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ABSTRACT

All known globally convergent iterations for the solutiom of.a nonlinear
operator equation f(x} = 0 are either non-stationary or use nonlinear informa-
tion. We ask whether there exists a globally convergent stationary iteration
which uses linear information. We prove that even if global convergence is
defined in a weak sense, there exists 0o such iteration for as simple a class
of problems as the set of all analytic complex functionms having only simple
zeros. We conjecture that even for the class of all real polynomials which

have real simple zeros there does not exist a globally convergent stationary

iteration using linear information.
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1. INTRODUCTION

Suppose we solve a nonlinear operator equation £(x) = 0 by an iteration
which constructs a sequence of approximations [xi]. For most convergence
theorems it is assumed that f is sufficiently smooth and starting points
are "sufficiently close" to a solution «. 1In practice it is wvery hard to
verify the second assumption. One therefore wants to use iterations which
are globally convergent,

All known globally convergent iterations are either non-stationary or
use nonlinear information. For instance, Laguerre's iteration (see for
instance Ralston and Rabinowitz [78]) is globally convergent for the class
of all real polymomials having only real zeros. However this iteration
uses the degree of the polynomial whose zero is approximated. This means

that Laguerre's iteration uses nonlinear information (see Section 6). Am

example of a non-stationary iteration using linear information which is

globally convergent for analytic operator equations may be found in Traub
and Wozniakowski [76].

However, most commonly used iterations are stationary and use linear
information. Therefore it is important to know whether there exist globally
convergent stationary iterations which use linear information., 1In this
paper we prove that for as simple a class of problems as the set of all
analytic complex functions with simple zeros there exists no such iteration.
We conjecture that the same negative result holds even for the class of all
real polynomials having real simple zeros.

We summarize the contents of the Paper. 1In Section 2 we remind the

reader of the definitions of information and stationary iteration without



1.2

memory. In Section 3 we discuss the concept of global convergence. 1In
Section 4 we show that no stationary iteration without memory which uses
linear information can be globally convergent for the class of all analytic
complex functions. In Section 5 we extend this result to all statiomary
jterations with or without memory using linear information. In Section 6

we pose a conjecture that for the class of all real polynomials with real
simple zeros there does not exist a globally convergent statiomary iteration

using linear informatiom.
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2. STATIONARY ITERATIONS WITHOUT MEMORY

We recall the definition of information and stationary iteration. See

Traub and Wozniakowski {78]. TFor the reader's convenience, in Sections 2
to 4 we deal only with one-point iterations without memory. The extension
to the general case is given in Section 5.

Consider the solution of a nonlinear scalar equation
2.1) fx) =0

for £ € J where J is a subset of a space H of functions f: D «cC-+C. 10

solve (2.1) iteratively we need to know something about f. Let

Li: DL CHxC - C be a functional which is linear with respect to the
i

first argument, i.e.,

Li(clf1+c2f2,x) = clLi(fl,x) + chi(fl’x) whenever x € Df]_ N sz, i=1,2,...,n.

Consider the linear information operator R, T: Dip CHXT » (]:n, defined as

(2.2) M(£,x) = (L (£,%) Ly (£,%) 000l (£,%) ], ¥£ € H, Wix € D,

Let Xy be an approximation of a solution of (2.1). Let w: Dcp C,(Lm'l - C
be a functional. We construct the sequence of approximatioms X, by the

formula
2.3 X1 = tp(xi; m(f,xi))-

The functional ¢ is called a one-point stationary iterative operator without

memory using a linear information operator M. For brevity © is called an

iteration. Let (M) be the class of all such iterations,
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Note that most iterations use values of f and its derivatives. A
linear information operator is a generalization of this. For example, the

information operator M used by Newton iteration

f(xi)
= x

*iel i~ "f_'(Ti)

is M(f,x) = [£(x),f'(x)]. This operator is linear and ¢ € (M,
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3. WHAT DO WE MEAN BY GLOBAL CONVERGENCE?

