
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-85-130

A Game-Playing Program that Learns by Analyzing Examples

Steven Minton
Carncgic-Mcllon University

Pittsburgh, Pennsylvania 15213

22 May 1985

Abstract

This paper describes a game-playing program that learns tactical combinations. The program, after losing a
game, examines the opponent's moves in order to identify how the opponent forced the win. By analyzing
why this sequence of moves won the game, a generalized description of the winning combination can be
produced. The combination can then be used by the program in later games to force a win or to block an
opponent's threat. This technique is applicable for a wide class of games including tic-tac-toe, go-moku and
chess.

This research was sponsored in part by an AT&T Bell Laboratories Phd. Scholarship and in
part by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 3597,
monitored by the Air Force Avionics Laboratory Under Contract F33615-84-K-1520.

The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US Government.

i

Table of Contents
1. Introduction
2. Learning And Game-playing
3. Terminology
4. Learning go-moku Combinations

4.1. System Overview
4.2. ITic State-Update System
4.3. ITic Recognition Rules
4.4. ITic Learning Module

5. An Example
6. Correctness of the Learning Algorithm
7. Discussion

7.1. Evaluation of the Go-moku Program
7.2. When is Learning Possible?

8. Extending the Program
8.1. Other games
8.2. Learning Non-Winning Combinations

9. Comparing Programs that Learn from One Example
10. Concluding Remarks
11. Acknowledgements
I. Procedure Descriptions
II. Implementation Issues

ILL Where is the Knowledge?
II.2. Implementation Notes

i

1. Introduction
The process of "learning by examples", or concept acquisition, has been intensively studied by researchers

in machine learning [4]. In the concept acquisition paradigm, a program is presented with a training set of

positive and negative instances of a concept represented in some description language. The program's task is

to find a generalization in this language that describes all of the positive instances and none of the negative

instances.

A limitation of many existing concept acquisition programs is that large training sets may be required to

learn certain concepts. ITiis limitation highlights an important difference between these programs and

humans: humans have the ability to make useful generalizations on the basis of just one example. For

instance, a single demonstration of a forced win in tic-tac-toe suffices to teach a novice player how to execute

that maneuver in similar situations. It is the student's understanding of how and why the example works

which motivates the generalization he makes.

In this paper we explore a technique for reasoning from single examples in which generalizations are

deduced from an analysis of why a training instance is classified as positive. A program has been

implemented that uses this technique to learn winning combinations in games such as tic-tac-toe, go-moku

and chess. In each case, learning occurs after the program loses a game. The program traces out the causal

chain responsible for its loss, and by analyzing the constraints inherent in the causal chain, can describe and

generalize the conditions that allowed the opponent to win. The generalized conditions are incorporated into

a new rule that may be used in later games to force a win or to block an opponent's threat.

The first part of this paper introduces the learning technique embodied in the game-playing program. In

section 4, the program itself is described, and then an example from the game go-moku is given which

illustrates the learning process. The remainder of the paper describes when and why the learning algorithm

works, and relates this approach to previous research in other domains. Two appendices are given: Appendix

I describes the subroutines used by the learning algorithm and Appendix II discusses implementation issues.

A high-level description of the program has been presented elsewhere [17]. One of the purposes of this
report is to present the details omitted from the earlier publication. The reader is cautioned that this work is
part of a continuing project and that the implemented program has not yet been extended to its full
generality. Appendix II describes where the discrepancies between the design and implementation presently
exist

2

2. Learning And Game-playing
More than any other game, chess has attracted the attention of researchers in Artificial Intelligence, and it is

often regarded as the standard domain for game-playing research. Experience has shown that the depth to

which a chess program can search is a key factor in its performance [3], rrhcrcforc, much of the recent work in

this area has focused on improving methods for quickly searching game-trees. Significantly less effort has

been devoted towards building knowledge-intensive chess programs. This disparity of effort has been

compounded by the poor performance of knowledge-intensive programs compared to to their "dumber"

cousins.

The dominance of brute-force search programs over knowledge-based programs is somewhat surprising

since it appears that human chess masters rely heavily on knowledge in order to focus their search [6,7],

Factors that contribute to the relative success of brute-force programs include the following:

• Unlike the human brain, present-day general-purpose computers are ill-suited to the pattern
matching operations required for a knowledge-based approach.

• Intelligent game-playing requires a surprisingly large amount of both common-sense and domain
specific knowledge. Programming this knowledge into a computer is time-consuming and
difficult. Furthermore, if any details arc left out the program makes obvious mistakes. In a game
such as chess, a single "stupid" mistake can be fatal.(See [33] and [2] for a programs that adopt a
knowledge intensive approach to chess)

This latter point is often overlooked. Even if fast pattern-matching computers existed, the right knowledge

would still have to be provided in order for such machines to be useful. In fact, the knowledge-intensive

approach may never be successful until the prerequisite domain-specific knowledge can be acquired

automatically by machine, rather than programmed by humans.

One type of knowledge that is useful for playing two-person games is strategic knowledge about how to trap

one's opponent. In game-playing terminology, a tactical combination is a plan for achieving a goal where each

of the opponent's intervening responses is forced. The diagram below, figure 2-1, illustrates a simple chess

combination called a "skewer". The black bishop has the white king in check. Therefore, after the king moves

out of check, as it must, the bishop can take the queen.

A student (human or otherwise) who falls prey to this trap should be less likely to succumb to it in later

games. Much can be learned by analyzing what went wrong. For instance, in retrospect it should be obvious

that the position of the queen "behind" the king is essential to the trap's success. The pawns, on the other

hand, are irrelevant. By analyzing why the trap works, a set of general preconditions for this combination can

be found. This knowledge can be used to guard against similar occurrences in future games, and perhaps

catch unwary opponents as well.

Figure 2-1: A Skewer

The learning technique that we are proposing is based on this type of retrospective analysis. It can be
divided into three phases:

1. Recognize that the opponent achieved a specific goal.

2. Trace out the chain of events which was responsible for the realization of the goal.

3. Derive a general set of preconditions for achieving the goal on the basis of the constraints inherent
in the causal chain.

3. Terminology
Before proceeding any further, it is necessary to introduce some terminology so that we may be precise in

our analysis. All of the games we will be analyzing are two-person games. We will refer to the players as Px

and P 2. Each of these games can be formally described as a 6-tuple <S,5,Af,so, W9 W2> where:

• S is a finite set of game states. Each state in S represents a configuration of the board with a
particular player to move.

• M is a finite set of moves such that for each s£S, m£M, 8(s,m) specifies the single state that can be
reached from state s by move m. If m is an illegal move in state s9 then 8(s,m) is undefined.

• SQ£S is the initial state of the game.

• Wl is the subset of S which are winning states for P .

• W2 is the subset of S which are winning states for P . W and W2 are disjoint.

