
N O T I C E W A R N I N G C O N C E R N I N G C O P Y R I G H T RESTRICT IONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



CORRECTIONS TO 

"Pole-zero Decomposition of Speech Spectra" 

B. Yegnanarayana 

ON PAGE 5 

1 . In Sec.3.1 the following sentence should be added after the first sentence. 

Throughout this paper we consider only discrete signals (Le^ signals sampled at Nyquist 
rate), so that the Fourier transform is periodic in^t with period 2<r. 

2. In Sec.3.1 log Vfr) should be replaced by In V(u). 

ON PAGE 6 

1. In equat ion ( 8 ) log should be replaced by In. 

2. T h e last line should read as follows: 

poles and zeros, since the relation in (10) is valid for poles or zeros or for both, except for a constant term (C) on the right hand side. Let 

ON PAGE 7 

1. In equat ion ( 1 4 ) a constant term -C should be added to the right hand side. 

2. In equat ion ( 1 5 ) a constant term C should be added to the right hand side. 
ON PAGE 8 

Equat ion ( 1 6 ) should be changed as follows: 

a l l ) « e l l ) 

j a - ( j ) - j c l j ) + 2 n c"(n) a l j - n ) for j - 2 , 3 ^ M D ( 1 6 ) 
n-1 

ON PAGE 12 

T h e f o u r t h line from the bottom should read as follows: ' 

for different values of M. This may be due to the fact that the choice of Mp equal to 20 has 
ON PAGE 17 

1. In equat ion (A2 ) log should be replaced by In. 

2. The r ight hand side of equation (A3) should be multiplied by - 1 . 

FIG.2 f | _ . . u • . 
University Libraries 

In Fig.2 LOG S(K) should be replaced by Ln S(k). Carnegie Mellon University 
Pittsburgh PA 1 5 2 1 3 - 3 8 9 0 



CMU-CS-79-101 

POLE-ZERO DECOMPOSITION OF SPEECH SPECTRA 

B.Yegnanarayana 
Department of Computer Science 

Carnegie-Mellon University 
Pittsburgh, PA 15213. 

JANUARY 1979 

This research was sponsored by the Defence Advanced Research Projects Agency (DOD), 

ARPA Order No. 3 5 9 7 , and monitored by the Air Force Avionics Laboratory under Contract 

F 3 3 6 1 5 - 7 8 - C 1 1 5 1 . 

The v iews and the conclusions contained in this document are those of the author and 

should not be in terpre ted as representing the official policies, either expressed or implied, of 

the Defence Advanced Research Projects Agency or the US. Government. 



ABSTRACT 

A n e w method for determining the parameters of a pole-zero model for speech spect ra is 

p r o p o s e d in this paper . In this method the cepstral coefficients of a signal are split into t w o 

p a r t s , one corresponding to poles and the other to zeros. The decomposition is achieved by 

u s i n g the propert ies of the derivative of phase spectra of minimum phase signals. 

P a r a m e t e r s of the model are derived recursively from the cepstral coefficients for poles and 

z e r o s separate ly . Since poles and zeros are t reated alike and derived independent ly , t h e r e is 

n o e f f e c t of one on the other. The method is illustrated with several examples of speech 

s p e c t r a . It is shown that in all cases the envelope fit is equally good at peaks as wel l as at 

v a l l e y s in the spectrum. Results of this paper suggest a method of obtaining a l inear system 

m o d e l for a given signal using a criterion different from the conventional minimization of mean 

s q u a r e d e r ro r cr i ter ion. Although the method is described for minimum phase signals only , 

e x t e n s i o n of the method to mixed phase signals is trivial, since a mixed phase signal can be 

sp l i t into minimum and maximum phase components using complex cepstrum. 



