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1. Introduction

Ada I8] is a language containing many advanced features not available previously in any widely-used
programming language. These features include: data abstracticn mechanisms {packages, private
types, derived types, overloading, user redefinition of operators), explicit parallelism and
synchronization (tasks, entries, accept statements), a rich separate compilation facility and a powerful
strong-typing mechanism. The use of these facilities ailows for highly readable, efficient and
maintainable programs. However, techniques and paradigms acquired in previous experience with
other programming languages do not necessarily carry over directly into good Ada programming
techniques. Indeed, our experience has been that a considerable re-learning effort is required to
program comfortably in Ada.

This report is the beginning of an exploration aimed at evolving a philosophy of programming in Ada.
The culmination of this effort will be a book covering a large spectrum of techniques desirable for
efficient programming in Ada.

This report is not an introduction eithef to Ada or to programming. We have assumed a rather high
level of knowledge of revised Ada on the part of the reader. In addition, familiarity with data
structures, structured programming practices and parallelism is a prerequisite to understanding this
repoit.

In choosing examples for inclusion, we considered the following criteria to be essential:

e The examples should be "realistic”. The feature providaed by an example should be of
more than "academic interest".’

* The examples must be self-contained, complete Ada compﬁérions. Portions or excerpts
of programs are not acceptable.

® The examples must be small enough to be comprehensible with a reasonable amount of
effort.

We did not choose the examples in an attempt to cover any predetermined number of language
features. The aim of our research is to evolve appropriate methods of programming in Ada, and neot to
explore language design. We decided to aillow the programs themselves to dictate the language
features to be displayed.

Five examples have been included. The first example is of a generic package providing two

1For example, programs like the "sieve of Eratasihenes”, for determining prime numbers (10, were ruiad out for their fack of
extra-academic ulility.
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abstractions for queues (FIFO lists). The example shows some aspecis invfblved in attempting to
implement a convenient, efficient and transportable library package. Both of the queue types are
used in later examples in this report.

A simple directed graph package is displayed in Chapter 3. The primary purpose of this generic
library package is the provision of an iterator facility. The use of the iterator, and alternative graph
traversal capabilities are discussed. Some interesting trade-offs involved in information hiding versus
ease of use and readability are also described.

The next example is highly machine dependent. It is a console teletype driver for a POP-112,
Representation specifications, interrupt handling and machine-dependent programming are
illustrated.

The fourth example, contained in chapter 5, is a package providing a string table creation and search
mechanism. Interesting uses of generic packages and parameters are shown. Problems
encountered in providing a "protected” mechanism are aiso described.

Chapter 6 contains the last example. A procedure is given that implements the relaxation methed for
determining the temperature distribution on a rectangular plate. The algorithm is implemented by a
user-specified number of tasks. Thisis an interesting problem in parallelism and synchronization.

All of the examples have been checked for {compile-time) semantic correctness by a semantic

analyzer for revised Ada provided to us by Intermetrics, Inc. (18].

We welcome any and all comments on this effort. Comments and suggestions may be sent by U. S.
mail to: '

Professor Peter Hibbard
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pa. 15213

or, via the ARPANET to:
PETER.HIBBARD@ CMU-10A

QPDP is a registered trademark of the Digital Equipment Carporation.
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2. An Implementation of Queues

2.1 Description

One of the most common data structures in programs are queues, which are frequently used as
buffers between processing elements.

The generic package below provides two kinds of queues: a finite queue for use with sequential
programs, and a finite queue for use with multi-tasking programs. Each instantiation of the package
requires a type parameter that specifies the type of the queued elements. After instantiation, any
number of queues may be declared by using the types Queue and Blocking_Queue.

In addition to the package specifications, the following information applies to the use of the package:
e For a queue variable, Q, the invocation Init_Queue must be made once. This invocation

must proceed any use of the Append, Remove, Is_Full, Is_Empty or Destroy_Queue
subprograms with queue Q.

e When any queue variable Q is no longer needed, the invocation Destroy_Queue(Q)
should be made.

¢ The MaxQueuedElts discriminant to the queue types represents a minimum

performance specification. All implementations of Queue_Package will guarantee that at
least MaxQueuedE1ts number of items can be held in a queue.

The two types of queues have different semantics for the Append and Remove operations. The
semantics for type Queue are:

¢ If the specified queue is emply and a call o Remove is made, the exception
Empty_Queue will be raised.

o |f the specified queue is full and a call to Append is made, the exception Ful1_Queue will
be raised.

The semantics for type Biocking_Queue are:

o If the specified queue is empty and a call to Remove is made, the calling task will be
blocked until 3 corresponding call to Append is made.

¢ If the specified queue is full and a call to Append is made, the calling task will be blocked
untif a corresponding call to Remove has been made.

» All operations provided for type Block ing_Queue are indivisible.
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2.2 implementation

The technique used for the static queue is a simple circular array. It is fully analyzed elsewhere {al.

The technique used for the blocking queue is the same except there is an accept statement
surrounding each operation to provide mutual exclusion and blocking.

2.3 Program Text

generic
type EltType is privale;

package Queue_Package is
type Queue(MaxQueuedElts : Natural} is limited privaie,
procedure Append(Q : in out Queue:; E : in E1tType);
procedure Remove(Q : in out Queue; E : out E1tType);
function Is_Empty(Q : in Queue) return Boolean;
function Is_Fuli(Q : in Queue) return Boolean;
procedure Init_Queue{Q : in out Queue):
procedure Destiroy_Queue(Q : in out Queue);
Full_Queue, Empty_Queue : exceplion;
type Blccking_Queue(MaxQueuedE1ts : Natural) is limited private;
procedure Append(Q : in out Blocking_Queue; E : in El1tType};
procedure Remove{Q : in out Blocking Queue: E : out £E1tType):
funclion Is_Empty(Q : in Blocking_Queue) return Boolsgan;
function Is_Fuli{(Q : in Blocking_Queue) return Boolean;
procedure Init_Queue(Q : in out Blocking_Queue};
procedure Destroy_Queue{(Q : in out Blocking_Queue);
pragma In11ne(Is_Empty,Is_Fu11,Init_Queue,Destroy_Queue):
private

subtype Non_Negative is Integer range 0..Integer’ LAST;

type Queue(MaxQueuedElts : Natural) is

record
FirstElt, LastETt : Non_Negative := 0;
CurSize : Non_Negative := 0;

Flements: array(0..MaxQueuedElts) of ETtType;
end record;
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task type Blocking_Queue_Task is
entry Pass_Discriminants{Queue_Size : in Natural);
entry Put_Element(E : in E1tType);
entry Get_Element(E : out ET1tType};
entry Check_Full(B : out Boolean);
entry Check_Empty(B : out Boolean);
entry ShutDown;
end Blocking_Queue_Task;

type Blocking_Queue(MaxQuenedElts : Natural) is

record
Monitor : Blocking_Queue_Task;
end record;

end Queue_Package;

package body Queue_Package is

pragma Inline{Is_Empty,Is_Full, Init_Queue,Destroy_Queue);

procedure Append{Q : in out Queue; E : in EltType) is
begin
if Q.CurSize = Q.MaxQueuedElts then
raise Full_Queue;

else
Q.CurSize := Q.CurSize + 1;
Q.LastEit := {Q.LastE1t + 1) mod Q.MaxQueuedElts;
Q.Elements{Q.LastEIt} := E;
end if;
end Append;

procedure Remove{Q : in out Queue; E : out ET1tType} is
begin
if Q.CurSize = 0 then
raise Empty_Queue;
else
Q.CurS5ize := Q.CurSize - 1;
Q.FirstElt := (Q.FirstElt + 1) mod ¢.MaxQueuedElts;
E := Q.Elements{Q.FirstElt);
end if;
end Remove;

function Is_Full(Q : in Queue) return Boolean is

begin ‘
return Q.CurSize = Q.MaxQueuedElts:
end Is_Full;
function Ts_Empty(Q : in Queue) return Boolean is
begin

H

return Q.CurSize 0;

end Ts_Empty;
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procedure Init_Queus(Q : in out Queue) is
begin

null;
end Init_Queue;

procedure Destroy_Queue(Q : in out Queue) Is
begin

null;
end Destroy_Queue;

task body Blocking_Queue_Task is
MaxSize: Natural;
begin
accept Pass_Discriminants(Queue_Size : in Natural) do
MaxSize := Queue_Size;
end Pass_Discriminants;

declare

Queued_Elements: Queue(MaxSize);
begin

Init_Queue{Queued_Elements});

Monitor_Operations:

loop
select
when not Is_Full{Queued_Elements) =>
accept Put_Element(E : in E1tType) do
Append(Queued_Elements, E);
end Put_EClement;
or
when not Is_Empty(Queued_Elements} =>
accept Get_Element(E : out E1tType) do
Remove(Queued_Elements, E};
end Get_Element;
or
accept Check_Full(B : out Boolean) do
B := Is_Full(Queued_Elements);
end Check_Full;
or

accept Check_Empty(B : out Booiean) do
B := Is_Empty(Queued_E1ements);
end Check_Empty:
or
accept ShutDown;
exit Monitor_Operations;
or '
terminate;
end select;
end loop Monitor_Operations;
Destroy_Queue(QueuedﬂE!ements);
end;
end Blocking_ Queue_Task:
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procedure Append{Q : in out Blocking_Queue; E : in E1tType) Iis
begin

