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Abstract

Practice, and the performance improvement that it engenders, has long been a major topic in psychology.
In this paper, both cxperimental and theoretical approaches are employed in an investigation of the
mechanisms underlying this improvement. On the experimental side, it is argued that a single law, the power
law of practice, adequately describes all of the practice data. On the theoretical side, a model of practice
rooted in modern cognitive psychology, the chunking theory of learning, is formulated. The paper consists of
(1) the presentation of a set of empirical practice curves; (2) mathematical investigations into the nature of
power law functions; (3} evaluations of the ability of three different classes of functions to adequately model
the empirical curves; (4) a discussion of the existing models of practice: (5) a presentation of the chunking
theory of learning.
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MECHANISMS OF SKILL ACQUISITICN
AND THE LAW OF PRACTICE!

1. INTRODUCTION

Practice makes perfect. Correcting the overstatement of a maxim: Almost always, practice brings
improvement, and more practice brings more improvement. We all cxpect improvement with practice to be
ubiquitous, though obviously limits exist both in scope and extent. Take only the experimental laboratory:
We do not expect people to perform an experimental task correctly without at least some practice; and we
design all our psychology experiments with one eye to the confounding influence of practice effects.

Practice used to be a basic topic. For instance, the first edition of Woodworth (1938) has a chapter entitled
Practice and Skill. But, as Woodworth {pl56) says, "There is no esscntial difference between practice and
learning except that the practice experiment takes longer”. Thus, practice has not remained a topic by itself,
but become simply a variant term for talking about learning skills through the repetition of their performance.

With the ascendence of verbal learning as the paradigm casc of learning, and its transformation into the
acquisition of knowlcdge in long term memory, the study of skills took up a less central position in the basic
study of human behavior. It did not remain entirely absent, of course. A good exemplar of its continued
presence can be seen in the work of Neisser, taking first the results in the mid-sixties on detecting the presence
of ten targets as quickly as one in a visual display (Neisser, Novick & Lazar, 1963), which requires extensive
practice to occur; and then the recent work (Spelke, Hirst & Neisser, 1976) showing that reading aloud and
shadowing prose could be éccomplishcd simultancously, again after much practice. In these studies, practice
plays an essential but supporting role; center stage is held by issues of pre-attentive processes, in the earlier
work, and the possibility of doing multiple complex tasks simultaneousty, in the later.

Recently, especially with the paper by Shiffrin & Schneider (1977; Schneider & Shiffrin, 1977), but starting
earlier (LaBerge, 1974, Posner & Snyder, 1975), emphasis on automatic processing has grown substantially
from its level in the sixties. It now promises to take a promincnt place in cognitive psychology. The
development of automatic processing seems always (o be tied to extended practice and so the notions of skill
and practice are again becoming central.

There exists a ubiquitous quantitative law of practice: It appears to follow a power law. That is, plotting the
logarithm of the time to perform a task against the logarithm of the triul number always yields a straight line,

more or less. We shall refer to this law variously as the log-log linear learning law or the power law of practice.

]’I'his paper relies on the data of many other investiators. We are deeply grateful to those who made available original daw: John
Anderson, Stu Card. Paul Kolers. Tom Morzan. David Neves, Patrick Rabbiit. and Robert Seibel. We are also erateful 10 Johr Anderson.
Stu Card. Clayton lewis and Tom Moran f{or discussions on the fundamental issues: and cspeciatly W Clayton Lewis for letting us read
his paper, which belped 1o energive us 1o this effort.
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This empirical law has been known for a long time; it apparcntly showed up first in Snoddy’s (1926) study
of mirror-tracing of visual mazes (see also Fitts, 1964), though it has been rediscovered indcpendently on
occasion (DeJong, 1957). Its ubiquity is widely recognized; for instance, it occupies a major position in books
on human performance (Fitts & Posner, 1967, Welford, 1968). Despite this, it has captured little attention,
especially theoretical attention, in basic cognitive or experimental psychology, though it is sometimes used as
the form for displaying data (Kolers, 1975, Reisberg, Baron & Kemler, 1930). Only a single model, that of
Crossman (1959}, appears to have been put forward to explain it.> Itis hardly mentioned as an interesting or
important rcgularity in any of the modern cognitive science texts (Calfee, 1975, Crowder, 1976, Kintsch, 1977,
Lindsay & Normon, 1977). Likewise, it is not a part of the long history of work on the learning curve
(Thurstone, 1919, Guilliksen, 1934, Restle & Greeno, 1970), which considers only exponential, hyperbolic and
logisﬁc functions. Indeed, a recent extensive paper on the learning curve (Mazur & Hastie, 1978) simply
dismisses the log-log form as unworthy of consideration and clearly dominated by the other forms.

The aim of this paper is to investigate this law. How widespread is its occurrence? What could it signify?
What theories might explain it? Our motivation for this investigation is threefold. First, an interest in
applying modern cognitive psychology to user-computer interaction (Card, Moran & Newell, 1980a,
Robertson, McCracken & Newell, 1980) led us to the literature on human performance, where this law was
prominently displayed. Its general quantitadve form marked it as interesting, an interest only heightened by
the apparent general neglect of the law in modern cognitive psycholegy. Second, a theoretical interest in the
nature of the architecture for human cognition (Newell, 1980) has led us to search for experimental facts that
might yield some useful constraints. A general regularity such as the log-log law might say something
interesting about the basic mechanisms of turning knowledge into action. Third, an incomplcte manuscript
by Clayton Lewis (Note 2) took up this same problem; this served to convince us that an attack on the
problem would be useful. Thus, we welcomed the excuse of this conference to take a deeper look at this law
and what might lay behind it.

In Section 2 we provide many examples of the log-log law and characterize its universality. In Section 3 we
perform some basic finger exercises about the nature of power laws. In Scction 4 we investigate questions of
curve fitting. In Section 5 we address the possible types of explanations for the law; and we develop one
approach, which we call the chunking theory of learning. Finally, in Section 6, we sum up our results.

2But see Suppes, Fletcher and Zanouti (19763, who do develep a model viclding a power law for instructional learning, though their
cffort appears independent of 4 concern with the general repudarity. Unlorunately. their description: is too [ragmentary and faulty 1©
permit it 1o be considered turther.
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2. THE UBIQUITOUS LAW OF PRACTICE

We have two objectives for this section. First, we simply wish to show enough examples of the regularity to
lend conviction of its empirical reality. Second, the law is generally viewed as associated with skifl, in
particular, with perceptual-motor skills. We wish to replace this with a view that the law holds for practice
learning of all kinds. In this section we will be presenting data. We leave to the next section issues about
alternative ways to describe the regularity and to yet subscquent sections ways to explain the regularity.

We organize the presentation of the data by the subsystem that seem to be engaged in the task. In Table 1
we labulate several parameters of each of the curves. Their definitions will be given at the points in the paper
where the parameters are first used.

Dala Set Power Law
T=A8N"%
B a P
Snoddy (1926) 7920 26 981
Crossman (1959) 170.1 21 979

Kolers (1975) - Subject HA 1485 4 931

Neisser et al. (1963)

Ten targets 161 81 973

One target 68 51 944
Card, English & Burr (1978)

Stepping keys - Subj. 14 495 08 335

Mouse - Subj. 14 02 13 398
Seibel (1963) - Subject JK 1233 32 991
Anderson (Note 1) - Fan 1 2358 19 927
Moran (1930)

Total time 3027 08 8319

Method time 1959 06 382
Neves & Anderson (1980)

Total time - Subject D 9912 .51 780
The Game of Stair

Won games 1763 21 849

Lost Games 950 .18 842
Hirsch {1952) 1001 32 932

Table 1: Power Law Parameters for the
{Log-1Log) Linear Data Segments.
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2.1. Perceptual-Motor Skills

Let us start with the historical case of Snoddy (1926). As remarked carlier, the task was mirror-tracing, a
skill that involves intimate and continuous coordination of the motor and perceptual systems. Figure 1 plots -
the log of performance on the vertical axis against the log of the trial namber for a single subject.

3
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G—d T = 1920828
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Time + Errors

100

-
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A3

1 - 10 100
Trials

Figure 1: Learning in a Mirror Tracing Task (Log-Log Coordinates).
Replotted from Snoddy (1926).

The first important point is:
o The law holds for performance measured as the fime to achieve a fixed task.

Analyses of learning and practice are free a priori to use any index of performance: eg, errors or performance
time, which decrease with practice; or amount or quality attained, which increase with practice. However, we
will focus exclusively on measures of performance time, with quality mcasures {errors, amount, judged
quality) taken to be essentially constant. Given that humans can often engage in tradeoffs between speed and
accuracy, speed curves are not definable without a specification of accuracy, implicit or otherwise.® As we will
illustrate later, the log-log law also appears to hold for learning curves defined on other performance criteria.
Though significant for understanding the cause of the power law, we will only note the cxistence of these

3Snodcly used an indicator, 1/{Time + Frrors), and we have replotied the figure using Time + Crrors, This strikes ihe modern cye as
incongruous. adding rogeiher apples and oranges. In fact, the measure is almost purely performance time. Saoddy was endeavoring (o
cope with the specd/accuracy trade oft. e fixed the error rate o be cqual to the performance time (in secondsy: and had the subject
work faster or stower in order 1o hold the error rate at that level Thus the error rale bore a fed average relationship 1o tine: and adding
the actual value of the errors to the performance time was a way of compensating for momentiry <hifts in the speed/acenracy tradeodt
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other curves.

Several other things can be noted in Figure 1, which will show up generally in the other curves.

e The points are sparse at the left and become denser to the right. This arises from taking the log of
the trial number. Even when trials are aggregated into blocks this is usually done uniformly in
linear space, Thus, this is just an artitact of the display.

¢ There is systematic deviation at one end. Here it is the beginning, Snoddy made a lot of this initial
deviation, though we need not follow him in this. As we shall sce, systematic deviation can occur
at either end.

e There is little doubt that the bulk of the curve lies along a line in log-log space. This arises in part
because of the relatively large number of points avaitable.* The curves are for an individual, not
for grouped data. This is not a condition of the law, but shows that it holds for individual data.

e Data are rarcly presented on many subjects, though in some cases such data cxists and
{(apparently) is robust. For instance, Snoddy took his curve as diagnostic and appears to have
gathered it on large numbers of individuals, though he never reported any mass of data.

In Tabie 1 we tabulate several critical features of the Snoddy's data. The following equations describe the
power law in linear and log-log spaces: .
T=BN" ()
log(T) = log(B) - alog(¥) 2
B is the performance time on the first trial (¥ = 1) and a is the slope of the line, ie, the learning rate, A
positive value of a, eg, .26 for the curve of Figure 1, indicates a decreasing curve, since we have located the
minus sign in the equation itself,

Another example from a task that appears to involve intimate motor-perceptual coordination is shown in
Figure 2. This is Crossman’s (1959) famous data on the manufacture of cigars by fcmale operators using a
cigar-making machine. Noteworthy is the number of trials, namely, up to 20 million cigars. Also, there is a
known lower bound for the performance time, namely the cycle time of the machine. The curve eventually
deviates from the log-log line, flattening out in submission to physical necessity. Stll, practice followed the
law for almost 3 million trials (and 2 years). Furthermore, additional small improvements continued; and it
would be foolish indecd to predict that no further improvements would occur. Crossman’s data differs from

all other data in being cross-sectional, ie, different individuals make up cach point.

