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Abstract We use a perception of typing in the X-Calculus, according to which 
the typing of an expression E expresses semantic properties of E in models 
over X-expressions, to exhibit natural and uniform proofs of generalizations of 
theorems of Girard [Gir71f72] and of Coppo, Dezani and Veneri [CDV81] about 
the solvability, normaiizability and strong normalizability of suitably typed expres
sions. 

We also generalize the theorems of [CDV81] which go in the opposite 
direction, showing the typeability of solvable and of normalizable expressions. 

Introduction and background. 

Simple and second-order types in programming and in the Lambda Calculus. 

Types have been used in programming languages mainly as a device to enforce disciplined program* 
ming; in particular — to guarantee that the composition of procedures is meaningful. A reasonable expec
tation is that typing should guarantee the absence of infinite looping of procedure calls, provided of course 
recursive calls are not used. 

To state this property precisely one first distils, out of the given programming language, its non-
recursive procedure call mechanism. The result is a typed lambda calculus, llien one proves that all 
expressions in that lambda calculus convert to a normal form along any reduction sequence. This property 
is referred to as the Strong Normalization Property of the given programming language (and of the 
corresponding typed lambda calculus). The Strong Normalization Theorem, for a given programming 
language or lambda calculus, is simply the statement that the Strong Normalization Property is true of that 
language. 

Languages such as PASCAL and ALGOL68 have relatively simple type disciplines, and their pro
cedure call mechanism is represented by the simply typed lambda calculus, or fragments thereof [Mor68, 
FL083§4]. The Strong Normalization Theorem for the simply typed lambda calculus is rather straightfor
ward |Tai67, Morf8, San67, And71, FL083§6.1]. 

A new dimension was introduced to the subject of typing widi the invention of second-order and 
higher-order type disciplines [Gir71,72, Rey74, FL083J. Generic (parametric) types are motivated by the 
pragmatic wish to avoid repeated definition of the same procedure for different types. Once generic pro
cedures are used, conceptual consistency dictates that they also be allowed as arguments of other pro
cedures, the latter should again be permitted as arguments, and so on. This gives rise to the full second-
order type discipline of Girard and Reynolds. The Lambda Calculus supplemented with the second-order 
type discipline is referred to as the SecondrO\ier% or Polymorphic, Lambda Calculus. 
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Nornxalization in the Second-Order Lambda Calculus. 

The Normalization Theorem for the Second-Order Lambda Calculus, while true, is not as easily 
proved as normalization for the simply typed calculus. In fact, it can not be proved even in Second-Order 
Arithmetic [Lci79J. A combinatorial^ isomorphic problem, that of strong normalization for Second-Order 
Logic, was an outstanding open problem in Mathematical Logic in the 50's and 60's. 

Initially, a Normal Form Theorem was proved [Tai66, Tak67, Pra67,68], whereby every proof in 
second-order logic can be converted to a normal form by some reduction sequence. The full Strong Nor
malization Theorem was proved by Girard [GU71J2], by injecting second-order reasoning into the com
binatorial method of Tait [Tai67]. (Independently, Harvey Friedman injected second-order reasoning to a 
different syntactic method, Klecnc's slash, with related results [Fri73].) Girard's method was then applied 
and refined, in different guises, to various formal calculi [Pra71, Mar71, Ste72, Tai75, FL083]. 

Two philosophies of typing. 

The observation that objects that can be typed are guaranteed to convert to normal form goes back, 
for Combinatory Logic, to Curry and Feys [CF58]. However, they were thinking of a type not as an 
inherent property of an object, but as a semantic notion, where one object can be assigned different types. 
This semantical perception of typing has been pursued and developed, for example, in [Cop80, Pot80, 
CDV81, MS82, BCD83, MPS84, BM84]. It is motivated by a wish to study the functionality properties of 
(untyped) X-exprcssions. and is quite different from the view underlying the Typed Lambda Calculus. In 
the type calculus each object carries its type, a perception wc dub the ontological discipline. To say that 
M£ is of type T-*<F" implies, in the ontological discipline, that the domain of E consists precisely of all 
objects of type r. In the scnamtical discipline, the same statement implies that the domain of E merely 
contains all objects of type r, which E maps to objects of type <r. 

