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Abstract 

We propose a new model of computation for VLSI which is a refinement of previous models and makes the 

additional assumption that the time for propagating information is linear in the distance. Our approach is 

motivated by the failure of previous models to allow for realistic asymptotic analysis. While accommodating for 

basic laws of physics, this model tries to be most general and technology-independent. Thus, from a complexity 

viewpoint, it is especially suited for deriving lower bounds and trade-offs. We present new results for a number of 

problems including fan-in, addition, transitive functions, matrix multiplication, and sorting. 
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1 Introduction 
The importance of having general models of computation for VLSI is apparent for various reasons. Among 

the chief ones, we must include the need for evaluating and comparing circuit performances, showing lower 

bounds and trade-offs on area, time, and energy, and more generally building a complexity theory of VLSI 

computation. 

While these models must be simple and general enough to allow for mathematical analysis, they must also 

reflect reality independently of the size of the circuit. We justify the latter claim by observing that if 1980's 

circuits are still relatively small, the use of high-level languages for designing chips, combined with the 

possibility of larger integration and bigger chips, will make asymptotic analysis necessary in the near future. 

Yet as circuits are pushed to their physical limits, constraints which could be ignored before become major 

problems and must be accounted in the models. For example, the laws of physics show that the propagation 

of information takes time at least proportional to the distance, which invalidates the assumptions made in 

previous models, whereby long wires can be driven in constant time [MC80,TH80]. Generally speaking, one 

major flaw in those previous models has been to regard a circuit as a topological interconnection of nodes 

where transmission delays between adjacent nodes could be ignored. Instead, we propose to take into account 

the geometry of the circuit by assuming a propagation delay at least linear in the distance. 

The model which we propose tries to be most general and is thus primarily suited for deriving lower bounds 

on the complexity of circuits. By using geometric arguments, we are able to prove new complexity results for 

a varied set of problems, including fan-in, addition, cyclic shift, integer multiplication, convolution, linear 

transform, product of matrices, and sorting. Another purpose of this paper is to introduce several new 

techniques of complexity analysis, one of which is due to Gerard Baudet. 

In the last section, we illustrate how additional assumptions may be needed for building technology-

dependent models. We have chosen die NMOS technology as an example where power considerations lead to 

more stringent requirements. We show how it is then possible to derive stronger lower bounds on the 

complexity of some problems. 

2 The Model 
Our model is for the most part a refined version of the current planar models found in the literature [TH80, 

BK80, VU80]. These models, which are all in fact very similar, have been used to both find lower bounds and 

make comparative analyses of circuits. They differ from the traditional RAM model in charging area costs for 

the transmission of information. However, they show some inconsistency by failing to account for 

propagation delays. Our model tries to remedy this shortcoming by including all the parameters necessary for 

performing realistic asymptotic analyses. In particular, the length of wires becomes crucial in evaluating the 



time performance of a circuit. As a result, a circuit appears as a fully geometrical object rather than a 
topological one. 

2.1 Model of computational device 

We can think of a computational device as a black box which computes a boolean function 

(y1,y2,...) = F (x1,x2,...). Information is treated digitally, and is communicated to the device through I/O ports 

in a fixed format. To each variable x. (resp. y.) is associated both an input (resp. output) port and a 

chronological rank on the set of inputs (resp. outputs). In addition, to each variable must correspond an 

information to tell when it is available on its port. This information may be independent of the inputs, which 

involves fixing the times and locations at which the I/O bits can be used [VU80]. On the other hand, that 

information may be provided by the circuit (output) or the user (input), thus allowing for self-timed 

computations [MC80,SE79]. 

Internally, a computational device is a circuit connecting nodes and wires into a directed graph, and is 

defined by a geometrical layout of this graph. The layout is supposed to be planar, meaning that all the nodes 

are on the same plane, and the wires are allowed to lie on a constant number of parallel layers. This implies 

that there are at most a constant number of cross-overs at any point 

Wires may intersect only at the nodes, and their width must exceed a minimum value \ . Similarly, all nodes 

occupy a fixed area. We distinguish I/O nodes (ports) where input and output values are available from the 

logical nodes (gates) which compute boolean functions. The circuit is laid out within a convex region with all 

the I/O nodes lying on its boundary. 