Obvious deviabons at the ends of the empincal curves were climinated before the s in Tabie 1 were computed,  he cquatinns
therefore primanily represent this lincar portiea ol the curve. The solid Hine in Figure 1(and in the following fonres) reflests this fic
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Figure 2: Cross-sectional Study of Learning in Cigar Manufacturing (Log-Log Coordinates).
Replotted from Crossman (1959).
2.2. Perception

Figure 3 shows the data from one subject (of eight) in Kolers's well known studies on reading graphicaily
transformed text (Kolers, 1975). Here, the transformation is inversion of each line around its horizontal axis.
The task of the subject is to rcad many pages of such text for comprehension. Reading in general is a complex
task, but the difficulties here are clearly strongly perceptual, being caused primarily by the perccptual
transformation. Without inversion, reading is much faster and improves hardly at all (though we don’t show
Kolers’s control data on this). In any event, as the figure shows, learning is log-log linear.

Figure 4 shows some data replotted from a paper by Neisser, Novick & Lazar (1963). The task consisted of
finding any of multiple targets in pages of letters. The result was that, with practice, identification time
becomes essentially independent of the size of the target set. As Figure 4 shows, this data also follows the log-
log law, though there scems to be a slight drop at the end. These two curves (scanning for one target and for
ten targets) represent the two bounding conditions of the five used in the experiment. Each curve is the
average of six subjects. Omne of the reasons for exhibiting these partticutar curves is to point out that much

learning data in the literature fits the log-log law, even though it has not been plotted that way.
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Figure 3: Learning to Read Inverted Text (Log-Log Coordinates).
Plotted from the original data for Subject HA (Kolers, 1975).
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Figure 4: Leaming to Scan for Visual Targets (Log-Log Coordinates).
Replotied from Neisser. Novick & Tazar 1963},
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2.3. Motor Behavior

Figure 5 is from a task where a subject sces a target mark appear on a video terminal and has to position the
cursor at that mark (Card, English & Burr, 1978). Four different pointing devices were used: a mouse, which
permits a smooth pointing motion isomorphic to the motion of the cursor; a joystick; a set of stepping keys;
and a set of text keys, which allow movement by paragraph, word, etc. Some of these devices are well
described by Fitts’s Law (Fitts, 1954); some have a different structure. The two curves in Figure 5 show the
mouse and stepping key data for one subject, averaged over blocks of 20 trials (excluding errors). For all of
the devices, the total performance time follows the law, though the degree of variability increases as one
moves from the Fitts's law devices (the mouse) toward the other ones.

= 100
I F
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S I o aen OB
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o
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s 10t
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! 0 _ o .
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ettt st st . ° g i i i i ‘-“t &
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B AL 1Y
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1 10 100

Block number

Figure 5: Learning to Use Cursor Positioning Devices (Log-Log Coordinates).
Plotted from the original data for Subject 14 (Card, English & Burr, 1978).

2.4. Elementary Decisions

Figure 6 is from a task designed by Seibel (1963) to probe the dependence of reaction time on the number
of alternatives. It followed in the wake of the work by Hick (1952), Hyman (1953) and others showing that
choice RT was linear in the information (bits) required to select the response, at least for small ensembles (up
1o 3 or 4 bits). The subject’s 10 fingers rested on 10 response Keys (shaped to fit the natural position of the
resting hand) and looked at 10 stimulus lights that were configured isomorphicaily to the keys. A subset of the
lights would turn on, and the subject was (o strike the corresponding keys. There are 1023 (210 - 1) different
subsets of the lights: hence, the arrangement achieves a Choice RT task of 10 bits. For cur purposes what is

interesiing is that the learning over a large numberof wials (40.000) was tog-log lincar, though at the end the
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curve flauens out. This is data for a single subject, averaged over blocks of 1023 trials; approximately the
same behavior was shown by each of three subjects.

—
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Reaction time (seconds)
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0.1 X X M T S T T M 3 M SR T S S G 1 M i PR T N S S N |
100 1000 10000 100000
Trial number
Figure 6: Learning in a Ten Finger, 1023 Choice Task (Log-Log Coordinates).
Plotted from the original data for Subject JK (Seibel, 1963).
2.5. Memory

Figure 7 is from some unpubtished work of John Anderson {(Note 1). It shows learning performance in a
task that would appear to stress mostly memory, though of course it has both a perceptual and a motor
response aspect. The task is an old-new judgment on a set of simple sentences, such as "The doctor talked to
the lady."” There is a fixed population of grammatical subjects, objects and verbs; a subset of these are seen
initially, and then sets of the originals plus distractors (made from the same populations) are shown
repeatedly. After awhile of course a subject has secn both the targets and the distractors several times. The
figure shows that the reaction time to make the memory judgment follows the log-log linear law.

2.6. Complex Routines

Figure 8 is from some work done in connection with a general attack on understanding uscr-computer
interaction (Moran, Note 4). A specific, complex on-line editing task of completely rearranging a given
sentence of three clauses is being performed repeatedly. The task is absolutely identical each time, ie. the
same sentence. Thus we are secing a subject simply follow an internally familiar, complex plan. The top
curve i3 the wtal time o perform the task; The lower curve shows the executon time attributable to the

specific method heing used. computed according to a model based on the keystroke sequence (Card, Moran &
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Figure 7: Learning in a Sentence Recognition Task (Log-Log Coordinates).
Plotted from the fan 1 data of Anderson (Note 1).
Newell, 1980b). It decreases only if the subject makes some improvernént that changes the number of
keystrokes, rather than decreasing think time. Both curves show log-log linear practice effects.

Figure 9 shows a more complex cognitive task (Neves & Anderson, In press), but one that still can be
considered as evolving toward a complex routine. The task is to find the rule justifying each step in a proof in
a simple formal proof system, taken to mirror the typical proof system of synthetic geometry. The subject '
faces a display that shows (on request) the lines of the proof, the axioms, or the theorems that are applicable to
derive new steps in the proof, He must assign to each step whether it is an axiom or which rule is used in its
derivation. As the figure shows, the time to perform this task follows the log-log linear law.

2.7. Problem Solving )

Figure 10 shows our own small addition to the population of tasks known to follow the log-log linear law.
As the ubiquity of the law became clear, it seemed that it was miscast as something applying only to
perceptual and motor skills, but rather it applied to ail forms of mental behavior. To test whether the law
applied to problem solving tasks, we had a single subject play 500 hands of a game of solitaire called Stair.
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Figure 8: Learning of a Compiex On-line Editing Routine (Log-L.og Coordinates).
Plotted from the originai data of Moran (Note 4).
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Figure 9. Learning in 2 Geometry Proof Justification Task (Log-Log Coordinates),
Plotted from the original data (Neves & Anderson, In press)
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Stair involves laying out all 52 cards face up from a shuffied deck, in 8 columns (four with 7 rows,
four with 6 rows). There are also four spots (initially empty), cach of which can hold only a single
card. The aim is to build four stacks, Ace to King, one for cach suit, by moving cards around
under typical solitaire constraints. A card in a spot or at the bottom of a column may be moved:
(1) to a spot, if it is empty; (2) to a stack, if the card is the next in order building up: or (3) 10 the
bottom of another column, if the card is the next lower in the same suit {eg, the six of spades
appended to the seven of spades).
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] .-G
X o1
10l 0. — ' I
7 . 100 1000

Game number
Figure 10: Learning in the Card Game Stair (Log-Log Coordinates).

The game can be secn to be one of perfect information -- all cards are face-up. The shuffled deck simply
picks out one of the possible initial conditions at random. From that point no further chance element enters.
Whether the game can be won or not, or how many cards ¢an be moved to the stacks, is derivable from the
initial configuration. The subject, whose ability to calculate ahead is of course limited, may creaic a partial
plan and then proceed to execute it; in doing so, he may make irrevocable moves that lose him the possibility
of winning. But such failures all arise, as in chess or checkers, because of his limited problem solving ability.
Although this task certainly has a strong perceptual component (and a weak motor component), it is to be
classed as fundamentally an intcllectual task, in the same way as games such as chess and checkers, or

problems such as the fraveling salesman problem.

Turning to the figure, the top curve shows the time for games that the subject won; the lower curve shows
the time for games that the subject lost; at the bottom the proportion of games won is shown. The points are
averaged over 50 games. There is of cowrse only one scrics of trials, since all games, woa or lost, contribute to

practice. Each group of 50 games i therefore split hetwaen the two curves before being averaged. Both
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curves essentially follow the log-log linear law. In general it takes longer to win than to lose, since losing
involves becoming stuck after a rclatively small number of cards has been played to the stack, whereas
winning always involves working through all 52 cards (though the tail end goes rapidly).

The issue of the speed-accuracy trade off reveals itsclf in this data. Clearly, the subject is applying various
criteria of certainty to his play. He could conceivably, as a strategy choice, study each initial layout for 5 hours
before making his first move; or play impulsively with no contemplation at all. In fact, the subject felt he had
little genuine control of the speed/accuracy tradeoff, partly because the complexity of the initial position
made it unclear whether an apparently lost game was just a bad layout or was due to a failure to spend enough
time analyzing. Note that the most deviant point from the log-log line (at 150-200 trials) corresponds to the
lowest win frequency.

2.8. Other Tasks and Measures
The story does not quite end at this point. Learning in other tasks and measured on other criteria seems to
follow the log-log law, We give here a couple of examples.

Figure 11 is reproduced from Stevens and Savin (1962). It plots eight tasks with various response measures
in log-log space. The criteria are all oriented to increase with practice. The plot is actually of the cumulated
responses, ie, the integral of the usual curve, This is just the same as the usual power law, since the integral of
a power law is a power law {though integration tends to smooth the curve, helping to account for the lovely
appearance of the curves, in addition to the relatively large numbers of subjects).

N |
J. Bxax = BU-ay - &)

Some of these curves are time curves (actuaily, amount accomplished per unit time, to make them positive
curves); but several are not, eg, #1 is the number of correct anticipations in learning nonsense syllables, #2 is
the time on target in a pursuit tracking task; # 3 is the number of balls thrown into a target area; #4 is the
number of correct responses in an animal experiment in learning a maze, and so on.

As a second type of example, it has long been known in Industrial Engineering that the so-called learning
curve for production of manufactured projects was log-log linear. In part this comes of various simple rules of
thumb, eg, "... each time the quantity of [air]plancs is doubled, the cumulative average man-hours per plane
will be [reduced by] 80%" (Rigon, 1944). However, Figure 12 shows an empirical curve from machine tool
manufacture (Hirsch, 1952). Notice that the index of performance is not time, but cost,
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Figure 11: Eight Cumulated Response Practice Curves (Log-Log Coordinates).
Figure from Stevens & Savin (1962). Copyright 1962 by the Society for the
Experimental Analysis of Behavior, Inc.

2.9, Summary
We have shown some 12 diverse examples of the log-log lincar law of practice for trials versus time. From

Table 1 we can make one more particular point:

o The learning rates, a, are all Jess than one.

Our main point is that the law is ubiquitous when one measures the log of performance time against the log
of trial number. Where the general impression seems to have been that the law showed up in perceptual-
motor behavior, we think it is clear that it shows up everywhere in psychological behavior - at least it cannot

easily be restricted to some part of the human operation,

Qur proposition on ubiquity is extended, perhaps beyond our druthers, to learning curves involving other
measures of performance and even to tasks possibly (but not certainly) beyond the pale of individual human
behavior. We do not however claim that all learning is log-log linear. Nor do we claim that practice always
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Figure 12: The Effect of Practice on Direct Labor Requirement
Machine Production (Log-Log Coordinates).
Replotted from Hirsch (1952).
leads to learning.

