NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-£0-144

PQCC: A Machine-Relative
Compiler Technology

Wm. A. Wulf

Carnegie-Mellon University
Pittsburgh, Pa. 15213
25 September 1980

Abstract

"PQCC” is a research project that is attempting to automate the construction of "production quality”
compilers -- ones that are competitive in every respect with the best hand-generated campilers of
today. Input to the PQCC technology consists of descriptions of both the language to be compiled and
the target computer for which code is to be produced. Qutput from the PQCC is a PQC, a production-
guality compiler. This paper focuses on the techniques used in PQCC that are likely to lead to other
forms of "machine-relative” software -- software that is parameterized by the characteristics of a
computer system.

This research was sponsored by the Defense Advanced Research Projects Agency (DARPA) and
monitored by the Air Force Avionics Laboratory. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects Agency or the us
Government,

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213

Table of Contents

1 Introduction: The Message

2 introduction: The Subject

3 The PQC: A Knowledge-Based Structure
4 Some "Experts" in the PQC

5 CODE: The Code-generation Expert

6 TNBIND: The Allocation Expert

7 UCOMP: A Simple Algebraist

8 GEN: The Code Generator Generator

g Summary

1 Introduction: The Message

The subject of this paper is PQCC. The message of the paper, however, is something else. Lest it
be lost in the details of the subject, the message has two parts:

e 2 notion of "machine-relative-ness” is becoming an effective tool for reducing the cost
and improving the quality of non-trivial software systems, and

e several innovations arising in connection with research in "artificial intelligence”, Al, and
largely ignored by systems and applications programmers until recently, will have a major
impact on these latter areas.

On Machine-refative software: The term simply means software that is parameterized by the
characteristices of a computer system. This definition is admittedly cryptic, so a few exampies may
help to more usefully characterize what | mean.

In the simplest case, a program might use conditional compilation facilities to include or exclude
configuration dependent modules. Most modern operating systems, for example, have some form of
SYSGEN phase. The purpose of SYSGEN is to include only that code needed for the memory and
device configuration of a particular system. Thus such an operating system is machine-relative in a
fairly trivial sense. A slightly more interesting example arises when the behavior of the system
changes in an essential way because of the parameterization. Some operating systems, for example,
use radically different algorithms when their SYSGEN parameters specify certain configurations such
as the presence or absence of memory management, swapping devices, etc.

Although parameterization a fa SYSGEN is important, it is not as interesting as a parameterization
that spans completely different computing systems. Substantial success has been obtained, for
example, in parameterizing mathematical software to the vagaries of the floating point hardware, and
software conversion routines, of different computing systems. The parameters to these routines
select the algorithms as well as the constants to achieve both accuracy and performance on a given

system.

In some cases the parameterization needed to make a system machine-relative may not be
conceptually deep (although it may still be difficult in practice); this is essentially the case for
machine-reiative mathematical software. In other cases the parameterization is substantially more
difficult. Consider, for example, a the notion of a "machine independent” diagnostic program -- a
program to determine whether the CPU of its host computer system is functioning correctly, and, it
not, to determine the likely cause of the failure. Diagnostics embody detailed knowledge of both the
processor's instruction set and its implementation; indeed, there doesn't seem to be much to one
except this knowledge. Thus to construct a machine-relative diagnostic would imply finding a way to

encode this considerable, and very detailed, body of information in a useful way.

The rationale for considering the notion of machine-relative software is based on the same
arguments as those for portability, standardization of various kinds, methodology, and so on -

namely, improving quality and reducing cost,

By writing a system once and hosting it on many machines one can amortize its cost over a much
larger number of units. This allows for a greater initiai investment for, say, validation, while still
reducing per-unit cost. Moreover, all maintenance is similarly applicable to the whole family of target
systems. As errors are repaired and improvements are made, all customers benefit. Finaily, when

new machines become available, software for them can be made almost immediately available.

Obviously, the notion of machine-relative software is closely related to that of portability. They are
not the same, however, and neither subsumes the other. A compiler that produces code faor a number
of different target machines is machine-relative even if it itself only runs on one computer and hence
is not portable. Conversely, many portable systems have no need to be parameterized by the
computer on which they are running -- in fact, making them machine-relative might be
counterproductive. Thus, though similar, portability and machine-relative-ness are complementary
techniques.

On using Al techniques: As an outsider, | find many fascinating aspects of research on artificial
intelligence; three are reievant to the present discussion. First, some of the programming techniques
developed along the path to other research goals have often been as interesting as the research itseif.
Second, these techniques have become woven into the fiber of computer science, and are often not
even perceived as having originated in Al. Third, in many cases the transfer of these ideas to the rest
of computer science -- and even more so to application areas -- has been surprisingly slow.

Increasingly, however, the "systems programming"” and "applications” areas are tackling problems
whose complexity precludes direct algorithmic solution. Both program organizations and heuristics
that can cope with this complexity are needed. Machine-relative software, and PQCC in particular, is
one example where these techniques are vital. Al systems are typically concerned with complex, ili-
structured problems; thus, the technigues developed in connection with these systems are precisely
ones for coping with the kinds of problems that, | believe, systems and applications programmers will
increasingly face.

2 Introduction: The Subject

The goal of the Production Quality Compiler-Compiler project is to construct a truly automatic
compiler-writing system. Input to PQCC consists of (a) a description of the source language to be
compiled, and (b) a description of the target computer for which code is to be generated. The

compilers, the PQCa so0 constructed will be competitive in every respect with the very fiest hand-
generated compilers of today. Automatic generation of parsers has been thoroughly regearched;
therefore, of particulér note is the fact that the quality of the object code produced by these compilers
will meet or exceed that of their current, hand-generated counterparts, This is the aspect of PQCC
that I will focus on in this paper.