Let J be the class of all functions £,f: Df C_q: ~ (I, analytic in Df
and having only simple zeros. Let S(f) be the set of all zeros of f.
Consider any iteration ¢ € %, where % is the class of all stationary
iterations without memory which use a linear information operator M per
iterative step, i.e., & = g@(m).
Which properties should ¢ have to be called a globally convergent itera-
tion? To motivate our definition consider first the problem f(x) = 0 where
f is defined in Df = {x: Ix-al <R(f)} and o is its unique simple zero.
Suppose we apply ¢ to this problem. Let r(f,p) be the maximal number such
that for any starting point X satisfying Ixo-al < r(f,v) the sequence
X1 = m(xi,ﬂ(f,xi)) is convergent to @. Then the ball {x: Ix-o| < r(f,)]

is called the ball of convergence of @ for f. Of course, r{f,y) depends on

R(f) and in particular r(f,9) SR(f). Suppose there exists a positive
constant ¢ = c(p) such that r(f,p) 2 c R{f) for any f. Then 9 enjoys a type
of global convergence since the ball of convergence has radius proportional
to the radius R(f) of the domain D¢. However for problems with R(f) = + =

we get r(f,p) = + « which means that any choice of a starting point %y
yields convergence. This seems to be too stromg. For R(f) = + « ye would
like to have r(f,y) large but not necessarily equal to infinity. This is
the motivation of the following. Let K,L be two given constants such that
K20and 0 <L £+ @ Define Rf = min[R(f),K]al + L}. Now the existence
of a positive constant ¢ = ¢(®p) such that r{f,p =z ¢ Rf implies a type of

global convergence @. This discussion shows that we should compare r{f,q)

with Rf.
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If f has more than one simple zero we proceed as follows, Let
dist(a,an) be the distance of o, € S(f), to the boundary BDf of the

domain Df . Define

R.(e) = min{dist(a,0Dy), Klo| + L}, K20, 0<L s+ 9.
Let

B(b,E) = U f[x: |x-af < b‘Rf(d)}
o€S (f)

where b 2 0. Note that if S(f) = {cr} then Rf(o:) = Rf. FTor any iteration o,

¢ € ¥M), we define a number c(9) such that

(i) for any £ € J and for any starting peint X, € B(c(yp),f) the
sequence [xi], X1 " tp(xi; ‘ﬁ(f,xi)), is well-defined and

lim X, € s(H).

jme

(ii) for any € > 0 there exist a problem £ € J and a starting point
X € B(c(p) + ¢,£) such that either the sequence {xi} is not

well-defined or lim X, ¢ s(f). |

{0

Note that for any iteration c(p) € [0,1]. The set B(c(p),f) is a com~
vergence domain of ¢ for the function f since taking any starting point
Xy € B(c(p),f) we get convergence of {xi}. Note, however, that we do not

specify which element from S(f) is the limit of {xi}.

Definition 3.1

We shall say that an iteration ¢, ¢ € &, is globally convergent for the

class J} iff
c(p) > 0. n
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Definition 3.1 imposes only a weak condition on P. However, we shall
show that for any iteration from 3, c(p) = 0. This means that even in the
sense of Definition 3.1 there exists no globally convergent stationary

iteration using linear information for the class 3.
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4, MAIN RESULT

Theorem 4.1

No iteration ¢ from ¥ is globally convergent for the class 9.

Proof

Suppose there exist M: Dy C" and @ € (M with ¢ = c(p) > 0. Let

1 if cKk 2 1,
a =
cL
3 (1=cK) if cR < 1.

Define £(x) = x-a. Then f € 3§, S(£) = {a} and R (a) = K|a| + L. Let
xy = 0. Since x4 € B(c,f) = {x:. |x—a| < ch(a)}, the sequence {xi},
i

il q)(xi; ‘R(f,xi)), tends to a, a # 0., Thus, there exists a unique

integer k, k 2 1, such that

@ fxglslrglaeeeslmeq| <3 and Ix ] 23

Consider a polynomial w of the form

n-k
(4.2) wix) = z aixl+1
i=0

which satisfies
4.3) ‘J't(f-w,xj) = m(f,xj) for j = 0,1,...,k-1.

This is eguivalent to the following homogeneous system of n+k linear
equations

n+k

(4.4) 2‘ aiLs(xi+1,xj) =0 fors=1,2,...,n and § = 0,1,...,k=1.

i=0



4.2

Since we have more unknowns than equations, it is obvious that there
exists a non-zero polynomial w of the form (4.2). Then there exist
positive integers r, 1 <t = nk+l, and P, 1 Sp = r, and non-zero

zp+1,...,zr such that

= - - . - -
w(x) xl(x z 1) oo (x~2 ),
For e > 0, define

£ + w0 if [x| <2,

fo(x) =

undefined if [x| 2 2.

