
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 8 4 - ^ 6 /^r/

Typing and convergence in the Lambda Calculus

Daniel Lcivant

Department of Computer Science
Carnegie-Mellon University

Abstract We use a perception of typing in the X-Calculus, according to which
the typing of an expression E expresses semantic properties of E in models
over X-expressions, to exhibit natural and uniform proofs of generalizations of
theorems of Girard [Gir71f72] and of Coppo, Dezani and Veneri [CDV81] about
the solvability, normaiizability and strong normalizability of suitably typed expres
sions.

We also generalize the theorems of [CDV81] which go in the opposite
direction, showing the typeability of solvable and of normalizable expressions.

Introduction and background.

Simple and second-order types in programming and in the Lambda Calculus.

Types have been used in programming languages mainly as a device to enforce disciplined program*
ming; in particular — to guarantee that the composition of procedures is meaningful. A reasonable expec
tation is that typing should guarantee the absence of infinite looping of procedure calls, provided of course
recursive calls are not used.

To state this property precisely one first distils, out of the given programming language, its non-
recursive procedure call mechanism. The result is a typed lambda calculus, llien one proves that all
expressions in that lambda calculus convert to a normal form along any reduction sequence. This property
is referred to as the Strong Normalization Property of the given programming language (and of the
corresponding typed lambda calculus). The Strong Normalization Theorem, for a given programming
language or lambda calculus, is simply the statement that the Strong Normalization Property is true of that
language.

Languages such as PASCAL and ALGOL68 have relatively simple type disciplines, and their pro
cedure call mechanism is represented by the simply typed lambda calculus, or fragments thereof [Mor68,
FL083§4]. The Strong Normalization Theorem for the simply typed lambda calculus is rather straightfor
ward |Tai67, Morf8, San67, And71, FL083§6.1].

A new dimension was introduced to the subject of typing widi the invention of second-order and
higher-order type disciplines [Gir71,72, Rey74, FL083J. Generic (parametric) types are motivated by the
pragmatic wish to avoid repeated definition of the same procedure for different types. Once generic pro
cedures are used, conceptual consistency dictates that they also be allowed as arguments of other pro
cedures, the latter should again be permitted as arguments, and so on. This gives rise to the full second-
order type discipline of Girard and Reynolds. The Lambda Calculus supplemented with the second-order
type discipline is referred to as the SecondrO\ier% or Polymorphic, Lambda Calculus.

- 2 -

Nornxalization in the Second-Order Lambda Calculus.

The Normalization Theorem for the Second-Order Lambda Calculus, while true, is not as easily
proved as normalization for the simply typed calculus. In fact, it can not be proved even in Second-Order
Arithmetic [Lci79J. A combinatorial^ isomorphic problem, that of strong normalization for Second-Order
Logic, was an outstanding open problem in Mathematical Logic in the 50's and 60's.

Initially, a Normal Form Theorem was proved [Tai66, Tak67, Pra67,68], whereby every proof in
second-order logic can be converted to a normal form by some reduction sequence. The full Strong Nor
malization Theorem was proved by Girard [GU71J2], by injecting second-order reasoning into the com
binatorial method of Tait [Tai67]. (Independently, Harvey Friedman injected second-order reasoning to a
different syntactic method, Klecnc's slash, with related results [Fri73].) Girard's method was then applied
and refined, in different guises, to various formal calculi [Pra71, Mar71, Ste72, Tai75, FL083].

Two philosophies of typing.

The observation that objects that can be typed are guaranteed to convert to normal form goes back,
for Combinatory Logic, to Curry and Feys [CF58]. However, they were thinking of a type not as an
inherent property of an object, but as a semantic notion, where one object can be assigned different types.
This semantical perception of typing has been pursued and developed, for example, in [Cop80, Pot80,
CDV81, MS82, BCD83, MPS84, BM84]. It is motivated by a wish to study the functionality properties of
(untyped) X-exprcssions. and is quite different from the view underlying the Typed Lambda Calculus. In
the type calculus each object carries its type, a perception wc dub the ontological discipline. To say that
M£ is of type T-*<F" implies, in the ontological discipline, that the domain of E consists precisely of all
objects of type r. In the scnamtical discipline, the same statement implies that the domain of E merely
contains all objects of type r, which E maps to objects of type <r.

Ontological typing arises not only in programming languages, but also in connection with Proof
Theory. In Church's Theory of Types [Chu40], logic is coded directly in the Typed Lambda Calculus.
Related to this is the fonnula-as-type/ derivation-as-X-expression isomorphism discovered by Howard and
others [CF58, How80, deB70]. The two approaches are unified in [Mar82].

In spite of the fundamental difference between the ontological and the semantical viewpoints of typ
ing, the computational aspects of the two disciplines are related [Lei83,§6 below]. A typing calculus for the
ontological discipline is in fact isomorphically embeddable in a typing calculus for the semantical discipline.

