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Abstract

Organizations are frequently designed and redesigned, often in efforts to improve
performance or meet various managerial goals for coordination and communication. Such design
is often done through the review of a few of options and the use of managerial and possibly
personnel insight into how the new design might work. In contrast, we provide a systematic
optimization based approach. In this approach, the user can pick one or more Dynamic Network
Analysis (DNA) metrics and then use one or more of the available optimizers to find a design
that more closely meets this ideal. The optimizer utilizes heuristic based optimization procedures
to generate an optimized organizational design given a particular mission. DNA metrics, such as
Communication Congruence, Resource Congruence, Cognitive Load, and Actual Workload,
serve to define criteria. The Optimizer can perform multi-criteria optimization in order to
improve several metrics simultaneously. Two optimization methods can be used - Monte Carlo
and Simulated Annealing, both of which are statistical methods of finding a global optimum.
DNA metrics used in the optimizations are computed by ORA. This report describes this
optimizer.
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1. Introduction

Organizations are often grow to have a particular structure or design, that, when examined
can be seen to being fraught with defects. In contrast, technologies and various products are
often engineered so that they exhibit a design that meets various goals. Many products are even
optimized to meet some set of specifications. The same techniques, however, can be applied to
organizations. We can ask, how should we design this organization, this group, this team so that
it is "optimal" given some set of design criteria.

Today, information processing, communication, and knowledge management are keys to
effective organizational performance and adaptability. Changes in computational power,
telecommunications, and information processing are affecting when, where and how work is
done [1, 2]. Further changes in agriculture, manufacturing, transportation and technology are
leading to the emergence of an increasingly mobile population and knowledge intensive
organizations. New organizational designs are emerging such as network organizations [3,4] and
virtual organizations [5]. In these new organizations, even though information processing is key
[6], communication is not constrained to be vertical [7]. Rattier, the network of connections
within and among organizations acts to constrain and enable the flow of goods, services, agents
and information. The result is an environment in which the act of organizational design becomes
a strategic exercise in establishing and managing these relations [8].

What are these relations? How can we, given the set of possible relations, find the optimal
design? What are the criteria for determining whether a design is good? What are the appropriate
optimization algorithms? In this report, we provide a first answer to these questions.

What Are the Relations?

A variety of networks exist within and among organizations. We can define a meta-matrix
[9] as the networks connecting the four key corporate entities - agents, knowledge, resources,
and tasks (see Table 1). Various aspects of organizations can be characterized in terms of these
networks. For example, structure (such as the authority structure or the communication structure)
is defined in terms of the interaction network connecting people to people. Culture can be
defined in terms of the knowledge network - the connections.of people to knowledge. And so on.

The individual cells in this meta-matrix define items that can be manipulated by the manager.
The goal from a design perspective is to alter the elements of Table 1 to achieve a design that
meets a set of criteria Clearly there are different constraints and costs on manipulating various
aspects of this meta-matrix... In general these cells can be manipulated by adding or dropping
nodes and adding or dropping relations. Logically, the organization can be changed by adding or
dropping nodes or relations. A node can be, given Table 1, a person, knowledge, resource, or
task. A relation can be the connection between two nodes. Further, unlike nodes, we can talk of
change in the strength of a connection. A number of key processes in covert networks affect
these types of changes. Key processes affecting node change include: recruitment; the removal
(death, isolation, etc.) of a person; change in mission (and so the addition or deletion of tasks);
change in technology (and so the addition or deletion of tasks and resources); the consumption of
resources; and the purchase/creation of resources. Key processes affecting the change in relations
are re-assignment of personnel, training, co-work assignments, and evolution of
friendships/communication structure.
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Table 1: Meta-Matrix for Organizational Design

People

Knowledge

Resources

Tasks

People
Interaction
Network

Knowledge
Knowledge
Network
Information
Network

Resources
Resource
Network
Resource Skill
Needs Network
Substitutes and
Coordinated
Resources
Network

Tasks
Assignment
Network
Task Skill Needs
Network
Task Resource
Needs Network

Task Precedence
Network

In most organizations, due to missing and capital outlays (fixed investments) changes to tasks
and resources is harder than changes to people and knowledge at least in the short run. Thus,
assuming that the set of tasks is more or less set by the organizational mission and the extant
technology, then things involving adding/dropping tasks or connections among tasks will be
difficult to do in the short run. In contrast, things involving people are easier to do in the short
run. We can thus think of row 1 of Table 1 as representing that part of the organization that can
be changed, manipulated, altered by the manager fairly quickly. The rest of the organization we
can think of as the more fixed, less malleable, aspect of the current design. This characterization
constrains the optimization problem to manipulating the top four cells - the interaction,
knowledge, resource, and assignment networks to meet needs defined in part by the portions of
the current design that are "fixed".