~ We do not wish to assert that such an effect stems from a single cause or mechanism. Indced, its ubiquity
might scem to indicate multiple explanations. We do wish to make one general comment about the regularity
and what might be expected from understanding it. Its widespread occurrence implies that it depends on
quite general features of the learning situation or of the system that learns. If we develop a theory that
depends on detailed perceptual or motor mechanisms, we will just create trouble for the more cognitive
instances, or vice versa.

One is immediately reminded of other examples of ubiquitous regularitics and their cxplanation. The
normal distribution, which arises out of the independent additive combination of many small increments, is
the most well known. Another, usually known as Zipf’s Law, gives the distribution for items according to their
rank order, which is common to word frequencies, city sizes, incomes and many other ordered phenomena
(Simon, 1955). Consistently, highly gencral stochastic models underly these various phenomena. They
explain the regularity, but lcave open the detailed mechanisms that produce the stochastic processes,

Thus, in searching for an explanation for this regularity, we should expect at best to find some such general
considerations. Though it will not tell us in detaii about the learning mechanism, it may still tell us something
worth having,
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3. BASICS ABOUT POWER LAWS

In this section we present some general perspective on power laws and what they mean,

3.1. Differential Forms and Rates of Change
We start with the power law and its equivalent log-log form:

T=8N" , (4)
log(T) = log(B) - alog(N) %

It is instructive to see this in terms of the local rate of learning, 4T/dN 3
dT/dN = -aBN™® "1 (6)
= -qT/N=~(a/N)T (7
- _aB-lla Tl +1l/a (8)

Now, one baseline form for learning is exponential. It can arise, for instance, from any mechanism that is
completely local. If there is something that learns on each local part of a performance, independent of any
other part, then the change in T (the sum of the changcs to each part of T') is proportionat to 7

dT/dN = =aT 9)
T = Be*V (10)

Comparing this differential form to that of the power law, shows that power-law learning is like exponential
learning in which the instantaneous rate a’ decreases with NV, ie:
dT/dN = -a'T, where a’' = a/N (11)

Both the exponential and the power function are monotonically decreasing functions that asymptote at 0.
The decreasing rate of learning in the power function leads to its approaching asymptote much more slowly.
Figure 13 shows these two curves in linear coordinates, with identical initial values (B = 1). This corresponds
to N = 0 for the exponential, and N = 1 for the power. Thus, one way to think of power law learning is that it
is a learning process in which some mechanism is slowing down the rate of learning.

Not every scheme of slowed-down learning leads 0 the power law. For instance, if we generalize the
differential cquation above we get a different law:

AT7dN = (a/NB)T, where Bl (12)

T = pe-at'* 13)

A representative curve for 8 less than 1 is also shown in Figure 13, which produces asymptoting between the

exponential and the power law.

SFor ease of exposition we lreat the tral number N a5 a continuous vanable, In fact, nothing matenal depends on it; we could work
with finite differcnces throughout, at the cost of added complexity.
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Figure 13: Basic Learning Curves: Power Law, Exponential, and a Generalized Curve,

The form of the power law can be appreciated in terms of a simple global rule, as well as in differential
form: )

Power Law Decay: If T decreases by a factor 8 in the first NV trials, it will take another N(N-1)
trials w0 decrease by a factor of § again.

Comparison with the corresponding global rule for the exponential, shows again how much more siowly the
power law drops off:

Exponential Law Decay: If T decreases by a factor of § in the first & trials, it will take another ¥
trials to decrease by a factor of § again.

3.2. Asymptotes and Prior Expericnce

As given in FEquation 4, the law assumes (1) the asymptote of the learning is 0, ie, the task can be performed
in arbitrarily small time after encugh learning; and (2) the initiat trial of the learning occurs at the first trial of
the measured serics. Neither of these assumptions need be true.

The more general form of the law is:
T=d+RBN+EY" (14)
A (=0) is the asymptote of learning as N increascs indefinitely, £ {>0) is the number of trials of learning that
occurred prior to the first trial as measured, ie, prior experience: it thus identifies the true siarting point of

learning., (Neither o1 < 0 or £ < 0 make immediate sense, given these interpretations; A = 0, £ =0
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reproduces the basic form of Equation 4.)

Plotting log(T - 4) against log(V + L) still yields a straight linc whose slope is -a. The difficulty of course
is that 4 and E are not known in advance, so the curve cannot be plotted as an initial exploratory step in an

investigation.

One alternative is just to plot in log({ 7)-log(V) space and understand the deviations:
log(T ~ A) = log{ B) - alog(N + E) (15
log(T) = log(B) - log(l - A/T) - alog(N) - alog(l + E/N) (16)

There is an error term for each parameter. If 7 is large with respect to the asymptote, A, then log(l - A/T)
is close to log(1), which is 0. This occurs at early values of N. If N is large with respect t0 E, then log(l +
E/N) is close to log(1), which is 0. Thus, the two deviations affect the curve at opposite parts: Non-zero
values of E distort the straight line for low N, non-zero values of A distort it for high N.

Figure 14 shows a power law with a starting point (-£) of =25 and a time asymptote (4) of 5. Figure 135
shows the same curve in log-log space. Characteristically, the starting point pulls the initial segment of the
curve down towards the horizontal and the finite asymptote pulls the high ¥ tail of the curve up towards the
horizontal. A central region of the curve appears as a straight line. It is however less than the truc slope (-a),
as the line shows.

-5
General power law: 1 =5 + 75(N + 25)

Figure 14: .\ Genersl Power Law Curve.
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Figure 15: A General Power Law in Log-Log Coordinates.
The simple power law with the same « and 8 is also shown.
The derivative of the general power function in log-log space is given by:
d(log(T))/d(log(N)) = -a (1 - 4/T)y/ (1 + E/N) (17

It can be seen that the slope is everywhere smaller than a, and becomes increasingly so as either 4 or £
increases. A reasonable cstimate of the apparent slope as viewed on the graph, a*, is at the inflection point. It
is easy to obtain by setting the derivative of Equation 17 to zero:

d/dNTd(log(T))/ d(log{N))] = ~(a/NXE/N - ad/TY(L - A/TY(L + E/NY 2 =0 (18)

a*=(aN*-EY/(N*+ E) (19)
N* is the point at which the inflection occurs. The exact value of N* is not expressible in simple terms, but a
reasonable approximation is:

N* = [BE/aAlV ™) where E/N*<<a <1 (20)

The structure of Figure 15 suggests that many of the deviations in the empirical curves could be due simply
to starting point or asymptote effects. Since the cffect of these two phenomena is 1o bend towards the
horizontal at scparate ends, it is possible to tell from the curve in log-log space what effect might be operating.
The original Snoddy data in Figure 1 provides an example of a clear initial deviation. It cannot possibly be
due (o an carlier starting point, because the initial curve rises toward the vertical. However it could be due to
the asymptote, since raising the asymptote parameter (A} will pull the right hand part of the curve down, and

make its slope siceper. The Scibel data in Figure 6 provides an example where there are deviations from
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linearity at both ends. Use of a non-zero value for / (previous expericnce) will stecpen the initial portion of
the curve, while doing likewise for .4 will steepen the high N portion of the curve. (The results of such a
manipulation will be seen later in Figure 21.)

3.3. Trials or Time?

The form of the law of practice is performance time (7} as a function of trials (N) But trials is simply a way
of marking the temporal continuum (/) into intervals, each one performance-time long. Since the
performance time is itself a monotone decreasing function of trial number, trials () becomes 2 non-linear
compression of time (¢). It is important to understand the effect on the faw of practice of viewing it in terms
of time or in terms of trials. '

The fundamental relationship between time and trials is:
N N N
(M) = Ty+ Dy Ty =Ty 2y B = Ty + By i 1)

T is the time from the arbitrary time origin to the start of the first trial. This equation cannot be inverted
exphculy to obtain an expression for N(r) that would permit the basic law (Equation 4) to be transformed to
yield T(¢). Instead, we proceed indirectly by means of the differential forms. From Equation 21 we obtain:

dt/dN =T (22)

z
(Think of the corresponding integral formulation, d/dz f “fx) dx = (2.

Now, starting with the power law in terms of trials we get:

dTtdt =(dT/dN) / (dt/dN) = (~aT/N)/ (T) = -a/N (23)
But from the basic equation (4):

N=(T/ByY® (24)
Thus, we get the trials power law re-cxpressed in terms of ime:

dT/dt = ~aB Ve TV (25)
For a = 1 this integrates to yield:

T o (- a)B Y%+ C, fora=l (26)
But C is an arbitrary constant of integration and if the origin and scale of ¢ is adjusted appropriately we get:

T=3871"9  fora=l @27

Thus, a power law in terms of trials is a power law in terms of tme, though with a different exponent,
reflecting the expansion of time over trials. The results are significantly aitered when @ = 1 (the hyperbolic)
however. Equation 25 becomes:

dT/dt = -B'T (28)
This is no longer the differential form of a power law. Instead it is that of an exponential:
T=ce® : (29)
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Tt is left as an exercise for the reader to confirm that an exponential function in trials transforms to a linear

function in time (hence, Zeno-like, an infinite sct of trials can be accomplished in a finite amount of time).
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4. FITTING THE DATA TO A FAMILY OF CURVES

Given empirical curves, such as occur in abundance in Section 2, it is important to understand how well
they are described by curves of a given family (eg, power laws) and whether there are alternative general
forms that fit them just as well {(As noted in the introduction, exponential, hyperbolic and logistic curves have
enjoyed much more favor than power functions.). Curve fitting without benefit of a model is notoriously a
black art. Nonetheless, we have deliberately chosen not to be model driven initially, because we want to have
empirical generalizations as the starting point in the search for theory, not just the raw data. |

The basic issue of curve fitting can be introduced from Seibel’s own treatment of his data (Figure 6), which
appears to be an extremely good fit to the log-log law over an extensive range (40,000 trials). Seibel (Seibel,
1963) fit his points to three curves by least squares: (1) a power law with asymptote only (ie, E fixed at 0); (2)
an exponential with asymptote; and (3) a general power law with both asymptote and starting point.6 He
obtained an r2 of 991 for the power function with asymptote only. But he also obtained an r2 of 971 for the
exponential with asymptote, His general power law fit was .997. (His parameters for asymptotes and starting
points are mostly reasonable, but not entirely.) Thus, all the curves give good fits by normal standards. If
only differences in the least squared residual are used, there can hardly be much to choose from. This is an
annoying result, in any case: but it is also somewhat unexpected, for the plots that we have shown, though
they surely contain noise, are still impressively linear by intuitive standards and involve lots of data.

1t is important to recognize that two basic kinds of failure occur in fitting data to a family of smooth curves:
(1) failure of the shape of the data curve to fit to the shapes available within the family; and (2) noise in the
data, which will not be fit by any of the families under consideration or even noticeably changed by
parametric variation within a family. These distinctions are precisely analogous to the frequency spectrum of
the noise in the data. However, the analogy probably should not be exploited too literally, since an attempt to
filter out the high frequency noise prior to data fitting simply adds another family of empirical curves (the
filters) to confound the issues. What does seem sensible is to attempt to distinguish fits of shape without
worrying too much about the jitter.

A simple example of this point of view is the (sensible) rejection of the family of logistic curves from
consideration for our data. The logistic provides a sigmoid curve (ie, a slow but accelerating start with a point
of inflection and then asymptoting). No Lraée of an S-shape appears in any of our data, though it would not
bé lost to view by any of the various monotone transformations (logs, powers and exponentials) that we are
considering. Hence, independent of how competing the measure of error, the logistic is not to be considered.