2.2 Model of computation 

Two parameters characterize the computational complexity of a circuit: its area A and its time of 

computation T. For a fixed value of the inputs, T measures the time between the appearances of the first input 

bit and the last output bit. The maximum value of T for all possible inputs defines the time complexity of the 

circuit. In this paper, the time T of a circuit will always refer to this worst-case measure. Other approaches can 

be considered, involving average or even best time of computation. Of course diis is pertinent only with self-

timed circuits. 

Another important parameter is the period of a circuit [VU80]. It is defined only for circuits whose inputs 

and outputs are available at fixed times and locations. It is then possible to pipeline the computadons on 

several sets of inputs, and we define the period P as the minimal time interval separating two input sets. More 

precisely, if (a r . . . , a N ) and (b r . . . , b N ) are two sets of inputs, pipelining the computadon means that the time 

separating the appearance of x and b{ is the same for all i; this interval defines the period P. 
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We next turn to the actual computation of a problem. It can be viewed as the propagation and logical 

treatment of information bits across nodes and wires. The circuit being viewed as a directed graph, we 

associate with each node (including I/O ports) a boolean variable I.(t) [resp. O.(t)] for each incoming [resp. 

outgoing] wire, which is defined at all times t These variables represent the information available at the 

entrance and exit points of a node. In addition, to each node corresponds a state S(t) chosen among a finite 

number of possible states. Then each node of the circuit computes a function F of the form 

(1) [ S ^ T ) , . . . ^ ^ 

Informally, this relation means that a node can produce a result only a delay r after its inputs have been 

available. 

The most drastic departure from previous models, however, comes from the next assumption, which 

expresses that the time of propagation across a wire is at best proportional to the length of the wire. Let I(t) 

and O(t) be the variables associated with the ends of a wire of length L. We require that 

(2)I( t+T) = 0( t ) forT=Q(L) . 

The last assumption asserts the bandwidth limitation of wires. Although we do not wish to restrict the 

storage capacity of the wire to one bit, we will assume that a wire can carry a number of bits at most 

proportional to his length. The simplest way to express it is to regard a wire of length L as a sequence of L 

subwires of unit length connected by nodes computing the identity function. Then for each subwire we have 

l ( t + l ) = 0(t), meaning that each subwire stores exactly one bit of information and has a unit delay. Note that 

Assumption (2) follows directly from this approach. 

We finally introduce the important concept of datapath. We say that there exists a datapath from an input 

variable x to a node V if there is a directed path to V from the input port where x is read in. Moreover, we 

require that information can be propagated from x to V before the circuit completes its computation. 

2.3 Justification of the assumptions 

Like previous models, this one strongly reflects present technologies, especially electrical ones (NMOS, 

CMOS, TTL); for example a circuit is taken to be planar, convex, with its I/O ports on the boundary, and we 

assume minimal dimensions for every part (node or wire). All these constraints find justifications in today's 

fabrication and packaging processes. Other stronger reasons can be advanced: 

• Planarity: This is indeed a matter of choice, since three-dimensional computing devices are 
conceivable. Although most of present-day circuits are planar, it would be very interesting to 
explore the features and properties of a three dimensional model. We are still inclined to think 
that because of heat dissipation problems, circuit designers will' be unlikely to give up planarity. 
Indeed, today's circuits all use the third dimension for cooling purposes. 

• Convexity and I/O ports: We believe that circuits should be easy to manipulate and connect 
together. A good way to achieve handiness is to make circuits into closed systems, where 
interactions with the outside occur only through the boundary. Convexity thus appears as a 
natural requirement. 
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• Minimal size: This seems to be an intrinsic feature of any physical device (quantum mechanics 
argument). As a consequence, gates and wires may not be arbitrarily small, if they are to be 
material. 

• Propagation delays: The ultimate justification for our assumption comes from a speed-of-light 
argument. No information can propagate faster than the light. Moreover, in practice, parasitic 
effects reduce the speed of propagation several orders of magnitude below that limit 

We can illustrate the latter point by briefly examining the delays incurred in MOS technologies. The 

information is coded as a potential, and its propagation involves loading the capacitance of a wire. Since a 

wire is a piece of conducting material, it has a non-null resistance and capacitance, and because of current 

process conditions, both are proportional to the wire length. Detailed analysis of this situation can be found 

in [CM81], One major consequence is that, because of the diffusion law, delays on wires are in fact 

proportional to the square of the length. In this technology, it then appears necessary to decompose long 

wires into pieces of constant length connected by nodes (globally computing the identity function), in order to 

achieve delays proportional to the length of the wires. Moreover, the maximum speed of information 

propagation is largely dominated by the speed of light [SE79], mainly because the current intensities involved 

are very low, and many electrical phenomena (overheat, metal migration [CL80]) impose a limit on them. 