A great deal of research demonstrates that for humans, the networks that people operate on,
and in, serve to constrain and enable further action and affect the efficiencies of such actions
[10]. Similarly, for artificial agents, being able to traverse the digitized version of these networks
enables machine comprehension [11]. For example, WebBots that serve as personal shoppers are
more intelligent if they are more able to navigate through the links between sites on the web.

Hence a change in any one of the four networks in which people are involved can potentially
result in a cascade of changes in the others. For example, when individuals learn something new
(by interacting with someone in their interaction network) that evokes a change in the interaction
network [12]. As another example, when new personnel are hired they may bring new
knowledge with them. As current personnel leave, the available knowledge may be depleted.
From an optimization perspective the goal would be to find the set of changes that results in a
cascade that meets the organizational goals.

Managing these changes is the key to knowledge management. Information technology has
the potential to affect this meta-network in several ways. First, it can affect the number and types
of nodes in these networks; i.e. with the advent of new technology comes new agents, new
knowledge, and new connections among knowledge. Second, information technology has the
potential to alter the way changes occur and their impact. For example, some suggest that
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holding data in databases, and knowledge systems like Lotus Notes provides organizations with
the means to decouple personnel turnover and change in the knowledge network.

By identifying the mission and technology as the constrained portions or the relatively fixed
components of the extant system, at least in the short run, we open the possibility to locating the
optimal form or structure of the rest of the system. We define the organizational design problem
in terms of the meta-matrix that can be varied in the short run - the interaction network, the
knowledge network, the resource network, and the assignment network. The system is optimized
if the ties in this network are arranged such that they minimize those vulnerabilities of concern to
the manager.

What are these vulnerabilities? How can we define the set of them? By defining the
organizational design in terms of a set of networks that open the possibility of using all networks
(both social and dynamic network measures) as indicators of potential vulnerabilities. Further,
we know from the past decade of work on organizational design, that many of these measures are
directly related to encourage adaptation whereas others encourage high performance. For
example, previous work indicated that high performance and adaptive systems tended to exhibit
a high level of congruence, or match, between what resources were needed for a task and the
availability of those resources (resource congruence) and in who needed to communicate in order
to do the task and who actually communicated [13]. Further, organizations typically exhibit
better performance and have fewer problems with personnel if workload is evenly distributed.
Using heuristic based optimization tools, such as simulated annealing and Monte Carlo
techniques, we have developed a series of procedures, that given meta-matrix data on an
organization locates the organizational design that optimizes one or more of these criteria.

There are two ways in which the optimization code can be used. First, it can be used to assess
the extent to which the organization as a whole is in trouble. For example, if the current design is
far from optimal it may not be worth destabilizing at all. Since destabilization involves the
removal of critical nodes, the comparison of the relative difference from the optimum of the
"destabilized" organization and original provides an indicator of the potential relative impact of
the destabilization. Secondly, this tool can be used by a manager to locate possible new designs.

2. Concept of Optimization: Our Case

The optimizer utilizes heuristic based optimization procedures to generate an optimized
organizational design given a particular mission. Dynamic Network Analysis (DNA) metrics,
such as Communication Congruence, Resource Congruence, Cognitive Load, and Actual
Workload, can be used individually or in combination as objective functions to be minimized or
maximized. By combining several DNA measures, either via sum or product, multi-criteria
optimizations can be performed.

The space over which the DNA metrics are defined is not the N-dimensional space of N
continuous parameters. In our case, N is either the number of nodes in the meta-matrix, or the
total number of edges, and our sample space is a discrete with size proportional to 2N. Because
the set is discrete, we are deprived of any notion of "continuing downhill in a favorable
direction." The concept of "direction" does not have any meaning in the configuration space, and
therefore we cannot use gradient or pseudo gradient methods to optimize our objective functions.
On the other hand, the sample space is exponentially large, and so it cannot be explored
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exhaustively. The optimization methods used by Optimizer are therefore statistical sampling
methods: Monte Carlo and Simulated Annealing.

