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Abstract” We use a perception of typing in the A-Calculus, according to which
the typing of an expression E expresses semantic propertes of £ in models
over A-expressions, (o exhibit nawral and :niform proofs of generalizations of
theorems of Girard [Gir71,72] and of Coppo, Dezani and Veneri [CDV81] about
the solvability, normalizability and strong normalizability of suitably typed expres-
cons _

We also generalize the theorems of [CDV81] which go in the opposite
direction, showing the typeability of solvable and of normalizable expressions,

Intreduction and background.
Simple and second-order types in programming and in the Lambda Calculus.

Types have been used in programuning languages mainly as a device to enforce disciplined program-
riing; in particular = to guaranice that the composition of procedures is meaningful. A reasonable expec-
tation is that typing should guarantee the absence of ii;}'inite looping of procedure calls, provided of course
recursive calls are not used.

To state this property precisely one first distils, out of the given programming language, its ron-
recursive procedure call mechanism. ‘The result is a typed lambda calculus, ‘Then one proves that ail
expressions in that lambda calculus convent to a normal form along any reduction sequence. This property
is referred to as the Strong Nommalization Property of the given programming language (and of the
corresponding typed lambda calkculus). The Strong Normalization Theorem, for a given programming
- language or lambda calculus, is simply the statement that the Strong Normalization Property is true of that
language.

Languages such as PASCAL and ALGOL68 have relatively simple type disciplines, and: their pro-
cedure call mechanism is represented by the simply typed lambda calculus, or fragments thercof [Mor68,
FLO83§4]. The Strong Nomnalization Theorem for the simply typed lambda calculus is rather straightfor-
ward [Tai67, Mor68, San67, And71, FLO83§6.1).

A new dimension was introduced to the subject of typing with the invention of second-order and
higher-order type disciplines [Gir71,72, Rey74, FLO83]. Generic (parametric) types are motivated by the
pragmatic wish to avoid repeated definition of the same procedure for different types. Once generic pro-
cedures are used, conceptual consistency dictates that they also be allowed as arguments of other pro-
cedures, the latter should again be permitted as arguments, and so on. This gives rise to the full second-
order type discipline of Girard and Reynolds. The Lambda Calculus supplemented with the second-order
type discipline is referred to as the Second-O:der, or Polymorphic, Lambda Calculus,
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Normalization in the Second-Order Lambda Calculus.

'The Nomalization Theorem for the Sccond-Order Lambda Caleulus, while true, is not as casily
proved as normalization for the simply typed calculus. In fact, it can not be proved cven in Second-Order
Arithmetic {Lci79). A combinatorially isomorphic problem, that of strong normalization for Sccond-Order
Logic, was an outstanding open problem in Mathematical Logic in the 50°s and 60's.

[nitially, a Normal Form Theorem was proved [Tai66, Tak67, Pra67.68], whereby every proof in
sccond-order logic can be converied to a normal form by some reduction sequence. The full Strong Nor-
malization Theorem was proved by Girard [Gir71.72], by injecting sccond-order reasoning into the com-
binatorial mcthod of Tait {Tai67]. (Independently, Harvey Friedman injected second-order reascring to a
different syntactic method. Kieene's slash, with refated results [Fri73].) Girard’s method was then applied
and refined, in different guises, to various formal calculi [Pra7l, Mar71, Ste72, Tai75, FLO83].

Two philosophies of typing.

The observation that objects that can be typed are guaranteed to convert to normal form goes back,
for Combinam}y Logic, o Curry and Feys [CF58]. However, they were thinking of a type not as an
inherent property of an object, but as a semantic notion, where one object can be assigned different types.
This semantical perception of typing has been pursued and developed, for example, in [Cop80, Pot80,
CDVs1, MS82, BCD83, MPS34, BM84). It is motivated by a wish to study the functionality properties of
(untyped) A-cxpressions, and is quite different from the view underlying the Typed Lambda Calculus. In
the type cidculus each object carrics its type, a perceﬁtion we dub the ontological discipline. To say that
"E isoftype r=»¢” implics, in the ontological d'mciglinc. that the domain of £ consists precisely of all
objects of type 7. In the scnamtical discipline, the same statement implies that the domain of £ merely
contains all objects of type r, which E maps to objects of type o.