3 Distributing and Collecting Information 

To fan in or fan out information being two of the most common operations performed by circuits, we first 

turn to these problems from which we can best measure the significant departure of our model from the 

previous ones. These results will be basic tools in analyzing further problems. We need the following 

geometric lemma. 

Lemma 1: If P is an arbitrary convex polygon with a boundary of length N, the maximum 

distance between any vertex of P and an arbitrary point in the plane is Q(N). 

We omit the proof, which is straightforward. As a result, it takes time S2(N) to propagate a bit from any point 

M to N points on a convex boundary (e.g. input or output ports). 

3.1 Fan-out 

A fan-out of degree N refers to the distribution of N copies of an information bit at N different locations on 
the circuit. We have the following. 

Theorem 2: It takes time T = Q ( N 1 / 2 ) to perform a fan-out of degree N. 

Proof: A consequence of the fact that the maximum distance between a point and N arbitrary 

points in the plane is at least N 1 / 2 . • 

U M i V E R S i i V L I B R A R I E S 
C A R N E G I E M E L L O N U N I V E R S I T Y 

P I T T S B U R G H . P E N N S Y L V A N I A 2 5 2 1 5 
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3.2 Fan-in 

The fan-in is essentially the reverse operation of the fan-out as N information bits must now converge from 

several sources to one destination point. Yet it is a little more general, since the information may be 

submitted to logical operations on the way to its destination. Typically, the problem is to compute a boolean 

function of N inputs and one output However, to ensure that all the input bits are used in the computation, 

we give the following definition of a fan-in. 

Definition 3: A boolean function y = f (x r . . . ,x N ) is a fan-in of degree N if there is an assignment 

of the N variables such that for any i, f (a1,...,a i,...,aN) * f (a 1 , . . . , - ia i , . . .a N ) . The N-uple (a^...,^) of 

bits is called a hard input of the function f. 

The reader can check that OR-ing or AND-ing N bits as well as computing the last carry of the sum of two N-

bit integers involves a fan-in of degree N. 

If die N inputs are valid at the same time, we have results similar to the fan-out since there must be a 

datapath from any input port to the point where the value of the function appears. In the more general case 

where pipelining is allowed and the inputs are valid at arbitrary times, we can show the following. 

Theorem 4: If T (resp. A) denotes the minimum time (resp. area) for performing a fan-in of N 

inputs, we have T = Q ( N 1 / 2 ) and AT = Q(N). 

Proof: Let p denote the total number of input ports actually used. For obvious reasons, all the 

bits of a hard input have to be read in, which takes time Q(N/p). Also, there must be a datapath 

from any input variable to the point where the value of the function is available. Then, the input 

ports lying on a convex boundary, Lemma 1 shows that T=Q(p). Observing that A = Q(p)9 the 

result is then immediate. • 

Note that to perform a fan-in on a hard input always takes Q ( N 1 / 2 ) time. We also observe that the above lower 

bounds are still valid for boolean functions with an arbitrary number of outputs, as long as at least one output 

is a fan-in of all the input values. The addition for example falls in that category, since the last carry depends 

upon all the operand bits. If the boolean function is a commutative, associative operation on N variables, 

these lower bounds are tight with today's circuits, as shown in Figure 1. 

4 Addition 
Since our model relates the time of computation to the geometry rather than the topology of the circuit we 

can show that many complete binary tree based schemes cease to have the logarithmic time complexity which 

they enjoyed in previous models. Notable examples include the fan-in and fan-out operations studied earlier, 

or the addition of two N-bit integers, to which we next turn our attention. Our results are expressed in the 

following. 

Theorem 5: If T is the time, P the period, and A the area required by any circuit to add two N-

bit integers, we have 
T = Q ( N 1 / 2 ) , AT = Q(N), ATP = fi(N2). 



a i a 2 ^ ' • ' a N/n 

• • • • 

Figure 1: Computing Y = a x op a2... op a N 

takes fl(N1/2) time and area. 