From the general theory of algebraic functions (see for instance Wilkinson
[63]) it is known that for sufficiently small ¢ there exist p simple

zeros ll(e),...,Kp(e) such that

|-

pif(®

(4.5) X, (e) =
i w p)(o)

2
¢ * 0(ep)

where & is the i-th complex root of the equation xP = €. Note that

lim ki(e) = 0, ¥i. Therefore for sufficiently small e, we get fe €3,
e)

Kl(e),lz(e),...,lp(e) € 5(£) and ii:g Rfe(Ki(e)) = min_{-z%,L}. Then the
starting point Yo = % = 0 belongs to B(c,fe). This means that the

sequence {yi}, yi+1 = ¢(yi; m(fe’yi))’ is well-defined. Observe that

m(fe,xj) = m(fe,yj) for j = 0,1,...,k-1 and Yo = Xqg- Therefore

Yipr = Xypq = m(xi; m(f,xi)) for 1 = 0,1,...,k-1. From 4.1) we know
a

that fyk[ = ]xk[ 2 3 which means that Yy does not belong to the domain

D; . Thus ﬂ(fe,yk) is not well-defined, see (2.2), which contradicts
€

C(‘-p) > 0. .



Theorem 4.1 says that there exists no globally convergent iteration
without memory using a linear information operator for the class {} of analy-
tic complex functions having only simple zeros. This negative result also
holds for real préblems. Let 31 be the class of real functioms £,
£: Df C R - R, analytic in Df and having an unique simple zero. Consider

real information operators, i.e., R(f,x) € R, WE € 31, ¥x € Dy«

Theorem 4.2
For any real linear information operator 2 there exists no iteration ¢

from 3(M) which is globally convergent for the class 31.

Proof

Suppose that for a real linear information operator R, M: Dm -+ R" and
for ¢ € (M, ¢ = c(p) > 0. Let £(x) = x-a be defined as in the proof of
Theorem 4.1. $Since xq = 0 € B(ec,f), the sequence ﬁxi}, Xip = m(xi; m(f,xi))
tends to a # 0. Therefore

%.6) =, = ®(0; B(E,0) £ 0.

Consider now a real polynomial w,
n

2,
@.7) w(x) = z a.x L,

i
i=0
satisfying

(4.8) R(f-w,0) = R(£,0).

The equation (4.8) is equivalent to the following homogeneous system of n

real linear equations.
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n
’ i+1
{(4.9) ;i aiLs(x s X

i=0

0) for s = 1,2,...,n.
It is obvious that there exists a non-zero real polynomial w.of the form 4.7)
and satisfying (4.8). Let w(x) = xp(x-zp+1)-...'(x-zr) where 1 = r < 2n41,

1 <p Sr and zg #0 for i = P+l,...,r. “Due to (4.7) p is odd.

Define
%y | |21 2|
min ;‘, > 1 3o sy L } ifp<r,
]"‘:

lel

3 otherwise,
and
£(x) + %w(x) if [x] <T,
fe(x) =

undefined if lx] 2T

for ¢ > 0, For sufficiently small ¢, the solutions of fe(x) = 0 in the

complex plane are given by (4.5). Since p is odd, only one of li(e) in

(4.5) is real. Thus, fe has a unique simple real zeto, say A(e). Since

A(e) tends to zero with €, lig Rf (M€)) = min{T,L} and Xy =0 € B(c,fs)
€= e

. 3 . = - m
for sufficiently small e Therefore the sequence [xi}, X1 m(xi, (fe,xi))

is well-defined. Observe that
X1 = @05 R(E_,0)) = o(0; M(£,0)). "

Due to (4.6) x, ¢ D, which means that X, is not well-defined. This
€

contradiction ends the proof. ||
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5. THE GENERAL CASE

In Section_& we showed that there exists no globally convergent one-
point stationary iteration without memory which uses linear information.
In this section we prove the same result for multipoint iterations with or
without memory.

Let LI’LZ""’Ln be functionals defined as in Section 2. Then a melti-

point linear information operator P8 Dm': Hx ¢ -~ (En, is defined as

(5.1) m(f,x) = [Ll(f’zl) st(f:zz)s'--:Ln(f’zn)]: vE €H, ¥x € Df
where

(5.2) z; = x and Zye1 T §k+1(zl; Ll(f’zl)’LZ(f’zz)""’Lk(f’zk))’ k=1,2,...,0-1,

for certain functions §2,§3,...,§n. Note that if §k =x, k=2,,,.,n, then
N is a one-point linear information operator defined in Section 2.

