
NOTICE WARNING CONCERNING C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS -80 -123

Representation of Task-Specific Knowledge
in a Gracefully Interacting User Interface

Eugene Ball and Phil Hayes

April, 1980

Abstract

Command interfaces to current interactive systems often appear inflexible and
unfriendly to casual and expert users alike. We are constructing an interface
that will behave more cooperatively (by correcting spelling and grammatical
errors, asking the user to resolve ambiguities in subparts of commands, etc.).
Given that present-day interfaces often absorb a major portion of
implementation effort, such a gracefully interacting interface can only be
practical if it is independent of the specific tool or functional subsystem with
which it is used.

Our interface is tool-independent in the sense that all its information about a
particular tool is expressed in a declarative tool description. This tool
description contains schemas for each operation that the tool can perform, and
for each kind of object known to the system. The operation schemas describe
the relevant parameters, their types and defaults, and the object schemas give
corresponding structural descriptions in terms of defining and derived
subcomponents. The schemas also include input syntax, display formats, and
explanatory text. We discuss how these schemas can be used by the
tool-independent interface to provide a graceful interface to the tool they
describe.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-78-C-1551.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

Conclusion i

Table of Contents
1. Introduction - 1
2. System Structure 2
3. Representation of task specific information 4

3.1. Object Descriptions 5
3.2. Operation Descriptions 9

4. Conclusion 10

1

1 . Introduction
Command interfaces to most current interactive computer systems tend to be inflexible and

unfriendly. If the user of such a system issues a command with a trivial (to a human) syntactic error,

he is likely to receive an uninformative error message, and must re-enter the entire command. The

system is incapable of correcting the error in the "obvious" way, or of asking him to retype only the

erroneous segment, or of providing an explanation of what the correct syntax really is. Anyone who

has used an interactive computing system is only too familiar with such situations, and knows well

how frustrating and time-consuming they are, for expert as well as novice users.

We are involved in a project to build an interface which will behave in a more flexible and friendly

way, one that will interact gracefully. As we have described in earlier work [3, 4] , graceful interaction

involves a number of relatively independent skills including:

• the parsing of ungrammatical input, either to correct it or to recognize any grammatical
substrings;

• robust communication techniques to ensure that any assumptions the system makes
about the user's intentions are implicitly or explicitly confirmed by the user;

• the ability to give explanations of how to use the system or the system's current state;

• interacting to resolve ambiguities or contradictions in the user's specification of objects
known to the system;

• keeping track of the user's focus of attention;

• describing system objects in terms appropriate to the current dialogue context.

Providing these facilities is clearly a major programming task requiring extensive use of Artificial

Intelligence techniques (see [2] for just the flexible parsing aspect). We believe that it is unrealistic to

expect the designers of each interactive sub-system (or tool) to implement a user interface with these

capabilities. Therefore, instead of constructing a gracefully interacting interface for a single

application, we are attempting to build a tool independent system, which can serve as the user

interface for a variety of functional sub-systems.

The availability of a tool independent user interface would greatly simplify the construction of new

computer sub-systems. Currently, even if the new system is not intended to be gracefully interacting

but merely to perform according to minimal standards, a large amount of implementation effort must

be devoted to user interface issues. The system designers must decide on a style of interaction with

the user, select the general format and detailed syntax of all commands, and provide for the detection

of illegal input. The command language must then be thoroughly checked to ensure that it does not

contain ambiguities or misleading constructions and that likely error sequences will not be

2 Introduction

misinterpreted and cause unrecoverable system actions. Often, the design can only be completed

after an initial implementation of the system has produced feedback about the usability of the human

interface.

This design process represents the minimum effort necessary to produce a system that is even

usabie by a large number of people; if a superior (but still far from gracefully interacting) interface or

one which can be used by non-programmers is required, much more work must be expended. Editing

facilities, which are required in most interactive systems (at least for correction of typed input), must

be fully integrated into the sub-system; compatibility with other editors in common use on the

computer must be considered, even though this may lead to difficult interactions with the sub-system

command language. Error detection and reporting must be improved: generating coherent

diagnostics for the inexperienced user can be very difficult indeed. Online documentation must be

provided, including reasonable facilities which allow a user to quickly find the answer to specific

(although vaguely expressed) questions. The complexity of this task often means that most of the

implementation effort in adding a new tool to a computer system is absorbed by the user interface.