Ontological typing arises not only in programming languages, but also in connection with Proof
Theory. In Churclt's Theory of Types [Chud0], logic is coded directy in the Typed Lambda Calculus.
Related to this is the formula-as-type/ derivation-as-A-expression isomorphism discovered by Howard and
others [CF58, How80, deB70]. The two approaches are unified in [Mar82].

In spite of the fundamental difference between the ontological and the scmantical viewpoints of typ-
ing, the computational aspects of the two disciplines are related [Lei83,§6 below]. A typing calculus for the
ontological discipline is in fact isomorphically embedd:ble in a typing calculus for the semantical discipline.

Characterization of convergence properties by lype systems.

Within the semantical discipline it makes sense to consider implications that are inverse to the Nor-
malization Theorems: can we assign a type to every strongly normalizable A-expression? More generally,
we may set forth a broader notion of typing, and consider the question of whether a certain convergence
property of A-expressions, such as solvability or normalizability, implies typability. This kind of question
was considered by Coppo, Dezani and Veneri [CDV81]. They showed that for a suitable notion of types,
typing of a A-expression is guaranteed by its solvability. They aiso showed that a more restrictive notion of
typing is guaranteed by normalizability. In fact, these notions of type characterize exactly the solvable and
the normalizable A-expressions, respectively,



The results of this paper.

The purpose of this note is to integrate and generalize the techniques and results relating typing to
convergence propertics in the Lambda Calculus The main idcas we build on are those of Tait [Tai67],
Girard [Gir71,72], and Coppo, Dezani and Pottinger [Cop80 .CD80, Pot80, CDV8l].

Our basic results are all developed within the semantical framework. One advantage is that this
framework permits a richer notion of type, and therefore more general results, This choice is fecund, how-
ever, even if one is only interested in ontological typing. The semantical framework allows a morc natural
and transparent devclopment of the normalization proofs which so far have been presented within the onto-
logical discipline, This is mostly because in the scmantical approach, combinatorial properties, such as
Tait's “computability” [Tai67, Gir71, Pra7l, Ste72}, can be viewed as semantic properties of expressions in
models built over A-expressions. In addition, the semantical approach suppresses irrelevant details. ‘

The relations bétween typing and convergcnce properties are summarized in theorems 5.7, 5.10 and
5.12 below. Some specific new results we obtain are analogues and gencralizations of the results of
[CDV81). For example, we show that a A-expression is strongly normalizable iff it has a type which can be
derived without reference to the universal tyne w. Also, we show that a A-expression is solvable whenever
it can be assigncd a type where w does not appear strictly positively, even if that type is second-order.
We point out that the Coppo-Dezani-Veneri characterization of the nommalizable expressions fails for
second-order types, in contrast to the characterizations of solvable expressions and of strongly normalizable
cxpressions. Thus, strong normalizability and solvability are properties which are, in a sense, more “stable”
than normalizability.

Finally, we show in §6 how the Strong Nonmnalization Theorem for the Second-Order Lambda Cal-
culus falls out a3 a corollary of the corresponding Strong Normalization Thenrem in the semantical discip-
line.

1. Polymorphic Typing.
Polymorphic types are defined inductively as follows (compare [Rey74, Gir72, FLOS83, MS82)).

RETV — type variables (a countable set)

r€T ~- polymorphic type expressions

ru=R | w|n=n ] nan| VR
A type is first-order if it has no occurrence of 7, proper if it has no occurrence of w, A<free if it has no
occurrence of A. An occurrence of a type expression o in r is positive [negative] if it is in the negative
(=left side) scope of an even {odd, respectively] number of instances of — in =. The occurrence is
stricily positively if it is in the negative scope of no —*. A type expression 7 is [n=, p~ sp-} properif w
does not occur in r [negatively, positively, strictly positively, respectively].

