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Abstract 

Practice, and the performance improvement that it engenders, has long been a major topic in psychology. 
In this paper, both experimental and theoretical approaches are employed in an investigation of the 
mechanisms underlying this improvement. On the experimental side, it is argued that a single law, the power 
law of practice, adequately describes all of the practice data. On the theoretical side, a model of practice 
rooted in modern cognitive psychology, the chunking theory of learning, is formulated. The paper consists of 
(1) the presentation of a set of empirical practice curves; (2) mathematical investigations into the nature of 
power law functions; (3) evaluations of die ability of three different classes of functions to adequately model 
the empirical curves; (4) a discussion of the existing models of practice; (5) a presentation of the chunking 
theory of learning. 



Table of Contents 

1. INTRODUCTION 
2. THE UBIQUITOUS LAW OF PRACTICE 

2.1. Perceptual-Motor Skills 
2.2. Perception 
2.3. Motor Behavior 
2.4. Elementary Decisions 
2.5. Memory 
2.6. Complex Routines 
2.7. Problem Solving 
2.8. Other Tasks and Measures 
2.9. Summary 

3. BASICS ABOUT POWER LAWS 
3.1. Differential Forms and Rates of Change 
3.2. Asymptotes and Prior Experience 
3.3. Trials or Time? 

4. FITUNG THE DATA TO A FAMILY OF CURVES 
4.1. The Data Analysis Procedure 
4.2. Hie Transformation Spaces 
4.3. The Theoretical Curves 
4.4. The Analysis of a Data Set 

4.4.1. The exponential family 
4.4.2. The power law family 
4.4.3. The hyperbolic family 

4.5. Summary 
5. POSSIBLE EXPLANATIONS 

5.1. General Matures 
5.2. Stochastic Selection 

5.2.1. Crossman's model 
5.2.2. The Accumulator and Replacement models 

5.3. Exhaustion of Exponential Learning 
5.4. The Chunking Theory Of Learning 

5.4.1. A simple version 
5.4.2. A combinatorial task environment 
5.4.3. The power law chunking model 
5.4.4. Relation to existing work on chunking 

6. CONCLUSION 
7. REFERENCES 
8. REFERENCE NOTES 



PAGE II 

7 

8 

9 

10 

List of Figures 
Figure 1: Learning in a Mirror Tracing Task (Log-Log Coordinates). Replotted from Snoddy 4 (1926). 

Figure 2: Cross-sectional Study of Learning in Cigar Manufacturing (Log-Log Coordinates). 6 
Replotted from Crossman (1959). 

Figure 3: Learning to Read Inverted Text (Log-Log Coordinates). Plotted from the original data for 7 
Subject HA (Kolers, 1975). 

Figure 4: Learning to Scan for Visual Targets (Log-Log Coordinates). Replotted from Neisser, 
Novick&Lazar(1963). 

Figure 5: Learning to Use Cursor Positioning Devices (Log-Log Coordinates). Plotted from the 
original data for Subject 14 (Card, English & Burr, 1978). 

Figure 6: Learning in a Ten Finger, t023 Choice Task (Log-Log Coordinates). Plotted from the 
original data for Subject JK (Seibel, 1963). 

Figure 7: Learning in a Sentence Recognition Task (Log-Log Coordinates). Plotted from the fan 1 ^ 
data of Anderson (Note 1). 

Figure 8: Learning of a Complex On-line Editing Routine (Log-Log Coordinates). Plotted from the 11 
original data of Moran (Note 4). 

Figure 9: Learning in a Geometry Proof Justification Task (Log-Log Coordinates). Plotted from 11 
the original data (Neves & Anderson, In press) 

Figure 10: Learning in the Card Game Stair (Log-Log Coordinates). 12 
Figure 11: Eight Cumulated Response Practice Curves (Log-Log Coordinates). Figure from Stevens 14 

& Savin (1962). Copyright 1962 by the Society for the Experimental Analysis of 
Behavior, Inc. 

Figure 12: The Effect of Practice on Direct Labor Requirement Machine Production (Log-Log 15 
Coordinates). Replotted from Hirsch (1952). 

Figure 13: Basic Learning Curves: Power Law, Exponential, and a Generalized Curve. 17 
Figure 14: A General Power Law Curve. 18 
Figure 15: A General Power Law in Log-Log Coordinates. The simple power law with the same a 19 

and B is also shown. 
Figure 16: Optimal Fit of a Power Law in the Exponential Transformation Space (Semi-Log 27 

Coordinates). 
Figure 17: Optimal Fit of a Power Law in the Hyperbolic Transformation Space (Log-Log 27 

Coordinates). 
Figure 18: A General Exponential Function in Log-Log Coordinates. 28 
Figure 19: Optimal Fit to SeibeFs Data in the Exponential Transformation Space (Semi-Log 29 

Coordinates). 
Figure 20: Optimal Fit to Kolers's Data in the Exponential Transformation Space (Semi-Log 29 

Coordinates). 

Figure 21: Optimal Fit to Seibcl's Data in the Power Law Transformation Space (Log-Log 30 
Coordinates). 

Figure 22: Optimal Fit to Kolers's Data in the Power Law Transformation Space (Log-Log 30 
Coordinates). 

Figure 23: Optimal Fit to Seibcl's Data in the Hyperbolic Transformation Space (Log-Log 32 
Coordinates). 

Figure 24: Optimal Fit to Kolers's Data in the Hyperbolic Transformation Space (Log-Log 32 
Coordinates). 

Figure 25: A Forty Term Additive Exponential Mixture (Log-Log Coordinates). The weights (0 < 34 
Wf < 5) and exponents (0 < JLU < .1) were selected at random. 

Figure 26: Seibel's Task Environment for Four Lights. At the left are two primitive chunks for each 41 
light (for the on and off states) and at the right are the top-level chunks. 

Figure 27: The Learning Curve for the Chunking Model in a Combinatorial Task Environment 45 
(Log-Log Coordinates), llic parameter values are: /; = 2, P = 50. X = 1, Af = 20, and E 
- 10. 



PAGE III 

List of Tables 
Tabic 1: Power Law Parameters for the (Log-Log) Linear Data Segments. 
Table 2: The General Learning Curves: Parameters from Optimal Fits in the Log Transformation 

Spaces 



PAGE 1 

MECHANISMS OF SKILL ACQUISITION 
AND THE LAW OF PRACTICE1 

1. INTRODUCTION 
Practice makes perfect. Correcting the overstatement of a maxim: Almost always, practice brings 

improvement, and more practice brings more improvement. We all expect improvement with practice to be 

ubiquitous, diough obviously limits exist both in scope and extent Take only the experimental laboratory: 

We do not expect people to perform an experimental task correctly without at least some practice; and we 

design all our psychology experiments with one eye to the confounding influence of practice effects. 

Practice used to be a basic topic. For instance, the first edition of Woodworth (1938) has a chapter entitled 

Practice and Skill. But, as Woodworth (pl56) says, "There is no essential difference between practice and 

learning except diat the practice experiment takes longer". Thus, practice has not remained a topic by itself, 

but become simply a variant term for talking about learning skills through the repetition of their performance. 

Widi the ascendence of verbal learning as the paradigm case of learning, and its transformation into the 

acquisition of knowledge in long term memory, the study of skills took up a less central position in die basic 

study of human behavior. It did not remain entirely absent, of course. A good exemplar of its continued 

presence can be seen in the work of Neisser, taking first die results in the mid-sixties on detecting the presence 

of ten targets as quickly as one in a visual display (Neisser, Novick & Lazar, 1963), which requires extensive 

practice to occur; and dien the recent work (Spelke, Hirst & Neisser, 1976) showing that reading aloud and 

shadowing prose could be accomplished simultaneously, again after much practice. In these studies, practice 

plays an essential but supporting role; center stage is held by issues of pre-attentive processes, in the earlier 

work, and the possibility of doing multiple complex tasks simultaneously, in the later. 

Recently, especially with the paper by Shiffrin & Schneider (1977; Schneider & Shiffrin, 1977), but starting 

earlier (LaBerge, 1974, Posner & Snyder, 1975), emphasis on automatic processing has grown substantially 

from its level in the sixties. It now promises to take a prominent place in cognitive psychology. The 

development of automatic processing seems always to be tied to extended practice and so die notions of skill 

and practice are again becoming central. 

There exists a ubiquitous quantitative law of practice: It appears to follow a power law. That is, plotting the 

logarithm of the time to perform a task against the logarithm of die trial number always yields a straight line, 

more or less. We shall refer to this law variously as the log-log linear learning law or the power law of practice. 

HTiis paper relies on the data of many other investigators. We arc deeply grateful to those who made available original data: John 
Anderson, Stu Card, Paul Kolers, Tom Moran. David Neves. Patrick Rabbitt. and Robert Scibcl. We are also grateful to John Anderson, 
Stu Card. Clayton Lewis and Tom Moran for discussions on the fundamental issues: and especially to Clayton Lewis for letting us read 
his paper, which helped to energize us to this effort. 
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This empirical law has been known for a long time; it apparently showed up first in Snoddy's (1926) study 

of mirror-tracing of visual mazes (see also Fitts, 1964), though it has been rediscovered independently on 

occasion (DeJong, 1957). Its ubiquity is widely recognized; for instance, it occupies a major position in books 

on human performance (Fitts & Posner, 1967, Welford, 1968). Despite this, it has captured little attention, 

especially theoretical attention, in basic cognitive or experimental psychology, diough it is sometimes used as 

the form for displaying data (Kolers, 1975, Reisberg, Baron & Kemler, 1980). Only a single model, that of 

Crossman (1959), appears to have been put forward to explain it. 2 It is hardly mentioned as an interesting or 

important regularity in any of the modern cognitive science texts (Calfee, 1975, Crowder, 1976, Kintsch, 1977, 

Lindsay & Normon, 1977). Likewise, it is not a part of the long history of work on the learning curve 

(Thurstone, 1919, Guilliksen, 1934, Restle & Greeno, 1970), which considers only exponential, hyperbolic and 

logistic functions. Indeed, a recent extensive paper on the learning curve (Mazur & Hastie, 1978) simply 

dismisses the log-log form as unworthy of consideration and clearly dominated by the other forms. 

The aim of this paper is to investigate this law. How widespread is its occurrence? What could it signify? 

What theories might explain it? Our motivation for this investigation is threefold. First, an interest in 

applying modern cognitive psychology to user-computer interaction (Card, Moran & Newell, 1980a, 

Robertson, McCracken & Newell, 1980) led us to the literature on human performance, where tiiis law was 

prominently displayed. Its general quantitative form marked it as interesting, an interest only heightened by 

the apparent general neglect of the law in modern cognitive psychology. Second, a theoretical interest in the 

nature of the architecture for human cognition (Newell, 1980) has led us to search for experimental facts that 

might yield some useful constraints. A general regularity such as the log-log law might say something 

interesting about the basic mechanisms of turning knowledge into action. Third, an incomplete manuscript 

by Clayton Lewis (Note 2) took up this same problem; this served to convince us that an attack on the 

problem would be useful. Thus, we welcomed the excuse of this conference to take a deeper look at this law 

and what might lay behind it. 

In Section 2 we provide many examples of the log-log law and characterize its universality. In Section 3 we 

perform some basic finger exercises about the nature of power laws. In Section 4 we investigate questions of 

curve fitting. In Section 5 we address the possible types of explanations for the law; and we develop one 

approach, which we call the chunking theory of learning. Finally, in Section 6, we sum up our results. 