Technological trends are aggravating the problem by raising the level of performance expected of

an interface. In particular, as high-resolution graphics displays equipped with pointing devices

become available, users expect to use menu-selection and other more sophisticated forms of input,

and to see system output displayed in an attractive graphical format. The very recent, but growing,

availability of speech input and output will intensify this pressure for sophistication.

An additional reason for constructing a tool-independent interface is to make the computer system

as a whole appear consistent to the user. If the interfaces for different tools use different conventions,

then no matter how sophisticated each of them is individually, the user is likely to be confused as he

moves from one to another because the expectations raised by one may not be filled by the other.

For all these reasons, we are attempting to make our gracefully interacting interface as

tool-independent as possible. In the remainder of this paper we outline the system structure we have

developed, and go on to give further details about one component of this structure, the declarative

format in which information about the tool is made available to the interface, together with sketches of

how the tool-independent part of the system uses the information thus represented.

2. System Structure
The basis for our system structure is the requirement that the interface contain no tool-dependent

information. All such information must be contained in a declarative data base called the tool

description. In an effort further to improve portability and reduce duplication of effort between

interfaces implemented on different hardware configurations, we have made a second major

System Structure 3

separation between the device-dependent and -independent parts of the interface. The resulting

structure is illustrated in figure 1.

User

Display
Keyboard
Mouse
Audio

Documentation
Network

(

Tool
Message
System

Figure 1 . User Interface System Structure

The intelligent functions of the interface, those itemized above, are isolated in a tool and device

independent User Agent, which interacts with the tool through a narrow interface that is completely

specified by the declarative tool description. Communication between the Agent and the user is not

direct, but goes via a device-dependent Front-End, which allows the Agent to specify its output in a

high-level device-independent manner, and which preprocesses the user's input into a standard,

device-independent, format. Communication between the Agent and Front-End is thus restricted to a

well-defined format of input and output requests. Display formats in which to realize the tool's and

Agent's high-level output requests are specified declaratively in the tool description.

The basic function of the Agent is to establish from the user's input what functional capability of the

tool the user wishes to invoke and with what parameters he wishes to invoke it. Once this is

established, the Agent issues the appropriate request to the tool and reports to the user relevant

portions of the tool's response. To make this possible, the tool description includes a specification of

all the operations provided by the tool in terms of their parameters and their types, defaults, etc., plus

4 System Structure

specifications of all the abstract objects manipulated by the tool in terms of their defining (and

descriptive) sub-components. This representation of operations and objects follows Minsky's frames

paradigm [7] in the spirit of KRL [1] or FRL [13]. The representation allows the Agent to follow the

user's focus of attention down to arbitrarily deeply nested aspects of object or operation descriptions

to resolve ambiguities or contradictions. This facility depends on the tool to provide resolution of

object descriptions into sets of referents.

The tool description also specifies the syntax for the user's input descriptions of the objects and

operations. The Agent applies the grammar thus specified to the user's input (as pre-processed by

the Front-End) in a flexible way, providing the kinds of flexible parsing facilities mentioned above. The

user may also request information about the tool or other help, and the Agent will attempt to answer

the query with information extracted from the tool description, and displayed according to

tool-independent rules.

Besides requesting that the Front-End output text strings to the user, the Agent may also specify

instances of system objects. The Front-End will then display the objects according to a display format

specified in the tool description. For the Front-End we are using, which operates through a graphics

display equipped with a pointing device, this allows the user to refer directly to system objects by

pointing. The Front-End reports such pointing events to the Agent in terms of the system object

refered to. Typed input is pre-processed into a stream of lexical items, and other pointing events,

such as to menus, can also be reported as lexical items. We are also experimenting with a

limited-vocabulary, single word (or phrase) speech recognizer, isolated in the Front-End. It's output

can also be reported as a lexical item.

