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1. Introduction 

The shuffle-exchange network has been shown to be an important communications structure for parallel 

processors. Stone [8] describes algorithms which use this structure to solve several problems, including the 

computation of the discrete Fourier transform and sorting bitonic sequences. The number of communi

cations steps required by these algorithms is typically a polynomial in the logarithm of the number of nodes in 

the network, and the nodes themselves need only perform relatively simple operations. 

VLSI designers often try to minimize the area used by a circuit subject to the requirements imposed by the 

fabrication technology on the minimum feature sizes of the components [5]. In [9] Thompson develops lower 

bounds on the growth of circuit area based on graph-theoretic properties of the communications structure. 

He shows in particular that any layout of the shuffle-exchange network on n = 2k vertices must use at least 

Q(n2/k2) area. The arguments for Thompson's lower bounds are based on the minimum bisection width of a 

graph, which is the least number of edges that must be removed to separate the graph into two equal-sized 

subgraphs. 

The concept of bisection width was extended by Lipton and Tarjan [3] to that of a separator theorem for a 

class of graphs closed under the subgraph relation. In essence, a separator theorem for a class provides upper 

bounds on the bisection widths of graphs in the class. Separator theorems allow the divide-and-conquer 

paradigm to be exploited in the design efficient algorithms for graph manipulation [4]. Recently, Leiserson [2] 

has used this approach to design area-efficient VLSI layouts. 

In this paper a theorem similar to a separator theorem is proven for the shuffle-exchange graph on n • 2k 

vertices. We exhibit a dissection that shows how the shuffle-exchange graph may be bisected, how the 

resultant subgraphs may themselves be bisected, and so forth. We use this result to construct an 0(n2/k) area 

layout for the case when k is a power of two, thereby improving Thompson's upper bound of 0(/z 2 /VT). In 

our proof the vertices of the shuffle-exchange graph are mapped to a polynomial space, and then the 

polynomials are mapped to the complex plane. This construction also provides an asymptotic result on the 

combinatorial problem of necklace enumeration. 

The next section formalizes the notions of bisection and dissection. Section 3 introduces the shuffle-

exchange graph and describes its relationship to polynomials. In Section 4 we construct a bisection of the 

shuffle-exchange graph whose width is 0{n/k), and in Section 5 we extend this result to produce a dissection. 

In Section 6, the layout algorithm of [2] is applied to this dissection to produce an 0(n2/k) area layout for the 

shuffle-exchange graph. Section 7 concludes by comparing this result with other work in the field. 

^ UNIVERSITY UBRARIFS 

Pittsburgh. Pm^Zf^ 



2 

2. Graph Dissection 

In this section, we formalize concepts pertaining to the partitioning of a graph into smaller graphs by the 

removal of edges. 

A bisection Sofa graph G = (K, E) into graphs Gf - (V, El) and G" = (V'\ E") is a disjoint partition of 

the vertices V= Vf u K" together with a disjoint partition of the edges E= E'u E"u Es such that the 

cardinalities of V and V" differ by at most one. The cardinality of Es is called the width of the bisection, and 

the edges in Es are said to be removed by the bisection. The graphs Gf and G" are called the halves of the 

bisection. 

Of course, any graph can be bisected by removing all its edges, but usually we are interested in removing as 

few edges as possible. The minimum bisection width of a graph is the smallest number of edges that must be 

removed to divide an ^-vertex graph into a \n/2]-vertex graph and a \_n/2\-vertex graph. Unfortunately, the 

problem of finding the minimum bisection width of an arbitrary graph is NP-complete [1]. 

It is sometimes the case that every graph in a class of graphs can be bisected by the same general 

mechanism. We define a separator for a class (j of graphs to be a family ? of bisections such that !f contains a 

bisection of every nontrivial graph G in Q. Interesting separators are those that exhibit the closure property. A 

separator !f for a class of graphs (j has this property if for any graph Gt Q, the halves G( and G" that are 

produced by a bisection of G in $ are also in Q. Any separator with the closure property whose associated 

class contains a particular graph G is called a dissection of G 

A dissection S of G may be thought of as a complete binary tree that has G at the root, the halves of G from 

some bisection in J as its sons, and the halves of the halves as grandsons, and so forth to trivial graphs at the 

leaves. If (/has n vertices, then the subgraphs at level j will have about n/2J vertices. Although there may be 

other graphs in the class Q associated with £ at the very least Q must contain all of the graphs in the tree. 

