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ABSTRACT 

All known globally convergent iterations for the solution of a nonlinear 

operator equation f(x) » 0 are either non-stationary or use nonlinear informa­

tion. We ask whether there exists a globally convergent stationary iteration 

which uses linear information. We prove that even if global convergence is 

defined in a weak sense, there exists no such iteration for as simple a class 

of problems as the set of all analytic complex functions having only simple 

zeros. We conjecture that even for the class of all real polynomials which 

have real simple zeros there does not exist a globally convergent stationary 

iteration using linear information. 



1.1 

1. INTRODUCTION 

Suppose we solve a nonlinear operator equation f(x) 8 0 by an iteration 

which constructs a sequence of approximations [x^3« For most convergence 

theorems it is assumed that f is sufficiently smooth and starting points 

are "sufficiently close" to a solution a. In practice it is very hard to 

verify the second assumption. One therefore wants to use iterations which 

are globally convergent. 

All known globally convergent iterations are either non-stationary or 

use nonlinear information. For instance, Laguerre's iteration (see for 

instance Ralston and Rabinowitz [78]) is globally convergent for the class 

of all real polynomials having only real zeros. However this iteration 

uses the degree of the polynomial whose zero is approximated. This means 

that Laguerre's iteration uses nonlinear information (see Section 6). An 

example of a non-stationary iteration using linear information which is 

globally convergent for analytic operator equations may be found in Traub 

and Wozniakowski [76]. 

However, most commonly used iterations are stationary and use linear 

information. Therefore it is important to know whether there exist globally 

convergent stationary iterations which use linear information. In this 

paper we prove that for as simple a class of problems as the set of all 

analytic complex functions with simple zeros there exists no such iteration. 

We conjecture that the same negative result holds even for the class of all 

real polynomials having real simple zeros. 

We summarize the contents of the paper. In Section 2 we remind the 

reader of the definitions of information and stationary iteration without 
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memory. In Section 3 we discuss the concept of global convergence. In 

Section 4 we show that no stationary iteration without memory which uses 

linear information can be globally convergent for the class of all analytic 

complex functions. In Section 5 we extend this result to all stationary 

iterations with or without memory using linear information. In Section 6 

we pose a conjecture that for the class of all real polynomials with real 

simple zeros there does not exist a globally convergent stationary iteration 

using linear information. 



2.1 

2. STATIONARY ITERATIONS WITHOUT MEMORY 

We recall the definition of information and stationary iteration. See 

Traub and Wozniakowski [78]. For the reader's convenience, in Sections 2 

to 4 we deal only with one-point iterations without memory. The extension 

to the general case is given in Section 5. 

Consider the solution of a nonlinear scalar equation 

(2.1) f(x) * 0 

for f 6 3 where 3 i s a subset of a spac$ H of functions f: D F c C -* (E . To 

solve (2.1) iteratively we need to know something about f. Let 

L.: D C H X I - *<L be a functional which is linear with respect to the 
1 

first argument, i.e., 

Li^°l f i+°2 f2 , X^ ~ c i L
i ( f i > x ) + c

2
L i ( f i > x ) whenever x € D F fl D F , i-1,2,... ,n. 

as Consider the linear information operator 31, 9ft: fyjj c H X C -> C* 1 , defined 

(2.2) Sft(f,x) » [L1(f,x),L2(f,x),...,Ln(f,x)], Vf 6 H, Vfx 6 D f. 

Let XQ be an approximation of a solution of (2.1). Let cp: D c C 1 *"^ C 

be a functional. We construct the sequence of approximations x^ by the 

formula 

(2.3) x ± + 1 =* 9(x ±; 3l(f,x.)). 

The functional cp is called a one-point stationary iterative operator without  

memory using a linear information operator 9t. For brevity cp is called an 

iteration. Let §(3t) be the class of all such iterations. 
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Note that most iterations use values of f and its derivatives. A 

linear information operator is a generalization of this. For example, the 

information operator 31 used by Newton iteration 

x, .« 3 x. wi+l "i f' (x±) 

is 3l(f,x) - [f (x) ,f (x) ]. This operator is linear and cp 6 §(Ut) . 
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3. WHAT DO WE MEAN BY GLOBAL CONVERGENCE? 