4

P and P 2 alternate turns. Both players have complete information regarding the current suite of the game.1

Features arc predicates that arc used for describing states. For example, in tic-tac-toe we might specify that

iVempty(squarel) is true in all states in which squarel is free. A description is a conjunction of features that

describes a set of states. The description is-empty (squarel) & is-cmpty(<y>), for instance, describes all states

in which there arc two free squares, one of them being squarel. (Angle brackets arc used to denote variables,

as in <x>). Specifically, a description D describes a state s iff each conjunct in D is matched by a distinct

feature in s. The function a maps descriptions into sets of states, that is, a(D) is the subset of S described by

D.

A description can be generalized by dropping conjuncts and/or substituting new variables for constrained

terms.2 Accordingly, a description Z)1 is said to be a generalization of Dr denoted ^ > ^ 2 . if D can be derived

by generalizing Dr A description D is maximally-generalized with respect to some predicate P over

descriptions if P(Z)) is true and there exists no description D>D such that P(#p is true. A description Dx is a

maximally-specifieddescription if Dx describes a single state s and there is no other description D2 describing s

such that A>A-
1 2

4. Learning go-moku Combinations
In this section, we will discuss a program that learns winning combinations for a game called go-moku.

Later we will discuss how this same program can be extended to a wide class of other games, including chess.

Go-moku is similar to tic-tac-toe, except that it is is played on a 19x19 board and the object of the game is to

get 5 in a row, either vertically, horizontally or diagonally. Figure 4-1 illustrates a winning combination in

go-moku. The last four states in a hypothetical game are shown. The first state shown, State-11, depicts the

relevant section of the board prior X's move (the 11th in the game). If, in state-11, player X takes the square

labeled A, then player O can block at B or C but either way X will win. If O had realized this prior to X's

move, he could have pre-empted the threat by taking either square A or C.

A winning combination is a line of play that cannot be countered defensively - it is guaranteed to result in a

win unless the opponent has a quicker way to win. A forcing configuration is a position on the board from

which a winning combination can be executed. In go-moku, a forcing configuration exists if one can win in a

single move, or create two or more independent ways to win. This latter method is commonly called a "fork",

1 Note that we do not require that the rules of the game be identical for ? x and P 2 . However, as we will see, if they are identical then the
game-playing program will be able to learn much more than it would otherwise

^ e r e are two types of constrained terms: variables that appear more than once in a description, and constants.

5

O O X O O X
c X X X A B C X X X Ax B

0 0
Stat* 11

X TO MOVE

State 12

0 TO MOVE

State 13
X TO MOVE

o O X O o X

c X X X >< 0 °x X X X X 0
0 0

State 14
GAME WON

Figure 4-1: A Winning Combination in Go-moku

and the notion is central to many other games besides go-moku.

In the example above, a forcing configuration exists in state-11. This configuration, called an open-3,

consists of three squares in a row, with at least two empty squares on one side and an empty square on the

other. Whenever an open-3 exists for the player whose turn it is to move, then that player can win, provided

the opponent has no quicker way to win. While an open-3 is a very simple forcing configuration, many

people lose in precisely this way the first time they play go-moku. It appears that the open-3 concept is one of

the first things that people learn in go-moku, since they rarely lose this 'way twice. The open-3 pattern a

powerful building block from which more complex patterns can be built

The go-moku program learns descriptions of forcing configurations and the appropriate offensive move for

each configuration. The following subsections discuss the program in detail. Following this, in Section 5, we

will return to the example Fig. 4-1 to demonstrate how the open-3 configuration is learned.

4 . 1 . System Overview

The organization of the system is outlined in Figure 4-2. A Top-Level module interacts with the human
player and queries the Decision module for the computer's moves. Game-State is a data structure listing the
features which are true in the current state of the game. The knowledge necessary to play the game is
partitioned into two sets of rules:

• A set of State-Update Rules provided by the programmer for adding and deleting features from

6

Game-State after each turn.

• A set of Recognition rules employed by the Decision module to detect forcing configurations.
Initially Uiis set is empty. The Learning module produces more recognition rules whenever the
program loses.

f STATE REPRESENTATION

IS-EMPTY(SOUAREI)
ISEMPTY(SQUARE2)
TWO»NA-ROW(POSIT10N.3.6, HIM)
THREEIN.A.ROW(POSlTION.7.15. ME)

Figure 4-2: Overview of System Organization

4.2 . The State-Update System

After each move in the game, the State-Update rules are invoked to update the current Game-State. The

left-hand side (LHS) or "IF part" of each State-Update rule is a description. A rule is activated whenever its

LHS description is matched by Game-State3. The right-hand side (RHS) of a rule consists of an add-list and

a delete-list specifying features to be added and deleted from Game-State.

After each turn, the player's move is communicated to the State-Update system by adding a special

Input-Move feature to Game-State. An Input-move feature lists the player that moved and the square that he

has moved to. The State-Update system is then allowed to run until no more rules are applicable, at which

point Game-State should accurately reflect the new board configuration. Once a player wins, the State-

Update system adds the feature Won(<p>) to Game-State, where <p> is the name of the winning player.

Figure 4-3 shows some State-Update rules that were written for go-moku.4

The State-Update system is essentially a mechanism for computing the function 5 (defined in Section 3)

*ln the present implementation, we require that the Left-hand sides of the State-Update rules describe disjoint sets of states, so that
only one rule can be applicable at any time. Therefore no conflict resolution mechanism is necessary.

4
FouHn-a-row(<positionX>,<pIayerY>) is true when there are four consecutive squares taken by <playerY> at <positionX> on the

board. Extends(<positionX>,<squareY>) is true when <squareY> is adjacent to, and in the same line as, the sequence of squares at
<positionX>. Coniposcs(<posilionX>,<squareY>,<positionZ>) is true when <squarcY> and <positionZ> can be joined to form
<positionX>. In rule Create-Four-In-A-Row, composes is used to bind the new position so that it can be referenced in the RHS

7

RUIJiCrcatc-winl
IF input-inovc(<squarc>, <playcr>)

is-cmpty(<squarc>)
f<nir-in-a-row(<4position>,<playcr>)
cxtcnds(<4position>, <squarc>)

THKN
ADD won(<playcr>)

RULE Create four-in-a-row
IF input-movc(<squarc>,<playcr>)

is-cmpty(<squarc>)
threc-in-a-row(<3position>,<playcr>)
cxtends(<3position>, <squarc>)
composcs(<ncwposition>,<squarc>,<3position>)

THEN
DELFrrEthree-in-a-row(<3position>,<p1aycr>)

input-movc(<squarc>, <player>)
ADD four-in-a-row(<ncwposition>, <playcr>)

Figure 4-3: Some State-Update rules for Go-moku

which maps a state and a move into a new state. In light of this, we will broaden our notation as follows. Let

<rl§r2....r | |> be a sequence of State-Update rules. We will say that 5(1^,1)=D2 via <ri,r2....r/y> iff when the

state-update system is started in a state described by D and given an input-move described by I, the rules

Tl9T2....rn fire and the system halts in a state described by D 2.

