describes a VLSI algorithm for the one

dimensional signal processing case. Section 3 gives an algorithm for die two dimensional image processing

case, and describes the extension of that algorithm to problems of arbitrary dimension. Finally, Section 4

reviews some of the important features of the algoridims described.

1 . 1 . The Running Order Statistics Problem *

The running order statistics problem is a generalization of the median smoothing problem. Median

smoothing has been widely used in speech and image processing [1,13], especially in the elimination of

outliers, spurious values caused by noise or other technical error. Median filtering has several properties

which are particularly useful in image processing. One is that the operation does not introduce intermediate

pixel values not found in the original image, as convolution methods may, and hence preserves sharp region

boundaries. Also, since the median of a group of numbers is generally insensitive to the presence of a small

number of outliers, median smoothing is not subject to the problem of artifact ringing, the propagation of an

erroneous value through a region of an image. For this reason, median smoothing is sometimes used as a

preprocessing step before an image is filtered by other means.

The median smoothing problem can be generalized by considering order statistics other than the median;

while the median of k numbers is the one having rank (k + l) / 2 (for odd it), we can consider asking for the

element having some arbitrary rank r. We will say that an instance of the running order statistics problem has

SYSTOLIC ALGORITHMS FOR RUNNING ORDER STATISTICS 2

dimension n if the array of numbers to be filtered has n dimensions. For the sake of simplicity, we will require

that the neighborhood around each element over which statistics are taken be in the form of an /z-dimensional

hypercube with odd edge length centered on that element, and we will say that an instance is of order k if the

hypercube has edge length k.

Formally, the n-dimensional running order statistics problem of order for odd k, is: Given an n-

dimensional array of values [a. . .] whose size in dimension d is sd (so that 1 < id < sj, and a set of
1' 2 n

ranks/?; compute, for each r € R and each index tuple [iv z' 2 , . . . , i J such that each subscript id is in the range

(k + l) / 2 < id < sd - (k - l) /2 , the element having numerical rank r among the set of elements

{a. j j such that | j d — id \ <(k — l) / 2 for each dimension d}. Note that this formulation begs the

question of how to handle elements which are too close to an edge of the array to be at the center of a

complete hypercube; Tukey [16] gives a number of possible solutions to this problem.

Section 2 describes a VLSI algorithm for the one dimensional ROS problem. The structure described is

based on the same idea as Leiserson's systolic priority queue [9], and is presented here mainly in order to lay

the groundwork for the discussion of the second algorithm. The second algorithm, described in Section 3,

solves the two dimensional ROS problem, and may be extended to handle problems of arbitrary dimension.

1.2. Systolic Algorithms

The chief performance advantage offered by VLSI technology is the availability of massive parallelism,

achieved by the harnessing together of many processing units. The exploitation of this potential requires

more than the creation of the raw processing power to solve a problem. It is also necessary to provide for data

transfer between individual processing units and between the processing units and mass storage. The need for

mass storage persists even in the face of advances in miniaturization; technological forecasts [11,12] make it

clear that it will not be possible to have a number of processors comparable to the number of data items used

by an application at any time in the foreseeable future. Thus, the communication architecture of a system is a

dominating factor in its performance.

Figure 1 schematizes a common computer system structure, the "von Neumann" architecture, in which a

processing unit, P, receives data and instructions from a memory unit, M, and returns the results of its

computations to the memory. This architecture has the disadvantage that, for most computations, the

operation rate achievable is limited not only by the speed of the processor but also by the bandwidth of the

processor-memory communications link. This limitation is commonly referred to as the "von Neumann

bottleneck".

One solution to this problem is the concept of systolic arrays [5,7]. A systolic array is a collection of-

SYSTOLIC ALGORITHMS FOR RUNNING ORDER STATISTICS 3

M

the "von Neumann bottleneck"

P

Figure 1: Standard von Neumann system architecture

relatively simple processing units, either all of the same type or a mixture of a few different types, which are

connected by a simple communications network and operate in parallel1. The performance advantage of a

systolic array architecture, as illustrated in Figure 2, is that it uses each datum retrieved from memory many

times without having to store and retrieve intermediate results, thus potentially allowing speedups relative to

memory bandwidth which are proportional to the number of processors used.