The size of the jitter (ie, the high frequency noise) will limit the precision of the shape that can be detected
and the confidence of the statements that can be made about it. [t provides a band through which smooth

6"[‘h(: exponential is translation invanant, so a special starting point is not distinguishable forit, ie, Be V+E (Be™ye" = B,
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curves can be threaded, and if that band is wide enough -- and it may not have to be very widc -~ then it may
be possible to get suitable members of conceptually distinct curves through it. In ail cascs, the main
contribution to any error measure will be provided by the jitter, so that only relatively small differences will
distinguish the different families,

4.1. The Data Analysis Procedure
With the climination of the logistic from consideration, we have focused our efforts on three families of
curves: exponential, hyperbolic, and power law. The analysis procedure that we have ended up using is
primarily graphical in nature, We look at what types of deviations remain, once an empirical curve has been
fit optimally by a family of theoretical curves. The analysis consists of judgments as to whether the deviations
represent actual distortions of shape, or merely jitter. The procedure has the following components:
1. Find spaces where the family of curves should plot as straight lines. Judgments of shape deviation

are most easily made and described when the norm is a line. These are the transformation spaces
of the given family. There may be more than one such space.

2. For each family of curves, find the best linear approximation to the data in the transformation
spaces of the family, This will generally involve a combination of search and linear regression.

3. Accept a curve for a family, if the best fit plots as a straight line in the space of that family. Reject
it, if it has significant shape distortion.

4. Understand the shape distortion of family X when plotted in the space of family Y. Expect curves
of family X to show the characteristic distortion when plotted in the spaces of alternative families.

5. Compute an estimate of fit (rz) for the best approximation in each transformation space. Expect
these values to support the judgments made on the basis of shape distortion.

These criteria contain elements both of acceptance and rejection, and provide a mixture of absolute
judgments about whether data belongs to a given family and relative judgments about the discrimination
between families. The parameters for the best fits as well as the estimates of fit (rz) can be found in Table 2.

The remainder of this section shows how we applied this data analysis procedure. We will start by looking
at the transformation spaces. This will be followed by an examination of the distortions that occur when a
theoretical curve is plotted in a space belonging to a different family, We will then be in a position to analyze
a couple of the empirical curves that appearcd in Section 2.

4.2, The Transformation Spaces

The curves that we are interested in belong to multi-parameter families (3 for the exponental and
hyperbotic; 4 for the power law). Regression can be used to fit a line to an empirical curve plotted in a muiti-
dimensional space. Unfortunately, for the three families that we are interested in, there is no space in which

all of the parameters (3 or 4) can be determined by lincar regression.  The most that we can get is 2
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Data Set Expenential Hyperbolic Power Law
T=d4+Be" T=4A+ BAN + E) T=4+B8N+E%
A B o S B E £ | 4 B E a

Snoddy (1926} 2701 3880 061 916 2449 2436 13 962 2174 1192 00 71 975
Crossman (1959) 719 4.59 3.1)(10_7 342 | 110 2.4:(106 151000 983 | 691 20481 31000 .66 990
Kolers (1975) - Subject HA 136 182 018 849 110 9402 98 915 18 1525 00 46 531
Neisser et al. (1963)

Ten targets 06 83 13 905 00 274 9 965 00 235 6 95 965

One target 06 44 094 938 00 116 46 951 00 2.57 39 94 951
Card, Engiish & Burr (1978}

Stepping keys - Subj. 14 235 199 011 3357 2214 1714 752 338 02 6.36 93 .14 340

Mouse - Subj. 14 146 128 028 4s52| 146 1670 50 603 .59 428 00 33 729
Seibel (1963) - Subject JK a7 461 000055 956 | 328 38881 3042 993 | 324 24399 269 95 993
Anderson (Note 1} - Fan 1 A87 283 000SS T4 466 36 3197 %02 353 4322 00 .39 947
Moran (1930)

Tozal time 13.80 666 00073 546 1477 33359 4746 637 03 3024 00 08 839

Method time 1161 311 0010 652 1175 13818 3600 .737 260 1935 00 06 1382
Neves & Anderson (1980)

Total time - Subject D 575 2402 019 660 | 456 50002 73 728 00 9912 00 .51 .780
The Game of Stair

Won games 476 319 0052 689 449 29800 40.1 783 120 1763 00 25 349

Lost Games 152 326 0016 .634 247 41270 1241 751 1 1009 25 19 341
Hirsch (1952) 276 4.35 070 819} 234 3705 49 897 00 100 00 32 932
General Power Law 05

T=5+T(N+25" 721 6.78 0037 983| 641 10696 912 997| 3500 7485 249 .50 1.000
40 Term Additive Mixture 160 4537 0065 904 58 12312 10.2 957 19 7531 72 89 998
Chunking Model

Combinatorial TE 461 47 0046 957 435 3657 553 992 286 1740 66 331000

Table 2: The General Learning Curves: Paramecters from Optimal Fits
in the Log Transformation Spaces

parameters. The remainder must be determined by some othcr means, such as search. The choice of which

parameters arc to drop out of the analysis determines the transformation space. We have primarily worked in

two different types of transformation spaces. The first type consists of the log spaces. These are the most

commonly used linearizing spaces for functions with powers. ‘The log transformations that we use are the

following:
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Exponential: 7T°=log(B)~ aN, for T =log(T - A) (30
Hyperbolic: 7" =log(B) ~ N', for T' =log(T - 4)and N’ = log(N + E) (1)
Power Law: T/ =log(B)~ aN’, for 7" =log(T - A)and N' = log(N + E) (32)

The log spaces for the hyperbolic and the power law turn out to be the standard log-log space, while the
exponential is in semi-log space. Determining fits in these spaces requires a combination of search (over 0 <
A<T min A0d 0 < F) and regression (for B and «). Since the exponential and hyperbolic families are each
missing one of these parameters, the process becomes simpler for them. The exponential only requires a one
dimensional search (over 3 < 4 < Tmm) while the hyperbolic can replace the regression (for 8 and a) with
the computation of the average for 8.

The log spaces have been used exclusively for the data analyses that will be described in the following
section (Table 2 was computed in the log spaces). It is important to realize though that they are not the only
transformation spaces that can be used. We have explored what we call the T7-X spaces, though space
precludes presenting the analysis. Transforming a curve into its 7-X space involves pushing all of the non-
linearities into the definition of X as follows:

Exponential: T= A + BX, forX =e ¥ (33)
Hyperbolic: T =4 + BX, forX =1/(N+E) (34)
Power Law: T =4 + BX, forX =(N+E)Y“ (35)

In the 7-X spaces, searches arc over a > 0 and £ > 0, with 4 and 8 determined by regression. Only single
dimensional searches are needed for the two 3 parameter families. The 7-X spaces prove especially useful for
estimating the asymptote (A), since it maps into the intercept of the transformed curve.

4.3. The Theoretical Curves

When a curve is optimally fit in a space corresponding to its family, it plots as a straight line (by definition).
This is not truc though when the curve is fit in a space corresponding to some other family. There will be
distortions that show up as nonlinearitics in the plot. By understanding thesc characteristic shape distortions,
we are able to interpret the deviations that we find when we plot the data in these spaces. This will help us to
distinguish between random jitter, and distortions that signal a bad fit by the family of curves. Data that plots

with the same deviations as one of the theoretical curves has a good chance of belonging to that curve’s family.,

Figure 16 shows the best that a power law can be fit in exponential log space. The power law curve is:
T=5+75N + 2570 (36)

This is the same curve that is plotted in Figures 14 and 15. The paramcters for the optimal cxponential fit
o . 2 . . . . . .

can be found in Table 2. The r° valuc of .983 is deceprtively high, as an examination of Figure 16 shows.

There are strong deviations in all portions of the curve. The curve starts out high, goes low, then high again.

and finally tails off downwards. If we see deviations of this type when a set of data has been optimally {1t by
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an exponential, we can conclude that the exponential family is not a good model for the data, and that the
power law might be.

Figure 17 shows the same curve optimally fit in hyperbolic log space. We see the same sorts of deviations
that were found in the cxponential case, but they are much attenuated. It will be hard 10 rule out the
hyperbolic family in such a case because the variability of the data is likely to swamp out much of the
distortion. At most we can hope to see the slight upturn at low N and the slight downturn for high N.

It is not necessary to look at the theoretical plots for the hyperbolic, as it is a special case of the power law.
1t will plot with no distortion in the power law log space, and it will have the same type of distortion in the
exponential log space as did the power law. This leaves only exponential curves to be examined. We cannot
present a plot of the optimal fit of an exponential in the power law log space. All attempts to find such
optimal fits have led to at least one of the parameters requiring a value that is too large to be represented in
our computer. Though this makes the generation of a plot impossible, this information can be used in lieu of
a plot. If analysis in the power law log space leads to immense parameter values, then that is evidence against
a power law, and for an exponential.

In addition to this information, it is useful to see what an exponential function looks like in log-log space.
Figure 18 is characteristic of such plots. In log-log space, exponentials tend to have a flat portion followed by
a rapid drop to asymptote. The central portion is considerably steeper (a > 1) than the equivalent portion of
the empirical curves that we have seen, and the asymptote is approached more suddenly.

4.4. The Analysis of a Data Set

We can now use the machinery that we have generated to analyze the data from some of the tasks in Section
2. There is no space to provide a detailed examination of the data analysis techniques or of their results over
the entire data set. But we do need to illustrate them enough to support the conclusions. To do this we will
look closely at two curves: Kolers's subject 3 (Figure 3) and Seibel’s subject JK (Figure 6).

We will first attempt to show that the exponential is not a good fit to the data, that shape distortions remain,
even though the measure of fit is impressive. Then we will attempt to show that both the general power and
the hyperbolic families provide adequate representations of the empirical curves.

4.4.1. The exponential family

Figure 19 shows thc optimai fit of Scibel’s data in the exponential log space. As was true of the theoretical
power law curve, the value of % and the the plot of the optimal fit tell different stories. The value of ris a
respectabie 956, so the exponential family can account for over 95% of the variance of Scibel's data. The

2

characteristic power law distortions can be clearly secn in the figure though. The valuc of r notwithstanding,

Seibel's data is not adeguately fit by an exponential curve.
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Figure 16: Optimal Fit of a Power Law in the Exponential Transformation Space (Semi-Log Coordinates).
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Figure 17: Optimal Fit of a Power Law in the Hyperbolic Transformation Space {Log-Log Coordinates).
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Figure 18: A General Exponential Function in Log-Log Coordinates.

The same distortions can be seen in Kolers's data when it is optimally fit by an exponential (Figure 20).
Though they are somewhat obscured by the variability of the data, there are significant nonlinearities. With
respect to the optimal fit, the data is high, then low, then high, and finally low again. These distortions are the
signal that Kolers’s data is also not adequately fit by an exponential curve.

4.4.2. The power law farmily

In contrast to the exponential plots, the power law plots are highly linear. Figures 21 and 22 show the
optimal power law transformations for the two data sets. Very little needed to be done to Kolers's data to
achieve the optimal fit (the asymptote was assigned the value of .18). There was not much to straighten out in
Kolers's data to begin with. Figure 3 shows that even the raw log-log plot of the data is quite linear. Scibel’s
data is a different matter though.  In the raw log-log plot it has deviations at both cnds of the curve. By giving
non-zero values to the asymptote (.324) and to the prior experience (2690), the data gets straightened. This
straightening yields a sharply higher a. [t rises from .32 to .95 during this process. Though seemingly large,
the initial experience of 2690 trials is not excessive, given the full trial range of 70,000.