3. Input for Optimization

The Optimizer takes as input an organization represented as a meta-matrix. In the short run
we assume that the number of entities (people, resources, knowledge, and tasks) is fixed. It is
also assumed that for the purposes of optimization, some matrices in the meta-matrix are
constant, and some are variable (see Table 2). So, we define the organizational design as the set
of cells in the meta-matrix that can be varied in the short run - the social network, the
capabilities network, the assignment network, and knowledge network. The system is optimized
if the ties in those networks are arranged such that they minimize vulnerabilities. We define a
system to have the optimal organizational configuration or design if vulnerabilities due to one or
more of the following are minimized: distribution of resources, distribution of communication
ties, and workload.

Previous work indicated that high performance and adaptive systems tended to exhibit a high
level of congruence, or match, between what resources were needed for a task and the
availability of those resources (resource congruence) and in who needed to communicate in order
to do the task and who actually communicated. Furthermore, organizations typically exhibit
better performance and have fewer problems with personnel if workload is evenly distributed
[13].

In the case when the original input data does not have a required matrix of the meta-matrix,
we can always create it as a random matrix at the beginning of the optimization process.

Table 2: Meta-matrix shown with fixed and variable components.

People

Knowledge

Resources

Tasks

People Knowledge Resources Tasks

fixed
component

Fixed
component
Fixed
component
Fixed
component

4. Output of Optimization

As previously mentioned, DNA metrics serve to define criteria. As a single criterion of the
optimization we used the DNA metrics Communication Congruence, Resource Congruence,
Cognitive Load, Actual Workload, Communication, and Personnel Cost. For the definitions of
these measures, see the Organization Risk Analyzer (ORA) Technical Report. These measures
were chosen because previous work suggests that to improve performance of the organization we
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should maximize Congruence, both Communication and Resource, and minimize variation in
Actual Workload. On the other hand, to improve adaptability we should minimize the variation
in Cognitive Load. Hence, optimizing a meta-matrix for performance or for adaptability requires
optimization with criteria created as a sum or a product of the DNA metrics.

Different DNA metrics require different sub matrices to be varied during the optimization
process. Resource Congruence requires assignment and capabilities networks, Communication
Congruence, Communication, and Cognitive Load additionally require social network, Actual
Workload requires assignment and knowledge networks, and Personnel Cost requires all 4
variable matrices to be completely optimized. However due to unwillingness of the user to
change all variable matrices we always can consider only some of them as variable. On the other
hand if we do not originally have any sub matrices, we always can consider them as variable and
simulate them during the process of the optimization. Finally after the optimization process we
will get all variable sub matrices close to their optimal meaning.

5. Optimization Methods

While the classical approach would obviously not be applicable to our problem, statistical
heuristic techniques seem, intuitively, to be appropriate for our purpose. The literature survey
demonstrated that each technique had its strengths and weaknesses. It also demonstrated that the
performance of each algorithm would be heavily dependent on the nature of the problem itself
and the heuristics that we used. We chose two statistical optimization methods: Monte Carlo and
Simulated Annealing to use in the Optimizer.

5.1. Monte Carlo Method

The Monte Carlo method randomly samples the variable sub matrices of our meta-matrix.

We randomly generate all cells in a meta-matrix with uniformly distributed random densities
of sub-matrices. At each sample point, the objective function is evaluated. After N experiments
we take as an approximation to the global optimum the sampled meta-matrix that yielded the
highest objective function.

The advantages of Monte Carlo method for solving our problem are:

It provides a broad sampling of the parameter space, and gives the possibility of finding the
global optimum.

It allows random samples to be generated subject to structural constraints, such as each row
in a sub-matrix having at least one non-zero element.

It allows simulating of the sub-matrices with fixed or randomly distributed densities.

Its disadvantages are that it can be slow (if many experiments are selected), and that because
of the random, discrete nature of the search, the global optimum can easily be missed (if not
enough experiments are selected).
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5.2. Simulated Annealing Method

The rough idea of simulated annealing is that it first picks a random move. If the move
improves the objective function, then the algorithm accepts the move. Otherwise, the algorithm
makes the move with some probability less than 1:

Formula 1 p = exp [-(E2-E1) / kT];

The probability decreases exponentially with the "badness" of the move - the amount

(E2 - El) by which the evaluation is worsened.