M

^ P H P P H P

Figure 2: Systolic system architecture

In order for fabrication of a systolic system to be reasonable in practice, the communication structure which

connects the processors must be simple and regular. In particular, a linear pipeline structure, as illustrated in

Figure 2, has several important features. First, it requires memory bandwidth which is independent of the

size of the array, as contrasted with a two dimensional structure. Second, a large pipeline can be constructed

simply by concatenation of smaller pipelines. Finally, since the interface of a linear pipeline to the outside

Fhe examples in this paper will be discussed in'terms of fully synchronous operations for the sake of simplicity, but they could be
broken up into self-timed segments [14] communicating by some protocol while maintaining the same asymptotic performance achieved
synchronously.

SYSTOLIC ALGORITHMS FOR RUNNING ORDER STATISTICS 4

'orld is of bounded size, increases in .integrated circuit density can be exploited while retaining constant chip

pinout by laying out pipeline segments on chips in zigzag fashion.

1.3. Complexity Measures for VLSI

In order to obtain size and performance measurements for the machines proposed here, we require a model

of VLSI technology which is amenable to asymptotic complexity analysis. Thompson [15], among others,

proposes such a model. The analyses carried out here rest on a simplified version of Thompson's model. The

pertinent features of the model are as follows:

• Logic gates of constant fan-in and fan-out require constant area and switch in constant time.

• A constant-width wire of any length can be driven in constant time by drivers which can be
implemented in area proportional to the wire's length. In particular, this means that wires occupy
area proportional to their length.

Given these elements, we can obtain asymptotic measures of the resources required to apply an algorithm

to a problem of some specified size. We will be concerned with the area required for the implementation of

an algorithm, which translates roughly to its hardware cost, and with the time required to perform the

algorithm.

2 . A lgor i thm for t h e O n e D i m e n s i o n a l R O S P r o b l e m

This section describes a VLSI algorithm which, for the order k one dimensional running order statistics

problem, yields any particular running order statistic of a vector of length m in time 0{m), while occupying

area 0(k). The algorithm makes a left-to-right sweep over the input sequence, computing the required order

statistic of each contiguous subsequence of length k. The hardware structure of the algorithm is a pipeline

consisting of k cells, which hold the k values under consideration at each step. The idea is to keep the k

elements in order, so that elements having particular ranks may be extracted from corresponding positions in

the pipeline, and to update the contents of the pipeline at step n by deleting an_ k and inserting an.

The updating is effected by passing messages from cell to cell down the pipeline; at each step, the left end

of the pipeline receives a series of messages, and passes them to its right. First, a message is sent down the line

which seeks out a ,, the element to be deleted from the array, and causes it to be deleted. This is followed
n— K

by a message containing an, the new value to be inserted, which passes down the line until it reaches its

appropriate position in order, at which point the value is inserted. High throughput is achieved by pipelining

the processing of the messages, so that many messages are active in the pipeline at one time, each in a separate

cell.

SYSTOLIC ALGORITHMS FOR RUNNING ORDER STATISTICS 5

2 . 1 . Description of the Algorithm

The algorithm consists of a linear .pipeline of k cells. Each cell deals with two pieces of information, a

stored value and a message. The message, in turn, has two components, an action and a message value. In each

cycle of the machine, each cell receives a message from the left, updates its stored value (possibly consulting its

right neighbor's stored value), and passes a message to the right. In essence, the algorithm works by sending,

at each step, a message down the pipeline to delete the element which becomes obsolete at that step, followed

by a message to add the new element. Thus at step n, the n-kth- element is deleted, and the nth is added. A

deletion message travels down the pipe until its message value matches the stored value of the receiving cell,

at which time that cell overwrites its stored value with that of its right neighbor, and passes a message to the

right which will cause the remaining stored values in the pipe to shift left. An insertion message moves to the

right until it reaches a cell whose stored value matches or exceeds the message value, at which time that cell

replaces its stored value with the message value, and sends to the right a message to insert its old stored value.

The algorithm uses four action types: delete, which specifies an element to be deleted; pull, which causes a

cell to perform a left shift; insert, which specifies a new element to be added; and wait, meaning "do

nothing", which is necessary to provide a gap between an insertion and a deletion. The computation that each

cell performs in each timé step depends on action as follows:

delete: If message value does not match stored value, pass on the same message. If they do match,
set stored value to the stored value of the cell to the right, and pass the message [pull],

pull: Set stored value to the stored value of the cell to the right, and pass the message [pull].

insert: If message value > stored value, pass along the same message. Otherwise, set stored value to
message value, and pass the message [insert old stored value],

wait: Pass the message along.