2 Rut see Suppcs Fletcher and Zanotti (1976), who do develop a model yielding a power law for instructional learning, though their 
effort appears'independent of a concern with the general regularity. Unfortunately, their description is too iragmcntary and faulty to 
permit it to be considered further. 
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2. THE UBIQUITOUS LAW OF PRACTICE 
We have two objectives for this section. First, we simply wish to show enough examples of the regularity to 

lend conviction of its empirical reality. Second, the law is generally viewed as associated with skill, in 

particular, with perceptual-motor skills. We wish to replace this with a view that the law holds for practice 

learning of all kinds. In this section we will be presenting data. We leave to the next section issues about 

alternative ways to describe the regularity and to yet subsequent sections ways to explain the regularity. 

We organize the presentation of the data by the subsystem that seem to be engaged in the task. In Table 1 

we tabulate several parameters of each of the curves. Their definitions will be given at the points in the paper 

where the parameters are first used. 

Data Set Power Law 
T = BN~a 

B a 2 
r 

Snoddy (1926) 79.20 .26 .981 

Crossman (1959) 170.1 .21 .979 

Kolers (1975) - Subject HA 14.85 .44 .931 

Neisser et al. (1963) 
Ten targets 
One target 

1.61 
.68 

.81 

.51 
.973 
.944 

Card, English & Burr (1978) 
Stepping keys - Subj. 14 
Mouse - Subj. 14 

4.95 
3.02 

.08 

.13 
.335 
.398 

Seibel (1963)-Subject JK 12.33 .32 .991 

Anderson (Note 1) - Fan 1 2.358 .19 .927 

Moran (1980) 
Total time 
Method time 

30.27 
19.59 

.08 

.06 
.839 
.882 

Neves & Anderson (1980) 
Total time - Subject D 991.2 .51 .780 

The Game of Stair 
Won games 
Lost Games 

1763 
980 

.21 

.18 
.849 
.842 

Hirsch (1952) 10.01 .32 .932 

Table 1: Power Law Parameters for the 
(Log-Log) Linear Data Segments. 
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2.1. Perceptual-Motor Skills 
Let us start with the historical case of Snoddy (1926). As remarked earlier, the task was mirror-tracing, a 

skill that involves intimate and continuous coordination of the motor and perceptual systems. Figure 1 plots 

the log of performance on the vertical axis against the log of the trial nCimber for a single subject. 

Figure 1: Learning in a Mirror Tracing Task (Log-Log Coordinates). 
Replotted from Snoddy (1926). 

The first important point is: 

• The law holds for performance measured as the time to achieve a fixed task. 

Analyses of learning and practice are free a priori to use any index of performance: eg, errors or performance 

time, which decrease with practice; or amount or quality attained, which increase with practice. However, we 

will focus exclusively on measures of performance time, with quality measures (errors, amount, judged 

quality) taken to be essentially constant Given that humans can often engage in tradeoffs between speed and 

accuracy, speed curves are not definable widiout a specification of accuracy, implicit or odierwisc. As we will 

illustrate later, the log-log law also appears to hold for learning curves defined on other performance criteria. 

Though significant for understanding die cause of the power law, we will only note die existence of tiiese 

3Snoddy used an indicator, l/(Time 4-Errors), and we have replotted the figure using Time + Errors. This strikes the modern eye as 
incongruous, addina together apples and oranges, in fact, the measure is almost purely performance time. Snoddy was endeavoring to 
cope with the speed/accuracy trade off. He fixed the error rate to be equal to the performance time (in seconds); and had the subject 
work faster or slower in order to hold the error rate at that level. Thus the error rate bore a fixed average relationship to time; and adding 
the actual value of the errors to the performance time was a way of compensating for momentary shifts in the speed/accuracy tradeoff. 
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other curves. 

Several other things can be noted in Figure 1, which will show up generally in die otiier curves. 

• The points are sparse at the left and become denser to the right. This arises from taking the log of 
the trial number. Even when trials are aggregated into blocks tiiis is usually done uniformly in 
linear space. Thus, this is just an artifact of the display. 

• There is systematic deviation at one end. Here it is the beginning. Snoddy made a lot of this initial 
deviation, though we need not follow him in this. As we shall see, systematic deviation can occur 
at either end. 

• There is little doubt that the bulk of the curve lies along a line in log-log space. This arises in part 
because of the relatively large number of points available.4 The curves are for an individual, not 
for grouped data. This is not a condition of die law, but shows that it holds for individual data. 

• Data are rarely presented on many subjects, though in some cases such data exists and 
(apparently) is robust For instance, Snoddy took his curve as diagnostic and appears to have 
gathered it on large numbers of individuals, though he never reported any mass of data. 

In Table 1 we tabulate several critical features of the Snoddy's data. The following equations describe the 

power law in linear and log-log spaces: 

T = BN~a (1) 

l og (7> log(* ) -a log (JV) (2) 

B is the performance time on the first trial (N = 1) and a is the slope of the line, ie, the learning rate. A 

positive value of a, eg, .26 for the curve of Figure 1, indicates a decreasing curve, since we have located the 

minus sign in the equation itself. 

Anodicr example from a task that appears to involve intimate motor-perceptual coordination is shown in 

Figure 2. This is Crossman's (1959) famous data on the manufacture of cigars by female operators using a 

cigar-making machine. Noteworthy is the number of trials, namely, up to 20 million cigars. Also, there is a 

known lower bound for the performance time, namely the cycle time of the machine. The curve eventually 

deviates from the log-log line, flattening out in submission to physical necessity. Still, practice followed the 

law for almost 3 million trials (and 2 years). Furthermore, additional small improvements continued; and it 

would be foolish indeed to predict that no further improvements would occur. Crossman's data differs from 

all other data in being cross-sectional, ie, different individuals make up each point 

Obvious deviations at the ends of the empirical curves were eliminated before the fits in Table I were computed. The equations 
therefore primarily represent this linear portion of the curve. The solid line in Figure 1 (and in the following figures) reflects this fit. 
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Figure 2: Cross-sectional Study of Learning in Cigar Manufacturing (Log-Log Coordinates). 
Rcplotted from Crossman (1959). 

2.2. Perception 
Figure 3 shows the data from one subject (of eight) in Kolers's well known studies on reading graphically 

transformed text (Kolers, 1975). Here, the transformation is inversion of each line around its horizontal axis. 

The task of the subject is to read many pages of such text for comprehension. Reading in general is a complex 

task, but the difficulties here are clearly strongly perceptual, being caused primarily by the perceptual 

transformation. Without inversion, reading is much faster and improves hardly at all (though we don't show 

Kolers's control data on this). In any event, as the figure shows, learning is log-log linear. 

Figure 4 shows some data rcplotted from a paper by Neisser, Novick & Lazar (1963). The task consisted of 

finding any of multiple targets in pages of letters. The result was that, with practice, identification time 

becomes essentially independent of the size of die target set. As Figure 4 shows, this data also follows the log-

log law, diough there seems to be a slight drop at die end. These two curves (scanning for one target and for 

ten targets) represent the two bounding conditions of the five used in die experiment. Each curve is die 

average of six subjects. One of the reasons for exhibiting these particular curves is to point out that much 

learning data in the literature fits the log-log law, even though it has not been plotted that way. 
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Figure 3: Learning to Read Inverted Text (Log-Log Coordinates). 
Plotted from the original data for Subject HA (Kolers, 1975). 

Figure 4: Learning to Scan for Visual Targets (Log-Log Coordinates). 
Rcplotted from Ncisscr, Novick & Lazar (1963). 
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2.3. Motor Behavior 
Figure 5 is from a task where a subject sees a target mark appear on a video terminal and has to position the 

cursor at that mark (Card, English & Burr, 1978). Four different pointing devices were used: a mouse, which 

permits a smooth pointing motion isomorphic to the motion of the cursor; a joystick; a set of stepping keys; 

and a set of text keys, which allow movement by paragraph, word, etc. Some of these devices are well 

described by Fitts's Law (Fitts, 1954); some have a different structure. The two curves in Figure 5 show the 

mouse and stepping key data for one subject, averaged over blocks of 20 trials (excluding errors). For all of 

the devices, die total performance time follows the law, though the degree of variability increases as one 

moves from the Fitts's law devices (the mouse) toward the other ones. 

0 

• • Stepping keys: T = 4.95ÌV ' 
Q. o Mouse: r = 3.022/*13 

* 0 • ^ — Q J I J A 

o 

o 

10 loo 
Block number 

Figure 5: Learning to Use Cursor Positioning Devices (Log-Log Coordinates). 
Plotted from the original data for Subject 14 (Card, English & Burr, 1978). 

2.4. Elementary Decisions 
Figure 6 is from a task designed by Seibel (1963) to probe the dependence of reaction time on the number 

of alternatives. It followed in the wake of the work by Hick (1952), Hyman (1953) and others showing diat 

choice RT was linear in the information (bits) required to select die response, at least for small ensembles (up 

to 3 or 4 bits). The subject's 10 fingers rested on 10 response keys (shaped to fit the natural position of the 

resting hand) and looked at 10 stimulus lights that were configured isomorphically to die keys. A subset of the 

lights would turn on, and the subject was to strike the corresponding keys. There are 1023 ( 2 1 0 - 1) different 

subsets of the lights: hence, the arrangement achieves a Choice RT task of 10 bits. For our purposes what is 

interesting is diat die learning over a large numbcrof trials (40,000) was log-log linear, though at die end the 
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curve flattens out. This is data for a single subject, averaged over blocks of 1023 trials; approximately the 

same behavior was shown by each of three subjects. 

1 
8 

io.Or 

- O T = 1 1 3 3 Ì V 
. 3 2 

O 

AS 1.0Y 

'100 1000 10000 100000 
Trial number 

Figure 6: Learning in a Ten Finger, 1023 Choice Task (Log-Log Coordinates). 
Plotted from the original data for Subject JK (Seibel, 1963). 

2.5. Memory 

Figure 7 is from some unpublished work of John Anderson (Note 1). It shows learning performance in a 

task that would appear to stress mostly memory, though of course it has both a perceptual and a motor 

response aspect. The task is an old-new judgment on a set of simple sentences, such as "The doctor talked to 

the lady." There is a fixed population of grammatical subjects, objects and verbs; a subset of these are seen 

initially, and then sets of the originals plus distractors (made from the same populations) are shown 

repeatedly. After awhile of course a subject has seen both the targets and the distractors several times. The 

figure shows that the reaction time to make the memory judgment follows the log-log linear law. 

2.6. Complex Routines 

Figure 8 is from some work done in connection with a general attack on understanding user-computer 

interaction (Moran, Note 4). A specific, complex on-line editing task of completely rearranging a given 

sentence of three clauses is being performed repeatedly. The task is absolutely identical each time, ie, the 

same sentence. Thus we are seeing a subject simply follow an internally familiar, complex plan. The top 

curve is the total time to perform the task; The lower curve shows the execution time attributable to the 

specific method being used, computed according to a model based on the keystroke sequence (Card, Moran & 
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Figure 7: Learning in a Sentence Recognition Task (Log-Log Coordinates). 
Plotted from the fan 1 data of Anderson (Note 1). 

Newell, 1980b). It decreases only if the subject makes some improvement that changes the number of 

keystrokes, rather than decreasing think time. Both curves show log-log linear practice effects. 

Figure 9 shows a more complex cognitive task (Neves & Anderson, In press), but one that still can be 

considered as evolving toward a complex routine. The task is to find the rule justifying each step in a proof in 

a simple formal proof system, taken to mirror die typical proof system of synthetic geometry. The subject 

faces a display that shows (on request) the lines of the proof, the axioms, or the theorems that are applicable to 

derive new steps in the proof. He must assign to each step whether it is an axiom or which rule is used in its 

derivation. As the figure shows, the time to perform this task follows the log-log linear law. 