RECOGNITION-RULE Rccog-four
IF four-in-row(<position>, <player>)

is-empty(<square>)
extcnds(<position>, <square>)

THEN
RECOMMENDED-MOVE
input-move(<square>,<player>)

RECOGNITION-RULE Recog-open3
IF three-in-row(<3position>, <player>)

is-empty(<squarel>)
extends(<3position>,<squarel>)
composes(<4position>,<squarel>,<3position>)
is-empty(<square2>)
extends(<4position>,<square2>)
extcnds(<4position>,<square3>)
is-empty(<square3>)

THEN
RECOMMENDED-MOVE
input-move(<squarel>,<player>)

Figure 4-4: Recognition Rules Learned in Go-moku

4.3. The Recognition Rules

The Decision module relies on a set of recognition rules to identify forcing configurations. Figure 4-4

shows some representative recognition rules. The right-hand side of each recognition rule specifies the

appropriate move to initiate the combination.5 During the game, if a recognition rule indicates that the

opponent is threatening to win, tiien the computer will block the threat (unless it can win before the

opponent). The blocking move is said to be forced since the computer will lose if it does not block the threat.

Whenever a move is forced, the system must record the "reason" for the force. In the go-moku

implementation, the name of the recognition rule and the features it matched constitute the "reason", and

Instead of listing all the subsequent moves in the combination, a separate recognition rule exists for each step.

8

these are recorded for later inspection by the learning module. If more than one threat is active, and there is

no way to block them all, the computer blocks the one which leads to the quickest win and records the

corresponding recognition rule.

The Decision module also contains a simple procedure for deciding on the best move if no recognition rule

is applicable. For example, in go-moku the program merely picks the move which extends its longest row.

4.4. The Learning Module

Whenever the computer loses a game the learning module is invoked to analyze why the loss occurred. By

reasoning backwards, the features which were critical for the opponent's winning play can be isolated. From

these features new recognition rules arc composed.

The backward-analysis process involves examining the sequence of forced moves that the computer made at

the end of the game. In each of the states preceding the computer's forced moves a forcing configuration must

have been present, because the computer was subsequently forced into the loss. The critical features in these

states arc identified by analyzing a record of the rules activated during the game which were responsible for

adding the Won feature to game-state.

9

Input: A game that the computer lost. Hie game is recorded as a sequence of Turns <turn1,
turn2....turnn> where each turn, is associated with a Player., a maximally-specialized
description of the state dj which existed at the beginning of the turn, a movCj, and a
Suite-Update-'rracc.. In addition, each of the computer's turns are associated with a
Dccision-TracCj, which indicates whether or not movCj was forced, and if so, lists the
forcing-conditionSj for that move.

Side-effect: Creates new recognition rules. i

Description:

1. Begin
2 . i«— n n i s the index of the l a s t t u rn in the game
3 . G m «— Won(<Player>) - - d e s c r i b e s the fifial game- s t a t e
4 . Loop
5 . Begin
6. *~~ B a c k - U p (S t a t e - U p d a t e - T r a c e i f G i + 1)

— Back-up over o p p o n e n t ' s t u rn
7. New-rule <— Bui ld -Recog-Rule (G i , 1 ^
8. If no e q u i v a l e n t r u l e a l r e a d y e x i s t s , add New-Rule to r e c o g - r u l e s
9 . If i = l then Exi t Loop
10. i <- i - 1
1 1 . 6

t

 B a c k - U p (S t a t e - U p d a t e - T r a c e i , G^
- - Back-up over compu te r ' s t u rn

12. If move., was not forced then Exi t Loop
13 . Gi C o m b i n e - C o n d i t i o n s (G t , f o r c i n g - c o n d i t i o n s i , d..)
14. If i = l then Exi t Loop
15. i «- i - 1
16. end Loop
17. end

Figure 4-5: Main Loop of Learning Module

The main loop of the learning algorithm is shown in Figure 4-5. Three procedures, Back-Up, Combine-
Conditions, and Build-Recognition-Rule are called; these procedures are described below and their
specifications given in Appendix I.

The most significant of these procedures is Back-Up, as it accomplishes the backward reasoning necessary

for identifying why the computer lost. Back-Up is given a State-Update-Trace generated during the game.

This trace lists the sequence of rule activations <r i,rv..rJ t> which converted a state, ^, into some other state, s2,
after some move m was made. A description G2 is also provided, where G2 is a generalized description of s*2.

Back-Up's task is to find a maximally-generalized description G and an Input-move description /, such that

8(GVI)= G2 via<rvr2...sk>. This is shown pictorially in Figure 4-6.

Back-Up functions by analyzing the effects of the rule sequence <ri,r2...rJt> in reverse order. The inverse

operator for each rule is successively applied to Gr The operation performed by Back-Up is an instance of

10

Preconditions

Constraint Back-Propagation

Postconditions

Initial state
Final State

Figure 4-6: Constraint Back-Propagation (adapted
from UtgofF[31])

constraint back-propagation, discussed by Utgoff [31].6

The procedure Combine-Conditions merges two descriptions into a single more specific description.

Specifically, Combine-Conditions combines G ^ , a description of the threat that the computer succumbed

to, with the forcing-conditions. The resulting description includes all the features responsible for the

computer's loss. In the go-moku implementation, G and the forcing-conditions both describe threats

which exist on the board prior to the computer's move, and the description returned by Combine-Conditions

describes the fork in terms of a conjunction of these two threats. See Appendix I for a more complete

description of this procedure.

The third subroutine, Build-Recognition-Rule, takes a description (7, and an input-move description / and

creates a new recognition rule, where G is the Left-hand-side of the new rule and / the Recommended-Move.

The rule is inserted into the data-base of recognition rules provided no equivalent recognition rule already

exists.

5. An Example
In order to illustrate the learning algorithm, we will show how Recog-open3 (Figure 4-4) was acquired after

the computer lost the position shown in Figure 4-1. Recog-open3 indicates that an "open-three" is a forcing

configuration; Recall that an open-three was defined to be a three-in-a-row with two free squares on one side

and one free square on the other side. In order for Recog-bpen3 to be learned, the computer must have

previously learned the rule Recog-four (see Fig. 4-4) that states that a four-in-a-row with an adjacent open

square constitutes a forcing configuration.

^This method of reasoning backwards is quite similar to the well-known predicate-transformer method for proving program
correctness [10]. Furthermore, the operation called "regression" by Nilsson [23] is also closely related.

i l

lTic game proceeds from state-11. as follows:

• Movc-11: 'Hie opponent (player X) takes square A. The State-Update system is then invoked to
reflect the change in state. A four-in-a-row feature for the opponent is added to Game-State, and
the component thrcc-in-a-row is deleted.

• Move-12: 'Yhc computer (player O) finds two instantiations of Rccog-four in statc-12 (one for each
way X can win). Since only one of these can be blocked, the computer arbitrarily chooses to block
the threat involving square B. A record is made indicating that the move was forced by the
instantiation of Rccog-four. The State-Update system is then invoked and it adds to Game-State
a feature indicating that square B is taken.

• Move-13: Finally, the opponent takes square C. The State-Update system is invoked, and it adds
the feature WON(opponcnt) to Game-State. The learning module is then called upon to analyze
why the game was lost.

The learning module begins by retrieving the State-Update Trace associated with the opponent's last turn.