A second parameter T is also used to determine the probability. At higher values of T, "bad"
moves are more likely to be allowed. As T tends to zero, they become more and more unlikely,
until the algorithm behaves more or less like local search. The schedule input determines the
value of T as a function of how many cycles already have been completed [14].

The algorithm was developed from an explicit analogy with annealing - the process of
gradually cooling a liquid until it freezes. The objective function corresponds to the total energy
of the atoms in the material, and parameter T corresponds to the temperature. The schedule
determines the rate at which the temperature is lowered. Individual moves in the state correspond
to random fluctuations due to thermal noise. One can prove that if the temperature is lowered
sufficiently slowly, the material will attain a lowest-energy (perfectly ordered) configuration.
This corresponds to the statement that if schedule lowers T slowly enough, the algorithm will
find a global optimum. Simulated Annealing was first used extensively to solve VLSI layout
problems in the early 1980s [14, 15]. Since that, it has been used in Operations Research to
successfully solve a large number of optimization problems such as the Traveling Salesman
problem and various scheduling problems [14].

The advantages of Simulated Annealing method are:

It is not "greedy," in the sense that it is not easily fooled by the quick payoff achieved by
falling into unfavorable local minima.

If it doesn't find the absolutely best solution, it often converges to a solution that is close
to the true minimum solution.

It takes less time than Monte Carlo method to get a comparable solution.

The disadvantages of Simulated Annealing method are:

It does not easily allow the logical constraints on the solution: for example, keeping at least
one 1 in every row of sub-matrices.

It does not allow simulating of the sub-matrices with fixed densities.

One of the difficulties in using Simulated Annealing is that it becomes very difficult to
choose the rates of cooling and the initial temperatures for the system that is being optimized.
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This occurs primarily because of the absence of any rules for selecting them. The selection of
these parameters depends on heuristics and varies with the system that is being optimized.

6. Performance Information

To test the optimizer we used network data from the U.S. embassy bombing in Tanzania. The
network is small, with 16 agents, 4 knowledge, 4 resources, and 5 tasks.

Some results of the optimization using the optimizer were also presented in [17].

We optimized this data using both methods: Monte Carlo and Simulated Annealing. For
Monte Carlo, we used the default case with the number of experiments N = 1,000,000 and the
user specified case with a significantly smaller number of experiments N = 100,000. We also
considered two dififerent cases of optimization with a single measure to be optimized and with all
four measures optimized using the sum criterion. The results of the optimization using Monte
Carlo are presented in Table 3. All table results are from running the Optimizer on a 2.53 Ghz
Intel Pentium IV processor running Windows XP.

For Simulated Annealing, we used the default case with optimization parameters T = 100
(original temperature) and T_factr = 0.99995 (coefficient regulated cooling schedule). The user
specified case was T = 90 and Tfactr = 0.995 that required significantly smaller time in the
optimization process. We also considered two different cases of optimization with a single
measure to be optimized and with all four measures optimized using the sum criterion. The
results of the optimization using Simulated Annealing method are presented in Table 4.

The time of optimization in minutes is presented in Tables 5 and 6 for Monte Carlo and
Simulated Annealing, respectively. The experiments were done with the networks that contained
25, 50, 100, 200, 500, and 1000 nodes in total. During these experiments the networks with one
variable sub-matrix, two variable sub-matrices, and three variable sub-matrices were optimized.
Also the optimization was provided for one measure or for four measures combined using the
sum criterion.
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Table 3: Optimizatioii Results for Monte Carlo

Optimized

Measure

Resource

Congruence

Comm.

Congruence

Std Dev in

Cog Load

Std Dev in

Work Load

Avg. Cog

Load

Avg. Work

Load

Default N = 1,000,000

Non- Optimized
Optimized Value
Value

0.4

0.425

0.0824

0.2644

0.1329

0.2292

0.9500

0.7333

0.0164

0.0000

0.1290

0.0000

Optimized
Using All 4
Measures

0.9500

0.5250

0.0516

0.1491

0.1290

0.0833

User Specified N

Non- Optimized
Optimized Value
Value

0.4

0.425

0.0824

0.2644

0.1329

0.2292

0.9000

0.7000

0.0186

0.0000

0.1298

0.0000

= 100,000

Optimized
Using All 4
Measures

0.8500

0.5833

0.0702

0.1596

0.1319

0.1458
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Table 4: Optimization Results for Simulated Annealing

Optimized

Measure

Resource

Congruence

Comm.