Characterization of convergence properties by type systems.

Within the semantical discipline it makes sense to consider implications that are inverse to the Nor
malization Theorems: can we assign a type to every strongly normalizable X-expression? More generally,
we may set forth a broader notion of typing, and consider the question of whether a certain convergence
property of X-expressions, such as solvability or normalizability, implies typability. This kind of question
was considered by Coppo, Dczani and Vcneri [CDV81]. They showed that for a suitable notion of types,
typing of a X-exprcssion is guaranteed by its solvability. They also showed that a more restrictive notion of
typing is guaranteed by normalizability. In fact, these notions of type characterize exactly the solvable and
the normalizable X-expressions, respectively.

- 3 -

The results of this paper.

The purpose of this note is to integrate and generalize the techniques and results relating typing to
convergence properties in the Lambda Calculus. The main ideas wc build on are those of Tait [Tai67],
Girard [Gir71,72], and Coppo, Dczani and Pottinger [Cop80 ,CD80, Pot80, CDV81].

Our basic results are all developed within the semantical framework. One advantage is that this
framework permits a richer notion of type, and therefore more general results. This choice is fecund, how
ever, even if one is only interested in ontological typing. The semantical framework allows a more natural
and transparent development of the normalization proofs which so far have been presented within the onto
logical discipline. This is mostly because in the semantical approach, combinatorial properties, such as
Tait's , ,computability , , [Tai67, Gir71, Pra71, Ste72], can be viewed as semantic properties of expressions in
models built over X-expressions. In addition, the semantical approach suppresses irrelevant details.

The relations between typing and convergence properties are summarized in theorems 5.7, 5.10 and
5.12 below. Some specific new results we obtain are analogues and generalizations of the results of
[CDV81]. For example, we show that a X-expression is strongly normalizable iff it has a type which can be
derived without reference to the universal type Also, we show that a X-expression is solvable whenever
it can be assigned a type where o> does not appear strictly positively, even if that type is second-order.
We point out that the Coppo-Dezani-Veneri characterization of the normalizable expressions fails for
second-order types, in contrast to the characterizations of solvable expressions and of strongly normalizable
expressions. Thus, strong normalizability and solvability are properties which are, in a sense, more "stable"
than normalizability.

Finally, we show in §6 how the Strong Normalization Theorem for the Second-Order Lambda Cal
culus falls out as a corollary of the corresponding Strong Normalization Theorem in the semantical discip
line.

1. Polymorphic Typing.

Polymorphic types are defined inductively as follows (compare [Rey74, Gir72, FL083, MS82]).

R €TV — type variables (a countable set)
T€T — polymorphic type expressions
r R | a) | T\-+T2 | T1AT2 I V/fcr

A type is first-order if it has no occurrence of V , proper if it has no occurrence of a>, A-free if it has no
occurrence of A. An occurrence of a type expression a in r is positive [negative] if it is in the negative
(=lcft side) scope of an even [odd, respectively] number of instances of -* in r . The occurrence is
strictly positively if it is in the negative scope of no A type expression r is [rr9 p-, sp-] proper if <•>
does not occur in r [negatively, positively, strictly positively, respectively].

A type statement is an expression E:r where E is a X-expression, and r is a type expression.
Following de Bruijn [deB70] we use the term context for a finite function C from X-calculus variables to
type expressions, which we sometimes write as a list X\\T\, . . . , JC* :T* of type statements. A typing is an
expression C\—E:r> where C is a context, and E:r is a type statement

- 4 -

Thc typing C|—E:r is initial if r is w, or if E is a variable and C(ZT)=T. A /ype deduction is
a derivation of a typing from initial typings, using the following inference rules. The structural inference
rules are - + / and -*£T (/ for "introduction", E for "elimination"):

C,x:a\-E:p C\—E:a-»p C\-F:a

C h-Xx£f<j-*p C \-EF:p

The remaining rules are stationary, in that they refer to a fixed X-cxpression. These rules arc A / ,
A £ \ V / and V £ :

C |—£y.Ti C |—£ 2 -T 2 C h - F r n A T :
(/=lor 2)

C\-E:TXAT2 C |—£:T/

C | - £ : a C M ^ V * *
not free in C) (p free for /J in a)

C|-£:V*<7 C f - £ : o { p / *]
In die rule V E the substituted type expression p is the e'gen-type of the inference. A derivation

is essentially first-order if only type-variables are used as eigen-types. A typing C\—E:r is properly
derived if it has a derivation with proper types only. It is sp-prvper if r is sp-proper. It is p-proper if r is
p-proper and every type C(JC) is n-propcr. If P is a property of typings, we say that E has a P typ
ing if there is a typrng C \—E:r with property P.

