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Abstract 

This paper describes a game-playing program that learns tactical combinations. The program, after losing a 
game, examines the opponent's moves in order to identify how the opponent forced the win. By analyzing 
why this sequence of moves won the game, a generalized description of the winning combination can be 
produced. The combination can then be used by the program in later games to force a win or to block an 
opponent's threat. This technique is applicable for a wide class of games including tic-tac-toe, go-moku and 
chess. 

This research was sponsored in part by an AT&T Bell Laboratories Phd. Scholarship and in 
part by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 3597, 
monitored by the Air Force Avionics Laboratory Under Contract F33615-84-K-1520. 

The views and conclusions contained in this document are those of the authors and should not 
be interpreted as representing the official policies, either expressed or implied, of the Defense 
Advanced Research Projects Agency or the US Government. 



i 

Table of Contents 
1. Introduction 
2. Learning And Game-playing 
3. Terminology 
4. Learning go-moku Combinations 

4.1. System Overview 
4.2. ITic State-Update System 
4.3. ITic Recognition Rules 
4.4. ITic Learning Module 

5. An Example 
6. Correctness of the Learning Algorithm 
7. Discussion 

7.1. Evaluation of the Go-moku Program 
7.2. When is Learning Possible? 

8. Extending the Program 
8.1. Other games 
8.2. Learning Non-Winning Combinations 

9. Comparing Programs that Learn from One Example 
10. Concluding Remarks 
11. Acknowledgements 
I. Procedure Descriptions 
II. Implementation Issues 

ILL Where is the Knowledge? 
II.2. Implementation Notes 



i 

1. Introduction 
The process of "learning by examples", or concept acquisition, has been intensively studied by researchers 

in machine learning [4]. In the concept acquisition paradigm, a program is presented with a training set of 

positive and negative instances of a concept represented in some description language. The program's task is 

to find a generalization in this language that describes all of the positive instances and none of the negative 

instances. 

A limitation of many existing concept acquisition programs is that large training sets may be required to 

learn certain concepts. ITiis limitation highlights an important difference between these programs and 

humans: humans have the ability to make useful generalizations on the basis of just one example. For 

instance, a single demonstration of a forced win in tic-tac-toe suffices to teach a novice player how to execute 

that maneuver in similar situations. It is the student's understanding of how and why the example works 

which motivates the generalization he makes. 

In this paper we explore a technique for reasoning from single examples in which generalizations are 

deduced from an analysis of why a training instance is classified as positive. A program has been 

implemented that uses this technique to learn winning combinations in games such as tic-tac-toe, go-moku 

and chess. In each case, learning occurs after the program loses a game. The program traces out the causal 

chain responsible for its loss, and by analyzing the constraints inherent in the causal chain, can describe and 

generalize the conditions that allowed the opponent to win. The generalized conditions are incorporated into 

a new rule that may be used in later games to force a win or to block an opponent's threat. 

The first part of this paper introduces the learning technique embodied in the game-playing program. In 

section 4, the program itself is described, and then an example from the game go-moku is given which 

illustrates the learning process. The remainder of the paper describes when and why the learning algorithm 

works, and relates this approach to previous research in other domains. Two appendices are given: Appendix 

I describes the subroutines used by the learning algorithm and Appendix II discusses implementation issues. 

A high-level description of the program has been presented elsewhere [17]. One of the purposes of this 
report is to present the details omitted from the earlier publication. The reader is cautioned that this work is 
part of a continuing project and that the implemented program has not yet been extended to its full 
generality. Appendix II describes where the discrepancies between the design and implementation presently 
exist 
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2. Learning And Game-playing 
More than any other game, chess has attracted the attention of researchers in Artificial Intelligence, and it is 

often regarded as the standard domain for game-playing research. Experience has shown that the depth to 

which a chess program can search is a key factor in its performance [3], rrhcrcforc, much of the recent work in 

this area has focused on improving methods for quickly searching game-trees. Significantly less effort has 

been devoted towards building knowledge-intensive chess programs. This disparity of effort has been 

compounded by the poor performance of knowledge-intensive programs compared to to their "dumber" 

cousins. 

The dominance of brute-force search programs over knowledge-based programs is somewhat surprising 

since it appears that human chess masters rely heavily on knowledge in order to focus their search [6,7], 

Factors that contribute to the relative success of brute-force programs include the following: 

• Unlike the human brain, present-day general-purpose computers are ill-suited to the pattern 
matching operations required for a knowledge-based approach. 

• Intelligent game-playing requires a surprisingly large amount of both common-sense and domain 
specific knowledge. Programming this knowledge into a computer is time-consuming and 
difficult. Furthermore, if any details arc left out the program makes obvious mistakes. In a game 
such as chess, a single "stupid" mistake can be fatal.(See [33] and [2] for a programs that adopt a 
knowledge intensive approach to chess) 

This latter point is often overlooked. Even if fast pattern-matching computers existed, the right knowledge 

would still have to be provided in order for such machines to be useful. In fact, the knowledge-intensive 

approach may never be successful until the prerequisite domain-specific knowledge can be acquired 

automatically by machine, rather than programmed by humans. 

One type of knowledge that is useful for playing two-person games is strategic knowledge about how to trap 

one's opponent. In game-playing terminology, a tactical combination is a plan for achieving a goal where each 

of the opponent's intervening responses is forced. The diagram below, figure 2-1, illustrates a simple chess 

combination called a "skewer". The black bishop has the white king in check. Therefore, after the king moves 

out of check, as it must, the bishop can take the queen. 

A student (human or otherwise) who falls prey to this trap should be less likely to succumb to it in later 

games. Much can be learned by analyzing what went wrong. For instance, in retrospect it should be obvious 

that the position of the queen "behind" the king is essential to the trap's success. The pawns, on the other 

hand, are irrelevant. By analyzing why the trap works, a set of general preconditions for this combination can 

be found. This knowledge can be used to guard against similar occurrences in future games, and perhaps 

catch unwary opponents as well. 



Figure 2-1: A Skewer 

The learning technique that we are proposing is based on this type of retrospective analysis. It can be 
divided into three phases: 

1. Recognize that the opponent achieved a specific goal. 

2. Trace out the chain of events which was responsible for the realization of the goal. 

3. Derive a general set of preconditions for achieving the goal on the basis of the constraints inherent 
in the causal chain. 

3. Terminology 
Before proceeding any further, it is necessary to introduce some terminology so that we may be precise in 

our analysis. All of the games we will be analyzing are two-person games. We will refer to the players as Px 

and P 2. Each of these games can be formally described as a 6-tuple <S,5,Af,so, W9 W2> where: 

• S is a finite set of game states. Each state in S represents a configuration of the board with a 
particular player to move. 