In [3] Lipton and Tarjan introduce separator theorems which use ideas similar to those presented here. In 

their work, however, the discussion is restricted to classes of graphs that are closed under the subgraph 

relation. (A class Q is closed under the subgraph relation if every subgraph Gf of a graph G € Q is also an 

element of (j.) We have departed from their approach because the results of this paper rely on properties of 

the shuffle-exchange graph that do not hold for all of its subgraphs. 
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3. The Shuffle-Exchange Graph 

The shuffle-exchange graph on n vertices is defined only when n is a power of two. Each of the n = 2
k 

vertices can be identified with an element of the Cartesian product 

{0,1}* - {6*_A- 2 . • . * 0 I * ,
€ { M H -

Each vertex v € {0,1}* is incident on an exchange edge (v, e(v)) and two shuffle edges (v, a(v)) and (v, cr"
1

(v)), 

where e and a are permutations defined by 

«<Vi*M---*i*o> - V i ^ - ' ^ a - V . d) 
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In the literature the vertices are usually identified with integers from zero to /7-1 represented in binary 

notation. The shuffle permutation a is then the permutation applied to a deck of n cards by a perfect riffle 

shuffle, in which case a{m) = 2m (mod n-l). The exchange permutation e is the permutation that exchanges 

pairs of adjacent elements of the vertex set, so that e(m) = m±l. 

The shuffle-exchange graph is highly structured because of the shuffle permutation. From equation (2) we 

see that a(v) can be determined from v by rotating the indices of v to the left one position. The shuffle 

permutation partitions {0,1}* into equivalence classes known as necklaces [7], where two vertices are 

equivalent whenever the indices of one are a cyclic permutation of the indices of the other. Since rotation by 

k positions yields the original vertex, the cardinality of a necklace cannot exceed k. 

The properties that we shall use to dissect the shuffle-exchange graph are expressed conveniently in terms 

of the characteristic polynomial which is defined for a vertex v - . . . bQ € {0,1}* as 

Pr(x) - £ bjXl. (3) 
o<;<*-i 

It should be apparent that pv(2) is precisely the vector v considered as a binary number, as discussed above. 

The following lemma shows the relationship between the characteristic polynomial and the shuffle and 

exchange permutations. 

Lemma 1: For all v € {0,1}*, 

/ > £ ( v ) « - />,(*) ± 1 , (4) 

P<Xv№
 s X

PV(
X

) (modjrM), (5) 

where the congruence (5) is taken over the ring 2[x] of polynomials with integer coefficients. 

Proof From the defining equations (1) and (2), 
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The lemma follows from the fact that each b. is either zero or one. • 

The cyclic structure of necklaces is exploited in Section 4 to bisect the shuffle-exchange graph. This is done 

in such a way that most of the necklaces in the graph are bisected. When the number of vertices in a necklace 

is even, it turns out that the half-necklaces also have a cyclic structure. An m-cycle is defined to be an ordered 

sequence (vQ, v r . . . , v x ) of m distinct vertices such that for j = 1, . . . , m-1, 

pv(x) s xpv (x) ( m o d ^ - l ) . ( 6 ) 
j y-i 

The next lemma provides justification for calling such a sequence an m-cycle. 

Lemma 2 : Let (vQ, . . . , v m - 1 ) be an m-cycle. Any sequence (v., . . . , v m _ r vQ, . . . , v^) 
formed by cyclically permuting (vQ, . . . , v 2 ) is also an m-cycle. If d is a divisor of m, then the 
subsequence (vQ, . . . , v ^ ) is a d-cyde. 

Proof This lemma can be proved by manipulating the congruence (6) in the definition of an m-cycle. The 

congruence can be iterated to yield 

P y (x)^xm'1py (x) ( m o d ^ - l ) , 
V i vo 

and since xm = 1 (mod J t m - 1 ) , it follows that 

xpv (x)mpv(x) ( m o d x ^ l ) . 
m-l 0 

Thus (6) holds between the first and last vertices as well as between adjacent vertices, implying that the choice 

of a first vertex is immaterial. To prove the second part of the lemma, observe that congruence (6) modulo 

xm-\ must also hold modulo its divisor • 

Congruence (5) shows that a necklace of k vertices is a k-cyde. Lemma 2 establishes that when k is even, 

the necklace can be bisected to yield two £/2-cycles. 