A type statement is an expression E:r where E is a A-expression, and r is 2 type expression.
Following de Bruijn [deB70] we use the term contex? for a finite function C from A-calculus variables to
type expressions, which we sometimes write as a list xjiry, ..., X i7¢ Of type stetements. A fyping is an
expression C|—£E:r, where C is a context, and E:r is a type statement.
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The typing C—E:r is initial if 7 is w, or if £ isa varable and C (E)=1. A type deduction is
a derivation of a typing from initial typings. using the following inference rules. ‘The structural inference

rules are =/ and —E (J for "introduction”, £ for "climination”):

Cx:ot—Fp CHE:g—p CHFuo

CHAx.Elo—p CHEF:p

The remaining rules are siationary, in that they refer to a fixed A-cxpression. These rules are A/,
AE, ¥ and VE:

C'—'Ellfl CI-E;:'r; : CHE:r Ay
. (i=1o0r2)
Cl-E:miAmy CHE:r;
CHE:o . CHEVRe
(R not freein C) (p freefor R in o)
_ CHE:VRa ' CE:olp/R] _

In the rule W E the substituted type expressioﬁ p is the eigen-type of the inference. A derivation
is essentiafly first-order if only type-variables are used as eigen-types. A typing Cl—E:r is properly
derived if it has a derivation with proper types only. It is sp-proper if + is sp-proper. It is p-properif 7 is
p-proper and every type C(x) is n-proper. If P is a property of typings, we say that £ hasa P tp-
ing if there is a typing C |—£':r with property P.

2. The semantic meaning of typing.
We now show that types can be undersiood as coding semantic properties of A-cxpressions in second-
order models over A-expressions. Scts of A-expressions we refer to are:

A= the set of all A-expressions

A= the set of Al-expressions

N = the set of normalizable A-expressions

N, = the set of normalizable Al-expressions

S = the set of strongly normalizable A-expressions
L = the set of sclvable A-expressions

We define a Family of second-order formulas ¢*, 7€T, by induction on =. @7[E] asserts that the
A-expression E  behaves functionally as a mapping of type r. We use X... as individual logical vari-
ables, and R,... as unary predicate variables,



PR [E]l = R(E)

p“[E] = true

¢~ PE]l = VX (g°[X] — ¢?[EX]
¢***(E] = ¢°{E] np?[E]

o'**[E] = VR ¢*(E]

Lemma 2.1. ¢°%/®] is syntactically identical to @°[@*/R].

Proof. Straightforward induction on oW

Remark. The mapping ¢ => ¢° is right inverse to the mapping @ => {¢) of [Lei83b], ie. r(gp*)=0.
We have here a duality between the (modified) notion of "formula as type” [How80, Lci83b], and of the
notion above of "type as formula”™.

We wish to consider models of monadic second order formulas, where individual elements are A-
cxpressions. The models we have in mind are of the kind defined by Henkin [Hen], i.e., pairs (U,0),
where U is a set of A-expressions {the universe of the models), and C is a collection of subsets of U.
(We identify monadic predicates with their extensions.)

One natural condition on both U and the elements of C is that they be closed under a weak form
of B-equality’. We say that a set QGU is extensional in U ifitis closed under =, in U ie,

o if £E€Q and E comes from E by teplacing an occurrence of (AxF)G by F[G/x], then
E€Q; .
o if E€Q and E comes from E by replacing F[G/x] by (AxF)G, where GEU, then
E€Q.
We say that Q -is simply extensional if Q is extensional in itseif. For example, N and I are exten-
sional in A; A, is extensional, but not extensionat in A:; N, is extensional in A;, but nutin A; S is
extensional, but not extensional in A. In a model we shall require that U be an extensional set, and that
cach set in C be extensional in U.