I. INTRODUCTION 

An important problem in signal analysis is the estimation of parameters of a pole-zero 

model for a given signal spectrum. In this paper we present a general and effective method 

for determining the parmeters. The method involves separating the effects of poles and 

zeros based on the properties of the derivative of linear prediction phase spectra reported 

recently by the author [1J Besides the effectiveness of the derivative of phase spectrum, 

the inherent advantages of linear prediction (LP) and homomorphic filtering approaches are 

exploited to derive the parameters of the model in a simple and elegant manner. The 

proposed technique yields a linear system model for a signal using a criterion different from 

the conventional minimization of mean sqaured error criterion. Although the technique can be 

applied to a general class of signals, we confine our discussion to examples from speech 

signal analysis, as these examples provide the necessary diversity of situations and also have 

a physical interpretation. 

Approximating speech spectra by pole-zero models and estimating the parameters of such 

models has recently been the subject of active research [2] - [6 ] . Techniques for solving this 

estimation problem are primarily based on the principles of linear prediction and 

homomorphic deconvolution. The approach in these methods is to determine pole parameters 

f irst , either* directly from the signal or from the minimum phase equivalent of the signal. Zero 

parameters are then determined from the residual signal by one of the several well Known 

methods [7], [9] . Since pole-zero modelling is a classical problem in the general area of 

system identification, extensive discussion of this problem can also be found in linear systems 

l i terature. Methods for simultaneously estimating pole-zero parameters are generally 

i terat ive in nature and little is known theoritically about the convergence properties of the 

algorithms available [3],[10],[11]. 

In this paper a simple method for simultaneously determining the poles and zeros of a 

model is presented. This method considers poles and zeros in an identical manner. In Sec.II 

the problem of pole-zero estimation and the underlying principle of the proposed technique 



2 

are discussed. In Sec.III the technique for complete pole-zero decomposition is presented. 

An algorithm for pole-zero decomposition of speech spectra is presented in Sec.IV. Several 

examples of pole-zero deomposition of speech spectra are discussed in Sec.V. Effects of 

various analysis parameters on the accuracy of the resulting pole-zero model are also 

discussed. Some issues presently under investigation are cited in Sec.VI. 

I I . PROPERTIES OF THE DERIVATIVE OF PHASE SPECTRUM 

In this section the problem and the underlying principle of the proposed method for solving 

the problem are discussed. 

2.1 The Problem 

For a given signal x(n), determine the parameters of the pole-zero model 

H(z) « N(z)/D<z) (1 ) 

where 

M, • 
N(z) - 2 a + (n ) z _ n . (2) 

and 

Mp 
D(z) - 2 f a " ( n ) z " n , (3 ) 

n«0 

such that the frequency response of the model matches the envelope of the spectrum of x(n). 

In earlier attempts to solve this problem, a minimzation criterion is invariably used. Of 

particular interest for problems arising in speech are the linear prediction analysis and the 

homomorphic filtering. In linear prediction analysis, the best all-pole filter (i.e., H(z) when 

N ( z ) « l ) is obtained by using a minimum mean squared error criterion. The error is computed 

as the difference between signal samples and their linearly predicted values. In the spectral 

domain this criterion is equivalent to minimization of the integrated ratio of the signal 
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spectrum and the model spectrum [7\ In homomorphic filtering, a minimum phase estimate 

v(n) of x(n) is initially obtained [8]. This avoids the problem of pitch synchronization for 

analysis of speech signals, since v(n) is a minimum phase estimate of the vocal tract impulse 

response [4 ] . Linear prediction analysis is then performed on v(n) to determine the poles of 

the model. This method is called homomorphic prediction [5J Zeros of the model are then 

determined by repeated application of linear prediction analysis [2] or by Shank's method [ 9 ] 

or by inverse linear prediction [7]. An obvious limitation in these methods is that the 

accuracy of the estimated poles is affected by the presence of zeros in the signal spectrum. 

Methods for simultaneous estimation of poles and zeros are iterative [11 ] , [12 ] and 

computationally complex. An interesting method for separating poles and zeros is by cepstral 

prediction [5 ] . This method uses the complex cepstrum x(n) of x(n). It can be shown that the 

poles of nx(n) correspond to the poles and zeros of the original signal x(n). Linear prediction 

analysis is performed to determine all the poles of nx(n). Each pole of nx(n) is classified as 

either a pole or a zero of x(n) by observing the sign of the residue of the z-transform of 

nx(n) at the pole [5] . However, this method also involves estimation of poles from a signal 

having both poles and zeros. 