The first two results come from the computation of the last carry, which can be easily shown to involve a fan-

in of degree N. The proof for the last lower bound is more difficult, and requires a few technical lemmas. 

To simplify the notation, we will equate all constant factors with 1 when this does not compromise the 

reasoning. Let Y = y N + 1 y N . . . y Q be the result of the addition of the two N +1-bit integers X = x N . . .x Q and 

l l l . . . . l 2 . Since all the bits of X are not necessarily read at the same time, let t r . . . , t p be the instants when bits 

of X are read in. If Z i denotes the set of X's bits input at time t , we can partition the whole input X into p 

subsets Z p . . . ^ . Note that the Z.'s may not be subsequences of X since low-order bits are not necessarily read 

first. Turning now to the distribution of X^X.^.XQ among the sets Z r . . Z p , we call t s the time when all the bits 

of X [ have finally been read into the circuit. Clearly, X i C Z ^ - U Z . For each j , l< j<s i , we define 

LplXjHZjl, that is the number of bits in {x i,...,xQ} read at time t . The sum of the L.'s satisfies: 

-f... 4- L g = |X.| = i + 1 . We can now establish a lower bound on the time required for computing y^ 

Lemma 6: For any i, 0<i<N, y. cannot be computed before time t=max{L 1 + t l f . . . ,L s + t }. 

Proof: We observe that the function y ^ f . ^ , . . . ^ ) is a fan-in with (0,0,...,0) as a hard input. 

Therefore for any j , l<j<s. , a fan-in must be performed on the L. bits of XjfiZ. before f(0,0,...,0) 

can be evaluated. Since these L bits are all read at time t., y. cannot be computed before time 

Lj + tj, which completes the proof. It is crucial to observe that the result is true for all i because the 

input X = 0 is hard for all the functions f.'s. • 

Let Y(t) designate the number of T s bits so far output at time t. Similarly X(t) denotes the number of X's 

bits already read at time t. By convention we define X(t.) as I Z J - K . . + I Z J . We use the previous result to 

evaluate the growth of the function Y(t). 

Lemma 7: For any i, l < i < N , and for any t, t x t < t i + 1 , we have Y(t) < 2 l l j < i min( |Z . | , t - t ) . 

Proof: Let y m be the highest-order bit output so far at time t. We clearly have 

( l ) m > Y(t)-1. 

From Lemma 6, it follows that for all j , l < j<s , we have L. < t-t. Since we also have L. < IZ.L 
m j - j J — 1 j 1 

we derive m + l = 2 L < I min(|Z |,t-t), and 
— m m J -1 
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( 2 ) m + 1 ^ 2 1 ^ i m i n ( | Z . | > t - t j ) 

since at time t, all the bits x r . . , x m have been already read, and thus t ^ t ^ L Combining (1) and 

(2) proves the claimed result. • 

Figure 2: The lower bound on ATP for the addition. 

Figure 2 gives a geometric interpretation of Lemma 7. Y(t) is bounded by the total length of the dashed 

lines. It follows from this interpretation that the quantity / l p + ' Z P ' [X(t)-Y(t)].dt dominates the total area of 

the p triangles. Actually, since a fan-in on all the bits of Z p must be performed in order to compute y N , the 

total time of computation, T, is at least t + |Z |. Therefore we have, setting ^ to 0, 

and since the minimum of the right-hand side is achieved for all the |Z.| equal, the relation 2 T |ZJ = N - h l 

implies 

(3) / 0

T p ( ( t ) - Y ( t ) ] . d t > N 2 / p . 

At this point, it would be straightforward to derive the relation AT 2 = Q(N 2). We can however improve upon 

this bound by using a general technique first introduced by G. Baudet [BA81]. Let P be the period of the 

circuit. Assuming that problems are treated in a pipeline fashion, let P r — P m be the problems still in progress 

at time t. We assume this number m of problems to be the same at all times. By definition, at time t, Pj is in 

the same stage as P x was at time t-(j-l)P. Therefore, at this time, at least 2 1 ^ J < M [N - Y(t-(j-l)P)] output bits 

[resp. 2 1 ^ J < M [N - X(t-(j-l)P)] input bits] have yet to be produced [resp. read] with regard to problems 

P,,..,P . Let A be the area of the circuit. Since at most A bits can be stored at any time, a simple counting 

argument involving the states of the circuit shows that 

A+ 2 IN - X(t-(j-DP)]> 2 l s i s J N - Y(t-G-DP)] 

hence 
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A ^2 1 ^j^ m [X(t-G-l)P) - Y(t-(j-l)P)] 
or 