Q.Monitor.Put_Element(E);
end Append;

procedure Remove(Q : in out Blocking_Queue; E : out E1tType} is
begin

Q.Monitor.Get_Element(E);
end Remove;

function Is_Ful1{Q : in Blocking_Queue) return Boolean is
Temp : Boolean;

begin
Q.Meonitor.Check_Full{Temp);
return Temp;

end Is_Full;

function Is_Empty(Q : in Blocking_Queue) return Boolean is
Temp: Boolean;

begin
Q.Monitor.Check_Empty{Temp);
return Temp;

end Is_Empty;

procedure Init_Queue(Q : in out Blocking_Queue) is
begin

Q.Monitor.Pass_Discriminants(Q.MaxQueuedElts);
end Init_Queue; :

procedure Destroy_Queue{Q: in out Blocking_Queue) is
begin

Q.Monitor.ShutDown;
end Destroy_Queue;

end Queue_Package;

2.4 Discussion

2.4.1 Use of Limited Private Types

The ability to declare queues is provided via the limited private types Queue and B1 ocking_Queue.
The need for the private specification should be clear. The only way the package can guarantee
correct operation of the Remove and Append procedures is to prevent the package user from having
access to the internal representation. To allow the changing of the queue representation, the
package must also guarantee that no part of the user's program depends on the current
impiementation.

The need to have the type limited is a bit more subtle. Suppose assignment were permitted between
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two variables of type Queue. After assigning one queus variable to another queue variable, we need
to know whether the two variables represent two different queues with the same elements being
queued and in the same order, or whether the assignment means that the two variables denote the
same queue. In the current implementation, the former semantics would be supported by the
assignment statement. f a typical implementation using dynamic storage were provided, the latter
interpretation would probably prevail. There are two different "meanings” for the assignment
statement. The equality operator would be even more fuzzy. For example, what if two different
queues contained the same elements but they happened to be in different array locations in the
particular implementation above? For this case, the predefined equality operator would unexpectedly
return False. To avoid having the user program depend on one of these interpretations, which could
be changed easily, the visible types are both limited and private.

2. 4.2 Initialization and Finalization

In the description of this package, it is asserted that all queues must be initialized by the Ini t_Qﬁeue
subprogram. Examination of the package bedy reveals that the Init_Queue subprogram does
nothing for nonblocking queues. It would therefore appear to be unnecessary. However, consider
the case where the representation changed from an array to a pointer, and where the implementation
used linkad list elements with a dummy block at the front of the queue.3 This representation requires
some preprocessing to initialize the data structure wefore it can be used. To ensure that changing
representations is possible, all queue packages provide Init_Queuein their specifications.

It should be noted that other solutions exist for the initializaticn problem. It is possible to enclose the
data needed for the abstraction in a record along with a boolean variable that indicates if the record
has been initialized. Default values for record types allow one to guarantee that this boolean variable
has the initial value False. Every routine in the package would validate the data structure (by
checking the boolean field in the record) before using it. We believe that such an approach is
generally wasteful. Many of the clever algorithms for data structure manipulation attempt to avoid
extra tests by special features, such as the dummy blocks mentioned above. Requiring a special test
before any use of the variable nuilifies the added value of many of these algorithms.

Finalization is not as easy to deal with as initialization. The current implemantation of nonblocking
queues, as arrays, needs no final processsing when the scope containing the queue variable is exited.
Exiting from blocks and procedures reclaims the storage automatically. But, suppose the queue’s
alements were stored in explicitly allocated storage, via new. When the scope containing the queue

variable is exited, the storage for the queue's clements will remain. By providing a user-lavel

3This technique is discussed in Wuif, et. al. {191
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mechanism, such as the Destroy_Queue subprogram, the package assumes the burden of providing
a means for releasing unneeded objects.

2.4.3 Passing Tasks as In Out Parameters

it would seem that the limited private type for Blocking_Queue should be a task type and not a
record type. Hf the type had been a task, the only permissible parameter mode for a Blocking_Queue
parameter would have been in. Thus, the specification of the Append procedure would declare the
blocking queue parameter as being passed with the in mode. This looks very confusing to a
programmer working from the package specifications. It is usually assumed that objects that are
changed by a subprogram are passed with the in out mode. The philosophy of data abstraction in
Ada requires that such knowledge be hidden from the user of the package to insure that such
knowledge is not expleited in some way. A record may be passed with the in out mode, even if
contains a task type as a component. This technique helps hide the actual impiementation.

Furthermore, if the limited private type for Blocking_Queues were a task, user programs could not
write subprograms that passed Blocking_Queues as in out parameters. This would be a natural
way to program as many systems would build subprograms where a queue would be passed along
with other data.

There is a third advantage of using a record type rather than a task type. With a record type, the Ada
specifications for blocking queues and nonblocking queues are identical. The user could therefore
switch from one to the other without having ta change other parts of his program (except as it might
rely on other parts of thé semantics of the queue package).

2.4.4 Passing Discriminanis to Tasks

As this example illustrates, it is useful to give parameters to an abstract data type, in this case a queue
size specification and an element type. Two methods can be used to accomplish this: a generic
parameter can be passed to the package or a discriminant can be provided for the declared type.

Instantiating the package once for each queue size clutters the program text. Furthermore, it means
that each instantiation generates a new queue type. The user would have to duplicate subprograms
to handle each size.* '

Allowing the size of an abstract data type to be part of a subtype is more convenient and familiar to a
programmer. This is done by using a discriminant constraint in a record type. Both varieties of
gueues are therefore implementad with records.

This is similar to a well known problem in Pascal: arrays with different sizes are different types. This means that one cannot
easily write a procedure to sort an arbitrary integer array.
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For the blocking queue, there must be a way to pass these discriminant values to the task. This is
done by means of the Init_Queue procedure and the Pass_Discriminants entry.

2.4.5 The Elements Array

A close reading of the program reveals that the last element of the Elements array is never used.
This results from an interaction between the restrictions on discriminants in Ada and the use of mod
in the algorithm for calculating index values. The formuia for calculating the FirstElt and LastElt
values relies on the mod function to wrap the index around, from MaxQueuedElts-1 to 0. This
avoids a special test when a value is at its maximum, which wouid be necessary if the algorithm used
array elements 1 through MaxQueuedE1ts. The rules for discriminants atlow oniy the discriminant to
appear as an array bound in a record, not a expression. So, MaxQueuedElts must be used instead
of MaxQueuedElts-1.

2.4.6 Remove as a Procedure

It might seem natural to have specified Remove as a function instead of a procedure. However, Ada
restricts the modes of parameters to functions to in. Since we made the decision to pass a queue in
out if it is to be modified, we were forced to make Remove a procedure,
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3. A Simple Graph Package Providing an Iterator

3.1 Description

Graphs, of one form or another, are an important data structure throughout most of computer
science. This example displays an implementation of a simple package providing an abstraction of
directed graphs. The specification includes some type definitions, culminating in the Ob j record type,
which serves to define the structure of directed graphs. The user is responsible for allocation,
initialization and manipulation of the nodes which form a graph.

The primary function of the package is to provide an "iterator”. lterators provide a means for
enabling a user-definable looping abstraction mechanism. This particular iterator provides a facility
which may be used to breadth-first traverse a graph.

One might expect that a "complete” library graph package would provide a much heaithier range of
functionality than our example does. In addition, it would seem advisable to hide much of the
currently-exposed detail. The package could provide a uniform, implementation-independent manner
of creating, manipulating and destroying nodes.

We avoided such an implementation so as tc allow the reader an unobstructed view of the iterator.

The algorithm for the breadth-first traversal is a modified version of that in Horwitz and Sahni, page
264 [7] (see section 3.4.1 of this paper). Other traversal methods, expressed as iterators, could easily
be provided. For example, a depth-first traversal would be a primary candidate.

3.2 Specifications
To use the iterator, one must declare a variable of type Breadth_First. The iterator is initialized by
invoking the procedure Start. Start takes three parameters:

B The iterator to initialize.

N The node at which the breadth-first traversal is to begin. If N=null, the exception
Null_Node is raised and initialization is not completed.

Max_Nodes The maximum number of nodes which might be reached during this search. A
rather generous estimate of this value may be provided with lite cost in
unnecessary overhead. M this number proves to be insufficient, the exception
Too_Many_Nodes will be raised at some point by the Nex & function {see below).

Due to the algorithm chosen, there is an upper limit on the total number of graph iterations which may
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be started (whether used to completion or not). If this limit is exceeded, the exception
Too_Many_Traversals will be raised (see section 3.4.1).

Once an iterator has been properly initialized, three routines are available:

¢ The More function may be cailed to determine if there are reachable ncdes which have
not yet been generated.

e The next node in the search is obtained via the Next function. For any iterator, B, if
More(B)=False, thenthe invocation Next (B) will raise the exception End_0f_Graph.

o To inform the iterator of the end of its usefulness, the Stop procedure is provided. Alter
invocation, the iterator is available for re-use if desired.

An aitempt to invoke More, Next or Stop with an uninitialized iterator will cause the Start_Error
exception to be raised. Attempting to Start an iterator more than once, without invoking Stop, will
also raise this exception. In addition, only one iterator per package instantiation may be active at any
time. Start_Error will be raised if this is viglated.