Congruence

Std Dev in

Cog Load

Std Dev in

Work Load

Avg. Cog

Load

Avg. Work

Load

Default

T = 100;

Non-
Optimized
Value

0.4

0.425

0.0824

0.2644

0.1329

0.2292

TJactr =

Optimized
Value

1.0000

1.0000

0.0042

0.0000

0.2461

0.0000

0.99995

Optimized
Using AU
Measures

1.0000

0.8833

0.0259

0.0000

0.2057

0.0000

User Specified

T = 90;

Non-
4Optimized

Value

0.4

0.425

0.0824

0.2644

0.1329

0.2292

T_factr = 0.995

Optimized
Value

1.0000

0.8250

0.0098

0.0000

0.3026

0.1667

Optimized
Using AU 4
Measures

1.0000

0.6292

0.0352

0.0860

0.2089

0.0833

Table 5: Time of Optimization in Minutes for Monte Carlo, N = 1,000,000.

Number
nodes

25

50

100

200

500

1000

ol One

1 sub
matrix

7

16

34

68

484

1936

measure

2 sub
matrices

10

24

50

100

710

2840

optimized

3 sub
matrices

15

34

71

142

1008

4032

Four

1 sub
matrix

16

37

78

156

1113

4452

measures

2 sub
matrices

23

55

115

230

1633

6532

optimized

3 sub
matrices

34

78

163

327

2318

9274
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Table 6: Time of Optimization in Minutes for Simulated Annealing, T = 100; t_factr = 0.9995.

measure optimized Four measures OptimizedNumber One
of nodes

1 sub
matrix

25

50

100

200

500

1000

0.15

0.56

2.18

9.05

61.00

363.72

2 sub 3 sub 1 sub
matrices matrices matrix

0.18 0.20 0.38

0.73 1.64 0.76

2.47 5.03 4.48

9.64 25.8 29.53

82.37 100.8 323.48

605.10 950.68 1440.85

2 sub 3 sub
matrices matrices

0.52

1.67

5.18

28.57

345.67

1650.29

0.52

1.66

7.11

40.01

387.70

1847.92

Comparison of the optimization time for Monte Carlo and Simulated Annealing is also
presented in Figure 1. The experiments have been done with the networks that contained number
25, 50, 100, 200, 500, and 1000 total nodes. During these experiments the networks with one
variable sub-matrix, two variable sub-matrices, and three variable sub-matrices were optimized.
Also the optimization was provided for one measure or for four measures combined using the
sum criterion.
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Figure 1: Dependency of Optimization Time for Simulated Annealing and Monte Carlo for 1 measure and 4
measures using the sum criterion
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Table 7: Optimization by Simulated Annealing and Monte Carlo for Measures Communication and
Personnel Cost

Original
Value

Optimized
Value

Communication

Simulated

Annealing

0.9958

0.0040

Monte
Carlo

0.9958

0.3000

Personnel Cost

Simulated

Annealing

0.4640

0.0893

Monte
Carlo

0.4640

0.1518

Some additional optimization results are presented in Table 7. The table displays the
results of the minimization of two additional measures of the Embassy Bombing Network -
Communication and Personnel Cost. Both methods required approximately the same amount of
time, but Simulated Annealing gives considerably better results that Monte Carlo method.

CMU SCSISRI CASOS Report



7. Two Different Versions of the Optimizer

The optimizer currently has two different versions. Both of them are integrated with
netstatplus. The first version is also combined in the ORA interface. This version additionally
includes the parser for parsing the output files written in xml format and coming from Java
written interface to the C++ coded optimizer. This version takes all the parameters for the
optimization from the ORA interface. It is simple for sophisticated and non sophisticated users to
make deal with: to set, specify, and change methods, parameters, models, and datasets. It is also
very usable for comparison of the original version of the dataset and corresponding metrics and
the optimized version.