A > : ^ < m [ x ( t + ( j - i ) P ) - Y(t+a-DP)]. 
Integrating over t from 0 to P leads to 

A P ^ 2 l l d ^ m / 0

P [ X ( t + ( j - l ) P ) - Y(t+(j-DP].dt, 

that is AP > /Q

T[X(t)-Y(t)].dt. From (3) we derive the inequality APp > N 2 , and since T>p , we conclude 
APT = Q(N 2), which completes the proof of Theorem 5. 

5 Transitive Functions 

In a recent paper [VU80], J. Vuillemin has shown that the transitivity of a function has heavy consequences 

on its complexity in a VLSI model. Roughly speaking, a function is transitive of degree N if it computes a 

transitive group of permutations acting on N elements. More precisely the function 

(z 1 , . . . ,zN)=F(x 1 , . . . ,xN ,s 1 , . . . ,s b) is transitive of degree N if, by assigning special values to the variables s1,...,sb, 

the output is simply a permutation of the variables x r . . . , x N . We also require that the set of all possible 

permutations thus obtained form a transitive group, i.e., any x. can be mapped onto any output bit z.. Among 

well-known problems which involve computing transitive functions, we can list: 

• Cyclic shift on N bits. 

• Product of two p-bit integers, N = 2 p . 

• Convolution of two p-element vectors, N = (2p + l)(2k+log 2 p). 

• Linear transform of a p-element vector, N = p(2k + log 2p). 

• Product of three p x p matrices, N = p 2(2k + log 2p). 

When necessary, we assume that all numbers are represented on k bits, with k>log 2 p. 

Using the geometric nature of our model we can improve upon J. Vuillemin's results. 

Theorem 8: Computing a transitive function of degree N takes time T = Q ( N 1 / 2 ) and requires an 
area A = Q(N). 

Proof: The result on the area has already been shown by J. Vuillemin [VU80]. Let p be the 

number of output ports actually used. Consider one of the input variables which are being 

permuted. Since it can be mapped onto any output position, and its input port P is fixed, there are 

possible datapaths from P to p distinct points on a convex boundary. Then Lemma 1 shows that at 

least one of them has length Q(p), hence T=Q(p) . On the other hand, observing that it takes time 

at least proportional to N/p to output the result completes the proof. • 

U N I V E R S I T Y L I B R A R I E S 
C A R N E G I E - M E L L O N U N I V E R S I T Y 

P I T T S B U R G H , P f N N S Y l V A N f A 
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It is worthwhile to notice the serious gap existing between this model and the previous ones, in which a 

transitive function could be computed in logarithmic time (e.g. the CCC-scheme [PV79,PV80] or other 

recursive schemes [BPV80,TH80a]). In fact, our model seems to rule out any logarithmic dme circuit. 

However, good performances on the period can be expected from pipelining the computation. Note that 

although we improve upon the lower bound for T, the well-known trade-off A T 2 a = £ 2 ( N 1 + a ) , valid for 

0 < a < l , remains unchanged. 

6 Sorting and Matrix Multiplication 

Although these two problems are not transitive, we can prove similar bounds on A and T. Note that 

C. Thompson [TH80] and J. Savage [SA79] have already established bounds on AT 2 similar to those known 

for transitive functions. 

6.1 The minimal bisection argument revisited 

We can improve on the general technique of minimal bisection [TH79] by introducing geometric arguments. 

Consider a line L partitioning the circuit into two parts C x and C 2 , each producing roughly half the output 

bits. We define the minimal cross-flow I to be the minimal number of bits crossing L. More precisely, let U 1 

(resp. U-,) and V 1 (resp. V ? ) denote the set of input (resp. output) variables assigned in C x and C 2 

respectively. For any fixed assignment of the inputs U 2 , consider the total number of output sets V 0 obtained 

for all possible inputs U p we define Z1 as its maximum value over all possible sets U 2 . Similarly, we can 

define Z 2 by inverting the indices, and we call Z the maximum of Zl and Z 2 . Finally, I is defined 

independently of the circuit as the minimum value of log 2Z over all possible bisections and all possible 

circuits computing the function. Wlog, assume that Z = Z r It is clear that I bits must cross the separating line 

L from C 1 to C 2 , and moreover to each of these bits corresponds a datapath going from U 1 to V r We can 

prove the following result. 
Lemma 9: Any circuit computing a function with minimum cross-flow I requires time Q(I ). 