2. The semantic meaning of typing.

We now show that types can be understood as coding semantic properties of \-expressions in second-
order models over X-expressions. Sets of A-expressions we refer to are:

A s the set of all X-expressions
A/ s the set of Xl-exprcssions
N s the set of normalizable X-expressions
N/ s the set of normalizable Xl-expressions
S s the set of strongly normalizable X-expressions
L 2 the set of solvable X-expressions

We define a family of second-order formulas 9r, r€T, by induction on r. <pT[E] asserts that the
X-exprcssion E behaves functionally as a mapping of type r. We use X9... as individual logical vari
ables, and as unary predicate variables.

- 5 -

<pR[E] = R(E)
<pu[E] = true
9^'[ZT] = VX(<p'[X] -> 9'[£X])

9 V ^] s V R ? 1 £]

Lemma 11. 9'̂ '*! is syntactically identical to <p*[qf/R].

Proof. Straightforward induction on aJI

Remark. The mapping a =^ <p9 is right inverse to the mapping <p =^ r{<p) of [Lei83b], i.e. r(9a)=a.
We have here a duality between the (modified) notion of "formula as type" [How80, Lei83b], and of the
nodon above of "type as formula".

We wish to consider models of monadic second order formulas, where individual elements are X-
cxpressions. The models we have in mind are of the kind defined by Henkin [Hen], i.e., pairs (U,C),
where U is a set of X-expressions (the universe of the models), and C is a collection of subsets of U.
(We identify monadic predicates with their extensions.)

One natural condition on both U and the elements of C is that they be closed under a weak form
of /J-equality1. We say that a set QQU is extensional in U if it is closed under =0 in U; i.e.,

• if £ € Q and if comes from E by feplacing an occurrence of (\xF)G by F[G/x]t then
£*€Q;
• if £ € Q and E comes from E by replacing F[GIx] by (\xF)G, where (7€U, then
€ Q .

We say diat Q • is simply extensional if Q is extensional in itself. For example, N and L are exten
sional in A; A/ is extensional, but not extensional in A; N/ is extensional in A/, but nut in A; S is
extensional, but not extensional in A. In a model we shall require that U be an extensional set, and that
each set in C be extensional in U.

Another natural condition on the underlying universe U of a model is that it be closed under taking
subexpressions.2

In summary, a pair (U,C) is a model if U is an extensional set closed under taking subexpressions,
and C is a non-empty collection of subsets of U extensional in U.

Suppose (U,C) is a model, 9 a monadic second-order formula. We give the standard meaning to
the semantic satisfaction relation U,C,TJ^9, where 77 is a valuation of free individual variables as
members of U, and of free predicate variables as elements of C. We also define [r]uc, =
{ECU I U,C,Tjf=9r[F]}. When U and C are clear from the context wc use the abbreviations TJ|=9
and [r],.

1) Note that strong normalizability is not preserved under unrestricted /J-cquality. However, for our results
about solvable and normalizable expressions we may require that models be closed under full ̂ -equality.
2) Actually, a weaker conditions will be used: if £F€U, then £*€U.

- 6 -

Lcmma 2.2. Suppose (U,C) is a model, tj a valuation in (U,C). Then [r]uc, is cxtensional in U, for
each type t .

Proof. Straightforward induction on rM

Let T 0 be a set of types. A model (U,C) is complete [for Tq] if [r] u c , € C for every type
expression r [in T 0] and every valuation t\ in (U,C).

Lemma 23 (Semantic typing), (i) Suppose (A,C) is a complete model. If the typing { ^ a / h h - t f r r is
derived, then A '̂O^) -* tpT(E[Y]) is valid in (A,C), Lc.

T?N A,./'<r,)̂ 9*(£[FjX
for all valuations TJ in (A,C). (We write £ [/] for £[>V>V
(ii) Suppose (U,C) is a model complete for proper types. If the typing ty/:<7/},h-E:r is properly

derived, then A ^ T O <Pr(£[>1) is valid in (U,C).

Proof. By induction on the derivation A of {^/:<T/}/|—E:r.

If A consists of an initial typing, and E=yh then the lemma is trivial. If t = c j (for case (i) of the
lemma), then <pr = true, and the lemma is trivial again.

Suppose that the last inference of A is - » / , as displayed in §1, and rs<x-*p. By induction
assumption

r,[F/X] | = A./ 'CX,) A 9 ' (£) -> ^(£[F,/1),
for all £€U. So

i?N a^ 'W ^ Vr(^W - <p>{E[YJ)).
By lemma 22 7|{=9P(£[KJT])-*9p((\x£[FpA'). Also, since U is closed under taking subexpressions,
(\x.E[Y])X € U implies \jc£[F] € U. So

7|j= A, 9#/ 9f(Xx£).
Suppose that the last inference of A is - » £ , as displayed in §1. By induction assumption

i?N Ai^W -* <P9~'(EIYD and ijh A '̂TO - 9 W n) .
So

iiNahp^W -*<P>(EF[YV,
by the definition of <p9~*p.

