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ABSTRACT

A new method for determining the parameters of a pole-zero model for speech spectra is
proposed in this paper. In this method the cepsiral coefficients of a signal are split into two
parts; one corresponding to poles and the other to zeros. The decomposition is achieved by
using the properties of the derivative of phase spectra of minimum phase sighals.
Parameters of the mode! are derived recursively from the cepstral coefficients for poles and
zeros separately. Since poles and zeros are treated alike and derived independently, there is
no effect. of one on the other. The method is illustrated with several examples of speech
spectra. It is shown that in ali cases the envelé.pe fit is equally good at peaks as well as at
valleys in the spectrum. Resuits of this paper suggest a method of obtaining a linear system
-model for a given signal using a criterion different from the conventional minimization of mean
squared error criterion. Aithough the method is described for minimum phase signais oniy,
extension of the method to mixed phase signals is trivial, since a mixed phase signal can be

split into minimum and maximum phase components using complex cepstrum.



I INTRODUCTION

An important problem in signal analysis is the estimation of parameters of a pole-zero
model for a given signal spectrurﬁ. In this paper we present a general and effective method
for determining the parmeters. The method involves separating the effects of poles and
zeros based on the properties of the derivative of linear prediction phase specira reported
recently by tHe author {11 Besides the effectiveness of the derivative of phase spectrum,
the inherent advantages of linear prediction (LP) and homomarphic filtering approaches are
exploited o derive the parameters of the model in a simple and elegant manner. The
proposed technique yieids a linear system model for a signal using a criterion different from
the conventicnal minimization of mean sqaured error criterion. Although the technique can be
applied to a general class of signals, we confine our discussion to examples from speech
signal analysis, as these examples provide the necessary diversity of situations and also have

a physical interpretation.

Approximating speech .spectra by pole-zero mbdels and estimating the parameters of such
models has recently been the subject of active research [2]-[6] Techniques for soiving this
estimation problem' are primarily based on the principles of linear prediction and
homomorphic deconvolution. The approach in these methads is to determine pole parameters
first, either:directly from the signal or from the minimum phase equivalent of the signal. Zero
parameters are then determined from the residual signal by one of the several well known
methods [71[9) Since pole-zero modelling is a classical problem in the general area of
system identification, extensive discussion of this problem can also be found in linear systems
literature. Methods for simultaneously estimating pole-zero parameters are generally
iterative in nature and little is known theoritically about the convergence properties of the

algorithms available [3},{10][11]

In this paper a simple method for simultaneously determining the poles and zeros of a
model is presented. This method considers poles and zeros in an identical manner. In Sec.l

the problem of pole-zero astimation and the underlying principie of the proposed technique

[



are discussed. In Sec.lll the technique for complete pole-zero decomposition is presented.
An algorithm for pole-zero decomposition of speech spectra is presented in Sec.lV, Severai
examples of pole-zero deomposition of speech spectra are discussed in Sec.V. Effects of
various analysis parameters on the accuracy of the resulting pole-zero model are also

discussed. Some issues presently under investigation are cited in Sec.VIL.

Il. PROPERTIES OF THE DERIVATIVE OF PHASE SPECTRUM

In this section the problem and the underlying principle of the proposed method for solving

the problem are discussed.
2.1 The Problem

For a given signal x(n), determine the parameters of the pole-zero model

Hz) = Nz)/Diz) | (1)

where
Mz . .
N(z) = zatn)z" ) (2)
n=0
and
M
D(z) = EPa'(n) 2", (3)
n=0

such that the frequency response of the model matches the envelope of the spectrum of x(n),

In earlier attempts to solve this problem, a minimzation criterion is invariably used. Of
particular interest for probiems arising in speech are the linear prediction analysis and the
homomorphic filtering. In linear prediction analysis, the best all-pole fiiter (i.e., H(z} when
N(z)=1) is obtained by using a minimum mean squared error criterion. The error is computed
as the difference between signal samples and their linearly predicted values. In the spectral

domain this criterion is equivalent to minimization of the integrated ratio of the signal