2.2 Basis for Pole-zero Decoposition 

Since the objective in the present problem is to determine a pole-zero model which fits a 

spectral envelope, it is sufficient to consider the minimum phase correspondent of the given 

signal. The spectra of the minimum phase correspondent and the original signal are identical 

by definition. Properties of minimum phase signals have been extensively studied [8] , [13] . In 

particular, all poles and zeros of a minimum phase signal lie within the unit circle in the 

z-p lane. 

Properties of the derivative of phase spectrum of a stable all-pole system have been 

recently reported by the author[l] . These properties were suggested for extraction of 

formants using linear prediction coefficients (LPCs). A stable all-pole system can be 

represented as a cascade of first order sections with real poles and second order sections 

wi th complex conjugate poles. The derivative of phase spectrum of a typical first order filter 



• ( t r a i pole) is given by 
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*l<u>) - -7/<c*2+72) ( 4 ) 

where 7 is the corner frequency. The derivative of phase spectrum of a typical second order 

f i l ter (resonator) is given by 

. - - 2 a ( a 2 ^ 2 + w 2 ) / { ( a 2 ^ 2 . w 2 ) 2 + 4 < | , 2 a 2 } ( 5 ) 

where a and /5 are the half power bandwidth and resonance frequency of the filter. These 

eqations are derived in [1]. In general 0 2 » a 2 The derivative of phase spectrum of the 

overall filter, denoted by * ' ( « ) , is a summation of the terms of the type given in (4) and (5) . 

Some important properties of B '(o>) are given below. 

1. -0j(a>) is a monotonically decreasing function of w 

2. At low frequencies « 

3. At high frequencies t[(w) -y /u> 2 

4. - f ^ f a ) i s approximately proportional to the squared magnitude response of the filter 

around the resonance frequency 

5. At low frequencies $2^ " ~2a/0 , which is a small constant quantitiy 

6. At high frequencies " ~2<*/ta 

It is interesting to note that if the corner frequency 7 is large, then 0j(o>) will be small for 

all w. On the other hand if y is small, then the large values of 0j[(a>) are confined to 

frequencies close to the origin. As a result of the properties 1, 2 and 3, real poles will have 

negligible effect on the peak structure of 0 !(w) caused by resonances. The properties 4, 5 

and 6 show that in $ '(w) there is negligible effect of one resonance peak on the other. 

It is easy to visualize similar behaviour for real and complex conjugate zeros in the 

derivative of phase spectra. The only difference is that the derivative of phase response for 

zeros will have a sign opposite to that for poles. Specifically, * ' ( « ) will have a negative peak 
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due to a complex conjugate pole pair and a positive peak due to a complex conjugate zero 

pair. These simple but powerful properties of the derivative of phase spectrum are shown to 

accomplish the pole-zero decomposition discussed in the next section. 

In Fig. l the negative derivative of phase spectra for a first order and a second order pole 

f i l ter are shown. It is clear from the figure that significant values of - * ' ( « ) are confined to 

frequencies near the origin for real poles and to frquencies near the resonance frequency for 

complex conjugate poles. In this paper all plots of the derivative of phase spectra are shown 

af ter multiplying with - 1 , so that positive peaks in the plots can be compared with peaks in 

the magnitude spectrum, which correspond to resonances. 

I I I . POLE-ZERO ANALYSIS 

3.1 Relation Between Derivative of Phase Spectrum and Cepstral Coefficients: 

Let V(a>) be the Fourier transform of the minimum phase correspondent of a given signal. 