2.7. Problem Solving 
Figure 10 shows our own small addition to the population of tasks known to follow the log-log linear k 

As the ubiquity of the law became clear, it seemed that it was miscast as something applying only 

percepaial and motor skills, but rather it applied to all forms of mental behavior. To test whedier the 1 

applied to problem solving tasks, we had a single subject play 500 hands of a game of solitaire called Stair. 
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Figure 8: Learning of a Complex On-line Editing Routine (Log-Log Coordinates). 
Plotted from die original data of Moran (Note 4). 
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Figure 9: Learning in a Geometry Proof Justification Task (Log-Log Coordinates). 
Plotted from the original data (Neves & Anderson, In press) 
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Stair involves laying out all 52 cards face up from a shuffled deck, in 8 columns (four with 7 rows, 
four with 6 rows). ITiere are also four spots (initially empty), each of which can hold only a single 
card. The aim is to build four stacks, Ace to King, one for each suit, by moving cards around 
under typical solitaire constraints. A card in a spot or at the bottom of a column may be moved: 
(1) to a spot, if it is empty; (2) to a stack, if the card is the next in order building up; or (3) to die 
bottom of anodier column, if the card is the next lower in the same suit (eg, die six of spades 
appended to the seven of spades). 

WOOOr g 

£ /00Ö|: 

1 
A . 

lOOV 

10 
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0.5 

0.4-

0.3 

0.2 

0.1 

Q • Won games: T= 1763AT 

£t-—A Lost games: 7"= 9807V 

o o Proportion of wins 

R-.21 
.18 

100 1000 
Game number 

Figure 10: Learning in the Card Game Stair (Log-Log Coordinates). 

The game can be seen to be one of perfect information - all cards are face-up. The shuffled deck simply 

picks out one of the possible initial conditions at random. From that point no further chance element enters. 

Whether the game can be won or not, or how many cards can be moved to the stacks, is derivable from the 

initial configuration. The subject, whose ability to calculate ahead is of course limited, may create a partial 

plan and dien proceed to execute it; in doing so, he may make irrevocable moves that lose him the possibility 

of winning. But such failures all arise, as in chess or checkers, because of his limited problem solving ability. 

Although this task certainly has a strong perceptual component (and a weak motor component), it is to be 

classed as fundamentally an intellectual task, in die same way as games such as chess and checkers, or 

problems such as the traveling salesman problem. 

Turning to the figure, die top curve shows the time for games that the subject won; the lower curve shows 

die time for games tiiat die subject lost; at the bottom the proportion of games won is shown. The points are 

averaged over 50 games. There is of course only one scries of trials, since all games, won or lost, contribute to 

practice. Each group of 50 games is therefore split between die two curves before being averaged. Bodi 
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curves essentially follow the log-log linear law. In general it takes longer to win than to lose, since losing 

involves becoming stuck after a relatively small number of cards has been played to the stack, whereas 

winning always involves working through all 52 cards (Uiough the tail end goes rapidly). 

The issue of the speed-accuracy trade off reveals itself in this data. Clearly, the subject is applying various 

criteria of certainty to his play. He could conceivably, as a strategy choice, study each initial layout for 5 hours 

before making his first move; or play impulsively with no contemplation at all. In fact, the subject felt he had 

little genuine control of the speed/accuracy tradeoff, partly because the complexity of the initial position 

made it unclear whether an apparently lost game was just a bad layout or was due to a failure to spend enough 

time analyzing. Note that the most deviant point from the log-log line (at 150-200 trials) corresponds to the 

lowest win frequency. 

2.8. Other Tasks and Measures 

The story does not quite end at this point Learning in other tasks and measured on other criteria seems to 

follow the log-log law. We give here a couple of examples. 

Figure 11 is reproduced from Stevens and Savin (1962). It plots eight tasks with various response measures 

in log-log space. The criteria are all oriented to increase with practice. The plot is actually of the cumulated 

responses, ie, the integral of the usual curve. This is just the same as the usual power law, since the integral of 

a power law is a power law (though integration tends to smooth the curve, helping to account for the lovely 

appearance of the curves, in addition to the relatively large numbers of subjects). 

Some of these curves are time curves (actually, amount accomplished per unit time, to make them positive 

curves); but several are not, eg, # 1 is the number of correct anticipations in learning nonsense syllables, #2 is 

the time on target in a pursuit tracking task; # 3 is the number of balls thrown into a target area; #4 is the 

number of correct responses in an animal experiment in learning a maze, and so on. 

As a second type of example, it has long been known in Industrial Engineering that the so-called learning 

curve for production of manufactured projects was log-log linear. In part this comes of various simple rules of 

thumb, eg, "... each time the quantity of [air]plancs is doubled, the cumulative average man-hours per plane 

will be [reduced by] 80%" (Rigon, 1944). However, Figure 12 shows an empirical curve from machine tool 

manufacture (Hirsch, 1952). Notice that the index of performance is not time, but cost. 

(3) 

U N I V E R S I T Y L I B R A R I E S 
C A R N E G I E - M E L L O N U N I V E R S I T Y 

P I T T S B U R G H . P E N N S Y L V A N I A 15213 
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JOSEPH C. ST EYES S and HARRIS B. SAY IS 

AMOUNT OF PRACTICE (AR3ITRARY UNITS) 

Figure 11: Eight Cumulated Response Practice Curves (Log-Log Coordinates). 
Figure from Stevens & Savin (1962). Copyright 1962 by the Society for the 

Experimental Analysis of Behavior, Inc. 

2.9. Summary 

We have shown some 12 diverse examples of the log-log linear law of practice for trials versus time. From 

Table 1 we can make one more particular point: 

• The learning rates, a, are all less than one. 

Our main point is that the law is ubiquitous when one measures the log of performance time against the log 

of trial number. Where the general impression seems to have been that the law showed up in perceptual-

motor behavior, we think it is clear that it shows up everywhere in psychological behavior - at least it cannot 

easily be restricted to some part of the human operation. 

Our proposition on ubiquity is extended, perhaps beyond our druthers, to learning curves involving other 

measures of performance and even to tasks possibly (but not certainly) beyond the pale of individual human 

behavior. We do not however claim that all learning is log-log linear. Nor do we claim that practice always 
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Figure 12: The Effect of Practice on Direct Labor Requirement 
Machine Production (Log-Log Coordinates). 

Replotted from Hirsch (1952). 

leads to learning. 

We do not wish to assert that such an effect stems from a single cause or mechanism. Indeed, its ubiquity 

might seem to indicate multiple explanations. We do wish to make one general comment about the regularity 

and what might be expected from understanding it. Its widespread occurrence implies that it depends on 

quite general features of the learning situation or of the system that learns. If we develop a theory that 

depends on detailed perceptual or motor mechanisms, we will just create trouble for the more cognitive 

instances, or vice versa. 

One is immediately reminded of other examples of ubiquitous regularities and their explanation. The 

normal distribution, which arises out of the independent additive combination of many small increments, is 

die most well known. Another, usually known as Zipfs Law, gives the distribution for items according to their 

rank order, which is common to word frequencies, city sizes, incomes and many odicr ordered phenomena 

(Simon, 1955). Consistently, highly general stochastic models underly dicsc various phenomena. They 

explain the regularity, but leave open the detailed mechanisms that produce the stochastic processes. 

Thus, in searching for an explanation for diis regularity, we should expect at best to find some such general 
considerations. Though it will not tell us in detail about die learning mechanism, it may still tell us something 
worth having. 
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1 BASICS ABOUT POWER LAWS 
In this section we present some general perspective on power laws and what they mean. 

3.1. Differential Forms and Rates of Change 

We start with die power law and its equivalent log-log form: 

T = BN'a (4) 

\og(T) = log(#) - alog(W) (5) 

It is instructive to see this in terms of the local rate of learning, dT/dN.5 

dT/dN = -aBN-a~l (6) 

- -aT/N - ~(a/N)T (7) 

= * - a 5 " 1 / A R 1 + 1 / A (8) 

Now, one baseline form for learning is exponential. It can arise, for instance, from any mechanism that is 

completely local. If there is something that learns on each local part of a performance, independent of any 

other part, then the change in T (the sum of the changes to each part of T) is proportional to T: 

dT/dN = -aT (9) 

T=Be'aN (10) 

Comparing this differential form to that of the power law, shows that power-law learning is like exponential 

learning in which the instantaneous rate a' decreases with N, ie: 

dT/dN « -a!T9 where a' - a/N (11) 

Both the exponential and the power function are monotonically decreasing functions that asymptote at 0. 

The decreasing rate of learning in the power function leads to its approaching asymptote much more slowly. 

Figure 13 shows these two curves in linear coordinates, with identical initial values (B = 1). This corresponds 

to N = 0 for the exponential, and N = 1 for the power. Thus, one way to think of power law learning is that it 

is a learning process in which some mechanism is slowing down the rate of learning. 

Not every scheme of slowed-down learning leads to the power law. For instance, if we generalize the 

differential equation above we get a different law: 

dT/dN m(a/N0)T, where 0*1 (12) 

T=Be-aN (13) 
A representative curve for /? less than 1 is also shown in Figure 13, which produces asymptoting between the 

exponential and the power law. 

5 F o r ease of exposition wc treat the trial number .V as a continuous variable. In fact, nothing material depends on it; we could work 

with finite differences throughout, at the cost of added complexity. 
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Figure 13: Basic Learning Curves: Power Law, Exponential, and a Generalized Curve. 

The form of the power law can be appreciated in terms of a simple global rule, as well as in differential 

form: 

Power Law Decay: If T decreases by a factor 5 in the first N trials, it will take another N(N-l) 
trials to decrease by a factor of 5 again. 

Comparison with the corresponding global rule for the exponential, shows again how much more slowly the 

power law drops off: 

Exponential Law Decay: If T decreases by a factor of 5 in the first N trials, it will take another N 
trials to decrease by a factor of 5 again. 

3.2. Asymptotes and Prior Experience 

As given in Equation 4, the law assumes (1) the asymptote of the learning is 0, ie, the task can be performed 

in arbitrarily small time after enough learning; and (2) the initial trial of the learning occurs at the first trial of 

die measured series. Neither of these assumptions need be true. 

The more general form of the law is: 

T - A + B(N + E)'a (14) 

A (>0) is the asymptote of learning as N increases indefinitely. E (>0) is the number of trials of learning that 

occurred prior to the first trial as measured, ic, prior experience: it thus identifies die true starting point of 

learning. (Neither A < 0 or E < 0 make immediate sense, given these interpretations; A = 0, E = 0 
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reproduces die basic form of Equation 4.) 

Plotting log(7 - A) against log(iV + E) still yields a straight line whose slope is - a . The difficulty of course 

is that A and E are not known in advance, so the curve cannot be plotted as an initial exploratory step in an 

investigation. 

One alternative is just to plot in log(7)-log(A0 space and understand the deviations: 

l o g ( R - A) = log(5) - alog(yV + E) (15) 

l o g ( R ) - log(Z?) - log(l - A/T) - alog(JV) - alog(l + E/N) (16) 

There is an error term for each parameter. If T is large with respect to the asymptote, /1, then log(l - A/T) 

is close to log(l), which is 0. This occurs at early values of N. If N is large with respect to E9 then log(l + 

E/N) is close to log(l), which is 0. Thus, the two deviations affect the curve at opposite parts: Non-zero 

values of E distort the straight line for low N, non-zero values of A distort it for high N. 

Figure 14 shows a power law with a starting point (-E) of -25 and a time asymptote (A) of 5. Figure 15 

shows the same curve in log-log space. Characteristically, the starting point pulls the initial segment of the 

curve down towards the horizontal and the finite asymptote pulls the high N tail of the curve up towards the 

horizontal. A central region of the curve appears as a straight line. It is however less than the true slope ( -a) , 

as the line shows. 

i;o 

! 
10\ 

General power law: T - 5 + 75(tf + 25) 
-.5 

•200 0 200 400 600 800 1000 
N 

Fiaurc 14: A General Power Law Cune. 
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Figure 15: A General Power Law in Log-Log Coordinates. 
The simple power law with the same a and B is also shown. 