Ontological typing arises not only in programming languages, but also in connection with Proof 
Theory. In Church's Theory of Types [Chu40], logic is coded directly in the Typed Lambda Calculus. 
Related to this is the fonnula-as-type/ derivation-as-X-expression isomorphism discovered by Howard and 
others [CF58, How80, deB70]. The two approaches are unified in [Mar82]. 

In spite of the fundamental difference between the ontological and the semantical viewpoints of typ
ing, the computational aspects of the two disciplines are related [Lei83,§6 below]. A typing calculus for the 
ontological discipline is in fact isomorphically embeddable in a typing calculus for the semantical discipline. 

Characterization of convergence properties by type systems. 

Within the semantical discipline it makes sense to consider implications that are inverse to the Nor
malization Theorems: can we assign a type to every strongly normalizable X-expression? More generally, 
we may set forth a broader notion of typing, and consider the question of whether a certain convergence 
property of X-expressions, such as solvability or normalizability, implies typability. This kind of question 
was considered by Coppo, Dczani and Vcneri [CDV81]. They showed that for a suitable notion of types, 
typing of a X-exprcssion is guaranteed by its solvability. They also showed that a more restrictive notion of 
typing is guaranteed by normalizability. In fact, these notions of type characterize exactly the solvable and 
the normalizable X-expressions, respectively. 
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The results of this paper. 

The purpose of this note is to integrate and generalize the techniques and results relating typing to 
convergence properties in the Lambda Calculus. The main ideas wc build on are those of Tait [Tai67], 
Girard [Gir71,72], and Coppo, Dczani and Pottinger [Cop80 ,CD80, Pot80, CDV81]. 

Our basic results are all developed within the semantical framework. One advantage is that this 
framework permits a richer notion of type, and therefore more general results. This choice is fecund, how
ever, even if one is only interested in ontological typing. The semantical framework allows a more natural 
and transparent development of the normalization proofs which so far have been presented within the onto
logical discipline. This is mostly because in the semantical approach, combinatorial properties, such as 
Tait's , ,computability , , [Tai67, Gir71, Pra71, Ste72], can be viewed as semantic properties of expressions in 
models built over X-expressions. In addition, the semantical approach suppresses irrelevant details. 

The relations between typing and convergence properties are summarized in theorems 5.7, 5.10 and 
5.12 below. Some specific new results we obtain are analogues and generalizations of the results of 
[CDV81]. For example, we show that a X-expression is strongly normalizable iff it has a type which can be 
derived without reference to the universal type Also, we show that a X-expression is solvable whenever 
it can be assigned a type where o> does not appear strictly positively, even if that type is second-order. 
We point out that the Coppo-Dezani-Veneri characterization of the normalizable expressions fails for 
second-order types, in contrast to the characterizations of solvable expressions and of strongly normalizable 
expressions. Thus, strong normalizability and solvability are properties which are, in a sense, more "stable" 
than normalizability. 

Finally, we show in §6 how the Strong Normalization Theorem for the Second-Order Lambda Cal
culus falls out as a corollary of the corresponding Strong Normalization Theorem in the semantical discip
line. 

1. Polymorphic Typing. 

Polymorphic types are defined inductively as follows (compare [Rey74, Gir72, FL083, MS82]). 

R €TV — type variables (a countable set) 
T€T — polymorphic type expressions 
r R | a) | T\-+T2 | T1AT2 I V/fcr 

A type is first-order if it has no occurrence of V , proper if it has no occurrence of a>, A-free if it has no 
occurrence of A. An occurrence of a type expression a in r is positive [negative] if it is in the negative 
(=lcft side) scope of an even [odd, respectively] number of instances of -* in r . The occurrence is 
strictly positively if it is in the negative scope of no A type expression r is [rr9 p-, sp-] proper if <•> 
does not occur in r [negatively, positively, strictly positively, respectively]. 