spectrum and the model spectrum [7} In homomorphic filtering, a minimum phase estimate
vw(n) of x(n) is initialty obtained [8] This avoids the problem of pitch synchronization for
analysis of speech signals, since v(n) is a minimum phase estimate of the vocal tract impuise
response [4]. Linear prediction analysis is then performed on v{n) to determine the poles of
the model. This method is called homomorphic prediction [5] Zeros of the model are then
détermined by repeated application of linear prediction analysis {2] or by Shank’s method 9]
or by inverse linear prediction [7] An obvious limitation .in these‘methods is that the
_accuracy of the estimated poles is affected by the presence of zeros in the signal spectrum.
Methods for simultaneous estimation of -poles and zeros are iterative [11)[12] and
computationally complex. An interesting method for separating poles and zeros is by cepstral
prediction [6} This method uses the complex cepstrum %(n) of x(n). It can be shown that the
poles of nX(n) correspond to the poles and zeros of the original signal x(n). Linear prediction
analysis is performed to determine all the poles of nx(n). Each pole of nx(n) is classified as
either a pole or a zero of x{n} by obsérving the sign of the residue of the z-transform of
n¥(n) at the pole {51 However, this method also involves estimation of poles from a signal

having both poles and zeros.

2.2 Basis for Pole-zero Decoposition

Since the objective in the present problem is to determine a pole-zero model which fits a
spectral envelope, it is sufficient to consider the minimum phase correspondent of the given
signal. The spectra of the minimum phase correspondent and the original signal are identical
by definition. Properties of minimum phase signais have been extensively studied {8],[13} In
particular, all poles and zeros of a minimum phase signal lie within the unit circle in the

z-plane.

Properties of the derivative of phase spectrum of a stabie ali-pole system have been
recently raported by the author[i) These properties.were suggested for extraction of
formants using linear prediction coefficients (LPCs). A stable ail-poie system can be
represented as a cascade of first order sections with real poies and second order sections

with complex conjugate poles. The derivative of phase spectrum of a typical first order filter



‘{real poie}is given by

/
81(w) = —y/(wP+?) (4)
where ¥ is the corner frequency. The derivative of phase spectrum of a typical second order

filter (rescnator) is given by

. O(0) = -2a(a®+B2+02)/{(a2+52-02)2 449202} (5)
where a and B are the half power bandwidth and resonance frequency of the filter. These
eqations are derived in {1} In general 82 >> a2, The derivative of phase spectrum of the
overall filler, denoted by Oi(u), is a summation of the terms of the type given in (4) and {5).

Some impostant properties of 8 (w) are given below.
1. "I(“) is @ monotonically decreasing function of w
2. At low fregquencies ﬂi(w) = -1/
3. At high frequencies 'i(“') g -1/@2

[
4. -85(w) is approximately proportionai to the squared magnitude response of the fiiter

around the resonance frequency
5. At low frequencies 05(@) = -Za/ﬁz, which is a small constant quantitiy

6. At high frequencies Oé(u) = -2¢/u2

It is interesting to note that if the corner frequency « is large, then ai(u) will be small for
al w. On the otHer hand if 4 is small, then the iarge values of lll(w) are confined to
frequencies close to the origin. As a result of the properties 1, 2 and 3, real poles will have
negligible effect on the peak structure of #'(w) caused by resonances. The properties 4, 5

and 6 show that in ’r(w) there is negligible effect of one resonance peak on the other,

It is easy to visualize similar behaviour for real and complex conjugate zeros in the
derivative of phase spectra. The only difference is that the derivative of phase response for

zeros will have a sign opposite to that for poles. Specificaily, O'(w) will have a negative peak



due to a complex conjugate pole pair and a positive peak due to a complex conjugate zero
pair. These simple but powerful properties of the derivative of phase spectrum are shown to

accomplish the pole-zero decomposition discussed in the next section.

In Fig.1l the negative derivative of phase spectra for a first order and a second order pole
filter are shown. It is clear from the figure that significant vaiues of -Oi(u) are confined to
frequencies near the origin for real poles and to frquencies near the resonance frequency for
complex conjugate poles. In this paper all plots of the derivative of phase spectra are shown
after muitiplying with -1, so that positive peaks in the plots can be compared with peaks in

the magnitude spectrum, which correspond to resonances.