The derivative of the general power function in log-log space is given by: 

d{\og(T))/d{\o%{N)) = - A ( 1 - A/T) / ( 1 + E/N) ( 17 ) 

It can be seen that the slope is everywhere smaller than a, and becomes increasingly so as either A or E 

increases. A reasonable estimate of the apparent slope as viewed on the graph, a*, is at the inflection point. It 

is easy to obtain by setting the derivative of Equation 17 to zero: 

d/dN[d(\o%{T))/d{\o%(N))\ = ~(a/N)(E/N - aA/T) (1 - A/T) (1 + E/N)'2 = 0 (18 ) 

A * = (aN* -E)/ (N* + E) ( 1 9 ) 

N* is the point at which the inflection occurs. The exact value of N* is not expressible in simple terms, but a 
reasonable approximation is: 

JV* = [BE/aA]l/{Ua) where E/N*« a < 1 ( 2 0 ) 

The structure of Figure 15 suggests that many of the deviations in the empirical curves could be due simply 

to starting point or asymptote effects. Since the effect of dicse two phenomena is to bend towards the 

horizontal at separate ends, it is possible to tell from the curve in log-log space what effect might be operating. 

The original Snoddy data in Figure 1 provides an example of a clear initial deviation. It cannot possibly be 

due to an earlier starting point, because die initial curve rises toward the vertical. However it could be due to 

die asymptote, since raising the asymptote parameter (A) will pull the right hand part of the curve down, and 

make its slope steeper. The Scibel data in Figure 6 provides an example where there are deviations from 
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linearity at both ends. Use of a non-zero value for E (previous experience) will steepen the initial portion of 

the curve, while doing likewise for A will steepen the high N portion of the curve. (The results of such a 

manipulation will be seen later in Figure 21.) 

3.3. Trials or Time? 

The form of the law of practice is performance time (7) as a function of trials (N). But trials is simply a way 

of marking the temporal continuum (/) into intervals, each one performance-time long. Since the 

performance time is itself a monotone decreasing function of trial number, trials (AO becomes a non-linear 

compression of time (/). It is important to understand the effect on the law of practice of viewing it in terms 

of time or in terms of trials. 

The fundamental relationship between time and trials is: 

UN) - TQ + *£"ml Tt = TQ + Br« = TQ + r a (21) 

T0 is the time from the arbitrary time origin to the start of the first trial. This equation cannot be inverted 

explicitly to obtain an expression for N(t) that would permit the basic law (Equation 4) to be transformed to 

yield T(t). Instead, we proceed indirectly by means of the differential forms. From Equation 21 we obtain: 

dt/dN = T (22) 

(Think of the corresponding integral formulation, d/dz f f(x) dx =AZ))-

Now, starting with the power law in terms of trials we get: 

dT/dt - (dT/dN) / (dl/ 

But from the basic equation (4) 

N = (T/B)'l/a 

Thus, we get the trials power law re-expressed in terms of time: 

dT/dt = -aB~l/a Tl/a (25) 

For a * 1 this integrates to yield: 

T<l'a)/a = (1 - aWl/a t + C, f o r a * l (26) 
But C is an arbitrary constant of integration and if the origin and scale of / is adjusted appropriately we get: 

R = S r a / ( 1 - a ) , f ora* l (27) 

Thus, a power law in terms of trials is a power law in terms of time, though with a different exponent, 

reflecting the expansion of time over trials. The results are significantly altered when a » 1 (the hyperbolic) 

however. Equation 25 becomes: 

dT/dt = -B'lT (23) 

This is no longer the differential form of a power law. Instead it is that of an exponential 

dT/dt » (dT/dN) / (dt/dN) = ( - a 7 7 A 0 / (T) - -a/N (23) 

N = (T/B)'l/a ( 2 4 ) 

T = Ce 
(29) 
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It is left as an exercise for the reader to confirm that an exponential function in trials transforms to a linear 

function in time (hence, Zeno-like, an infinite set of trials can be accomplished in a finite amount of time). 
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4. FITTING THE DATA TO A FAMILY OF CURVES 
Given empirical curves, such as occur in abundance in Section 2, it is important to understand how well 

they are described by curves of a given family (eg, power laws) and whether there are alternative general 

forms that fit them just as well (As noted in die introduction, exponential, hyperbolic and logistic curves have 

enjoyed much more favor than power functions.). Curve fitting without benefit of a model is notoriously a 

black art. Nonetheless, we have deliberately chosen not to be model driven initially, because we want to have 

empirical generalizations as the starting point in the search for theory, not just the raw data. 

The basic issue of curve fitting can be introduced from Seibel's own treatment of his data (Figure 6), which 

appears to be an extremely good fit to the log-log law over an extensive range (40,000 trials). Seibel (Seibel, 

1963) fit his points to three curves by least squares: (1) a power law with asymptote only (ie, E fixed at 0); (2) 

an exponential with asymptote; and (3) a general power law with both asymptote and starting point 6 He 

obtained an r2 of .991 for the power function with asymptote only. But he also obtained an r2 of .971 for the 

exponential with asymptote. His general power law fit was .997. (His parameters for asymptotes and starting 

points are mostiy reasonable, but not entirely.) Thus, all the curves give good fits by normal standards. If 

only differences in the least squared residual are used, there can hardly be much to choose from. This is an 

annoying result, in any case; but it is also somewhat unexpected, for die plots that we have shown, though 

they surely contain noise, are still impressively linear by intuitive standards and involve lots of data. 

It is important to recognize that two basic kinds of failure occur in fitting data to a family of smooth curves: 

(1) failure of the shape of the data curve to fit to the shapes available within the family; and (2) noise in the 

data, which will not be fit by any of the families under consideration or even noticeably changed by 

parametric variation within a family. These distinctions are precisely analogous to the frequency spectrum of 

the noise in the data. However, die analogy probably should not be exploited too literally, since an attempt to 

filter out the high frequency noise prior to data fitting simply adds another family of empirical curves (the 

filters) to confound the issues. What does seem sensible is to attempt to distinguish fits of shape without 

worrying too much about the jitter. 

A simple example of this point of view is the (sensible) rejection of the family of logistic curves from 

consideration for our data. The logistic provides a sigmoid curve (ie, a slow but accelerating start with a point 

of inflection and then asymptoting). No trace of an S-shape appears in any of our data, though it would not 

be lost to view by any of the various monotone transformations (logs, powers and exponentials) that we are 

considering. Hence, independent of how competing the measure of error, the logistic is not to be considered. 

The size of the jitter (ie, the high frequency noise) will limit the precision of die shape that can be detected 

and die confidence of the statements that can be made about it. It provides a band through which smooth 

6 The exponential is translation invariant, so a special starting point is not distinguishable for it, ie, Be' = (Be ' )e 
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curves can be threaded, and if that band is wide enough - and it may not have to be very wide - then it may 

be possible to get suitable members of conceptually distinct curves through it. In all cases, the main 

contribution to any error measure will be provided by the jitter, so that only relatively small differences will 

distinguish die different families. 

4.1. The Data Analysis Procedure 

With the elimination of the logistic from consideration, we have focused our efforts on three families of 

curves: exponential, hyperbolic, and power law. The analysis procedure that we have ended up using is 

primarily graphical in nature. We look at what types of deviations remain, once an empirical curve has been 

fit optimally by a family of theoretical curves. The analysis consists of judgments as to whcdier the deviations 

represent actual distortions of shape, or merely jitter. The procedure has the following components: 

1. Find spaces where the family of curves should plot as straight lines. Judgments of shape deviation 
are most easily made and described when the norm is a line. These are the transformation spaces 
of the given family. There may be more than one such space. 

2. For each family of curves, find the best linear approximation to the data in the transformation 
spaces of the family. This will generally involve a combination of search and linear regression. 

3. Accept a curve for a family, if the best fit plots as a straight line in the space of that family. Reject 
it, if it has significant shape distortion. 

4. Understand the shape distortion of family X when plotted in the space of family Y. Expect curves 
of family X to show the characteristic distortion when plotted in the spaces of alternative families. 

5. Compute an estimate of fit (r 2) for the best approximation in each transformation space. Expect 
diese values to support the judgments made on the basis of shape distortion. 

These criteria contain elements both of acceptance and rejection, and provide a mixture of absolute 

judgments about whether data belongs to a given family and relative judgments about the discrimination 

between families. The parameters for the best fits as well as the estimates of fit (r 2) can be found in Table 2. 

The remainder of this section shows how we applied this data analysis procedure. We will start by looking 

at the transformation spaces. This will be followed by an examination of the distortions that occur when a 

theoretical curve is plotted in a space belonging to a different family. We will then be in a position to analyze 

a couple of the empirical curves that appeared in Section 2. 

4.2. The Transformation Spaces 

The curves that we are interested in belong to multi-parameter families (3 for die exponential and 

hyperbolic; 4 for the power law). Regression can be used to fit a line to an empirical curve plotted in a multi­

dimensional space. Unfortunately, for die three families that wc are interested in, dicre is no space in which 

all of the parameters (3 or 4) can be determined by linear regression. The most that wc can get is 2 
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Data Set 
T 

Exponential m_ 
= A+Be~aN r = 

Hyperbolic 
= A + B/(N + E) T 

Power Law 
= A + B(N + E)a 

A B a 2 
T A B E 2 

r A B E a 2 
r 

Snoddy (1926) 27.01 38.80 .061 .916 24.49 243.6 1.3 .962 21.74 119.2 0.0 .71 .975 

Crossman(1959) 7.19 4.59 3.1xl0"7 .842 7.10 1 4 x l 0 6 151000 .983 6.91 20481 31000 .66 .990 

Kolers (1975) - Subject HA 1.36 3.82 .018 .849 LIO 94.02 9.8 .915 .18 15.25 0.0 .46 .931 

Neisseretal. (1963) 
Ten targets 
One target 

.06 

.06 
.83 
.44 

.13 
.094 

.905 

.938 
.00 
.00 

174 
3.16 

.9 
4.6 

.965 

.951 
.00 
.00 

135 
157 

.6 
3.9 

.95 

.94 
.965 
.951 

Card, English & Burr (1978) 
Stepping keys - Subj. 14 
Mouse - Subj. 14 

2.35 
1.46 

1.99 
1.28 

.011 

.028 
.335 
.452 

114 
1.46 

171:4 
16.70 

75.2 
5.0 

.338 

.603 
.02 
.59 

6.36 
4.28 

9.3 
0.0 

.14 

.33 
.340 
.729 

Seibel (1963)-Subject JK .371 .461 .000055 .956 .328 3888.1 3042 .993 .324 2439.9 2690 .95 .993 

Anderson (Note 1) - Fan 1 .487 .283 .00055 .774 .466 231.6 319.7 .902 .353 4.322 0.0 .39 .947 

Moran (1980) 
Total time 
Method time 

13.80 
11.61 

6.66 
3.11 

.00073 
.0010 

.546 

.652 
14.77 
11.75 

3335.9 
1381.8 

474.6 
360.0 

.637 

.737 
.03 
.26 

30.24 
19.35 

0.0 
0.0 

.08 

.06 
.839 
.882 

Neves & Anderson (1980) 
Total time - Subject D 57.5 240.2 .019 .660 45.6 5000.2 7.3 .728 0.0 991.2 0.0 .51 .780 