A type statement is an expression E:r where E is a X-expression, and r is a type expression. 
Following de Bruijn [deB70] we use the term context for a finite function C from X-calculus variables to 
type expressions, which we sometimes write as a list X\\T\, . . . , JC* :T* of type statements. A typing is an 
expression C\—E:r> where C is a context, and E:r is a type statement 
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Thc typing C|—E:r is initial if r is w, or if E is a variable and C(ZT)=T. A /ype deduction is 
a derivation of a typing from initial typings, using the following inference rules. The structural inference 
rules are - + / and -*£T (/ for "introduction", E for "elimination"): 

C,x:a\-E:p C\—E:a-»p C\-F:a 

C h-Xx£f<j-*p C \-EF:p 

The remaining rules are stationary, in that they refer to a fixed X-cxpression. These rules arc A / , 
A £ \ V / and V £ : 

C |—£y.Ti C |—£ 2 -T 2 C h - F r n A T : 
(/=lor 2) 

C\-E:TXAT2 C |—£:T/ 

C | - £ : a C M ^ V * * 
not free in C) (p free for /J in a) 

C|-£:V*<7 C f - £ : o { p / * ] 
In die rule V E the substituted type expression p is the e'gen-type of the inference. A derivation 

is essentially first-order if only type-variables are used as eigen-types. A typing C\—E:r is properly 
derived if it has a derivation with proper types only. It is sp-prvper if r is sp-proper. It is p-proper if r is 
p-proper and every type C(JC) is n-propcr. If P is a property of typings, we say that E has a P typ
ing if there is a typrng C \—E:r with property P. 

2. The semantic meaning of typing. 

We now show that types can be understood as coding semantic properties of \-expressions in second-
order models over X-expressions. Sets of A-expressions we refer to are: 

A s the set of all X-expressions 
A/ s the set of Xl-exprcssions 
N s the set of normalizable X-expressions 
N/ s the set of normalizable Xl-expressions 
S s the set of strongly normalizable X-expressions 
L 2 the set of solvable X-expressions 

We define a family of second-order formulas 9r, r€T, by induction on r. <pT[E] asserts that the 
X-exprcssion E behaves functionally as a mapping of type r. We use X9... as individual logical vari
ables, and as unary predicate variables. 



- 5 -

<pR[E] = R(E) 
<pu[E] = true 
9^'[ZT] = VX(<p'[X] -> 9'[£X]) 

9 V ^ ] s V R ? 1 £ ] 

Lemma 11. 9'̂ '*! is syntactically identical to <p*[qf/R]. 

Proof. Straightforward induction on aJI 

Remark. The mapping a =^ <p9 is right inverse to the mapping <p =^ r{<p) of [Lei83b], i.e. r(9a)=a. 
We have here a duality between the (modified) notion of "formula as type" [How80, Lei83b], and of the 
nodon above of "type as formula". 

We wish to consider models of monadic second order formulas, where individual elements are X-
cxpressions. The models we have in mind are of the kind defined by Henkin [Hen], i.e., pairs (U,C), 
where U is a set of X-expressions (the universe of the models), and C is a collection of subsets of U. 
(We identify monadic predicates with their extensions.) 

One natural condition on both U and the elements of C is that they be closed under a weak form 
of /J-equality1. We say that a set QQU is extensional in U if it is closed under =0 in U; i.e., 

• if £ € Q and if comes from E by feplacing an occurrence of (\xF)G by F[G/x]t then 
£*€Q; 
• if £ € Q and E comes from E by replacing F[GIx] by (\xF)G, where (7€U, then 
# € Q . 

We say diat Q • is simply extensional if Q is extensional in itself. For example, N and L are exten
sional in A; A/ is extensional, but not extensional in A; N/ is extensional in A/, but nut in A; S is 
extensional, but not extensional in A. In a model we shall require that U be an extensional set, and that 
each set in C be extensional in U. 

Another natural condition on the underlying universe U of a model is that it be closed under taking 
subexpressions.2 

In summary, a pair (U,C) is a model if U is an extensional set closed under taking subexpressions, 
and C is a non-empty collection of subsets of U extensional in U. 