A client of this package should not rely on any semantics which depends on actions taken if edges of
a graph are modified during a traversal.

3.3 Program Text

generic
type Item islimited private;

package Graph_Package is

type Obj;
type Node is access Obj;

-— The following two type definitions allow a node to have an arbitrary
-- number of descendants.

type Sons_Array is array{Natural range <>) of Node;
type Sons is access Sons_Array;

type Hidden_Type is fimited private;
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type Obj is
record
Contents : Item;
Descendants : Sons;
Hidden : Hidden_Type; -- "Hidden" field
end record;

-- The following specifies the breadth first iterator

type Breadth_First islimited private;

procedure Start(B : in Breadth_First;

N : in Node;

Max_Nodes : in Natural)};
function More{B : in Breadth_First) return Boolean;
function Next{B : in Breadth_First) return Node;

procedure Stop(B : in Breadth_First);

Start_Error, Null_Node, End_Of_Graph : exception;
Too_Many_Traversals, Too_Many_Nodes : exception;

private

type Hidden_Type is

record -- To obtain default initiaiization
Counter : Integer := Integer’FIRST;
end record;

task type Breadth_First is
entry Start{N : in Node; Max_Nodes : in Natural);
entry More{(B : out Boolean);
entry Next(N : out Node);
entry Stop;
end Breadth_First;

end Graph_Package;
with Queue_Package; -- From Chapter 2 of this report
package body Graph_Package is

Start_Flag : Boolean := False;

Counter : Integer := Integer’'FIRST;
-- Counter 1is incremented by 1 at the start of each traversal. Each
-- node’s Counter field (within Hidden) contains a copy of the value
-- of Counter the last time the node was generated. Upocn reaching a

-- node its Counter field is compared with the variable Counter to
-- determine if it has already been seen during this traversal.

13
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procedure Start(8 : in Breadth_First;
N : in Node;
Max_Nodes : in Natural) is
begin
if Start_Flag then raise Start_Error; endif;
if N = nullthen raise Null_Node:; endif;
B.Start{N, Max_Nodes};
Start_Flag := True;
end Start;

funclion More(B : in Breadth_First) return Boolean is
Flag : Boolean;

begin :

ifnot Start_flag thenraise Start_Error; end if;
B.More{Flag};
return Flag,

end More;

function Next(B : in Breadth_First) return Node is
N : Node;

begin :
if nol Start_Flag then raise Start_Error; end if;
8. Next(N);
return N:

end Next;

procedure Stop(B : in Breadth_First) is

begin
if not Start_Flag then raise Start_trror; endif;
B.Stop:
Start_Flag := False;

end Stop;

task body Breadth_First is
Current : MNode; ‘ -- Node to expand next

Size : Natural; -~ This holds a copy of the Max_MNodes
-- parameter to the Start entry.
-- It is necessary because scope of
-~ entry parameter is limited to
-- accept body.

begin
accept Start(N : in Node; Max_Nodes : in Natural) do

if Counter = Integer'LAST then
raise Too_Many_Traversais;

end if;

Counter := Counter + 1;
Current := N;
N.Hidden.Counter := Counter;
S5ize := Max_MNodes:

end Start;
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declare
package Q isnew Queue_Package(Node);
Queue : Q.Queue(Size);
procedure Next_Body(N : outl Node) is separate;
-- Separately compile to aid readability
begin
Q.Init_Queue(Queue);

Iterator_Operations:

loop
select
accept More{B : out Boolean) do
B := Current /= null;
end More;
or
accept Next(N : out Node) do
Next_Body(N});
end Next;
or
accept Stop do
Q.Destroy_Queue(Queue);
end Stop;
exit Iterator_Operations;
or
terminate; -- Simply die, when scope exited
end select;

end loop Iterator_QOperations;
end;

end Breadth_First;

end Graph_Package;

15
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separate (Graph_Package}
procedure Next_Body(N : oul Node) is
begin

if Current = null then
raise End_0Of_Graph;
end if;

N := Current;
it N.Descendants /= nulithen
for I in N.Descendants.ail’RANGE loop
declare
Desc : Node renames N.Descendants(I);
begin
if Desc /= null and then Desc.Hidden.Counter < Counter then
-- This node has not been seen this traversal
Q.Append(Queue, Desc);
Desc¢.Hidden.Counter := Counter;
end if;
end;
end loop;
end if;

it 0.Is_Fmpty(Queue) then

Current := null;
eise
Q.Remove(Queue, Current):
end if;
exception

when Q.Full1_Queue =>
Start_Flag := True;
Q.Destroy_Queue(Queue);
raise Too _Many_Nodes;

end Next_Body:

3.4 Discussion
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3.4.1 The Algarithm

We chose the particular algorithm for graph traversal because it obviated the need for a "visited" flag
in each node. This enabled us to eliminate the associated overhead required to maintain access to ail
of the flags (to clear them before each traversal),

The algorithm works by maintaining a single giobal counter in each iterator and a local counter in
each node. The globat counter is incremented by one at the beginning of each traversal (initiated by a
call to Start). The local counter in a node indicates the value contained in the glchal counter the
last time the node was reached. During a traversal, the tocal counter of a node may be compared with
the giobal counter to determine if the node was already reached (during this traversal). This node was
seen earlier if and only if the local counter is equal to the global counter.

To maintain correctness, when the globéi counter overflows, we must disallow further traversals.
(Cnly traversals for the particular package instantiation are forbidden, since the global counter is
allocated on a per-instantiation basis) This could be considered a serious restriction on the
usefulness of this facility for some compiler implementations. Consider, that on a PDP-1 1, standard
integers are only 16 bits. This allows only about 64,000 traversals.

A reasonabile machanism for alleviating this problem would be to add a second generic parameter o
Graph_Package:

generic
type Item is private;
type Counter_Type is range <;

The user would supply any Integer type as Counter_Tybe. The type would be used to declare the
global and local counters. This would allow users of implementations which support larger Integer
types, such as Long_Integer or Long_Long_Integer, to effect an enarmous upper limit on the
number of traversals.3

3.4.2 Infermation Hiding

Frequently, when designing a package to provide an abstract type, one desires to provide the type
with two kinds of structure: a part which is visible to (and, usually, manipulable by) the client, and, a
part which is hidden from him. This hidden part generally contains data which is specific to the
particular implementation. Good pregramming practice dictates that the user be protected from
himself, by not allowing him access to this information. There seems to be no prescribed manner for
implementing this in Ada. However, there are several choices avaijlable.

5 . . -
A 3B bit Integer type, as on the POP-1G, would allow for approximately 84 billion traversals. if traversals were initiated at
the average rate of 100/second. it would take 20 vears 1o exhaust the capacity of an iterator.
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The obvious metheod is to hide all of the information from the customer. This is easily accomplished '
by specifying a (limited) -private type definition for the abstract type. The disadvantage of this
approach is that the package must provide a means for accessing and modifying the ‘:visible" parts of |
the type structure. This is most easily done by specifying procedures (and, possibly, functions) which
perform the actions within the body of the package. Our limited experience indicates that this adds a
significant amount of complexity to the specification and use of the abstraction.

For example, the statement

X.Contents.Flag := True;

might need to be expressed as

Temp_Contents := Get _Contents(X);
Temp_Contents.Flag := True;
Set_Contents(X, Temp_Contents);

This method does, however, allow a fine degree of control aver the abstraction since all access 1o the
objects is strictly controlled.

We believe the scheme we have chosen provides less control but a greater degree of readability than
the former scheme.

The idea is to force a form of hiding by placing the desired parts within the public type, but contained
within a field whose type is fimited private. This prevents the user from doing anything "significant”
with the data. Unfortunately, the user can still select the hidden field, as well as declare variables,
record fields and formal parameters of this type. Ultimately, however, nothing may be "done” with
these cbhijects.

A more serious problem is that the user is not able to perform assignment between abjects of the
abstract type. This is because it contains a limited private fisid. In contrast, equality for the type
may be provided by the package explicitly, if desired.

Admittedly, the solution is imperfect, yet, it provides a form of information hiding intermediate
between the previous method and no hiding at all.