Proof: Using the above notation, we choose L to be perpendicular to a diameter of the circuit, 

and we call <o the number of wires used by the I bits to cross L. Consider die wire closest to the 

middle of the chord L. There exists a datapath from an input port of C x to an output port of C 2 

using this wire, and an elementary geometric argument based on the convexity of the circuit shows 

that its length is Q(<o). It follows that the time T is Q(«). Finally, since I bits crossing co wires 

require time I/co, we have T=Q(<o + I/<o) = £2(I 1 / 2). • 

Since the minimum cross-flow of a transitive function of degree N i s proportional to N [VU80], Lemma 9 

gives a new proof of Theorem 8. 
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6.2 Sorting 

The problem is now to sort N numbers, each of them being represented on k bits. We will assume 

k > 21og2N, implying in particular that all the numbers can be different 

Theorem 10: Any circuit sorting N k-bit numbers, with k > 21og2N, has an area A = fi(N) and 

takes t i m e T = Q ( N k ) 1 / 2 . 

Proof: To prove the result on the area, we show that the circuit must be able to realize any 

permutation of the N lowest-order bits. It suffices to observe that if the N numbers deprived of 

their lowest-order bit can take N distinct values, any permutation on these N values will induce a 

permutation on the N lowest-order bits. Clearly, the condition on N and k ensures this property, 

which shows that sorting N numbers involves computing a transitive function of degree N, and 

establishes the result 

We will use the result of Lemma 9 to prove the result on the time. To do so, we must evaluate 

the minimum cross-flow I associated with sorting. We assume that each I/O port handles all the 

bits of a number and not only parts of the bits. For simplicity, we first assume that it is possible to 

. bisect the circuit by a line into two parts Cl and C 2 , so that each part will produce N/2 output 

numbers. Let C 2 be the part which receives the more input variables. Let a 1 , . . . ,a N / 2 be the ranks 

of the output variables of C 2 in the sorted order of the N input numbers. We extend the sequence 

to aQ = 0 and a N / 2 + 1 = N + l. Note that these ranks are independent of the input values. Letting 

{1,...,F} be the range of possible keys, we next define the sequence b 0 , . . . , b N / 2 + 1 by the recurrence 

relation 

b o = ° ' b i + i = b i + a ( a i + r a r 1 ) ' 
where a = [F/NJ. We can verify that all b/s lie in the key range. The next step is to assign all the 

^ input numbers of C 1 and any set of (N/2 -N^ input numbers in C 2 to b 1 , . . . , b N / 2 . 

Now, we know that if we assign the remaining input numbers (all of which are in C 2 ) to any 

values such that for all i, a J + 1 - a-1 of them lie between b{ and b. r then the inputs will be 

mapped to the N/2 output ports of C r Therefore, the total number Q of output sequences 

obtainable in ^ will give a lower bound on 2 1 . 

To evaluate Q, we must count the number of ways to choose a . + 1 - a.-l numbers between b{ and 

b i + r To avoid repetitions, it is easier to assume that these numbers are all distinct Since 

a. - a.-l = 0 implies b. = b . , v we have Q > I l . t ^ V 1 ' * ^ 1 ) f o r all i, a. a.-l * 0 with 
aN/2+l = N m d a0 = 0 -

Since 2 0 < i < N / 2 ( a

i + f ^-1) = N/2-1, we derive 

" ( D Q ^ m i n l l i CgY1 ) 

with 0 < i < m < N / 2 , N^O and 2J N. > N/2-1. Hence, Q > ( a - 1 ) N / M since C^"1) > (a-l) x for any 

x> l and a>2. It follows that I = S2(N log 2 a) when a>2 , and finally I = Q(N(k-log 2N))=Q(Nk), 

since k>21og,N. 
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We can now generalize to the case where we cannot bisect the N output variables exactly. If M is 

the maximum number of keys passing through an output port, at worst we can only bisect the 

circuit so that C 2 produces N/2 + M/2 output numbers. In this case, the same reasoning leads an 

inequality similar to (1), with 0 < i < m < N / 2 + M/2, N ^ O and 2 I N 4 > (N-M)/2 - 1 , yielding 

Q>(a-1) N / 2 " M / 2 " 1 . Therefore, from the fact that it takes at least dme Q(Mk) to output M numbers 

on a single port, the result of Lemma 9 shows that T = Q((Nk-Mk) 1 / 2 + Mk) = Q(Nk) 1 7 2 . • 

6.3 Matrix multiplication 

Although computing the product of three matrices is transitive, multiplying two matrices is not; yet it 

carries similar though weaker properties which lead to the same results. 