III. POLE-ZERC ANALYSIS

2.1 Relation Between Derivative of Phase Spaectrum and Cepsiral Coefficients:

Let V(w) be the Fourier transform of the minimum phase correspondent of a given signal,
Since all poles and zeros of V(w) lie within the unit circle in the z-plane [8], log V{w) can be

expressed in Fourier series expansion as foilows:

«
log V(w) = ¢(0) + I c(n)e™wn (6)
n=]

where {c(n)} are called cepstral coefficients. Writing

V(w) = [V(w)} el®V(®) | 7)

we get the real and imaginary parts of log V{w) as

L0



©
log [V{w)] = 2 c(n) cos nw (real part) (8)
n=0 '
and
0
hfw) + 2w = - Z ¢(n) sin nw (imaginary part) (9)
n=}

where X is an integer. Notice that dy(w) represents the phase spectrum of a minimum phase

signal. Taking the derivative of 8/{w), we get

i (v o]
Oy(w) =~ - T ne(n) cos nw. (10)
n=1

3.2 Pole~zero Decomposition

’\If("’) is the derivative of phase spectrum of a minimum phase signal whose properties
were discussed in Secll. In particular, the complex conjugate poles of V(w) produce negative
peaks in B\}(w) and the complex conjugate zeros of V(w) produce positive peaks in 0{,(:.:). The
real poles and zeros of V(w) do not significantly affect the peaks in ’\lf("’)' Therefore the
contributions of poles and zeros can be separated by considering the negative and positive

portions of 9{/&») respectively, Let

Bylw) =[BT + [oyiw)]* (11)
. where
[B(@)]™ = i) for 8y(w) <0 _
-0 for  8idw) 2 0 (12)
and
(Bt = o{w) for fy(w) 20
=0 for BAw)<0. (13)

We can express [B{J(w)]' and [O\J,(u)]*' separately in terms of the cepstral coefficients for

poles and zeros, since the relation given in {10) is valid for poies or zeros or for both. Let



<0

[0\'{(@)]" = - Z nc(n)cos nw . (14)
n=l
and
! @« »
[8y(w)]* = - T nc*n)cos nw, (15)
n-l -

where {¢7(n)} and {c*(n)} represent the cepstral cosfficients for pole and zero spectra of
V(w) respectively. Notice that c(ny=c"(n)+c*(n), which means that the cepstral coefficients are

split into two parts, one corresponding to poles and the other to zeros.

Here [0{,{@)]' represents the significant portion of the derivative of phase spectrum for the
poles of V{w) and [0;,(‘.:)]"‘ represents the signifiant portion of the derivative of phase
spectrum for the zeros of V(w). By significant portion we mean that the shape of the curve
in the positive portion of a{,{u) is largely due to zeros only and the negative portion of 0;,(:»)
is largely due to poles only. It is very important, for later discussion, to note that the shape

information is preserved in ¢7(n) and ¢*(n) for n=1,2,.., for poles and zeros respectively.

In most cases of signal analysis, the objecti_ve is to determine the envelope of a signal
spectrum. The spectral envelope is delermined by the first few cepstral coefficients in (8),
since they are the first few Fourier coefficients of the iog spectrum. If the series are
truncated, then the resuiting spectrum is called the cepstraily smoothed spectrum. It should
be noted that the value of ¢(0) does not affect the shape of the spectrum. Following the
same logic, we can obtain the cepstrally smoothed spectra for poles and zeros separately by

considering only the first few cepstral coefficients in {c™(n}} and {c*(n)} respectively.

We now describe a method of deriving the parameters of a pole-zers model that
represents the enveiope of a signal spectrum. Let the linear system given in {1} represent
the pole-zerc model we are trying to determine. Since the poles and zeros of H(z) lie within
the unit circle for a minimum phase spectral enveiope, the numerator and the denominator

polynomials can be considered as two inverse filters of linear prediction analysis 11431



Consequently, {a™(n)} and {a*(n)} represent two sets of LPCs. The cepstral coefficients of a
finite all-pole stable system can be expressed recursively through the LPCs as shown in [15],
These relations are also given in the Appendix. The inverse recursion Le, LPCs from cepstral
coefficients is also possibie, provided it is known that the cepstral coefficients are for a
stable all-pole system. By splitling the cepstral coefficients of the envelope spectrum into a
pole part and a zero parf, we achieved a decomposition which enables us to use the inverse
recursion to obtain the coefficients of the numerator and denominator pelynomials in (1). The

pole coefficients {a"(n)} and the zero coefficients {a*(n)} are given by the following relations;