Another natural condition on the underlying universe U of a model is that it be closed under taking
subexpressions.? '

In summary, a pair (U,C) is a model if U is an exiensional set closed under taking subexpressions,
and C is a non-empty collection of subsets of U extensional in U,

Suppose (U,C) is a model, ¢ a monadic second-order formula, We give the standard meaning to
the semantic satisfaction relation U,C,pl=o, where % is a valuation of free individual variables as
members of U, and of free predicate variables as elements of C. We also define [rlyc, =
{E€U | UCnl=9'E]}. When U and C are clear from the context we usc the abbreviaions nf=¢
and [7],.

1) Note that strong normalizability is not pteseri-c;:l under unrestricted f-cquality. However, for cur results
about solvable and normalizable expressions we may require that models be closed under full S-equality.
2) Actually, 2 weaker conditions will be used: if EFEU, then E€U.
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Lemma 2.2. Suppose (U,C) is a model,  a valuation in (U.C). Then [rluc, is extensional in U, for
each type =.
Proof. Straightforward induction on r.8

Let Ty be a sct of types. A model (U,C) is complete [for Tg} if [rlyc, € C for every type
expression 7 [in To] and every valuation 3 in (UC).

Lemma 2.3 (Scmantic typing). (i) Suppose (A,C) is a complete model. [f the typing {y;:o;}i=F:r is
derived, then A, @°/(Y;) = @"(E{¥] isvalid in (A,C), ie.

ni= np”(Y)) = 9" E[TD,
for all valuations 7 in (A,C). (We write ETY] for E[Y/y;i- - Yidw])
(i) Suppose (U,C) is a model complete for proper types. If the typing {y;:a;};|—E:r is properly
derived, then A;@"'(¥;) = @7(E{Y] is valid in (U,C).
Proof. By induction on the derivaton A of {y;:e;};|E:7.

If A consists of an initial typing, and E=y,, then the lemma is trivial. If r=w (for case (i) of the
lemma), then ¢” = true, and the lemma is trivial again. .

Suppose that the last inference of A is —/, as displayed in §1, and r=0—*p. By inducton
assumption :
WFIX] = np™(Y,) A @°(F) = o*(ELT.FD,
forall FEU. So -

_ Al agtir) = VX (@r(X) = g (E(T.XD.
By lcmgla 22 nEME[Y XD :w’((ME [¥YDX). Also, since U is closcd under taking subexpressions,
(AxE[YDX € U implies AxE[Y] € U. So
1= A" = P"(AXE).
Suppose that the last inference of A is ~* £, as displayed in §1. By induction assumption
= ne (V) = @ (EIYD  and  ak= ae"(Y) = 9t (FIYD.
So
7 a9 () — ¢ (EFITD,
by the dcfinition of @*™*. :
Suppose that the last inference of ‘A is WV E. By induction assumption
k= A" (Y) = "R (E[Y)),
ie.
1k A" (Y) — VYR (E[F).
But we assume that (U,C) is complete, so
v 1=V R¢*(E) = ¢*(E)¢*/R).
Moreover, by lemma 22. ¢*(E)¢*/R] = ¢°W/R(E), Altogether we get
| 1= a9 () — @ U AAEY).
The cases for the rules Y/, A7 and AE are trivialm
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In fact the proof establishes a slightly stronger fact.

Lemma 24. Suppose that A is a derivation of the typing {y;:0;};=£:7. If (UC) is a model compiete
for the sct of eigen-types in A, then A;@"(Y;) = @ (E[Y]) is valid in (U.C)M

3. Model constructions.

We describe two straightforward modet constructions. The first is a trivial construction, which we use
in the proof of theorem 4.7 below. The sccond yields complete models, which we use in the proofs of
theorems 4.1 and 4.3.

Lemma 3.1. Suppose U is an extensional set closed under subexpressions, and suppose that V is exten-
sional in U. Let Yy = {V,U}. Then (U,Vy) is a model.

" Proof. Immediate from the conditions.