• M is a finite set of moves such that for each s£S, m£M, 8(s,m) specifies the single state that can be 
reached from state s by move m. If m is an illegal move in state s9 then 8(s,m) is undefined. 

• SQ£S is the initial state of the game. 

• Wl is the subset of S which are winning states for P . 

• W2 is the subset of S which are winning states for P . W and W2 are disjoint. 
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P and P 2 alternate turns. Both players have complete information regarding the current suite of the game.1 

Features arc predicates that arc used for describing states. For example, in tic-tac-toe we might specify that 

iVempty(squarel) is true in all states in which squarel is free. A description is a conjunction of features that 

describes a set of states. The description is-empty (squarel) & is-cmpty(<y>), for instance, describes all states 

in which there arc two free squares, one of them being squarel. (Angle brackets arc used to denote variables, 

as in <x>). Specifically, a description D describes a state s iff each conjunct in D is matched by a distinct 

feature in s. The function a maps descriptions into sets of states, that is, a(D) is the subset of S described by 

D. 

A description can be generalized by dropping conjuncts and/or substituting new variables for constrained 

terms.2 Accordingly, a description Z)1 is said to be a generalization of Dr denoted ^ > ^ 2 . if D can be derived 

by generalizing Dr A description D is maximally-generalized with respect to some predicate P over 

descriptions if P(Z)) is true and there exists no description D>D such that P(#p is true. A description Dx is a 

maximally-specifieddescription if Dx describes a single state s and there is no other description D2 describing s 

such that A>A-
1 2 

4. Learning go-moku Combinations 
In this section, we will discuss a program that learns winning combinations for a game called go-moku. 

Later we will discuss how this same program can be extended to a wide class of other games, including chess. 

Go-moku is similar to tic-tac-toe, except that it is is played on a 19x19 board and the object of the game is to 

get 5 in a row, either vertically, horizontally or diagonally. Figure 4-1 illustrates a winning combination in 

go-moku. The last four states in a hypothetical game are shown. The first state shown, State-11, depicts the 

relevant section of the board prior X's move (the 11th in the game). If, in state-11, player X takes the square 

labeled A, then player O can block at B or C but either way X will win. If O had realized this prior to X's 

move, he could have pre-empted the threat by taking either square A or C. 

A winning combination is a line of play that cannot be countered defensively - it is guaranteed to result in a 

win unless the opponent has a quicker way to win. A forcing configuration is a position on the board from 

which a winning combination can be executed. In go-moku, a forcing configuration exists if one can win in a 

single move, or create two or more independent ways to win. This latter method is commonly called a "fork", 

1 Note that we do not require that the rules of the game be identical for ? x and P 2 . However, as we will see, if they are identical then the 
game-playing program will be able to learn much more than it would otherwise 

^ e r e are two types of constrained terms: variables that appear more than once in a description, and constants. 
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0 0 
Stat* 11 

X TO MOVE 

State 12 

0 TO MOVE 

State 13 
X TO MOVE 
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c X X X >< 0 °x X X X X 0 
0 0 

State 14 
GAME WON 

Figure 4-1: A Winning Combination in Go-moku 

and the notion is central to many other games besides go-moku. 

In the example above, a forcing configuration exists in state-11. This configuration, called an open-3, 

consists of three squares in a row, with at least two empty squares on one side and an empty square on the 

other. Whenever an open-3 exists for the player whose turn it is to move, then that player can win, provided 

the opponent has no quicker way to win. While an open-3 is a very simple forcing configuration, many 

people lose in precisely this way the first time they play go-moku. It appears that the open-3 concept is one of 

the first things that people learn in go-moku, since they rarely lose this 'way twice. The open-3 pattern a 

powerful building block from which more complex patterns can be built 

The go-moku program learns descriptions of forcing configurations and the appropriate offensive move for 

each configuration. The following subsections discuss the program in detail. Following this, in Section 5, we 

will return to the example Fig. 4-1 to demonstrate how the open-3 configuration is learned. 

4 . 1 . System Overview 

The organization of the system is outlined in Figure 4-2. A Top-Level module interacts with the human 
player and queries the Decision module for the computer's moves. Game-State is a data structure listing the 
features which are true in the current state of the game. The knowledge necessary to play the game is 
partitioned into two sets of rules: 

• A set of State-Update Rules provided by the programmer for adding and deleting features from 
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Game-State after each turn. 

• A set of Recognition rules employed by the Decision module to detect forcing configurations. 
Initially Uiis set is empty. The Learning module produces more recognition rules whenever the 
program loses. 

f STATE REPRESENTATION 

IS-EMPTY(SOUAREI) 
ISEMPTY(SQUARE2) 
TWO»NA-ROW(POSIT10N.3.6, HIM) 
THREEIN.A.ROW(POSlTION.7.15. ME) 

Figure 4-2: Overview of System Organization 

4.2 . The State-Update System 

After each move in the game, the State-Update rules are invoked to update the current Game-State. The 

left-hand side (LHS) or "IF part" of each State-Update rule is a description. A rule is activated whenever its 

LHS description is matched by Game-State3. The right-hand side (RHS) of a rule consists of an add-list and 

a delete-list specifying features to be added and deleted from Game-State. 

After each turn, the player's move is communicated to the State-Update system by adding a special 

Input-Move feature to Game-State. An Input-move feature lists the player that moved and the square that he 

has moved to. The State-Update system is then allowed to run until no more rules are applicable, at which 

point Game-State should accurately reflect the new board configuration. Once a player wins, the State-

Update system adds the feature Won(<p>) to Game-State, where <p> is the name of the winning player. 

Figure 4-3 shows some State-Update rules that were written for go-moku.4 

The State-Update system is essentially a mechanism for computing the function 5 (defined in Section 3) 

*ln the present implementation, we require that the Left-hand sides of the State-Update rules describe disjoint sets of states, so that 
only one rule can be applicable at any time. Therefore no conflict resolution mechanism is necessary. 

