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Abstract

This paper describes a type of switching network which can simuitaneously connect many inputs to
many outputs. Such networks are useful in communications, in dynamicalty reconfigurabie computer
systems, and in building semantic netwerk memories for artificial inteligence and data base

applications.

A generalized connection network {GCN) is a switching network in which each of N inputs ¢an be
connected to any of N outputs, many to one. with all of the N connections operating simultaneously.
Such a network is said to be non biocking if the connections can be eslablished in any order. without
rearranging existing cennections and without any possibility that the establishment of an arbitrary
new connection will be blocked by exisling connections in the network. In seldom-blocking networks,
there is soime finite chance that a new connection will be blocked. but this chance can be made

arbitrarily small through proper design of the network.

This paper will examine one class of seldom-blocking netwaorks. which | call hashnets. with the
emphasis on designing such networks for practical applications. These networks are buitt from fayers
of selector swilches, with random hard-wired connections between the outputs of one layer and the
inputs of the next. Such networks can give a close approximation to non-blocking behaviar, but with
much less harcdware than the sinallest known networks that are stricty non-blocking: the number of
contact-pairs is O(N leg N) rather than G{N |og2 N). and the constant factors are small. Hashnets are
not an entirely .new idea. but little has appeared in the literature about how to design and use
networks of this kind.

This paper will explore the i1ssues that arise in the design of practical hashnets. and will describe
how to design a near-optimal hashnet for any desired combination of size and blocking probability. It
will also present a scheme for time-sharing such networks, wilich greatly multiplies the number of

(virtual) conneclions available with a given amount of hardware.



1. Introduction

A permulation network is a switching network with N inputs and N cutputs that is able to establish
one-to-one connections between inputs and outputs, with all N connections operating
simultaneously. The input-to-output permutation thus established can be any member of a universe
of N!' possible permutations. A generalized connection network (GCN) s more general: it allows
each of N inputs to be connected to any of N outputs, again with ail connections operating
simultaneously. In the GCN, a given input s connected ta only one output at a time, but an output
may be connected {o many inputs at once. A GCN. therefore, selects one input-cutput mapping from
a universe of NV possible mappings. The terms "input™ and "outputl” are used here meraly to {fabel

the two sides of the network; depending on the application, the connections may be bidirectional.

Such switching networks are useful in many contexts. The most obvious use. and the one that has
stimulated the most research in this area. is in meeting the switching needs of telephone systems
{Benes 65]. In this appfication. the emphasis has naturally been on netwarks in which all connections
are possibie but only a small fraction of the connections are in use at once. In recent years, switching
networks have been studied as a way of configuring paraliel computer architectures to allow multiple
processors to access multiple memories, terminals, and ather resources in a flexibie way with a
minimum of contention over the communication channeis [Masson 79 Goke 73} For very small
networks one can use a crosspoint switch to achieve this interconnection. but in such networks the

number of contact pairs grows as N2, too expenstve for many large-network applications.

My own interest in generalized connection networks arises from my work in semantic network
memories for artificial inteliigence and knowledge base applications [Fahiman 73]. The precise
requirements of such semantic network memories. aiong with a proposed design. are described in
another paper [Fahlman 80]. For now it will be sufficient to note that a semantic network memcry
containing 10°% elements (concepls and simple assertions), encugh for moderate expertise in many
real-world domains. will require a GCN with 4 x 10° inputs and 108 outputs. Such a network would be

quite costly to build by conventional techniques.

Swilching networks can be divided into three classes according to how the connections are made.
Blocking networks guarantee that any singie connection can be made, but do not guarantee that all
legal combinations of connections (“legal” according to the definition of a GCN or permutation net)
can be made at gnce. In other words, some legal connections may block others trom being present at
the same time. Rearrangeable networks guarantee that any legal combination of connections can be
set up in the network, but oniy if existing connections can be rearranged to accommodate any new
request for a connection. Non-blocking networks are the most powerful, guaranteeing that any new

reguest can be satisfied without the need for any rearrangement of 2xisting connections.



It is possible to construct non-btocking GCNs, but they are expensive: the best known solutions for
targe N require O(N I092 N) switch contact pairs [Pippenger 78a]. Furthermore, in such networks the
delay through the network (that is. the number of switches through which a signal must pass) is
O(tog? N). It is known [Pippenger 78a] that non-blocking networks of O(N1og N} contacts can be

built. but the proof is non-constructive and no practical impiementation strategy is known.