This trace indicates that a single rule, Create-Win 1 (see Figure 4-3), was activated following the opponent's

move and that this activation introduced the feature Won(opponcnt). The subroutine Back-Up is called to

describe the preconditions under which Create-Winl will produce a state matching Won(<player>). Back-Up

returns a description G 1 3 and an input-move I 1 3:

G s four-in-row(<4position>,<player>)
& is-empty(<squareA>)
& e x t e n d s (< 4 p o s i t i o n > , <squareA>)

I 1 3= input-move (<squareA>)

G 1 3 is a generalized description of StateD. For any state described by G^, if <player> moves to <squareA>,

Create-winl will be activated and a win will result Therefore all states described by Gu are forcing states.

Continuing, Analyze-Loss calls Build-Recognition-Rule(G13, I1 3). However, because the new rule is

equivalent to Recog-four (which already exists in the database), it is discarded.

Now the State-Update-Trace associated with the transition from State-I2 to State-13 is retrieved. Back-up

then creates G, , a description of the states for which some move will result in a state described by G . In
tmp 13

this example, G is identical to G 1 3, since the configuration described by G 1 3 was unaffected by Move-12.

Next the Decision-Trace associated with the computer's move is retrieved. This Decision-Trace specifies
that Move-12 was forced by the threat recognized by Recog-four. Therefore the forcing conditions are given
by the Left-hand-side of Recog-four. Combine-Conditions is called; G and the forcing-conditions
describe the two threats present in State-12. Combine-Conditions returns Gn, a generalized description of
the fork in State-12:

12

G12 • f o u r - i n - r o w (< 4 p o s i t i o n > . <player>)
& is-empty(<squareA>)
& is -empty(<squareB>)
& e x t e n d s (< 4 p o s i t i o n > , <squareA>)
8r e x t e n d s (< 4 p o s i t i o n > . <squareB>)

Now control returns to the beginning of the loop, with Move-11 under consideration. The associated

State-Update-Tracc indicates that transition from State-11 to Statc-12 was accomplished via the State-Update

rule called Crcatc-four-in-a-row. Back-Up applies the inverse of this rule to create G u and I :

G n

 s t h r e e - i n - r o w (< 3 p o s i t i o n > , <player>)
& is -empty(<squareC>)
& e x t e n d s (< 3 p o s i t i o n > , <squareC>)
8f composes(<4pos i t ion>, <squareC>, <3pos i t i on>)
& is-empty(<squareA>)
& is -empty(<squareB>)
& e x t e n d s (< 4 p o s i t i o n > , <squareA>)
& e x t e n d s (< 4 p o s i t i o n > , <squareB>)

I s input-move(<squareC>, <player>)

At this point Rccog-open3 is built from G u and I , and added to the existing set of recognition rules.

No other recognition rules will be built. The next time around the loop the exit branch at line 12 will be

taken since the computer's previous move was not forced.

6. Correctness of the Learning Algorithm
A recognition rule is correct iff for every state s in which the rule recommends a move / for person P, a

forcing configuration exists in s, and / is the appropriate move for P to initiate the force. The correctness of

the rules that are learned by the program is an important consideration. If it is known that the rules are

correct, then they can be used during play with full confidence and no search through the game-tree will be

required.

To prove that the learning algorithm given in Figure 4-5 only generates correct recognition rules (assuming

that the subroutines meet their specifications as given in Appendix I) it suffices to establish the following loop

invariant:

Loop invariant: Every time control passes through line 7, G ^ d j , G{ describes a set of forcing states, and /.
specifies the appropriate input-move to initiate the force.

This loop invarient can be verified by induction over the number of times the main loop is executed. The

details of proof are are straightforward but tedious, and so instead we will endeavor to explain more

informally why the learned rules are correct. While our discussion will be confined to go-moku, it should

become obvious that there is little in the analysis that is specific to this particular game. Later on, in Section 8,

we describe under what conditions the program can learn rules for other games.

13

In the last state preceding the opponent's win, state sn, a forcing configuration must exist (by definition). As

we have seen, Back-up takes a trace of the statc-updatc-rules which fired after the computer's move and

returns G and / . G describes states in which these same state-update rules will fire (and result in a win) n ft n

provided that a move consistent with / is made. Therefore the recognition rule built from G and / is
correct

Next Gt and / , are found by Back-up, such that for all states described by (7, , if a move consistent imp ft" i imp

with is made then a forcing state (described by G^ will result for the opponent (In this sense, G
describes a threat that exists on the board in state 5 .) The forcing-conditions retrieved on line 7 describe

die conditions under which the computer was "forced" to make move Gt is then combined with the
fl—i imp

forcing-conditions to form G . All states described by G must be losing states, since the "reason" to
make move / , exists in G t, and / , results in a win for the opponent

Now the loop is repeated, and G and arc found by Back-up. In any state described by G % if a
move specified by / is made then the same state-update rules that fired during the game will again be
activated, resulting in a state described by G^ (a losing state). Therefore all states described by G are
forcing states (ie. have forcing configurations). The recognition rule that is built from G (and assuming no
equivalent rule already exists, added to the pool of recognition rules) is therefore correct.

At this point we have gone more than once around the loop. The same arguments for the correctness of the
learned recognition rules will continue to be applicable on successive iterations.

The learning algorithm terminates as soon as a non-forced move made by the computer is encountered. No
state prior to this move can be shown to be a winning state without resorting to a different method of analysis.
(The only other reason for the learning algorithm to terminate is that the first turn in the game is reached.
This will only happen in those games where it is possible to force a win from the initial state.) In a sense, the
concept of a forced move not only gives us a powerful tool for learning, but also inherently provides an
effective way to limit the extent of the backwards analysis.

The strategy employed by the learning algorithm for discovering forcing states is not necessarily the most

efficient It particular, it is not always necessary to begin backing up from the end of the game in order to

learn new recognition rules. For example, Recog-open3 can be built during the game as soon as the program

recognizes the two independent threats in State 12. The learning algorithm presented in Figure 4-5 is not

capable of performing this abbreviated analysis, but after some extra effort will arrive at the same result The

advantage of the less efficient algorithm is that it can learn forcing states in situations where independent

threats can only be identified retrospectively. While we believe diat it should be straightforward to enhance

14

the program so that it can perform both types of analysis, litis has not been implemented.

7. Discussion

7 . 1 . Evaluation of the Go-moku Program

'lTicrc have been a number of previous efforts to build game-playing programs that learn from single

examples. Murray and Klcock [22] presented a go-moku program that learned forcing configurations by

analyzing games that it had lost. A similar program by Koffman [15] learned forcing states for a variety of

games. Pitrat [26] describes a program that learned chess combinations by analyzing single examples. In each

of these programs, generalizations were produced cither by explicit instruction, or through the use of a

representation that only captured specific information. The approach outlined in this paper is similar in spirit

to these earlier programs, but more powerful, since generalizations arc deduced from a declarative set of

domain-specific rules.