4 
FouHn-a-row(<positionX>,<pIayerY>) is true when there are four consecutive squares taken by <playerY> at <positionX> on the 

board. Extends(<positionX>,<squareY>) is true when <squareY> is adjacent to, and in the same line as, the sequence of squares at 
<positionX>. Coniposcs(<posilionX>,<squareY>,<positionZ>) is true when <squarcY> and <positionZ> can be joined to form 
<positionX>. In rule Create-Four-In-A-Row, composes is used to bind the new position so that it can be referenced in the RHS 
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RUIJiCrcatc-winl 
IF input-inovc(<squarc>, <playcr>) 

is-cmpty(<squarc>) 
f<nir-in-a-row(<4position>,<playcr>) 
cxtcnds(<4position>, <squarc>) 

THKN 
ADD won(<playcr>) 

RULE Create four-in-a-row 
IF input-movc(<squarc>,<playcr>) 

is-cmpty(<squarc>) 
threc-in-a-row(<3position>,<playcr>) 
cxtends(<3position>, <squarc>) 
composcs(<ncwposition>,<squarc>,<3position>) 

THEN 
DELFrrEthree-in-a-row(<3position>,<p1aycr>) 

input-movc(<squarc>, <player>) 
ADD four-in-a-row(<ncwposition>, <playcr>) 

Figure 4-3: Some State-Update rules for Go-moku 

which maps a state and a move into a new state. In light of this, we will broaden our notation as follows. Let 

<rl§r2....r | |> be a sequence of State-Update rules. We will say that 5(1^,1)=D2 via <ri,r2....r/y> iff when the 

state-update system is started in a state described by D and given an input-move described by I, the rules 

Tl9T2....rn fire and the system halts in a state described by D 2. 

RECOGNITION-RULE Rccog-four 
IF four-in-row(<position>, <player>) 

is-empty(<square>) 
extcnds(<position>, <square>) 

THEN 
RECOMMENDED-MOVE 
input-move(<square>,<player>) 

RECOGNITION-RULE Recog-open3 
IF three-in-row(<3position>, <player>) 

is-empty(<squarel>) 
extends(<3position>,<squarel>) 
composes(<4position>,<squarel>,<3position>) 
is-empty(<square2>) 
extends(<4position>,<square2>) 
extcnds(<4position>,<square3>) 
is-empty(<square3>) 

THEN 
RECOMMENDED-MOVE 
input-move(<squarel>,<player>) 

Figure 4-4: Recognition Rules Learned in Go-moku 

4.3. The Recognition Rules 

The Decision module relies on a set of recognition rules to identify forcing configurations. Figure 4-4 

shows some representative recognition rules. The right-hand side of each recognition rule specifies the 

appropriate move to initiate the combination.5 During the game, if a recognition rule indicates that the 

opponent is threatening to win, tiien the computer will block the threat (unless it can win before the 

opponent). The blocking move is said to be forced since the computer will lose if it does not block the threat. 

Whenever a move is forced, the system must record the "reason" for the force. In the go-moku 

implementation, the name of the recognition rule and the features it matched constitute the "reason", and 

Instead of listing all the subsequent moves in the combination, a separate recognition rule exists for each step. 
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these are recorded for later inspection by the learning module. If more than one threat is active, and there is 

no way to block them all, the computer blocks the one which leads to the quickest win and records the 

corresponding recognition rule. 

The Decision module also contains a simple procedure for deciding on the best move if no recognition rule 

is applicable. For example, in go-moku the program merely picks the move which extends its longest row. 

4.4. The Learning Module 

Whenever the computer loses a game the learning module is invoked to analyze why the loss occurred. By 

reasoning backwards, the features which were critical for the opponent's winning play can be isolated. From 

these features new recognition rules arc composed. 

The backward-analysis process involves examining the sequence of forced moves that the computer made at 

the end of the game. In each of the states preceding the computer's forced moves a forcing configuration must 

have been present, because the computer was subsequently forced into the loss. The critical features in these 

states arc identified by analyzing a record of the rules activated during the game which were responsible for 

adding the Won feature to game-state. 
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Input: A game that the computer lost. Hie game is recorded as a sequence of Turns <turn1, 
turn2....turnn> where each turn, is associated with a Player., a maximally-specialized 
description of the state dj which existed at the beginning of the turn, a movCj, and a 
Suite-Update-'rracc.. In addition, each of the computer's turns are associated with a 
Dccision-TracCj, which indicates whether or not movCj was forced, and if so, lists the 
forcing-conditionSj for that move. 

Side-effect: Creates new recognition rules. i 

Description: 

1. Begin 
2 . i«— n n i s the index of the l a s t t u rn in the game 
3 . G m «— Won(<Player>) - - d e s c r i b e s the fifial game- s t a t e 
4 . Loop 
5 . Begin 
6. *~~ B a c k - U p ( S t a t e - U p d a t e - T r a c e i f G i + 1 ) 

— Back-up over o p p o n e n t ' s t u rn 
7. New-rule <— Bui ld -Recog-Rule (G i , 1 ^ 
8. If no e q u i v a l e n t r u l e a l r e a d y e x i s t s , add New-Rule to r e c o g - r u l e s 
9 . If i = l then Exi t Loop 
10. i <- i - 1 
1 1 . 6

t

 B a c k - U p ( S t a t e - U p d a t e - T r a c e i , G^ 
- - Back-up over compu te r ' s t u rn 

12. If move., was not forced then Exi t Loop 
13 . Gi C o m b i n e - C o n d i t i o n s ( G t , f o r c i n g - c o n d i t i o n s i , d..) 
14. If i = l then Exi t Loop 
15. i «- i - 1 
16. end Loop 
17. end 

Figure 4-5: Main Loop of Learning Module 

The main loop of the learning algorithm is shown in Figure 4-5. Three procedures, Back-Up, Combine-
Conditions, and Build-Recognition-Rule are called; these procedures are described below and their 
specifications given in Appendix I. 

The most significant of these procedures is Back-Up, as it accomplishes the backward reasoning necessary 

for identifying why the computer lost. Back-Up is given a State-Update-Trace generated during the game. 

This trace lists the sequence of rule activations <r i,rv..rJ t> which converted a state, ^, into some other state, s2, 
after some move m was made. A description G2 is also provided, where G2 is a generalized description of s*2. 

Back-Up's task is to find a maximally-generalized description G and an Input-move description /, such that 

8(GVI)= G2 via<rvr2...sk>. This is shown pictorially in Figure 4-6. 

Back-Up functions by analyzing the effects of the rule sequence <ri,r2...rJt> in reverse order. The inverse 

operator for each rule is successively applied to Gr The operation performed by Back-Up is an instance of 
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Preconditions 

Constraint Back-Propagation 

Postconditions 

Initial state 
Final State 

Figure 4-6: Constraint Back-Propagation (adapted 
from UtgofF[31]) 

constraint back-propagation, discussed by Utgoff [31].6 

The procedure Combine-Conditions merges two descriptions into a single more specific description. 