Suppose (U,C) is a model, 9 a monadic second-order formula. We give the standard meaning to 
the semantic satisfaction relation U,C,TJ^9, where 77 is a valuation of free individual variables as 
members of U, and of free predicate variables as elements of C. We also define [r]uc, = 
{ECU I U,C,Tjf=9r[F]}. When U and C are clear from the context wc use the abbreviations TJ|=9 
and [r],. 

1) Note that strong normalizability is not preserved under unrestricted /J-cquality. However, for our results 
about solvable and normalizable expressions we may require that models be closed under full ̂ -equality. 
2) Actually, a weaker conditions will be used: if £F€U, then £*€U. 
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Lcmma 2.2. Suppose (U,C) is a model, tj a valuation in (U,C). Then [r]uc, is cxtensional in U, for 
each type t . 

Proof. Straightforward induction on rM 

Let T 0 be a set of types. A model (U,C) is complete [for Tq] if [ r ] u c , € C for every type 
expression r [in T 0] and every valuation t\ in (U,C). 

Lemma 23 (Semantic typing), (i) Suppose (A,C) is a complete model. If the typing { ^ a / h h - t f r r is 
derived, then A '̂O^) -* tpT(E[Y]) is valid in (A,C), Lc. 

T?N A,./'<r,)̂ 9*(£[FjX 
for all valuations TJ in (A,C). (We write £ [ / ] for £[>V>V 
(ii) Suppose (U,C) is a model complete for proper types. If the typing ty/:<7/},h-E:r is properly 

derived, then A ^ T O <Pr(£[ >1) is valid in (U,C). 

Proof. By induction on the derivation A of {^/:<T/}/|—E:r. 

If A consists of an initial typing, and E=yh then the lemma is trivial. If t = c j (for case (i) of the 
lemma), then <pr = true, and the lemma is trivial again. 

Suppose that the last inference of A is - » / , as displayed in §1, and rs<x-*p. By induction 
assumption 

r,[F/X] | = A./ 'CX,) A 9 ' ( £ ) -> ^(£[F,/1), 
for all £€U. So 

i?N a^ 'W ^ Vr(^W - <p>{E[YJ)). 
By lemma 22 7|{=9P(£[KJT])-*9p((\x£[FpA'). Also, since U is closed under taking subexpressions, 
(\x.E[Y])X € U implies \jc£[F] € U. So 

7|j= A, 9#/ 9f(Xx£). 
Suppose that the last inference of A is - » £ , as displayed in §1. By induction assumption 

i?N Ai^W -* <P9~'(EIYD and ijh A '̂TO - 9 W n ) . 
So 

iiNahp^W -*<P>(EF[YV, 
by the definition of <p9~*p. 

Suppose that the last inference of A is V £ . By induction assumption 

Le. 

ilNA|9#'(yi) -> V*9 '(£[F]). 
But we assume that (U,C) is complete, so 

T,t=V/?9'(£)̂ 9'(£X9p/̂ ]-
Moreover, by lemma 22. <p'(EJ[<p'/R] = <p9^iR\E). Altogether we get 

i fNA / 9

# , (y i ) -> ^ ' ^ [ F ] ) . 
The cases for the rules V / , A / and A £ are trivialJi 
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In fact the proof establishes a slightly stronger fact 

Lemma 14. Suppose that A is a derivation of the typing {yi:*i}i\—EiT. If (U,C) is a model complete 

forthesctofeigen-typesin A, then AfV'Xy,) -* <pr(£[F]) is valid in (UC)Ji 

3. Model constructions. 

We describe two straightforward model constructions. The first is a trivial construction, which we use 
in the proof of theorem 4.7 below. The second yields complete models, which we use in the proofs of 
theorems 4.1 and 4.3. 

Lemma 3.1. Suppose U is an extensional set closed under subexpressions, and suppose that V is exten

sional in U. Let \ v = {V,U}. Then (U,Vu) is a model. 

Proof. Immediate from the conditions.* 

For example, (A,{N,A» is a model 

Let U be a set, z a X-variable. Define zU # s {zEx • • • Ek | £,€U, * > 0 } , and 
Qj = {Q | zU'CQCU, R is extensional in U}. 