Since all poles and zeros of V(w) lie within the unit circle in the z-plane [ 8 1 log V(w) can be 

expressed in Fourier series expansion as follows: 

oo 
log VU>> - c(0> + 2 c<n) e~i<*n ( 6 ) 

n -1 

w h e r e {c(n)} are called cepstral coefficients. Writing 

V(a>) - |V(a>)| ei V<*> , ( 7 ) 

w e get the real and imaginary parts of log V(u>) as 
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00 

and 

oo 
* v(a>) + 2\r « - 2 c(n) sin nw (imaginary part) (9 ) 

n» l 

w h * r e X is an integer. Notice that $y(u) represents the phase spectrum of a minimum phase 

signal. Taking the derivative of 0y(u>), we get 

9y(<*) " ~ 2 n c < n ) c o s n « • ( 1 0 ) 
n-1 

3.2 Pole-zero Decomposition 

tfy(w) is the derivative of phase spectrum of a minimum phase signal whose propert ies 

w e r e discussed in Sec.II. In particular, the complex conjugate poles of V(o>) produce negative 

peaks in 0y(w) and the complex conjugate zeros of V(«) produce positive peaks in 0y<«). The 

real poles and zeros of V(w) do not significantly affect the peaks in 0y(o>). Therefore the 

contributions of poles and zeros can be separated by considering the negative and positive 

potVtons of 0y(u>) respectively. Let 

where 

and 

[9y(u)Y ° for < 0 
« 0 for * ^ ( w ) > 0 ( 1 2 ) 

- 0 for $'y(u) < 0 . ( 1 3 ) 

We can express [6y(u)]~ and [ *y (» ) ] + separately in terms of the cepstral coefficients for 

poles and zeros, since the relation given in (10) is valid for poles or zeros or for both. Let 

log JV(«)| - Z t f n ) cos n<* ( r e a , p a r t ) ( g ) 
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[9yd*)]- « - 2 n c~(n) cos nw < 1 4 > 
n-1 

and 

oo 
[*V<<*>3+ - - 2 n c+(n) cos n«* , ( 1 5 ) 

n -1 

where {c"(n)} and {c + (n)} represent the cepstral coefficients for pole and zero spectra of 

V(a>) respectively. Notice that c(n)=c"(n)+c*(n), which means that the cepstral coefficients are 

split into two parts, one corresponding to poles and the other to zeros. 

Here [0y(<a)Y represents the significant portion of the derivative of phase spectrum for the 

poles of V(a>) and [ f y ^ ) ] * represents the signifiant portion of the derivative of phase 

spectrum for the zeros of V(w). By significant portion we mean that the shape of the curve 

in the positive portion of 0y(a>) is largely due to zeros only and the negative portion of 0y(w) 

is largely due to poles only. It is very important, for later discussion, to note that the shape 

information is preserved in c"(n) and c*(n) for n -1 ,2^ , for poles and zeros respectively. 

In most cases of signal analysis, the objective is to determine the envelope of a signal 

spectrum. The spectral envelope is determined by the first few cepstral coefficients in (8 ) , 

since they are the first few Fourier coefficients of the log spectrum. If the series are 

truncated, then the resulting spectrum is called the cepstrally smoothed spectrum. It should 

be noted that the value of c(0) does not affect the shape of the spectrum. Following the 

same logic, we can obtain the cepstrally smoothed spectra for poles and zeros separately by 

considering only the first few cepstral coefficients in {c~(n)} and {c*(n)} respectively. 

We now describe a method of deriving the parameters of a pole-zero model that 

represents the envelope of a signal spectrum. Let the linear system given in (1) represent 

the pole-zero model we are trying to determine. Since the poles and zeros of H(z) lie within 

the unit circle for a minimum phase spectral envelope, the numerator and the denominator 

polynomials can be considered as two inverse filters of linear prediction analysts [ 1 4 ] . 
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Consequently, {a~(n)} and (a + (n)} represent two sets of LPCs. The cepstral coefficients of a 

finite all-pole stable system can be expressed recursively through the LPCs as shown in [ 1 5 ] . 

These relations are also given in the Appendix. The inverse recursion i.e., LPCs from cepstral 

coefficients is also possible, provided it is known that the cepstral coefficients are for a 

stable all-pole system. By splitting the cepstral coefficients of the envelope spectrum into a 

pole part and a zero part, we achieved a decomposition which enables us to use the inverse 

recursion to obtain the coefficients of the numerator and denominator polynomials in (1) . The 

pole coefficients {a"(n)} and the zero coefficients {a + (n)} are given by the following relations: 

Pole Coefficients: 

a - ( l ) - - e l l ) 

i-i 
j a"(j) - - j c"{j) - S n c"(n) a~( j -n) , for j - 2 , 3 ^ M D ( 16 ) 

n-1 H 

Zero Coefficients: 

a + ( l ) - - c + ( l ) 

H 
j a + ( j> - - j c + ( j ) - 2 n c + (n) a + ( j - n ) , for 1-2,3^-^ ( 17 ) 

n-1 

Only M p coefficients of {c"(n)} and M z coefficients of {c +(n)} are needed to determine 

completely the parameters of the model given in (16). The choice of M p and M z for speech 

signals is discussed in SecV. 