Suppose that the last inference of A is V £ . By induction assumption

Le.

ilNA|9#'(yi) -> V*9 '(£[F]).
But we assume that (U,C) is complete, so

T,t=V/?9'(£)̂ 9'(£X9p/̂]-
Moreover, by lemma 22. <p'(EJ[<p'/R] = <p9^iR\E). Altogether we get

i fNA / 9

, (y i) -> ^ ' ^ [F]) .
The cases for the rules V / , A / and A £ are trivialJi

- 7 -

In fact the proof establishes a slightly stronger fact

Lemma 14. Suppose that A is a derivation of the typing {yi:*i}i\—EiT. If (U,C) is a model complete

forthesctofeigen-typesin A, then AfV'Xy,) -* <pr(£[F]) is valid in (UC)Ji

3. Model constructions.

We describe two straightforward model constructions. The first is a trivial construction, which we use
in the proof of theorem 4.7 below. The second yields complete models, which we use in the proofs of
theorems 4.1 and 4.3.

Lemma 3.1. Suppose U is an extensional set closed under subexpressions, and suppose that V is exten

sional in U. Let \ v = {V,U}. Then (U,Vu) is a model.

Proof. Immediate from the conditions.*

For example, (A,{N,A» is a model

Let U be a set, z a X-variable. Define zU # s {zEx • • • Ek | £,€U, * > 0 } , and
Qj = {Q | zU'CQCU, R is extensional in U}.

Lemma 32. Suppose U is extensional and closed under taking subexpressions. Assume, moreover, that
zlT C U. Then (U,Cu) is a complete model.

Proof. That (Lr,Cu) is a model is immediate from the conditions (the last condition guarantees that
Q; * 0) . To show that (U,Q;) is complete we prove, by induction on proper types r, that zU* C [r^,
for each valuation t\ in (U,Q;). Let TJ be such a valuation.

If T is a type variable R, then [r], = ij(/?) € Qj .

Suppose r = a-*p. To show Z I T Q T] , , consider an arbitrary z£T€zU*. We have zEF € zU*
for any FCU trivially, and zU* C [p], by induction assumption. Thus ij |=9 r (z£), i.e. zE € [r],.

The cases where r is conjunctive or universal are trivial.!

Examples. (S,Cs) and (A,CA) are complete by lemma 32.

4. Convergence properties implied by typing.

We show that typing properties of X-expressions imply certain convergence properties. Namely,

• every expression with a properly derived typing is strongly normalizable;
• every expression with an sp-proper typing is solvable; and
• every expression with a first order-derived, p-proper typing, is normalizable.

For the first of these results we use the model (S,Cs).

Theorem 4.1. (Girard [Gir]). If E has a properly derived typing then E is strongly normalizable.

- 8 -

Proof. Assume B\— E:r is properly derived. It suffices to consider closed expressions E% because £ € S
iff XxZT€S. Assume the theorem's premise (with S = 0) . Then, by lemma 2.3, £ € [T] u c , for any com
plete model (U,C), and any valuation r\ tlierein. Thus, ^SMscgv bY lemma 3.2, Taking an arbitrary tj

in (S,Cs), f e i r ^ C S J I

Remark. The theorem fails if only the derived typing is required to be proper, but not the entire deriva
tion:

Example. There is a derived typing \—E:r% where r is proper and E is not even normalizable. Let Q
be some non-normalizable expression, and consider E = \z.zQ. It is easy to see that E:fi~*Q is deriv
able, where fisVR.R and Q is a type variable.*

Next, we consider expressions that can be assigned an sp-proper typing. The model we use here is
(A,CA), which by 3.2 is complete. Note that L € C A , since L is extensional in A.

Lemma 4.1 Let J be the valuation in (A,CA) which assigns L to all predicate variables. Suppose that
r is an sp-proper type. Then [r] f QL.

Proof. By induction on sp-proper types. If r is a type variable /?, then [r] f = f (R) s L.

Suppose r s * - * p . To show [r J f £L assume E€[r]{. Since (A,CA) is complete, [<y]f€CA, hence
;A*C[<x]f, and r€ [a] c . Thus £ i€[p] c , and by induction assumption £z€L, since p is sp-proper.
Hence £ € L . \

Suppose 7sVK.<7. Then = f l f l ak | $ & {[Q/R]9 Q€CX] Q [a] f , and the latter is a sub
set of L by induction assumption.

The case where r is conjunctive is trivial*

Theorem 4J . If E has an sp-proper typing then E is solvable.