Each step in the execution of the algorithm takes three machine cycles, in each of which a message is

injected into the left end of the pipeline. At step n, the sequence of messages injected is as follows:

[d e l e t e k]

[insert

[wait]

Initially, the pipeline is primed by setting each action to wait, each stored value to the maximum value

possible, and taking al_k, a2_k,..., aQ to have this maximum value. During the operation of the algorithm,

the rightmost cell receives a maximum value when it attempts to read its right neighbor's value. The element

SYSTOLIC ALGORITHMS FOR RUNNING ORDER STATISTICS 6

having rank r among an__k+l,..a can* be read from cell r during machine cycle 3/2+r—1, while it holds

the wait message issued immediately after the message [insert a j . The rank of the item to be read could be

either fixed in hardware or selected in a previous set-up phase. The value itself could be either put onto an

output bus or passed, cell by cell, to the right end of the pipeline as an additional message component. More

than one ROS could be computed simultaneously at the cost of extra hardware and time. One way to achieve

this would be to use the count-result mechanism discussed in Section 3.

A check of the correctness of the algorithm can be carried out by checking two assertions. The first is that

the abstract sequence of operations specified by the messages injected yields the desired result; that is, that the

processing of a particular message, in the absence of other messages, leaves the pipeline in the intended state.

The second condition that the pipelining of the operations is carried out correctly, in that each message causes

each cell to perform the same computation in both the pipelined and non-pipelined cases.

In order to check the correctness of the operation sequence, consider the computation performed by an

ordinary uniprocessor simulating the systolic algorithm by simulating, for each message in turn, the effects of

that message as it travels the entire length of the array; that is, each message is propagated through the array

before the simulation of the next message is begun. In the course of such a simulation, the element holding

rank ramong a n _ k + 1 , . . . , an is held in cell rafter the propagation of the message [insert a j .

Turning to the issue of pipelining, note that only the delete and pull messages can possibly cause problems,

since neither of the other message types causes a cell to refer to the values stored by any other cell. However,

such a message is always immediately preceded by a wait message; thus the cell to the right, whose stored

value will be accessed, is in the state that* it would reach after the preceding insert message had been

propagated in the uniprocessor simulation. Therefore, the results of the pipelined computation are the same

as those of the serial computation.

Complexity analysis of a VLSI algorithm is concerned with two measures: the area required to implement

the algorithm, and the time that it takes to perform a computation. In this case, assuming that the precision of

the numbers to be processed is fixed, so that each comprises a constant number of bits, the area required by

each cell is a constant, independent of k. Thus the area required for the entire algorithm is proportional to K

since it consists of k constant-size cells. The time required to process a sequence of numbers is equal to the

product of the number of cycles required to pass the sequence through the machine and the time required to

perform a machine cycle. A sequence of length m requires 3x(m+k) machine cycles, and cycle time is

constant, regardless of the value of k. Thus, assuming that m»k, a sequence of m numbers can be processed

in time 0(m).

SYSTOLIC ALGORITHMS FOR RUNNING ORDFR STATISTICS 7

2 .2 . An Example

Figure 3 shows five stages in the operation of the algorithm for order five, when presented with input

containing the subsequence

. . . , 8 , 5 , 4 , 6 , 2 , 9 , 1 , 3 , . . .

beginning just after the message [insert 1] has been injected into the left end of the pipeline.

The behavior caused by delete messages is demonstrated by the message [delete 5] which is in the second

cell from the left in the top snapshot; the message is passed to the right until it reaches a cell whose stored

value is 5 (the third cell, in this case), at which point the 5 is overwritten with the value to the right. A pull

message is then sent to the right; this causes the remaining elements in the pipeline to shift to the left. At the

right end of the pipeline, a maximum value is shifted in as "filler", to be shifted out later.

Two cases in the example summarize the effect of insert messages. The message [insert 1] which is in the

leftmost cell in the top snapshot causes that cell to set its stored value to 1, and to pass its previous stored

value of 2 to the right to be inserted. This effect ripples down the pipeline, essentially causing the elements

stored to shift to the right. When an insert message reaches the rightmost cell of the pipeline, as the message

[insert 9] does in the second snapshot, the value held in the message replaces the maximum value left in that

cell by the previous delete or pull message.