The Game of Stair 
Won games 
Lost Games 

476 
152 

319 
326 

.0052 

.0016 
.689 
.634 

449 
247 

29800 
41270 

40.1 
124.1 

.783 

.751 
120 

1 
1763 
1009 

0.0 
2.5 

.25 

.19 
.849 
.841 

Hirsch (1952) 176 4.35 .070 .819 134 37.05 4.9 .897 .00 10.01 0.0 .32 .932 

General Power Law 
T = 5 + 75(iV + ISy* 7.21 6.78 .0037 .983 6.41 1069.6 91.2 .997 5.00 74.85 24.9 .50 1.000 

40 Term Additive Mkture 1.60 45.37 .0065 .904 .58 1231.2 10.2 .997 .19 753.1 7.2 .89 .998 

Chunking Model 
Combinatorial TE 4.61 4.71 .0046 .957 4.35 365.7 55.3 .992 186 17.40 6.6 .33 1.000 

Table 2: The General Learning Curves: Parameters from Optimal Fits 
in the Log Transformation Spaces 

parameters. The remainder must be determined by some other means, such as search. The choice of which 

parameters are to drop out of the analysis determines the transformation space. We have primarily worked in 

two different types of transformation spaces. The first type consists of die log spaces. These are die most 

commonly used linearizing spaces for functions with powers. The log transformations that we use are die 

following: 
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Exponential: T = log(5) - aiV, for T = log(7 - A) (30) 

Hyperbolic: T = log(fl) - N\ for T = log(7 - A) and iV' = log(iV + E) (31) 

Power Law: T = log(5) - aN\ for 7' = log(7 - A) and /V = log(W + £ ) (32) 

The log spaces for die hyperbolic and the power law turn out to be the standard log-log space, while the 

exponential is in semi-log space. Determining fits in these spaces requires a combination of search (over 0 < 

A < Tmin and 0 < E) and regression (for B and a). Since die exponential and hyperbolic families are each 

missing one of these parameters, the process becomes simpler for diem. The exponential only requires a one 

dimensional search (over 0 < A < 7"m i n) while the hyperbolic can replace the regression (for B and a) with 

the computation of the average for B. 

The log spaces have been used exclusively for the data analyses that will be described in the following 

section (Table 2 was computed in the log spaces). It is important to realize tiiough that they are not the only 

transformation spaces that can be used. We have explored what we call the 7-X spaces, though space 

precludes presenting the analysis. Transforming a curve into its TX space involves pushing all of the non-

linearities into the definition of A" as follows: 

Exponential: T - A + BX, for X = e'aN (33) 

Hyperbolic: T = A + BX, for X =* 1/{N+E) (34) 

Power Law: T = A + BX, for X »(N+E)~a (35) 

In die T-X spaces, searches are over a > 0 and E > 0, with A and B determined by regression. Only single 

dimensional searches are needed for the two 3 parameter families. The T-X spaces prove especially useful for 

estimating the asymptote (̂ 4), since it maps into the intercept of die transformed curve. 

4.3. The Theoretical Curves 

When a curve is optimally fit in a space corresponding to its family, it plots as a straight line (by definition). 

This is not true though when the curve is fit in a space corresponding to some other family. There will be 

distortions diat show up as nonlinearities in the plot By understanding these characteristic shape distortions, 

we are able to interpret the deviations that we find when we plot the data in tiicse spaces. This will help us to 

distinguish between random jitter, and distortions that signal a bad fit by the family of curves. Data diat plots 

with the same deviations as one of die theoretical curves has a good chance of belonging to that curve's family. 

Figure 16 shows the best that a power law can be fit in exponential log space. The power law curve is: 

T = 5 + 750V + 25)-°-5 (36) 

This is the same curve that is plotted in Figures 14 and 15. The parameters for the optimal exponential fit 

can be found in Table 2. The r2 value of .983 is deceptively high, as an examination of Figure 16 shows. 

There are strong deviations in all portions of the curve. The curve starts out high, goes low, then high again, 

and finally tails off downwards. If we see deviations of diis type when a set of data has been optimally fit by 
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an exponential, we can conclude that the exponential family is not a good model for the data, and that the 

power law might be. 

Figure 17 shows the same curve optimally fit in hyperbolic log space. We see the same sorts of deviations 

that were found in the exponential case, but they are much attenuated. It will be hard to rule out the 

hyperbolic family in such a case because the variability of the data is likely to swamp out much of the 

distortion. At most we can hope to see die slight upturn at low N and die slight downturn for high N. 

It is not necessary to look at the theoretical plots for the hyperbolic, as it is a special case of the power law. 

It will plot with no distortion in the power law log space, and it will have the same type of distortion in the 

exponential log space as did the power law. This leaves only exponential curves to be examined. We cannot 

present a plot of the optimal fit of an exponential in the power law log space. All attempts to find such 

optimal fits have led to at least one of the parameters requiring a value that is too large to be represented in 

our computer. Though this makes the generation of a plot impossible, this information can be used in lieu of 

a plot If analysis in the power law log space leads to immense parameter values, then that is evidence against 

a power law, and for an exponential. 

In addition to this information, it is useful to see what an exponential function looks like in log-log space. 

Figure 18 is characteristic of such plots. In log-log space, exponentials tend to have a flat portion followed by 

a rapid drop to asymptote. The central portion is considerably steeper (a > 1) than the equivalent portion of 

the empirical curves that we have seen, and the asymptote is approached more suddenly. 

4.4. The Analysis of a Data Set 
We can now use the machinery that we have generated to analyze the data from some of the tasks in Section 

2. There is no space to provide a detailed examination of die data analysis techniques or of their results over 

the entire data set. But we do need to illustrate them enough to support the conclusions. To do this we will 

look closely at two curves: Kolers's subject 3 (Figure 3) and Seibel's subject JK (Figure 6). 

We will first attempt to show that the exponential is not a good fit to the data, that shape distortions remain, 

even though the measure of fit is impressive. Then we will attempt to show that both the general power and 

the hyperbolic families provide adequate representations of the empirical curves. 

4.4.1. The exponential family 
Figure 19 shows the optimal fit of Seibel's data in die exponential log space. As was true of the theoretical 

power law curve, the value of r and the the plot of die optimal fit tell different stories. The value of is a 

respectable .956, so the exponential family can account for over 95% of the variance of Seibel's data. The 

characteristic power law distortions can be clearly seen in the figure though. The value of r notwithstanding, 

Seibel's data is not adequately fit by an exponential curve. 
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Power Jaw: T = 5 + 15{N + 25) ' 

Best exponential fit: T = 7.21 + 6.78e 
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Figure 16: Optimal Fit of a Power Law in the Exponential Transformation Space (Semi-Log Coordinates). 
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Figure 17: Optimal Fit of a Power Law in the Hyperbolic Transformation Space (Log-Log Coordinates). 
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Figure 18: A General Exponential Function in Log-Log Coordinates. 

The same distortions can be seen in Kolers's data when it is optimally fit by an exponential (Figure 20). 

Though they are somewhat obscured by the variability of the data, there are significant nonlinearities. With 

respect to the optimal fit, die data is high, then low, then high, and finally low again. These distortions are the 

signal that Kolers's data is also not adequately fit by an exponential curve. 

4.4.2. The power law family 
In contrast to the exponential plots, the power law plots are highly linear. Figures 21 and 22 show the 

optimal power law transformations for die two data sets. Very little needed to be done to Kolers's data to 

achieve the optimal fit (the asymptote was assigned die value of .18). There was not much to straighten out in 

Kolers's data to begin with. Figure 3 shows that even the raw log-log plot of die data is quite linear. Seibel's 

data is a different matter though.' In the raw log-log plot it has deviations at both ends of the curve. By giving 

non-zero values to the asymptote (.324) and to the prior experience (2690), the data gets straightened. This 

straightening yields a sharply higher a. It rises from .32 to .95 during this process. Though seemingly large, 

the initial experience of2690 trials is not excessive, given the full trial range of 70,000. 

The linearity of the optimal power law plots is strong evidence for the power law as a model of learning 

curves. This is bolstered even further by the r 2 values which are considerably higher tiian those for the 

equivalent exponential fits (.993 vs. .956 for Seibel, and .931 vs. .849 for Kolers). An examination of Table 2 

reveals that the value of r1 for a power law fit is higher than for an exponential fit for all of die practice curves 

diat we have examined. 
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Figure 19: Optimal Fit to Seibel's Data in the Exponential Transformation Space (Semi-Log Coordinates). 
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Figure 20: Optimal Fit to Kolers's Data in the Exponential Transformation Space (Semi-Log Coordinates). 
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Figure 21: Optimal Fit to Seibel's Data in the Power Law Transformation Space (Log-Log Coordinates). 

Figure 22: Optimal Fit to Kolers's Data in the Power Law Transformation Space (Log-Log Coordinates). 
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4.4.3. The hyperbolic family 

It is not surprising that Seibel's data is well fit by a hyperbolic since die optimal power (a) turned out to be 

.95. The r1 value remains unchanged in a shift of a to 1, and the plot remains highly linear (Figure 23). What 

is more surprising (considering the amount of data involved) is that Kolcrs's data (widi an opdmal a of .46) is 

also adequately fit by a hyperbolic (Figure 24). By assuming larger values for A and Ey the whole curve is 

dlted to be steeper. There is a small loss in r2, from .931 for the power law to .915 for the hyperbolic, but it is 

nowhere near as large a drop as to the exponential (.849). There does appear to be a small upturn at the 

beginning of the curve, and a similar downturn at the end, but the overall deviation from linearity is not large. 

This small inferiority of the hyperbolic (with respect to the power law) must be traded off against the fact that 

it has one less parameter. 

4.5. Summary 

Table 2 show the results of this analysis for all of the data sets shown in Section 2. We believe that it 

establishes die reasonableness of excluding the possibility that practice learning is exponential and the 

reasonableness of describing die data by power laws. The hyperbolic family is somewhere in the middle. 

From Table 2 it is apparent that most of die data sets can be adequately modelled as hyperbolics. There are 

cases though, such as the data from Moran (Note 4), that do seem to suffer by the loss of the extra parameter. 

It would be nice to be more precise about the appropriateness of the hyperbolic, but the data we have 

considered do not allow it. These conclusions agree with those of Mazur and Hastie (1978) in rejecting 

exponentials, but not in rejecting general power laws. 
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Figure 23: Optimal Fit to Seibel's Data in the Hyperbolic Transformation Space (Log-Log Coordinates). 

Figure 24: Optimal Fit to Kolers's Data in the Hyperbolic Transformation Space (Log-Log Coordinates). 
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5. POSSIBLE EXPLANATIONS 
For the purposes of this paper, we have come to accept two propositions: 

• Practice learning is described by performance-time as a power function of die number of trials 
since the start of learning (the hyperbolic is included as a special case). 

• The same law is ubiquitous over all types of mental behavior (possibly even more widely). 

What are the possible explanations for such a regularity? In this section we try to enumerate the major 

alternatives, and concentrate on one. 

There seem to be three major divisions of explanation. The first reaches for die most general characteristics 

of the learning situation, in accord with die end of Section 2 that such a widespread phenomenon can only 

result from some equally widespread structural feature. One of the assumptions underlying much of cognitive 

psychology is the decomposability of thought processes. A task can be broken down into independent 

subtasks. Mixture models attempt to derive the power law from the aggregate behavior of such a collection of 

independent learners. The second division is some sort of improving statistical selection, in the manner of 

mathematical learning theory or evolution. No specific orientation exists to obtain the power law. Rather, 

simple or natural selective schemes are simply posited and examined. The third division takes the exponential 

as somehow the natural form of learning. Observing that the power law is much slower, it seeks for what 

slows down learning. What could be exhausted that keeps the learning from remaining exponential? 