For example, (A,{N,A}) is a model. ‘

Let U beaset z a A-variable. Define zU° = {zE,--- E; | E;€U, £2>0}, and
Cy = {Q | zU'CQCU, R is extensional ia U}.

Lemma 3.2. Suppose U is extensional and closed under taking subexpressions. Assume, moreover, that
zU" € U. Then (U,Cy) is a complete model.

Proof. That (U,Cy) is a model is immediate from the conditions (the last condition guarantees that
Cy = @). To show that (U,Cy) is complete we prove, by induction on proper types 7, that zU’ C [7},.
for each valuation 9 in (U,Cy). let n be such a valuation.

If v isatype variable R, then [r], = #(R) € Cy.

Suppose T = o—p. To show zU'C[r},, consider an arbitrary 2E€zU". We have zEF € :U’
for any FEU uivially, and zU" G {p], by induction assumption. Thus 7= q:’(zf ), ie. zE € [7],-

The cases where 7 is conjunctive or universal are trivial.m

Examples. (S,Cg) and (A,C,) are complete by lemma 3.2,

4. Convergence properties implied by typing.
We show that typing properties of A-expressions imply certain convergence properties. Namely,
e every expression with a property derived typing is strongly normalizabie;
o every expression with an sp-proper typing is solvable; and
e every expression with a first order-derived, p-proper typing, is normalizable.
For the first of these results we use the model (S,Cg).

Theorem 4.1, (Girard [Gir]). If E has a properly derived typing then £ is strongly normalizable.
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Proof. Assume B|—E:r is properly derived. It suffices to consider closed cxpressions E, because £€S
iff AXEE€S. Assume the theorem's premise {with B=®). Then, by lcmma 2.3, £€[r]yc, for any com-
plete model (U,C), and any valuation 7 therein. Thus, E €[r]scg,. by lemma 3.2. Taking an arbitrary 7

in (5.Cs). E€lrlsc,,CSM

Remark. The theorem fails if only tim derived typing is rcquired to be proper, but not the entire deriva-
tion:

Example. There is a derived typing —E:r, where r is proper and £ is not even normalizable. Let 2
be soine non-normalizable expression, and consider £ = AzzQ. It is casy to sce that £:8~+Q is deriv-
able, where 8=V R.R and Q is atype variable.®

Next, we ;:onsider expressions that can be assigned an sp-proper typing. The model we use here is
(A.C,). which by 3.2 is complete. Note that L € C,, since L is extensional in A.

Lemma 4.2 Let { be the valuation in (A,C,) which assigns L to all predicate variables. Suppose that
1 is an sp-proper type. Then [r],CL.
Proofl. By induction on sp-proper types. If 7 is a type variable R, then [7};, = {(R) = L.

Suppose r=o~—+p. To show [r};CL assume E€[r],. Since (A,C,) is complcte, [¢];€C,, hence
:A'Clo), aind z€[c];. Thus Ez€[p);, and by induction assumption Ez€L, since p is sp-proper.
Hence LEL. :

Suppose 7=V R.g. Then [+, = M{la], | 8 = {{Q/R], QEC,} & (o), and the latter is a sub-
set of L by induction assumption.

The case where = is conjunclive is trivial

Theorem 4.3. If £ has an sp-proper typing then E is solvable.

Proof. It suffices to consider closed expressions E. Assume }—E:r is derived, where r is sp-proper.
By lemma 2.2 it follows that E E[r],, for any closed model (A,C) and 7 therein. By lemma 4.2
[r;CL.so E€Lm

A similar statement is proved in [CDV81], but wherc only first-order types are treated.

Finally, we show that if E has a p-proper typing then E is normalizable, provided the typing
derivation is essentially first-order (as defined in §1).

The modei we use here is (A,N,).