4. Bisecting the Shuffle-Exchange Graph 

The concepts developed in Section 3 are applied in this section to construct a bisection of the shuffle-

exchange graph on n = 2* vertices. The construction is obtained by evaluating the characteristic polynomials 

of the vertices at a complex fcth root of unity, inducing a mapping from {0,1}* to the complex plane. The 

complex plane is then divided to induce a bisection of the shuffle-exchange graph. A corollary of this 

construction is an asymptotic result on the number of necklaces. 
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Let (o = elmUk be the principal primitive complex kth root of unity, and consider the mapping v H-> py(u>) 

from {0,1}* to the complex plane. Figure 1 graphs the values of pv(co) for k = 5. The vertices are labeled 

with pv(2). The solid lines forming pentagons concentric about the origin represent shuffle edges, and the 

horizontal dotted arcs represent exchange edges. 

+ 2/ 

+ 1/ 

0/ 

-1/ 

-2/ 

-2 -1 0 +1 +2 

Figure 1: The shuffle-exchange graph on 32 = 2 5 vertices mapped to 
the complex plane by V M / ? V ( C O ) . Vertices are labelled with />v(2). 
Dotted lines represent exchange edges, and solid lines represent 
shuffle edges. 

Let us examine this figure in relation to Lemma 1. The occurrence of regular &-gons of shuffle edges can 

be explained by congruence (5). Since to is a root of this congruence becomes the equality 

/?a(v)(<o) = (o pv(<*)). Thus />a(v)(<*>) is the point obtained from /?v(co) by a counterclockwise rotation oflir/k 

radians about the origin. The vertices in a necklace are mapped to k points equally spaced on a circle about 

the origin, unless the entire necklace is mapped to the origin. ITie fact that exchange edges are horizontal can 

be explained by equation (4) in Lemma 1. If vertices v and e(v) are incident on an exchange edge, then they 

are mapped to complex numbers that have the same imaginary part and differ by one in the real part. 
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The bisection of the shuffle-exchange graph will be achieved by partitioning the vertices based on the 

imaginary part of py(u\ with tie-breaking when pv(co) is real. All edges that cross the real line will be 

removed, and it will be shown that there are at most 0(n/k) of these. This bound is easily shown for edges 

whosfe incident vertices are not involved in the tie-breaking. Since there are n vertices in the shuffle-exchange 

graph, there are at most n/k regular &-gons of shuffle edges, and each of these £-gons crosses the real line 

twice. Since exchange edges are horizontal, they never cross the real line. 

In order to define the bisection formally, we first partition the nonzero complex numbers as C + U C" where 

C + = { z € < C | l m ( z ) > 0 } U { x € l R U > 0 } , 
<C~ = { z € C | Im(z) < 0 } U { ^ € I R | J C < 0 } . 

The halves Gf and G" are defined by the regions to which vertices of the shuffle-exchange graph are mapped. 

The vertices for which pv(o>) € C + are assigned to V and those for which /?v(<o) € C" are assigned to V". The 

remaining vertices, those for which /?v(co) = 0, are distributed arbitrarily but equally between V' and V". 

Three types of edges are placed in Ey 

1. Exchange edges whose incident vertices are mapped to real numbers. 

2. Shuffle edges whose incident vertices are mapped to the origin. 

3. Shuffle edges between vertices v and v' such that /?v(<o) € C + and / y € C". 

It can be seen by inspection that £^ is a superset of the set of edges that connect V to V". Edges not in Es are 

allocated to Ef or E" according as their incident vertices are in V' or V". 

To see that | K'| = | V'% consider for any vertex v the vertex C(v) obtained by complementing every index in 

the vector v. This relationship can be restated in terms of characteristic polynomials as 

PC(v)(x) - ( J * ' 1 + xk'2 + . . . + 1 ) - pjix). 