Theorem 11: Let A and T be respectively the area and the dme of a circuit which computes the 

(boolean or integer) product of two square matrices represented by N bits. We have A = Q(N) and 

T = Q ( N 1 / 2 ) 
Proof: We shall first prove that computing a product H = F x G of two boolean matrices requires 

memorizing most of the bits. Let N = m 2 denote the number of bits in each matrix. A remarkable 

feature of the matrix product is that if we set F (resp. G) to be a permutation matrix, H appears as 

a permutation of the lines (resp. columns) of G (resp. F). In particular, any input bit can be 

mapped into m distinct output ranks. Recall that the order in which the bits are input into the 

circuit is fixed. A pair of bits (one of each matrix) can be mapped into 2m-1 different positions on 

H, and m pairs of bits can be mapped into at least 2m-1 positions. Similarly, pm pairs of bits can 

be mapped into 2pm-p 2 distinct positions, since p lines and p columns have p 2 common points. 

If we consider the N/2 bits of F and G input last, we observe that they can be mapped into 

3N/4 distinct positions. Therefore, there exists an input bit x of rank greater than N / 2 which can 

be mapped onto an output bit y of rank less than N/4 . Wlog, assume that it is a bit from F, and let 

G be a permutation matrix performing this mapping. Only N / 4 of the N/2 bits of F input before x 

can be output before y, which implies by a simple counting argument that the circuit must 

memorize at least N / 4 bits, hence A = Q(N). 

When the m 2 elements of the input matrices are now k-bit integers (N = m 2 k), we can use a 

technique borrowed from J. Vuillemin [VU80] to reduce the problem to the previous one. 

One matrix is a permutation matrix, except for the non-null elements which are replaced by 2 \ 

for 0<i<k/2 . The elements of the other matrix are k-bit numbers of the form ( X ^ . J ^ X ^ . J ^ ) , 

and we consider the mapping of the bits x 1 . . . x k / 2 onto the positions occupied by the bits y J c . . .y k / 2 

of H, where an element of H is of the form y ^ . . . y r Noticing that we can both permute lines and 

columns as well as perform cyclic shifts on the x.'s, we find that pairs of input bits can be mapped 

into (2m-l)k/2 distinct positions. Similarly to die boolean case, the last Nk/4 pairs of bits to be 
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read in can be mapped into 3Nk/8 positions. Since we have restricted our attention to the 

mapping of Nk/2 pairs of inputs onto Nk/2 outputs, one input bit can be mapped to an output bit 

of rank less than Nk/8. Therefore the circuit must store Nk/4-Nk/8 = Nk/8 bits, which proves the 

result on the area. 

We can use a general result from J. Savage to bound the time of computation [SA79]. He has 

shown that the minimal cross-flow associated with die multiplication of two matrices is at least 

Nk/20 - M/2, where M is the maximum number of bits output on one port. Since it takes time M 

to output these M bits, T satisfies: T=f l ( (Nk-M) 1 / 2 + M) = Q(Nk) 1 / 2 . • 

Note that the hex-connected systolic array proposed by H.T. Kung and C. Leiserson [KL78] is optimal in 

area and time with today's technologies. Also, J. Savage [SA79] shows how to reduce inversion and transitive 

closure of matrices to matrix multiplication. Thus, the previous results are also valid for these two problems. 

7 Another Model 

Although we believe that our model is in a sense minimal it is not clear at all whether it can be used to 

precisely describe the complexity of circuits in real technologies. In this section, we consider a more restrictive 

model tailored to the NMOS technology. Although it differs from the general model only by three additional 

assumptions, we can show that it is sufficiently strengthened to give way to stronger lower bounds. 

7.1 The additional assumptions 

Introducing the energy as a new parameter, we make the following assumptions: 

• To switch a gate requires one unit of energy. 

• Memorizing a bit requires a unit of energy per unit of time. 