We will concentrate on an explanation of the exhaustion type. However, we do not consider it the exclusive 

source of die power law of practice. So we first wish to lay out the wider context, before narrowing to one. 

5.1. General Mixtures 

The following qualitative argument has a certain appeal. 

The Mixtures Argument: Performance depends on a collection of mechanisms in some monotone 
way - ie, an increase in the time taken for any mechanism increases (possibly leaves unchanged) 
the total performance time. The learning mechanisms that improve these performance 
mechanisms will have a distribution of rates of improvement some faster, some slower. At any 
moment total system learning will be dominated by the fast learners, since a fortiori they are the 
fast ones. However, the fast learners will soon make little contribution to changes in total 
performance, precisely because their learning will have been effective (and rapidly so, to boot), so 
the components they affect cannot continue to contribute substantially to total performance. This 
will leave only slow learners to yield improvement. Hence the rate of improvement later will be 
slower than the rate of improvement initially. This is the essential feature of the log-log law -- the 
slowing down of the learning rate. Hence learning in complex systems will tend to be 
approximately linear in log-log space. 

The great virtue of this argument, or some refinement of it, is diat it would explain die ubiquity, even unto 
the industrial production functions. 

We do not know how to examine this law in full generality. However, restriction to a subclass of learning 
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functions, if the subclass is rich enough, can shed some useful light on the issue, for the argument should hold 

for the subclass as well. 

The complete definidon of a mixture model requires both the specification of a class of learning functions 

and a scheme by which diey are aggregated. A natural class of learning functions are the exponential 

functions. They form a rich enough class (a three parameter family of a, A and B). They also are as good a 

candidate as any for primitive learning functions. We can place sufficient restriction on the means of 

aggregation if we assume that performance consists of the serial execution of sub-tasks. This places us within 

the class of additive systems, ie, where each component adds it contribution to the total performance. The 

result is that T is a weighted sum of exponentials: 

(37) 

Figure 25 shows a plot in log-log space of a forty term sum with weights (the Ws) and rates (the /i's) 

selected at random (0 <W(<5 and 0 < /i. < .1). One gets a reasonable approximation to a straight line over 

much of the range, though it is a little wavy. 

H 2 0 0 0 , 

a e T = W.9N ' 

lock 

Figure 25: A Forty Term Additive Exponential Mixture (Log-Log Coordinates). 
The weights (0 < W. < 5) and exponents (0 < < .1) were selected at random. 

7Simple additive combination is not the only way to put learning mechanisms together. Clayton Low* (Note 2) explored the notion of 
series-parallel combination* of exponential learning mechanisms. TOe results were unclear, sometimes looking log-log, sometimes 
looking more like an exponential, sometimes wandering. He.arrived (Note 3) at the position that another source o. constraint or 
uniformity is needed. 
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Mixtures of this type have one primary source of variation: the set of weights {W.}. The plausibility of 

mixture models as a source for power laws can best be evaluated by determining the classes of functions that 

are generated under reasonable assumptions for {W.}. If die result is always a power law, then mixture 

models are strongly implicated. On the other hand, if any function can be generated widi equal facility, 

mixtures would be of little use as an explanation for the ubiquity of power laws. 

Sums of exponentials do provide a sufficient ensemble of functions to compose (essentially) any function 

desired. A convenient way to see this is to go over to the continuous case: 

T(N) = J O ° ° W{y.)e'*N dp (38) 

On the one hand, this simply expresses the continuous analog of a sum of exponentials: the exponential for 

every fx is represented, each with its own weight, W(ii). On the other hand, this will instandy be recognized 

(at least by engineers and mathematicians) as the Laplace Transform of die function W (Churchill, 1972). 

The significance of this is that we know that for any function T(N) diere is a function Wip) diat produces it.8 

Thus, by choosing appropriate weights, any total learning function whatsoever can be obtained. 

We can of course choose weights to make T a power law, as in Equation 4, with a and B. Consulting any 

standard table of Laplace Transforms shows: 

W{ii) = (B/T(a))v.<l-a) (39) 

That is: 

T(N) - BN~a - / o ° ° ( 5 / R ( a ) ) f i " ( 1 " a)e^N dp (40) 

The component exponentials correspond to learning at all rates, indefinitely fast (large ¡1) to indefinitely 

slow (small jn). Since (1 - a) > 0, the weight W becomes very small for fast learning and very large for slow 

learning. Without a justification for this particular distribution of weights, it would seem implausible that 

mixtures of learning components would always lead to power laws. 

However, we can turn the argument around and get a positive result One distribution of weights for which 

there is a natural justification is the rectangular, ie, all component processes have the same weight, at least 

stochastically. This is especially true in the present approximation, where a random distribution of weights 

would be taken to be rectangular. As can be seen from Equations 39 and 40, diis corresponds to (1 - a) = 0, 

which yields a = 1. The resulting law is the hyperbolic. 

It is beyond the bounds of this paper to inquire how closely random weighting functions can be 

approximated by the mean. Within our limits, it appears that a mixture of exponentials yields a special case of 

the power law, namely die hyperbolic. Put together widi the results of the data-fit analysis, which showed that 

T must be mathematically well behaved in certain ways to be so represented, but these are of no consequence in the present context. 
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hyperbolics were a reasonable candidate descriptive curve, tiiis adds up to a significant observation (it can 

hardly be distinguished as a "result"). 

Real mixtures can only strive to approximate the distribution of exponentials that the use of rectangular 

weights implies. They must fall short because there can only be a finite number of components. The initial 

portion of Figure 25 is flattened because of the lack of terms in die mixture that decay quickly enough to 

affect that portion. We restricted the fastest term to have a ¡1 less than .1, but there must always be a 

maximum /A . Regions of the curve which are affected by only a few terms will look highly exponential, 

leading to a roller coaster effect where two such regions meet (eg, for N in the region [10, 200] in Figure 25). 

In regions where only one term is relevant, the curve is an exponential. This must always occur at least in die 

tail of die curve, where only the slowest term in the mixture is still active. 

The amount of deviation within a region of the curve is thus determined by the number of terms affecting 

diat region. Linearity over a wide range requires a large number of terms in the mixture. 

5.2. Stochastic Selection 

The work in stochastic modelling generated a large range of models, well beyond what we can review. 

However, a few of the models are particularly relevant to this work, 

5.2.1. Crossman's model 
Twenty years ago, Crossman (1959), in an effort similar in spirit to the present one, wrote a paper reviewing 

much data on practice. He proposed a general model based on an improving process of selecting methods 

from a fixed population of methods with fixed durations, fy}. Improvement occurs, because each method is 

selected according to a probability and these probabilities are adjusted on the basis of experience. Namely, 

the change in probability is proportional to the difference between the mean time, T(N), and the actual time 

of die selected metiiod, /.: 

8pt = - * ( / , - T(N)) (41) 

By assuming that the entire probability vector shifts at each trial according to its expected adjustment (ie, as 

if all methods were tried each trial, each with frequency p^, the expected shift for the mean time can be 

expressed as: 

T(N+1) = T(N) - kVar(N) (42) 

Where Var(A0 is the variance of the {/.} on cycle N. In general, the time course cannot be calculated without 

knowing the actual distribution of the tp for the following relationships hold for diis model (1VL(;V) is the jth 

moment of the {r} on cycle N): 

T(N) = M^iV) (43) 

Var(iV) - M2(/V) - (M x(A0) 2 (44) 

M.(/V+l) = (UkM{(N))Mj(N) - *M . + 1 (A0 (45) 
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Thus, as N increases, higher moments of the initial distribution are needed to compute Var(iV). Crossman 

assumed a (somewhat arbitrary) example distribution and examined the resulting curve numerically. In log-

log space it plotted as a sigmoid with a large straight section, somewhat in the manner of Figure 15. He 

concluded that it was a satisfactory form of model, though clearly needing more development. 

Unfortunately, die model rests very heavily on the way it uses its expected value assumptions. As can be 

seen from Equation 41, nothing prevents p. from moving outside die [0,1] interval, thereby violating the basic 

property of being a probability. Indeed, if the /-th method is selected often enough, it must move outside. 

Crossman avoids the unavoidable by making the change really be p.8pr the expected change. Even this 

modification is not sufficient to guarantee that p. remains in the range of [0, 1]. If k is greater than l / ( / ^ n v -

t . ) dien it is possible for 8p . to be less than -1. An additional assumption about the legal values of k 
mm nun 

could of course be added to handle this problem. 

We have expounded Crossman's model at some length, because it is not only the one existing attempt to 

deal with the power law data, but it is often referred to as a viable explanation of this law. 

5.2.2. The Accumulator and Replacement models 
Among the basic stochastic learning models two broad classes are often distinguished, depending on 

whether correct responses replace incorrect ones - called replacement models - or whether correct responses 

are simply added to die total pool, thus gradually swamping out the incorrect ones - called accumulator 

models. A presentation of these two models is given in Restle and Greeno (1970). 

The replacement models yield exponential functions (when expressed in terms of rate of generation of 

correct responses). It is worth taking a look at an accumulator model, as it will provide another model that 

yields the hyperbolic. Restle and Greeno show that the proportion of correct responses in the pool at trial N 

(PN) is given by (the interpretations of the other parameters are not important for our puiposes): 

PN~[b + 0a(N-l)]/ [1 + 0(N-l)] (46) 

To get diis in terms of time, we can assume that the time to generate a response is inversely proportional to 

the rate of generation of correct response. Thus T(N) would be the inverse of Equation 46: 

T(N) - [1 + 0( iV-l ) ] / [b + 6a(N-l)] (47) 

With a little rearrangement, this becomes: 

T(N) ~ [1/a] + [(a -b)/ 6a1] / (N + [b/Oa - 1]) (48) 

This is die equation for a general hyperbolic function, with A = 1/a, B = (a-b)/9a2, and E = b/da - 1 . 
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5.3. Exhaustion of Exponential Learning 

The notion of exhaustion comes from examining Equation 11. A power law is like an exponential in which 

the exponent (a) does not remain constant over trials. In fact, a decreases as 1AV. An exhaustion model 

would postulate that diis decrease stems from die diminishment of some necessary portion of the learning 

process. Many different exhaustion models can be developed according to what is being diminished. We 

have concentrated our efforts on one variety of exhaustion model; what we call the chunking model of 

learning. Before we examine it in detail, it is useful to look briefly at the range of possible exhaustion models. 

In the descriptions that follow it is assumed that the learner uses some method for the performance of the task 

on which he is working. Learning consists of finding and incorporating improvements to the current method. 

• Improvements harder to find (Search exhaustion): Improvements may not always be right at hand. 
It would then be necessary to search for improvements that can be made in the method being 
used. Each time one is found, it would result in the time (T) decreasing by some constant factor 
(a), just as in exponential learning. As improvements are found and applied, the space of unused 
improvements becomes sparser, decreasing die rate at which new improvements can be found. 
The effective rate of learning would thus be slowed. 

• Less time for improvement (Time exhaustion): If learning is exponential in time (rather than in 
trials), then as the trials get shorter, there is less time for improvement on each trial. From Section 
3.3 we know that an exponential in time yields a hyperbolic in trials. 

One long standing view is that learning consists of transforming a deliberate, conscious and 
resource limited process into an automatic, unconscious and resource independent one. One 
image of this in mechanism is that learning consists of a transformation from a serial to a parallel 
processing structure. The amount of processing required remains constant Only the elapsed time 
until completion decreases. Exhaustion occurs if it is assumed that learning is proportional to the 
amount of time available (T) the usual exponential assumption. As the amount of process that 
is packed into a fixed time slice increases, the amount of learning per unit of process would have to 
decrease. A simple version of this model that we have developed yields die hyperbolic. 

• Improvements less effective (Effectiveness exhaustion): Improvements used later in learning, may 
prove to be less effective than the same improvements used earlier. 