Pole Coeffigients:

a™ (1) = -c(1)
-1
ja i) = -jc(j} -  TncHn)a(j-n), for j=2,3.M, (16)
nm=]
Zero Coefficients:
at(l) = - c*)
i-1
jaty = -je*(i) - EZnctnyatij-n), for j=2,3,..M, (17)
n=1

Only Mp coefficients of {c™(n)} and M, coefficients of {c*(n)} are needed to determine
completely the parameters of the model given in (16). The choice of Mp and M, for speech

signals is discussed in Sec.V.
3.3 Error Criterion

Conventionally, the parameters of a pale-zero model are determined using a minimization of
mean squared error criterion. Linear prediction analysis has been shown to be equivalent to
autocorrelation matching [6] That is, if {R(n}} and {ﬁ(n)} represent the autocorrelation
coefficients of a given signal and the impulse response of its ali-pole model respectively, then

for a p-th order model,



R(n) = ﬁ(n) for nw=0,l,.p, {18)

minimizes the total error E; given by

kil
E; = ',zl_Trj[P(”)/a(")] dw (19)
o

where

o

Plw) = Z R(n} cos naw {original spectrum} (20)
n=0

and

o

ﬁ(m) = z ﬁ(n) cos Nw {mode! spectrum). (21)
n=0

Analogously, if the linear system model is derived from the cepstral coefficients using the

relations given in the Appendix, then

e(n) = c(n) for n=1,2,..p. (22)

If the energy in the original spectrum and the model spectrum are equal, then

(0) = <{0) (23}
because c(O)-i-Og R(0) and ¢(0)=log R(O).

The proposed method can thus be interpreted as pole-zero modelling by cepstral matching,
which can be stated as follows: For a given order (MpaMz) of pole-zero model, determine
the model parameters such that the first Mp+1 cepstral coefficients of the model are equal to

the first Mp+l cepstral coefficients of the signal. The error between the original and the

mode! log spectra is given by

w
Eo = %_;ﬁlog P(w) - log 3(»)]2 dw (24)
o
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Writing E2‘ in cepsiral coefficients [15], we get

© .
Ep = [0-S02 +2 T [ctm)-&m)]2. (25)
n=1

After matching, the error becomes

©0
Ex= I [elm)-d(m)2. (26).
n=Mp+1

It should be noted that there is no minimization process involved in this method, We have
only shown that if the cepsiral coefficients of the model are chosen so as to match the first
Mp+1 cepstral coefficients of the signal, then the resulting rms log spectral error is given by

(26).

IV. IMPLEMENTATION OF POLE-ZERO DECOMPOSITION FOR SPEECH SPECTRA

So far the general theoritical basis for pole-zero decomposition of any given signal has
been discussed. In this section we present an algorithm for computing the parameters of the

model with specific reference to speech signals.

Speech is the output of a nonstationary vocal tract system, excited either by quasiperiodic
glottal pulses or turbulent noise or both. Thus the signal is a convolution of the excitation
signal and the impulse response of vocal tract system. Since both the system and excitation
are nonstationary, only short segments (10-40ms) of speech signal are considered for
analysis. During an analysis interval the system and excitation are assumed to be stationary.
The objective in speech analysis is to separate the spectral envelope corresponding to vocal
tract system, and the fine structure corresponding to excitation. In most applications of
speech analysis it is sufficient if the spectral characteristics are represented accurately,

Hence a minimum phase version of the signal is adequate for pole-zero modeliing.

In this pape.r we consider speech signals sampled at 10 kHz. The data was passed through

a preemphasis fiiter (1-.92z71) and then multipiied with a Hamming window before computing
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the spectrum. The detailed steps of the algorithm for pole-zero decomposition are given in
Fig.2. The derivative of phase spectrum is computed only from M cepstral coefficients. The
choice of .;u'l, Mp and M, depends on the accuracy of representation required for the
spectrum, the accuracy being specified in terms of the number of cepstal coefficients to be
matched. The effect of these parameters on the resuiting envelope is discussed in Sec.V. All

the DFTs in the algorithm were computed using a 512-point FFT.