Because the sum of all kth roots of unity is zero, it follows that pv(<o) = -pC(v)(<*>)• Therefore, the 

correspondence v <-+ C(v) is a one-to-one correspondence between the vertices mapped to C + and those 

mapped to C". This proves that this partition is a bisection as was claimed. The cardinality of Es is the width 

of the bisection and is bounded by the following theorem. 

Theorem 3: For any positive integer k, there is a bisection S of the shuffle-exchange graph on 
n m 2k vertices such that the width of S is at most 6(n/k). 

Proof Let S be the bisection described above, and consider the three types of edges that compose Es. We 

will bound each of the three types by the quantity 2(n/k). 

Each of the type 3 edges is a shuffle edge incident on vertices mapped to nonzero complex numbers, and 

each such vertex belongs to a necklace of exactly k vertices which are mapped to nonzero numbers. Since the 

total number of vertices in the shuffle-exchange graph is «, there can be at most n/k such necklaces. The 



7 

shuffle edges in each of these necklaces form a regular £-gon centered at the, origin, and thus only two of these 
edges can cross the real line, in the sense of having one incident vertex mapped to C* and the other to C~. 

Thus there can be at most 2 (n/k) type 3 edges. 

The same argument can be used to bound the number of type 1 edges. There are at most 2{n/k) vertices 

mapped to nonzero real numbers. Since every exchange edge whose incident vertices are mapped to real 

numbers has at least one of these vertices mapped to a nonzero real number, there can be no more than 

2 (n/k) type 1 edges. 

Finally, the number of type 2 edges can be bounded by the number of type 1 edges by observing that for 

each shuffle edge (v, a(v)) whose incident vertices are mapped to the origin, the exchange edge (a(v), e(a(v))) 

is a type 1 edge. • 

We now pause to examine an interesting by-product of these counting arguments, a result on the 

combinatorial problem of necklace enumeration. A necklace is a string of k pearls, where each pearl may be 

one of c colors. Two necklaces are considered equivalent if one can be rotated to form the other, but not if 

they are only reflections. It is well-known [7] that the number of necklaces of k pearls in c colors is 

(l/k)J2ck/d<Kd)- (7) 
d\k 

In this formula <p(d) is Euler's totient function, the number of positive integers not exceeding d that are 

relatively prime to d. Although it appears that the term for d = 1 in (7) might dominate the summation, it is 

not apparent that the contribution of the other terms is insignificant. However, the following corollary to 

Theorem 3 shows that this term is asymptotically dominant 

Corollary: The number of necklaces of {0,1, . . . , c-l}k lies between ck/k and 
((c+l)/(c-l))(c*/*). 

Proof. The definitions of the a and e permutations may be extended to {0,1, . . . , c-1}* as follows. 

€< 6*-i Ki • • • bi V = Vi Ki • • • bi <V 1 m o d c>> 

a<**-l bk-2 • • ' b l V " K l • • • b l  b0  bh-Y 
The characteristic polynomial is defined as before (notice that now py(c) is the vector v considered as a 

number expressed in base c notation), and the argument of Theorem 3 can be adapted to show that the 

function v py(o)) maps at most 2ck/(c-l)k elements of {0,1, . . . , c-1}* to zero and that the remainder lie 

in necklaces of k elements. • 
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5. Dissecting the Shuffle-Exchange Graph 

In the previous section, we presented a bisection of the shuffle-exchange graph on n = 2* vertices. In this 

section we will show that when k is even, the structure of the halves is similar to the structure of the original 

shuffle-exchange graph. This similarity is captured in the notion of an m-cyclic subgraph of the shuffle-

exchange graph, and it is shown that the halves are £/2-cyclic subgraphs. The bisection from Theorem 3 can 

be modified to bisect m-cyclic subgraphs when m is even. Thus when k is a power of two, this approach can 

be used iteratively to construct a complete dissection of the shuffle-exchange graph. 

An m-cyclic subgraph is a subgraph of the shuffle-exchange graph whose vertices are partitioned into 

disjoint m-cycles. Vertices not appearing in these m-cycles are also allowed, but such vertices must be 

isolated, not incident on any edge in the subgraph. If a shuffle edge (v, a(v)) appears as an edge of the mr 

cyclic subgraph, it must occur between adjacent vertices of one of the m-cycles, and the exchange edge 

(a(v), e(a(v))) must be an edge of the m-cyclic subgraph as well. 