3.3 Error Criterion 

Conventionally, the parameters of a pole-zero model are determined using a minimization of 

mean squared error criterion. Linear prediction analysis has been shown to be equivalent to 
A 

autocorrelation matching [6]. That is, if {R(n)J and {R(n)} represent the autocorrelation 

coefficients of a given signal and the impulse response of its all-pole model respectively, then 

for a p-th order model, 
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A ( 1 8 ) R(n) - R(n) for n-0,lr-P» 

minimizes the total error E j given by 

( 1 9 ) 

00 
p<0>) 2 R(n) cos ru* 

n-0 
(original spectrum) ( 2 0 ) 

and 

00 ^ 
2 R(n) cos n<* 

n«0 

(model spectrum). ( 21 ) 

Analogously, if the linear system model is derived from the cepstral coefficients using the 

relations given in the Appendix, then 

c(n) - c(n) for n - l ^ p . ( 2 2 ) 

If the energy in the original spectrum and the model spectrum are equal, then 

The proposed method can thus be interpreted as pole-zero modelling by cepstral matching, 

which can be stated as follows: For a given order (Mp-K^) of pole-zero model, determine 

the model parameters such that the first M p + 1 cepstral coefficients of the model are equal to 

the first Mp+1 cepstral coefficients of the signal. The error between the original and the 

model log spectra is given by 

c ( 0 ) « c ( 0 ) 

because c(0)«log R(0) and c(0)«log R(0). 

( 2 3 ) 

( 2 4 ) 
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Writ ing E 2 in cepstral coefficients [15], we get 

oo 
E 2 - [c(0)-e(0)]2 + 2 2 [c(n)-c(n)j2. (25 ) 

n-1 

Af ter matching, the error becomes 

GO 

E 2 « 2 [c (n ) -c (n ) ] 2 . (26 ) . 
n « M p + l 

It should be noted that there is no minimization process involved in this method. We have 

only shown that if the cepstral coefficients of the model are chosen so as to match the first 

Mp+1 cepstral coefficients of the signal, then the resulting rms log spectral error is given by 

(26 ) . 

IV- IMPLEMENTATION OF POLE-ZERO DECOMPOSITION FOR SPEECH SPECTRA 

So far the general theoritical basis for pole-zero decomposition of any given signal has 

been discussed. In this section we present an algorithm for computing the parameters of the 

model with specific reference to speech signals. 

Speech is the output of a nonstationary vocal tract system, excited either by quasiperiodic 

glottal pulses or turbulent noise or both. Thus the signal is a convolution of the excitation 

signal and the impulse response of vocal tract system. Since both the system and excitation 

are nonstationary, only short segments (10-40ms) of speech signal are considered for 

analysis. During an analysis interval the system and excitation are assumed to be stationary. 

The objective in speech analysis is to separate the spectral envelope corresponding to vocal 

tract system, and the fine structure corresponding to excitation. In most applications of 

speech analysis it is sufficient if the spectral characteristics are represented accurately. 

Hence a minimum phase version of the signal is adequate for pole-zero modelling. 