Specifically, Combine-Conditions combines G ^ , a description of the threat that the computer succumbed 

to, with the forcing-conditions. The resulting description includes all the features responsible for the 

computer's loss. In the go-moku implementation, G and the forcing-conditions both describe threats 

which exist on the board prior to the computer's move, and the description returned by Combine-Conditions 

describes the fork in terms of a conjunction of these two threats. See Appendix I for a more complete 

description of this procedure. 

The third subroutine, Build-Recognition-Rule, takes a description (7, and an input-move description / and 

creates a new recognition rule, where G is the Left-hand-side of the new rule and / the Recommended-Move. 

The rule is inserted into the data-base of recognition rules provided no equivalent recognition rule already 

exists. 

5. An Example 
In order to illustrate the learning algorithm, we will show how Recog-open3 (Figure 4-4) was acquired after 

the computer lost the position shown in Figure 4-1. Recog-open3 indicates that an "open-three" is a forcing 

configuration; Recall that an open-three was defined to be a three-in-a-row with two free squares on one side 

and one free square on the other side. In order for Recog-bpen3 to be learned, the computer must have 

previously learned the rule Recog-four (see Fig. 4-4) that states that a four-in-a-row with an adjacent open 

square constitutes a forcing configuration. 

^This method of reasoning backwards is quite similar to the well-known predicate-transformer method for proving program 
correctness [10]. Furthermore, the operation called "regression" by Nilsson [23] is also closely related. 
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lTic game proceeds from state-11. as follows: 

• Movc-11: 'Hie opponent (player X) takes square A. The State-Update system is then invoked to 
reflect the change in state. A four-in-a-row feature for the opponent is added to Game-State, and 
the component thrcc-in-a-row is deleted. 

• Move-12: 'Yhc computer (player O) finds two instantiations of Rccog-four in statc-12 (one for each 
way X can win). Since only one of these can be blocked, the computer arbitrarily chooses to block 
the threat involving square B. A record is made indicating that the move was forced by the 
instantiation of Rccog-four. The State-Update system is then invoked and it adds to Game-State 
a feature indicating that square B is taken. 

• Move-13: Finally, the opponent takes square C. The State-Update system is invoked, and it adds 
the feature WON(opponcnt) to Game-State. The learning module is then called upon to analyze 
why the game was lost. 

The learning module begins by retrieving the State-Update Trace associated with the opponent's last turn. 

This trace indicates that a single rule, Create-Win 1 (see Figure 4-3), was activated following the opponent's 

move and that this activation introduced the feature Won(opponcnt). The subroutine Back-Up is called to 

describe the preconditions under which Create-Winl will produce a state matching Won(<player>). Back-Up 

returns a description G 1 3 and an input-move I 1 3: 

G s four-in-row(<4position>,<player>) 
& is-empty(<squareA>) 
& e x t e n d s ( < 4 p o s i t i o n > , <squareA>) 

I 1 3= input-move (<squareA>) 

G 1 3 is a generalized description of StateD. For any state described by G^, if <player> moves to <squareA>, 

Create-winl will be activated and a win will result Therefore all states described by Gu are forcing states. 

Continuing, Analyze-Loss calls Build-Recognition-Rule(G13, I1 3). However, because the new rule is 

equivalent to Recog-four (which already exists in the database), it is discarded. 

Now the State-Update-Trace associated with the transition from State-I2 to State-13 is retrieved. Back-up 

then creates G, , a description of the states for which some move will result in a state described by G . In 
tmp 13 

this example, G is identical to G 1 3, since the configuration described by G 1 3 was unaffected by Move-12. 

Next the Decision-Trace associated with the computer's move is retrieved. This Decision-Trace specifies 
that Move-12 was forced by the threat recognized by Recog-four. Therefore the forcing conditions are given 
by the Left-hand-side of Recog-four. Combine-Conditions is called; G and the forcing-conditions 
describe the two threats present in State-12. Combine-Conditions returns Gn, a generalized description of 
the fork in State-12: 
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G12 • f o u r - i n - r o w ( < 4 p o s i t i o n > . <player>) 
& is-empty(<squareA>) 
& is -empty(<squareB>) 
& e x t e n d s ( < 4 p o s i t i o n > , <squareA>) 
8r e x t e n d s ( < 4 p o s i t i o n > . <squareB>) 

Now control returns to the beginning of the loop, with Move-11 under consideration. The associated 

State-Update-Tracc indicates that transition from State-11 to Statc-12 was accomplished via the State-Update 

rule called Crcatc-four-in-a-row. Back-Up applies the inverse of this rule to create G u and I : 

G n

 s t h r e e - i n - r o w ( < 3 p o s i t i o n > , <player>) 
& is -empty(<squareC>) 
& e x t e n d s ( < 3 p o s i t i o n > , <squareC>) 
8f composes(<4pos i t ion>, <squareC>, <3pos i t i on>) 
& is-empty(<squareA>) 
& is -empty(<squareB>) 
& e x t e n d s ( < 4 p o s i t i o n > , <squareA>) 
& e x t e n d s ( < 4 p o s i t i o n > , <squareB>) 

I s input-move(<squareC>, <player>) 

At this point Rccog-open3 is built from G u and I , and added to the existing set of recognition rules. 

No other recognition rules will be built. The next time around the loop the exit branch at line 12 will be 

taken since the computer's previous move was not forced. 

6. Correctness of the Learning Algorithm 
A recognition rule is correct iff for every state s in which the rule recommends a move / for person P, a 

forcing configuration exists in s, and / is the appropriate move for P to initiate the force. The correctness of 

the rules that are learned by the program is an important consideration. If it is known that the rules are 

correct, then they can be used during play with full confidence and no search through the game-tree will be 

required. 

To prove that the learning algorithm given in Figure 4-5 only generates correct recognition rules (assuming 

that the subroutines meet their specifications as given in Appendix I) it suffices to establish the following loop 

invariant: 

Loop invariant: Every time control passes through line 7, G ^ d j , G{ describes a set of forcing states, and /. 
specifies the appropriate input-move to initiate the force. 