After being taught approximately fifteen examples, the program plays go-moku at a level that is better than

novice, but not expert. Based on the performance of Elcock and Murray's go-moku learning program, it

seems likely that the program could be brought to expert level by teaching it perhaps fifteen more examples.

However, as more complex rules are learned the program slows down dramatically, despite the use of a fast

pattern matcher (a version of the rete algorithm [12]). The problem is that the complexity of each new rule, in

terms of number of features in its LHS, grows rapidly as the depth of the analysis is extended. In order to

overcome this, the complex LHS descriptions should be converted into patterns that can be efficiendy

matched in the given domain. This has not yet been implemented, and whether or not it will be successful

remains to be seen.

Another difficulty with the present implementation is that it plays a strong defensive game, but a

comparatively weak offensive game. For defensive purposes, the recognition rules are quite powerful, since

they enable the program to block the opponent before he can execute a combination. On the other hand, an

effective offensive requires more than just recognizing fortuitous forcing configurations - it is necessary to

create such configurations by active planning. At the present time, the program employs game-specific

heuristics for deciding on the next move when no forcing configuration is found. While the performance of

these heuristics is crucial to the overall performance of the game-playing program, this aspect of the program

has little to do with its learning capabilities, and we have generally ignored it. Obviously this is a weak point

in the program and it would be better to have a general method of planning in order to create known forcing

configurations.

15

7.2. When is Learning Possible?

With many learning programs, it is necessary to find some "reasonable" set of features before learning can

occur. What makes a set of features "reasonable" is rarely defined. An important aspect of this program is

that we can specify exactly when a set of features is adequate for learning. The rule is very simple. If a

state-update system can be built using only those features, then they are adequate. It is the existence of a

state-update system that enables the learning algorithm to work.

What constitutes an appropriate set of state-update rules? The following three requirements answer this

question. As long as the state-update rules satisfy these requirements, then rule sequences can be analyzed (by

the procedure Back-Up) in order to back-propagate winning conditions.

1. Format Requirement: the State-Update rules must conform to the format specified in section 4.2.
Specifically, the left-hand side of each rule must be a description, and the right-hand side must
consist of an add list and/or a delete list indicating the changes to Game-State. Each move must
be communicated to the system by adding a special Input-move feature to Game-State.

2. Legality Requirement: The Update-System must only accept legal moves. If an illegal move is
made the system should halt in an error state.

3. Applicability Requirement: The State-Update rules must indicate when the game has been won
by adding a Won feature to Game-State.

The format requirement is necessary in order for the procedure Back-Up to find the preconditions of a
sequence of rules. As described in Appendix I, the method used by Back-Up is closely tied to the formalism
for representing rules.

The legality requirement guarantees that only legal recommended-moves will be found. Remember that
Back-up is called to describe the circumstances in which a given sequence of legal rules applications will fire
and produce some interesting result That is, Back-up returns a description D x and an input-move
specification I such that 6 ^ , 1) = G 2 via <rl,r2....rjt> for a given legal rule sequence <ri,r2....rjt> and a given state
G 2. If there was no legality requirement, then Back-up might return an I describing illegal moves in some of
the states described by G r

Finally, the applicability requirement guarantees that die set of winning states can be specified in the

description language. In addition, this requirement together with the legality requirement, insures that board

configurations which are not isomorphic to each other7are represented by different Game-States.

Two board configurations are isomorphic iff every sequence of input-moves results in the same outcome (win, lose, draw, or illegal
state) from both configurations.

16

Any State-Update system which meets these requirements correctly models the game. While there will exist

many State-Update Systems diat meet these three requirements for any particular game, with any such system

the learning algoritiim can learn patterns describing winning states. However, the particular choice of

features and rules will influence die generality of the learned patterns. The more general the State-Update

rules arc, the more general the learned patterns will be. In the previous section a recognition ailc for Go-

moku was learned; The generality of this rule was dirccdy attributable to the level of generality in the

State-Update rules. If instead, a large set of very specific State-Update rules was provided (eg. listing all 1020

ways to win) a much less general recognition rule would be learned from the exact same example.

While it is often desirable to learn generalized recognition rules, it is also the case that very general rules can

be expensive to use. The pattern matcher may be able to operate more efficiently given a set of specific rules

than it would with a single more general rule. This depends on the algorithm used by the pattern matcher, as

well as properties of the domain and the representation. One possible improvement to the learning module

would be to augment it with the ability to choose between alternative representations of a rule.

As we have seen, this section was described the properties that a set of State-Update rules must have in

order for the game-playing program to be able to learn. In addition, we have seen that it is more difficult to

describe what makes one state-update system better than another with regard to learning. For this we must

appeal to the efficiency of the acquired rules. Given a state-update-system that is adequate for learning, we

have no guarantee that it will be particularly useful, since, for example, the rules that are learned may not be

particularly general. However, in practice the person who writes the state-update rules should find it most

natural to write rules capturing the generalities that are immediately apparent to him (symmetries, etc). The

result is that program will learn recognition rules that seem reasonable to that person. Therefore, in a practical

sense the learning module can be considered a tool for acquiring complex recognition rules for forcing

configurations.

8 . Extending the Program

8 . 1 . Other games

While the examples in previous sections have been taken exclusively from go-moku, there is little in our
discussion that is actually specific to this game. Indeed, the program described in this paper can learn correct
recognition rules for any 2-person game that meets the requirements set out in section 3, provided that the
concept of a forcing state applies. We do not guarantee that the program will be able to learn rules for all
forcing states for each game, only that the rules it does learn will be correct. In order to apply the program to
a new game, it is merely necessary to construct a state-update system for that game. (In addition, a few

17

game-specific parts of the program must also be modified. 'Hicsc arc discussed in Section ILL).

In addition to go-moku, the program has learned recognition rules for tic-tac-toe and, to a limited extent,

chess. Tic-tac-toe is obviously similar to go-moku, and the program quickly learned rules that allowed it to

play tic-tac-toe without losing. ITic chess application was intended to demonstrate the generality of the

technique rather than to provide practical means for actually playing chess. In this respect it was a success, but

at the same time, certain limitations became obvious. Eventually this spurred us to consider further extensions

to the program.

In chess, the idea of a winning combination corresponds to a forced check-mate. In other words, a forcing

state exists if the offensive player can checkmate the other player in a finite number of moves (assuming the

opponent docs not win first). Therefore the recognition rules learned by the program detect opportunities for

checkmating the opponent. Unfortunately, as mentioned above, the program is not guaranteed to be able

learn recognition rules for all forcing states. Intuitively speaking, the program can only learn recognition rules

that involve simultaneous threats, such as forks. Therefore the program can only learn a subset of all possible

checkmates (although the rules that it docs learn are correct). The problem is that the only type of "force"

recognized by this algorithm is a threat by the opponent (as arises in a fork). However, in chess, a common

way to force a move by the opponent is to limit the number of legal moves that he can make. For example,

one way to do this is by putting the opponent in check. If one can create a state in which the opponent's only

legal move is into a position where he can then be checkmated, then this first state is a forcing state, although

diis cannot be learned by the program we have described.