3.4.3 In/In Qut Parameters

In section 2.4.8, the point was made that parameters that will be modified should probably be passed
in out. In this specification of Start, Next and Stop we have not toltowed this policy. We felt thatin
this case, the readabiiity gained by allowing Next to be a function, outweighed the other

considerations. (Recail that functions are not allawsed to have in out parameters.)
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3.4.4 YUsing the lterator

We demonstrate a use of the iterator facility in the following example.

function Reach(From, To : in Node) return Boolean is

-- Determine if node To 1is reachable from node From

B : Breadth_First;
begin

Start{(B, Frem, Size); -- Size is a global
while More(B) loop
it Next{B) = To then
Stop{B):
return True;
end if;
end loop;
Stop(B);
return fFalse;

end Reach;

Using an alternative loop termination technique, we might replace the body of Reach by

Start{B, From, Size); -- Size is a global
loop
begin
it Next(B) = To then
Stop(B};
return True;
end if;
exception
when End_0Of_Graph =>
Stop(B):
return False;
end;
end loop;

3.4.5 lterators Versus Generic Procedures

Our decision to provide an iterator is based upon our belief that iterators provide a natural and familiar

mechanism for looping. The Ada for loop is a simple form of iterator. Several languages, notably IPL-
V [14], CLU [12] and Alphard [8, 15], have included user-definable iterator facilities directly in the

language definitions.
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An alternative to an iterator is to define a generic procedure to enable graph traversal. Consider the
specification

genetic
with procedure Visit(N : in Node; Continue : out Boolean);

procedure Breadth_First(N : in Node; Max_Nodes : in Natural);

To use this facility, the client instantiates Breadth_First with a procedure that performs the desired
actions on its Node parameter. The Continue parameter is used to inform the Breadth_First
procedure of when to stop. Breadth_First would operate by inv_oking Visit {in reality, the actual
procedure parameter instantiated for Vi sit) once for each nade resached. Breadth_First
terminates iis actions when Continue becomes False. '

The procedure Reach, shown previously, might be written

function Reach(From, To : in Node) return Boolean is
Result : Boolean := False;
procedure Visit{N : in Node; Continue : out Boolean) is
begin
if N = To then
Result := True;
Continue := False;
else
Continue := True;
end if;
end Visit;
procedure Walk isnew Breadth_First{Visit);
begin .
Walk(From, Size); -- Size is a glohal variable
return Result;
end Reach;

Qur primary argument against the generic procedure is that its use obscures the fact that looping is
being performed. On the other hand, the iterator provides a facility whose use displays the looping.
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4. A Console Driver fora PDP-11

4.1 Description

A typical function in embedded systems is performed by a device driver which provides a cgnvenient
interface between a system and the particular hardware requirements of an input/cutput device.
Some of the functions performed by this program are buffering of requests for the device, ensuring
the integrity and validity of these requests, and fielding interrupts from the hardware.

This example illustrates the general organization which may be used, with some specific details for a
PDP-11 console terminal [5, 4].

The device driver program makes the following assumptions about the underlying run-time system
and implementation:

e The type that describes the available hardware for the Low_Level_10 package includes
the constants Console_Keybeard_Caontrol, Console_Keyboard_Data,
Console_Printer_Control, and Console_Printer_Data. It is assumed that the
system will treat calls of Send_Control and Receive_Control as read and write
operations with the correct size and at the correct location {e.g., operations on console
devices are mapped into reading and writing locations 777560-777566 octal).

e Specifying a location for an entry means that interrupts which use that location will be
translated into a call on the entry.

e No data are explicitly passed by an interrupt. Therefore, ail entries that have
representation specifications must have no parameters.

In addition to the task specifications, the following information is necessary to use this package:

o The package makes no guarantees about servicing all interrupts. If the underlying run-
time system can guarantee that all interrupts wiil be translated into entry calls, then the
package will not lose any interrupts. This says nothing about the proper servicing of
those interrupts. On the PDP-11, the datum indicated by an interrupt is lost if the data
register of a device is not read before the next interrupt is processed.

e If requests for a device occur faster than the device can process them, the driver will
cause the requesting process to block until the request can be processed properly.

s A one-half second delay while waiting for the output device is sufficient time to allow
completion of a request. If the output device does not respond within ane-half second,
the program will initiate the transmission of the next character. Retransmission of
characters is not attempted.

e 264 characters of data buffering are provided. The characters passed to the
Write_Character procedure will be cutput without medification.
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e The ShutDown entry is used as a way to terminate the device driver cleanly. When a call
to ShutDown is made, the currently buffered data will be destroyed. No further
processing of these data or servicing of cutstanding interrupts will be done by the device
driver.

e The Reset entry is functionally equivalent to a ShutDown entry call followed by a re-
elaboration of the task declaration. The Reset procedure will also try to send the
necessary control signals to reset the hardware device,

Knowledge of the following is also necessary to understand the functioning of this program:

» The device interrupt vectors start at 60 octal for the input device, 684 octal for the output
device,

o Device interrupts are enabled by sending the value 100 octal to the device's control
register.

4.2 Implementation

A central problem in this example is implementing asynchronous processes with the synchronous
mechanism of rendezvous provided by Ada. This is done using three explicit tasks that monitor
requests from the program, interrupts from the input device, and interrupts from the output device. Ail
three tasks communicate via shared queues. As long as queues allow fast access, no part of the
system will be blocked while waiting for ancther task to complete a rendezvous. However, if the
program produces requests faster than the device can process them, a queue can become full and

the requesting task will be blocked,

4.3 Program Text

package Terminal_Driver_Package is

task Terminal_Driver is
entry Read_Character{C : out Character);
entry Write_Character{C : in Character);
entry Reset;
entry ShutDown;

end Terminal_Driver;

end Terminal_Driver_Package;
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with Queue_Package, Low_level_I0;
use Low_Level_1I0;
package body Terminal_Driver_Package is
task body Terminal_Drivar is
-- Group all of the machine dependent constants together

Cansole_Input_Vector : constant := 8#60#;

Console_Output_Vector : constant := B8#64#;
Enaple_Interrupts : Integer := 8#100#;
Write_Time_Cut : constant Duration := 0.5;
Number_Of_Lines: constant := 2; :
LinelLength: constant := 132;

task type Device_Reader is

entry Interrupt;

entry StartUpDone;

for Interrupt use at Console_Input_Vector;
end Device_Reader;

task type Device _MWriter is

entry Interrupt;

entry StartUpDone;

for Interrupt use at Console_Output_Vector;
end Device_Writer;

package Char_Queue_Package is new Queue_Package{Character);
use Char_Queue_Package;

type DriverStateBlock is
record
InputCharBuffer, OutputCharBuffer
Blocking_Queue{Number_Of_Lines*Linelength});
Curfeader : Device_Reader;
CurWriter : Device_Writer;
end record;

type RefToBlock is access DriverStateBlock;
CurState: RefToBlock;

task body Device_Reader is
TempInput : Character;
begin
accept StartUpDone;
Send_Control(Console_Keyboard_Control, Enable_Interrupts});
loop
accept Tnterrupt do
Receive_Control(Console_Keyboard_Data., TempInput);
end Interrupt;
Append(CurStata.InputCharBuffer, Tempiaput);
end loop;
end Device_Reader;
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task body Device_Writer is
TempQutput : Character;
begin '
accept StartUpDone;
Send_Control{Conscle_Printer_Control, Enable_Interrupts};
accept Interrupt; -- spurious interrupt caused by Send_Control
loop
Remove{CurState.QutputCharBuffer, TempOutput);
Send_Control{Console_Printer_Data, TempQutput};
select
accept Interrupt;
or
delay Write_Time_0Qut;
end select;
end loop;
end Device_Writer;

procedure ShutPown0ld is
begin
raise CurState.CurReader’ FATLURE;
raise CurState.CurWriter FAILURE;
Destroy_Queue({CurState.InputCharBuffer);
Destroy_Queue({CurState.OutputCharBuffer);
end ShutDownOld;

procedure StartlUp is

begin
CurState := new DriverStateBlock;
Init_Queue{CurState.InputCharBuffer);
Init_Queue(CurState.OutputCharBuffer});
CurState.CurReader.StartUpDone;
CurState.CurWriter.StartUpDone;

end StartUp;
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begin
StartUp;

Console_QOperations:
loop
select
accept Read_Character(C : out Character) do
Remove(CurState.InputCharBuffer, C);
end Read_Character; )
or
accept Write_Character(C : in Character) do
Append(CurState.OutputCharBuffer, C);
end Write_Character;

or
accept Reset do
ShutDown0Ql1d;
StartUp;
end Reset;
or
accept ShutDown;
ShutBown01d;
exit Console_DOperations;
or
terminate;
end select;
end loop Console_Operations;
exception
when Terminal_Driver'FAILURE =>
ShutDownO1d;

end Terminal_Rriver;

end Terminal_Driver_Package;

4.4 Discussion

4.4.1 Use of a Package to Surround the Task

Ada does not allow tasks to be in a library. To allow the inclusion of the Terminal_Driver taskinto
a library, we have elected to enclose it in a package.

4.4.2 Distinction Between Task Types and Tasks

Unlike most examples of tasks in this report, this task does not explictly define a type. Task types are
usually used when many objects of a particular class are desired. It is probable that only one driver
per physical device is needed. Although it can be argued that a type would aillow the use of the same
task type for different terminals (or even devices), the restrictions on address specitications weakens

this argument. The device addresses must be static expressions. They cannot bé passed as
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discriminants to a type {or via an initializing entry call). The only reasonatle way to pass these
parameters at compile time would be to use generic parameters to the package. The object
instantiated would still be a task, not a task type.

This package is not generic because of the number of parameters which would be necessary: four
device names, buffering sizes, and time-out values. The use of the device information is also tightly
wired into the task., For example, it is known that immediately after enablin‘g interrupts on the output
device, a spurious interrupt will be generated that provides no data. This peculiarity may not be true
of all devices. Declaring a task type might tempt users to use this driver improperly.

The user may wish to create some higher level operations and capture the device driver as part of the
representation for the abstraction. Unlortunately, the decision to declare a task instead of a task type
has precluded this possibility.