In this paper we consider speech signals sampled at 10 kHz. The data was passed through 

a preemphasis filter ( l - . 9 2 z - 1 ) and then multiplied with a Hamming window before computing 
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the spectrum* The detailed steps of the algorithm for pole-zero decomposition are given in 

Fig.2. The derivative of phase spectrum is computed only from M cepstral coefficients. The 
to 

choice of M, Mp and M z depends on the accuracy of representation required for the 

spectrum, the accuracy being specified in terms of the number of cepstal coefficients to be 

matched. The effect of these parameters on the resulting envelope is discussed in Sec.V. All 

the DFTs in the algorithm were computed using a 512-point FFT. 
V- RESULTS AND DISCUSSION 

In this section we consider several examples of speech spectra to illustrate the application 

of the proposed method. Our aim here is to show the effectiveness of the method in deriving 

a pole-zero system that represents the envelope of speech spectrum. The choice of the 

parameters M, M p ,and M 2 and their effect on the resulting envelope are discussed. Data for 

these examples was obtained from a spoken utterance, bandpass filtered (80 - 4 5 0 0 Hz) and 

sampled at 10 kHz. A segment of 20 msec (200 samples) was used in the analysis. The 

spectrum was computed as described in Sec.IV. 

5.1 Choice of M, M p l M 2 

These parameters determine the resolution of peaks and valleys in the spectral envelope 

and also the error between the actual spectrum and the modelled spectrum. The value of M 

determines the width of the window in the cepstral domain used for computation of the 

derivat ive of phase spectrum. It is clear that a larger value of M produces a spectrum with 

increased resolution for peaks and valleys in the derivative of phase spectrum. The 

derivat ive of phase spectrum for a voiced segment for three different values of M( 10,20,30) 

are shown in Fig.3. The derivative of phase spectrum was obtained by computing the 

expression 

http://Sec.IV
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M 
f (w) - - 2 nc(n) cos nw . / o 7 \ 

n-i v ' 

In Fig.3 -0 <o>) are plotted so that the positive part corresponds to poles and the negative 

part to zeros. The dotted horizontal line indicates the dividing line between poles and zeros 

and in this case happens to be the x-axis itself. The short-time spectrum of the segment is 

also plotted in the Fig.3. It can be observed that positive peaks in the derivative of phase 

spectrum plot correspond to peaks in the envelope of the short-time spectrum. Similarly 

negative peaks in the derivative of phase spectrum correspond to dips in the envelope. The 

improvement in resolution for higher values of M is also evident from Fig.3. The pole 

spectrum P(a>), the zero spectrum Z(w) and the combined envelope spectrum P(a>)Z(w) for 

different values of M are shown in Figs.4-6. The various log spectra In dB are computed as 

follows: 

Pole spectrum: 

M, 
n 10 log P ( w ) - 10 log + f a i n ) e i » n | 2 ] ( 2 8 ) 

n-1 

Zero spectrum: 

10 log Z(o>> - 10 log [|1 • Z a + (n) eJ<* n| 2] ( 2 9 ) 
n-1 

Pole-zero s'pectrum: 

10 log P(w) - 10 log P(«) + 10 log 1M ( 3 0 ) 

For all the cases in Figs.4-6 M p » M 2 - 2 0 . The resulting spectral envelope is nearly same 

for different values of M. This may be due to the fact that the choice of M equal to 20 has 

resolved all the significant spectral peaks. An important design consideration is demonstrated 

by the analysis of a voiced fricative segment. Spectral envelopes obtained for different 

values of M p ( « M 2 ) when M»40 are shown in Fig.7. For low values of M p and M z , spurious 
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peaks which do not match with the spectral envelope occur. These peaks have occurred 

because after using a large value for M , if smaller values of M P and M Z are used, it is 

equivalent to truncating the coefficients of an ail-zero filter. That is, if the actual filter is of 

the order M Q and is given by 

M 0 

A(z) - I a ( n ) z ' n , ( 31 ) 
n-0 

then the response that will be computed for low values of M p is for the filter 

M p 

A(z) - 2 a ( n ) z " n . ( 3 2 ) 
n-0 

In the above expression, the last M g - M p values of (a(k)} are removed by truncation. Such an 

effect will not be observed if M p is sufficiently large. This result may also provide a clue to 

determine the actual number of poles and zeros present for a given spectral envelope. The 

truncation effect will disappear if M^Mp-M^ This is demonstrated in Fig.8 where the 

envelope spectra are plotted for the three values of Mp considered in Fig.7, but with the 

restriction that M ~ M p - M z . Now even for low values of Mp there are no spurious peaks as in 

Fig.7. The resulting spectra in Fig.8 should be interpreted as smoothed versions for the 

specified order of the model. Thus, low values of M p ( » M 2 ) for a given large value of M result 

in truncation, whereas low values of M p subjected to the condition M - M p * ^ result in 

smoothing the spectrum appropriately. 