Compilers are relatively complex systems. Compilers that produce really good code are
substantially more complex than their less ambitious cousins. Moreover, they need particularly
detailed information about the machine for which they are to generate code. Thus, each PQC
produced by PQCC is an example of machine-relative software. in fact, the PQCs are rather ambitious
exampies: the parameterization includes the knowledge needed by an optimizing compiler about its
target computer.

One could hand-generate the parameters to a PQC; this might, in fact, be a quite cost-effective
method of constructing compilers. However, the PQCC project takes one further step and is
generating the parameters automatically from a description of the target computer'.

it is difficult to describe ail of the PQCC technology in a single paper; | shall not even try. Rather, |
shall describe something of the overali structure of a PQC and sketch some of the key algorithms and
how they are parameterized to make them machine-relative. This in turn will allow us to sketch the
process by which parameter derivation is automated.

Before proceeding with the meat of the paper, | should note that a more complete overview of
PQCC may be found in [lev80]. Alsa, PQCC is not the only current research efiort with the goal of
constructing machine-relative compilers. The papers {aho80, johnson80, graham80, lev80] in the
August 80 issue of the IEEE Computer magazine survey much of the current state of the field and
provide references to other contemporary work.

3 The PQC: A Knowledge-Based Structure

To the user, a compiler is usually a single "black box". As in Figure 1a, input consists of source text
and output is (relocatable) object code. Typical texts on compiling, e.g., [ahoull77], reveal a more
detailed view; as shown in Figure 1b, a student is told that a compiter is composed of 3 phases that
successively transform the source text through various intermediate forms into the final cbiect
program. {(Often an optional fourth, "optimizing” phase is also described. This is shown as a dotted

This statement is a bit misleading. A number of {parameterized) decisions must be made by a human because they are in
fact forced by external factors. Exampies of such decisions include system-wide conventions on the use of specific registers,
library and operating system calling conventions, and so on.

box in the figure.) The structure of a PQC consists of a much larger number of phases -- around 50, in
fact.

COMPILER ~%—>~

source object

Figure 1(a): User's View of a Compiler

=0
— € 1 LEX E—\ SYN T OPT|E CODE———

| SR

source ILD L, iL, object

Figure 1(b): Textbook View of a Compiler

An obvious question is "why does the PQC have so many phases”, and, possibly, "isn't that terribly
inefficient”. These questions go right to the heart of several important issues in the PQCC technology.
To answer them, it is easiest to go back and ask the same questions about the typical textbook view of
a compiler.

In principle, it is possible to use a single, very general, very powerful technique to effect the
transtation performed by any compiler -- including ail the transformations done by the fanciest
optimizing ones. Any of the "production systems” equivalent to general recursion is, for example, a
conceptually plausible method. If such a formalism were used directiy, there would be no reaseon to
decompose the model of a compiler into components. There are at least two reasons, however, why
this isn't done: (a) human understandability, and (b) efficiency, or, to use a more accurate term, cost-
effectiveness. Much has been written in the programming-methodology literature on the first of these,
so ! will avoid these arguments and concentrate on the second point.

All compiler writers are familiar with the fact that there is no real necessity for separating lexical and
syntactic analysis -- and, in fact, the division between them in a particular compiler is chaosen
somewhat arbitrarily. The more general methods used for context-free syntactic analysis could be
used to do all the work of the lexical phase. Because these methods are slower than the finite-state
methods that can be used for lexical analysis, however, the speed of the total system is improved by
their separation.

This is a simple example of a more general phenomenon, and one that has been especially
noticeable in Al research. Much of the early research in Al focused on general, "powerful” methods

of problem solving. In realistic, complex task domains, however, these methods are vastly too slow to
be practical. A common characteristic of these task domains is that they require both many kinds of
knowledge, and deep knowledge of the domain to be applied. General methods do not contain this
knowledge in any direct sense. Loosely, general methods always work from "first principles”; they
know "nothing in particular and everything in general™. Thus, when faced with a specific task, general
methods must "rediscover” things that would be obvious to a human expert. |n these complex tasks it
has been found that a collection of complementary methods, or "experts”, is much better than more
generai, powerful methods. Systems crganized around this scheme are usually referred ta as "expert
systems” or "knowledge-based systems”.

An "expert”, is simply an algorithm or a heuristic with a narrow domain of application -- but which
embodies a great deal of specific knowledge in that domain, and hence is very effective on problems
within it. In contrast with a "general”, or "powerful” method, an expert simply cannot soive most
probiems. On the other hand, those that it can solve, it solves well and cheaply. Lexical analysis based
cn finite-state machines is an expert method; there are a large number of parsing problems it cannot
solve. On the other hand, it solves a subclass of the problems of interest mare cost-effectively than a

more general methed could.

it is uniikely that the typical compiler writer or textbook author thinks of the 3 {or 4) phases of the
canonical compiler diagram as a collection of expert methods. When writing a compiler for a specific
source language and target machine such a conceptualization is unnecessary. Nonetheless, even in
that simple case, the phases are in fact precisely such a collection. In the case of PQCC, however,
the knowledge-based, "expert”, conceptualization was essential. Oniy by carefully analyzing existing
compilers and explicitly decomposing them into theitr constituent component methods was it possible
to find efficient and parameterizable pieces that could be made machine-relative.

So much for "why" the decompaosition into phases. The issue of efficiency for the 3 phase
compilers is also clear -- they are more efficient precisely because the decomposition allows more
cost-effective algorithms to be used. The answer lor the PQC structure shou/d be the same; it should
be more efficient than the 3-phase structure. Unfortunately, the data is not yet available to support
that claim. indeed, the present research version of the PQCs makes a separate traversal of the
program representation for each phase; althcugh its speed is quite respectable. it is not necessary to
make these separate traversals and so it is hard to predict final performance.