Proof. It suffices to consider closed expressions E. Assume)—E:T is derived, where r is sp-proper.
By lemma 2.2 it follows that ZTCM, for any closed model (A,C) and i\ therein. By lemma 4.2
[r] c CL,so E€LM

A similar statement is proved in [CDV81], but where only first-order types are treated.

Finally, we show that if £ has a p-proper typing then E is normalizable, provided the typing
derivation is essentially first-order (as defined in §1).

The model we use here is (A,NA).

Lemma 4.4. Let r be first-order and proper. Let £ be a valuation in (A,NA) which assigns N to all
predicate variables. Then *N #C[rlfCN.

Proof. By induction on proper types. If is a type variable R, then [r] f = £(R) = N.

Suppose r s a - * p . To show [r] f CN assume E£[r]^. By induction assumption, r€{a] f , hence
£z€[p] C t and by induction assumption £ i € N . Thus ZT€N.

- 9 -

To show ZN'QTJJ . let z£€zN*. For any / r €[a] f we have F€N, by induction assumption, so
zEF€zN\ By induction assumption zN*C[p] c, so zEF€\p\. Thus z£€[r] r .

The case where r is conjunctive is trivial*

Remark. Unlike the proof of AX we need in 4.4 the lower bound condition zN # C[r] f . This breaks down
if TSV£.<X.

Lemma 4.5. Let f be a valuation in (U,C), which agrees with a valuation % except that f (R)Dtj(R)
for a particular type-variable R. If R does not occur positively in r then [T]{C[T] V

Proof. By induction on T, simultaneously with the dual statement: If R does not occur negatively in T
then [r ^ D M , *

Lemma 4.6. Assume r is p-proper, £ a valuation in a model (A,C). there is a proper type 6 and a
valuation K such that [r] f = [0]K C

Proof. Let J be r with u> replaced throughout by some fresh type variable R. Let K = HA//?].
Then [r] f = [0)K by a trivial induction on r, and Q by 4.5JI

Theorem 4.7. (Coppo-Dezanni-Venneri [CDV81]). If E has a p-proper typing, essentially first-order
derived, then E is normalizable.

Proof. It suffices to consider closed E. If }—E:r has an essentially first-order derivation, where T is p-
proper, then <pT(E) is valid in (AJVA), by lemma 14. and lemma 3.1, i.e. E € [rj, for every valuation
7j in (A,NA). In particular, £ € [r] f > where f is as above. By 4.6 [r] f C [0] c, and by 4.4 CN. So
£ € N.B

By the Example above the restriction in the theorem to essentially first order derivations is essential.
Note that if the condition that the derivation be first-order is replaced by the condition that all types in the
derivation be p-proper (sub-types not being counted), then no initial typing B\—E:u can occur in the
derivation. All occurrences of u> can then be replaced by some fresh type variable, and all types become
proper. We are then back to the case of theorem 4.1.

5. Convergence properties implying typing; characterization theorems.

All expressions have trivially the type We show here that expressions satisfying certain conver
gence properties can be assigned more interesting types [CDV81]. Namely,

• every solvable expression £ has an sp-proper typing;
• every strongly normalizable expression has a properly derived first-order typing; and
• every normalizable expression has a p-proper first-order typing.

Lemma 5.1. If £ is in head normal form then £ has a first-order sp-proper typing.

Proof. Gearly z:*)-**)-* *u-*R\~zFi• • • Fk:R is derived, where there are k occurrences of
co, and R is a type variable. The lemma followsJI

file:///~zFi

-10-
Let Ci and C 2 be contexts. We write C\ A C 2 for the context C that agrees with C\ and C 2

for the arguments on which C\ and C 2 do not disagree, and C(x) = CI (JC)AC 2 (JC) if Ci(x) and
Cfa) are both defined and distinct

Lemma 5.1 If A derives C|—£:r, C is any context, then C A C [— E : r is derived by a derivation A '
identical to A, except possibly for inference of typings inidal in A from typings inidal in A', by
instances of AE.
Proof. Trivial induction on A J i

Lemma 5 3 . Assume C\—E[FIx]:r is derived by A. Then either

(1) C|—E:r is derived, and the derivation is proper if A is proper, or
(2) there is a type a such that C A{jr:<j}|—E:r and Cf—F:o are derived. Moreover, if A is
proper then so are these two derivations.

Proof. By induction on the derivation A of C\—E[F/x]:r. (1) applies if x is not free in E. (2)
applies otherwise, where a is the conjunction of all types assigned to F in A (for occurrences of F
substituted for x in E[F/x\)M

Lemma 5.4. If C\—E[F/x]:r is derived, then so is C|—(Xx£)F:r. Moreover, if the former is properly
derived, and C r~F:p is properly derived (for some p), then C AC }—(\X.E)F:T is properly derived.