5.2 Examples 

Results of analysis for four segments of speech sounds corresponding to a diphthong, a 

nasal, a voiced fricative and an unvoiced fricative are shown in Figs.9-12. In all these cases 

M « 4 0 and M p « M 2 « 2 0 . In these figures the short-time spectrum is shown by thin solid curve 

and the response of the pole-zero model by thick solid curve. The smoothed spectrum 

obtained by LP analysis is also shown by dotted curve for comparision. A 20 - th order 

predictor was used. The effectiveness with which the dips in the spectrum are represented 

by the present method can be noted from Fig.9. The spectral dips around 3 kHz and 4 kHz 
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are represfented better in the pole-zero spectrum than in the LP spectrum. LP method 

introduces some spurious peaks in the spectrum which do not match with the envelope of the 

short- t ime spectrum. Of course as the order of the pole-zero model is creased, additional 

peaks will appear in its response, approximating the short-time spectrum in more detail. 

Result of analysis for a nasal segment is shown in Fig.10. The first spectral peak in the 

po le -zero spectrum is much broader compared to the peak in the LP spectrum. In fact the 

first spectral peak in the LP spectrum corresponds to the fundamental frequency. Further, 

the zero at the origin sharpens the supposedly resonant peak in the LP spectrum. In general 

a peak in the spectral envelope can also occur due to two closely spaced zeros, and hence it 

cannot always be considered that all peaks correspond to resonances only. This point is 

i l lustrated in F i g . l l , where the pole-zero spectrum for a voiced fricativfe is plotted. The two 

closely spaced zeros near 2.3 kHz and 2.7 kHz produced a sharp peak at 2.5 kHz. Very good 

representat ion of valleys in the spectral envelope is obtained even for the case of an 

unvoiced fricative as shown in Fig.12. 

In general spectral fit improves as the order of M is incresed, but as M is made very large, 

the original spectrum inclusive of the fine structure due to source also appears. Since the 

cepstral coefficients for large quefrencies have negligible components due to vocal tract 

system, by considering only the high quefrency portion of the cepstrum, the excitation 

information can be obtained. The derivative of phase spectrum for this purpose is computed 

using the formula 
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• ! n c(n) cos n « . ( 33 ) 
n-21 

The positive and negative parts of for a voiced segment are plotted separately in 

Fig. 13. The figure illustrates the ability of the derivative of phase spectrum in resolving even 

the fine structure of the spectrum. We are currently exploring the possibility of using this 

p roper ty for reliable pitch estimation. 

VI. CONCLUSIONS 

A new technique for determining the envelope of speech spectrum by a pole-zero model 

has been presented. For a specified match in the cepstral domain, the pole-zero model is 

obtained in a deterministic manner. This method not only affords a different approach to 

speech analysis, but it also provides an exact solution to the difficult problem of pole-zero 

modelling of speech spectrum. The elegance of the method lies in determining the parameters 

of a model easily while matching a specified number of cepstral coefficients of the model wi th 

the cepstral coefficients of a given signal. This technique can be called cepstral matching 

analogous to autocorrelation matching in all-pole modelling [6]. The envelope fit obtained by 

the present method is different from conventional cepstral smoothing [16] , where the cepstral 

coefficients are truncated. In the present method the cepstral coefficients beyond the 

specified order are uniquely extrapolated to improve the frequency resolution. 

An extremely useful property of the pole part of the derivative of phase spectrum is that 

it is nonzero in the frequency regions corresponding to peaks of the envelope spectrum. 

Normally regions around peaks in the envelope spectrum are used to represent high signal to 

noise portions of the spectrum. Therefore now we have an automatic method of determining 

such regions from the derivative of phase spectrum. 