3 . A lgor i thm for t h e T w o D i m e n s i o n a l R O S P r o b l e m

This section presents an algorithm for the two dimensional running order statistic problem which may be

extended to handle ROS problems of arbitrary dimension. In the two dimensional case, the algorithm yields

a set of s order statistics of order k for a matrix with m elements in time 0(mslog log £), while occupying area

0(f^\og k). Like the algorithm presented for the one dimensional problem, this algorithm is based on a linear

array of cells, down which messages are passed to maintain an ordered sequence of values.

As in the algorithm of Section 2, many messages are processed simultaneously, in separate cells. The

algorithm for the two dimensional problem has an additional level of parallelism, however, in that it operates

on data belonging to k squares of size kxk simultaneously. Essentially, the algorithm sweeps a rectangular

window of 2k— 1 rows and k columns across the array, and at each step produces order statistics for the k

overlapping kx k squares contained in such a rectangle.

Since the algorithm works on more than one square at a time, each array value is tagged with a row

number, ranging from 1 to 2k—1, in order to make it possible to calculate to which squares it belongs. Also,

since the mixing of values from different squares makes it impossible to compute results just by reading the

SYSTOLIC ALGORITHMS FOR RUNNING ORDER STATISTICS

message action

message value

insert

1

delete

5

wait insert

9

delete

8

stored value 2 4 5 6 8

• *

message action

message value

stored value

message action

message value

stored value

wait insert

2

delete

5

wait insert

9

message action

message value

stored value

message action

message value

stored value

1 4 5 6 max

message action

message value

stored value

message action

message value

stored value

message action

message value

stored value

message action

message value

stored value

delete

4

wait insert

4

pull wait

message action

message value

stored value

message action

message value

stored value 1 2 6 6 9

message action

message value

stored value

insert

3

delete

4

wait insert

6

pull message action

message value

stored value 1 2 4 9 9

message action

message value

stored value

wait insert

3

delete

4

wait insert

9

message action

message value

stored value 1 2 4 6 max

Figure 3: Example of the one dimensional algorithm

SYSTOLIC ALGORITHMS FOR RUNNING ORDER STATISTICS 9

contents of particular cells at particular times, order statistics are gathered by special messages which count

the number of elements in a given square up to a specified rank, then pass the value having that rank to the

end of the pipeline as the result.

3 . 1 . Description of the Algorithm

As before, the structure on which the algorithm is based is a pipeline. For the two dimensional case, the

pipeline consists ofUp'—k cells, each divided into two sections, a stored section and a message section. As

before, in each machine cycle each cell in die pipeline examines a message from its left neighbor, updates its

stored data (possibly consulting its right neighbor's stored data), and sends a message to its right neighbor to

be processed by it during the next cycle.

Each cell's stored data has two components: a row, which tells from which of the 2k— 1 rows of data

currently being considered the value was drawn; and a value, representing one of the a... A message, on the

other hand, has four components: an action, specifying the computation to be performed by a cell; a count,

which is used in gathering statistics; and a row and a value, as in the stored data.

The algorithm makes use of six different actions: delete, pull, insert, and wait, all of which operate similarly

to their counterparts in the one dimensional algorithm; count, which is sent through the pipeline to find the

element within a kxk square which has a given rank; and result, which is used to pass the result of a counting

operation through to the end of the pipeline. The computations specified by each action are as follows:

delete: If message row and message value match stored row and stored value, then set stored row and
value to those of the cell to the right, and pass the message [pull]. Otherwise, pass the
message along unchanged.

pull: Set stored row and value to those of the cell to the right, and pass along the message [pull].

insert: If message value > stored value, pass the message along unchanged. Otherwise, set stored
row and value to those of the message, and pass the message [insert old stored row, old
stored value],

wait: Pass the message along.

count: If message row— k < stored row < message row and message count > 1, then pass the
message [count message count— 1, message row]. If stored row is in this range and message
count -1, then pass the message [result stored value],

result: Pass the message along.