4.4.3 Resetting and Terminating the Terminal Driver

Unfortunately, devices malfunction. A device driver must be able to deal effectively with this prbblem.
The Ada language intended the FAILURE exception and abort statement to be used for these
purposes, but use of these techniques causes an irreversible exit from the scope of the device driver.
By providing the user with additional en-tries to manipulate the operation of the driver, as well as the
operations within the driver, the driver task circumvents this restriction.

4.4.4 Interfacing to Devices

The example shows one possible interface between the hardware and the run-time system for Ada,
Two important decisions concern the lack of parameters to entries that are mapped to interrupts, and
the use of the Low_l.eve1_I0 procedures to access device registers rather than the direct reading or
writing of the (virtual memory) device registers.

When a device interrupts the PDP-11, it usually means that a datum can be read from the device’s
data register. It might seem natural to pass this datum to the entry call mapped to the interrupt., This
choice was rejected for three reasons. First, it would require an elaborate explanation of the
implementation of entry calls in appendix F of the Language Reference Manual [8]. Entry calls are
supposad to be a machine-independent part of the language. The proper place to describe machine
dependencies is within the Low_Leve1_I0 package, which is intended ta he machine dependent.

Second, attaching these details to the entry call semantics makes addition of devices more difficult.
Each time a new device is added, the compiler must be changed to provide a semantics for it, in
particular, the new kind of calling sequence. With the interpretation used in this example, the

compiler can translate all entry calls with representation specifications into the same style of code.
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Third, it would move the buffering decisions for interrupts from the device driver fask to the run-time
system. The number of per;ding interrupts that have not been accepted by a program depends on the
amount of buffering the run-time system provides. if input data must also be stored, the number of
pending entry calls {from interrupts) is more limited than if no such data were kept. Further, entry call
biocks could not be shared among different entries. The decision for this amount of storage would be
entirely determined by the run-time system. If only interrupts are handled, the run-time system ¢an
optimize its storage to hold only relevant interrupt information. The program can then provide its own
buffering for as much or as little data as it desires.

There are cases, such as in radar systems, where the existence of new data immediately invalidates
any need to keep old data. Such requirements could not be added easily by the user programmer o
the run-time system design. In the case of the console terminal driver, 264 characters of data are
buffered. As long as the run-time system will pass on the interrupts faithfully, the package can make
claims about the amount of buffering available.

PDP-11 device registers ére referenced by reading and writing into designated memary locations. It
might seem reasonable to obtain the data in these registers by declaring a variable with a
representation specification that maps it to the specified location. The decision to use the
Low_Level_I0 package is motivated by the desire to keep machine dependencies as lecal as
possible. If directly-mapped variables were used, the semantics of the assignment statement and type
system would have to define explicitly what is meant when a variable of a certain type is written or
read. It is inappropriate to make these decisions just to provide input/output capabilities. For each
device that a system supports, it is reasonable and practical to specify exactly the subprograms of
Low_Level_I0. Furthermore, as long as these semantics can be guaranteed among different
implementations of a machine’s architecture, the program can be moved from machine to machine.
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5. Table Creation and Table Searching

5.1 Description

In this section we present an example that uses generic packages to nrovide routines to search a
table and to retrigve the items stored there. The table, and auxiliary data objects created to help the
search, are encapsulated within a package created by instantiating a generic package. They are not
accessible except by the routines exported from that package. A program may have several tables
which it can search; a package must be instantiated for each table, and the routines which are
exported act specifically upon the table within the corresponding package.

The package has been designed so that the table size is fixed once it has been instantiated. Table
look-up returns all items whose keys "match” the given key. 'A match occurs if the given key is a
leading substring of a key associated with an entry. A facility such as this might be used, for example,
to store the reserved words for a compiler, or the list of commands available to a command

interpreter.

Each entry in the table comprises two parts: a key, implemented as a value of type Text, provided by
the library package Text_Handler ([8}, section 7.6), with which the entry will be retrieved, and an
item whose type is defined by the user. The generic package Symbol1_Table_Package_Generator
is instantiated with the item type and the maximum iength of a key as parameters, and it yields, among
other things, the generic package Symboi_Table. Instantiation of this latter generic package with
{he table as a parameter causes an auxiliary object to be created to aliow fast look-up in the table, and
yields functions to search and retrieve entries in the table.

The types which are provided are:

Entry_Type The type of each entry in the table.
Table_Type The type of the table — an array of Entry_Type values.

Table_Pointer Thistype is private to the package. Values of this type are returned when the table
is searched, and they are used to retrieve the entries.

Entry_Coltlection _
An array of Table_Pointer values.

The functions which are yielded are:

Make_Entry This takes a String and an Item_Type and returns a record of type
Entry_Type.



30 Description Section 5.1

Search "This takes a String as a parameter. It searches the table and returns an
Entry_Collection whose elements indicate those entries with keys matching .
the given key. If no keys match, the Entry_Collection returned is a null array.
If several keys match, the Entry_CoTlection value has more than one element,
and the Table_Pointers are sorted by ascending key values.

GetKey This takes a Table_Pointer value and retrieves the key of the element which is
indicated.

GetItem This takes a Table_Pointer value and retrieves the item of the element which is
indicated,

The exception Invalid_Table_Pointer will be raised if GetItem or GetKey is passéd a
Tabl e_Pointer‘ value which is out of bounds. This might accur if an uninitialized Tabte_Pointer
variable were used as a parameter. The exception MaxSize_Error will be raised if the size specified
for the keys, via the generic parameter MaxSize, is too large.

5.2 Implementation

The table ¢f entries passed in as a parameter is not modified by the program. instead an auxiliary
array of pointers is created and this array is sorted during the elaboration of the package, by using a
heapsort [11]. Heapsort is preferred over quicksort because it has better behavior if the input table is
nearly sorted.

The Entry_Col1 ection for the entries with matching keys is found by the following strategy. First a
binary search is performed using routine Find. This operates by probing the midpoint of a segment
of the table, delimited by L and U, in order to find a match. One of three conditions holds after
returning from the call. If L is greater than U then no element matches the given key. If L is equal to U
then only one element matches. If L is less than U then the element pointed to by P matches, but there
may be other keys between L and U which might also match. To check this, further probes are
performed in the lower region delimited by L and P-1, and in the upper region deiimited by P+1 and U,
using repeated binary searches. The searches are repeated until a call on Find fails to yield a P
pointing to a matching key. The value of P yielded by the previous call on Find is the smallest ar
largest entry in the table that matches the given key.
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5.3 Program Text

with Text_Handler; -- [8], section 7.8
generic
type Item_Type islimited private;
MaxSize : in Natural;

package Symbol_Table_Package_Generator is
type Entry_Type(Length : Natural) is private;

function Make_Entry(S : in String:
I : in Item_Type) return Entry_Type(MaxSize};

type Table_Type isarray (Integer range <>) of Entry_Type(MaxSize);
MaxSize_Error : exception;

generic
Tahle : in Table_Type;

package Symbol_Table is

type Table_Pointer is private;
type Entry_Collection isarray (Natural range <>) of Table_Pointer;

function GetKey{Tndex : in Table_Pointer) return String;
function GetItem(Index : in Tabie_Pointer) return Item_Type;
function Search(Xey : in String)} return Entry Coilection;
pragma Inline(GetKey, GetlItem);
Invalid_Table_Pointer : exception;

private

type Table_Pointer isnew Integer range Table'FIRST..Tabple'LAST;

end Symbol_Table;
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private
type Entry_Type(Length : Natural) is
record
Key : Text_Handler.Text(Length);
Item : Item_Type;
end record;

end Symbol_Table_Package_Genarator;

with Text_Handler;
package body Symbol_Table_Package_Generator is
pragma Inline{GetKey, GetItem);
function Make_Entry(S : in String:
I : in Item_Type) return Entry_Type(MaxSize) is
begin
return Entry_Type’(Length => MaxSize,
Key => Text_Handler.To_Text(S, MaxSize},
Item => T1);
end Make_Entry;
package body Symbol_Table is
Ptr : Entry_Collection(1..Table ' LENGTH);
L, R, I, J, Reg : Table_Pointer;

function GetKey{Index : in Table_Pointer) return String is
-- Returns the key of an entry

begin
return Text_Handler.Value(Table(Integer{Index)).Key};
exception
when Constraint_Error => raise Invalid_Table_Pointer;
end;
function GetItem(Index : in TabTe_Pointer) return Item_Type is
-- Returns the item of an entry
begin
return Table{Integer(Index)).Item;
exception

when Consiraint_FError => raise Invalid_Table_Pointer;
end Getltem;
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function Search(Key : in String)} return Entry_Collection is
-- Search for entries with matching keys

L, U, Posn, P, Psave, Garbage : Integer;
Found : Boolean;

procedure Find(Xey : in String;
Lower_Bound, Upper_Bound : in Integer;
L, U, T : out Integer;
Found : out Boolean) is separate;
begin

-- First probe

Find{Key, Ptr'FIRST, Pir’LAST, L, U, Posn, Found);

if U > L then -- Not examined all entries between L and U
P := Posn; -- Probe lower region
loop
Psave := P;

Find(Key, L, P-1, L, Garbage, P, Found);
axit when not Found;

end loop;

L := Psave;

P := Posn; -- Probe upper region
loop
Psave := P;
Find{Key, P+1, U, Garbage, U, P, Found);
exit when not Found;
end loop;
U := Psave;

end if;
return Ptr(L..U);
end Search;
begin
-~ Initialize pir
for Cntr in Ptr RANGE loop