Let 3 ^ e the class of all functions f,f: D^ -> C , analytic in D^ 

and having only simple zeros. Let S(f) be the set of all zeros of f. 

Consider any iteration cp 6 $, where $ is the class of all stationary 

iterations without memory which use a linear information operator 3t per 

iterative step, i.e., § 3 8 U $ ( 3 l ) . 
31 

Which properties should cp have to be called a globally convergent itera­

tion? To motivate our definition consider first the problem f(x) 3 8 0 where 

f is defined in a {x: |x-a| < R(f) } and a is its unique simple zero. 

Suppose we apply cp to this problem. Let r(f,cp) be the maximal number such 

that for any starting point x^ satisfying |x^-a| < r(f ,cp) the sequence 

x i + 1
 3 8 <p(x±9%(f,xi>) is convergent to a. Then the ball {x: |x-a| < r(f,cp)3 

is called the ball of convergence of cp for f. Of course, r(f,cp) depends on 

R(f) and in particular r(f,cp) ^R(f). Suppose there exists a positive 

constant c 3 8 c(cp) such that r(f,cp) ^ c R(f) for any f. Then cp enjoys a type 

of global convergence since the ball of convergence has radius proportional 

to the radius R(f) of the domain D^. However for problems with R(f) » 4- 0 0 

we get r(f ,cp) 3 8 + 0 0 which means that any choice of a starting point x^ 

yields convergence. This seems to be too strong. For R(f) 3 8 + • we would 

like to have r(f,cp) large but not necessarily equal to infinity. This is 

the motivation of the following. Let K,L be two given constants such that 

K ^ 0 and 0 < L ^ + «. Define R f * min[R(f) ,K| a\ + L ] . Now the existence 

of a positive constant c * c(cp) such that r(f,cp) £ c R f implies a type of 

global convergence cp. This discussion shows that we should compare r(f ,cp) 

with R f. 
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If f has more than one simple zero we proceed as follows. Let 

dist(a,dDf) be the distance of a,a 6 S(f), to the boundary dD f of the 

domain D f. Define 

R f (a) - min{dist(a,dDf) , K | a| + L } , ( K * 0, 0 < L £ + *) . 

Let 

B(b,f) » U C*: |x-<*| < b-R.(a)} 
cr€S(f) 

where b ^ 0. Note that if S(f) * [a] then R f (a) • R f. For any iteration cp, 

cp € we define a number c(cp) such that 

(i) for any f 6 3 a n d f o r a n Y starting point x Q € B(c(cp),f) the 

sequence [x^}, 3 8 9(x^; ^ ( f j X ^ ) ) , is well-defined and 

lim x 6 S(f) • 

(ii) for any e > 0 there exist a problem f 6 3 and a starting point 

X Q € B(c(cp) + €,f) such that either the sequence (x^) is not 

well-defined or lim x. fL S(f). • 

Note that for any iteration c(cp) € [0,1]. The set B(c(cp),f) is a con­

vergence domain of 9 for the function f since taking any starting point 

X Q 6 B(c(cp),f) we get convergence of {x^}. Note, however, that we do not 

specify which element from S(f) is the limit of [x^. 

Definition 3»1 

We shall say that an iteration 9 , 9 € §, is globally convergent for the 

class 3 iff 
c(9) > 0. • 
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Definition 3.1 imposes only a weak condition on cp. However, we shall 

show that for any iteration from J, c(cp) • 0. This means that even in the 

sense of Definition 3.1 there exists no globally convergent stationary 

iteration using linear information for the class 3. 
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4. MAIN RESULT 

Theorem 4.1 

No iteration cp from $ is globally convergent for the class 3. 

e there exist »: D« - <Ln and cp 6 $(31) with c » c(cp) > 0. Let 
Proof 

Suppose there exist 'J*: 

if cK ^ 1, 

2(l-cK) « « < ! . 