Lemma 32. Suppose U is extensional and closed under taking subexpressions. Assume, moreover, that 
zlT C U. Then (U,Cu) is a complete model. 

Proof. That (Lr,Cu) is a model is immediate from the conditions (the last condition guarantees that 
Q; * 0 ) . To show that (U,Q;) is complete we prove, by induction on proper types r, that zU* C [r^, 
for each valuation t\ in (U,Q;). Let TJ be such a valuation. 

If T is a type variable R, then [r], = ij(/?) € Qj . 

Suppose r = a-*p. To show Z I T Q T ] , , consider an arbitrary z£T€zU*. We have zEF € zU* 
for any FCU trivially, and zU* C [p], by induction assumption. Thus ij |=9 r (z£), i.e. zE € [r],. 

The cases where r is conjunctive or universal are trivial.! 

Examples. (S,Cs) and (A,CA) are complete by lemma 32. 

4. Convergence properties implied by typing. 

We show that typing properties of X-expressions imply certain convergence properties. Namely, 

• every expression with a properly derived typing is strongly normalizable; 
• every expression with an sp-proper typing is solvable; and 
• every expression with a first order-derived, p-proper typing, is normalizable. 

For the first of these results we use the model (S,Cs). 

Theorem 4.1. (Girard [Gir]). If E has a properly derived typing then E is strongly normalizable. 
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Proof. Assume B\— E:r is properly derived. It suffices to consider closed expressions E% because £ € S 
iff XxZT€S. Assume the theorem's premise (with S = 0 ) . Then, by lemma 2.3, £ € [ T ] u c , for any com
plete model (U,C), and any valuation r\ tlierein. Thus, ^SMscgv bY lemma 3.2, Taking an arbitrary tj 

in (S,Cs), f e i r ^ C S J I 

Remark. The theorem fails if only the derived typing is required to be proper, but not the entire deriva
tion: 

Example. There is a derived typing \—E:r% where r is proper and E is not even normalizable. Let Q 
be some non-normalizable expression, and consider E = \z.zQ. It is easy to see that E:fi~*Q is deriv
able, where fisVR.R and Q is a type variable.* 

Next, we consider expressions that can be assigned an sp-proper typing. The model we use here is 
(A,CA), which by 3.2 is complete. Note that L € C A , since L is extensional in A. 

Lemma 4.1 Let J be the valuation in (A,CA) which assigns L to all predicate variables. Suppose that 
r is an sp-proper type. Then [r] f QL. 

Proof. By induction on sp-proper types. If r is a type variable /?, then [r] f = f (R) s L. 

Suppose r s * - * p . To show [ r J f £L assume E€[r]{. Since (A,CA) is complete, [<y]f€CA, hence 
;A*C[<x]f, and r€ [a ] c . Thus £ i€[p] c , and by induction assumption £z€L, since p is sp-proper. 
Hence £ € L . \ 

Suppose 7sVK.<7. Then = f l f l ak | $ & {[Q/R]9 Q€CX] Q [a] f , and the latter is a sub
set of L by induction assumption. 

The case where r is conjunctive is trivial* 

Theorem 4J . If E has an sp-proper typing then E is solvable. 

Proof. It suffices to consider closed expressions E. Assume )—E:T is derived, where r is sp-proper. 
By lemma 2.2 it follows that ZTCM, for any closed model (A,C) and i\ therein. By lemma 4.2 
[r] c CL,so E€LM 

A similar statement is proved in [CDV81], but where only first-order types are treated. 

Finally, we show that if £ has a p-proper typing then E is normalizable, provided the typing 
derivation is essentially first-order (as defined in §1). 

The model we use here is (A,NA). 

Lemma 4.4. Let r be first-order and proper. Let £ be a valuation in (A,NA) which assigns N to all 
predicate variables. Then *N #C[rlfCN. 

Proof. By induction on proper types. If is a type variable R, then [r] f = £(R) = N. 