Ptr(Cntr) := Table_Pointer{Table'FIRST + Cntr - Ptr’FIRST);
end loop;
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-- Heapsort the table indirectly through Ptr

L
R

Ptr'LAST /7 2 + 1;
Pir’ LAST;

Outer_Loop:
loop

if L > 1 then

L := L -1,
Reg := Ptr(L):
else
Reg := Ptr(R);
Ptr(R) := Ptr(1};
R := R -1;
exit OQuter_lLoop when R = 1;
end if;
J = L;
Inner_lLoop:
loop
I := J; ‘
exit Inner_Loop when J > R/2;
J = 2 * J;
if J < R andthen GetKey(Ptr(J))} < GetKey(Ptr(J+1)) then
J = J -+ 1;
end if;

exit Tnner_Loop when GetKey(Reg) >= GetKey(Ptr(Jd)}:
Pir{I) := Ptr(Jd);
end locop Inner_loop;
Ptr{(I) := Reg;
end loop Outer_Loop;
Ptr{l) := Regq;
end Symbol_Table;
begin ~-- Body of Symbol_Table_Package_Generator

if MaxSize notin Text_Handler.Index then
raise MaxSize_Error;
end if;

end Symbol_Table_Package_Generator;
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separate (Symbo1_Tab1e_Package_Generator)

procedure Find(Key : in String;
Lower_Bound, Upper_Bound : in Integer;:
L, U, T : out Integer;
Found : out Boolean) is
-- Binary search

begin
L := lLower_Bound;
U := Upper_Bound;
Find_Loop:

while U >= L loop
I := (L +U) / 2
declare
Key_Of_Probe : constant String := GetKey(Ptr(I)});:
begin
if Key_Of_Probe’LENGTH > Key LENGTH then
exit Find_Loop when
Key =
Key_Of_Probe(Key Of_Probe'FIRST..
Key Of_Probe’FIRST+Key' ' LENGTH-1);

else
exit Find_Loop when Key = Key_Of_Probe;
end if;
if Key < Key_0f_Probe then
Uu:=1-1;
else
L := 1+ 1;
end if;
end;

endloop Find_Loop;
Found := U >= L;
end Find:

5.4 Discussion

5.4.1 Use of The Package

Following is an example of this package used as part of a command scanner.
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type Actions is (Find, Delete, Insert, Alter, Execute, Quit):

package Actions_Symboi_Table is
new Symbol_Tabie_Package_Generator(Actions, 8);

package My_Symbol_Table is
new Actions_Symbol_Table.Symbol_Table({
( Make_Entry("find", Find},
Make_Entry("delete”, Delete},
Make_Entry("insert", Insert},
Make_ Entry{"enter", Insert),
Make_Entry{"alter", Alter),
Make_Entry{"amend”, Alter),
Make_Entry("execute", Execute),
Make_Entry("quit", Quit),
Make_Entry("leave", Quit)
)
)i

5.4.2 Use of Packages

This example illustrates several features of the use of generic packages to effect data encapsulation.

e The table is passed into the generic package Symbol_Table as an in parameter;
thereafter it cannot be manipulated or altered from outside the package, This assures us
that the search function, which relies upon the proper ordering of the keys as established
by the initial sort, cannot fail no matter how erroneous is the client program using the
package.

e The functions Search, GetItem and GetKey which are exparted from a package are
specific to the package, and hence to the data encapsuiated within it. Thus, it is not
necessary to supply further parameters to these functions to indicate which of several
tables they are to access. In addition, the type of Table_Pointer is specific to the
instance of the package, and therefore it is not possible to access a table in one package
with the pointers from some other package.

5.4.3 The Types of the Entries in the Table

In the sorting and searching no use is made of the items in each entry, thus they can be made private
to the package; furthermore, by sorting on an auxiliary array of pointers, rather than on the array of
entries itself, the package does not require to take copies, and the items can be limited private.
‘This has two advantages. First, the item type can be of any size and compiexity, without slowing down

the sorting, and second. the items can be of any type, including task types.
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Choosing an appropriate type for the keys causes some problems. There appear to be three basic
choices, none of them entirely satisfactory. In addition to the choice illustrated in the example, we

have the following.

¢ We can implement the key as a String. The type of the entry then becomes:

type Entry_Type(length : Natural) is
record
Key : String{1..Length};
Ttem ; Item_Type;
end record;

and we must provide a parameter in the first generic instantiation to specify the maximum
size of the strings, as in the current example. The aggregate which is then passed as a
parameter to the second generic instantiation must contain string literals padded out with
the appropriate number of fill characters. This is tedious.

« We could implement the key as an access String. The declaration for the Entry_Type
becomes:

type Pointer_To_String is access String;

type Entry_Type is
record
Xey : Pointer_To_String;
Item : Item_Type;
end record;
type Table_Type is array (Integer range <>} of Entry_Type:

This has the virtue that strings of any size may be used as keys, and no parameter is
needed to specify the length (thus the outer generic package will only require the type
parameter). Unfortunately, there is a serious Haw in this implementation. Since it is
possible for the client to keep an access path to the entries in the table externally to the
package, it will be possible to alter the keys. Thus an erroneous client program could
alter the behaviour of the package in unpredictable ways.

One additional aspect of these three versions should be mentioned. Only in the case where the key is
a String is it possible to create the aggregate at compile time. In the other two cases it will be
necessary to create the aggregate at run time, and thus it is likely that two copies of the strings and
the items will xist in the memcry of the computer. This could preclude the use cf the Text_Handler

and the access String versions if the table is large.

5.4.4 Use of a Private Type for the Pointers to the Table

tn crder to prevent the user of the package from performing operations on the pointers into the table,
and possibly converting a legal pointer into an illegal ane, Table_Pointer is made private. There is
still the possibility that uninitialized Table_Pointer values will be passed by the client t¢ the routines
GetXey and GetItem. The exception Invalid_Table_Pointer is raised if the undefined value
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happens to violate the range constraints. We could alter the implementalion to ensure that all
Table_Pointer values are initialized, by making the type be a record type, and providing
initialization. We chose not to do it in this example, 1o avoid further complexity.

5.4.5 Nesting a Generic Package Within a Generic Package

if a package is to have the features we desire, we need at least two generic parameters: the type of
the items, and the table which is to be searched. However, the language does not allow us to pass
both these parameters at the same time to the same generic package, since the type of the table must
be available before we can pass the table as a parameter. Thus it is necessary to have twe nested
generic packages: the outer takes the type parameter, and preduces among other things the type of
the table and the inner generic package. The inner package is then instantiated with the table as

parameter,

5.4.6 String Comparisons

Several interesting points arise as a resuit of the need to perform string comparisons within the body
of Find. Several operations need to be performed on the key which is retrieved from the table when it
is being probed. Rather than retrieve the key repeatedly, we have decided to take a copy of it and
perform the operations on the copy. Sihce we do not know the size of the string before we retrieve it,
we must either take a copy in a new access value, or in a declaration in an inner block. We choose
the latter to avoid the need for garbage collection.

5.4.7 Use of Integers in Find

The variables Lower_Bound, Upper_Bound, L, U and I are all declared as Integer, rather than as
integers constrained by the bounds of Ptr even though they are used as indexers for Ptr, because
the algorithm aliows them to range from Ptr’FIRST-1to Pir’ LAST+1. More bounds checking will
occur in the body of Find and Search than is necessary, but there is no simple way to avoid this. We
considered placing range constraints on the parameters to Find (for exampile, Lower_Bound,
Upper_Bound and P can te constrained to the range 1. .Table_Length, and L and U to the range
0..Table_Length+1). While this could help locate errcrs more accurately, it might alsc add
sufficientiy to the complexity of the source that additional errors would be introduced by the

programmer.
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6. Solution of Laplace’s Equation with Several
Ada Tasks

6.1 Description

In this section we present the solution of a numerical problem using several Ada tasks. The solution is
designed for a muitiprocessor computer system such as C.mmp [18] or Cm* [17] in which the
processors have access to a shared memory.

Qur problem involves the Laplace partial differential equation:6

U
%2 E)‘y2

on a rectangular region D. We are given as boundary conditions the vatues of U on the edges of D. We
are to approximate a solution to the Laplace equation by finding the values of U at each point of a
mesh of points in the interior of D. The mesh is an m-by-n rectangular array of points, (1,j}, i = 1,.m

andj = 1,....n.

The Laplace equation can be approximated by the difference equations:

Uiprg * Yijer # Ui+ Y44 =0
The vaiue of UJ at a point (i,j) is the average of the values of U at the four neighboring points. We have
one such equation for each interior point (i,j). Taken together, the equations give us a linear system
of simultanecus equations to sclve.