Although modelling for minimum phase signals only is considered here, extension of the 

method to mixed phase signals is trivial. This is because a mixed phase signal can be split 

into minimum phase and maximum phase components using complex cepstrum [5 ] and a 
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pole-zero model for each component can be determined in an identical manner. It should be 

noted, however, that for a maximum phase signal the poles and zeros lie within the unit circle 

in the z"^-plane. There appears to be good potential in the approach for solving a variety of 

problems commonly encountered in the field of digital signal processing, like for example the 

design of digital filters, decomposition of composite signals, deconvolution of convolved 

signals. Presently, some of these applications are being studied. 
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APPENDIX 

Let A(z) be the digital inverse filter for an all-pole model given by 

A(z) - 2 a(n) z " n 

k-0 
( A l ) 

w i th a ( 0 ) - l . If {c<n)} represent the cepstral coefficients for {a(n>}, then by definition it 

fol lows 

oo 
log { A(z)} - - 2 c(n) z " n 

k-1 

Differentiating both sides of (A2) with respect to z, and rearranging the terms, we get 

(A2) 

2 n a(n) z " n -
oa 
2 n c(n> z " n 2 a(n> z " n 

AS 0 
(A3) 

Multiplying out the series and using the fact that a ( 0 ) - l , we get 

a<l) - - c ( l ) , 
j - 1 

j a(j) - - j c(j) - 2 n c(n) a ( j - n ) , j-2,3,>.p 
n-1 

(A4) 

It is to be noted that using (A4) we can obtain {a(n)} from {c(n)J or vice versa. Only p values 

of {c(n)} are required to determine {a(n)}. However if {a(n)} is known, then all the cepstral 

coefficients can be determined. Let us denote these values as {c'(n)}. The first p values of 

{c'(n)} are obtained using the equations: 

c (1) - - a < l ) , 

H 
j c ' ( j ) - - j a(j) - 2 n c' (n) a ( j - n ) , j -2 ,3^ .p . 

n-1 
(A5) 
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The remaining values of {c'(n)} are obtained by using the relations 

, P 
j c ( j ) « - 2 ( j-n) c ' ( j -n) a (n) , for j»p+l .p+2 , 

n-1 

which is derived from (A3). It is obvious that 

c(n) - c ' ( n ) , for n-l,2^..p 

and i 

c(n) 4 c ' ( n ) , for n«p+l,p+2 r . . 
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Fig.2 Block diagram showing computational steps for pole-zero decomposition 
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Fig.5. Zero spectra corresponding to Fig.4. 

(a) Dot ted curve: M - 2 0 (b) Thin solid curvet M - 3 0 (c) Thick solid curve: M - 4 0 
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Fig.6. Po le -zero spectra for different values of M, obtained by adding the corresponding 
pole and z e r o spectra in Figs.4 and 5. 

(a ) Dot ted curve: M - 2 0 (b) Thin solid curve: M - 3 0 (c) Thick solid curve: M - 4 0 
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Flg.7. Po le -zero spectra for different values of M p ( - M 2 ) for a segment of voiced fr icat ive 
( M - 4 0 ) . 

(a ) Dotted curve: M p » 1 0 . (b) Thin solid curve: M p - 1 4 . (c) Thick solid curve: M p - 1 8 . 
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Z - M > 'or a segment of voiced 

(a ) Dot ted curve: M p - 1 0 (b) Thin solid curve: M p - 1 A (c) ThicK solid curve: M „ - 1 8 
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FiP 9 Pole-zero spectrum (thick solid curve) for a segment of diphthong In the w o r d NINE. 
Shor t - t ime spectrum (thin solid curve) and 20- th order LP smoothed spectrum (dotted curve ) 
are also shown for comparison. 
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Fig. 10 . Po le -zero spectrum (thick solid curve) for a segment of nasal in the w o r d NINE 
Shor t - t ime spectrum (thin solid curve) and 20- th order LP smoothed spectrum (dot ted c u r v e ) 
a re also shown for comparison. 
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Fig . l 1 . Po le -zero spectrum (thick solid curve) for a segment of voiced fricative in the w o r d 
ZERO. Short - t ime spectrum (thin solid curve) and 20- th order LP smoothed spectrum (dot ted 
c u r v e ) aro also shown for comparison. 
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