Define f (x) - x-a. Then f € 3 , S(f) - {a} and R f (a) - KJaj + L. Let 

x Q
 3 8 0. Since x Q € B(c,f) » [x;. jx-a| < cRf(a)}, the sequence (x^, 

xi+l * 9t(f,Xj))» tends to a, a j* 0. Thus, there exists a unique 

integer k, k ^ 1, such that 

(4.1) |x ( )|,|x 1|,...,|x k - 1| < | and jxj * |. 

Consider a polynomial w of the form 

n*k 
.2) w(x) - £ a^ 1" 

i=*0 

which satisfies 

(4.3) 5l(f-w, X j) - ^ f ^ ) for j - 0,l,...,k-l. 

This is equivalent to the following homogeneous system of n*k linear 

equations 

n«k 
(4.4) ) a.L (x i + 1,x.) » 0 for s = 1,2,...,n and j - 0,l,...,k-l« 

• i s j 
i=0 
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Since we have more unknowns than equations, it is obvious that there 

exists a non-zero polynomial w of the form (4.2). Then there exist 

positive integers r, 1 £ r f nk+1, and P , 1 £ P £ r , a n d n o n . z e r o 

zp+l'"*' zr s u c h t h a t 

w(x) - x P c x-z^).....^-^) 

For e > 0, define 

2' 

From the general theory of algebraic functions (see for instance Wilkinson 

[63]) it is known that for sufficiently small e there exist p simple 

zeros X1(e),...,\p(€) s u c h that 

(4.5) X.(e) Plf(0) 
w ( p )(0) 

P 2 ei + 0(e.) 

where is the i-th complex root of the equation x P = e. Note that 

lim X.(e) = 0, Vi. Therefore for sufficiently small e, we get f € 3j 

X (e) ,X(e) ,...,X (e) € S(f ) and lim (X.(e)) = min£f,L}. Then the 

starting point y Q » x Q » 0 belongs to B(c,f g). This means that the 

sequence {y^}, y * V(y±l ^(f^J^)). is well-defined. Observe that 

Ol(fe,Xj) - 3l(f€,yj) for j = 0,1 k-1 and y Q - x Q. Therefore 

y i + 1
 a x i + 1 • cp(x̂ ;̂ ̂ (f.x^) for i = 0,l,...,k-l. From (4.1) we know 

that |yjj = jx^| s which means that y^ does not belong to the domain 

D f . Thus ^( f
e>y k) is not well-defined, see (2.2), which contradicts 

c(cp) > 0. 
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Theorem 4.1 says that there exists no globally convergent iteration 

without memory using a linear information operator for the class 3 °f analy­

tic complex functions having only simple zeros. This negative result also 

holds for real problems. Let 2^ ̂ e t l i e class of real functions f, 

f: c R -* R, analytic in D f and having an unique simple zero. Consider 

real information operators, i.e., 3t(f,x) € R n, Vf € ^ € . 

Theorem 4.2 
For any real linear information operator 31 there exists no iteration cp 

from §(3t) which is globally convergent for the class 3^. 

Proof 
Suppose that for a real linear tnrormacxon o p e r a t u t that for a real linear information operator 31, 31: -* R U and 

for cp 6 ?(3l), c =» c(cp) > 0. Let f(x) s x-a be defined as in the proof of 

Theorem 4.1. Since x^ 3 0 € B(c,f), the sequence {x^J, x
i + ^ 3 9(^5 3l(f,xi>) 

tends to a f* 0. Therefore 

(4.6) x x = 9(0; 3t(f,0)) £ 0. 

Consider now a real polynomial w, 

n 2. 
(4.7) w(x) = £ a ±x 1 + 1 , 

i-0 
satisfying 

(4.8) 3l(f-w,0) - 3l(f,0). 