Lemma 44, Let ¢ be ﬁrst-ordcr and proper. Let { be a valuatdon in (A,N,) which assigns N to all
predicate variables. Then zN'C[+},CN. :

Prool. By induction on proper types. If.r is a type variable R, then [r], = {(R)= N

Suppose r=o-*p. To show [r;CN assume E€[r};. By induction assumption, z€[c];, hence
Ez€[p];, and by induction assumption £z€N. Thus E€N.
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To show zN'Clr);. let zE€zN°, For any F€la), we have FEN, by induction assumption, so
2EF€zN". By induction assumption zN"Clp),. so zEF€[p);. Thus zE€[rl.

The case where = is conjunctive is trivial |

Remark. Unlike the proof of 4.2, we necd in 4.4 the lower bound condition zN'Clr};. This breaks down
if r=VR.o.

Lemma 45. Let ¢ be a valuation in (U,C), which agrees with a valuation 7, cxcept that {(R)2Q7n(R)
for a particular type-variable R. If R does not occur positively in ¢ then [r],Clr],.

Proof. By induction on r, simuitanecusly with the dual statement: If R does not occur negatively in 7
then [r]; D[], m

Lemma 4.6. Assume r is p-proper, { a valuation in a model (A,C). There is a proper type ¢ aid a
valuation x such that [r], = [8], C [4];.

Proof. Let & be r with  replaced throughout by some fresh type variable R. Let x = J[A/R]
Then [7]; = [9) by a mivial induction on 7, and {8], C [8]; by 4.5m

Theorem 4.7. (Coppo-Dezanni-Venneri [CDVS1]). If E hasa p-proper typing, essentially first-order
derived, then £ is normalizable.

Proof. It suffices to consider closed E. If —£:r has an essentally first-order derivation, where = is p-
proper, then @*(£) is valid in (AN,), by lemma 2.4. and lemma 3.1, i.e. £ € [r], for every valuation
7 in (AN,). In particular, E€[7};, where { is as above. By 4.6 [r]; C [];, and by 4.4 [];CN. So
EENE ,

By the Exaple above the restriction in the theorem to cssentially first order derivations is essential,
Not: that if the condition that the derivation be first-order is replaced by the condition that afl types in the
derivation be p-proper (sub-types not being counted), then no initial typing B}—£:w can occur in the
derivation. All occurrences of w can then be replaced by some fresh type variable, and all types become
proper. We are then back to the case of theorem 4.1.

5. Comvergence properties implying typing; characterization theorems.

All expressions have trivially the type w. We show here that expressions satisfying certain conver-
gence properties can be assigned more interesting types [CDV81]. Namely,

o every solvable expression E has an sp-proper typing;

o every strongly normalizable expression has a properly derived first-order typing; and

e every nommnalizable expression has a p-proper first-order typing.

Lemma 5.1. If E is in head normal form then £ has a first-order sp-proper typing.

Proof. Clearly z:w—w=*::+* —w—R|~2F;--- F;:R is dcrived, where there are k occurrences of
w, and R is a type variable. The lemma follows.®
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Let C; and C, be contexts. We write CyAC; for the context C that agrees with €y and C
for the arguments on which C; and C, do not disagree, and C(x) = C{x)ACyx) if C{x) and
C4(x) arc both defined and distinct.

Lemma 5.2 If A derives CE:r, C is any context, then C AC |—E:r is derived by a derivation A’
identical to A, exccp't possibly for inference of typings initial in A from typings initial in A', by
instances of AE. -

Proof. Trivial induction on A.E

Lemma 5.3. Assume C=—E[F/x]:r is derived by A. Then either
(1) C|—E:7 is derived, and the derivation is proper if A is proper; or
(2) there is a type o such that C A{x:o}—EL:r and C|—F:o are derived. Moreover, if A is
proper then so are these two derivations.
Proof. By induction on the derivation A of CHE[F/x]:r. (1) applies if x is not frce in E. (2)
applies otherwise, where ¢ is the conjunction of all types assigned to F in A (for occurrences of F
substituted for x in E{F/x]Dm

Lemma 54. If C|~E[F/x}r is derived, thensois Ci—~(AxE)F:r. Moreover, if the former is properly
derived, and C —F:p is properly derived (for some p), then C AC ~(AxE)F:r is properly derived.