The solution we are adopting is to change the learning algorithm so that it more closely models the
reasoning process given in Section 2. After each forced move, the program records the reason why the move
was forced. In the original program, a reason could only consist of the the LHS of a recognition rule. Now,
arbitrary forcing conditions can be listed as reasons. While we have only begun preliminary experimentation
with this augmented version of the game-playing program, it appears to be a straightforward extension of the
original program.

8.2. Learning Non-Winning Combinations

The program described in the previous sections can only learn forcing configurations that are guaranteed to

result in a win. However, it is relatively simple to extend the learning algorithm so that recognition rules for

other events besides forced wins can be learned, provided that such events are describable given the features

provided by the State-Update system. For example, the program can learn to capture pieces in chess if it is

given a state-update system (for chess) in which all captures can be expressed as conjunctions of features.

18

In order for the program to learn recognition rules for arbitrary events, the concept of a forced move must

be extended so that tiic program has some criteria for determining how far to back up. We can define state s

to be a forcing state with respect to an event E if the player to move is guaranteed to be able to produce an

event that is at least as good as E. Of course, introducing recognition rules for arbitrary events may cause

more harm than good if they arc used indiscriminately. The computer may be able to force E, but in the

process lose other advantages, eventually leading to a losing position. Relying on such recognition rules

without performing any search would result in very myopic play. Instead, tiiesc rules could be used to focus

search through the game-tree.

9. Comparing Programs that Learn from One Example
Within the past 2 years, a considerable amount of research has been presented on programs that learn from

single examples [21,36,29,8], In addition, there exists some older work that is closely related [11]. Each of

these programs is tailored to a particular domain: natural language understanding [8], visual recognition of

objects [36], mathematical problem solving [21,29] and planning [11]. However, it seems that these programs,

along with the game-playing program described in this paper, share a common approach to learning. Below

we have tried to distill the essential characteristics of this approach, which we have previously [17] referred to

as as Constraint-based Generalization:8

Input: A set of rules which can be used to classify an instance as either positive or negative AND a
positive instance.

Generalization Procedure:
Identify a sequence of rules that can be used to classify the instance as positive. Find the
weakest preconditions of this sequence of rules such that a positive classification will result
Restate the preconditions in the description language.

Each of the programs alluded to earlier, as well as the game-playing program described here, can be viewed

as using a form of Constraint-based Generalization despite their differing description languages and formats

for expressing the rules and examples. In order to substantiate this claim, we will show how two well-known

programs fit into this view.

Winston, Binford, Katz and Lowry [36] describe a system that takes a functional description of an object

and a physical example and finds a physical description of the object. In their system, the rules are embedded

in precedents. Figure 9-1 shows some precedents, a functional description of a cup, and a description of a

particular physical cup. (The system converts natural language and visual input into semantic nets.) The

Paul O'Rourke has recently suggested [private communication] that the term "explanation-based" is more appropriate than
"constraint-based". This is probably true.

19

physical example is used to identify the relevant rules (precedents), from which a set of preconditions is

established. The system uses the preconditions to build a new rule as shown in Fig. 9-2.

FUNCTIONAL DESCRIPTION OF A CUP: A cup is a stable liftablc open-vessel,

I|HYSICAL EXAMPLE OF A CUP: E is a red object The objects body is small. Its bottom is
flat.*The object has a handle and an upward-pointing concavity.

PRECEDENTS:

• A Brick: The brick is stable because its bottom is flat. The brick is hard.

• A Suitcase: The suitcase is liftablc because it is graspable and because it is light. The
suitcase is useful because it is a portable container for clothes,

• A bowl: The bowl is an open-vessel because it has an upward pointing concavity. The bowl
contains tomato soup.

Figure 9-1: Functional Description, Example, Precedents

I F [o b j e c t - 9 i s l i g h t] & [o b j e c t - 9 has c o n c a v i t y - 7]
& [o b j e c t - 9 has h a n d l e - 4] & [o b j e c t - 9 has bo t tom-7]
& [c o n c a v i t y - 7 i s u p w a r d - p o i n t i n g] & [bot tom-7 i s f l a t]

THEN [o b j e c t - 9 i s a Cup]
UNLESS [[o b j e c t - 9 i s a o p e n - v e s s e l] i s FALSE]

or [[o b j e c t - 9 i s l i f t a b l e] i s FALSE]
or [[o b j e c t - 9 i s g r a s p a b l e] i s FALSE]
or [[o b j e c t - 9 i s s t a b l e] i s FALSE]

Figure 9-2: New Physical Description, in Rule Format

The LEX system learns heuristics for solving symbolic integration problems. Mitchell, Utgoflf and

Banerji [21] describe a technique that allows LEX to generalize a solution after being shown a single example.

Each operator is represented as a rule for transforming the problem-state (Fig. 9-3). The problem-solving

goal is to arrive at a state which contains no integrals; A solution is a sequence of problem-solving operators

that transforms the initial problem state into a goal state. In this system, the example serves to identify a

sequence of operators that can be used to solve a particular problem. The system then back-propagates the

constraints through the operator sequence to arrive at a description of the problems that can be solved by

applying this operator sequence. Below is a problem and a solution sequence provided to LEX:

0P1 0P3
/ 7 (x 2) dx = = = => 7 /x 2 = = ==> 7 x 3 / 3

The precondition for applying op3 is that the expression be of the form fxb where b * l . When back-
propagation is continued past opl, it is established that the expression must match /a(x*) with b * l in order
for this sequence of operators to be applicable. This information is used to refine the version space of
plausible heuristics for OP1, the first operator in the sequence.

20

OP1: / r f (x) dx ==> r / f (x) dx

OP2: / s i n (x) dx ==> - c o s (x) + C

OP3: / x ^ 1 dx « > x r + 1 / (r + l) + C

Figure 9-3: Some Operators Used by LEX

10. Concluding Remarks
As stated in the last section, the game-playing program can be considered an application of constraint-based

generalization, a method for collapsing useful sequences of domain rules into individual recognition rules.

The input example, a played game, serves to identify a sequence of rules that is of particular interest The

constraints satisfied by the example can then be identified and combined.

The power of this approach results from analyzing rule sequences that have been shown to be useful. Many

concept acquisition programs cannot take advantage of analytically derived knowledge, with the result that

very large numbers of examples are required to learn complex concepts. On the other extreme, it is also

possible to learn by analysis alone, however, with a large hypothesis space this may not be practical. For

example, it is difficult to discover winning combinations for a game simply by examining the rules of the

game. Constraint-based generalization combines these two extremes into a powerful learning technique that is

applicable in many domains.

One problem with the technique is that the descriptions generated by combining constraints tend to grow

quickly as the depth of analysis increases. In our game-playing program, this problem resulted in recognition

rules whose left-hand sides' were very large, and expensive to compute, as pointed out in section 7.1. It may

be that this difficulty can be overcome by employing more flexible methods of combining constraints. For

example, rather than back-propagating all relevant constraints in order to find a recognition rule that is

guaranteed to be correct it might be more valuable to choose which constraints to back-propagate, ignoring

those that appear to be of minor importance. The resulting recognition rule could be used as source of

suggestions for focusing search rather than as a macro-operator that is guaranteed to work.