Rearrangeable networks with O(Nlog N) connections and O(log N) delay are known. Ofman
[Ofman 67] has demonstrated that a GCN can be built with 8N log, N - 8N contact pairs with a delay of
4log, N - 3. Thompson [Thompson 78] has improved siightly on these figures to produce @ GCN with
less than 7.6N log, N contact pairs. Such networks can be configured for a ygiven set of connections
by a procedure due to Waksman [Waksman 68] which takes O(N log N) time to configure the network.
Unfortunately, this set-up procedure must be repeated whenever a new connection is added to the
network. and the set-up does not appear 1o be amenable to parallel solution. This cosily set-up
procedure is the principal reason why the rearrangeable networks have not been used in many
applications for which they would otherwise be appropriate. In multi-processor architectures, for
example, there has been more interest in the simpler Banyan networks {Goke 73], which can be

configured in O(iog N) time. but which block on many of the potential mappings.

The above analysis assumes networks that are sirictly non-blocking or rearrangeable. In many
applications. it is possible 1o get the best of both worlds through the use of seldom-blocking netwaorks
[Pippenger 7§b. Pippenger 75]. These networks behave as non-blocking networks in almost all
cases, but there is some small but finite chance that a desired connection cannot be made. By
choosing an appropriate network configuration, it is possible to make the probability of failure
arbitrarily smali. One kind of seldom-btocking network. first described by Marcus {Marcus 72]. is built
from selector switches arranged in layers, with a random pattern of interconnections between
successive layers. Because this scheme is anatogous in many ways to a hash-coded data structure, |

propose the name “hashnets” tor networks of this sort.

in some applications any chance of blocking, however small. may be unacceptable. Where
seldom-blocking networks can be used, however, the savings can be substantial: Marcus [Marcus 72]
has shown that a hashnet can be constructed with O(N log N + log 1/Pg) contact pairs. where Pg is
the allowable probability of blocking in the attempt to establish any single connection. Using a
hashnet we can obtain nearly the effect of a non-blocking network for roughly the cost and delay ofa
rearrangeable network, a cost which is close to the information-theoretic minimum. As we will see,
the decision tg accept some very s;tmall risk of not finding a desired connection aiso makes it possible
to elfectively time-share these networks. dramatically increasing the number of virtual connections
available with a given amount of hardware, at the cost of reduced bandwidih in the individual

connections.



Such networks are not as well known in computer science circles as they might be, perhaps
because their treatment in {he literature has been primarily theoretical and not oriented toward
practical applications. This paper describes the hashnet scheme in detail, and explores how certain
design parameters can be varied to obtain a netwark of any desired size and probability of blocking

while minimizing cost.

Section 2 of this paper will develop the basic hashnet scheme in detail, and wiil examine the design
of 2 1000 x 1000 GCN. Section 3 will describe how new cannections are found within such a netwaork.
Section 4 will describe how such networks can be time-shared to greatly increase the number of
connections for a given amount of logic. at the expense of bandwidth in the individual connections.
Section 5 will contain some miscellanecus points and observations that may be of use to potentiai

users of the hashnet scheme.

2. The Basic Hashnet Design

The basic element in a hashnet is the selector cell shown in figure 1. This is simply a seiector switch
which can connectits single input tc any one of F outputs. The parameter F is constant for all cells in
the network, and is referred t¢ as the fanout of the cell. F is usually chosen to be one less than some
power of 2, so that the state of the cell can be compactly represented in a few bits of memary. with
one value reserved to indicale that the cell is currently unused. In most of the examples we will see, F
willbe 7 or 15.

We will now consider how to buiid a hashnet out of these cells. We will begin with the design of an
NxN permutation network, and will see later how the same network can be set up as a GCN. Figure 2
shows the cells arranged into L layers with 2N cells in each. Each ingut terminal is wired to the inputs
of two cells in the first layer. Each of the interior cells in the network has its F outputs wired to F
randomly-chosen cells in the next layer. (Note that. on the average. F wires will be tied to a cell's
single input terminal.) These random connections are hard-wired when the network is built; all of the
dynamic configuration of the network is done by setting the state of individual cells. Each output

terminal receives, on the average. 2F wires from the final layer of cells.