4 Some "Experts” in the PQC

in this section | shall consider some simple examples of code generation and use them to ilfustrate,
if not motivate, the decomposition of the PQCs and some of the expert methods they use. These in

turn will allow us in s@bsequent sections to fook in more detait at some of these methods and how they
are made machine-relative.

Let us consider one of the simplest, yet interesting statements that can appear in a source program.
Almost all languages have an assignment statement and integer variables; so, suppose i, jand k are
integer variables and consider the statement

<var) @ = i-f;
where <var> is one of i, j or k. The "best", indeed any correct code to praduce for this statement is
obviously a function of the target computer. But, in addition, it also depends upon:

e whether the expression "/-j" is a common subexpression, and, if so, whether it is a
creation or use of that subexpression, and

e the variable appearing on the left-hand side of the assignment, and

e the allocation of storage for variables, and, in particular, whether any af the variables
involved has been allocated to especially "interesting” locations (e.g., registers, a short
displacement from the stack-frame pointer, etc.).

Let's illustrate the dependencies by considering a few examples of code generation for some real
computers -- the PDP-11 and the PDP-102. Since the impact of common-subexpressions is often
discussed, let's leave them out for now. The effect of the left-hand side of the assignment can be
clearly seen in the code to be generated for a PDP-11:

source object
K:= i-; MOV ik
SuUBj.k
fr=if; sSuB |,
ji= i SUBIj
NEGj

Notice that in the third case the right-hand side is being treated as the expression (i) 1 shall
return to this point later. Because the operands of PDP-11 instructions can be in either memory or
registers, the examples above do not illustrate the effect this allocation decision has on code
generation. Suppose, therefore, that we were compiling for the PDP-10 and that all variables had been
bound to primary memory. We would get:

2| apotogize to those readers that are not familiar with the PDP-11 and PDP-10. Knowledge aof these machines is not really

necessary. The most important thing 1o notice about the examples is simply that they are dilferent from ane another,

3Fc:r the escterically minded, | appreciate that there is a problem with this transfarmation arising in connection with the
"most neqative number” on twa’s complement machines. | chose to ignore the problem to simplify the discussion.

source object
K:= i MOVE r,i

SUB .
MOVEM 1k

P:= 0 MOVN r,j
ADDM r,i

fo= 0-f; MOVE r,i
SUBM rj

if, on the other hand, all three variables were allocated to PDP-10 registers, better code would be:

source object
k:= i MOVE ki
SUBKk,}
ir= i SUBI,j
jr= i SUBM i,j

And, of course, one can get all sorts of combinations and variations on these when only some of the
variables have been allocated to registers; | won't try to reproduce them all here. It should be noted,
however, that they are not all simple variations on the examples above. If, for example, k has been
allecated to memory but the other two are in registers, then we would like to produce:

source object
k:= I-f; MOVEM j k
SUBM ik

Each of the cases above would be "obvious” to a knowledgeable POP-11 or PDP-10 assembly
language programmer. Simple compilers, and even many optimizing ones, do not apply this

"obvious” knowledge, however. Why?.

To answer this guestion, it is instructive to consider the kinds of knowledge that that programmer

uses in making these selections. They include, at least,

- :ariguage seémantics: although these examples are trivial, one must at least be sure that
the variables are not atiases for one another -- otherwise the destruction of & in the cases
for "k : = ij" might also destroy either of the other two variables and invalidate the code
sequences shown above,

% algebra: again, these examples are trivial, but they do use the identity
"-'j = -(j-i)l

s global resource allecation: a computier's registers are a limitad resource: usually not all of
the programmer's variables can be allocaied to them simultaneously. for example.

e global resource allocation: a computer's registers are a limited resource; usually not all of
the programmer’s variables can be allocated to them simultaneously, for example.
Deciding which variables are to be allocated to the register involves some complex,
global tradeoffs,

e target computer instruction set: knowledge of the instruction set is obvicusly needed, of
course, but notice that it is much deeper than merely knowing some way to implement
each language construct. In particular there is a knowiedge of the best choices under
various allocations, and "best" implies some knowledge of relative costs.
There are in fact quite a few other kinds of knowledge that an assembly language programmer will
bring to bear -- but they are not revealed by these trivial examples. Discussing too many at this pointis

likety to be confusing in any case, so | shall omit them.

Now, let's return to the question of why most compilers don't generate the “"obvious" code
sequences illustrated above. If one starts with the textbook view that "code generation” is a single
component, any attempt to incorporate all these diverse sources of knowledge is bound to lead o0
either an inefficient, "general” method, or to an unmanageably complex collection of special cases.
Since general methods are tco slow, (too) many optimizing compilers tend toward the second
alternative. Faced with the existing evidence, researchers have shrunk away from the notion of a
compiler that is both optimizing and machine-relative. Starting with a different premise, however,
namely that each knowledge source is a distinct expert, leads rather directly to a clean and efficient
structure -- and, from our perspective more importantly, one that is more easily made machine-
relative.

The bulk of the remainder of this paper is devoted to describing a number of the expert methods
used in the PQCs -- and how, given this information, we can make them machine-refative. Before
starting, however, | need to make one more point that would have been difficult to motivate earlier.
Notice that the application of the various kinds of knowledge interact with each other. To take a
simple example -- the best choice of code depends upon the allocation of variables to memory and
registers. At the same time, however, the best allocation of memory will depend on the code to be
generated -- in general, for example, one would like the most frequently accessed variables to aiso be
the cheapest to access. To know the actual number of references, however, | need to know what code
will be generated.

The potential for interaction among the various expert methads used in a system requires careful
consideration for how they are to be organized -- that is, the overall control and data structures to be
used. The simplest such organization is a linear sequence of "phases” as is used in the canonical 3-
phase compiler, and this is also. in fact, the organization of the PQCs -- but the reader should be
aware that other possibilities exist and may be appropriate for other kinds of expert systems".