This concludes the overview of the system structure. For the remainder of the paper, we will

concentrate on the representation employed in the tool-description, and the way the information, thus

represented, is used by the remainder of the system. Our examples will be in terms of the tool being

used as a test-bed for the development of the Agent and Front-End: a multi-media message system,

capable of transmitting, receiving, filing, and retrieving pieces of electronic mail whose bodies contain

mixtures of text, speech, graphics, and fax.

3. Representation of task specific information
A functional sub-system, or tool, is characterized for the user interface program by a data base

which describes the o b j e c t s it manipulates and the o p e r a t i o n s it can perform. This tool description

is a static information structure (provided by the sub-system implementor) which specifies everything

that the User Agent needs to know about the tool. We'll first give a brief overview of the structure of

the tool description and how the Agent uses it to provide an interface to the sub-system. Then the

Representation of task specific information 5

content of the data base will be explained in more detail, with examples showing how this information

is utilized in the processing of commands from the human user. The tool description consists of:

• Declarations of the data objects used by the tool.
These declarations specify the internal structure of each object type defined within a
particular sub-system. The tool may also contain references to object types that are
defined in a global data base and are used by many different tools (e.g. files, user names,
dates and times). The object declaration provides rules for displaying an instance of the
object, syntax for descriptions of it in commands, and documentation that can be used to
explain its function to the user.

• Descriptions of the operations which the tool can perform.
Each operation entry specifies the parameters that the Agent must provide to the tool to
invoke that action. It also defines the legal syntax for the command, provides some
simple measures of its cost and reversability, and supplies a text explanation of its
purpose.

As mentioned earlier, the primary goal of the Agent is to help the human user to specify sub-system

operations to be executed. To carry out this function, it parses the user's commands (including text,

pointing, and possibly spoken input) according to the syntax specifications in the tool description. It

decides which operation has been selected and attempts to fill out the parameter template associated

with it. This process may involve interpreting descriptions of sub-system objects, negotiating with the

user about errors or ambiguities that are discovered, and explaining the meaning of command

options.

3 . 1 . Object Descriptions

The tool description contains a declaration of each data type that is defined within that sub-system.

Data objects which will be manipulated by both the Agent and the tool are represented as lists and

property lists (sets of name-value pairs), using the formalism defined by Postel for the communication

of Internet messages [9]. This representation is self-describing in that the structure and type of each

data element is represented explicity in the object. Thus, complexly structured objects can be

transferred between the User Agent and the tool, and the Agent can interpret them according to the

information contained in the tool description. For example, the following is the internal representation

of a simple message (primitive elements are integers or text strings, and brackets are used to delimit

sets of name-value pairs):

[StructureType: Object Instance ObjectName: Message
Sender:
[PersonName: [First: John Middle: Eugene Last: Ball]

Host: [S i te :CMU Machine: A]
]
Recipient:
[PersonName: [First: Phil Last: Hayes]

Host: [Site: CMU Machine: A]

6 Representation of task specific information

]
Copies: []
Date: [Year:1980 Month:April Day:10 Weekday:Thursday

AMPM:AM Hour:11 Minute:16 Second:37]
Subject: "Meeting tomorrow?"
Body: "Phil, Could we get together tommorrow at 1 pm? -Gene"

The structure of a Message is defined in the tool data base by a message schema. This schema

declares each legal field in the object and its type, which may be a primitive type like TEXT or an

object type defined by another schema in the tool description. The schema also specifies the number

of values that each field may have, and may declare default values for new instances of the object.