Each cell participates in only one connection al a time. Thus, in a permutation network with N
connections running through it. half of the cells in each tayer will still be unused. This excess
capacity is of critical importance in a non-blocking network; there must be some slack if the last
connection s to be made without disturbing the N-1 connections already present in the network. The
factor of 2, whiie convenient in many cases. is just another parameler of the network. In general, we
will use use layers ol KN cells each, where K is greater than 1 and seldom more than 2. We will also

use the symbol U to represent the Iraction of cells in a layer that are unusedg after the last connection
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ismade. Notethat) = 1-1/K, s0ifKis2 Uis0.5;ifKis 1.5 Uis 1/3.

We can now begin 1o look at the statistical behavior of these networks. Let us assume a network
with 1000 input terminals, 1000 output terminals, 2000 celis in each internal layer, and a fanout of 7.
Suppose we begin with an empty network and pick an input terminal and an cutput terminal at
random. How does the probabiiity of finding a connection between these terminals depend on the
number of layers and the other parameters of the network? We begin with connections to two cells in
the first layer. With a fanout of 7, each of these cells has a potential connection to 7 randomly-chaosen
cells in the next layer. Let us assume, for now, that the celis to which these wires cannect are all
distinct. in this over-simplified model, we have a choice of 14 destination-celis in the second layer, 98
in the third, and so on. Afer log;N layers, we reach a layer in which every cell has a potential
connection to the chosen input. We repiace these cells with output terminals and, for whichever

output terminal we specify, the chance of finding a path is 100%.

Of course. the assumption that we made above. that the branches in the tree of reachable ceils do
not intersect one another, is not true in the actual network. There will be few collisions in the early
layers of the network, when the set of reachable cells is a small fraction of the KN celis in the layer,
but as we add more layers the number of reachabie cells approaches saturation and collisions
become significant. A more accurate model is obtained by noting that if M cells are reachable in one
layer of the network, the number of wires going from them to the next tayer is MF. These wires are
distributed randomly over the KN possible estination cells. If we represent the probability of a
destination cell not being reachable as Py, we get for large N:

PB = e—MF/KN

If M" is the expected number of reachable ceils in the next layer, we get:
M' = KN (1-Pg)

When M is small compared with KN, M is close o MF. As M approaches KN, the probability of not
being abie to reach a given destination cell approaches the asymptote of e, and adding additional
layers does no good. Thus, if there are "encugh” layers in the network. the chance of being unable to
make a desired connection is governed only by the fanout of the selector cells and the number of cells
to which the input and output terminals are connected. By working out a few examples. we can ses
that for fanouts of 7 or more. "enough” layers means one ar two more than the logeN layers that we
need in the ideal. non-colliding model. The precise number is hard to characterize analytically; it is a
function of the tanout. of how close 1o the asymptote we want to get. and of exactly where logyN falls

in the interval between integers corresponding to the layers of the network.

Table 1 gives some values for a network with an N of 1000, a K of 2, and a fanout of 7. The number

of cells indicaled 15 the expected rumber in each layer that can be connected to any particular input.



The "probability of losing” figure gives the chance of not being able to make a desired connection if
the network is lerminated after the specilied number of layers. This number takes into acceount the
fact that there are twice as many cells in each interior layer as there are output termmais -- that 1s.
each output terminal has 14 wires coming into it rather than the usual 7. This improves the odds of
finding a path substantially. For now, ignore the rightmaost two columns of the table. Table 2 gives the

same figures for a fanout of 15 in each cell.

Under the conditions described above, we note that with a fanout of 7 we need 5 layers to get a low
(10°%) probability of blocking. and that adding more layers does not improve things substantially over
that figure. With a fanout of 15, we need 3 tayers to reduce the chance of blocking below 1%, and

adding a fourth layer causes the chance of blocking to drop below 103,

All of the above figures have assumed that the network iS‘empty. If the network is indeed
non-blocking, we must have a high probabiiity of finding the Nth (and final) path through the network
even when N - 1 paths are already in use. In this case. the calculations are identical to those above,
but al each layer we must muiliply the number of reachable cells by U. the fraction of cells that are not
busy when the network is already holding N - 1 connections. This is roughly equivalent to reducing

the effective fanout of the cells from F to UF,

The rightmost two columns of tables 1 and 2 give the number of reachable celis and the chance of
blocking at each stage when we are adding the tast of N connections o the networks studied above.
This assumes that the connections already in place are not to be moved. Nate that with a fanout of 7
we now must go to 6 layers to get the chance of failure under 2%. and that with a fanout of 15 we must
go to 4 layers to get a .03% failure rate. Depending on the size of the failure rate that we can tolerate,
we may have to increase the fanout or the K factor, but the network still grows only as O(N leg N) and

the delay as O(log N).