4’The interesied reader might. for example, examine [erman]

The next several akctions discuss three of the phases in a PQC: CODE, TNBIND, and UCOMP.
Although it may be unusual, we shall discuss them in the the reverse of the order in which tdky appear
in the compilers,

5 CODE: The Code-generation Expert

CODE is one of the last phases of a PQC. In contrast with the complexity that may seem necessary
on the basis of the earlier examples, it is also a conceptually trivial phase. in the following | will only
try to provide the gist of the scheme used; details may be found in {cattell78].

All of the critical optimization decisions in a PQC are made before code is generated. Even the key
aspects of the relatively low level decisions illustrated in the previous section have been made:
registers have been allocated, the decision o use a user-variable for the evaluation of an expression,
the algebraic transformations such as f(i-f} = > -(j-i), and so on have all been made. These decisians
are all represented in the intermediate representation of the program by either explicit
transformations (such as the algebraic identity) or by decorating the tree with relevant information.
The code generator has only to match this information against a "canned" collection of instruction
sequences, Thus, the major problem in the formulation of the code generator was to find a technique
that was both comprehensive and efficient with respect to the enormous case analysis involved in the
matching process.

The basic strategy used in the PQC code generator is based on a database consisting of paftern-
action pairs. The patterns, like the intermediate representation of the program, are trees; the leaves of
these pattern trees specify properties of the program tree that they match. The actions are {(usually)
simply code to be emitted. Writing the pattern trees in a LISP-like prefix form, typical pattern-action
pairs for the PDP-10 might be:

pattern: (:= $1:memory $2:register)
action: MOVEM $2, $1

pattern: (: = $1:register $2:memory)
action: MOVE §1, $2

pattern: (- $1:register $2:reqister)
action: SUB $§1, $2

pattern: (i = $1:register (- $1:register $2:memory))
action: SUB 31, $2

pattern: (1= $1:memaory (- $1:memory $2:register))
action: SUBM $2, $1

10

The patterns above may require a bit of explanation. Each pattern describes a tree. The first item is
an operator at the root node of the tree. The remaining items describe the descendants of that root;
the dollar signs followed by a digit are merely names for the descendants and the words like
“register” describe properties of them. In the last two examples, the secand descendant of each is
paranthesized; this indicates a sutree of the same form as described above. Thus, for example, the
fourth pattern describes the tree

d (=)

where the value represented by the node called $1 must be in a register and that represented by $2
must be in memory. Notice, too, that the repeated use of $1 implies that these must actually name the
same location.

CODE traverses the program tree. At each node it finds a/l pattern trees from the database that
"match": it then selects the lowest cost, maximally beneficial code sequence. In general, of course,
the pattern trees will contain more than one node; this has two implications for CODE. First, it must
"mark” all nodes matched by the selected pattern and must not subsequently generate code for
nodes so marked. Second, and very importantly, CODE generates code "backwards".

This second statement may be a bit surprising, however, the PQC code generators actuaily
generate the last instruction of the program first. To see why this is s0, let’s first note that proceeding
“torward" through the program representation is equivalent to a bottom-up, left-to-right tree traversal;
proceeding "backwards” is equivalent to a top-down, right-to-left traversal. Now, consider the tree for
something like one of our example assignments,

f:= i, -
If we were to use the "forward", bottom-up traversal, the first interesting node that we would
encounter would be the subtraction, and we would generate code for that node from a pattern like
those given above. We would not see the larger context, in which i appears as the left-hand side of the
assignment, until too late. Instead of generating code tc compute the result directly in the variable,
some sort of temporary would be needed and an additional instruction would be generated to store

the temporary into /.

On the other hand, by traversing the tree "backwards”, that is, top-down, we see these larger
contexts first and can always apply the maximal patterns.

5C,attell, fcatte78], named this strategy. the "maximal munch” method of code generatian.

11

Although the previous explanation has been brief, hapefully it conveys the gist of how the code
generator works. There are, of course, myriad technical details. Rather than delve into these,
however, let's reflect on what has actually been done. | set out to build an expert code generator, but
that is not quite how it turned out. Instead, all the expertise about the target computer wound up in
the database of pattern-action pairs. The actual algorithm of the "code generator” is an expert at
something else entirely -- namely pattern matching. Because of previous work, cf. [forgy75], and
because the particular kind of patterns is well specified, very efficient algorithms exist -- and, the
result is a code generator that is machine-relative, more comprehensive and, hopefully, faster than
typical hand-fabricated ones that do comparable analysis.

6 TNBIND: The Allocation Expert

in this section | shall describe a simpiified version gf the phases that implement register allocation
within a PQC. For historical reasons this set of phases is called TNBIND, a contraction of Temporary
Name Binding. As with the previcus section on CODE, the objective here is to supply only enough
detail to convey the gist of the scheme; to that end, | will consider only the allocation of user-declared

variables and neglect compiler-generated temporaries. Details are available in [lev80thesis].

As noted earlier, good allocation of registers and memory depends in part on the code to be
generated. It should be clear, for example, that the frequency with which a variable is used affects the
desirability of allocating a register for it; usually, though not always, it's a good idea to keep the maost
frequently accessed variables in easily accessible locations like registers. In addition, however, the
way in which a variable is used is an important factor in determining the best allocation for it.