Proof. Suppose diat A derives Cf—E[F/x]:r. If case (1) of 5.3 applies, then, by - * / , C\—\xE:a-*r
is derived for any type a. Let a=a> in the general case, asp if the extra lemma assumption holds, and
use - * / .

If case (2) of 5.3 applies, then Cf— \xE:a-*r and Cf—F:a, so C\—(\XE)F:T is derived.
Moreover, if A is proper then the last derivation is proper, by 5.3 JI

Lemma 53. Suppose E ^-converts to Ef (in one step), and C|— £*:r is derived. Then C|—E:r is
derived.

Moreover, suppose that C J—Ef :r is properly derived If £" comes from E by replacing an
occurrence H of (\x.F)G by F[G/x]9 and G has a properly derived typing, then C\—E:r is prop
erly derived for some C .

Proof. By straightforward induction on the depth of H in E9 using 5.4 for the base caseJi

Theorem 5.6. [CDV81]. If a X-expression E is solvable then it has an sp-proper typing.

Proof. By induction on the length of the shortest ft -conversion leading from £ to an expression in head
normal form. The induction basis is lemma 5.1. The induction step is lemma 5.5JI

Corollary 5.7. The following conditions are equivalent

- 1 1 -

1. £ is solvable.
2. E has an sp-proper typing.
3. E has an sp-proper first-order typing.

Proof. By 5.6 (1) implies (3). (3) implies (2) trivially. (2) implies (1) by 4.3. •

Lemma 5.8. If E is normal then there is a typing C \—E :T derived using proper first-order types only.

Proof. By induction on E. The case E is a variable is trivial.

Suppose E = \ x f . By induction assumption there is a derivation A, using proper first-order types
only, for the typing C,x:o\—F:p. Applying - * / we get such a derivation for C\—\x.F:a-+p.

Suppose E = zFi* • • Fk, z a \-variable. By induction assumption there are proper first-order
derivations A/ deriving typings Q h - f } : a / f / = Define a context C by
C U) = C I U) A • • • AC*(X) for x other than z, C (Z) = C I (Z) A • • • AC*(Z)A(OTI-* >a*-*/0,
where R is fresh. By lemma 5.2 there are proper first-order derivations deriving C|—£/:a,-, z = l • • • k.
Applying A £ and - * £ yields a derivation of C\—E:RM

Theorem 5.9. If a \-expression E is strongly normalizable then it has a first-order properly derived typ
ing.

Proof. By induction on the reduction tree of E. The induction basis is lemma 5.8. The induction step is
lemma 5.4JI

Corollary 5.10. The following conditions are equivalent

1. E is strongly normalizable.
1 E has a properly derived typing.
3. E has a typing derived by a proper first-order derivation.

Proof. By 5.8 (1) implies (3). (3) implies (2) trivially. (2) implies (1) by 4.1. •

Theorem 5.11. [CDV81]. If a \-expression E is normalizable then it has a first-order derived p-proper
typing.

Proof. By induction on the length of the shortest ^-conversion leading from E to an expression in nor
mal form. The induction basis is lemma 5.8. The induction step is lemma SAM

Corollary 5.12. The following conditions are equivalent

1. £ is normalizable.
1 E has a first-order derived p-proper typing.
3. £ has a first-order derived proper typing.

Proof. By 5.11 (1) implies (3). (3) implies (2) trivially. (2) implies (1) by 4.7. •

file:///-variable
file:///-expression
file:///-expression

- 1 2 -

6. Strong normalization in the ontologicul discipline.

Let us now sec that every expression of the Second-Order Lambda Calculus is strongly normalizable,
as a corollary of the analogous result for the untyped calculus (theorem 4.1). The idea is simply this. On
the one hand, every typed expression E can be viewed as an untyped expression Eu decorated with its
own proper type inference (Proposition 6.1). On the other hand, a sequence S of reductions on a typed
expression E is isomorphic to a sequence of reductions on Eu

9 possibly with intermittent stretches of type
reductions. The first one is finite by 4.1, and the latter ones are finite because type reductions shorten the
syntax tree of a typed X-expression. Thus S must be finite.

The Second-Order Lambda Calculus is defined in [Rey74, Gir72, FL083, Lei83a]. In this calculus,
like in any other typed version of the Lambda Calculus, all expressions (and subexpressions) carry their
types, and an expression contains, in fact, its type derivation. In particular, each expression carries exactly
one type, excluding thereby use of <o, or of type-conjunction. Since the type derivation of an expression is
in fact contained in it, a type-derivation for an expression is merely a reconstruction of the typing informa
tion from the structure of the expression. This feature is best illustrated by the treatment of type abstrac
tion, for which the inference rules are analogous to the rules - * / and -+E for X-abstraction and appli
cation:

Y-E:o \—E:ARo
(p free for R in a)

\—AR.E:ARa \—Ep:a[p/R]

Using our terminology from §1, all type-inference rules for the Typed Calculus are thus structural,
none is stationary.