This loop invarient can be verified by induction over the number of times the main loop is executed. The 

details of proof are are straightforward but tedious, and so instead we will endeavor to explain more 

informally why the learned rules are correct. While our discussion will be confined to go-moku, it should 

become obvious that there is little in the analysis that is specific to this particular game. Later on, in Section 8, 

we describe under what conditions the program can learn rules for other games. 
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In the last state preceding the opponent's win, state sn, a forcing configuration must exist (by definition). As 

we have seen, Back-up takes a trace of the statc-updatc-rules which fired after the computer's move and 

returns G and / . G describes states in which these same state-update rules will fire (and result in a win) n ft n 

provided that a move consistent with / is made. Therefore the recognition rule built from G and / is 
correct 

Next Gt and / , are found by Back-up, such that for all states described by (7, , if a move consistent imp ft" i imp 

with is made then a forcing state (described by G^ will result for the opponent (In this sense, G 
describes a threat that exists on the board in state 5 .) The forcing-conditions retrieved on line 7 describe 

die conditions under which the computer was "forced" to make move Gt is then combined with the 
fl—i imp 

forcing-conditions to form G . All states described by G must be losing states, since the "reason" to 
make move / , exists in G t, and / , results in a win for the opponent 

Now the loop is repeated, and G and arc found by Back-up. In any state described by G % if a 
move specified by / is made then the same state-update rules that fired during the game will again be 
activated, resulting in a state described by G^ (a losing state). Therefore all states described by G are 
forcing states (ie. have forcing configurations). The recognition rule that is built from G (and assuming no 
equivalent rule already exists, added to the pool of recognition rules) is therefore correct. 

At this point we have gone more than once around the loop. The same arguments for the correctness of the 
learned recognition rules will continue to be applicable on successive iterations. 

The learning algorithm terminates as soon as a non-forced move made by the computer is encountered. No 
state prior to this move can be shown to be a winning state without resorting to a different method of analysis. 
(The only other reason for the learning algorithm to terminate is that the first turn in the game is reached. 
This will only happen in those games where it is possible to force a win from the initial state.) In a sense, the 
concept of a forced move not only gives us a powerful tool for learning, but also inherently provides an 
effective way to limit the extent of the backwards analysis. 

The strategy employed by the learning algorithm for discovering forcing states is not necessarily the most 

efficient It particular, it is not always necessary to begin backing up from the end of the game in order to 

learn new recognition rules. For example, Recog-open3 can be built during the game as soon as the program 

recognizes the two independent threats in State 12. The learning algorithm presented in Figure 4-5 is not 

capable of performing this abbreviated analysis, but after some extra effort will arrive at the same result The 

advantage of the less efficient algorithm is that it can learn forcing states in situations where independent 

threats can only be identified retrospectively. While we believe diat it should be straightforward to enhance 
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the program so that it can perform both types of analysis, litis has not been implemented. 

7. Discussion 

7 . 1 . Evaluation of the Go-moku Program 

'lTicrc have been a number of previous efforts to build game-playing programs that learn from single 

examples. Murray and Klcock [22] presented a go-moku program that learned forcing configurations by 

analyzing games that it had lost. A similar program by Koffman [15] learned forcing states for a variety of 

games. Pitrat [26] describes a program that learned chess combinations by analyzing single examples. In each 

of these programs, generalizations were produced cither by explicit instruction, or through the use of a 

representation that only captured specific information. The approach outlined in this paper is similar in spirit 

to these earlier programs, but more powerful, since generalizations arc deduced from a declarative set of 

domain-specific rules. 

After being taught approximately fifteen examples, the program plays go-moku at a level that is better than 

novice, but not expert. Based on the performance of Elcock and Murray's go-moku learning program, it 

seems likely that the program could be brought to expert level by teaching it perhaps fifteen more examples. 

However, as more complex rules are learned the program slows down dramatically, despite the use of a fast 

pattern matcher (a version of the rete algorithm [12]). The problem is that the complexity of each new rule, in 

terms of number of features in its LHS, grows rapidly as the depth of the analysis is extended. In order to 

overcome this, the complex LHS descriptions should be converted into patterns that can be efficiendy 

matched in the given domain. This has not yet been implemented, and whether or not it will be successful 

remains to be seen. 

Another difficulty with the present implementation is that it plays a strong defensive game, but a 

comparatively weak offensive game. For defensive purposes, the recognition rules are quite powerful, since 

they enable the program to block the opponent before he can execute a combination. On the other hand, an 

effective offensive requires more than just recognizing fortuitous forcing configurations - it is necessary to 

create such configurations by active planning. At the present time, the program employs game-specific 

heuristics for deciding on the next move when no forcing configuration is found. While the performance of 

these heuristics is crucial to the overall performance of the game-playing program, this aspect of the program 

has little to do with its learning capabilities, and we have generally ignored it. Obviously this is a weak point 

in the program and it would be better to have a general method of planning in order to create known forcing 

configurations. 
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7.2. When is Learning Possible? 

With many learning programs, it is necessary to find some "reasonable" set of features before learning can 

occur. What makes a set of features "reasonable" is rarely defined. An important aspect of this program is 

that we can specify exactly when a set of features is adequate for learning. The rule is very simple. If a 

state-update system can be built using only those features, then they are adequate. It is the existence of a 

state-update system that enables the learning algorithm to work. 

What constitutes an appropriate set of state-update rules? The following three requirements answer this 

question. As long as the state-update rules satisfy these requirements, then rule sequences can be analyzed (by 

the procedure Back-Up) in order to back-propagate winning conditions. 

1. Format Requirement: the State-Update rules must conform to the format specified in section 4.2. 
Specifically, the left-hand side of each rule must be a description, and the right-hand side must 
consist of an add list and/or a delete list indicating the changes to Game-State. Each move must 
be communicated to the system by adding a special Input-move feature to Game-State. 

2. Legality Requirement: The Update-System must only accept legal moves. If an illegal move is 
made the system should halt in an error state. 

3. Applicability Requirement: The State-Update rules must indicate when the game has been won 
by adding a Won feature to Game-State. 

The format requirement is necessary in order for the procedure Back-Up to find the preconditions of a 
sequence of rules. As described in Appendix I, the method used by Back-Up is closely tied to the formalism 
for representing rules. 

The legality requirement guarantees that only legal recommended-moves will be found. Remember that 
Back-up is called to describe the circumstances in which a given sequence of legal rules applications will fire 
and produce some interesting result That is, Back-up returns a description D x and an input-move 
specification I such that 6 ^ , 1 ) = G 2 via <rl,r2....rjt> for a given legal rule sequence <ri,r2....rjt> and a given state 
G 2. If there was no legality requirement, then Back-up might return an I describing illegal moves in some of 
the states described by G r 

Finally, the applicability requirement guarantees that die set of winning states can be specified in the 

description language. In addition, this requirement together with the legality requirement, insures that board 

configurations which are not isomorphic to each other7are represented by different Game-States. 