There is an additional source of possible failure that is not reflected in the model above. In the first
and last layer of cells, where the tree of reachable connections is still rather narrow, there is some
chance that a// of the cells reachabie from a given input or output will be busy carrying other
connections. With a fanout of 7 and a K of 2. the chances of such an event are about 2''* or 10 at
each end. a smail number compared lo the asymptotic chance of blocking that we computed above
for the Nih connection. With a fanout of 15, we get 2 3 or 10 % Once the tree has spread to interior
layers. the number of reachable cells becomes so large that the chance they will all be blocked
becomes negligible. Note. however, thal a deviation Irom true randomness in the network’s
inter-layer connections could cause congestion in certain regions and increase this figure

substantialiy.

To summarize, in designing a hashnet to serve as an NxN permutation network we first choose
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Table 1

Fanout 7

Terminals 1000

Qutput Terminals 1000

Cells / Layer 2000

Fraction of Cells Used 5
In Emply Network: In Full Network:
Cells Reached Prob. of Blocking Celis Reached Prob. of Blocking
2 0.998000994 2 0.888000994
14 0.88609752 14 0.98609752
g5 0.80695508 48 0.95234399
565 0.51315154 161 0.716345%4
1723 0.0188516192 491 0.137301195
1935 5.68441296E-6 1153 2.38419962E-3
1998 8.5974574E-7 1734 9.2722844E-4
1958 8.4239745E-7 1803 9.1781995E-4
1998 B.422B8804E-7 1928 9.1775945E-4

Table 2

Fanout 15

Input Terminals 1000

Output Terminals 1000

Celis / Layer 2000

Fraction of Cells Used 5
In Empiy Network: In Full Network:
Cells Reached Prob. of Blocking Cells Reached Prob. of Blocking
2 0.998000994 2 0.998000994
29 0.87044553 29 0.97044553
391 0.63977298 . 206 0.79985812
1893 2.46822253E-3 1076 0.0496812095
2000 4.20163906E-13 1964 6.44511867E-7
2000 9.3314245E-14 1998 3.05904567E-7
2000 9.3314245E-14 1998 3.05904567E-7
2000 9.3314245E-14 1998 3.05904567E-7
2000 9.3314245E-14 1998 3.05904567E-7



values of F and K that will give an asymptotic blocking probability in the desired range. Then we
choose the number of layers to approach this probability as closely as is desired. Usefulrvalues are

K=2F=70r15 andl = log N + ¢, whereciseqgualto1or2.

3. Finding New Connection Paths

So far. we have only considered whether a free path exists tor a desired connection and not
whether such a path can easily be found. In fact, a rather simple paraliel procedure can be used to
find an available path if there is one. We have seen that each cell contains a few bits of memory in
which it records whether it 1s in use and, if so, which output wire ts connected to the input. To this we

wiil add another bit that is used for temporarily marking the cell in question.

Now, suppose we have been given an input and an output that are to be connected. We begin by
putting some sort of signal on the specified output terminal. All of the non-busy cells in the last layer
that can see this signa! on any of their output wires are then marked. These celis then signal to the
cells in the previous layer that can see them, and so on. (See figure 3.} Carried to campietion. this
process marks all the non-busy cells in the network that can make connections to the desired output.
As we have seen, it is very probable that these markers will reach at least one of the first-fayer cells
connected to the specified input. (i this is not the case, the desired connection cannot be made
without rearranging the network.) Now we simply backtrack. moving from the input to the sutput, at
each stage selecting one of the marked cells in the next tayer and setting up that connection. By
following a pat‘h of marked cells back- to the output side, we are sure of reaching the desired output
terminal. 1f the wires are truly scrambled after leaving each cell, the cell's internal togic can simply
select the (internally) lowest-numbered output wire whose destination cell is marked -- this wiil result

in a random distribution of connections going to the next layer.