Suppose r s a - * p . To show [r] f CN assume E£[r]^. By induction assumption, r€{a] f , hence 
£z€[p] C t and by induction assumption £ i € N . Thus ZT€N. 
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To show ZN'QTJJ . let z£€zN*. For any / r €[a] f we have F€N, by induction assumption, so 
zEF€zN\ By induction assumption zN*C[p] c, so zEF€\p\. Thus z£€[ r ] r . 

The case where r is conjunctive is trivial* 

Remark. Unlike the proof of AX we need in 4.4 the lower bound condition zN # C[r ] f . This breaks down 
if TSV£.<X. 

Lemma 4.5. Let f be a valuation in (U,C), which agrees with a valuation % except that f (R )Dtj(R) 
for a particular type-variable R. If R does not occur positively in r then [T]{C[T] V 

Proof. By induction on T, simultaneously with the dual statement: If R does not occur negatively in T 
then [ r ^ D M , * 

Lemma 4.6. Assume r is p-proper, £ a valuation in a model (A,C). there is a proper type 6 and a 
valuation K such that [r] f = [0]K C 

Proof. Let J be r with u> replaced throughout by some fresh type variable R. Let K = HA//?]. 
Then [r] f = [0)K by a trivial induction on r, and Q by 4.5JI 

Theorem 4.7. (Coppo-Dezanni-Venneri [CDV81]). If E has a p-proper typing, essentially first-order 
derived, then E is normalizable. 

Proof. It suffices to consider closed E. If }—E:r has an essentially first-order derivation, where T is p-
proper, then <pT(E) is valid in (AJVA), by lemma 14. and lemma 3.1, i.e. E € [rj, for every valuation 
7j in (A,NA). In particular, £ € [ r ] f > where f is as above. By 4.6 [r] f C [0] c, and by 4.4 CN. So 
£ € N.B 

By the Example above the restriction in the theorem to essentially first order derivations is essential. 
Note that if the condition that the derivation be first-order is replaced by the condition that all types in the 
derivation be p-proper (sub-types not being counted), then no initial typing B\—E:u can occur in the 
derivation. All occurrences of u> can then be replaced by some fresh type variable, and all types become 
proper. We are then back to the case of theorem 4.1. 

5. Convergence properties implying typing; characterization theorems. 

All expressions have trivially the type We show here that expressions satisfying certain conver
gence properties can be assigned more interesting types [CDV81]. Namely, 

• every solvable expression £ has an sp-proper typing; 
• every strongly normalizable expression has a properly derived first-order typing; and 
• every normalizable expression has a p-proper first-order typing. 

Lemma 5.1. If £ is in head normal form then £ has a first-order sp-proper typing. 

Proof. Gearly z:*)-**)-* *u-*R\~zFi• • • Fk:R is derived, where there are k occurrences of 
co, and R is a type variable. The lemma followsJI 

file:///~zFi
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Let Ci and C 2 be contexts. We write C\ A C 2 for the context C that agrees with C\ and C 2 

for the arguments on which C\ and C 2 do not disagree, and C(x) = CI ( JC)AC 2 ( JC) if Ci(x) and 
Cfa) are both defined and distinct 

Lemma 5.1 If A derives C|—£:r, C is any context, then C A C [ — E : r is derived by a derivation A ' 
identical to A, except possibly for inference of typings inidal in A from typings inidal in A', by 
instances of AE. 
Proof. Trivial induction on A J i 

Lemma 5 3 . Assume C\—E[FIx]:r is derived by A. Then either 

(1) C|—E:r is derived, and the derivation is proper if A is proper, or 
(2) there is a type a such that C A{jr:<j}|—E:r and Cf—F:o are derived. Moreover, if A is 
proper then so are these two derivations. 

Proof. By induction on the derivation A of C\—E[F/x]:r. (1) applies if x is not free in E. (2) 
applies otherwise, where a is the conjunction of all types assigned to F in A (for occurrences of F 
substituted for x in E[F/x\)M 

Lemma 5.4. If C\—E[F/x]:r is derived, then so is C|—(Xx£)F:r. Moreover, if the former is properly 
derived, and C r~F:p is properly derived (for some p), then C AC }—(\X.E)F:T is properly derived. 