Two board configurations are isomorphic iff every sequence of input-moves results in the same outcome (win, lose, draw, or illegal 
state) from both configurations. 
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Any State-Update system which meets these requirements correctly models the game. While there will exist 

many State-Update Systems diat meet these three requirements for any particular game, with any such system 

the learning algoritiim can learn patterns describing winning states. However, the particular choice of 

features and rules will influence die generality of the learned patterns. The more general the State-Update 

rules arc, the more general the learned patterns will be. In the previous section a recognition ailc for Go-

moku was learned; The generality of this rule was dirccdy attributable to the level of generality in the 

State-Update rules. If instead, a large set of very specific State-Update rules was provided (eg. listing all 1020 

ways to win) a much less general recognition rule would be learned from the exact same example. 

While it is often desirable to learn generalized recognition rules, it is also the case that very general rules can 

be expensive to use. The pattern matcher may be able to operate more efficiently given a set of specific rules 

than it would with a single more general rule. This depends on the algorithm used by the pattern matcher, as 

well as properties of the domain and the representation. One possible improvement to the learning module 

would be to augment it with the ability to choose between alternative representations of a rule. 

As we have seen, this section was described the properties that a set of State-Update rules must have in 

order for the game-playing program to be able to learn. In addition, we have seen that it is more difficult to 

describe what makes one state-update system better than another with regard to learning. For this we must 

appeal to the efficiency of the acquired rules. Given a state-update-system that is adequate for learning, we 

have no guarantee that it will be particularly useful, since, for example, the rules that are learned may not be 

particularly general. However, in practice the person who writes the state-update rules should find it most 

natural to write rules capturing the generalities that are immediately apparent to him (symmetries, etc). The 

result is that program will learn recognition rules that seem reasonable to that person. Therefore, in a practical 

sense the learning module can be considered a tool for acquiring complex recognition rules for forcing 

configurations. 

8 . Extending the Program 

8 . 1 . Other games 

While the examples in previous sections have been taken exclusively from go-moku, there is little in our 
discussion that is actually specific to this game. Indeed, the program described in this paper can learn correct 
recognition rules for any 2-person game that meets the requirements set out in section 3, provided that the 
concept of a forcing state applies. We do not guarantee that the program will be able to learn rules for all 
forcing states for each game, only that the rules it does learn will be correct. In order to apply the program to 
a new game, it is merely necessary to construct a state-update system for that game. (In addition, a few 
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game-specific parts of the program must also be modified. 'Hicsc arc discussed in Section ILL). 

In addition to go-moku, the program has learned recognition rules for tic-tac-toe and, to a limited extent, 

chess. Tic-tac-toe is obviously similar to go-moku, and the program quickly learned rules that allowed it to 

play tic-tac-toe without losing. ITic chess application was intended to demonstrate the generality of the 

technique rather than to provide practical means for actually playing chess. In this respect it was a success, but 

at the same time, certain limitations became obvious. Eventually this spurred us to consider further extensions 

to the program. 

In chess, the idea of a winning combination corresponds to a forced check-mate. In other words, a forcing 

state exists if the offensive player can checkmate the other player in a finite number of moves (assuming the 

opponent docs not win first). Therefore the recognition rules learned by the program detect opportunities for 

checkmating the opponent. Unfortunately, as mentioned above, the program is not guaranteed to be able 

learn recognition rules for all forcing states. Intuitively speaking, the program can only learn recognition rules 

that involve simultaneous threats, such as forks. Therefore the program can only learn a subset of all possible 

checkmates (although the rules that it docs learn are correct). The problem is that the only type of "force" 

recognized by this algorithm is a threat by the opponent (as arises in a fork). However, in chess, a common 

way to force a move by the opponent is to limit the number of legal moves that he can make. For example, 

one way to do this is by putting the opponent in check. If one can create a state in which the opponent's only 

legal move is into a position where he can then be checkmated, then this first state is a forcing state, although 

diis cannot be learned by the program we have described. 

The solution we are adopting is to change the learning algorithm so that it more closely models the 
reasoning process given in Section 2. After each forced move, the program records the reason why the move 
was forced. In the original program, a reason could only consist of the the LHS of a recognition rule. Now, 
arbitrary forcing conditions can be listed as reasons. While we have only begun preliminary experimentation 
with this augmented version of the game-playing program, it appears to be a straightforward extension of the 
original program. 

8.2. Learning Non-Winning Combinations 

The program described in the previous sections can only learn forcing configurations that are guaranteed to 

result in a win. However, it is relatively simple to extend the learning algorithm so that recognition rules for 

other events besides forced wins can be learned, provided that such events are describable given the features 

provided by the State-Update system. For example, the program can learn to capture pieces in chess if it is 

given a state-update system (for chess) in which all captures can be expressed as conjunctions of features. 
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In order for the program to learn recognition rules for arbitrary events, the concept of a forced move must 

be extended so that tiic program has some criteria for determining how far to back up. We can define state s 

to be a forcing state with respect to an event E if the player to move is guaranteed to be able to produce an 

event that is at least as good as E. Of course, introducing recognition rules for arbitrary events may cause 

more harm than good if they arc used indiscriminately. The computer may be able to force E, but in the 

process lose other advantages, eventually leading to a losing position. Relying on such recognition rules 

without performing any search would result in very myopic play. Instead, tiiesc rules could be used to focus 

search through the game-tree. 

9. Comparing Programs that Learn from One Example 
Within the past 2 years, a considerable amount of research has been presented on programs that learn from 

single examples [21,36,29,8], In addition, there exists some older work that is closely related [11]. Each of 

these programs is tailored to a particular domain: natural language understanding [8], visual recognition of 

objects [36], mathematical problem solving [21,29] and planning [11]. However, it seems that these programs, 

along with the game-playing program described in this paper, share a common approach to learning. Below 

we have tried to distill the essential characteristics of this approach, which we have previously [17] referred to 

as as Constraint-based Generalization:8 

Input: A set of rules which can be used to classify an instance as either positive or negative AND a 
positive instance. 

Generalization Procedure: 
Identify a sequence of rules that can be used to classify the instance as positive. Find the 
weakest preconditions of this sequence of rules such that a positive classification will result 
Restate the preconditions in the description language. 

Each of the programs alluded to earlier, as well as the game-playing program described here, can be viewed 

as using a form of Constraint-based Generalization despite their differing description languages and formats 

for expressing the rules and examples. In order to substantiate this claim, we will show how two well-known 

programs fit into this view. 

Winston, Binford, Katz and Lowry [36] describe a system that takes a functional description of an object 

and a physical example and finds a physical description of the object. In their system, the rules are embedded 

in precedents. Figure 9-1 shows some precedents, a functional description of a cup, and a description of a 

particular physical cup. (The system converts natural language and visual input into semantic nets.) The 

Paul O'Rourke has recently suggested [private communication] that the term "explanation-based" is more appropriate than 
"constraint-based". This is probably true. 
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physical example is used to identify the relevant rules (precedents), from which a set of preconditions is 

established. The system uses the preconditions to build a new rule as shown in Fig. 9-2. 