The reader should be warned that m-cyclic subgraphs are nothing more than a vehicle for extending the 

bisection of the shuffle-exchange graph to a dissection. The definition has been carefully crafted so that the 

proof of Theorem 3 will apply to them and so that their separator exhibits the closure property. 

Lemma 4 : When k is even, the halves G1 and G" produced by the bisection from Theorem 3 are 
fc/2-cyclic subgraphs. 

Proof. Without loss of generality, we show this for Gf only. The vertices that are mapped to zero by 
vh~* Py(u) have no incident edges (are isolated), but every other vertex of Gf occurs in some sequence 

(vQ, . . . , v^ / 2 - 1) that arose from cutting a necklace of k vertices in half. Since any necklace of k vertices is a 

fc-cycle, and k/2 divides k, Lemma 2 ensures that this sequence is a £/2-cycle. Thus we have demonstrated 

the first requirement for G' to be an fc/2-cyclic subgraph: every vertex not in an m-cycle is isolated. 

We must now show that if a shuffle edge (v, a(v)) appears as an edge in G", then it occurs between adjacent 

vertices of one of the m-cycles, and furthermore, that then the exchange edge (<x(v), £ ( o r ( v ) ) ) is also in Gf. It is 

clear that the first condition is satisfied. The second condition can be demonstrated by observing that both v 

and a(v) are mapped to C*. Since the point P a ( v ) (w) can be obtained from /?v(<o) by a counterclockwise 

rotation oflir/k < m radians about the origin, it is impossible for <x(v) to be mapped to the real line. The set 

of removed edges Es contains only those exchange edges whose incident vertices are mapped to real points, 

which means that (a(v), e(a(v))) must be in E'. • 

When m is even, the bisection from Theorem 3 can be generalized to a bisection of an arbitrary m-cyclic 
subgraph. Let um = e2mi/m and consider the function v\->pv(o>m). Since o>m is a root of x m - l , the 
congruence (6) between adjacent vertices of m-cycles becomes the equality pv(u>m) = iompy (wm). This 
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means that if any vertex of an m-cycle is mapped to a nonzero complex number, all the m vertices of the m-

cycle are mapped to distinct points evenly spaced on a circle about the origin. Equation (5) applies as before 

to show that vertices connected by an exchange edge are mapped to complex numbers which differ by one. 

Let G be an arbitrary m-cyclic subgraph of a shuffle-exchange graph on n = 2k vertices, and suppose that m 

is even. In order to construct a bisection of Gy the vertices of the m-cycles of G are assigned to V or V" 

according as they are mapped by v i-* pv(um) to <C+ or C". The remaining vertices of G are those vertices that 

are mapped to the origin and those that are isolated. These may be divided arbitrarily but equally between V' 

and V". As with the bisection from Theorem 3, Es consists of three types of edges. 

1. Exchange edges whose incident vertices are mapped to real numbers. 

2. Shuffle edges whose incident vertices are mapped to the origin. 

3. Shuffle edges between vertices v and v' such that p (co ) € C + and />/((*> ) € C". 

The remaining edges are assigned to Ef or E" depending on whether their incident vertices are in V or K". 

Unlike before, however, the correspondence v C(v) cannot be used to show that | V'\ = | K"|, since v may 

be a vertex of G when C(v) is not. But because m is even, the equality p (co ) = -p (a> ) holds for 
j j+m/2 

vertices v. and v . + m / 2 in the same m-cycle, and the correspondence v«-+ v^+ | f | / 2 suffices to show that this 

partition is a bisection. The following lemma provides a bound for the width of the bisection. 
Lemma 5: Let m be even, and let G be an m-cyclic subgraph on / vertices. There is a bisection S 

that bisects G into m/2-cyclic subgraphs and has width at most 6//m. 

Proof Let S be the bisection just described. Its width can be bounded by showing that there are at most 
2t/m of each of the three types of edges in E^ This bound holds for type 3 edges because there can be at 
most t/m disjoint m-cycles in G and no more than two type 3 edges per m-cycle. Since each type 1 edge has at 
least one incident vertex mapped to a nonzero real number, and there are at most two such vertices per m-
cycle, the bound holds for these edges. Finally, for any type 2 edge (v, <x(v)), the edge (a(v), e(a(v))) is a 
type 1 edge because G is an m-cyclic subgraph. Thus there can be no more type 2 edges than type 1 edges, 
and the bound on the width of the bisection is proved. It should be remarked here that the definition of m-
cyclic subgraphs was specifically constructed in order to establish this correspondence between type 1 and 
type 2 edges. 