Surprisingly, the same network that implements an NxN permutation net can, with minor
modifications to the connection-finding procedure, be used as an NxN generalized connection
network as well. Suppose that the network already contains N input-to-cutput connections. It does
not matter whether these go to distinct outputs or are many-to-one; the essernial point is that at most
N of the KN cells in any intermediate layer are busy, just as before. It we select an output terminal with
no pre-existing connections, we can mark a tree of idle and reachabie cells back to essentially all of
the inpul terminals, just as before. Now. instead of selecting just one input terminal and one path
back to the output, we can select and connect as many inputs as we like. The connections may
merge at the inputl of some intermediate cell in the tree, or they may not merge until the output
terminal is reached, but the effect of wiring together all of the specified inputs and the selected output
is achieved. Thisis a party-line connection: it is up to the user of the network to establish protocols to

prevent confusion of signals in this connected subsystem.
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It is not necessary to make all of the connechions 12 a given output terminal at once. We want to be
able to connect a new input to an output that already has some input conneactions. The problem is
that the pre-existing connections to this outpul might tie up mast or all of the tncoming wires and
immediately adjacent cells. The fix is simple, however: instead of insisting that the new connection
use only free cells, we allow it to join the tree of existing connections 1o the specilied cutput at any
point. To do this, we mark back from the output as before, but this time we mark both idle cells that
can form connections to the specified output and busy cells that are already tied to this output. Then
we trace a path back from the desired input along marked paths. just as before. This will not bother
neighbaring paths at all; in fact. this procedure will result in the use of fewer intermediale celis than
are used in the permutation network, since some branches of the tree will carry the connections from

several inputs.

4. Time-Shared Hashnets

Using the internal-merge technigue that will be described in the next section. it is possible to pack
15 of the 15-way seiector cells onto a single IC chip. {The timiting factor is not the capacity of the
silicon chip itself. but rather the limited number of wires that can be attached to a chip.} This means
that a 1000 x 1000 GCN can be built with about 530 chips -- a rather smali system by current
standards. But the million-connection networks that we need for semantic network memones (anc
many other uses) would require about a million IC's. A system of this size is out of the question for

most applications; in fact. it would probably be impessible to maintain even if cost were no object.

A million-connection network can be built, however, by using a 1000 x 1000 network and
time-sharing it 1000 ways. The price paid for this, of course. is that each virtual connection ihas only
1/1000 the bandwidth of the nstwcrk's reai connections. If 1000 one-bit signals can be moved
through the theusand-connecticn network in @ microsecond. it will take roughly a millisecond to move
one million one-bit signals through the million-conrection time-shared network. It happens that this
reduced bandwidth is acceptable for semantic network memaories and probably alsc in many

applications involving audio-frequency transmission.

To see how the time-sharing works. we must first note that each of the 1000 inputs and outputs of
the network is now time-mullipiexed 1000 ways. Instead of having a termunal all to itsell. a user of the
network is assigned !o a parlicular terminal and 1o a particular timme-slice from the set of 1000. We
assume that all network users {senders and recaivers) have access to the same clock signal, so they
alwaylfs know when it is their turn o talk or listen, The assignment of time-slices is permanent, just like
the connection of users to physical terminals. The tune siices roll by in a circular tashion. 0 to 899,

then back 1o 0 and around again.
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During each of the 1000 time-slices, the physical hashnet is set up differently. The random wiring
is, of course, constant over all time slices. but the selection made within each cell is different for each
time-slice. What this means is that instead of having just four bits of internal state in each cell, we
have a 4 x 1000 circuiar shift register. During each time-slice. a new 4-bit value is shifted into the cell,
and is used during that ime to gate signals through the celi to one of the 15 possible outputs. A value

of 0 marks the cell as unused during that time-slice.

With these changes, we have made it possible for arbitrary inputs and outputs to communicate with
one another, but only if they are assigned to the same time slice. To get to a million-connection GCN,
we also need some mechanism for moving signals from one time-slice to another. For single-bit
signals, such a time-shifter is easy to build. {See figure 4,) During each time slice. we accept an input
bit and a ten-bit address giving the time-slice that this bit is supposed to be moved io. This address is
used (o store the bit into the appropriate iocation of a 1000 bit random-access memory. After all 1000
siices have rolled by. this memory is fully loaded. During the next cycle of 1000 time-slices, we step
through seguential iocations in this memory and send out the stored bits in their new order. By using
two 1600-bit memories, we can pipeline this system, toading one memaory while unloading the other.
Each of these ime-shifter elements, then. contains a 10 x 1000 bit shift register and 1000 or 2000 bits

of randem-access memory.