FUNCTIONAL DESCRIPTION OF A CUP: A cup is a stable liftablc open-vessel, 

I|HYSICAL EXAMPLE OF A CUP: E is a red object The objects body is small. Its bottom is 
flat.*The object has a handle and an upward-pointing concavity. 

PRECEDENTS: 

• A Brick: The brick is stable because its bottom is flat. The brick is hard. 

• A Suitcase: The suitcase is liftablc because it is graspable and because it is light. The 
suitcase is useful because it is a portable container for clothes, 

• A bowl: The bowl is an open-vessel because it has an upward pointing concavity. The bowl 
contains tomato soup. 

Figure 9-1: Functional Description, Example, Precedents 

I F [ o b j e c t - 9 i s l i g h t ] & [ o b j e c t - 9 has c o n c a v i t y - 7 ] 
& [ o b j e c t - 9 has h a n d l e - 4 ] & [ o b j e c t - 9 has bo t tom-7] 
& [ c o n c a v i t y - 7 i s u p w a r d - p o i n t i n g ] & [bot tom-7 i s f l a t ] 

THEN [ o b j e c t - 9 i s a Cup] 
UNLESS [ [ o b j e c t - 9 i s a o p e n - v e s s e l ] i s FALSE] 

or [ [ o b j e c t - 9 i s l i f t a b l e ] i s FALSE] 
or [ [ o b j e c t - 9 i s g r a s p a b l e ] i s FALSE] 
or [ [ o b j e c t - 9 i s s t a b l e ] i s FALSE] 

Figure 9-2: New Physical Description, in Rule Format 

The LEX system learns heuristics for solving symbolic integration problems. Mitchell, Utgoflf and 

Banerji [21] describe a technique that allows LEX to generalize a solution after being shown a single example. 

Each operator is represented as a rule for transforming the problem-state (Fig. 9-3). The problem-solving 

goal is to arrive at a state which contains no integrals; A solution is a sequence of problem-solving operators 

that transforms the initial problem state into a goal state. In this system, the example serves to identify a 

sequence of operators that can be used to solve a particular problem. The system then back-propagates the 

constraints through the operator sequence to arrive at a description of the problems that can be solved by 

applying this operator sequence. Below is a problem and a solution sequence provided to LEX: 

0P1 0P3 
/ 7 ( x 2 ) dx = = = => 7 /x 2 = = ==> 7 x 3 / 3 

The precondition for applying op3 is that the expression be of the form fxb where b * l . When back-
propagation is continued past opl, it is established that the expression must match /a(x*) with b * l in order 
for this sequence of operators to be applicable. This information is used to refine the version space of 
plausible heuristics for OP1, the first operator in the sequence. 
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OP1: / r f ( x ) dx ==> r / f ( x ) dx 

OP2: / s i n ( x ) dx ==> - c o s ( x ) + C 

OP3: / x ^ 1 dx « > x r + 1 / ( r + l ) + C 

Figure 9-3: Some Operators Used by LEX 

10. Concluding Remarks 
As stated in the last section, the game-playing program can be considered an application of constraint-based 

generalization, a method for collapsing useful sequences of domain rules into individual recognition rules. 

The input example, a played game, serves to identify a sequence of rules that is of particular interest The 

constraints satisfied by the example can then be identified and combined. 

The power of this approach results from analyzing rule sequences that have been shown to be useful. Many 

concept acquisition programs cannot take advantage of analytically derived knowledge, with the result that 

very large numbers of examples are required to learn complex concepts. On the other extreme, it is also 

possible to learn by analysis alone, however, with a large hypothesis space this may not be practical. For 

example, it is difficult to discover winning combinations for a game simply by examining the rules of the 

game. Constraint-based generalization combines these two extremes into a powerful learning technique that is 

applicable in many domains. 

One problem with the technique is that the descriptions generated by combining constraints tend to grow 

quickly as the depth of analysis increases. In our game-playing program, this problem resulted in recognition 

rules whose left-hand sides' were very large, and expensive to compute, as pointed out in section 7.1. It may 

be that this difficulty can be overcome by employing more flexible methods of combining constraints. For 

example, rather than back-propagating all relevant constraints in order to find a recognition rule that is 

guaranteed to be correct it might be more valuable to choose which constraints to back-propagate, ignoring 

those that appear to be of minor importance. The resulting recognition rule could be used as source of 

suggestions for focusing search rather than as a macro-operator that is guaranteed to work. 

Throughout this paper we have identified many areas for future research. Improvements to the game-

playing program need to be made. As we have just discussed, limitations of the general approach remain to 

be overcome. Constraint-based generalization appears to be a promising technique for generalizing from 

single examples, however, it is far too early to make any conclusive judgement 
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I. Procedure Descriptions 
Four procedures arc described here: Back-Up, Combine-Conditions, Build-Recognition-Kule and Merge. 

The first three procedures arc called from the main loop of the learning algorithm. Merge is called by both 

Back-Up and Combine-Conditions. Unify, a unification pattern-matching routine, is also used by these 

procedures; A description of unification pattern-matching can be found in [23] 

Procedure Back-Up(statc-update-tracc, G 2) 

Input: A Statc-Update-Tracc and a description G 2. The State- Update-Trace lists two maximally-
specialized descriptions dx and d2, a move m and an activation sequence <r fr ...r^> where 
Sfd^m)=d2 via <rx,r2...rff>. It must be die case that G 2 > d2. 

Output: A pair ( G ^ ) where G x is a maximally-generalized description such that 5(G 1,m)=G 2 via 
<r,r ...r >andG, > d . 

Description: The basic operation performed by Back-up is similar to Utgoffs constraint back-
propagation [31] and Nilsson's regression [23]. A good introduction to regression can be 
found in Nilsson's book. 

There are three major phases in Back-Up: 

Phase 1: Incrementally specialize G 2 until no no state-update rule is applicable in any state described by G 2. 

The process of specializing G 2 is accomplished by gradually transforming it into d2 first by instantiating the 

variables in G2, Uien by adding conjuncts. Note that no state-update rule can be applicable in d 2 since it is the 

final state given by the State-Update Trace. 