The linearity of the optimal power law piots is strong cvidence for the power law as a model of learning
curves. This is bolstered cven further by the 7 values which are considerably higher than those for the
equivalent exponential fits (993 vs. 956 for Scibel, and .931 vs. 849 for Kolers). An examination of Table 2
reveals that the value of #* for a power law fit is higher than for an exponential fit for all of the practice curves

that we have examined.
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Figure 19: Optimal Fit to Seibel’s Data in the Exponential Transformation Space (Semi-Log Coordinates).
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Figure 20: Optimal Fit te Kolers’s Data in the Exponential Transformation Space (Semi-1.og Coordinates).
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Figure 21: Optimal Fit to Seibel's Data in the Power Law Transformation Space (Log-Log Coordinatcs).

b
oS
=

e T= 18 + 1525V + 06

Reading time (minutes)

L
=
™

1 ' " — —""100 ' 1000
Pages read

Figure 22: Optimal Fit to Kolers's Data in the Power Law Transformation Space (i.og-Log Coordinates).
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4.4.3. The hyperbolic family

It is not surprising that Setbel's data is well fit by a hyperbolic since the optimal power («) turned out to be
95. The r* value remains unchanged in a shift of a to 1, and the plot remains highly linear (Figurc 23). What
is more surprising (considering the amount of data involved) is that Kolers’s data (with an optimal a of .46) is
also adequately fit by a hyperbolic (Figure 24). By assuming larger valucs for 4 and £, the whole curve is
tilted to be steeper. Therc is a small loss in r?, from 931 for the power law to 915 for the hyperbolic, but it is
nowhere near as large a drop as o the exponential (.849). There does appear to be a small upturn at the
beginning of the curve, and a similar downturn at the end, but the overail deviation from linearity is not large.
This small inferiority of the hyperbolic (with respect to the power law) must be traded off against the fact that
it has one less parameter.

4.5, Summary

Table 2 show the results of this analysis for all of the data sets shown in Scction 2. We believe that it
establishes the reasonableness of excluding the possibility that practice learning is exponential and the
reasonableness of describing the data by power laws. The hyperbolic family is somewhere in the middle,
From Table 2 it is apparent that most of the data sets can be adequately modelled as hyperbolics, There are
cases though, such as the data from Moran {Note 4), that do scem to suffer by the loss of the extra parameter.
It would be nice t0 be more precise about the appropriateness of the hyperbolic, but the data we have
considered do not allow it. These conclusions agree with those of Mazur and Hastie (1978) in rejecting
exponentials, but not in rejecting general power laws.
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Figure 23: Optimal Fit to Seibel’s Data in the Hyperbelic Transformation Space (Log-Log Coordinates).
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Figure 24: Optimal Fit to Kolers's Data in the IHyperholic Transformation Space (Log-T.og Coordinates).
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5. POSSIBLE EXPLANATIONS

For the purposes of this paper, we have come to accept two propaositions:

e Practice learning is described by performance-time as a power function of the number of trials
since the start of learning (the hyperbolic is included as a special case).

» The same law is ubiquitous over all types of mental behavior (possibly even more widely).

What are the possible explanations for such a regularity? In this section we try to enumerate the major
alternatives, and concenirate on one.

There scem to be three major divisions of explanation. The first reaches for the most general characteristics
of the learning situation, in accord with the end of Section 2 that such a widespread phenomenon can only
result from some equally widespread structural feature, One of the assumptions underlying much of cognitive
psychology is the decomposability of thought processes. A task can be broken down into independent
subtasks. Mixfure models attempt to derive the power law from the aggregate behavior of such a collection of
independent learners. The second division is some sort of improving statistical selection, in the manner of
mathematical learning theory or evolution. No specific orientation exists to obtain the power law. Rather,
simple or natural selective schemes are simply posited and examined. The third division takes the exponential
as somehow the narural form of learning. Observing that the power law is much slower, it secks for what
stows down learning, What could be exhausted that keeps the learning from remaining exponential?

We will concentrate on an explanation of the exhaustion type. However, we do not consider it the exclusive
source of the power law of practice. So we first wish to lay out the wider context, before narrowing to one.

5.1. General Mixtures
The following qualitative argument has a certain appeal.

The Mixtures Argument: Performance depends on a collection of mechanisms in some monotone
way -- ie, an increase in the time taken for any mechanism increascs (possibly leaves unchanged)
the total performance time. The learning mechanisms that improve these performance
mechanisms will have a distribution of rates of improvement -- some faster, some slower. At any
moment total system learning will be dominated by the fast learners, since a fortiori they are the
fast ones. However, the fast learners will soon make little contribution to changes in total
performance, precisely because their learning will have been effective (and rapidly so, to boot), so
the components they affect cannot continue to contribute substantially to total performance. This
will leave only slow learners to yicld improvement. Henee the rate of improvement later will be
slower than the rate of improvement initiaily. This is the essential feawre of the log-log law -- the
slowing down of the learning rate. Hence learning in complex systems will tend to be
approximately lincar in log-log space.

The great virtue of this argument, or some refinement of it is that it would cxplain the ubiquity, even unto

the industrial production functions.

We do not know how to examirc this law in full generality. However, restriction to a subclass of learning
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functions, if the subclass is rich enough, can shed some useful light on the issue, for the argument should hold
for the subclass as well.

The complete definition of a mixture model requircs both the specification of a class of learning functions
and a scheme by which they arc aggregated. A natural class of learning functions are the exponential
functions. They form a rich enough class (a three parameter family of a, 4 and B). They also are as good a
candidate as any for primitive lcarning functions. We can place sufficient restriction on the means of
aggregation if we assume that performance consists of the serial exccution of sub-tasks. This places us within
the class of additive systems, ie, where each component adds it contribution to the total perfonnance.7 The
result is that T is a weighted sum of exponentials:

T2, Wekd 37)

Figure 25 shows a plot in log-log space of a forty term sum with weights (the W’s) and rates (the p’s)
selected at random (0 < Wl <5and0 < ;< .1). One gets a reasonable approximation to a straight line over
much of the range, though it is a little wavy.

& 1000

oo T=4049N"

]
=]

i ' PR TR T SN T N | L " PR SR T T

1 10 700 7000

Figure 25: A Forty Term Additive Fxponential Mixture {Log-Log Coordinates).
The weights (0 < W'. < 5) and exponents (0 < g, < .1) were selected at random.

7Simple additive combination is not the only way to put learning mechanisms together. Clavton Lewis (Note 2} explored the notion of
serics-paraliel combrnations of exponential learning mechanisms. The results were unclear. sometimes looking log-log, sometimes
looking more like an exponential, sometimes wanderng.  He_arrived (Note 3} at the position that another source ol constraint ofr
uniformity is needed.
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Mixtures of this type have one primary source of vanation: the set of weights {W;’}' The plausibility of
mixture models as a source for power laws can best be evaluated by determining the classes of functions that
are generated under reasonable assumptions for {W¥;}. If the result is always a power law, then mixture
models are strongly implicated. On the other hand, if any function can be generated with equal facility,
mixtures would be of little use as an explanation for the ubiquity of power laws.

Sums of exponentials do provide a sufficient ensemble of functions to compose (essentially) any function

desired. A convenient way to see this is to go over t¢ the continuous case:
o0
T(N) = j; Wwe ™ du (38)

On the one hand, this simply expresses the continuous analog of a sum of exponentials: the exponential for
every j is represented, each with its own weight, W{u). On the other hand, this will instantly be recognized
(at least by engineers and mathematicians) as the Laplace Transform of the function ¥ (Churchill, 1972).
The significance of this is that we know that for any function T(N) there is a function W{(u) that produces it.8

Thus, by choosing appropriate weights, any total learning function whatsoever can be obtained.

We can of course choose weights to make T a power law, as in Equation 4, with a and B. Consulting any
standard table of Laplace Transforms shows:

W) = (B/T(app™ =@ | : (39)
That is:
T(N)=BN™®= f 0°° (B/Tlayp™t DV gy (40)

The component exponentials correspond to learning at all rates, indefinitely fast (large p) to indefinitely
slow (small p). Since (1 - a) = 0, the weight W becomes very small for fast learning and very large for stow
learning, Without a justification for this particular distribution of weights, it would scem implausible that
mixtures of learning components would always lead to power laws.

However, we can tumn the argument around and get a positive result. Oune distribution of weights for which
there is a natural justification is the rectangular, ie, all component processes have the same weight, at least
stochastically. This is especially true in the present approximation, where a random distribution of weights
would be taken to be rectangular. As can be seen from Equations 39 and 40, this corresponds to (1 - a) = 0,
which yields & = 1. The resulting law is the hyperbolic.

It is beyond the bounds of this paper 10 inquire how closely random weighting functions can be
approximated by the mean. Within our limits, it appears that a mixture of exponcentials vields a special case of

the power law, namcly the hyperbolic. Put together with the results of the data-fit analysis, which showed that

3 . . . ‘
T must be mathematically well hehaved in certain ways to he so represented, but these are of no consequence in the present context.
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hyperbolics were a reasonable candidate descriptive curve, this adds up to a significant observation (it can

hardly be distinguished as a "resuit”).

Real mixtures can only strive to approximate the distribution of exponentials that the use of rectangular
weights implies. They must fall short because there can only be a finitc number of components. The initial
portion of Figure 25 is flattened because of the lack of terms in the mixture that decay quickly enough to
affect that portion. We restricted the fastest term to have a  less than .1, but therc must always be a
maximum p. Regions of the curve which are affected by only a few terms will look highly exponential,
leading 10 a roller coaster effect where two such regions meet (eg, for ¥ in the region [10, 200] in Figure 25).
In regions where only one term is relevant, the curve is an exponential. This must always occur at least in the
tail of the curve, where only the slowest term in the mixture is still active,

‘The amount of deviation within a region of the curve is thus determined by the number of terms affecting

that region. Linearity over a wide range requires a large number of terms in the mixture,

5.2. Stochastic Selection
The work in stochastic modelling generated a large range of models, well beyond what we can review.
However, a few of the models are particularly relevant to this work.

5.2.1. Crossman’s model
Twenty years ago, Crossman (1959), in an effort similar in spirit to the present one, wrote a paper reviewing
much data on practice. He proposed a general model based on an improving process of selecting methods
from a fixed population of metheds with fixed durations, {t,.}. Improvement occurs, because each method is
selected according to a probability and these probabilities are adjusted on the basis of experience. Namely,
the change in probability is proportional to the difference between the mean time, 7(N), and the actual time
of the selected method, £,
8p, = ~k(t, - T(V) @)

By assuming that the entire probability vector shifts at each trial according 1o its expected adjustment (ie, as
if all methods were tried each trial, each with frequency p;) the expected shift for the mean time can be
expressed as:

T(N+1) = T(N) - kVar(V) (42)
Where Var(N) is the variance of the {¢,} on cycle N. In general, the time course cannot be calculated without
knowing the actual distribution of the ¢, for the following relationships hold for this model (MJ.(N) is the jth
moment of the {7} on ¢ycle N):

T(N) = M(NV) (43)

Var(N) = M,(¥) ~ (M (V)Y (44)

MJ.(N-»—I) = (l+le(‘\f'))Mj(N) - kMJ.+1(;V) (45)
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Thus, as N increases, higher moments of the initial distribution are nceded o compute Var(NV). Crossman
assumed a (somewhat arbitrary) example distribution and examined the resulting curve numerically. In log-
log space it plotted as a sigmoid with a large straight scction, somewhat in the manner of Figure 15. He
concluded that it was a satisfactory form of model, though clearly needing more development.