The following is a simplified schema for a message object and some of its components:

[StructureType: ObjectSchema ObjectName: Message
DescriptionEvaluation: ToolKnows
Schema:
[Sender: [FillerType: Mailbox]

Recipient: [FillerType: Mailbox Number: OneOrMore]
Copies: [FillerType: Mailbox Number: NoneOrMore]
Date: [FillerType: Date]
Subject: [FillerType: MultiMediaDocument]
Body: [FillerType: MultiMediaDocument]
After: [FillerType: Date UseRestriction: DescriptionOnly]
Before: [FillerType: Date UseRestriction: DescriptionOnly]

]]

[StructureType: ObjectSchema ObjectName: Mailbox
DescriptionEvaluation: ToolKnows
Schema:
[PersonName: [FillerType: PersonName]

Host: [FillerType: Host]
]]

[StructureType: ObjectSchema ObjectName: PersonName
DescriptionEvaluation: OpenEnded
Schema:
[First: [FillerType: TEXT]

Middle: [FillerType: TEXT Number: NoneOrMore]
Last: [FillerType: TEXT]

]]

[StructureType: ObjectSchema ObjectName: Host
DescriptionEvaluation: ToolKnows
Schema:
[Site: [FillerType: TEXT Default: CMU]

Machine: [FillerType: TEXT Default: A]

Representation of task specific information 7

In addition to defining the structure of an instance of a message object, the schema includes fields

which are used by the Agent to interpret descriptions of messages. The Desc r ip t i onEva lua t i on field

tells the Agent how to evaluate a description of an object in this class. For example, Tool Knows

indicates that the sub-system is prepared to evaluate a description structure and return a list of

instances matching the description. A description structure is an instance of the object with special

wild card values for some fields and with possible extra Desc r i p t i onOn ly entries, such as the After

field in the example above. Since a description of one object may reference other objects ("the

messages from members of the Gl project"), the Agent uses the hierarchy defined by the object

declarations to guide its evaluation of the user's commands. Each level generates a new sub-task in

the Agent which processes that portion of the description, and is responsible for resolving ambiguities

that it may encounter. This structure aliso makes it possible to follow the user's focus of attention,

since new input may apply to any of the currently active subgoals ("No, only the ones since October"

or "No, only the ones at ISI").

Each object declaration also includes information which is used by the Front-End module to display

instances of that object type. Several different formats may be defined; the tool (or Agent) selects an

appropriate format by name each time it displays an object. The format declaration specifies which

fields of the object to display and their layout; it may also provide parameters to the Front-End which

invoke special capabilities (highlighting, font selection) of the display hardware. For example, the

following section of the description for a Message defines two different styles of message header

display.

DisplayFormat:
[ShortHeader: / / style: From Hayes on 18-Mar

[Text: "F rom&Sndr&on&Day&"
Sndr: [Field: Sender/Person Name/Last FaceCode: Bold]
Day: [Field: Date Style: ShortDay]

]
FullHeader: / / From Eugene Ball on 10-Apr-80 11:16am about 'Meeting
tommorrow?'
[Text: "From &Sndr& on &Day& about '&Subj& , M

Sndr: [Field: Sender/Person Name Style: FullName]
Day: [Field: Date Style: FullDate]
Subj: [Field: Subject Style: FullSubj]

]]

Each object declaration also defines the legal syntax that can be used in commands that refer to

objects of that type. In order to understand a phrase like " the messages from Phil since March" , the

Agent uses the syntax definition associated with the object type Message, which in turn refers to the

syntax for other objects like Date and PersonName. In the example below, question marks indicate

optional syntactic elements, asterisks mark fields that can be repeated, slashes indicate word class

identifiers, and ampersands mark places where the syntax for other object types is to be expanded.

8 Representation of task specific information

Some syntactic entries also specify correspondences to particular fields in the object; as a command

is parsed, the Agent builds description structures which represent the objects referred to in the

command. Thus, the phrase "since March" results in an appropriate A f te r clause in the Message

description. The grammar defined by these syntax entries is applied to the user's input in a flexible

way [2], so that grammatical deviations such as misspellings, words run together, fragmentary input,

etc. can still be parsed correctly.