V. RESULTS AND DISCUSSION

In this section we consider several examples of speech spectra to illustrate the application
of the proposed method. Our aim here is to show the effectiveness of the method in deriving
a pole-zero system that represents the envelope of spéech spectrum. The choice of the
parameters M, Mp,and M, and their effect oﬁ the resulting envelope are discussed. Data for
these examples was obtained from a spoken utterance, bandpass fillered (80 - 4500 Hz) and
sampled at 10 kHz. A segment of 20 msec (200 samples) was used in the anaiysis. The

specirum was computed as described in Sec.IV.
5.1 Choice of M, Mp, M,

These parameters determine the resolution of peaks and valleys in the speciral envelope
and aiso the error between the actual spectrum and the modelled spectrum. The value of M
determines the width of the window in the cepsiral domain used for computation of the
derivative of phase spectrum. It is ciear that a larger value of M produces a spectrum with
increased resolution for peaks and valleys in the derivative of phase spectrum. The
derivative of phase spectrum for a voiced segment for three different values of M(10,20,30)
are shown in Fig.3. The derivative of phase spectrum was obtained by computing the

expression
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, M
#{w)=-  Z ncin) cos nw. (27)
n=1

in Fig.3 -a'(..,) are plotted so that the positive part corresponds to poles and the negative
part to zeros. The dotted horizontal line indicates the dividing line between poles and zeros
and in this case happens to be the x-axis itself. The short-time spectrum of the segment is
also plotted in the Fig.3. If can be observed that positive peaks in the derivative of phase
spectrum plot correspond to peaks in the envelope of the short-time spectrum. Similarly
negative peaks in the derivative of phase spectrum correspond to dips in the envelope. The
improvement i.n resolution for higher values of M is also evident from Fig.3. The pole
spectrum P(w), the zero specirum Z(w) and the combined envelope spectrum P(w)Z(w) for
different values of M are shown in Figs.4-6. The various log spectra in dB are computed as

follows:

Poie specirum;

Mn
10 log P(w) = 101og [1/]1 + ¥ a™(n) el®n2] (28)
n=i
Zero spectrum:
M, ‘ _
10 log Z(w) = 101log [|I + Z a*(n) eiwn|2] (29)
n=]
Pole-zero s‘pectrum:
10 log P(w) = 10 log P(w) + 10 log Z{w) (30)

For all the cases in Figs.4-6 Mp=Mz-20. The resulting spectral envelope is nearly same
for different values of M. This may be due to the fact that the choice of M equal to 20 has
resolved all the significant spectral peaks. An important design consideration is demonstrated
by the analysis of a voiced fricative segment. Spectral envelopes obtained for di_fferent

values of Mp(st) when M=40 are shown in Fig.7. For low values of Mp and M., spurious
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peaks which do not match with the spectral envelope occur. These peaks have occurred
pecause after using a large value for M, if smaller vaiuves of Mp and M, are used, it Is
equivalent to truncating the coefficients of an all-zero filter. That is, if the actual filter is of
the order Mg and is given by

Mo

Aiz) = I a(mz™, (31)

n=0

then the response that will be computed for low values of Mp is for the fiiter

M

P
Az) = I amz™M. T (32)
n=0

In the above expression, the last MO'Mp values of {a(k)} sre removed by truncation. Such an
effect will not be observed if Mp is sufficiently large. This result may also provide a clue to
determine the actual number of poles and zeros present for a given spectral envelope. The
truncation effect wiil disappear if M=Mp-Mz. This is demonstrated in Fig.8 where the
envelope spectra are plotted for the three values of Mp considered in Fig.7, but with the
restriction that MsMp-Mz. Now even for Ibw vaiues of Mp there are no spurious peaks as in
Fig.7. The resulling spectra in Fig.8 shouid be interpreted as smoothed versions for the
specified order of the model. Thus, iow values of Mp(-Mz) for a given large vaive of M result
in truncation,'whereas low values of Mp subjected to the condition M-Mp-Mz resuit in

smoothing the spectrum appropriately.