Unfortunately, the model rests very heavily on the way it uses its expected value assumptions. As can be
seen from Equation 41, nothing prevents p, from moving outside the [0, 1] interval, thereby violating the basic
property of being a probability. Indecd, if the i-th method is selected often enough, it must move outside.
Crossman avoids the unavoidable by making the change really be pl.Spr., the expected change. Even this
modification is not sufficient to guarantee that p; remains in the range of [0, 1}. If & is greater than 1/(tma.x -
:mm) then it is possible for Bpmm to be less than -1. An additional assumption about the legal values of &
could of course be added to handle this problem.

We have cxpounded Crossman’s model at some length, because it is not only the one existing attempt to
deal with the power law data, but it is often referred to as a viable explanation of this law.

5.2.2. The Accumulator and Replacement models

Among the basic stochastic learning models two broad classes are often distinguished, dcpending on
whether correct responses replace incorrect ones -- called replacement models -- or whether correct responses
are simply added to the total pool, thus graduaily swamping out the incorrect ones -- called accumulator
models. A presentation of these two models is given in Restie and Greeno (1970).

The replacement models yield exponential functions (when expressed in terms of rate of generation of
correct responses). It is worth taking a look at an accumulator model, as it will provide another model that
yields the hyperbolic. Restle and Greeno show that the proportion of correct responses in the pool at trial ¥
(P) is given by (the interpretations of the other parameters are not important for our purposes).

Py=[b+ Ga(N-1)]/ (1 + &(N-1)] (46)

To get this in terms of time, we can assume that the time to generate a response is inversely proporticnal to
the rate of generation of correct response. Thus T(N) would be the inverse of Equation 46:

T(N)Y=[1 + 8(N=1)]/[b + 8a(N-D)] “7)
With a little rearrangement, this becomes:
T(N) =[1/d] + [(a=b)/ 8a%/ (N +[b/8a 1] (48)

This is the cquation for a general hyperbolic function, with 4 = 1/a, B = (a-b)/ 8a* and E = b/8a -1.
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5.3. Fxhaustion of Exponential Learning

The notion of exhaustion comes from examining Equation 11. A power law is like an exponential in which
the exponent (a) does not remain constant over trials. In fact, a decreases as 1/V. An exhaustion model
would postulate that this decrease stems from the diminishment of some necessary portion of the learning
process. Many different exhaustion models can be developed according to what is being diminished. We
have concentrated our efforts on one variety of exhaustion model; what we call the chunking model of
learning. Before we examine it in detail, it is useful to look bricfly at the range of possible exhaustion models.
In the descriptions that follow it is assumed that the learner uses some method for the performance of the task
on which he is working. Learning consists of finding and incorporating improvements to the current method.,

o Improvements harder to find (Search exhaustion): Improvements may not always be right at hand.
It would then be necessary to search for improvements that can be made in the method being
used. Each time one is found, it would result in the time (T} decreasing by some constant factor
(), just as in exponential learning. As improvements are found and applied, the space of unuscd
improvements becomes sparser, decreasing the rate at which new improvements can be found.
The effective rate of learning would thus be slowed.

e Less time for improvement (Time exhaustion): If learning is exponential in time (rather than in
trials), then as the trials get shorter, there is less time for improvement on each trial. From Section
3.3 we know that an exponential in time yields a hyperbolic in trials.

One long standing view is that learning consists of transforming a deliberate, conscious and
resource limited process into an automatic, unconscious and resource independent one. One
image of this in mechanism is that learning consists of a transformation from a serial to a parailel
processing structure, The amount of processing required remains constant. Only the elapsed time
until completion decreases. Exhaustion occurs if it is assumed that learning is proportional to the
amount of time available (7)) -- the usual exponential assumption. As the amount of process that
is packed into a fixed time slice increases, the amount of learning per unit of process would have to
decrease. A simple version of this mode! that we have developed yields the hyperbolic.

o Improvements less effective (Effectiveness exhaustion): Improvements used later in learning, may
prove to be less effective than the same improvements used earlier.

o /mprovements less applicable (Applicability exhaustion): Improvements may vary from being
general purpose to being highly specialized. General purpose improvements are always
applicable, while special purpose oncs may only be applicable under highly constrained
conditions. In order to fully specify a model of this type, an assumption must be made as to the
order in which the improvements are incorporated into the method. If they are used in order of
decreasing applicability, then lecarning would slow down even if the improvements are equal in
effectiveness (when they are applicable). The theory we present below is a version of this case.

5.4. The Chunking Theory Of Learning
We take as central to our mode! a theme which has been a mainstay of information processing psychology
since Miller's famous 1956 paper.

The Chunking Hypothesis: A human acquires and organizes knowledge of the environment by
forming and storing expressions, called chunks, which are structured collections of the chunks
existing at the time of learning.
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This brief statement glosses over things not central to our purpose, eg: (1) the nature of the primitive
chunks; (2) the internal representation of chunks as collections of symbols for chunks, rather than the chunks .
themselves; and (3) distinctions, if any, between perceptual chunks, internal-processing chunks and motor
chunks. Other aspects, such as the size and composition of chunks, require further specification.

Consider Seibel’s task (Seibel, 1963), to make matters concrete. There are ten lights Ll, Lw, which
define perceptual events of a light being off (-) or on (4). Originally, the only chunks available are the
individual lights and the states of off and on. If we define the notion of the span of a chunk as the number of
primitive clements that it contains, then these are chunks with a span of one. Clearly they are built up from
still more primitive features, relations etc, but they can be taken as the primitives from the point of view of
Seibel’s task. Gradually, with learning, chunks will form: first chunks such as (L1 +), which we might also
write as L;; then chunks such as (L;’ L. or (L] Lp): then still higher chunks such as (L; (L3 L), and so
on. The chunks need not just be of perceived lights; they could be of responses (R; Rg) (the + meaning to
press the button), or even of mixed character, (L;' R;') or ((L; Ly (RZ; RY)). These chunks are of increasing
span; eg, the span of the last mentioned chunk, ((L.T, LY (R7R 3), is eight of the primitive chunks such as L.,
+, Ly, ete. Chunks thus hold information about the patterns in the environment and in the subject’s relation
to the environment.

The chunking assumption only defines a unit of structure and declares it central. To create a learning
system, we must tie down how this structure couples to (1) the performance of the task; (2) the structure of the
task environment and (3) the process of learning new information about the task environment. These lead to
three corresponding general assumptions:

o Performance Assumption: The performance program of the system is coded in terms of high-level
chunks, with the time to process a chunk being less than the time to process its constituent chunks.

e Task Structure Assumption: The probability of recurrence of an environmental pattern decreases
as the pattern size increases.

o Learning Assumption: Chunks are learned at a constant time rat¢ on average from the relevant
pateerns of stimuli and responses that occur in the specific environments experienced.

On performance: If having chunks does not permit the system to perform more quickly, then one major
reason for their existence vanishes (though there might be other reasons). How high-level aggregate chunks
enter into performance brograms is actually somewhat problematical. For instance, computers gain no
performance advantage from the subroutine hierdrchy (an exampte of muiti-level chunking); it is completely

unwound down {0 the lowest level machine operations on ¢very execution.

In Seibel’s task the performance program can be related directly to the chunks that exist. If only the lowest
chunks arc available, then it might take the processing of five chunks for each light:
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(L, +}(R, +)
L+ R+

The top chunk is the rule derived from the instructions for general lights (L x) and responses (Ry); it is used
to interpret each of the four primitive chunks of information about the task, one after the other. [f, on the
other hand, more complete chunks are available, such as (L 1 +), then this part can be done in a single step,
and so on for more aggregate chunks. Aggregation, of course, takes place not just within a light, but across
lights. Thus, a lowest level performance program would take something like 5 steps per light times 10 tights =
50 steps. At the other extreme, the highest level program would take only a single step, using many mammoth

chunks, such as the one below of span 40, to cover all the cases.
(CLTRD(L; R (LR (LRPILIRY) (LFRDUL; R (Ly R (LG R (Lig RN (49)

Most programs would be composed of chunks of some intermediate span. Our example chunks have used
stimulus adjacency and stimulus-response connection as the principles on which to chunk. Lots of others are

possible, eg., symmetry of position. Likewise, wrong connections are possible as well as correct ones.

On the structure of the task environment: Task environments can be thought of as being composed from a
set of elements which can vary with respect to attributes, locations, relations to other elements, etc. Scibel’s
task is a good example of such a task environment once chunking has reached beyond the most primitive level
(the lights, on, off, etc.). Observe that (thinking only about the lights) there is a sct of elements (the ten lights)
each of which has an attribute for the state of the light (on or off). On each trial the subject is exposed to a
single concrete environment out of the ensemble of concrete environments that make up the fask environment.
A subject in Seibel’s experiment would see the ten lights in one particular statc on each trial. The trial
sequence provides the sample of concrete environments actually experienced.

Figure 26 shows a four fight version of Seibel’s task environment. At the left are the primitive chunks; the
lights, which can be either on or off. Proceeding towards the right yields higher level chunks made by
combining lower level ones. At the far right are the top-level chunks. Each top-level chunk spans one
concrete environment (consisting of each light in one particular state). The bold lines outline one concrete
environment out of the ensemble that makes up the task environment. One important point to notice is that
the branchiness of the task environment (increasing towards the right) is in the opposite dircction from that of
the tree for a single concrete environment (increasing towards the left). As the chunks increase in span, there

are more of them in the task environment, but fewer in any onc concrete environment.

Task environments such as Seibel’s present the learner with a combinaterial number of possible patterns.
There are only two patterns of one light (on and off), but four patterns of two lights, eight patterns of three
lights, and so on, up to 1024 patterns of ten lights. inherently, many more possibilities for patterns of
clements exist than for the clements themsclves. Correspondingly, there are many more possibilities for

chunks that encode larger patterns than smaller ones. If cach of the elements can take on any of b different



ts.
and off states)
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values (the bdranchiness of the task environment), then for every set of s elements there would be b* possible
patterns. Different task environments will have constraints that limit what new combinations can in fact
occur: not all elements are or can be chunked with each other. The basic combinatorial nature of most task ‘
environments, combined with these constraints, will determine what ¢an be called the cardinality of the task
environment, namely, the number of patterns that can actually occur of each different span. This cardinality
(whether exponential, power law, ctc.} will have a great deal to do with the form of the final learning curve.

The task structure assumption follows directly from this structure of the task environment. There are more
of the larger patterns, but each one appears in fewer concrete environments. Indeed, at the top-most level, the
entire concrete environment at a trial can be encoded in a single chunk, as in Example 49 above. Chunks of
this type appear in only one concrete environment each, whereas a chunk that only contains a single light and
its state would appear in many concrete environments. The multiplicity of patterns (chunks) depends on
there being an entire ensemble of possible concrete environments. In any particular concrete environment
only a small number of the possible chunks occur.

On learning by experience: This assumption starts from the view that the human is a time-independent
processing mechanism. It processes information the same way one hour as the next, one day as the next--asa
function of stored knowledge and learned procedures, but not of time per se. In short, there is no built-in
historical clock. Thus, there exists a basic constant rate of chunk acquisition (with respect to time, not trials).
This same view underlies the appeal of the fotal time hypothesis of verbal learning (Cooper & Pantle, 1967).

Not all chunks learned need be relevant to the task at hand. The assumption that learning is by experience
says the subject is picking up relevant chunks while performing in a concrete environment. This is consonant
with theories that have learning occuring automatically from the chunks that are built in working memory
(involving both the stimuli and the subject’s own responses). When the subject is attending to the task,
working memory is full of task refated chunks, and relevant learning occurs.

In our example, given JE,1 and + perceived by the subject, the chunk (1_’,1 +) could be built, but not the
chunk (L, -). Also, it would take the same length of time to build the first-level chunk as to build (L, +)
(R1 +) ((}L2 =) (R2 -))) given that the constituent chunks, ((L1 +)(R 1 +)} and ((L2 =) (R2 -)) were available
in the subject (ie, had already been learned) and were being perceived in the environment.