Proof. Suppose diat A derives Cf—E[F/x]:r. If case (1) of 5.3 applies, then, by - * / , C\—\xE:a-*r 
is derived for any type a. Let a=a> in the general case, asp if the extra lemma assumption holds, and 
use - * / . 

If case (2) of 5.3 applies, then Cf— \xE:a-*r and Cf—F:a, so C\—(\XE)F:T is derived. 
Moreover, if A is proper then the last derivation is proper, by 5.3 JI 

Lemma 53. Suppose E ^-converts to Ef (in one step), and C|— £*:r is derived. Then C|—E:r is 
derived. 

Moreover, suppose that C J—Ef :r is properly derived If £" comes from E by replacing an 
occurrence H of (\x.F)G by F[G/x]9 and G has a properly derived typing, then C\—E:r is prop
erly derived for some C . 

Proof. By straightforward induction on the depth of H in E9 using 5.4 for the base caseJi 

Theorem 5.6. [CDV81]. If a X-expression E is solvable then it has an sp-proper typing. 

Proof. By induction on the length of the shortest ft -conversion leading from £ to an expression in head 
normal form. The induction basis is lemma 5.1. The induction step is lemma 5.5JI 

Corollary 5.7. The following conditions are equivalent 
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1. £ is solvable. 
2. E has an sp-proper typing. 
3. E has an sp-proper first-order typing. 

Proof. By 5.6 (1) implies (3). (3) implies (2) trivially. (2) implies (1) by 4.3. • 

Lemma 5.8. If E is normal then there is a typing C \—E :T derived using proper first-order types only. 

Proof. By induction on E. The case E is a variable is trivial. 

Suppose E = \ x f . By induction assumption there is a derivation A, using proper first-order types 
only, for the typing C,x:o\—F:p. Applying - * / we get such a derivation for C\—\x.F:a-+p. 

Suppose E = zFi* • • Fk, z a \-variable. By induction assumption there are proper first-order 
derivations A/ deriving typings Q h - f } : a / f / = Define a context C by 
C U ) = C I U ) A • • • AC*(X) for x other than z, C ( Z ) = C I ( Z ) A • • • AC*(Z)A(OTI-* >a*-*/0, 
where R is fresh. By lemma 5.2 there are proper first-order derivations deriving C|—£/:a,-, z = l • • • k. 
Applying A £ and - * £ yields a derivation of C\—E:RM 

Theorem 5.9. If a \-expression E is strongly normalizable then it has a first-order properly derived typ
ing. 

Proof. By induction on the reduction tree of E. The induction basis is lemma 5.8. The induction step is 
lemma 5.4JI 

Corollary 5.10. The following conditions are equivalent 

1. E is strongly normalizable. 
1 E has a properly derived typing. 
3. E has a typing derived by a proper first-order derivation. 

Proof. By 5.8 (1) implies (3). (3) implies (2) trivially. (2) implies (1) by 4.1. • 

Theorem 5.11. [CDV81]. If a \-expression E is normalizable then it has a first-order derived p-proper 
typing. 

Proof. By induction on the length of the shortest ^-conversion leading from E to an expression in nor
mal form. The induction basis is lemma 5.8. The induction step is lemma SAM 

Corollary 5.12. The following conditions are equivalent 

1. £ is normalizable. 
1 E has a first-order derived p-proper typing. 
3. £ has a first-order derived proper typing. 

Proof. By 5.11 (1) implies (3). (3) implies (2) trivially. (2) implies (1) by 4.7. • 
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6. Strong normalization in the ontologicul discipline. 

Let us now sec that every expression of the Second-Order Lambda Calculus is strongly normalizable, 
as a corollary of the analogous result for the untyped calculus (theorem 4.1). The idea is simply this. On 
the one hand, every typed expression E can be viewed as an untyped expression Eu decorated with its 
own proper type inference (Proposition 6.1). On the other hand, a sequence S of reductions on a typed 
expression E is isomorphic to a sequence of reductions on Eu

9 possibly with intermittent stretches of type 
reductions. The first one is finite by 4.1, and the latter ones are finite because type reductions shorten the 
syntax tree of a typed X-expression. Thus S must be finite. 