When applied to a matrix with r rows and c columns, the algorithm makes r/k passes across the columns of

SYSTOLIC ALGORITHMS FOR RUNNING ORDFR STATISTICS 10

the matrix, reading rows (n-l)xk-\-l through (/ 2 + l) x k - l and yielding order statistics for the squares

whose first rows are numbered (n- l)xk+1 through nxk during the nth pass. In other words, it reads rows in

the intervals 1 . . 2k— 1, k+1.. 3k— 1 , . . . , calculating order statistics for the squares whose first rows fall in

the intervals 1 . . k, k+1 . . 2k, and so forth. Each pass across the columns takes c steps, in each of which

2k— 1 numbers are deleted from the queue, 2k— 1 are added, and sxk count messages are injected in order to

find s order statistics in each of the k squares being scanned. As in the one dimensional algorithm, the queue

is initialized with maximum values before each pass is begun.

A check of the correctness of the algorithm can be performed in the style of Section 2.1. Again,

consideration of a uniprocessor simulation makes it apparent that the sequence of operations applied compute

the correct results, and the demonstration of the correctness of the algorithm's pipelining is identical.

The complexity of the algorithm, though, is more complicated than that of the algorithm for the one

dimensional case, because each cell must handle numbers ranging up to O(fP'). In particular, each cell must

be capable of performing comparison and subtraction operations on these numbers. By encoding the

numbers in 2's-complement binary notation, both of these operations can be expressed in terms of addition

and testing for zero value of 0(log £)-bit numbers. Brent and Kung [2] describe a general adder design which

yields 6-bit adders requiring area 0(b) and time 0(log b). Substituting log k for 6, the necessary additions can

be performed in area 0(log k) and time 0(log log k). Testing for zero value can be performed with a binary

tree of OR gates in area 0(\ogk) and time <9(loglog&). Thus, since each of 2k2 —k cells requires area

proportional to log/:, the entire linear array requires area 0(l^\ogk). The time to process m numbers,

computing s order statistics for each square, can be calculated as 0(ms) machine cycles multiplied by a cycle

time proportional to log log K yielding the result 0(ms\og log k).

The algorithm may be extended to handle problems of any dimension n by using a (2k-l)n~lk cell

pipeline, and sweeping the array with a hyperwindow which has width k in the direction of the sweep and

width 2k-1 in every other direction. At each step in the sweep, the algorithm would read (2k-l)72-1 values

and produce kn~l sets of order statistics. Each value in the pipeline would be accompanied by n-1 numbers

indicating to which hypercubes, among the kn~1 contained in the window, the value belongs.

3 . 2 . An Example

Figure 4 demonstrates the operation of the algorithm for order 3 (that is, taking order statistics over each

3x3 square), when presented with input containing the block

SYSTOLIC ALGORITHMS FOR RUNNING ORDER STATISTICS 11

action delete count count count insert delete wait insert pull wait insert delete wait insert pull
count 5 4 2

row 1 5 4 3 5 5 4 1 3 2
value 33 32 31 36 35 43 41
row 2 1 3 3 5 2 5 1 1 4 3 4 5 3 3
value 19 21 23 26 28 30 31 33 33 34 37 38 39 43 43

action insert delete count count count insert delete wait insert pull wait insert delete wait insert
count 5 3 1
row 1 1 5 4 3 5 5 4 3 3 3
value 22 33 32 31 36 37 43 43
row 2 1 3

CO
 5 2 5 1 4 4 1 4 5 2

value 19 21 23 26 28 30 31 33 34 34 35 38 39 41 max

action wait insert delete count count count insert pull wait insert pull wait insert delete wait
count 4 2 1
row 1 1 5 4 3 5 4 4 3
value 22 33 32 36 38 43
row 2 1 3 3 •5 2 1 1 4 1 1 3 5 2 3
value 19 21 23 26 28 30 33 33 34 35 35 37 39 41 43

action delete wait insert delete count count result insert pull wait insert pull wait insert delete
count CO

 2 -

row 2 1 1 5 4 3 m 1 4 5 3
value 41 22 33 30 33 36 39 43
row 2 1 3 3 5 2 5 4 4 1 3 3 4 2

CO

value 19 21 23 26 28 30 32 34 34 35 37 37 38 41 43

action insert delete wait insert delete count count result insert pull wait insert pull wait insert
count 2 1 .
row 2 2 3 1 5 4 3 4 CO

 2
value 27 41 23 33 30 34 37 41
row 2 1 1 3 5 2 5 1 1 1 4 4 4 5
value 19 21 22 26 28 30 32 33 35 35 36 38 38 39 max

Figure 4: Example of the two dimensional algorithm

SYSTOLIC ALGORITHMS FOR RUNNING ORDER STATISTICS 12

17 33 21 35 22
22 41 19 30 •27
43 37 26 23 29
18 34 38 36 40
31 39 28 32 42.