Since each time-shifter that a signal goes through introduces a delay. it is desirable to use only a
single layer of shifters. The probability of blocking is minimized if we put this layer of shifters in the
middle of the network, We will need 2000 shifters, one at the input of each of the 2000 cells in the
third tayer. (See figure 5.) Note that with 2000 celts and 1000-way time siicing, we have two million
virtual shifter inputs and an equal number of outputs. Even with one million connections already in
place, only half of these inputs and half of the outputs (randomly distributed) will be busy. A busy
input. for a given time slice. is indicated by a value of G in the corresponding slot of the 10-bit shift
register; an output is busy it the third-layer selector cell to which it is attached is busy during that

time-slice.

Now. what are the odds of being able to find a connection from one input on one time slice {0 one
output on a diferent time-slice? I we consult table 2 for the network with fanout of 15 and 4 layers.
we see that alter two layers of cells with the network full, the typical input terminal can see 206 of the
2000 shifters. On the average, half of these will be busy during the time slice of the input in question.
Therefore, about 100 non-busy shifters are available for forming the connection. By the same
reasoning, each output terminal ca.n see about 100 shifters on its time-slice. |f these two sets of 100
shilters (chosen from a universe of 2000) have a non-null intersection, then a path can be found. For
any single shiffer in the input set, the chance of being in the oulput set is 100/2000 = .05 and the

chance of losing is .95. But with 100 chances to win, the probability that they will ail lose is .95'9° =
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006 -- less than 1%. if this figure is too high, it is possible to add one extra layer of cells to the
network reducing the probability of blocking to about 10", We can place this new layer on either

side of the shifter layer -- the effect is the same.

The path-finding algonthm is essentiélly the same as in the non-timeshared netwarks. We begin
with the desired cutput terminal and time-slice. and we mark backwards through the network on that
time-slice until we reach the layer of shifters, We mark all those shifters whose ouput is not busy on
this time-slice and who can establish a connection to the desired output terminal. We then consider
the time-slice of the desired input. If the shitter is busy on that slice. the mark is removed: otherwise, it
is propagated back toward the inputs on the input time-slice. When the proper input is reached (on
the proper time-slice), & single trail of marked cells is followed back to the output and the proper
sellings are written into the shift register memories of these cells. In ettect, the time-shifter can be

treated as a selector cell whese fanout is 1000 rather than 15,

While | have been using a figure of 1000 time-slices for the purposes of illustration, there is
certainly nothing magic about this number. In general, any number of time-slices can be used. The
bandwidth of the resulting connections is reduced proportionately, and the length of all the shift
registers grows linearly with the number of slices. This kind of growth can be traded off against the
Nlog N growth in cells and wires that occurs when the size of the physical hashnet is increased. This
flexibility is useful in designing a system to fit existing memory parts and other engineering

restrictions.

5. Concluding Remarks

Note that in the heavily time-shared networks. most of the cost is in the various shift register
memories. In the four-layer million-connection design, the network requtres 54 million bits of storage:
8000 selector elements. each with 4000 bits of shift register, plus 2000 time shifters. each with 10000
bits of shift register and 1000 bits of RAM. (Several selectors ar shifters can be packed onto a singie
IC chip.) Note that the information-theoretic lower bound on the amount of state in such a network is
20 million bits: 108 connections, each of which requires 20 bits to specify which of the 10° passibie
destinations it goes to. Therefore. we are within a factor of three of the simplest possible design. and

we get 1000-way parallelism from the hashnet.

Note too that in many technologies, shift register memaries are the cheapest kind to build. Since
the time-slices roll by steadily, it is possibie to use dynamic memory chips rather than the more
expensive static memories. Charge coupled devices or magnetic bubble memories may be attractive

for very large scale (but rather siow) hashnets.

My most recent design for the million-element semantic network memery, wiich comains a 3CN of
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4 million connections, uses a 1000 x 1000 hashnet time-shared 4000 ways. The network portion of
this machine contains about 4800 chips. 4000 of these are commercial 64K RAM chihs‘ and the
remainder are custom-designed selector and time-shifter chips. Again we are about a factor of 3 from
the information-theoretic minimum of 80 millicn bits. Details of this design can be found in [Fahiman
80].