5.2 Examples

Resuits of analysis for four segments of speech sounds carresponding to a diphthong, a
nasal, a voiced fricative and an unvoiced fricative are shown in Figs.9-12. In all these cases
M=40 and Mp-Mz-ZO. In these figures the short-time spectrum is shown by thin solid curve
and the response of the pole-zero model by thick solid curve. The smoothed spectrum
obtained by LP analysis is also shown by dotted curve for comparision. A 20-th order
predictor was used. The effectiveness with which the dips in the spectrum are represented

by the present method can be noted from Fig.9. The spectral dips around 3 kHz and 4 kHz
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are represénted better in the pole-zero spectrum than in the LP spectrum. LP method
introduces some spurious peaks in the spectrum which do not match with the envelope of the
short-time spectrum. Of course as the order of the pole-zero model is creased, additional

peaks will appear in its response, approximating the short-time spectrum in more detail.

Result of analysis for a nasal segment is shown in Fig.10. The first spectral peak in the
pole-zero spectrum is much broader compared to the peak in the LP spectrum. In fact the
first spectral peak in the LP spectrum corresponds to the fundamental frequency. Further,
the zero at the origin sharpens the supposedly resonant peak in the LP spectrum. In general
a peak in thé spectral envelope can also occur due to two closely spaced zeros, and hence it
cannot always be considered that all. peaks correspond to resonances only. This point is
ilustrated in Fig.11, where the pole-zero spectrum for a voiced fricative is plotted. The two
closely spaced zeros near 2.3 kHz and 2.7 kHz produced a sharp peak at 2.5 kHz. Very good
representation of valleys in the spectral envelope is obtained even for tha case of an

unvoiced fricalive as shown in Fig.12,

In general spectral fit improves as the order of M is incresed, but as M is made very large,
the original spectrum inclusive of the fine structure due to source aiso appears. Since the
cepstral coefficients for large quefrencies have negligible components due to vocal tract
system, by considering only the high quefrency portion of the cepstrum, the excitation
information can be obiained. The derivative of phase spectrum for this purpose is computed

using the formula
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, 255
# (w) =- T nce{n) cos nw . (33)
n=21

The positive and negative parts of -8' (w) for a voiced segment are plotted separately in
Fig.13. The figure illustrates the ability of the derivative of phase spectrum in resolving even
the fine structure of the spectrum. We are currently exploring the possibility of using this

property for reliable pitch estimation.

VI. CONCLUSIONS

A new technique for determining the envelope of speech specirum by a pole-zero modei
has been presentéd. For a specified match in the cepsiral domain, the pole-zero modei is
obtained in a deterministic manner. This method not only affords a different approach to
speech analysis, but it also provides an exzact solution to the difficuit problem of pole-zero
modelling of speech spectrum. The elegance of the method lies in determining the parameters
of a mode! easily while matching a specified number of cepstral coefficients of the model with
the cepstra':i coefficients of a given signai. This technique can be calied cepstral matching
analogous to autocorreiation matching in ali-poie modelling (6] The envelope fit obtained by
the present method is different from conventional cepstral smoothing [16], where the cepstral
coefficients are truncated. In the present method the cepstrai coefficients beyond the

specified order are uniquely extrapolated to improve the frequency resolution.

An extremely useful property of the pole part of the derivative of phase spectrum is that
it is nonzero in the frequency regions corresponding to peaks of the envelope spectrum.
Normally regions around peaks in the envelope spectrum are used to represent high signal to
noise portions of the spectrum. Therefore now we have an automatic method of determining

such regions from the derivative of phase spectrum.

+

Although modelling for minimum phase signals only is considered here, extension of the
method to mixed phase signals is trivial. This is because a mixed phase signal can be split

into minimum phase and maximum phase components using complex cepstrum (8] and a
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pole-zero model for each component can be determined in an identical manner. It should be
noted, however, that for a maximum phase signa! the poles and zeros lie within tha unit circle
in the z'l-—giane. There appears to be good potential in the approach for solving a variety of
problems commonly encountered in the field of digital signal processing, like for example the

design of digital filters, decomposition of composite signals, deconvolution of convolved

signals. Presently, some of these applications are being studied.
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APPENDIX

Let A(z) be the digital inverse fiiter for an all~pole model given by

p
Alz) = 2 a(n) z™" (Al)
k=0

with a(0)=1. If {c{n)} represent the cepstral coefficients for {a(n)}, then by definition it

follows

®
log { A(2)} = - Zcimy 2™ (A2)
k=}

Ditferentialing both sides of (A2} with respect to 2, and rearranging the terms, we get

p N
Znaln)zN= [ n ¢e{n) z][ 2 aln) z] (A3)
nel .