Let us number the points (i,j) in row major order, which gives the numbering 1,...,mn. Let the vector u
be:
u={U

U U

g Uz oo Up)

Qur linear system may then be writlen as Au = 0. The coefficient matrix, A, is a symmaetric band
matrix with
¢ All diagonal elements egual to -4; and

e For non-diagonal elements, a,, = 1 if point p is a neighbor of point g, and 0 otherwise,

q

The method we will use to solve this system is a parailel version of Gauss-Seidel iteration with N Ada

Bin this presentation, we foilow closely the treatment of Dahiquist and Bjdrek [3], sections 5.6 and 8.6.3
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tasks. Each task is assigned to work on a portion of the system. Within each portion, the method
reduces to the normal single-process Gauss-Seidel iteration. The parallel Gauss-Seidel method was
studied by G. Baudet, who implemented it on C.mmp [1, 2].
)St

The Gauss-Seidel iteration formula for deriving the {n+ 1)> approximation of Uij from the n'" is:

Ui,i(nH) = (U 1J(n+1) + Uij_1(n+1) TR (n))/4

i= i+1 Wi+t

A modification to Gauss-Seidel which accelerates its convergence is the successive overrelaxation

method. its iteration formula is:

tn+1) - 0 . (n+1) (n+1) {n) (n)
U, = U, [ + Omegas(U,_, I TP '4Ui,;(")) /4

Here, Omega is the parameter to the successive overrelaxation method.? When Cmega is equal to 1,

the formula reduces to the original Gauss-Seidel formuta.

6.2 Implementation

The procedure we provide, Parallel_Relaxation, takes the matrix U as a parameter. [t is
assumed that the outside edge of U has been initialized by the caller with the cesired values. The
procedure computes the values of U for the interior (i.e., non-edge) points.

In our implementation, the coefficient matrix A'is not present explicitly, rather, the coefficients are

simply reflected in the iteration formula for successive gverrelaxation.

The procedure Parailel_Relaxation also takes a parameter, NumberOfRegions, which indicates

the number of Ada tasks to create.

Each Ada task works on a region of the matrix U. Each region is itself a rectanguiar matrix. A
rectangular grid of such regions is faid out over the interior of the matrix U. One Ada task is dedicated

to each region.

Testing for the convergence of the system as a whole must be done with care. To have convergence,
each task must believe that its own region has converged, and furthermore, all tasks must hold this
bekief "simultaneously”; that is, they must reach a unanimous consensus on whether or not they all
have converged. Observe that a task may decide prematurely that its region has converged, even

though a change may soon occur in its region because of a change in one of its neighbors.

TBesides the treatment of Gauss-Seidel iteration in Dahlguist and Bjorck [3] and cther texts on numerical methods, the
reader may wish to refer 1o McCracken [13], who gives a single-processor treatment of our problem as part of Case Study 11B.

BChoosing an appropriate value for Omegalis ciscussed in Dahiguist and Bjdrek [3], sections 5.6 and 8.8.3.
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For each region task, there is a coordinator task which is used to assist tn the communication
beiween the region tasks. The communication consists of one region task, A, advising a neighboring
region task, B, that A has not yet converged within its own region. Since A has not yet converged, its
neighbor B could not yet have really converged either, in spite of what B might believe locally. Thus,
we can think of this message from A to B as a command to B to keep on going. To avoid deadlock
and contention problems which would result if the region tasks did entry calls on each other directly,
the message is actually sent by having A do an entry call on B's coordinator task.

The consensus among the region tasks is achieved by passing messages to each other’s
coordinators, and by having a giobal counter of the number of unfinished region tasks. When a
region task believes that it is done, it decrements the counter. When a coordinator task receives a
message that its region could not reaily be done, it increments the counter. When the counter
reaches zero, we know that all region tasks thought they were finished.

Each region task repeatedly executes the following actions. First, it computes one complete nev;r set
of values for the points in its region. If the region has not yet converged locally. the task advises its
neighbors’ coordinators to keep on geing. If the region has converged locally, then the task
decrements the global counter of unfinished tasks. If the counter is zero, we are done; the task must
clean up the system of tasks (described below), and we may then return from the
Parallel_Relaxation procedure. If the counter is non-zero, the region task puts itself to sleep by
calling an entry of its coordinator, Wait. The coordinator will wake it up by accepting the Wait entry
call when a keep-on-going message is received; if such a message had already been received, the
coordinator accepts the Wait entry call immediately. The coordinator merges multiple keep-on-going
messages that have heen received since the last Wait éntry calt into one message. Multiple keep-on-
going messages will thus cause only one acceptance of the Wa it entry.

When a region task discovers in the test above that the counter of unfinished region tasks is zero, it
must arrange to wake any other region tasks that are sleeping on the Wait entries of their respective
coordinators. This must be done because all tasks which are tocal to a block in Ada must terminate
before we may exit the block. This waking up is handled by having another entry into the coordinator
tasks, the Finish entry. After a Finish entry cail is received, a coordinator will immediately accept
any Wait entry calls. After a region task returns from the Wait entry call, it }ooks again to see if the
global counter has gone to zero. it it has, the region task concludes that we are done and exits.

Finally, some systems of equations will not converge. As a practical matter, it is important to provide
an upper bound on the number of iterations. We do this by having another parameter to
Parallei_Relaxation, named MaxIterations. If this maximum is exceeded, then we sat

another parameter, DidNotConverge, to True and return.
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6.3 Program Text

6.3.1 A Protected Counter Task Type

Here we present a task type that provides a protected counter with operations for incrementing and
decrementing. It is protected in that the increment and decrement operations are indivisible. This
indivigibility is acheived by performing the operations within accept bodies. '

We surround the task with a package, so that it may be separately compiled and placed in a library.

package Protected_Counter_Package is

task type Protected_Counter is

entry Initialize{Z : in Integer);
entry Incr(Z : in Integer := 1);
entry Decr{Z : in Integer := 1);

entry Read{Z : out Integer};
end Protected_Counter;

end Protected_Counter_Package;
package body Protected_Counter_Package is

task body Protected_Counter is
Counter: Integer;

begin
accept Initialize{Z : in Integer) do
Counter := Z;
end;
loop
select
accept Incr{Z : in Integer := 1) do
Counter := Counter + Z;
end;
or
accept Decr(Z : in Integer := 1} do
Counter := Counter - Z;
end;
or :
accept Read(Z : out Integer) do
Z := Counter;
end;
or
terminate;
end select;
end loop;

end Protected_Counter;

end Protected_Counter_Package;
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6.3.2 Parallei_Relaxation Procedure

generic
type Real is digits <>
type RealMatrix is array(Integer range <>, Integer range <>)
of Real;

procedure Parallel_Relaxation(U : in out RealMatrix;
MaxErr : in Real; -
MaxIterations : in Natural;
NumberOfRegions : in MNatural;
DidNotConverge : out Boolean;
Omega : in Real := 1.0);

with Protected_Counter_Package, Math_Lib, Integer_MaxMin_Lib;:
use Integer_MaxMin_Lib;

procedure Parallel_Relaxatien{U : in out RealMatrix:
MaxErr : in Real;
MaxIterations : in Natural;
NumberOfRegions : in Natural;
DidNotConverge : out Boolean;
Omega : in Real := 1.0) is

-- MaxErr determines when we have converged (i.e., we have converged

-- when the change in the value of all points is <= MaxErr).

-- MaxIterations is a Timit on how many iterations to perform. If

-- we perform this many iterations without converging, then we set

-- DidNotConverge to True and return,

-- MNumberQOfRegions 1is the maximum number of Ada tasks to use.

-- Omega 1is the acceleration parameter to the successive overrelaxation
-- formula,

RowRegions, ColRegions : Integer;
NumRegions : Integer;
RowsPerRegion, ColsPerRegion : Integer;

RowlLo : conslant Integer := U'FIRST(1);:
RowHi : constant Integer := U'LAST(1);
Collo : constant Integer := U'FIRST(2);
ColHi : constant Integer := U'LAST(2);

subtype InteriorRows is Integer range RowlLo+1..RowHi-1:

subtype IntsriorCols is Integer range Collo+1..ColHi-1;:

LenInteriorRows : constant Integer := (InteriorRows®LAST -
InteriorfRows 'FIRST) + 1;

-- There is no 'LENGTH attribute for discrete subtypes.

LenInteriorCols : constant Integer := (InteriorCols'LAST -
InteriorCols'FIRST) + 1;

package Real_Math_Lib is new Math_Lib(Real);
use Real_Math_Lib;
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begin
-- Initially, assume that the system will converge:
DidNotConverge := False;
-- See if the matrix U has any interior points. If not, return:

if U'LENGTH({1) <= 2 or U'LENGTH{2) <= 2 then
return;
end if;

-- We zero the interior points ﬁnit1a11yr

for I in InteriorRows loop
for J in InteriorCols loop
u(t, J) := 0.0;
end loop;
end loop;

-- Determine the layout of the regions on the matrix. ‘
-- Each region is itself a rectangular sub-matrix. We lay down a
-- rectangular array of regions on top of the matrix. The

-- array is RowRegions by CoiRegions:

RowRegions
ColRegions
NumRegions

F1oor(Sqrt(Rea1(NumberOfRegicns)));
NumberOfRegions / RowRegions;
RowRegions * ColRegions;

1]

-~ E.g., for NumperOfRegions = 33, we get &, 6, and 30.
-- Only the 30 regions are actually used.