• The energy is supplied to the circuit through its (planar) boundary, and the density of energy at 
any point is bounded by a constant 

These additional assumptions are justified in [CM81] by electrical considerations. The main constraint is that 

the electrical power is supplied through conducting wires, and that the density of current at any point of a 

wire is in practice always bounded by a constant. Thus it becomes impossible to supply enough power to 

certain circuit layouts, which of course changes the complexity of some problems a great deal. In the future, 

this problem may be solved by using vertical wires to supply power, but even in a three-dimensional model, 

severe problems of power supply and heat dissipation will be difficult to avoid. 

jgSsSa.-
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7.2 Transitive Functions 

It comes as no surprise that since our second model adds physical constraints to the one in which Vuillemin 

derived his lower bounds, we can significantly improve upon his results. Before proceeding, we will establish a 

preliminary result. 

Lemma 12: If N gates in a circuit are switched at the same time, their convex hull has a 

perimeter Q(N). 
Proof: Since all the power comes from outside the circuit and is transmitted on the plane, the 

power inside any convex region of the circuit is at most proportional to its perimeter. Switching a 

gate requiring a unit of energy, the result is straightforward. • 

We can now prove our main result 
Theorem 13: Any circuit of perimeter n which computes a transitive function of degree N in 

dme T satisfies Ft = Q(N), T=G(N). 
Proof: It has been shown in [VU80] that the circuit must have the capability of memorizing N 

bits. Therefore Lemma 12 implies that the circuit must have two active gates G 1 and G 2 at a 

distance fl(N) apart, hence n = fl(N). We can always assume that for some values of the inputs, 

• information will be transmitted from G 1 to an output port P 1 (same with G 2 and an output port 

P 2 ) . Consider now an arbitrary input port R. Since the function is transitive, there exists a path in 

the circuit from R to P 1 and from R to P g . Among all possible computations, the four paths 

G 1 - P 1 , G 2 - P 2 , R - P r and R-P 2 will be actual datapaths at least once. From Lemma 1, it then 

follows that T is at least proportional to M a x { G 1 P 1 , G 2 P 2 , R P 1 , R P 2 } . The sum of these four 

lengths is greater than G 1 G 2 = Q(N) as shown in Fig.3, which completes the proof. • 

Figure 3: Computing a transitive function requires linear time. 

Remark In this model, these lower bounds are tight for some p r o b e s ; for example opumal circuits for 

perfonning integer multiplication, based on the Shift&Add scheme, can be found. 
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7.3 Addition 

Theorem 14: In the NMOS model, the time T required to add two N-bit integers satisfies: 

T = S2(N 2 / 3). 

Proof: We can prove this result with the same technique used in the general model. Keeping 

the same notation, we simply introduce n as the perimeter of the convex hull of all the active 

nodes. Since the circuit cannot store more than n bits at any time, the result of Theorem 5 is still 

valid if we replace A by Ff, which gives T > N 2 / (p I l ) . On the other hand, T>p for obvious 

reasons, and since as we will see T>n, the result follows directly. To prove the last inequality, we 

consider the two active nodes G 2 which are furthest apart. There exists a datapath from an 

input port P 1 to G x (resp. P 2 to G 2 ) . Since there is a fan-in between any pair of input variables, 

there exists a datapath from P x and P 2 to a common point R. The same geometric argument used 

in the proof of Theorem 13 leads to T > G X G 2 = £2(11), which completes the proof. • 

8 Conclusions 

We have proposed a new model of computation which claims to be more realistic than previous ones, yet 

tries to remain simple and general. Our aim has been to gather minimal requirements with which any 

physical computing device should comply. We feel that the ultimate achievement of such endevour would be 

to lay the foundations of a general theory of physical computability. Considerations of physical complexity 

should also be included, as we have tried to do in this paper on a small number of well-known problems. 

Of course, casting problems in a framework of minimal models can only provide negative insights, since 

these models are primarily suited for establishing lower bounds. Another avenue of research concerns the 

study of technology-dependent models granting enough refinement to allow for a la Knuth analysis of circuits. 

We hate to think that each technology should bring along its own model, drastically different from the others. 

Yet it is still hard to evaluate the level of modelling sophistication required for reflecting reality faithfully. 

This is all the more acute as the analysis of actual circuits should not be only asymptotic, but should also apply 

to arbitrary sizes. 
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