Clearly, from the combinatorial viewpoint of type deduction, the type inference system obtained here
is merely a notational variant of the system described in §1 for the semantical discipline, restricted to its
proper and A-firee fragment For an expression E of the Second-Order lambda Calculus, let Eu be the
underlying untyped expression. That is, Eu is defined inductively by

. (x?Y m xrj9

• (Xxf.E'Y s \xmJ.E*9

• (EFY m EmF*9

• (AR.EY s E u

9

• (ETY S EU.

The following proposition follows immediately from the definition of the inference rules.

Proposition 6.1. [Lei83a]. Let £ be an expression of the Second-Order Lambda Calculus. The untyped
X-expression Eu has a proper and A-frce typingJi

Lemma 6.1 Let E = (\x*Gp)H* be an expression of the Second-Order Lambda Calculus,
F = G[Hlx]. Then Eu ^-converts to F* (in the untyped calculus).

Proof. Trivial from the definition of the mapping E ^E^M

-13-
Lcmroa 63 . Let £ be an expression of the Second-Order Lambda Calculus, and suppose that £ /?-
converts (in one step) to F. Then Eu fi-converts to P .

Proof. By induction on the depth in E of the converted redox, using 6.2 for the induction basis.*

For an expression E of the Second-Order Lambda Calculus let aE be the number of object-
applications and type-applications in E. That is, aE is defined inductively by

• a(jri')«0,
• a W) = a (P)
• a (££) = a £ + a £ + l ,
• a(AR.E) = a £ ,
• a(Er) = aE + l.
Recall that in the second-order calculus one has type-/?-convcrsions: (AR.ET)a converts to

Er[aJR].

Lemma 6.4. Let £ be an expression of the Second-Order Lambda Calculus. If E converts to F by a
type-/?-rcduction, then a F=aE - 1 .

Proof. By induction on the depth of the converted redex in E. The induction basis in proved by induc
tion on expressionsJi

One last trivial lemma is:

Lemma 6.5. If E converts to F by a type-/?-conversion then £" = E*.

Proof. As for 6.4Ji

We can now put the pieces together

Theorem 6.6. [Gir/1,72] Every expression E ' of the Second-Order Lambda Calculus is strongly normaliz
able (within that calculus).

Proof. Let E be an expression of the Second-Order Lambda-Calculus. Let Eu be defined as above. By
6.1 and 4.1 Eu is strongly normalizable. The theorem is proved by (main) induction on the reduction tree
of £ M , and secondary induction on aE.

Suppose E converts to F. If this is a \-conversion, then Eu ^-converts to F", by 6.3, so by
induction assumption F is strongly normalizable. If the conversion is a type-/?-conversion, then
P s P by 6.5, and aF < a £ , by 6.4. So F is strongly normalizable by the secondary induction
assumption.

Since every expression to which £ converts is strongly normalizable, then £ must be strongly nor-

malizableJi

file:///-conversion

- 1 4 -

Rcfcrcnccs.

[And71] Peter B. Andrews, "Resolution in type theory," Journal of Symbolic Logic 36 (1971) 414-432.
[Bar81] Henk Barendregt The Lambda Calculus, Noah Holland, Amsterdam, 1981, xiv+615pp.
[BCD83] Henk Barendregt, Mario Coppo and Mariangiola Dezani-Ciancaglini, "A filter lambda-model and the

completeness of type-assignment" Journal of Symbolic Logic 48 (1983) 931-940.
[BM84] Kim B. Bruce and Albert Meyer, "The denotational semantics of second-order polymorphic lambda cal

culus"; manuscript 1984 (to be presented at the International Symposium on Semantics of Data
Types, Antibes, France, June 1984).

[CD80] Mario Coppo and Mariangiola Dezani-Ciancaglini, "An extension of basic functionality theory for X-
calculus," Notre-Dame Journal of Formal Logic 21 (1980) 685-693.

[CDV81] Mario Coppo, Mariangiola Dezani-Ciancaglini and B.' Veneri, "Functional character of solvable terms,"
Zeitschr. f. math. Logik und Grundlagen d Math 27 (1981) 45-58.

[CF58] Haskell B. Curry and Robert Feys, Combinatory Logic, North-Holland, Amsterdam-New York-Oxford,
1958.

[Chu401 Alonzo Church, "A formulation of the simple theory of types," Journal of Symbolic Logic 5 (1940), pp 56-
68.

[Cop80] Mario Coppo, "An extended polymorphic type system for applicative languages"; in P. Dembtnski (ed),
Mathematical Foundations of Computer Science, Springer (LNCS #88), Berlin (1980) 194-204.