The equation (4.8) is equivalent to the following homogeneous system of n 

real linear equations. 
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n 
(4.9) I • 1 L s ( x 1 * 1 . x ) for s - 1,2,...,n. 

i=0 

It is obvious that there exists a non-zero real polynomial w of the form (4.7) 

and satisfying (4.8). Let w(x) - xP(x-z x) •... • (x-zy) where 1 <; r * 2n+l, 

1 £ p ^ r and z± f 0 for i - p+l,...,r. * Due to (4.7) p is odd. 

Define 

2 
r -

m i n { — _ J L _ } i f p < r > 

l x l l 
otherwise, 

and 

fe(x) 
f (x) + -^w(x) if | x | < r , 

undefined if j x| ;> p 

for e > 0. For sufficiently small e, the solutions of f (x) = 0 in the 

complex plane are given by (4.5). Since p is odd, only one of ^(e) in 

(4.5) is real. Thus, f has a unique simple real zero, say \(e). Since 

\(e) tends to zero with e, lim R f (\(e)) « min {r ,L3 and x Q » 0 6 B(c,f ) 
€-•0 € 0 € 

for sufficiently small e. Therefore the sequence fx.}, x. 3 8 cp(x : 9t(f t X )) 
l l+l l • e* i 

is well-defined. Observe that 

x x » cp(0; K(fe,0)) » cp(0; fl(f,0)).~ 

Due to (4.6) K1 £ D f which means that x 2 is not well-defined. This 
contradiction ends the proof. 



5.1 

5- THE GENERAL CASE 

In Section 4 we showed that there exists no globally convergent one-

point stationary iteration without memory which uses linear information. 

In this section we prove the same result for multipoint iterations with or 

without memory. 

Let L..,L0,...,L be functionals defined as in Section 2. Then a multi— l z n 
point linear information operator 31: D«JJ c H X C ~> (^9 is defined as 

(5.1) 3t(f,x) = [L 1(f,z 1),L 2(f,z 2),...,L n(f,2 N)], Vf € H, Vx 6 D f 

where 

(5.2) zx
 3 8 x and z k + 1

 3 8 ̂ ^ ( z ^ L^f 9z^) ,L2(f,z2) ,... ,I^(f ,zR) ) , k 3 8 l,2,...,n-l, 

for certain functions • Note that if 3 8 x, k 3 8 2 ,...,n, then 

31 is a one-point linear information operator defined in Section 2. 

For given integer m, let X Q , X _ J > • • • > x . m ^ e distinct approximations of 

a solution of f (x) 3 8 0, f € 3- Suppose we construct a sequence of approxima­

tions by the formula 

(5.3) x i + 1
 3 8 9(x i,x i - 1,...,x i - m; 3l(f ,x±) ,3t(f . x ^ ) ,... ,31 (f . x ^ ) ) 

where cp: D c d/1*4"1) ( n + 1 ) -» C is a functional. Then cp is called a multi-
CD 

point stationary iteration operator with memory if m ^ 1 and without memory 

if m 3 8 0 using a linear information operator 31. For brevity cp is also called 
an iteration. Let § (31) be the class of all such iterations. 

1 m 

For particular 31 and m we get commonly used iterations. For instance, 

m - 1, 3l(f,x) 3 8 [f(x)] and 
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cp(x,y; 9t(f,x),3tCf,y)) = x - £ ( x * l £ ( y ) f ( * ) 

is the secant iteration. An example of two-point stationary iteration with­

out memory is provided by Steffensen iteration (see Steffensen [33]) which 

is defined as follows 

3l(f,x) - [f( Z l),f(z 2)] where - x and z £ - z -f(z ) 
and 

Z1" Z2 cp(x; 3t(f,x)) = zx - f ( 8 i ) l f ( , 2 ) f ( « x ) . 

We extend the definition of global convergence as follows. Let !ft be a 

one- or multipoint linear information operator and let m be an integer. 