Throughout this paper we have identified many areas for future research. Improvements to the game-

playing program need to be made. As we have just discussed, limitations of the general approach remain to

be overcome. Constraint-based generalization appears to be a promising technique for generalizing from

single examples, however, it is far too early to make any conclusive judgement

21

1 1 . Acknowledgements
Many of the ideas presented here were suggested by research on the Lex project by loin Mitchell and his

colleagues, especially Paul Utgoff and Richard Keller. In addition, I was also motivated by die work done by

Gerald DcJong and by Pat Winston on analytic learning.

I thank Murray Campbell for his creative suggestions, Jaime Carboncll and Jack Mostow for their guidance
and insight, and Hans Berliner and Pat I^anglcy for their helpful comments.

22

I. Procedure Descriptions
Four procedures arc described here: Back-Up, Combine-Conditions, Build-Recognition-Kule and Merge.

The first three procedures arc called from the main loop of the learning algorithm. Merge is called by both

Back-Up and Combine-Conditions. Unify, a unification pattern-matching routine, is also used by these

procedures; A description of unification pattern-matching can be found in [23]

Procedure Back-Up(statc-update-tracc, G 2)

Input: A Statc-Update-Tracc and a description G 2. The State- Update-Trace lists two maximally-
specialized descriptions dx and d2, a move m and an activation sequence <r fr ...r^> where
Sfd^m)=d2 via <rx,r2...rff>. It must be die case that G 2 > d2.

Output: A pair (G ^) where G x is a maximally-generalized description such that 5(G 1,m)=G 2 via
<r,r ...r >andG, > d .

Description: The basic operation performed by Back-up is similar to Utgoffs constraint back-
propagation [31] and Nilsson's regression [23]. A good introduction to regression can be
found in Nilsson's book.

There are three major phases in Back-Up:

Phase 1: Incrementally specialize G 2 until no no state-update rule is applicable in any state described by G 2.

The process of specializing G 2 is accomplished by gradually transforming it into d2 first by instantiating the

variables in G2, Uien by adding conjuncts. Note that no state-update rule can be applicable in d 2 since it is the

final state given by the State-Update Trace.

Phase 2: Set D equal to G 2. Then for each rule R in <r1,r2...r/i>, starting with rule r^, do the following:

1. Let LHS^ be the left-hand-hand side of R. For each literal \ Q d d in R's add-list, attempt to find a
literal 1 „ in D , that can be unified with 1 . . If such an 1 , can be found, take the bindings

post post Qua PPSt
which will transform 1 ^ into \ ^ s f and perform the substitutions on LHS^ and ^> p o s f (If there
exists more than one 1 . that will unify with 1 . . choose the 1 , that will result in a maximally

post J ada post
general LHS^ consistent with the state prior to the activation ofR.) Remove 1 from D ^ .

2. Find dpre, a maximally-specialized description of the features in Game-State immediately
preceding the activation of R. This is easily accomplished by examining the bindings that rule R
was activated with.

Phase 3: Let G,*-D Let I be the input-move feature in G . Delete I from G . Return (G„ I).
l post ^ 1 1 1

23

Procedure Combinc*Coiiditions(DvD2Vdp

Input: Two descriptions D t and D2, and a maximally specialized description dA, where D 1 > d 5

and D > d„ it must be the case Uiat for any state s described by I> or 11 there exists a
2 — S ' 1 2

move that results in a forcing configuration for the opponent

Output: A description D^w / such that

and there is no legal move in any suite in O(DQU^ that does not result in a forcing
configuration.

Description:

There are two aspects to Combine-Conditions. First Dx and D 2 must be merged into a single description

consistent with d .̂ This is accomplished by setting DQU(equal to the result of Merge(D r D2, dp. (The

description of Merge is given on the following page). Secondly, Combine-Conditions must insure that DQut

only describes losing states - states in which every move results a forcing configuration for the opponent. This

is done by generating two input-move descriptions Ix and I2, such that I describes the moves forced by D x (the

moves that do not result in a forcing configuration for the opponent) and I2 describes the moves forced by D 2.

Now Combine-Conditions can insure that there is no move consistent with lx and I 2 in any state described by

DQu(by examining whether it is possible to unify li and I 2 without violating D . (A unifier is inconsistent

with DQui if two variables are united that cannot possibly be equal if DQu(is to be a legal description). If this is

impossible, DQU(is returned as is. If there does exist a unifier consistent with D ^ then DQU(is conjoined with

a predicate, not-equals(A,B), where A and B are bound to a term from Ix and I 2 (respectively) so that Ix and I2

cannot now be unified in a manner consistent with D . This will insure that D , only describes states where
out out J

there is no way to simultaneously avoid the pitfalls described by D x and D 2.

Note: in the present implementation of the learning module, Ix and I2 are in fact accepted as arguments to

Combine-Conditions. Since D x is bound to G x , Ix is set equal to the Input-move description returned by

Back-up on line 11 of learning algorithm). And since D 2 is bound to the forcing-conditions, I 2 describes the

move that was forced - the recommended move of the recognition rule that detected die force.

24

Procedure Mcrgc(D1, D2,dp

Input: Two descriptions D and D2, and a maximally-specialized description d̂ , with Dx > d and
D 2 > d ,

Output: A maximally-generalized description DQu(such that DQut > d̂ and Di > D o | / / and D 2 !>

®out

Description:

Merge combines two descriptions, D x and D 2, to form a new less-general description The state given

by ds must be described by dQu^

Merge operates by finding the possible ways Dx and D 2 can match the ground instance d̂ . Initially D is

the null expression. If a literal in the ground instance is matched by a single literal in Dx or D 2, then that literal

from D1 or D 2 is conjoined with D ^ If a literal from Dx and a literal from D 2 correspond (ie. can match the

same literal in in the ground instance) then they are unified. If the resulting substitution is consistent with

previous substitutions then the resulting literal can be conjoined with ^> o u f There may be different

combinations of corresponding literals, since there may be many possible ways to match D x and D 2 with the

ground instance. Therefore there may be more than one legal D f Merge must return a DQU(that is at least as

general as any other

25

II. Implementation Issues

11.1. Where is the Knowledge?

In section 8 we claimed that the game-playing program can learn winning combinations for a wide variety
of games. We also noted that the current program is not capable of learning some types of winning
combinations. It is our intent in this subsection to specify which parts of the program are game-specific, so
that the reader will have a clear idea of what the program "knows" about game-playing in general, versus
what it "knows" about each particular game it plays.

As indicated earlier, the state-update rules are the program's primary source of game-specific knowledge.

The learning module is designed so that no other game-specific information is necessary. (Note, however,

that the current implementation does not quite live up to this promise. See Implementation Notes below.)

The decision module, which picks the computer's next move, invokes a game-specific procedure to find an
acceptable move if no forcing configuration is found on the board. Of course, this has little to do with the
learning capabilities of the program. Nevertheless, we hope to be able to improve the program by giving it a
more general method of picking moves when no recognition rules are activated.