[deB70] N.G. de Bruijn, "The mathematical language AUTO MATH, its usage and some of its extensions"; in
Symposium on Automatic Demonstration, Springer (LNM #125), Berlin (1970) 29-61.

[Fen71] Jens Eric Fenstad (ed.), Proceeding? of the Second Scandinavian Logic Symposium, North-Holland,
Amsterdam (1971) vii+405 pp.

[FL083] Steven Fortune. Daniel Leivant and Michael O'Donneil, "The expressiveness of simple and second order
type structures," Journal of the ACM 30 (1983), pp 151-185.

[Fn73] Harvey Friedman. "Some applications of Rleene's method for intuitionistic systems"; in H. Rogers and
A.R.D. Mathias (eds.), Cambridge Summer School in Mathematical Logic, Springer (LNM #337),
Berlin (1973) 113-170.

[GirTI] Jean-Yves Girard, "Une extension de l'interpritation de Godci a ranalyse, et son application a
r&imination des coupures dans l'analyse et dans la theorie des types"; in [Fen71] 63-92.

[Gir72] Jean-Yves Girard. Interpretation fonctioneile et elimination des coupures dans I'arithmetique (Tordre
superieur, Th&e de Doctoral d'Etat 1972, Paris.

[HowSO} William A. Howard, "The formulae-as-typcs notion of construction"; in [SHS0] 479-490.
[LeiSl] Daniel Leivant The complexity of parameter passing in polymorphic procedures," Proceedings of the

Thirteenth Annual Symposium on Theory of computing (1981) 38-45.
[Lei83a] Daniel Leivant "Polymorphic type inference"; Conference Record of the Tenth Annual ACM Symposium

on Principles of Programming Languages (1983) 88-98.
[Lei83b] Daniel Leivant "Reasoning about functional programs and complexity classes associated with type discip

lines"; Twenty-fourth Annual Symposium on Foundations of Computer Science (1983) 460-469.
[Mar71J Per Martin-Lof, "Hauptsatz for the theory of species"; in [Fen71] 217-234.
[Mar82] Per Martin-Lof, "Constructive mathematics and computer programming"; in LJ. Cohen et als. (editors),

Logic, Methodology and Philosophy of Science VI, North-Holland, Amsterdam (1982).
[Mor68] James Morris, Lambda Calculus Models of Programming Languages, PhD thesis, MIT, Cambridge (Mas

sachusetts), 1968.
[MPS84] David B. MacQueen, Gordon Plotkin and Ravi Sethi, "An ideal model for recursive polymorphic types,"

Conference Record of the Eleventh Annual ACM Symposium on Principles of Programming
Languages (1984) 165-174,

[MS82J David B. MacQueen and Ravi Sethi, "A semantic model of types for applicative languages"; ACM Sympo
sium on LISP and Functional Programming, 1982, 243-251

[Pot80] Garrel Pottinger, "A type assignment to the strongly normalizable terms"; in [SH80J 561-578.
[Pra671 Dag Prawitz, "Completeness and Hauptsatz for second order logic," Theoria 33 (1967) 246-258.
[Pra68J Dag Prawitz, "Hauptsatz for higher order logic," Journal of Symbolic Logic 33 (1968) 452-457.
[Pra71] Dag Prawitz, "Ideas and results in proof theory"; in [Fen71] 235-308.

-15 -

[Rey74] John C. Reynolds, Towards a theory of type structures," in Programming Symposium (Colloque sur la
Progmmmation Pans). Springer (LNCS #19), Berlin (1974) 408-425.

(San67] L.E Sanchis, "Functionate defined by recursion," Notre-Dame Journal of Formal Logic 8 (1967) 161-174.
[SH80] J.P. Seldin and J.R. Hindley (editors). To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and

Formalism Academic Press. London, (1980) 606pp.
[Ste72] Soren Stenlund, Combinatory \-Terms and Proof Theory, Reidel, Dordrecht (1972) 184pp.
[Tai66] W.W. Tait. "A non-constructive proof of Gentzen's Hauptsatz for second order predicate logic," Bulletin

of the American Mathematical Society 72 (1966) 980-983.
[Tai671 W.W. Tait, "Intcnsional interpretation of Junctionals of finite type," Journal of Symbolic Logic 32 (1967)

198-211
[Tai75] W.W. Tait, "A realizability interpretation of the theory of species"; in R. Parikh (ed.)t Logic Colloquium,

Springer (LNM #453), Berlin (1975) 240-251.
fTak67] Moto-O Takahashi, "A proof of cut-elimination theorem in simple type theory," Journal of the Mathemati

cal Society of Japan 19 (1967) 399-410.

file:///-Terms