Two design tricks are used in the above design to reduce the number of IC packages. Since these
appear to be generally useful in hashnet designs, | will describe them here. The first of these tricks
depends upon the observation that the random pattern of interconnection between layers of the
hashnet can be the same for each pair of layers. | have not been able to prove that this is true, butin a
number of network simulations this change has made no measurabie difference in the probability of
blocking. This property makes it possible to use only one layer of selector cells. with the outputs tied
through a random pattern of wires back to the inputs. First the signal bits are shifted into this layer of
cells. Then the selection bits for the first layer are shifted in, and the signai bits are sent through the
selected output wires and back to the inputs where they are latched. Next, the selection bits for the
second layer are shifted in, and the process is repeated; this continues for the desired number of
"layers”. This technique does not reduce the number of bits of memory in the machine, but it does
reduce the number of selector celis and the amount of random wiring by a factor of L. the number of
layers of selector cells, Obviously. this is somewhat slower than the normal straight-through scheme,

and it prevents any pipelining of signals.

The second trick involves the packing of 15-way selector cells onto iC chips. The limiting factor is
not the silicon chip itself, but the number of external connections that can be made to a chip with
current packaging technology. At present. 64-pin packages are the largest that are readily available,
and smaller packages are considerably less expensive. Since each selectar cell has one input and 15
outputs, and since 6 or so wires are needed for power, clock, and control signais, it would appear that

only two or three selector cells can be placed in a single package.

The trick is to place 15 cells in a single pachkage and to tie together their gutputs within the chip, as
shown in ligure 6. Now each input pin is wired to exactly one output pin from the previous layer: in
effect. we are moving the merger that used to occur at the selector cell input pins back into the cell
packages in the previous layer. This alters our original assumption that the interconnections are
totally independent of one another, since now if none of the outputs of a given cell can see the
desired output terminal. there are 14 other cells in the sume layer with the same problem. On the
other hand, this scheme elimmateé the problem of some cells getting more than 15 incoming wires
while other celis get less than their share. | have not been abie toc determine analytically what
difference this change makes in the probability of blocking, but we have simulated the network both

ways and the 15 x 15 packing scheme makes no measurabie difference. With this scheme, a 15 x 15
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IN1 CUT 1
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IN 4 OuUT 4

Figure 6: Selector Cells with Internal Mergé
(Drawn as 4x4 instead of 15x15)

selector fits easily into a 40 pin package. There seems to be no probiem with using both of the above

tricks at the same time.

Hashnets have some curious and possibly useful refiability properties. |If a few dozen selector cells
in interior layers of the network are destroyed, this will alter the probability of blocking very little. Of
course, if these cells are already carrying network connections, these connections will be broken
{forgotten) and will have to be re-built. It is important that the damaged cells fail in the proper way,
refusing to make connections rather than making spurious ones. !f this failure mode can be enforced,
it may point the way toward lull-waler integration, in which an entire hashnet is placed on a large
siicon wafer. Such wafers always have a number of localized fauits, but in a hashnet these might not

matter.

The resemblance of non-timeshared hashnets to the layered structure of the neocortex of the brain
is not altogether coincidental. The hashne! idea came lo me while | was thinking about some
diagrams of neural tissue. Here were regular layers of switching devices connected by seemingly
random wiring between the layers, with many miltions of cells in each layer and a fanout of perhaps
1000 or more. Whal were the odds of linding a specific connection through such a mess? Or a few
million connections simultaneously? The time-sharing idea occurred later, and | found the earlier
work of Marcus and Pippenger later slil. | am not prepared to claim that any part of the brain is, in

tact, a hashnet -- | have neither the training nor the facilities to invesligqle such a hypothesis -- but
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hashnets may serve as an interesting if over-simplified model. The reliability properties noted above

would certainly be useful in @ machine made af neurans.

One interesting question is whether the randomness of the wiring in a hashnet is really essential or
even beneficial. Could nol some more brderly scheme do just as well and perhaps be less expensive
to build? | do not know the answer to this. The randomness in a hashnet plays roughiy ihe same role
as the randomness in a hash table: it scatters the pattern of usage more or iess eveniy through the
network, even if the input has some very regular pattern. In this way, it prevents unforseen congestion
in parts of the net. For any given pattern of inputs, a structured scheme could do belter, but this
scheme might do much worse for some other set of inputs. In any event. if we abandon the
assumption of randomness and independence of the connections, the prediction of network

performance becomes very much more difficult. This question deserves additional study.
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