-- Each region is a rectangle of RowsPerRegion rows by
-- ColsPerRegion columns. The regions at the right edge
-— and the bottom may be smaller however:

I

RowsPerRegion
ColsPerRegion

{LenInteriorRows + (RowRegions - 1)) / RowRegions;
(LenInteriorCols + (ColRegions - 1)) / ColRegions;

-- Now that we know how many tasks we actually want, enter
-- an inner block to declare them:

ParRelax_Inner_Block:
declare
task type Region_Task is
entry SetParameter(SetMyRowregion,
SetMyColRegion : in Integer);:
end Region_Task;

task type Coordinator_Task is
entry Wait;
entry KeepOnGoing;
entry Finish;

end Coordinator_Task;
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Regions : array({1l..RowRegions, 1..ColRegions) of Region_Task;

Coordinators : array(1l..RowRegions, 1..ColRegions} of .
Coordinator_Task; '

Unfinished_Counter : Protected_Counter_Package.Protected_Counter;

task body Coordinator_Task is

Had_KeepOnGoing: Boolean := false;
Had_Finish: Boolean := False;
begin
loop
select

accept KeepOnGoing do
if not Had_KeepOnGoing then
Unfinished_Counter.Incr;
Had_KeepOnGoing := True;

end if;
end KeepOnGoing;
or
when had_KeepOnGoing or Had_Finish =>
accepl Wait do Had_KeepOnGoing := False; end Wait;
or
accept Finish do Had_Finish := True; end Finish;
or
terminate;
end select;
end loop;

end Coordinator_Task;
procedure Ali_Finish is separate;
taskAbody Region _Body is separate;
begin -- The statements of ParRelax_Inner_Block

- The count of unfinished tasks is initially all of the
-- region tasks:

Unfinished_Counter.Initialize(MumRegions};
--  Set the parameters of the regions tasks:

for T in Regions'RANGE(1)} loop
for J in Regions RANGE({2) loop
Regions(I,J).SetParameter(I,J};
end loop;
end loop;

-- We now simply wait at the end of the
-- declaring block for the tasks to terminate.

end ParRelax_Inner_Block;

end Parallel_Relaxation;
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separate (Paralleli_Relaxation}

procedure A11_Finish is
-- Calls the Finish entries of all the coordinators.
begin
for Rreg in Coordinators'RANGE(1) loop
for Creg in Coordinators 'RANGE(2) loop
Coordinators(Rreg, Creg).Finish;
end loop;
end loop;
end A11_Finish;

separate {Parallel_Relexation)

task body Region_Task is
MyRowRegion, MyCoiRegion : Integer;
begin
-- Task starts by finding out what region it has been
-- assigned:
accept SetParameter(SetMyRowRegion, SetMyColRegion : in Integer) do
MyRowRegion := SetMyRowRegion;
MyColRegion := SetMyColRegion;
end;

Region_Inner_Block:
declare
MyDone : Boolean;
New_Value : Real;
CurCount : Integer:

-- Compute the boundaries of my region. These are
-- the points that will be computed by me:

MyRowLc : constant Integer := (MyRowRegion - 1} *
RowsPerRegion + InteriorRows’'FIRST;
MyCollLo : constant Integer := (MyColRegion - 1) *

ColsPerRegion + InteriorCols'FIRST;
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-- If we’'re at the bottom edge, then MyRowHi shiouid
-- not exceed InteriorRows’'LAST:

MyRowHi : constant Integer := Min{(InteriorRows LAST,
MyRowlo + RowsPerRegion - 1};

-- Likewise, if we're at the right edge...:

MyColHi: constant Integer := Min(InteriorCols’LAST,
MyColLo + ColsPerRegion - 1);

begin
ItersLoop:
for Iters in 1..MaxIterations loop
MyDone := True;
- Compute a new value for each point in my
-- region: ’

for I in MyRowLo .. MyRowHi loop
for J in MyColLo .. MyColHi loop
New_Value := U(I,J) + Omega *
(U(1-1,J) + U(I,J-1) + U(I+1,J) + U(L,J+1) - 4.0*U(1,J)) / 4.0;
it Abs{New_Value - U(I,J)) >= MaxErr
then MyDone := Faise;
end if;
U{i,j) := New_Value;
end loop: -- over cols
end lcop; --over rows

if not MyDone then -- Tell my neighbors to keep on gaing:
if MyRowRegion /= 1 then
Coordinators(MyRowRegion-1,
MyColRegion) .KeepOnGeing;
end if;

if MyRowRegion /= RowRegions then
Coordinators(MyRowRegion+1,
MyColRegion).KeepOnGoing;
end if;

if MyColRegion /= 1 then
Coordinators{MyRowRegicn,
MyColRegion-1).KeepOnGoing;
end if;

if MyColRegion /= ColRegions then
Coordinators({MyRowRegion,
MyColRegion+1).KeepOnGoing;
end if;

47
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else
Unfinished_Counter.Decr;
Unfinished_Counter. Read(CurCount)
if CurCount = 0 then
-- We're all done. Wake up
-- everybody who's sleeping:

A11_Finish;
goto EndOfTask:
else

-- Wait to hear of some change
-- from my neighbors, or
-~ for all tasks to finish:

Coordinators{MyRowRegion,
MyColRegion}.Wait;

-- We've been woken up. See whether
-- because everybody’s finished,

-- or because of a KeepOnGoing

-- message:

Unfinished_Counter.Read(CurCount);
if CurCount = 0 then
goto EndOfTask;
end if;
end if;
end if;

-- See if some other task has taken too many
-- jterations already and if so stop iterating:

exit Itersloop when DidNotConverge;
end loop Itersloop;

-= Here iff some task {either my task or some
-~ other task) has taken too many iterations:

DidNotConverge := True;
A11_Finish;
end Region_Inner_Block;

<<EndO0fTask>>
null;
end Region_Task;
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6.4 Discussion

6.4.1 Use of Shared Variables

In our solution, we have used the array U as a shared variable. All the region tasks access it directly
without any additional protocol. The effects of such simultaneous access to a shared variable are not
specified in the Ada language, and will vary from implementation to implementation (see [8], section
9.11). In some systems, a floating point variable may occupy several bytes of storage, and
simultaneous reads and writes may produce an interleaving of bytes: the read may receive some bytes
from the value of the variable before the write and some bytes from the value after the write. Thus, the
read may receive a value that is neither the previous value of the variable nor the new value. For our
solution to be reasonable, we require that the operations of reading and writing the shared variables
be indivisible with respect to each other. Note that we do not require an indivisible read-modify-write

operation.

6.4.2 Updates of Shared Variables From Registers

Another potential difficulty with shared variables is the problem of the compiler keeping such
variables in local registers (see 8], section 9.11). A compiler is required to store these back to the
shared variabies only at those points where tasks synchronize, e.g., via rendezvous. Fortunately, in
our soluticn we have sufficient synchronization between the region and coordinator tasks for the
shared matrix U to be updated when needed. it is thus not necessary for us to employ the predefined
generic procedure Shared_Variable_Update.

6.4.3 Generics and Generic Instantiation

The procedure Paraliel_Relaxation is a generic procedure with two generic formal parameters:
the Hioating point data type and a two-dimensional array type of this floating point type. This allows a
user to instantiate the procedure with any floating point data type he has declared. He can, of course,
instantiate it several times, for example, once with a floating point type HisShort which is digits 6
and once with a floating point type HisLong which is digits 12.

Within the body of the procedure, we need some common mathematical functions on the generic
format type Real {e.g., Floor and Sgrt). Since these are not pre-defined subprograms in the
package Standard, we have to arrange for their definition. We assume the existence of a generic
library package, Math_Lib, which comtains, amongst other facilities, the functions we need.
Furthermore, we assume that Math_L ib has one generic formal parameter which is the floating point
type for which its facilities are to be provided. We obtain the routines we need by instantiating
Math_L1ib with our generic parameter Real,
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For a subprogram defined in the package Standard as a subprogram for the floating point types
(e.g., Abs or "+"}, the type Real will automatically inherit the subprogram, via the Ada derived type

mechanism.

6.4.4 Scheduling of Ada Tasks Onto Processors

Qur procedure is intended for use with an impiementation of Ada on a muitiprocessor computer
system, which will have some number P of physical processors. Our N Ada tasks will be scheduled
onto these processars by the underlying Ada system and/or by the operating system. Of course, we
intend that the system will devote more than one processor to our program. However, there is no way
of specifying or guaranteeing this within Ada. Suppose that P is less than N, or that the system
chooses to give our program less than N dedicated processors, because, for example the system is
multi-programmed or time-shared between several independent user programs. Cur procedure will
nevertheless execute correctly no matter how many processors are running the Ada tasks and no

matter their relative speeds.

Consider the case of having one processor executing our program. Suppose that initially this
processor is running some particular region task, A. Since none of this region's neighbors are
changing, the regien will eventually converge locally. The task A will find the global variable
Unfinished_Counter non-zero and will block on the call to its coordinator’s Wait entry. Since Ais
therefore no longer eligible, the processor will find some other eligible Ada task to run. As they block
and unblock during rendezvous, our Ada tasks will multiplex themselves onto the single processor.

Observe that this ability to execute correctly on a single processor is a property of our program, and
not a general property of any Ada program with multiple Ada tasks. In particutar, if a running Ada task
never engages in any rendezvous, there is no obligation of the underlying Ada system to ever de-
schedule it and let another Ada task execute. Restating, an Ada implementation may or may not

choose to do time-slicing, at the discretion of the implementors.
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