To prove that the halves of the bisection are m/2-cyclic subgraphs, observe that the bisection S isolates 
those vertices that are in m-cycles mapped to the origin, and splits the other m-cycles into pairs of m/2-cycles. 
Since shuffle edges appear only between adjacent vertices of m-cycles, this adjacency is preserved in the m/2-
cycles. The only exchange edges removed by the bisection are those whose incident vertices are mapped to 
real numbers, and hence the argument of Lemma 4 can be used to show that if (v, a(v)) is in one of the halves, 
then (a(v), e(o(v))) is also in the half. • 
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We are now ready to combine this bisection with the bisection from Theorem 3 into a dissection of the 

shuffle-exchange graph on n = 2k vertices for the case when k is a power of two. Recall from Section 2 that to 

dissect this graph, we need to find a class of subgraphs that has a separator with the closure property. The 

next theorem provides such a class. 

Theorem 6: If A: is a power of two, then there is a dissection J of the shuffle-exchange graph on 
n = 2k vertices such that any bisection in f which bisects an m-vertex graph has width at most 

6n/k if m>n/k9 

fn(m) - ( 8 ) 
0 otherwise. 

Proof Let Qn be the class of subgraphs consisting of /) the shuffle-exchange graph itself, ii) its £/2^-cyclic 

subgraphs that have n/2j vertices, for . . . , ( l g£ ) - l , and ///) its subgraphs that have no edges. 

Correspondingly, the separator J consists of /) the bisection of the shuffle-exchange graph from Theorem 3, 

ii) the bisections of its /^-cycl ic subgraphs from Lemma 5, and Hi) arbitrary bisections of the totally 

disconnected subgraphs. To see that the closure property holds for y we first observe that the halves of the 

shuffle-exchange graph are £/2-cyclic subgraphs with n/2 vertices. For y = 1, . . . , (lg k)-2, the halves of the 

k/2^-cyclic subgraphs with n/2J vertices are */2- / + 1-cyclic subgraphs with n/2**1 vertices. When y - (lg 

the bisection from Lemma 5 uses the mapping V H P Y ( G > 2 ) to bisect 2-cyclic subgraphs. Since « 2 - - 1 , all 

vertices are mapped to real numbers, and thus the halves consist entirely of isolated vertices. 

The bisection of the shuffle-exchange graph from Theorem 3 has width 6(n/k). For j - 1, . . . , (lg A)-l, 
the bisection from Lemma 5 bisects a £/2y-cyclic subgraph of n/2J vertices with width 
6 (n/2J) / (k/2J) = 6 (n/k). The totally disconnected graphs can be bisected with zero width. • 

6. Laying Out the Shuffle-Exchange Graph 

Given a dissection of an arbitrary graph, the divide-and-conquer technique of [2] can produce a VLSI 

layout whose area is related to the bisection widths of the graphs in the dissection. The VLSI model used is 

that of [9], and its important attributes are that wires have a minimum width and that only a constant number 

may cross at a point. In this section the results of Section 5 are applied to produce an 0(/ i 2 / lg n) area VLSI 

layout for an ^-vertex shuffle-exchange network. 

The technique of [2] constructs a layout for a general graph G by first bisecting G and laying out the halves 

recursively. The halves are then placed side-by-side, and the edges that were removed to bisect G are routed 

between the halves. The layout area can therefore be described as a recurrence in the area of the halves and 

the area required to route the edges removed by the bisection. This latter quantity is a function of the 

bisection widths in the dissection of G because the length and width of the layout increase by a constant 
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amount for each edge routed. 

The particulars of how the area recurrence arises from this construction are described more fully in [2]. 

Some solutions to the recurrence are also given in that paper, but the bisection width bound fpri) from 

equation (8) fails to satisfy certain conditions that are assumed for those solutions. Therefore, we give the area 

recurrence from [2] without further justification, but present its solution in detail. 