The distinction between "registers” and "memory"” is vastly too crude to be of much use for
atlocation of resources on most real computers. Even the "nicest” common machines have
restrictions such as:

¢ only certain registers can be used for indexing, multiplication, division, etc.

s certain locations are data-type sensitive -- as, for example, the "floating point” registers
on many common machines,

e some memory locaticns can be addressed more cheaply, as for example, with short
displacements in the instruction word,

* some memory locations can be accessed only by indexing, by loading a base register, or
some other awkward means,
Because of the restrictions such as those above. we clearly need to know how variables will be used
in order to make good allocations. Floating point variables, for example. shou!d probably be allocated

to floating point registers if possible. Not all allocations are this simple, of course. An integer variable,

12

for example, may be \hvolved in both arithmetic and indexing; on an architecture where these invalve
disjoint registers a tradeoff must be made. Making this tradeofi intelligently requirell knowing
something about the code that will be generated -- the number of accesses to the variable in each of
the contexts and the cost of moving the variable between them.

Bothersome as they may be, the sorts of assymmetry present in the list above generally reflect
difficult technological tradeoffs in machine design. It is the compiler-writer’s job to make the best
possible use of the given architecture®. So, with that attitude, and with the knowledge that code
generation will follow allocation -- even though allocation depends upon it -- need a formulation of
allocation that will make extremely good, if not perfect, use of the machine’s resources.

The first step in this formuiation is simply to divide the possible lacations into a number of storage
classes -- each class consists of the set of locations that have the same properties, and members of
different classes have different properties. Thus, for some machines the even registers and odd
registers will be in different classes; on cthers there may be a distinction between integer and floating
registers, between index registers and accumulators, between stack memary and other memeory, and
SQ on.

At least conceptually, TNBIND uses the same database and algaerithm as CODE to generate all
possible code sequences for the program -- or, more precisely, all code sequences that would resuit
from various allocations of variables to the different storage classes (but not to specific members of
those classes). Thus, conceptually, TNBIND generates one code sequence that assumes all variables
have been bound to some register, another that assumes all variables have been bound to some
memory location, and one that assumes each of the combinations in between. The idea is to then
pick the cheapest feasible code for the complete program. Note that the cheapest code sequence
found by TNBIND may not be feasible because it requires more elements of a storage class, e.g. the
registers, than are present in the hardware.

in practice, of course, we cannot generate all possible code sequences for a program -- but we
don't need to in order to get the same net effect. Instead, we associate a table of costs with each
variable. These per-variable tables quantify the incremental contribution to overall program size
based on it§ altocation; in effect, they say

_if this variable is allocated to an even register the incremental cost to the overall
program wili be Ce, while, if itis allocated to an odd register the incremental cost will be Co,
while, if ...

6Which is not 1o say that it isn't possible to do a better job of instruction set design; quite the centrary is trpe. The author
advocates that ail computer architects should be required to implement two {2) optimizing campilers -- one just as practice
befare they design a machine, and a second one for the machine that {hey design.

13

To implement this conceptual model of TNBIND, as is the case in all of the PQC, we first break the
problem into pieces such that we can devise an expert for each. | shall describe three sub-phases
here’: temporary name assignment (TNA), lifetime determination (LIFE), and packing (PACK).

The first subphase, TNA, accumuiates the per-variable cost information. It uses almost the same
database and algorithm as does CODE. Because it does not actually generate code, however, there
are two differences in the database. First, those patterns that differ only in the allocation properties of
their leaves are merged. Second, the code-emission actions are replaced by a table of incremental
costs for each of the variables involved in the pattern. These tables contain one cost for each of the
allocation possibilities and are derived from the (merged) code sequences used in CODE. Thus, they
accurately refiect the actual number and types of references to each variable.

TNA traverses the program tree, just as CODE does, matching the patterns in its database against
the tree and finding the best pattern at each step. Once found, the cost tables associated with the
pattern are added to those being maintained with each of the variables in the matched portion of the
program tree.

The second subphase determines the "lifetime" of each of the variables -- that is, the set of points
in the program during which the value of the variable is valid. By noting when a variable is "alive" we
can construct a "conflict graph” -- a graph whose nodes represent variables and whose arcs indicate
that the connected nodes must be alive simultaneously. In a language in which loop cantrol variables
are implicitly declared, a program fragment such as

var n,s,j: integer;
var A: array(1..n) of integer;

Notice, in particular, that j is used prior to the loop and set after it. Thus, its value need not be valid
during the loop. This fact is captured in the graph by the absence of a link between /, which is alive

only during the loop, and /. These two variables do not conflict.

TIn the actual PQC, aliocation is accomplished by something more like 10 subphases.

14

Although this graph is incomplete because the complete program is not given above, it can
nonetheless be seen that variables j and i can be atlocated to the same location because their
litetimes do not overlap. Similarly, it can be seen that n,s and / must be allocated to different locations
because their lifetimes do overlap. Lifetime analysis is a simple flow analysis problem for which a
great deal of literature is available, therefore | won't dwell on it here. Notice, however, that itisa
completely language and machine-independent process.

The third subphase of TNBIND that | shall describe is PACK; its function, given the cost and lifetime
information from the previous phases, is 1o find a good, if not optimal, feasibie allocation. it can be
cast as a "graph coloring” problem. If one thinks of each distinct location as a distinct coler, then

e A feasible coloring of the graph is one in which no two connected nodes are the same
color, and

e An optimal coloring is a feasible one in which the sum of the costs associated with each
particular node coloring is minimized.
Again, a rich literature exists on graph coloring aigorithms. Although general solutions to coloring
problems are very costly, the literature provides a number of alternative algorithms for the kind of
special situation here -- and in practice they are both fast and effective. Note, in particular, the only
dependency in these algorithms on the target computer is the number of “colors” (locations of
various kinds) available, and the mapping from colors to costs.