These three assumptions, though still general, provide a basis on which specific learning models can be
built. In this paper we only present the simplest form of this model so that the basic mechanisms can be

clearly seen. Various limiting conditions and the like may appear a little strained in this simple version.
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5.4.1. A stinple version
For the theory to be specific, we need to determine T as a function of M. One way to do this is to define the
differential learning law, dT/dN. Corresponding to the previous assumptions, we introduce the following
variables:
C = The total number of chunks learned at any time.

5 = The span to which the subject has chunked.
In terms of these variables, we can compose dT/dN as follows:
dI/dN = (dT/ds) {ds/dC)(dC /dN) {50)

The first term, d7/ds, expresses how performance time (77) changes with the chunk span. In a simple form
of our performance assumption, the time to perform the task will simply be proportional t0 the number of
high-level chunks it takes to describe the task (at the time of the performance). Let P be the number of
chunks involved in the performance initially {and take the unit of time t0 be the time to process one chunk, 50
as to avoid an arbitrary constant). Then, if chunking has proceeded to a span of s, each top-level chunk spans
s initial chunks. Thus, the number of top-level chunks that are required to span the performance is £/5 and
we get for the performance time:;

T="P/s (51)

dT/ds = ~P/s* = -T*/ P (52)
If this holds for unlimited values of s, it implies that P is infinitely divisible and that T can be driven to zero.
We will just accept such simplifications for the purposes of this model. Given this simplification however, we
cannot expect to find an asympiote parameter (A ) in this version.

The second term of Equation 50, ds/dC, expresses how fast the span of the chunks increases as the subject
accumulates more chunks. It depends on how many chunks of each span are needed to describe the task
environment. According to the assumption about the structure of the task environment, new chunks will be
formed to encompass larger patterns in the environment, [f a chunk covers a pattern of some set of elements,
then it will be relevant (o connect it with a certain number of additional elements in the environment to form
the next higher level of chunk. We will postpone until later the quantification of this process. For now we
can just talk in terms of C te(s), the number of chunks needed t cover all patterns of s elements or less in the

task environment.

We need 1o relate C [e(s) to C{N), the number of chunks that the subject has at a given trial. By the nature
of how chunks are learned, low-level chunks must be acquired before higher-level chunks. That is, chunks
are learned from the bottom up. If C chunks have been learned, they will constitute a pyramid up from the
bottom. By making the further simplifying assumption that the pyramid is acquired layer by layer (ie, if the
subject has learned C chunks, these will consist of all the chunks provided by the environment from the
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clementary chunks up to some span), we can cquate C and C m_g Hence we get:

C=C, (53)
dC/ds = C,(s), Writing C,(s) for dC(s)/ds for clarity (54)
ds/dC = 1/C\ (s) (55)

The final term of Equation 50 follows dircctly from the assumptions on learning; that the number of
chunks learned per unit time is a constant, say A chunks:

dC/dt = A (56)
Therefore by Equation 22, which relates time to trials:
dC/dN = (dC/dt){(dt/dN) = AT (57

We now have assembled all the components of Equation 30:
dT/dN = (-T*/P) (1/C;(s)) AT) : (58)
= -NP (T3 C(s) (59)

We can see in what sense this is an exhaustion model. The subject continues to learn at a constant rate and
chunks remain equally potent in terms of what they do to the performance programs in which they occur.
However, the chance that a chunk will be used becomes increasingly rare. It becomes rarer, actually, because
of the increased span of the chunk, which makes it ever more specialized, thus occurring in ever fewer
environments. However, this turns out to be correlated with time, because general (ie, low-level) chunks are

learned first and specialized chunks are learned later.

54.2. A combinatorial task environment

To complete the definition of the chunking model it wilt be necessary to be more specific about C . e(s), the
cardinality of the task environment, which expresses how fast the number of patterns increase as their span
increases. One possibility is to start from the basic combinatorial structure described under the task structure
assumption. Suppose there are M elements in the task environment, each with b possible values. We need to
know how many chunks of span s it takes to cover the task environment. One way to do this is to partition the
task environment into M /s groups of s elements. It will take b° chunks of span s to cover each group, so
(M /5)b® chunks to cover the whole task environment. We thus get:

C ()= 2oy (M7 (60)

This summation does not have a closed form solution. We can however derive C ’m(s) directly from the

summation in the same manner that d¢/dN is obtained in Equation 22.

9We are glossing over three complications to this picture: (1) A clements can be covered by chunks of span s in a number of ways,
depending on how the M clements are partitioned into groups of size 52 (2) M clements can be covered by a number ol different chunks
of span M that vary in internal structure: and (3) many patteras in the environment are wially irrelevant to performance on the task
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C(s)=(M/ )b =(M/5)eBS, where B = log(b) (61)
Substituting C, (s) into Equation 59 we get: ‘

dT/dN = ~(A\/PM) T3se P* (62)
We can eliminate s by noticing that s = P/ 7T (from Equation 51):

dT/dN = -(\/M)T? e BP/T (63)
By suitable rearrangement and integration, the final form of the learning curve is obtained: _

T 2ePP/TYT = ~(\/ M) dN (64)

[ 122/ Tar < - A/ b)Y f aN (65)

(ﬁP)'leﬁP T (N MYN+E), where E comes from the integration constant (66)

T =BP/Mlog(xBP/M) + log(N+E)] (67)

Though this is not a power law, it does resemble one when plotted in log-log coordinates. Figure 27 shows
such a learning curve with parameters of b=2, P=50, A=1, M=20, and £=10. The reason for this linearity can
best be seen by looking at 47/ dN. Substituting for 1/7 in the exponent of Equation 63 yields:

dT/dN = ~[(BPY /(N +E)T? (68)

= ~(a/(N+E))T, where a=T/8P (69)

The function thus behaves like a power law with a slowly decreasing a. In log-log space the decreasing a is
difficult to distinguish from the presence of an asymptote.

~ 100,

r o— o T=1456N"1

IR T S T T B N i A W TRNONS I N B S T )

1 10 100 T

Figure 27: The Lecarning Carve for the Chunling Model
in a Combinatorial Task Environment {(Log-Log Coordinates).
The parameter valuesare; b=2, P =350, A =1 A =20 and F = 10,
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5.4.3. The power law chunking model

Instantiations of the chunking model can be generated for various types of task environment that a learner
may have to deal with. There is no space here to examine possible task cnvironments systematically. An
alternative is to determine what type of task environment leads the chunking model to predict power law
learning. From Fquation 8 we know that one form for the differential of a power law is:

dT/dN = -qB™ Y 1+ 1/a (70)
Combining this with Equation 59 yields:
—aB VAT Ve o (N PXT/C(5)) (71)

We want C, (5), so first solving for C;e(s):

Cl()=(\BYe/Pay T2~ V2 (7))
=(\BY%/Pa)(P/s)t Ve (73)
= (ABYe pl-Vaygysl/a-2 (74)

Now we can get C, (5) by integrating C;e(s) with respect to s.
C(s)=[ABYe PL-Va/ (1 - )] s/ (75)

Though it is somewhat obscured by the complex initial constant, this is a power law in 5. Power law
learning thus implies a power law environment, An important, and indeed pleasing, feature of the chunking
model is this connection between the structure of the task environment and the learning behavior of the
subject. The richer the task environment -- ie, the ensemble of environments with which the subject must
potentially cope -- the more difficult his learning.

5.4.4. Relation to existing work on chunking

An important aspect of the chunking model of learning is the amount of power it gets by making
connection with a wide body of existing psychological work. For example, the pervasiveness of the
phenomenon of chunking amply accounts for the ubiguity of log-log learning. We have been able to develop
the primary assumptions of the model from this work without the necessity of pulling an arbitrary "natural”

learning curve out of the air,

Much of the existing work on chunking has focussed on showing that chunks are the structures of memory
and operate in behavior in various ways (Bower & Winzenz, 1969, Johnson, 1972). It is consonant with the
present model, but does not make intercsting contact with it. However, the work on chess perception
(DeGroot, 1965, Chase & Simon, 1973) bears directly on the present model. The basic phenomenon
investigated there was the differential short term memory for meaningful chess positions with expertness.
Novices are able to recall only a few pieces of a complex middle game position after a five second exposure,

while masters can recall most of the pieces.

A well articulated theory has evolved to explain this striking phenomenon. The theory is an elaboration of



PAGE 47

the basic assumptions about chunking. The master has acquired an immense memory for chess positions,
organized as a collection of chunks. His ability for immediate perception and short term memory of chess
positions depends directly on how many chunks are used to encode a position. Estimates of the number of
chunks available to the master are of the order of 50,000, based on extrapolation of a simulation program
(Simon & Gilmartin, 1973) that fits novice and expert level players. By implication, master players must spend
an immense amount of time with the game, in order to acquire the large number of chunks; this scems to be
well supported by historical data.

The chunking model of learning presented here for the power law is essentially the same as the chess
perception model. The present model has been elaborated quantitatively for learning data, whereas the chess
perception data had the products of learning to work with. The explanation for why the number of
perceptual chess chunks is so large lies in the combinatorial complexity of chess positions. High level chess
chunks encode large subpatterns of pieces on the board; they are the necessary means for rapid perception.
But the actual configurations to which they apply do not show up often. Thus to gain coverage of the
population of chess positions requires acquisition of immense numbers of high-level chunks. This is precisely
the notion of environmental exhaustion that is the key mechanism of the present model.

One would expect from this that the time course of chess skilt would also follow the power law, if one
would take the trouble to measure it. Indeed, the data on the Stair game of solitaire in Figure 10 can be taken
as a reasonable analogue of the chess game.
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6. CONCLUSION

If we may, let us start this conclusion by recounting our personal odyssey in this research. We started out,
simply enough, intrigned by a great quantitative regularity that seemed to be of immense importance (and of
consequence for an applied quantitative psychology), well known, yet seemingly ignored in cognitive
psychology. We saw the law as tied to skill, hence relevant to the modern work in automatization. The
commitment to write this paper was the goad 10 serious rescarch. When we started, our theoretical stance was
neutral -- we just wanted to find out what the law could tell us. Through the fall of 1979, in sca.rching for
explanations, we became convinced that plausible substantive theories of power laws were hard to find,
though it seemed relatively easy to obtain an exponent of -1, ie, hyperbolics. In November, discovering the
chunking model (by looking for forms of exhaustion, in fact), we became convinced that it was the right
theory (at least AN did), and that lack of good alternative theories helped to make the case. The chunking
model also implicd that the power law was not restricted to perceptual-motor skills, but should apply much
more generally. This led to our demonstration experiment on Stair, which showed a genuine problem solving
task to be log-log linear. At the same time, in conversations with John Anderson, additional data emerged
from the work of his group (Figures 7 and 9) that bolstered this.

This picture seemed reasonably satisfactory, though the existence of log-log linear industrial learning curves
(Figure 12) nagged a bit, as did the persistence of some of our colleagucs in believing in the argument of
mixtures. However, as we proceeded to write the paper, additional work kept emerging from the literature,
including especially the work by Mazur and Hastie (1978), that raised substantial doubts that the power law
was the right empirical description of the data. The resuiting investigation has brought us to the present

paper.

The picture that emerges is somewhat complex, though we believe at the moment that this complexity is in
the phenomena, and not just in our heads as a reflection of only a momentary understanding. We summarize
this picture below, starting with the data and progressing through theoretical considerations.