The Second-Order Lambda Calculus is defined in [Rey74, Gir72, FL083, Lei83a]. In this calculus, 
like in any other typed version of the Lambda Calculus, all expressions (and subexpressions) carry their 
types, and an expression contains, in fact, its type derivation. In particular, each expression carries exactly 
one type, excluding thereby use of <o, or of type-conjunction. Since the type derivation of an expression is 
in fact contained in it, a type-derivation for an expression is merely a reconstruction of the typing informa
tion from the structure of the expression. This feature is best illustrated by the treatment of type abstrac
tion, for which the inference rules are analogous to the rules - * / and -+E for X-abstraction and appli
cation: 

Y-E:o \—E:ARo 
(p free for R in a) 

\—AR.E:ARa \—Ep:a[p/R] 

Using our terminology from §1, all type-inference rules for the Typed Calculus are thus structural, 
none is stationary. 

Clearly, from the combinatorial viewpoint of type deduction, the type inference system obtained here 
is merely a notational variant of the system described in §1 for the semantical discipline, restricted to its 
proper and A-firee fragment For an expression E of the Second-Order lambda Calculus, let Eu be the 
underlying untyped expression. That is, Eu is defined inductively by 

. (x?Y m xrj9 

• (Xxf.E'Y s \xmJ.E*9 

• (EFY m EmF*9 

• (AR.EY s E u

9 

• (ETY S EU. 

The following proposition follows immediately from the definition of the inference rules. 

Proposition 6.1. [Lei83a]. Let £ be an expression of the Second-Order Lambda Calculus. The untyped 
X-expression Eu has a proper and A-frce typingJi 

Lemma 6.1 Let E = (\x*Gp)H* be an expression of the Second-Order Lambda Calculus, 
F = G[Hlx]. Then Eu ^-converts to F* (in the untyped calculus). 

Proof. Trivial from the definition of the mapping E ^E^M 
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Lcmroa 63 . Let £ be an expression of the Second-Order Lambda Calculus, and suppose that £ /?-
converts (in one step) to F. Then Eu fi-converts to P . 

Proof. By induction on the depth in E of the converted redox, using 6.2 for the induction basis.* 

For an expression E of the Second-Order Lambda Calculus let aE be the number of object-
applications and type-applications in E. That is, aE is defined inductively by 

• a(jri')«0, 
• a W ) = a ( P ) 
• a (££) = a £ + a £ + l , 
• a(AR.E) = a £ , 
• a(Er) = aE + l. 
Recall that in the second-order calculus one has type-/?-convcrsions: (AR.ET)a converts to 

Er[aJR]. 

Lemma 6.4. Let £ be an expression of the Second-Order Lambda Calculus. If E converts to F by a 
type-/?-rcduction, then a F=aE - 1 . 

Proof. By induction on the depth of the converted redex in E. The induction basis in proved by induc
tion on expressionsJi 

One last trivial lemma is: 

Lemma 6.5. If E converts to F by a type-/?-conversion then £" = E*. 

Proof. As for 6.4Ji 

We can now put the pieces together 

Theorem 6.6. [Gir/1,72] Every expression E ' of the Second-Order Lambda Calculus is strongly normaliz
able (within that calculus). 

Proof. Let E be an expression of the Second-Order Lambda-Calculus. Let Eu be defined as above. By 
6.1 and 4.1 Eu is strongly normalizable. The theorem is proved by (main) induction on the reduction tree 
of £ M , and secondary induction on aE. 

Suppose E converts to F. If this is a \-conversion, then Eu ^-converts to F", by 6.3, so by 
induction assumption F is strongly normalizable. If the conversion is a type-/?-conversion, then 
P s P by 6.5, and aF < a £ , by 6.4. So F is strongly normalizable by the secondary induction 
assumption. 

Since every expression to which £ converts is strongly normalizable, then £ must be strongly nor-

malizableJi 
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