As with our description of the code generator, rather than deive into the next level of technical
detail on TNBIND, let’s reflect on what was actuaily done. | set out to construct an expert on alfocation
-- in fact, an expert on allocating variables for a particular machine. As with CODE, however, ail of the
expertise about the specific machine is encoded in the patterns and cost tables used by TNA. The
three algorithms turn out to involve pattern matching (TNA), flow analysis (LIFE) and graph coloring
(PACK). None of them has anything to do with allocation per se, and certainly none of them is
machine specific. Finally, as was also the case with CODE, | have very particular cases of matching,
flow analysis and coloring. Fast and effective algorithms exist for them, and there is every reason to
expect that they will perform as well or better than the ad hoc techniques that have been used in the
past.

7 UCOMP: A Simple Algebraist

In the last section | noted that good register allocation depends on knowing something about the
code to be generated. In this section | will describe one of the phases that precedes TNBIND and
provides information on the nature of the best code to generate. The phase is called UCOMP, which is
a contraction of "unary-complement optimization", one of the primary functions of the phase.

15

LUCOMP’s responshbility is to apply various algebraic transformations to the program; tha objective
of these transformations is to simplify the computatien of arithmetic and logical expresdions. For
example, UCOMP will convert the expression

{(-y) > (x*(a-b})
into

(b-al*x>y.
Cur code generator, and indeed any code generator that is to be relatively fast, is dumb. It would
probably generate 6 or 7 PDP-11 instruction for the first form of the expression, for example. But even
the dumbest of caode generators will generate good code for the transformed expression; for example,

source object

(b-a)*x >y MOV b,r
SuBar
MUL x,r
CMPry

Algebraic simpiification is a theoretically unsolvable problem. Even to do a good, not perfect, job is
extremely hard. A PQC, however, does not require general simplification. It reguires oniy that we
simplify the computation of the expression’s value -- that is. reduce the number of instructions needed
to evaluate it. As a result, the complexity, such as it is, arises from the need to account for the the
vagaries of the target instruction set rather than from the inherent difficulty of algebraic simplification.
The kinds of properties of the instruction set that affect us include:

e Operands of certain instructions may be required to be in special locations. Most general-
register machines, for example, require one operand to be in a register.

¢ The instruction set may not be complete. Some computers, for example, provide an
incomplete set of conditional branch instructions.

¢ Certain "obvious” instructions may not be present. The POP-11, for example, does not
contain an and instruction; its BIC instruction is actually an and-not.

o Certain operations, particularly unary ones, may be "free"”. Many machines, for example,
include load-compiement and Joad-negative operations. In such cases, the
complementary store instructions may or may nat be present.

In the remainder of this section | will show how these properties of the instruction set affect the kinds
of transformations performed by UCOMP. In particular, | will use the class of unary complement and
commutativity transformations on algebraic expressions to illustrate the process; these ideas extend
naturally to boolean expressions and to related transformations.

Before beginning | need to make two observations that affect the approach.
s First, the destroyability of the operands of an operator affect the choice of

transformations. User variables and the values of common subexpressions. for example,

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213

16

are usually not destroyable, while the results of other subexpressions normally are. The
locations in which a destroyable result resides can often be used profitably for the
romputation of its parent expression; non-destroyable iocations cannot.

¢ Second, in many cases the compiler is free to compute the negative of the value of an
expression rather than its correct value. In the example at the beginning of this section,
for example, the value (b-a) was computed rather than (a-b). Daing so allowed the
compiler to avoid computing (-y), and to modify the relational operator instead.

Now, let's turn to the gquestion of how UCOMP works. It consists of two passes over the program
representation. The first of these selects a limited set of transformations that could be applied at each
node: in fact, it selects just two possibilities, one that would compute the expression’s correct vaiue
and one that would compute the value with an inverted sign. Each of these transformations represents
the least expensive way to compute the value with the indicated sign. The second pass chooses
which transform to apply, and does it.

The reason for two passes is obvious, once you see it. Consider the example at the beginning of the
section again. At the time that UCOMP’s first pass examines the subexpression (a-b) it can easily
detect, in a manner to be described below, that {a-b) is the cheapest form that will create the value
with the correct sign; similarly, it can detect that (b-a) is the cheapest form for computing the value
with the inverted sign. n all probability, however, the cost of evaluating these two expressions will be
the same; there is no basis for choosing between them. It is onty in the (much) larger context of the
relational operator that its possibie to see that computing the inverted signs of both {a-b) and (-y} will
produce globally better code.

The task of the first pass can be characterized as simply associating nine pieces of information with
each node of the program tree:

Kp the cost of producing the value of the expression represented by the node with its
correct sign,
Tp an encoding of the transformation, if any, to be applied to the node in order to

produce the value with its correct sign,

Sip a boolean that specifies whether Tp assumes the correct or inverted sign of its left
operand {or ondy operand in the case of unary aperators),

Srp a boolean that specifies whether Tp assumes the correct or inverted sign of its
right operand (ignored if the operator is unary),

Kn, Tn, Sln, Srn simitar quantities for producing the value of the expression with inverted sign, and

D a boolean that indicates whether the value represented by the node is
destroyable.

17

This information is gathered on a bottom-up traversal of the tree with the aid of an auxiliary table.
The auxiliary table contains an encoding of the transformations that are possible, together with the
incremental cost of applying them. In effect, these tables are an enceding of normal algebraic axioms
that have been augmented with cost information that is derived from the code productions used by
CCDE. The encoding is such that it is directly in the form that becomes attached to the nodes, and is
guaranteed to include at least one way to produce both the correct and inverted sign for each
operator that can appear in the program tree.

In general, of course, there will be several applicable transforms; notably different transformations
will make different assumptions about the sign {correct or inverted) of its operands and about their
destroyabiiity. Since the first phase of UCOMP traverses the tree bottom-up, these properties of the
operands of a node are already known when the best choice(s) for that node must be made. Hence,
the phase computes the total cost, that is the sum of the costs for the operands and the incremental
cost from the auxiliary table, for each applicable transformation and chooses the cheapest. It then
records these choices in the node and continues the traversal.

it is worth noting that the actual information recorded is very small -- about 18 bits in the current
imptementation. The transformations, for example, all involve only simple things like negating an
operand, commuting the operands, and negating the node itseif. Thus, although the term
"transformation” may suggest something complex, for this "expert" it really connotes something very
simple.