Let An(m) be the area of the layout of an m-vertex graph in the dissection of Theorem 6 (thus An(n) is the 

area of the original shuffle-exchange graph). We express An(m) in terms of fn(m) from equation (8). For the 

initial condition of the area recurrence, An(l) is a constant, and for 1 < m < n, 

A JIM) = [V2An(m/2) + fn(m)\\ (9) 

The recurrence can be solved by taking the square root of both sides and then substituting L (m) for V A (m) 

. For 1 < m < n this yields 

Ln(m) = V2Ln(m/2) + fn(m). 

Iterating this recurrence and recalling that n = 2*, we have 

Ln(n)=fn(n) + V2Fn(n/2) + 2Fn(n/A) + . . . 

+ V2k'lfN(2) + V2kfn(D + YFRLFI) 

<(6*/*)[l + V2+. . . + vT l g*] + \ZHLN(L) ( 1 0 ) 

= (6n/k) [ V 2 ~ 0 g * H i - 1 ) / (Y/J - 1 ) ] + VTT L„(l) 

-0 ( ( * / * )vT) 

- 0 ( n / V T ) . 

The reason the sum of the powers of \ / T goes only as far as lg k in line ( 1 0 ) is that fn(m) is zero after this 
point. Since An(n) is the square of LJn\ the area of the layout is 0(n2/k). 

This technique has been used in Figure 2 to lay out a shuttle-exchange network on 256 vertices. Only one 

fourth of the layout is shown, and the dissection that was used differs slightly from the one in Section 5. 

Instead of removing exchange edges, the arbitrary divisions among vertices mapped to zero are chosen so that 

€(v) is jn the same component as v, and the two are placed together. 
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F i g u r e 2: One fourth of a shuffle-exchange network. 
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7. Conclusion 

We have developed an extraordinary amount of machinery in order to construct an 0(n2/k) area layout for 

the shuffle-exchange graph on n = 2* vertices, and indeed, we have only been able to show this upper bound 

for the case when k is a power of two. It may be that this bound holds when k is not a power of two, but we 

have not been able to prove this. For the time being, the best general upper bound seems to be Thompson's 

0(n2/\fk) bound. 

In any event, a gap remains between either of these upper bounds and the best known lower bound of 

Q(n2/k2) which is also given by Thompson. This lower bound is proved in [9] by showing that the minimum 

bisection width of the shuffle-exchange graph must be ti(n/k) and that the area of any graph layout must be 

at least the square of the minimum bisection width of the graph. Theorem 3 shows that this Q(n/k) lower 

bound for bisection of the shuffle-exchange graph can be achieved, even though the dissection based on this 

bisection does not achieve the Q,(n2/k2) lower bound for layout area. This is because the bisection width 

fn(m) does not immediately decrease as m decreases from n. It may be that an improved lower bound for the 

layout area will be based on the notion of a minimum dissection, where the width of every bisection in any 

dissection can be bounded from below. 

On the other hand, it may be that an 0(n2/k2) area layout does exist for the shuffle-exchange graph, as 

does one for the cube-connected-cycles (CCC) network of Preparata and Vuillemin [6]. The CCC is the graph 

that arises from a boolean hypercube of d dimensions when each vertex is replaced by a cycle of d vertices. 

Many of the problems that can be solved quickly using the shuffle-exchange interconnection can also be 

solved quickly using the CCC. But despite the fact that a smaller layout is known for die CCC, descriptions of 

algorithms for the CCC tend to be more complicated. The discovery of an 0(n2/k2) area layout for the 

shuffle-exchange graph would therefore favor the shuffle-exchange graph as the network of choice and would 

allow the many algorithms already designed for this network to be applied directly in optimal VLSI 

implementations. But until such a layout is found—if ever one is found—the CCC will continue to have the 

edge. 

In conclusion, we believe that characteristic polynomials provide a useful way of viewing the shuffle-

exchange network, and we believe that this approach goes beyond the particular technical results presented 

here. Characteristic polynomials unveil properties of the shuffle-exchange graph that are obscured by the 

classical approach of relating the vertices to integers. We hope that the mechanisms we have developed to 

relate the topology of a particular graph to the algebra of polynomials will be exploited further. 
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