• Improvements less applicable (Applicability exhaustion): Improvements may vary from being 
general purpose to being highly specialized. General purpose improvements are always 
applicable, while special purpose ones may only be applicable under highly constrained 
conditions. In order to fully specify a model of this type, an assumption must be made as to the 
order in which the improvements are incorporated into the method. If they are used in order of 
decreasing applicability, then learning would slow down even if the improvements are equal in 
effectiveness (when diey are applicable). The theory we present below is a version of this case. 

5.4. The Chunking Theory Of Learning 

We take as central to our model a theme which has been a mainstay of information processing psychology 

since Miller's famous 1956 paper. 
The Chunking Hypothesis: A human acquires and organizes knowledge of die environment by 
forming and storing expressions, called chunks, which are structured collections of die chunks 
existing at die time of learning. 
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This brief statement glosses over tilings not central to our purpose, eg: (1) the nature of the primitive 

chunks; (2) the internal representation of chunks as collections of symbols for chunks, rather than the chunks 

themselves; and (3) distinctions, if any, between perceptual chunks, internal-processing chunks and motor 

chunks. Odier aspects, such as the size and composition of chunks, require further specificadon. 

Consider Seibefs task (Seibel, 1963), to make matters concrete. There are ten lights Lv L 1 Q , which 

define perceptual events of a light being off (-) or on ( + ) . Originally, the only chunks available are the 

individual lights and the states of off and on. If we define the nodon of the span of a chunk as the number of 

primitive elements that it contains, then these are chunks with a span of one. Clearly they are built up from 

still more primitive features, relations etc, but they can be taken as the primitives from the point of view of 

Seibef s task. Gradually, with learning, chunks will form: first chunks such as ( L 1 + ) , which we might also 

write as L*; dien chunks such as (L* Lp9 or (L~ L~Q); dien still higher chunks such as (L* (L~ L~)), and so 

on. The chunks need not just be of perceived lights; they could be of responses (R$Rp (the -f meaning to 

press the button), or even of mixed character, (L* / ? p or ((L* L~) (R* #")). These chunks are of increasing 

span; eg, the span of the last mentioned chunk, ((L* L~) (R* #")), is eight of the primitive chunks such as LT 

+ , L 8 , etc. Chunks thus hold information about the patterns in the environment and in the subject's relation 

to the environment. 

The chunking assumption only defines a unit of structure and declares it central. To create a learning 

system, we must tie down how this structure couples to (1) the performance of the task; (2) the structure of the 

task environment and (3) the process of learning new information about the task environment. These lead to 

three corresponding general- assumptions: 

• Performance Assumption: The performance program of the system is coded in terms of high-level 
chunks, with the time to process a chunk being less than the time to process its constituent chunks. 

• Task Structure Assumption: The probability of recurrence of an environmental pattern decreases 
as the pattern size increases. 

• Learning Assumption: Chunks are learned at a constant time rate on average from the relevant 
patterns of stimuli and responses tiiat occur in the specific environments experienced. 

On performance: If having chunks does not permit die system to perform more quickly, then one major 

reason for their existence vanishes (though tiiere might be other reasons). How high-level aggregate chunks 

enter into performance programs is actually somewhat problematical. For instance, computers gain no 

performance advantage from die subroutine hierarchy (an example of multi-level chunking); it is completely 

unwound down to the lowest level machine operations on every execution. 

In Seibel's task the performance program can be related directly to the chunks tiiat exist. If only die lowest 

chunks are available, then it might take die processing of five chunks for each light: 
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< A X + ) ( * , + » 

The top chunk is the rule derived from the instructions for general lights (L ) and responses (R ); it is used 
X y 

to interpret each of the four primitive chunks of information about the task, one after die other. If, on the 

other hand, more complete chunks are available, such as ( L 1 + ) , then this part can be done in a single step, 

and so on for more aggregate chunks. Aggregation, of course, takes place not just within a light, but across 

lights. Thus, a lowest level performance program would take somediing like 5 steps per light times 10 lights -

50 steps. At the other extreme, the highest level program would take only a single step, using many mammoth 

chunks, such as the one below of span 40, to cover all the cases. 

((((Z.** J) (L'2 R~2)) (L 3

+i? 3

4)) u ; (L;R$) ((L;R$ ((L" / 9 (L'% R$) ((LI R'9) (L+Q R+

1Q)))) (49) 

Most programs would be composed of chunks of some intermediate span. Our example chunks have used 

stimulus adjacency and stimulus-response connection as the principles on which to chunk. Lots of others are 

possible, eg., symmetry of position. Likewise, wrong connections are possible as well as correct ones. 

On the structure of the task environment: Task environments can be thought of as being composed from a 

set of elements which can vary with respect to attributes, locations, relations to other elements, etc. Seibel's 

task is a good example of such a task environment once chunking has reached beyond the most primitive level 

(the lights, on, off, etc.). Observe that (thinking only about the lights) there is a set of elements (the ten lights) 

each of which has an attribute for the state of the light (on or off). On each trial the subject is exposed to a 

single concrete environment out of the ensemble of concrete environments that make up the task environment. 

A subject in Seibel's experiment would see the ten lights in one particular state on each trial. The trial 

sequence provides the sample of concrete environments actually experienced. 

Figure 26 shows a four light version of Seibel's task environment. At the left are the primitive chunks; the 

lights, which can be either on or off. Proceeding towards the right yields higher level chunks made by 

combining lower level ones. At die far right are the top-level chunks. Each top-level chunk spans one 

concrete environment (consisting of each light in one particular state). The bold lines oudine one concrete 

environment out of the ensemble that makes up the task environment. One important point to notice is that 

the branchiness of the task environment (increasing towards the right) is in the opposite direction from diat of 

die tree for a single concrete environment (increasing towards the left). As the chunks increase in span, there 

are more of them in die task environment, but fewer in any one concrete environment. 

Task environments such as Seibel's present the learner with a combinatorial number of possible patterns. 

There are only two patterns of one light (on and off), but four patterns of two lights, eight patterns of diree 

lights, and so on, up to 1024 patterns of ten lights. Inherently, many more possibilities for patterns of 

elements exist than for the elements themselves. Correspondingly, there are many more possibilities for 

chunks that encode larger patterns than smaller ones. If each of die elements can take on any of b different 
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span 1 span 2 span 4 

Figure 26: Scibefs Task Environment for Four Lights. 
At the left are two primitive chunks for each light (for the on and off states) 

and at the right are the top-level chunks. 
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values (die branchiness of die task environment), then for every set of s elements there would be bs possible 

patterns. Different task environments will have constraints diat limit what new combinations can in fact 

occur; not all elements are or can be chunked widi each other. The basic combinatorial nature of most task 

environments, combined with these constraints, will determine what Can be called the cardinality of the task 

environment, namely, the number of patterns that can actually occur of each different span. This cardinality 

(whedier exponential, power law, etc.) will have a great deal to do with the form of the final learning curve. 

The task structure assumption follows directly from tins structure of the task environment. There are more 

of the larger patterns, but each one appears in fewer concrete environments. Indeed, at the top-most level, the 

entire concrete environment at a trial can be encoded in a single chunk, as in Example 49 above. Chunks of 

this type appear in only one concrete environment each, whereas a chunk that only contains a single light and 

its state would appear in many concrete environments. The multiplicity of patterns (chunks) depends on 

there being an endre ensemble of possible concrete environments. In any particular concrete environment 

only a small number of the possible chunks occur. 

On learning by experience: This assumption starts from the view that the human is a time-independent 

processing mechanism. It processes information the same way one hour as the next, one day as the next - as a 

function of stored knowledge and learned procedures, but not of time per se. In short, there is no built-in 

historical clock. Thus, there exists a basic constant rate of chunk acquisition (with respect to time, not trials). 

This same view underlies the appeal of the total time hypothesis of verbal learning (Cooper & Pan tie, 1967). 

Not all chunks learned need be relevant to the task at hand. The assumption that learning is by experience 

says the subject is picking up relevant chunks while performing in a concrete environment. This is consonant 

with theories that have learning occuring automatically from the chunks that are built in working memory 

(involving both the stimuli and the subject's own responses). When the subject is attending to the task, 

working memory is full of task related chunks, and relevant learning occurs. 

In our example, given LL and + perceived by the subject, the chunk (LL +) could be built, but not the 

chunk {L1 - ) . Also, it would take the same length of time to build the first-level chunk as to build (((L x +) 

(RL + ) ) ( ( ¿ 2 " ) ( ^ 2 g i v e n ^ ^ c o n s t i t u e n t chunks, ( (L 1 +) (RX +)) and ( (L 2 - ) (R2 - ) ) were available 

in the subject (ie, had already been learned) and were being perceived in the environment. 

These three assumptions, though still general, provide a basis on which specific learning models can be 

built. In this paper we only present the simplest form of this model so that the basic mechanisms can be 

clearly seen. Various limiting conditions and the like may appear a little strained in this simple version. 
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5.4.1. A simple version 

For the theory to be specific, we need to determine T as a function of N. One way to do this is to define the 

differential learning law, dT/dN. Corresponding to the previous assumptions, we introduce the following 

variables: 

C = The total number of chunks learned at any time. 

s = The span to which the subject has chunked. 

In terms of these variables, we can compose dT /dN as follows: 

The first term, dT/ds, expresses how performance time (T) changes with the chunk span. In a simple form 

of our performance assumption, the time to perform the task will simply be proportional to the number of 

high-level chunks it takes to describe the task (at the time of the performance). Let P be the number of 

chunks involved in the performance initially (and take the unit of time to be the time to process one chunk, so 

as to avoid an arbitrary constant). Then, if chunking has proceeded to a span of s, each top-level chunk spans 

s initial chunks. Thus, the number of top-level chunks that are required to span the performance is P/s and 

we get for die performance time: 

If this holds for unlimited values of s, it implies that P is infinitely divisible and that T can be driven to zero. 

We will just accept such simplifications for the purposes of this model. Given this simplification however, we 

cannot expect to find an asymptote parameter (A) in this version. 

The second term of Equation 50, ds/dCy expresses how fast the span of the chunks increases as the subject 

accumulates more chunks. It depends on how many chunks of each span are needed to describe the task 

environment. According to the assumption about the structure of the task environment, new chunks will be 

formed to encompass larger patterns in die environment. If a chunk covers a pattern of some set of elements, 

then it will be relevant to connect it with a certain number of additional elements in the environment to form 

the next higher level of chunk. We will postpone until later the quantification of this process. For now we 

can just talk in terms of C t e(s), the number of chunks needed to cover all patterns of s elements or less in the 

task environment 

We need to relate CiQ(s) to C(N\ the number of chunks that the subject has at a given trial. By the nature 

of how chunks are learned, low-level chunks must be acquired before higher-level chunks. That is, chunks 

are learned from the bottom up. If C chunks have been learned, they will constitute a pyramid up from the 

bottom. By making the fiirtiier simplifying assumption tiiat the pyramid is acquired layer by layer (ie, if die 

subject has learned C chunks, these will consist of all the chunks provided by the environment from the 

dT/dN - (dT/ds) (ds/dC) (dC/dN) (50) 

dT/ds = -P/s 

T=P/s 
,2 _ _ y 2 ^ p 

(51) 

(52) 
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elementary chunks up to some span), we can equate C and C{Q? Hence we get: 

C - C t e ' (53) 

dC/ds - C^(s), Writing C [ E ( 5 ) for dCiQ(s)/ds for clarity (54) 

<fc/dC = 1/C; e ( 5 ) (55) 

The final term of Equation 50 follows dirccdy from the assumptions on learning; that the number of 

chunks learned per unit time is a constant, say X chunks: 

dC/dt - X (56) 

Therefore by Equation 22, which relates time to trials: 

dC/dN = (dC/di) (dt/dN) = XT (57) 

We now have assembled all the components of Equation 50: 

dT/dN = (~T2/P) (1/C[e(s)) (XT) (58) 

- - X / / > (T3/C[Q(s)) (59) 

We can see in what sense this is an exhaustion model. The subject continues to learn at a constant rate and 

chunks remain equally potent in terms of what they do to the performance programs in which they occur. 