The algorithm moves from left to right across the data, and at each column position reads the new data and

deletes the old data from top to bottom. In this example, the only order statistic considered is the median

(thus each count message has its count field initially set to 5). The figure illustrates five machine cycles,

beginning just after the message [delete row 1 value 33] has been injected.

The handling of the insert, delete, wait, and pull messages is essentially the same as before. The actions

specified by the count and result messages are illustrated by the progress of the count message which appears

in the fourth cell from the left of the first snapshot. The stored value of 26, drawn from row 3, falls within the

range (rows 1 to 4) of the count message. Thus, cell 5 of the second snapshot shows the same message with its

count reduced by one. The stored value in this cell is from row 5, out of the range of this message, so the

same message is passed unchanged to cell 6, as seen in the third snapshot. The value stored in cell 6 is drawn

from row 2, within the range of the message; since the count is down to 1, this value is passed out in a result

message, seen in cell 7 of the fourth snapshot.

4 . C o n c l u s i o n

In addition to providing cost-effective solutions to a computationally difficult family of problems, the

algorithms described in this paper illustrate some important issues in the design of special-purpose parallel

computing devices. First, because of their linear structure, they conserve memory bandwidth. The number of

bits transferred in each cycle by the algorithm for the two dimensional problem grows as log k, rather than at

least k as in the case of a two dimensional array of processors. Thus a large device can run with essentially the

same memory bandwidth as & small device without wasting any of its processing power. Also, each value is

retrieved from memory a small constant number of times (no more than 2 if a 2 £ 2 - k cell shift register is used

to keep track of values to be deleted), so the total external communication required by the algorithm is small.

This feature is the result of an economy of memory reference which is central to systolic algorithms: when a

value is read from memory, at least half of the computations which depend on that value are performed. This

is accompanied by a dual economy of computation: no two input values are ever compared more than a small

constant number of times.

SYSTOLIC ALGORITHMS FOR RUNNING ORDER STATISTICS 13

A c k n o w l e d g m e n t s

Thanks are due to M. J. Foster, H. T. Kung, P. L. Lehman, and S. W. Song for helpful criticism, and to

H. T. Kung for suggesting the problem.

R e f e r e n c e s

[1] Andrews, H.C.
Monochrome digital image enhancement.
Applied Optics 15(2):495-503, February, 1976.

[2] Brent, R. P. and H. T. Kung.
A regular layout for parallel adders.
Technical Report CMU-CS-79-131, Carnegie-Mellon University, Computer Science Department,

June, 1979.

[3] Foster, M. J. and H. T. Kung.
The design of special-purpose VLSI chips.
Computer Magazine 13(1):26-40, January, 1980.

[4] Kung, H. T.
Let's design algorithms for VLSI systems.
Technical Report CMU-CS-79-151, Carnegie-Mellon University, Computer Science Department,

January, 1980.

[5] Kung, H. T.
Notes on VLSI Computation.
To be published by Cambridge University Press.

[6] Kung, H.T. and P. L.Lehman.
Systolic (VLSI) arrays for relational database operations.
In Proceedings of ACM SIGMOD1980 International Conference on Management of Data, pages 105-

116. Association for Computing Machinery, May, 1980.

[7] Kung, H. T. and C. E. Leiserson.
Systolic arrays (for VLSI).
In Duff, I. S. and Stewart, G. W. (editors), Sparse Matrix Proceedings 1978, pages 256-282. Society for

Industrial and Applied Mathematics, 1979.
A slightly different version appears as Section 8.3 of Mead and Conway [10].

[8] Kung, H. T. and S. W. Song.
A systolic 2-D convolution chip.
Technical Report CMU-CS-81-110, Carnegie-Mellon University, Computer Science Department,

March, 1981.
Jo appear in Non-Conventional Computers and Image Processing: Algorithms and Programs, Leonard

Uhr (editor), Academic Press, 1981.