Additionally, whenever it is forced to make a move, the decision module must record the "reason" for the

force. In the initial implementation, the forcing conditions were taken from the left-hand-sides of recognition

rules. This was sufficient to enable the program to learn winning combinations for go-moku, as well as any

other game where winning depends on creating a fork. In order to expand the number of forcing states the

program can recognize in chess, the implementation was changed to allow these forcing-conditions to be

arbitrary conditions. As such they presently have to be specifically coded for each set of state-update rules

used. Again, this is another aspect of the program we are trying to improve by making it game-independent.

In summary, the game-specific knowledge necessary for learning is found in the state-update rules and in
the procedures that record forcing conditions. The rest of the program is game-independent, in the sense that
it is applicable to any game meeting the requirements set forth in section 3.

11.2. Implementation Notes

The game-playing-system has been implemented in Franz Lisp on a Vax 780. The program was originally
developed to play go-moku, and then generalized. Because of this development history, some aspects of the
implementation still fall short of the design reported in this paper.

The following is a list of the more important differences that have not yet been rectified:

26

• As discussed in section 8, the present system is in the process of being modified for chess. As it is,
the system can only detect forcing states diat result from multiple simultaneous threats.

• The Combine-conditions procedure is not implemented in its full generality. It presently requires
two extra arguments describing the moves that are forced by D and D 2. This problem as
discussed in Appendix I.

• The decision module recognizes that a move is forced by checking to sec whether any recognition
rules detect forcing suites for the opponent. Actually, die system should look ahead one move, and
if recognition rule fires then back-propagate the left-hand side of die rule in order to record the
forcing-conditions. The present strategy will not work for some state-update systems.

• In order to make the system run faster, some of the state-update rules are simulated rather than
matched against Game-State.

27

References

1. Bancrji, R.. Artificial Intelligence. North Holland. 1980.

2. Berliner, H. Chess as Problem Solving: The development of a Tactics Analyzer. Ph.D. Th., CMU Dept. of
Computer Science, 1974.

3. Berliner, H. An Examination of Baite Force Intelligence. Proceedings of the 7Ui International Joint
Conference on Artificial Intelligence, 1981.

4. Carbonell, J., Michalski, R. and Mitchell, T. An Overview of Machine Learning. In Machine Learning,
Carboncll, J., Michalski, R. and Mitchell, T., Ed., Tioga Publishing Co., 1983.

5. Carbonell, Jaime G. Derivational Analogy and its Role in Problem Solving. Proceedings of the National
Conference on Artificial Intelligence, 1983.

6. Chase, W. and Simon H. "Perception in Chess". Cognitive Psychology 4,1 (1973).

7. De Groot, Adriaan D.. Thought and Choice in Chess. Mouton & Co., 1965.

8. DcJong,G. An Approach to Learning by Observation. Proceedings, International Machine Learning
Workshop, 1983.

9. DeJong,G. Acquiring Schemata through Understanding and Generalizing Plans. Proceedings of the 8th
International Joint Conference on Artificial Intelligence, 1983.

10. Dijkstra,E.. A Discipline of Programming. Prentice Hall, 1976.

11. Fikes, R., Hart, P. and Nilsson, N. "Learning and Executing Generalized Robot Plans". Artificial
Intelligence 5,4 (1972).

12. Forgy, C. "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Matching Problem".
Artificial Intelligence 19,1 (1982).

13. Keller, R. A Survey of Research in Strategy Acquisition. DCS-TR-115, Computer Science Dept.,
Rutgers University, 1982.

14. Keller, R. Learning by Re-expressing Concepts for Efficient Recognition. Proceedings of the National
Conference on Artificial Intelligence, AAAI, 1983.

15. Koffman, E. "Learning Through Pattern Recognition Applied to a Class of Games". IEEE Trans. Sys.
Sciences and Cybernetics SSC-4,1 (1968).

16. Langley, P., Bradshaw, G. and Simon, H. Rediscovering Chemistry with the Bacon System. In Machine
Learning, Carbonell, J., Michalski, R. and Mitchell, T., Ed., Tioga Publishing Co., 1983.

17. Minton, S. Constraint-Based Generalization. Proceedings of the National Conference on Artificial
Intelligence, 1984.

18. Minton, S. Selectively Generalizing Plans for Problem Solving. International Joint Conference on
Artificial Intelligence, 1985.

28

19. Mitchell, T. ITic Need for Biases in Learning Generalizations. CBM-TR-117, Computer Science Dept.,
Rutgers University, 1980.

20. Mitchell, T. "Generalization as Search". Artificial Intelligence 18,2 (1982).

21. Mitchell, T., Utgoff, P. and Bancrji, R. Learning by Experimentation: Acquiring and Refining Problem-
Solving Heuristics. In Machine Learning, Carbonell, J., Michalski, R. and Mitchell, T., lid., Tioga Publishing
Co., 1983.

22. Murray, A. and Elcock, E. Automatic Description and Recognition of Board Patterns in Go-Moku. In
Machine Intelligence 2, Dale, E. and Michic, D., Ed., Elsevier, 1968.

23. Nilsson, N.J.. Principles of Artificial Intelligence. Tioga, 1980.

24. O'Rorke, Paul. Generalization for Explanation-based Schema Acquisition. Proceedings of the National
Conference on Artificial Intelligence, 1984.

25. Pitrat,J. A Program for Learning to Play Chess. In Pattern Recognition and Artificial Intelligence, Chen,
Ed., Academic Press, 1976.

26. Pitrat, J. Realization of a Program Learning to Find Combinations at Chess. In Computer Oriented
Learning Processes, Simon, J., Ed., NoordhofF, 1976.

27. Porter, B. and Kiblcr, D. Learning Operator Transformations. Proceedings of the National Conference
on Artificial Intelligence, 1984.

28. Salzberg, S. Generating Hypotheses to Explain Prediction Failures. Proceedings of the National
Conference on Artificial Intelligence, AAAI, 1983.

29. Silver, B. Learning Equation Solving Methods from Worked Examples. Proceedings of the International
Machine Learning Workshop, 1983.

30. Utgoff, P. Acquisition of Appropriate Bias for Inductive Concept Learning. LCSR-TM-2, Computer
Science Dept, Rutgers University, 1982.

31. Utgoff, P. Adjusting Bias in Concept Learning. Proceedings International Machine Learning Workshop,
1983.

32. Waterman, D. "Generalization Learning Techniques for Automating the Learning of Heuristics".
Artificial Intelligence I (1970).

33. Wilkins, D. "Using Patterns and Plans in Chess". Artificial Intelligence 14 (1980).

34. Winston, P. Learning Structural Descriptions from Examples. In The Psychology of Computer Vision,
Winston, P., Ed., McGraw Hill, 1975.

35. Winston, P. "Learning New Principles from Precedents and Examples". Artificial Intelligence 19,3
(1982).

36. Winston, P., Binford, T., Katz, B. and Lowry, M. Learning Physical Descriptions from Functional
Definitions, Examples and Precedents. Proceedings of the National Conference on Artificial Intelligence,
AAAI, 1983.