Phase 2: Set D equal to G 2. Then for each rule R in <r1,r2...r/i>, starting with rule r^, do the following: 

1. Let LHS^ be the left-hand-hand side of R. For each literal \ Q d d in R's add-list, attempt to find a 
literal 1 „ in D , that can be unified with 1 . . If such an 1 , can be found, take the bindings 

post post Qua PPSt 
which will transform 1 ^ into \ ^ s f and perform the substitutions on LHS^ and ^> p o s f (If there 
exists more than one 1 . that will unify with 1 . . choose the 1 , that will result in a maximally 

post J ada post 
general LHS^ consistent with the state prior to the activation ofR.) Remove 1 from D ^ . 

2. Find dpre, a maximally-specialized description of the features in Game-State immediately 
preceding the activation of R. This is easily accomplished by examining the bindings that rule R 
was activated with. 

Phase 3: Let G,*-D Let I be the input-move feature in G . Delete I from G . Return (G„ I). 
l post ^ 1 1 1 
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Procedure Combinc*Coiiditions(DvD2Vdp 

Input: Two descriptions D t and D2, and a maximally specialized description dA, where D 1 > d 5 

and D > d„ it must be the case Uiat for any state s described by I> or 11 there exists a 
2 — S ' 1 2 

move that results in a forcing configuration for the opponent 

Output: A description D^w / such that 

and there is no legal move in any suite in O(DQU^ that does not result in a forcing 
configuration. 

Description: 

There are two aspects to Combine-Conditions. First Dx and D 2 must be merged into a single description 

consistent with d .̂ This is accomplished by setting DQU( equal to the result of Merge(D r D2, dp. (The 

description of Merge is given on the following page). Secondly, Combine-Conditions must insure that DQut 

only describes losing states - states in which every move results a forcing configuration for the opponent. This 

is done by generating two input-move descriptions Ix and I2, such that I describes the moves forced by D x (the 

moves that do not result in a forcing configuration for the opponent) and I2 describes the moves forced by D 2. 

Now Combine-Conditions can insure that there is no move consistent with lx and I 2 in any state described by 

DQu( by examining whether it is possible to unify li and I 2 without violating D . (A unifier is inconsistent 

with DQui if two variables are united that cannot possibly be equal if DQu( is to be a legal description). If this is 

impossible, DQU( is returned as is. If there does exist a unifier consistent with D ^ then DQU( is conjoined with 

a predicate, not-equals(A,B), where A and B are bound to a term from Ix and I 2 (respectively) so that Ix and I2 

cannot now be unified in a manner consistent with D . This will insure that D , only describes states where 
out out J 

there is no way to simultaneously avoid the pitfalls described by D x and D 2. 

Note: in the present implementation of the learning module, Ix and I2 are in fact accepted as arguments to 

Combine-Conditions. Since D x is bound to G x , Ix is set equal to the Input-move description returned by 

Back-up on line 11 of learning algorithm). And since D 2 is bound to the forcing-conditions, I 2 describes the 

move that was forced - the recommended move of the recognition rule that detected die force. 
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Procedure Mcrgc(D1, D2,dp 

Input: Two descriptions D and D2, and a maximally-specialized description d̂ , with Dx > d and 
D 2 > d , 

Output: A maximally-generalized description DQu( such that DQut > d̂  and Di > D o | / / and D 2 !> 

®out 

Description: 

Merge combines two descriptions, D x and D 2, to form a new less-general description The state given 

by ds must be described by dQu^ 

Merge operates by finding the possible ways Dx and D 2 can match the ground instance d̂ . Initially D is 

the null expression. If a literal in the ground instance is matched by a single literal in Dx or D 2, then that literal 

from D1 or D 2 is conjoined with D ^ If a literal from Dx and a literal from D 2 correspond (ie. can match the 

same literal in in the ground instance) then they are unified. If the resulting substitution is consistent with 

previous substitutions then the resulting literal can be conjoined with ^> o u f There may be different 

combinations of corresponding literals, since there may be many possible ways to match D x and D 2 with the 

ground instance. Therefore there may be more than one legal D f Merge must return a DQU( that is at least as 

general as any other 
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II. Implementation Issues 

11.1. Where is the Knowledge? 

In section 8 we claimed that the game-playing program can learn winning combinations for a wide variety 
of games. We also noted that the current program is not capable of learning some types of winning 
combinations. It is our intent in this subsection to specify which parts of the program are game-specific, so 
that the reader will have a clear idea of what the program "knows" about game-playing in general, versus 
what it "knows" about each particular game it plays. 

As indicated earlier, the state-update rules are the program's primary source of game-specific knowledge. 

The learning module is designed so that no other game-specific information is necessary. (Note, however, 

that the current implementation does not quite live up to this promise. See Implementation Notes below.) 

The decision module, which picks the computer's next move, invokes a game-specific procedure to find an 
acceptable move if no forcing configuration is found on the board. Of course, this has little to do with the 
learning capabilities of the program. Nevertheless, we hope to be able to improve the program by giving it a 
more general method of picking moves when no recognition rules are activated. 

Additionally, whenever it is forced to make a move, the decision module must record the "reason" for the 

force. In the initial implementation, the forcing conditions were taken from the left-hand-sides of recognition 

rules. This was sufficient to enable the program to learn winning combinations for go-moku, as well as any 

other game where winning depends on creating a fork. In order to expand the number of forcing states the 

program can recognize in chess, the implementation was changed to allow these forcing-conditions to be 

arbitrary conditions. As such they presently have to be specifically coded for each set of state-update rules 

used. Again, this is another aspect of the program we are trying to improve by making it game-independent. 

In summary, the game-specific knowledge necessary for learning is found in the state-update rules and in 
the procedures that record forcing conditions. The rest of the program is game-independent, in the sense that 
it is applicable to any game meeting the requirements set forth in section 3. 

11.2. Implementation Notes 

The game-playing-system has been implemented in Franz Lisp on a Vax 780. The program was originally 
developed to play go-moku, and then generalized. Because of this development history, some aspects of the 
implementation still fall short of the design reported in this paper. 

The following is a list of the more important differences that have not yet been rectified: 



26 

• As discussed in section 8, the present system is in the process of being modified for chess. As it is, 
the system can only detect forcing states diat result from multiple simultaneous threats. 

• The Combine-conditions procedure is not implemented in its full generality. It presently requires 
two extra arguments describing the moves that are forced by D and D 2. This problem as 
discussed in Appendix I. 

• The decision module recognizes that a move is forced by checking to sec whether any recognition 
rules detect forcing suites for the opponent. Actually, die system should look ahead one move, and 
if recognition rule fires then back-propagate the left-hand side of die rule in order to record the 
forcing-conditions. The present strategy will not work for some state-update systems. 

• In order to make the system run faster, some of the state-update rules are simulated rather than 
matched against Game-State. 
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