However, the chance that a chunk will be used becomes increasingly rare. It becomes rarer, actually, because 

of the increased span of the chunk, which makes it ever more specialized, dius occurring in ever fewer 

environments. However, this turns out to be correlated with time, because general (ie, low-level) chunks are 

learned first and specialized chunks are learned later. 

5.4.2. A combinatorial task environment 
To complete the definition of the chunking model it will be necessary to be more specific about Cte(s\ the 

cardinality of the task environment, which expresses how fast the number of patterns increase as their span 

increases. One possibility is to start from the basic combinatorial structure described under the task structure 

assumption. Suppose there are M elements in the task environment, each widi b possible values. We need to 

know how many chunks of span s it takes to cover the task environment. One way to do this is to partition the 

task environment into M/s groups of 5 elements. It will take bs chunks of span s to cover each group, so 

(M/s)bs chunks to cover the whole task environment. We dius get: 

C T E ( 5 ) . E | B l r f (60) 

This summation does not have a closed form solution. We can however derive C[p) direcdy from the 

summation in the same manner that dt/dN is obtained in Equation 22. 

9 \Ve are dossing over three complications to this picture: (1) M elements can be covered by chunks of span s in a number of ways, 
depending on how the M elements are partitioned into groups of size s; (2) M elements can be covered by a number of different chunks 
of span M that van' in internal structure: and (?) many patterns in the environment are totally irrelevant to performance on the task 
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C'tQ{s) = (M/s)bs = (M/s)efis

f where 0 = \og(b) (61) 

Substituting C'iQ(s) into Equation 59 we get: 

dT/dN = ~(\/PM) The'1*5 (62) 

We can eliminate s by noticing that s-P/T (from Equation 51): 

dT/dN = ~(\/M)T2 e ' p p / T (63) 

By suitable rearrangement and integration, the final form of the learning curve is obtained: 

T2epp/TdT = ~(\/M) dN (64) 

/ T2epp/TdT = - (X/M) Jrftf (65) 

(fiP)~le^p/T = (\/M)(N+E), where £ comes from the integration constant (66) 

T = $P/[\og(\liP/M) + log(iV+£)] (67) 

Though this is not a power law, it does resemble one when plotted in log-log coordinates. Figure 27 shows 

such a learning curve with parameters of 6=2, P=50, \ = 1 , M=20, and £=10. The reason for this linearity can 

best be seen by looking at dT/dN. Substituting for 1 / 7 in the exponent of Equation 63 yields: 

dT/dN = -[(pPyl/{N+E)]T2 (68) 

= ~(a/(N+E))T, where a^T/fiP (69) 

The function thus behaves like a power law with a slowly decreasing a. In log-log space the decreasing a is 

difficult to distinguish from the presence of an asymptote. 

Figure 27: Hie Learning Curve for the Chunking Model 
in a Combinatorial Task Environment (Log-Log Coordinates). 

The parameter values are: b = 2, P = 50, A = 1. M = 20, and E = 10. 



PAGE 46 

5.4.3. The power law chunking model 
Instantiations of the chunking model can be generated for various types of task environment that a learner 

may have to deal with. There is no space here to examine possible task environments systematically. An 

alternative is to determine what type of task environment leads the chunking model to predict power law 

learning. From Equation 8 we know that one form for the differential of a power law is: 

JT/dN = -aB-l/a T1 + 1 / a (70) 

Combining this with Equation 59 yields: 

-aB-l/a Tl + l / a = - ( X / P X ^ V c ; e ( 5 ) ) (71) 

We want CiQ(s\ so first solving for C'ie(s): 

C'Js) = (XBl/a/Pa) T2 ~ l / a (72) 

= (\Bl/a/Pa)(P/s)2'l/a (73) 

^(\B1/aP1'1/a/a)s1/a'2 (74) 

Now we can get CJis) by integrating C^e(s) with respect to s. 

CJs) = [XBl/a P1' (1 - a)) s1/a ' 1 (75) 

Though it is somewhat obscured by the complex initial constant, this is a power law in s. Power law 

learning thus implies a power law environment. An important, and indeed pleasing, feature of the chunking 

model is this connection between the structure of the task environment and the learning behavior of the 

subject The richer the task environment - ie, the ensemble of environments with which the subject must 

potentially cope - the more difficult his learning. 

5.4.4. Relation to existing work on chunking 
An important aspect of the chunking model of learning is the amount of power it gets by making 

connection with a wide body of existing psychological work. For example, the pervasiveness of the 

phenomenon of chunking amply accounts for the ubiquity of log-log learning. We have been able to develop 

the primary assumptions of the model from this work without die necessity of pulling an arbitrary "natural" 

learning curve out of the air. 

Much of the existing work on chunking has focussed on showing that chunks are the structures of memory 

and operate in behavior in various ways (Bower & Winzenz, 1969, Johnson, 1972). It is consonant with the 

present model, but does not make interesting contact with it. However, the work on chess perception 

(DeGroot, 1965, Chase & Simon, 1973) bears direcdy on die present model. The basic phenomenon 

investigated there was the differential short term memory for meaningful chess positions with expertness. 

Novices are able to recall only a few pieces of a complex middle game position after a five second exposure, 

while masters can recall most of the pieces. 

A well articulated theory has evolved to explain this striking phenomenon. The dieory is an elaboration 
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the basic assumptions about chunking. The master has acquired an immense memory for chess positions, 

organized as a collection of chunks. His ability for immediate perception and short term memory of chess 

positions depends direcdy on how many chunks are used to encode a position. Estimates of the number of 

chunks available to the master are of the order of 50,000, based on extrapolation of a simulation program 

(Simon & Gilmartin, 1973) that fits novice and expert level players. By implication, master players must spend 

an immense amount of time with the game, in order to acquire the large number of chunks; this seems to be 

well supported by historical data. 

The chunking model of learning presented here for the power law is essentially the same as the chess 

perception model. The present model has been elaborated quantitatively for learning data, whereas the chess 

perception data had the products of learning to work with. The explanation for why the number of 

perceptual chess chunks is so large lies in the combinatorial complexity of chess positions. High level chess 

chunks encode large subpatterns of pieces on the board; they are the necessary means for rapid perception. 

But the actual configurations to which they apply do not show up often. Thus to gain coverage of the 

population of chess positions requires acquisition of immense numbers of high-level chunks. This is precisely 

the notion of environmental exhaustion that is the key mechanism of the present model. 

One would expect from this that the time course of chess skill would also follow the power law, if one 

would take the trouble to measure it. Indeed, the data on the Stair game of solitaire in Figure 10 can be taken 

as a reasonable analogue of the chess game. 
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6. CONCLUSION 
If we may, let us start this conclusion by recounting our personal odyssey in this research. We started out, 

simply enough, intrigued by a great quantitadve regularity that seemed to be of immense importance (and of 

consequence for an applied quantitative psychology), well known, yet seemingly ignored in cognitive 

psychology. We saw the law as tied to skill, hence relevant to the modern work in automatization. The 

commitment to write this paper was the goad to serious research. When we started, our theoretical stance was 

neutral we just wanted to find out what the law could tell us. Through the fall of 1979, in searching for 

explanations, we became convinced that plausible substantive theories o f power laws were hard to find, 

though it seemed relatively easy to obtain an exponent of - 1 , ie, hyperbolics. In November, discovering the 

chunking model (by looking for forms of exhaustion, in fact), we became convinced that it was the right 

theory (at least AN did), and that lack of good alternative dieories helped to make the case. The chunking 

model also implied that the power law was not restricted to perceptual-motor skills, but should apply much 

more generally. This led to our demonstration experiment on Stair, which showed a genuine problem solving 

task to be log-log linear. At the same time, in conversations with John Anderson, additional data emerged 

from the work of his group (Figures 7 and 9) that bolstered this. 

This picture seemed reasonably satisfactory, though the existence of log-log linear industrial learning curves 

(Figure 12) nagged a bit, as did the persistence of some of our colleagues in believing in the argument of 

mixtures. However, as we proceeded to write the paper, additional work kept emerging from the literature, 

including especially the work by Mazur and Hastie (1978), that raised substantial doubts that the power law 

was the right empirical description of the data. The resulting investigation has brought us to the present 

paper. 

The picture diat emerges is somewhat complex, though we believe at die moment that this complexity is in 

the phenomena, and not just in our heads as a reflection of only a momentary understanding. We summarize 

this picture below, starting with the data and progressing through theoretical considerations. 

1. The empirical curves do not fit the exponential family. Their tails are genuinely slower than 
exponential learning and this shape deviation does not disappear with variation of asymptote. 

2. The data do satisfactorily fit the family of generalized power functions (which includes the 
hyperbolic subfamily). There is little, shape variance remaining in the existing data to justify 
looking for other empirical families. 

In particular, there is no reason to treat apparent systematic deviations, such as occur 
in Snoddy's or Seibefs data in log-log space (Figures 1, 6), as due to special causes, 
distinct from dieir description as a generalized power function. 

3. The data does not fit the simple power law (ie, without asymptote or variable starting point). 
There are systematic shape deviations in log-log space (the space that linearizes the simple power 
law), which disappear completely under die general power law. 

4. We were unable to confirm either whether the data (1) fits widiin the hyperbolic subfamily or (2) 
actually requires the general power family. This is so despite the multitude of existing data sets, 
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some with extremely lengthy data series (some of it as extensive as any data in psychology). 

5. The major phenomenon is the ubiquity of the learning data, ie, its common description by a single 
family of empirical curves. We extended the scope to all types of cognitive behavior, not just 
perceptual-motor skill. 

However, we restricted our view to performance dme as die measure of performance, 
though learning curves measured on other criterion also yield similar curves. Also, we 
restricted our view to clear situations of individual learning, though some social (ie, 
industrial) situations yield similar curves. Our restriction was dictated purely by the 
momentary need to bound the research effort. 

6. Psychological models diat yield the power law with arbitrary rate (a) are difficult to find. (Positive 
asymptotes and arbitrary starting points are, of course, immediately plausible, indeed, 
unavoidable.) 

7. Models that yield the hyperbolic law arise easily and naturally from many sources - simple 
accumulation assumptions, parallelism, mixtures of exponentials, etc. 

8. The various models are not mutually exclusive, but provide an array of sources of the power law. 
Several hyperbolic mechanisms could co-exist in the same learner. Independent of these, if the 
humans learn by creating and storing chunks, as there is evidence they do, dien the 
environmental-exhaustion effect would also operate to produce power-law learning, independent 
of whether there were other effects such as mixing to produce hyperbolic learning curves. 

9. A maintainable option is that the entire phenomenon is due to exponential component learning 
yielding an effective hyperbolic law through mixing. 

This would cover not only the data dealt with here, but probably also the data with 
other criteria and the data from industrial processes. 

However, the exponential learning of the component learners remains unaccounted 
for. 

10. The chunking model provides a theory of the phenomena that offers qualitatively satisfactory 
explanations for the major phenomena 

However, some of the phenomena, such as the industrial processes, probably need to 
be assigned to mixing. Parsimony freaks probably will not like diis. 

The theory is pleasandy consistent with the existing general theory of information 
processing, and avoids making any a priori assumptions. 

Though power laws are not predicted for all task environments, the learning curves do 
closely approximate power laws. 
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