L. The empirical curves do not fit the exponential family. Their tails are genuinely slower than
exponential learning and this shape deviation does not disappear with variation of asymptote.

2 The data do satisfactorily fit the family of generalized power functions (which includes the
hyperbolic subfamily). There is little. shape variance remaining in the existing data to justify
looking for other empirical families.

In particular, there is no reason to treat apparent systematic deviations, such as occur
in Snoddy's or Seibel's data in log-log space (Figures 1, 6), as due to special causes,
distinct from their description as a generatized power function.

3. The data does not fit the simple power law (ie, without asymptote or variable starting point).
There are systematic shape deviations in log-log space (the space that lincarizes the simple power
law), which disappear completely under the general power law,

4. We were unable to confirm cither whether the data (1) fits within the hyperbolic subfamily or (2)
actually requires the general power famiiy. This is 50 despite the multitude of existing data sets,
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sorne with extremely lengthy data series (some of it as extensive as any data in psychology).

. The major phenomenon is the ubiquity of the learning data, ic, its common description by a single

family of empirical curves. We extended the scope to all types of cognitive behavior, not just
perceptual-motor skill.

However, we restricted our view to performance time as the measure of performance,
though learning curves measurcd on other criterion also yield similar curves. Also, we
restricted our view to clear situations of individual learning, though some social (ie,
industrial) situations yield similar curves. Our restriction was dictated purely by the
momentary need to bound the research effort.

. Psychological models that vield the power law with arbitrary rate («) are difficult to find. (Positive

asymptotes and arbitrary starting points are, of course, immediately plausible, indeed,
unavoidable.)

. Models that yield the hyperbolic law arise easily and naturally from many sources -- simple

accumulation assumptions, parallelism, mixtures of exponentiais, etc.

. The various models are not mutually exclusive, but provide an array of sources of the power law.,

Several hyperbolic mechanisms could co-exist in the same learner. Independent of these, if the
humans learn by creating and storing chunks, as there is evidence they do, then the
environmental-exhaustion effect would also operate to produce power-law learning, independent
of whether there were cther effects such as mixing to produce hyperbolic learning curves.

. A maintainable option is that the entire phenomenon is due to exponeniial component learning

yielding an effective hyperbolic law through mixing,

This would cover not only the data dealt with here, but probably also the data with
other criteria and the data from industrial processes.

However, the exponentiai learning of the component learters remains unaccounted
for.

The chunking model provides a theory of the phenomena that offers qualitatively satisfactory
explanations for the major phenomena.

However, some of the phenomena, such as the industrial processes. probably need to
be assigned to mixing. Parsimony freaks probably will not like this,

The theory is pleasantly consistent with the existing general theory of information
processing, and avoids making any a priori assumptions.

Though power laws are not predicted for all task environments, the learning curves do
closely approximate power laws.



PAGE 50

7. REFERENCES

Bower, G. H. & Winzenz, D. Group structure, coding, and memory for digit series. Experimental Psychology
Mongraph, 1969, 80, 1-17. (May, Pt. 2).

Calfee, R. C. Human Experimental Psychology. New York: Holt, Rinehart and Winston 1975.

Card, S. K., English, W. K. & Burr, B. Evaluation of mouse, rate controlled isometric joystick, step keys, and
text keys for text selection on a CRT. Ergonomics, 1978, 21, 601-613.

Card, S.K., Moran, T.P. & Newell, A. Computer text editing: An information-processing analysis of a
routine cognitive skill. Cognitive Psychology, 1980, 12(1), 32-74.

Card, S. K., Moran, T.P. & Newell, A. The Keystroke Model for User Performance Time with Interactive
Systems. Communications of the ACM, 1980, 23, . (In press; available as SSL-79-1, Xerax PARC).

Chase, W. G. & Simon, H. A. Perception in chess. Cognitive Psychology, 1973, 4, 55-81.
Churchill, R. V. Operational Mathematics. New York: McGraw-Hill 1972.

Cooper, E. H. & Pantle, A. J. The total-time hypothosis in verbal learning. Psychological Bulletin, 1967, 68,
221-234.

Crossman, E. R. F. W. A theory of the acquisition of speed-skill. Ergonomics, 1959, 2, 153-166.
Crowder, R. G. Principles of Learning and Memory. Hillsdale, N. J.: Erlbaum 1976.
DeGroot, A, D. Thought and Choice in Chess. The Hague: Mouton 1965.

Delong, R.J. The effects of increasing skill on cycle-time and its consequences for time-standards.
Ergonomics, 1957, 1, 51-60.

Fitts, P. M. & Posner, M. I. Human Performance. Belmont, CA: Brooks/Cole 1967.

Fitts, P. M. The information capacity of the human motor system in controlling amplitude of movement.
Journal of Experimental Psychology, 1954, 47, 381-391.

Fitts, P. M. Perceptual-motor skill learning. In Melton, A. W, (Ed.), Categories of Human Learning New
York: Academic Press, 1964,

Guilliksen, H. A rational equation of the learning curve based on Thorndike’s law of effect. Journal of General
Psychology, 1934, 11, 395-434.

Hick, W. E. On the rate of gain of information. Quarterly Journal of Experimental Psychology, 1952, 4, 11-26.
Hirsch, W. Z. Manufacturing progress functions. Review of Economics and Statistics, 1952, 34, 143-155.

Hyman, R. Stimulus information as a determinent of reaction time. Journal of Experimental Psychology, 1953,
45, 188-196.

Johnson, N. F. Organization and the concept of a memory code. In Melton, A. W. & Martin, E (Ed.), Coding
Processes in Human Memory, Washington, D.C.: Winston, 1972.

Kintsch, W. Memory and Cognition. New York: Wiley 1977.

Kolers. P. A. Memorial consequences of automatized encoding. Journal of Experimental Psychology: Human
learning and memory, 1975, 1(6), 689-701.



PAGE 51

LaBerge, D, Acquistion of automatic processing in perceptual and associative learning. In Rabbitt, P. A. M. &
Dornic, S.(Ed.), Attention and Performance V, New York: Academic Press, 1974.

Lindsay, P. & Norman, D. Human Information Processing: An introduction to psychology, 2nd ed. New York:
Academic 1977. .

Mazur, 1. & Hastie, R. Learning as accumulation: A reexamination of the learning curve. Psychological
Bulletin, 1978, 85(6), 1256-1274.

Miller, G. A. The magic number seven plus or minus twg: Some limits on our capacity for-processing
information, Psychological Review, 1956, 63, 81-97.

Neisser, U., Novick, R. & Lazar, R. Searching for ten targets simultaneously. Perceptual and Motor Skills,
1963, 17, 955-961.

Neves, D. M. & Anderson, J. R. Knowledge compilation: Mechanisms for the automatization of cognitive
skills. In Anderson, J. R. (Ed.), Cognitive Skills and their Acquisition, Hilisdale, NJ: Erlbaum, In press.

Newell, A. Harpy, production systems and human cognition. In Cole, R. (Ed.), Perception and Production of
Fluent Speech, Hillsdale, N.J.: Erlbaum, 1980.

Posner, M. 1. & Snyder, C. R. R. Attention and cognitive control. In Solso, R. L. (Ed.), Information Processing
and Cognition, Hillsdale, N. J.: Eribaum, 1975.

Reisberg, D., Baron, J. & Kemler, D, G. Overcoming Stroop interference: The effects of practice on distactor
potency. Journal of Experimental Psychology: Human perception and Performance, 1980, 6, 140-150.

Restle, F. & Greeno, J. Introduction to Mathematical Psychology. Reading, Mass: Addison-Wesley 1970.
(Chap 1}.

Rigon, C. J. Analysis of progress trends in aircraft production. dero Digest, May 1944, | 132-138,

Robertson, G., McCracken, D., & Newell, A. The ZOG approach t0 man-machine communication.
International Journal of Man-Machine Studies, 1980, , . (In press).

Schneider, W. & Shiffrin, R. M. Controlled and automatic human information processing: [. Detection,
search and attention. Psychological Review, 1977, 84, 1-66.

Seibel, R. Discrimination reaction time for a 1,023 alternative task. Journal of Experimental Psychology, 1963,
66, 215-226.

Shiffrin, R. M. & Schneider, W. Controlled and automatic human information processing: II. Perceptual
learning, automatic attending, and a general theory. Psychological Review, 1977, 84, 127-190.

Simon, H. A. & Gilmartin, K. A simulation of memory for chess positions. Cognitive Psychology, 1973, 5, 29-
46. .

Simon, H. A. On a class of skew distribution functions. Biometrika, 1955, 42, 425-440,
Snoddy, G. S. Learning and stability. Journal of Applied Psychology, 1926, 10, 1-36.
Spelke, E., Hirst, W. & Neisser, U. Skills of divided attention. Cognition, 1976, 4, 215-230.

Stevens, J. C. & Savin, H. B. On the form of learning curves. Journaf of the Experimental Analysis of Behavior,
1962, 5(1), 15-18.



PAGE 52

Suppes, P., Fletcher, J. D. & Zanotti, M. Models of individual trajectories in computer-assisted instruction for
deaf students. Journal of Educational Psychology, 1976, 68, 117-127.

Thurstone, L. L. The learning curve equation. Psychological Monographs, 1913, 26(114), 51.
Welford, A. T. Fundamentals of Skifi. London: Methuen 1968.
Woodworth, R. S. Experimental Psychology. New York: Holt 1933.

8. REFERENCE NOTES

1. Anderson, J. Private communication, 1980,
2. Lewis, C. Speed and Practice, undated.
3. Lewis, C. Private communication, 1980.

4, Moran, T. P. Compiling cognitive skill, 1980 (AIP Memo 150, Xerox PARC).



SECURITY CLASSIFICATION OF ~w!$§ BAGE ‘dhen Daca Snrersq)

REPORT DOCUMENTATION PAGE BEFORE Covmr ool ONS

« REPORY NUMBER 2. GAVT ACTESSION NO, 3. RECIPLENT'S CATALDSG NUM3ER

CMU-CS-80-145

4. TITLE (and Subtitle) 5. TYPE OF REPQRT & PERIQD COVERED
| MEcHANISMS OF SKILL ACQUISITION AND THE LAW + Interim
OF PRACTICE

€. PERFORMING QRG., REPORT NMUMBER

7. AUTHOR(SE) 8. CONTRACT QR GRAMT NUMBER(s)

Allen Newell & Paul §, Rosenbloom

9. PERFORMING QRGANIZATICN NAME AND ADDRESS 10. :ROGHAM ER!.EMENrT. FF(OJEF’!\:T, TASK
Carnegie-Mellon University REA & WORK UNIT NuxBERS

Computer Science Department
Pittsburgh, PA, 15213

Th. CONTROLLING OFFICE NAME AND ADDRESS 1 12. REFORT DATE
September 1980

13. NUMBER OF PAGES

58
T& MONITORING AGENCY NAME & AGGRESS/IT aiifrent from Coneralling Ollice) | 5. SECURITY CLASS, (of this repors)
UNCLASSIFIED

\Sa, DECLASSIFICATIONS OOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (af thia Report)

17. DISTRIDUTION STATEMENT {of the abatract sntered In Blaock 10, if different froes Report)

Approved for public release; distribution unlimited

18. SUPPLEMENTARY NOTES

9. KEY WORDS (Continue on reverae side if necsvaary and identity by block number)

20. ABSTRACT (Continue an reverse side If necesasary and identily Ay dock manber)

DD , 0%, 1473  eoimion oF 1 nov a3 13 oBsoLETE
S/M 0107-014-6601 |

UNCIASSTFIED

JECURITY CLASSIFICATION OF THIS PAGE {("han Deta Eniersd)