Syntax:
[

Pattern: (?/Determiner /MessageHead VMessageCase)
Determiner: (the (all ?of ?the) every)
MessageHead: (messages notes letters mail)
MessageCase:
([Syntax: (/From &Mailbox) StructureToAdd: [Sender: &Mailbox]]

[Syntax: (/Before &Date) StructureToAdd: [Before: &Date]]
[Syntax: (/After &Date) StructureToAdd: [After: &Date]]

)
From: (from (arriving from) (that came from) (/Mailed by))
Mailed: (mailed sent delivered)
Before: (before (dated before) (that arrived before))
After: (after since (dated after))

]

Finally, the object description provides information which is used to automatically construct

documentation and provide answers to user requests for help. Each object contains a brief text

explanation of its structure and purpose in the sub-system, which can be presented to the user in

response to a request for information. The documentation is also placed into a Zog [14] information

network at a node representing the data type, which is connected to Zog frames for other objects

referenced by that type. The user can find information about a related sub-system object by choosing

a link to follow (with a menu selection); that frame is quickly displayed. The legal syntax for

descriptions of the object and links to frames for operations which manipulate it are also included in

the Zog network. In the following example documentation frame for Message , the italicized entries

are buttons which can be activated to request more information about a specific topic:

Representation of task specific information 9

Message: (Multi-Media Message System)

Each message contains the author and date of origination and is
addressed to (one or more) destination mailboxes; copies may
optionally be sent to additional destinations. The body of a
message may contain uninterpreted text, images, sketches, and
voice recordings.

Description syntax:
'messages [from Person] [before/after Date] [about String]'
Detailed syntax

Related object types: Operations:
Mailbox Send
Date Display
Multi Media Document Edit

3 .2 . Operation Descriptions

Each sub-system operation which can be invoked by the Agent is also described by an entry in the

tool data base. An operation entry specifies the parameters that the Agent must provide to the tool to

have it perform that action. The object type of each parameter is declared and the tool description

can optionally indicate that a parameter position may be filled by a set of such objects. In addition,

constraints on the legal values of a parameter are sometimes provided, which can help the Agent to

avoid requesting an illegal operation.

[StructureType: Operation OperationName: Forward
Reversible: false
Cost: moderate
Parameters:
[Message: [FillerType: Message Number: OneOrMore]

Recipient: [FillerType: Mailbox Number: OneOrMore]
Forwarder: [FillerType: Mailbox MustBe: CurrentUser]

]
Syntax:
[Pattern: (/Forward %Message to %Recipient)

Forward: (forward send mail (pass on) deliver redeliver)
]
Explanation: "Message Forwarding

A copy of a message that was delivered to you can be sent to
another person with the F o r w a r d command. You must specify
the message(s) to forward and the destination mailbox(es). Sample
syntax: 'Forward the last message from Phil to Adams at ISIE'"

The example entry for the f o r w a r d operation also includes a declaration of the legal syntax for the

10 Representation of task specific information

command, and a text entry which will be included in its documentation frame. It also indicates that

this command is not reversible (once executed it cannot be undone), and that it is moderately

expensive to execute. This information is used by the Agent to select an appropriate style of

interaction with the User; for example, irreversible operations will usually require explicit confirmation

before the request is given to the sub-system for execution.

4. Conclusion
The design and implementation of a good user interface for a computer sub-system is a difficult

and time-consuming task; as new techniques for communication with computers (especially high

resolution displays and speech) gain widespread use, we expect this task to become even more

expensive. However, we also feel that the typical user interface must be made much more robust,

graceful, and intelligent. For this goal to be feasible, substantial portions of the interaction with the

user must be independent of the details of the application, so that the development cost of the user

interface code can be shared by many sub-systems.

Therefore, we are designing a generalized User Agent which can be used to control a variety of

different sub-systems. The Agent carries on a dialog with the human user; it can understand a variety

of different command styles, recognize and correct minor syntactic or spelling errors, supply default

values for command arguments based on context, and provide explanations when requested. All of

the information that the Agent needs to know about the application system is explicitly stored in a tool

description provided by the sub-system implementor. This paper has concentrated on the content of

that data base, detailing the information represented there and demonstrating how the Agent can

apply it to provide a sophisticated interface to a specific application system.

The tool description is represented in a unified formalism, which enables us to maintain a sinrgle

data base which specifies all of the task-specific attributes of a particular sub-system. Because the

information is stored in a single format, it can easily be utilized by multiple portions of the interface

system. For example, a single syntax description is used to parse user commands, to generate

explanations of system actions, and to construct documentation of the options available in the tool.