Given the information gathered by the first pass, the second pass is very simple too. Itis a top-down
traversal. At certain points, like assignments and parameter passing, the semantics of the language
usually force the compiler to generate the correct sign for the value of an expression. At these points
the phase selects one of the alternatives. This choice, in turn, forces the choice of sign {correct or
inverted) on its immediate descendants (recall, this is enceded in Slp, Sin, etc.). These forced
choices are passed down, thus forcing similar choices on their descendants. The actual

transformations are applied as the phase backs out of the traversali.

At the risk of being somewhat repetitive, let's once again consider what has actually been done in
this phase. | began with what appeared to be an extremely difficult problem, algebraic simplification
constrained by the anomalies of target computer instruction sets. | did not need to solve the general
problem, however. Instead, | found a way of creating an "expert”" on a narrow subproblem involving
only commutativity and unary-compiement optimizations. This expert couid easily be endowed with
the requisite knowledge of the target machine -- in fact, all it needed was a table of costs
corresponding to the incremental cost of some simple instruction sequences. The resuit is easy to
comprehend, is machine-relative, is substantially beyond the capabilities of most existing optimizing
compilers, and is fast.

18

8 GEN: The Cnde Generator Generator

In the previous sections | focused on some phases of a PQC. The message of these sestions was
that the knowledge-based, expert system model, an idea from Al, provided a framework within which
the solution to an apparently very difficult problem could be effectively and efficiently constructed.
The choice of phases described in these sections was not accidental; partially they were chosen
because they couid be explained in isolation, but they were also chosen as preparation for the
present section. They all involved using the knowledge encoded in CODE’s pattern-action pairs in a
fairly direct way. In this section | will turn to a portion of PQCC, rather than PQC, technology and
consider how these pattern-action pairs are automatically derived from a formal machine description.
This, in turn, will expose another set of ideas borrowed from Al research. As with the previous
sections, | will be forced to merely sketch the relevant ideas; details may be found in [catteli78].

The program that generates CODE’s pattern-action pairs is called GEN. its basic problem is to
convert a formal machine description into these pairs. Given the pairs, deriving the information for
TNBIND and UCOMP, as well as some other phases of the real PQCs, is relatively simple.

The input to GEN consists of two parts: a machine description and a set of axioms. The axioms used
are primarily those of ordinary arithmetic and logic. For example, they inciude

E= --E

E+0= E

B = --B

BIAB2 = -(-8B1YV -B2)
~(E1>E2) = E1<E2

where the E's denote arithmetic expressions and the B's denote logical ones. In addition.' there may
be (for specific machines) axioms that, for example, refate logical and arithmetic quantities; on a two’s
complement machine, for example,

-E= (mE)+1
Other axioms capture essential notions such as sequencing and branching.

The formal machine description used by GEN contains details on the storage classes {e.g., the
kinds of registers and memory), effective address computations, and so on. Of particular relevance to
the present discussion, however, is that it contains a detailed description of the machine’s instruction
set. This description is in the form of "input/output assertions” associated with each instruction.
Input/output assertions are an idea borrowed from the research on formal semantics of programming
languages, and are often written in the form

PL { C } P2 '
where P1 and P2 are logical formulae, and C is some statement in the programming language. Such a

formuia is read

19

If the state of the program (variables) is such that the predicate P1 is true before
executing C, then the state of the program (variables) after executing C will be such that P2
is also true.

So, for example, the formula

x=1{x:= x+1}x=2
asserts the {obvicus) fact that if x has the value 1 before the assignment is executed, it will have the
value 2 afterwards.

The instructions of most computers will operate correctly under all circumstances, so the
precondition, P1, is generally not needed and | wiil elide it in the following. So, for example, some of
the instruction of the PDP-11 can be characterized as follows:

{CLR dst} dst=0 A N=0 A Z2=1
{MOV src dst} dst=src A N=(src<0) A Z={(src=0)
{SUBsrcdst} dst=dst-src A N=(dst<0) A Z=(dst=0)
{BICsrcdst} dst=(dst A —src) A Z=(dst=0)
where N and Z are two of the 11's "condition code"” bits, and the prime on dst {dst’) in the definition of

SUB denotes the value of dst before the instruction is executed.

The implementation of GEN consists of two parts. The first, cailed SELECT, proposes an
“interesting” set of program trees for which it would be nice to have code-generation patterns. This
set inciudes at least one tree for each construct in the scurce language, but in addition includes other
trees that may have interesting implementations. SELECT knows, for example, that literals, and
especially small titerals like 0, 1, -1, etc., often give rise to special cases that can be handled more
efficiently. The second part, called SEARCH, finds alternative impiementations for each of the trees
proposed by SELECT and emits pattern-action pairs for the most efficient ones.

SEARCH is the more interesting part of GEN, so fet's look at it in more detail. Suppose that we are
attempting to generate a code generator for the PDP-11, and further suppose that SELECT has
proposed the tree

a:=b.
The postcondition of this statement is simply a = b. and is therefare implied by the postcondition of the
MOV instruction above®. Thus, MOV is a legal implementation of the proposed tree, and in fact in this
case is probably the only such. This is the simplest kind of situation for SEARCH, and, in effect, can
be done by simple pattern matching. In particular, elaborate theorem proving is not needed.