Prool. Suppose that A derives C{—~E[F/x}:r. If case (1) of 5.3 applics, then, by —71, C|-AxEia—>r
is derived for any type a. Let a=w in the general case, a=p if the extra lemma assumption holds, and
use =/, .

If case (2) of 5.3 applies, then CHAxE:o=r and Cl=F:0, so CH{(AxE)F:r is derived.
Morcover, if A is proper then the last derivation is proper, by 5.3.8

Lemma 55. Suppose E B-converts to E' (in one step), and C|—E":r is derived. Then Cl—E:r is
. derived. . :

Moreover, suppose that C}—E :r is properly derived If £ comes from E by replacing an
occurrence H of (Ax.F)G by F[G/x]), and G has a properly derived typing, then C |—E:r is prop-
erly derived for some C'.

Proof. By straightforward induction on the depth of A in E, using 5.4 for the base case.m

Theorem 5.6. [CDV81). If a A-expression E is solvable then it has an sp-proper typing.

. Proof. By induction on the length of the shortest 8-conversion lcading from E to an expression in head
normai form. The induction basis is lemma 5.1. The induction step is lemma 5.5

Corollary 5.7. The following conditions are equivalent.
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1. E is solvable.
2. I has an sp-proper typing.
3. £ has an sp-proper first-order typing.

Proof. By 5.6 (1) implies (3). {3) implies (2) trivially. (2) implies (1) by 4.3. m

Lemma 5.8. If E is normal then there is a typing C|—£:r derived using proper first-order types only.
Proof. By induction on E. The case I is a variable is trivial.

Suppose £ = Ax.F. By induciion assumption there is a derivation A, using proper first-order types
only, for the typing C,x:o+=F:p. Applying —/ we get such a derivation for C|—Axf:o=>p.

Suppose E = zFy,'-+ Fy, z a A-variable. By induction assumption there arc proper first-order
derivations A; deriving typings C;}=Fj:e;, i=1l---k. Define a context C by
Clx)=Cy(x)n-++ aCx(x) for x other than z, C(z2)=Cy(z)A -+ ACi(z)A(oy—> - - - —az~>R),
where R is fresh. By lemma 5.2 there are proper first-order derivations deriving Cl—Fio;, i=1--- k.
Applying AE and —E yiclds a derivation of C{—E:R M

Theorem 5.9. If a A-expression E is strongly normalizible then it has a first-order properly deiived typ-
ing. _

Proof. By induction on the reduction tree of £. The induction basis is lemma 5.8. The induction step is
lemma 5.4.M )

Corollary 5.10. The following conditions are cquivalent.
1. E is strongly normalizable,
2. E has a properly derived typing.
3. £ has a typing derived by a proper first-order derivation.

Proof. By 5.8 (1) implies (3). (3) implies (2) trivially. (2) implies (1) by 4.1. ®

Theorem 5.11. [CDV81]. If a A-expression £ is normalizable then it has a first-order derived p-proper
typing. :
Proof. By induction on the length of the shortest B-conversion leading from E to an expression in nor-
mal form. The induction basis is lemma 5.3. The induction step is lemma 5.4

Corollary 5.12. The following conditions are equivalent.

L E is nommalizable.
2. £ has a first-order derived p-proper typing.
3. E has a first-order derived proper typing.

Proof. By 5.11 (1) implies (3). (3) impliés (2) trivially. (2) implies (1) by 4.7.m
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6. Strong normalization in the ontological discipline.

Let us now sce that every expression of the Second-Order Lambda Calculus is strongly normalizable,
as a corollary of the analogous resuit for the untyped calculus (theorem 4.1). The idea is simply this. On
the one hand, every typed expression E can be viewed as an untyped expression E* decorated with its
own proper type inference {Proposition 6.1). On the other hand, a sequence § of reductions on a typed
expression E is isomorphic to a scquence of reductions on  E®, possibly with intermittent stretches of type
reductions. The first one is finite by 4.1, and the latter ones are finite because type reductions shorten the
syntax tree of a typed A-expression. Thus S must be finite.