Multiplying out the series and using the fact that a(0)=1, we get

a(l) = -¢(1),
i-1
ja(i) = -je(j) - T ncn) a(j-n), i=23,-p. (AG)
n=} .
It is to be noted that using (A4) we can obtain {a(n)} from {c(n)} or vice versa. Oniy p values
of {c({n)} are required to determine {a(n)}. However if {a(n)} is known, then all the cepstral

coefficients can be determined. Let us denote these values as {c'(n)}. The first p values of

{c'(n)} are obtained using the eguations:
c'(1) = -a(l),

j-1
je't) = -jalp - S ne a-n), j=2,3,-p . (AS)
n=}
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-

The remaining values of {c' (n)} are obtained by using the relations

p
iy = - z (j-n) ¢’ (j~n) atn)
n=]

which is derived from (A3). It is obvious that

c{n) = c'(n), for n=1,2,..p

and

LM

cn) 4+ c'(n), for n=p+1,p+2,.

for j=p+i,p+2,.

(Al

(A

(Al
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Fig.1. Negative derivative of phase spectra for lypical all-pole filters.

(a) Solid curve: First order filter [ H{z)=1/(1-0.85z"}) ]

th) Nalled curve: Second order filter [ H(z)-l/(l—1.57z'l+0.942"2) ]
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Fig.2 Block diagram showing computational steps for pole-zero decompaosition
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values of M.

(a) Solid curves: M=10, M=20, M=30. (b) Dotted curve: Short-time spectrum

M=30

Fig.3. Negative derivative of phase spectra for a segment of volced speech for different
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Flg.4. Pole spectra for for different values of M for a segment of voiced speech.
(Mp-Mz-zO)

(a) Dotted curve: M=20 (b) Thin solid curve: M=30 (c) Thick solid curve: M=40

v
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Fig.5. Zero spectra corresponding to Fig.4.

(a) Dolted curve: M=20 (b} Thin solid curve: M=30 (¢) Thick solid curve: M=40
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Fig.6. Pole-zero spectra for different values of M, obtained by adding the corresponding
pole and zero spectra in Figs.4 and 5.

(a) Dotted curve: M=20 (b) Thin solid curve: M=30 (c) Thick solid curve: M=40
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Fig.7. Pole-zero spectra for different values of Mp(-Mz) for a segmant‘of volced fricative
(M=40).

(a) Dotted curve: Mpulo. (h) Thin solid curve: Mp-14. {c) Thick solid curve: Mp-18.
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Fig.8. Pole-zero spectra for different values of Mp(-Mz-M) for a segment of voiced
fricative. .

(a) Dotted curve: Mp—lo {b) Thin solid curve: Mp-M (c) Thick solid curve: Mp-18
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Fig.9. Pola-zero spectrum (thick solid curve) for a segment of diphthong in the word NINE.
Short-time spectrum (thin solid curve) and 20-th order LP smoothed spectrum (dotted curve)
are also shown for comparison.
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Fig.10. Pole-zera spectrum (thick solid curve) for a segment of nasal In the word NINE,

Short-time spectrum (thin solid curve) and 20-th order LP
are also shown for comparison,

smoothed specirum {dotted curve)
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Fig.11. Pole-zero spectrum {thick solid curve) for a segment of voiced fricative in the word
ZERO. Short-time spectrum (lhin solid curve) and 20-th order LP smoothed spectrum {dotted
curve) aro also shown for comparison.
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Fig.12, Pole-zero spectrum (thick solld
word SIX. Short-time spectrum (thin soli

(dotted curvo) are also shown for comparison.

d curve

curve) for a segment of unvolced fricative in the
) and 20-th order LP smoothed spectrum
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Fig.13. Negative derivalive of phase spectrum for a volced segment computed from
equation (33).

(a) Upper lhicl‘« solid curve: pole parl (b) Lower thick solid curve: zero part (¢} Dotted
curve: Shori-time spectrum of the voiced segment '