For given integer m, let xo,x_l,...,x_m be distinct approximations of
a solution of £(x) = 0, f € J. Suppose we construct a sequence of approxima-

tions by the formula

(5.3 Xy = POy oeeeaky s BEXDIER Poe HExy o)

where @: DCD < (L(m+1)(n+1) - € is a functional. Then @ is called a multi-

point stationary iteration operator with memory if m 2 1 and without memory

if m = 0 using a linear information operator M. For brevity @ is also called

an iteration. Let @m(ﬁb be the class of all such iteratioms.
For particular % and m we get commonly used iterations. For instance,

m=1, R(E,x) = [£(x)] and
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Px,¥; m(f:x) :m(,f:Y)) =Xx=- f(x)

K= :E
txy=-£(y)

is the secant iteration. An example of two-point stationary iteration with~
out memory -is provided by Steffensen iteration (see Steffensen [33]) which

is defined as follows

ME,x) = [f(zl),f(zz)] where z; = x and z, = zl-f(zl)

and

217%

1° £(z))-f(z

o(x; R(f,x)) = 2 )
2

f(zl).

We extend the definition of global convergence as follows. Let M be a
one~ or multipoint linear information operator and let m be an integer.
Recall that B(b,f) is defined in Section 3. For any iteration ¢, @ € @m(ﬂb,
define ¢ = c¢(¢) as a number that

(i) for any f € 3 and any choice of distinet starting points
XX _yses%x_ from B(c,f) the sequence {xi},
X1 = w(xi,xi_l,...,xi_m; ﬂ(f,xi),m(f,xi_l),...,m(f,xi_m))

is well-defined and lim x, € §(f).
i-—om L

(ii) for any ¢ > 0 there exist f € 3 and distinct points
xo,x_l,...,x_m € B(c+€e,f) such that either the sequence £xi}

is not well-defined or lim X5 € s(f).

1—-®

Definition 5.1

We shall say that an iteration ® is globally convergent for the class I iff

c(o) >0 [ |
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Now let & be the class of all statiomary iterations with or without

memory which use a linear information operator X, i.e., &= SQLJ @m(m).
m

Theorem 5.1

No iteration ® from ¥(M) is globally convergent for the class J.

Proof
Apply the proof of Theorem 4.1 with starting points x-j = Z?;&TT min{a,L},
j=0,1,...,m, and with n k in (4.2) replaced by n(mtk). n
Theorem 5.1 says that knowing only the value of a finite number of
linear functionals on f it is impossible to find a globaily convergent sta-
tionary iteration for the class %, Therefore if we want to solve f(x)} = 0
by a stationary iteration we have to assume that the starting points are
sufficiently close to a solution. By contrast it is known that for some
non-linear information operators there exist globally convergent statiomary
jiterations. An example is provided by Laguerrte iteration, Also for linear

information operators there exist globally convergent non~stationary itera-

tions for the class 3. An example may be found in Traub and Wozniakowski [76]
where global convergence of the sequence of interpolatory iterations Ik is
proved. For this case, the k-th iteration requires the knowledge of k linear
functionals of f. Furthermore there exist globally convergent non-stationary
iterations which are based on the use of increasing size of memory. This

will be reported in Wasilkowski [(7917.
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6. FINAL COMMENTS

In Section 5 we showed that no stationary iteration using linear informa-
tion is globally convergent for the class of analytic problems having simple
zeros. The existence of globally convergent iterations depends on the class
3 of functions whose zeros we want to approximate. For some simple classes
there exist well known globally convergent stationary iterations which use
linear information. For example if % is the class of real functions
f: R - R whose first derivative is monotonic then Newton iteration is
globally convergent.

For many interesting classes the existence of global convergent itera-
tions is unknown. Ewven for the cléss l of all real polynomials with simple
real zeros this problem is open. All known globally convergent iteratioms
for the class [l are either non-stationary or use nonlinear information. For
example Newton iteration with a suitably chosen starting point, Bernoulli'ts
method and Laguerre iteration are globally convergent for [[. See for
instance Ralston and Rabinowitz [78]. Either implicitly or explicitly these
iterations use the degree k of the polynomial whose zero is desired.

Note that the degree k is nonlinear information. Indeed, suppose there
exists a function g (in general nonlinear) such that k = g(x; M£,x)) where
B is a multipoint linear information operator. TFor any X, there exists a
polynomial w of degree greater than one such that R(w,xo) = (. Taking
fe(x) = x + % w{x) we get m(fe,xo) = m(x,xo) and 13 € Il for sufficiently
small €. Therefore g(xo,m(x,xo)) = g(xo,m(fe,xo)), but the degrees of the
polynomials x and fc(x) are different. This contradicts the assumption

k = g(x; L,x)), with M linear.
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We believe that any globally convergent iteration for [ has to be non-
stationary or use nonlinear information, Therefore we propose the following

conjecture,

Conjecture 6.1

There exists no globally convergent stationary iteration using linear

information for the class of all real polynomials with simple real zeros. |
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