The Second-Order Lambda Calculus is defined in [Rey74, Gir72, FLO83J, Lei83al. In this calculus,
like in any other typed version of the Lambda Calculus, all expressions (and subexpressions) carry their
types, and an expression contins, in fact, its type derivation. In particular, each ¢xpression carries exactly
one type, excluding thereby use of w, or of type-conjunction. Since the type derivation of an expression is
in fact contained in it, a type-derivation for an expression is merely a reconstruction of the typing informa-
tion from the structure of the expression. This feature is best illustrated by the treatment of type abstrac-
tion, for which the infcrence rules are analogous to the rules =/ and —*E for A-abstraction and appli-
cation: '

|—E:q —E:ARo

(p freefor R in o)
—ARE:ARo ' : [—Ep:elpl R}

Using our terminology from §1, all type-infcmﬁcc rules for the Typed Calculus are thus structurai,
none is stationary. ’ '

Clearly, from the combinatorial viewpoint of type deduction, the type inference system obtained here
is merely a notational variant of the system described in §1 for the semantical discipline, restricted to its
proper and A-free fragment For an éxpresion E of the Sccond-Order [.ambda Calculus, let £% be the
undcrlying untyped expression. That is, E¥ is defined inductively by

o (x') =x,,

. (AX,".E’)" = AI,J.E'.

o (EF} = E*F¥,

o (ARE) = E*,

e (Er)* = E®,

The following proposition foilows immediately from the definition of the inference rules.

Proposition 6.1. [Lci83al. Let E be an expression of the Second-Order Lambda Calculus. The uatyped
A-expression E¥ has a proper and A-free typing®

Lemma 62. Let £ = (Ax*G’)H® be an expression of the Second-Order Lambda Calculus,
F = G[HIx]. Then E* B-convertsto F* (in the untyped calculus).

Prooi. Trivial from the definition of the mapping £ =E* A
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Lemma 6.3. Let £ be an expression of the Sccond-Order lambda Calculus, and supposc that £ B-
converts (in one step) to F. Then E* f-convensto F¥.

Proof. By induction on the depth in £ of the converted redex, using 6.2 for the induction basis. |l

For an expression E of the Second-Order Lambda Calculus let aE be the number of object-
applications and type-applications in £. Thatis, aE is defined inductively by

e alx’) =0,

o a(Ax*.E?) = a(E*)

¢ alEF) = aE+aF+1,

» a(AR.E) = GE,

e alEr)= aF +1.

Recall that in the second-order calculus one has type-8-conversions: (AR.E7)o converts to

E{e/R}

Lemma 64. Let £ be an expression of the Second-Order Lambda Calculus. If £ converts tb F bya
type-B-reduction, then aF =af -1.
Proof. By induction on the depth of the converted redex in E. The induction basis in proved by induc-
tion on ¢xpressions. :

Onec last trivial lemma is:
Lemma 6.5, If £ converts to F by a type-8-conversion then ¥ = L%
Proof. As for 6.4

We can now »ut the picces together:

Theorem §.6. [Gir71,72] Every expression E of the Second-Order Lambda Calculus is strongly nonnaliz-
able (within that calculus).

Proof. Let E be an cxpression of the Sccond-Order Lambda-Calculus. Let E¥ be defined as above. By
. 6.1 and 4.1 E¥ is strongly normalizable. The theorem is proved by (main) induction on the reduction tree
of EY, and secondary induction on aF.

Suppose E converts to F. If this is a A-conversion, then E* p-converts to F¥, by 6.3, so by
induction assumption F is strongly normalizable. If the conversion is a type-f8-conversion, then
F* = EY by 65, and aF < aE, by 64. So F is strongly normalizable by the secondary induction
assumption.

Since every expression to which E converts is strongly normalizable, then £ must be strongly nor-
malizable.®
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