Now let's consider a slightly harder example. Suppose we are still trying to create a code generator
for the PDP-11, and that SELECT proposes the tree

8Of course, the MOV instruction does more than is needed since it also sets the condition codes - but [witl ignore that here,

UNIVERSITY LIGRARIES
CARMEGIE-MELLON UMIVERSITY
PITIITURGH, PENPISYLVAMIA 187}~

20

a:= b-c.
Because the variables are all different, no postcondition on an instruction will directly imply that of the
proposed tree. In such a case, SEARCH, among other things, will try a classic Al technique called
“means-ends” analysis. In effect, it will note that the postcondition for the SUB instruction a/most
works -- the only problem is that SUB requires that the left-hand side of the assignment and the left
operand of the subtract be in the same location. Therefore, SEARCH sets up a "subgoal” for itself,
namely to get these to be the same. The subgoal is, of course, just the previous program tree,

a:=b.
By applying itself recursively to this subgoal it will find the sequence

MOV b,a
SUuBcea.

Means-ends analysis supplies much of the "smarts" needed by SEARCH, but it is not enough.

Suppose that SELECT had proposed

a:= bandc¢
and that we are still targeting for the PDP-11. In this case, the closest match will be with the BIC
instruction, but there are two problems. One is the same as discussed above; we must get the left
operand of the and into the destination location. The other is that BIC complements its source
operand. While means-ends analysis will solve the first problem, the second requires applying the
axioms of logic. SEARCH will find that, if it applies

B= -—B
to the right argument, and then sets up the subgoal of

t:= noth
it can produce the code

MOV ¢t
CMP t

MOV b,a
BIC ta.

{(For those unfamilar with the PDP-11; this sequence first moves ¢ into a temporary, t, and then
complements t. It then moves b into a, and finally does an and-not, BIC, from t into a.}

GEN does not, of course, stop after it finds a single instruction sequence for one of the goals
proposed by SELECT. Instead, it generates all the sequences that it can within specified time limits on
its search. Although | did not explicitly indicate it above, the machine descriptions also include cost
information. SEARCH uses this to remember only the least costly sequences, and these are the ones
emitted for use by CODE, TNBIND, etc.

From a strictly theoretical perspective, GEN is not quaranteed to find the optimal code sequence for
the trees proposed by SELECT. Even if it were to run indefinitely long this would be true, but the fact

21

that a limit is placdfl on its search makes this obvious. As a completely practical matter, real
instruction sets are both simple and quite complete. As a result, in our experience. GEMN nas always
found what | believe to be optimal sequences -- typically in less than a tenth of a second per
construct. Since only a few hundred such constructs are usually needed, the total time to generate

the database for CODE is on the order of a few minutes.

There are things that GEN cannot do. | alluded to some of them earlier; it cannot, for example, make
decisions about things like calling conventions or register conventions that are actually dictated by
external factors. The current implementation, in addition, cannot cope with elaborate control
constructs; it will not, for example, discover the transfer-vector implementation of case statements.
Nonetheless, it does do an excellent job of the more mundane, tiresome, and error-prone aspects of
generating code sequences for the bulk of constructs. Moreover, the nature of the pattern-action
pairs is such that the output of GEN can be augmented manually for these few difficuit cases.

9 Summary

PQCC and the resulting PQCs are concrete examples of both the notion of machine-relative
software and the impact of Al technigues on a practical application area. There is, of course, much
more to PQCC than either of these; it involves, for example, a lot of compiler technology and solid
engineering. In addition, as should be evident from the material presented here, important
contributons have been borrowed from the more theoretical side of computer science: formal

semantics, and algonthm design (for graph colering and flow analysis) are two examples of this.

PQCC is a relatively mature research project. | expect a complete prototype PQCC system to be
operational by early 1881 and to have generated a number of PQCs with it by that time. As of this
writing, all of the phases have been formalized and something like two-thirds of them are operational.
Preliminary comparisons of the operational phases indicates that they are slightty larger and slower
than the corresponding components of comparable hand-generated compilers. However, the
differences are small -- and are mostly due to an artifact of the research strategy. "Eyeball” analysis
suggests that real production versions will in fact be no worse than hand-constructed versions -- and

will usually be better.

The lesson from all this, | hope, is that software is emerging from the state of being a black art into
one in which it is a sound engineering discipline. Like all engineering, it is basad on both hard headed
cost-benefit tradeoffs and scientific principles. Evidence for the emerging state of software
technology can be found in many places; PQCC is just one. Nonetheisss, | hope it has served as an
example that peints out some of the tmportant directions that | believe the discipline will take.

[2]

(3]

(4]

{s]

(6]

[71

[8]

(el

22

References

Aho, A., Ullman, J.
Principles of Compiler Design.
Addison-Wesiey Publishing Co., 1977.

Aho, A.
Translator Writing Systems: Where Do They Now Stand.
Computer 13(8), August, 1980.

Cattell, R.
Formalization and Automatic Generation of Code Generators.
PhD thesis, Carnegie-Mellon University, 1978.

Erman, L., ans Lesser, V.
The Hearsay-l! Speech Understanding System: A Tutorial.
in Lea, W. (editor), Trends in Speech Recognition, . Prentice-Hail Publishing Co., 1878.

Forgy, C.
On the Efficient Implementation of Production Systems.
PhD thesis, Carnegie-Mellon University, 1979.

Graham, S.
Table-Driven Code Generation.
Computer 13(8), August, 1980.

Johnson, S.
Language Development Systems on the Unix System.
Computer 13(8}, August, 1880.

Leverett B., Cattell, R., Hobbs S., Newcomer, J., Reiner, A., Schatz, B., Wulf, W.
An Overview of the Production-Quality Compiler-Compiler Project.
Computer 13(8), August, 1980.

Leverett, B.

Machine Independent Register Allocation in Optimizing Compilers.
PhD thesis, Carnegie-Mellon University, 1980.

(title is tentative, to be published Fall 1880).