SYSTOLIC ALGORITHMS FOR RUNNING ORDER STATISTICS

[9] Leiserson, Charles E.
Systolic priority queues.
Technical Report CMU-CS-79-115, Carnegie-Mellon University, Computer Science Department,

April, 1979.

[10] Mead, C. A. and L. A. Conway.
Introduction to VLSI Systems.
Addison-Wesley, Reading, Mass., 1980.

[11] Moore, G. L.
Are we really ready for VLSI?
In C. L. Seitz (editor), Proceedings of Conference on Very Large Scale Integration: Architecture,

Design, Fabrication, pages 3-14. California Institute of Technology, 1979 .

[12] Noyce, R.N.
Hardware prospects and limitations.
In M. L. Dertouzos and J. Moses (editors), The ComputerAge: A Twenty-Year View, pages 321-327 .

Institute of Electrical and Electronics Engineers, 1979.

[13] Rabiner, L. R., M. R. Sambur, and C. E. Schmidt.
Applications of a nonlinear smoothing algorithm to speech processing.
IEEE Transactions on Acoustics, Speech, and Signal Processing 23(6) :552-557 , December, 1975 .

[14] Seitz, C.L.
System Timing.
Chapter 7 of Mead and Conway [10].

[15] Thompson, C. D.
A Complexity Theory for VLSI.
PhD thesis, Carnegie-Mellon University, Computer Science Department, August, 1980.

[16] Tukey, J. W.
Exploratory Data Analysis.
Addison-Wesley, Reading, Mass., 1977.

S E C U R I T Y C L A S S I F I C A T I O N OP """IS P A G E 'When Data Entered)

R E P O R T D O C U M E N T A T I O N P A G E B F . F O R E ^ P L E T I ^ F O R M

I. R E P O R T N U M B E R

CMU-CS-81-130
2. G O V T A C C E S S I O N NO. 3. R E C I P I E N T ' S C A T A L O G N U M B E R

4 . T I T L E (*nd Subtitle)

SYSTOLIC ALGORITHMS FOR RUNNING ORDER STATISTICS
IN SIGNAL AND IMAGE PROCESSING

S. T Y P E OF R E P O R T & P E R I O D C O V E R E D

Interim
4. T I T L E (*nd Subtitle)

SYSTOLIC ALGORITHMS FOR RUNNING ORDER STATISTICS
IN SIGNAL AND IMAGE PROCESSING 6 . P E R F O R M I N G O R G . R E P O R T N U M B E R

7 . A U T H O R S

Allan L. Fisher
6. C O N T R A C T O R G R A N T N U M B E R O

N00014-76-C-0370

9 . P E R F O R M I N G O R G A N I Z A T I O N N A M E A N D A D D R E S S

Carnegie-Mellon University
Computer Science Department
Pittsburgh, PAo 15213

»0. P R O G R A M E L E M E N T . P R O J E C T . TASK
A R E A à WORK U N I T N U M B E R S

1 ! . C O N T R O L L I N G O F F I C E N A M E A N D A D D R E S S 12. R E P O R T O A T E

July 1981
1 ! . C O N T R O L L I N G O F F I C E N A M E A N D A D D R E S S

13. N U M B E R O F P A G E S 16
U. M O N I T O R I N G A G E N C Y N A M E A A D D R E S S f i / different from Controlling Office) 15. S E C U R I T Y C L A S S , (of thia report)

UNCLASSIFIED
U. M O N I T O R I N G A G E N C Y N A M E A A D D R E S S f i / different from Controlling Office)

1S«. D E C L A S S I F I C A T I O N / D O W N G R A D I N G
S C H E D U L E

16. O l S T R I B U T I O N S T A T E M E N T (of thia Report)

17. D I S T R I B U T I O N S T A T E M E N T (of the mbetr*ct entered in Block 20, if different from Report)

Approved for public release; distribution unlimited

18. S U P P L E M E N T A R Y N O T E S

19. K E Y WORDS (Continue on reverae aide if neceaaaxy and identify by block number)

20 . A B S T R A C T (Continue on reverae aide it neceeesry and identify by block number)

DD ,JANM7J 1473 EDITION OF 1 NOV 6S IS OBSOLETE UNCLASSIFIED
S/N 010J-014- 6601 I tCCUHlTY CLASSIFICATION OF THIS PACE D.I. « n . „ . « >