The initial implementation of the Agent will provide the user interface for the Multi-Media Message

System; an electronic mail facility which manipulates messages containing mixtures of text, recorded

speech, graphics, and images. The system is being implemented as a multiple machine, multiple

language distributed system: screen management (multiple windows) and graphics support are

provided in Bcpl [11] on a Xerox Alto [15] with a high resolution raster display and pointing device;

audio recording and playback is controlled by a DEC PDP-11 in C [5]; the Front-End module and User

Agent are implemented in C and LISP respectively, on a VAX-11/780 running Unix [12]; and the tool

Conclusion 11

(message system) runs in C on the VAX. The system modules communicate using a message based

Inter-Process Communication facility [10] within Unix, and a packet broadcast network (Xerox

Ethernet [6]) between machines. Most of the system components are currently running as individual

modules, the first version of a single integrated system should be completed by June 1980. Because

of our goal of a smoothly working, robust, and graceful system, we expect to continue tuning and

improving the implementation for at least another year. The system will eventually be moved to a

single powerful personal computer, where we expect it to make substantial contributions to the CMU

Spice (Scientifc Personal Integrated Computing Environment [8]) development effort.

12 Conclusion

References

1 . Bobrow, D. G. and Winograd, T. "An Overview of KRL-O, a Knowledge Representation
Language." Cognitive Science 7,1 (1977).

2 . Hayes, P. J. and Mouradian, G. V. Flexible Parsing. Proc. of 18th Annual Meeting of the Assoc.
forComput. Ling., Philadelphia, June, 1980.

3 . Hayes, P. J., and Reddy, R. Graceful Interaction in Man-Machine Communication. Proc. Sixth
Int. Jt. Conf. on Artificial Intelligence, Tokyo, 1979, pp. 372-374.

4 . Hayes, P. J., and Reddy, R. An Anatomy of Graceful Interaction in Man-Machine Communication.
Tech. report, Computer Science Department, Carnegie-Mellon University, 1979.

5. Kernighan, Brian W. and Ritchie, Dennis M. The C Programming Language. Prentice-Hall, Inc.,
1978.

6. Metcalf, Robert and Boggs, David. "Ethernet: Distributed Packet Switching for Local Computer
Networks." Comm. ACM 79, 7 (July 1976), 395-404.

7. Minsky, M. A Framework for Representing Knowledge. In Winston, P., Ed., The Psychology of
Computer Vision, McGraw Hill, 1975, pp. 211-277.

8 . Newell, A., Fahlman, S., and Sproull, R.F. Proposal for a joint effort in personal scientific
computing. Tech. Rept. , Computer Science Department, Carnegie-Mellon University, August, 1979.

9 . Postel, J. Internet Message Protocol. Draft Internet Experiment Note , Information Sciences
Institute, Univ. of Southern California, April, 1980.

10 . Rashid, R. A proposed DARPA standard inter-process communication facility for UNIX version
seven. Tech. Rept. , Computer Science Department, Carnegie-Mellon University, February, 1980.

1 1 . Richards, M. BCPL: A tool for compiler writing and systems programming. Proceedings of the
Spring Joint Computer Conference, AFIPS, May, 1969, pp. 34:557-566.

1 2 . Ritchie, D. M. and Thompson, K. "The UNIX Time-Sharing System." Comm. ACM 17, 7 (July
1974), 365-375.

13 . Roberts, R. B. and Goldstein, I. P. The FRL Manual. A. I. Memo 409, MIT Al Lab, Cambridge,
Mass., 1977.

14 . Robertson, G., Newell, A., and Ramakrishna, K. ZOG: A Man-Machine Communication
Philosophy. Tech. Rept. , Carnegie-Mellon University Computer Science Department, August, 1977.

15 . Thacker, CP . , McCreight, E.M., Lampson, B.W., Sproull, R.F., and Boggs, D.R. Alto: A personal
computer. In Computer Structures: Readings and Examples, McGraw-Hill, 1980. Edited by
D. Siewiorek, C.G. Bell, and A. Newell, second edition, in press.