Recall that B(b,f) is defined in Section 3. For any iteration cp, cp 6 $ (31), 
m 

define c 3 8 c(cp) as a number that 

(i) for any f € 3 a n d a n Y choice of distinct starting points 

X 0 , X - 1 ' * # * , X-m f r o m B( c> f) t* l e sequence [x^}, 

Xi+1 * C p ( xi , Xi-l ,*-- , xi-m ; ^ ' V ' ^ ^ i - l ^ - ^ ^ ^ i - m ^ 
is well-defined and lim x. € S(f). 

(ii) for any e > 0 there exist f € 3 and distinct points 

x(),x_1,...,x_m € B(c+e,f) such that either the sequence £x ] 

is not well-defined or lim x.̂  S(f). 
i-»oo 

Definition 5.1 

We shall say that an iteration cp is globally convergent for the class 3 iff 

c(co) > 0 a 
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Now let $ be the class of all stationary iterations with or without 

memory which use a linear information operator 31, i.e., § 3 ij U $ (3t) . 
31 m m 

Theorem 5.1 

No iteration cp from §(3t) is globally convergent for the class 3* 

Proof 

Apply the proof of Theorem 4.1 with starting points x-j 3 8 ^(nH-1) m * n t a » L 3 » 

j 3 5 0,1, ...,m, and with n k in (4.2) replaced by n(m+k). • 

Theorem 5.1 says that knowing only the value of a finite number of 

linear functionals on f it is impossible to find a globally convergent sta­

tionary iteration for the class 3« Therefore if we want to solve f(x) 3 8 0 

by a stationary iteration we have to assume that the starting points are 

sufficiently close to a solution. By contrast it is known that for some 

non-linear information operators there exist globally convergent stationary 

iterations. An example is provided by Laguerre iteration. Also for linear 

information operators there exist globally convergent non-stationary itera­

tions for the class 3» An example may be found in Traub and Wozniakowski [76] 

where global convergence of the sequence of interpolatory iterations 1^ is 

proved. For this case, the k-th iteration requires the knowledge of k linear 

functionals of f. Furthermore there exist globally convergent non-stationary 

iterations which are based on the use of increasing size of memory. This 

will be reported in Wasilkowski [79]. 
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6. FINAL COMMENTS 

In Section 5 we showed that no stationary iteration using linear informa­

tion is globally convergent for the class of analytic problems having simple 

zeros. The existence of globally convergent iterations depends on the class 

3 of functions whose zeros we want to approximate. For some simple classes 

there exist well known globally convergent stationary iterations which use 

linear information. For example if 3 * s the class of real functions 

f: R -» R whose first derivative is monotonic then Newton iteration is 

globally convergent. 

For many interesting classes the existence of global convergent itera­

tions is unknown. Even for the class II of all real polynomials with simple 

real zeros this problem is open. All known globally convergent iterations 

for the class II are either non-stationary or use nonlinear information. For 

example Newton iteration with a suitably chosen starting point, Bernoulli1s 

method and Laguerre iteration are globally convergent for II. See for 

instance Ralston and Rabinowitz [78]. Either implicitly or explicitly these 

iterations use the degree k of the polynomial whose zero is desired. 

Note that the degree k is nonlinear information. Indeed, suppose there 

exists a function g (in general nonlinear) such that k = g(x; 3t(f,x)) where 

31 is a multipoint linear information operator. For any x Q there exists a 

polynomial w of degree greater than one such that 3l(w,xQ) = 0. Taking 

f e(x) = x + -j w(x) we get 3l(fe,xQ) - 3l(x,xQ) and f £ € II for sufficiently 

small e. Therefore g (xQ,3l(x,x0)) - g (xQ,3l(f )) , but the degrees of the 

polynomials x and fc(x) are different. This contradicts the assumption 

k - g(x; 3l(f,x)), with 31 linear. 
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We believe that any globally convergent iteration for II has to be non-

stationary or use nonlinear information. Therefore we propose the following 

conjecture. 

Conjecture 6.1 

There exists no globally convergent stationary iteration using linear 

information for the class of all real polynomials with simple real zeros. • 
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