The second version of the optimizer is the so called no-GUI version. It makes possible for
the setting of all the parameters directly to the optimizer. While this version does not allow the
user to manipulate the parameters, it is much faster since it does not have to parse the xml files.
This version is extremely useful for operating with huge datasets containing more than 500 -
1000 nodes when it becomes impossible to describe them in the xml format. It is also efficient
for the simple and fast optimization tasks and for use with some other than netstaplus
applications. In this version the user just prompts for the method of optimization, type of
criterion, number and type of measures to be optimized.

8. Design of the User Interface

The Optimizer has a Java user interface combined with ORA interface (Figure 2) and
described in detail in [18]. The Optimizer is invoked from the main menu and is contained within
pop-up windows.
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Figure 2 : ORA/Optimizer Interface
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The user can choose the method of optimization: Monte Carlo or Simulated Annealing
(Figure 3).
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Figure 3: The Optimizer GUI: selection of the optimization method.

Optimizer

Choose Optimization Method:

<§) Monte Carlo

O Simulated Aimeaino

<- Previous Next->

There are default versions of each method with default parameters of the optimization
process (Figure 4) and also there is the option to change optimization parameters such as N and
T (Figure 5).

Figure 4: The Optimizer GUI: selection of the experiment type.

%£> Optimizer

Choose Experiment type:

(•Default

C Advanced

<- Previous Next->
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Figure 5: The Optimizer GUI: selection of the optimization parameters.

Optimizer

Simulated Ameaing Parameters

Enter Initial Temperature:
Note: Values between 50 and 200 recommended

|1OO

Enter Temperature Coefficient: |o.995| |
Note: Values between (L85 and 0,995 recommended

<- Previous Next->

The user can choose how many and which measures should be optimized (Figure 6).

Figure 6: The Optimizer GUI: selection of the optimized measures.

List of Measures:

Resource Congruence
Communic otioii Conoruence

Actual Knowledge Workload

Cognitive Load

Communication

Personnel Cost

->

<-

Measures to Optimize:

Note: To select Multiple Measures, hold the CTRL key down
and cfick on the measure names

<- Previous Next >

The user can choose which sub-matrices should be varied and which should be fixed
during the optimization process (Figure 7). For the Monte Carlo method the user has the option
to optimize with fixed or varied densities of sub-matrices (Figure 7).
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Figure 7: The Optimizer GUI: selection of the variable matrices, specification of their densities and
constraints.

Variable Matrices:

IE AssignmenflPxT)

E Capab*Ues<PxR)

IE Resource Requrement<RxT

IE Communication(PxP)

IE PrecedencefTxT)

<- Previous

Density:

IE Random Density • Specify Density:

IE Random Density D Specify Density:

I IE Random Density D Specify Density:

D Random Density IE Specify Density:

D Random Density IE Specify Density:

Next->

9A~J
07 |

Constraint:

E

•
D

The user can choose the optimization criteria: single, sum, or product (Figure 8).

Figure 8: The Optimizer GUI: selection of the optimization criterion.

Optimizer

Choose Optimization Criterion:

O Product

<-Previous Mext->

The user can specify the brief or verbose forms of text file output (Figure 9).
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Figure 9: The Optimizer GUI: selection of the output format

fcs Optimizer

OUTPUT SETUP
STEP 1 :

Specify Location for Data Fie (without extension)

F:\CASOS\experimentoptimized data) J

Specify Format for Data Fie

0 Verbose

<-Previous

Select

txt~

Mext->

9. Limitations and Future Extensions

The main limitation of this work is that we operated with a pretty small data set. As you
can see from Table 5 and 6 the large data sets with a number of nodes exceeded SOO can hardly
be optimized with current algorithms and hardware. So we are going to use some modifications
of currents algorithms, combination of Monte Carlo and Simulated Annealing to decrease run
time, for example. It is also possible to use constraints on some rows and columns of sub
matrices to decrease the size of the variable networks. It will automatically lead to decreasing the
optimization time.

We also plan to increase the number of metrics being optimized. Practically the optimizer
can be used with any DNA metric. It is possible to consider some other optimization criteria
besides sum and product. For example, it might be minimax criterion when on every step of
optimization we try to optimize the worst criterion. This strategy eventually leads to improving
all metrics.

We also consider the possibility to explore the linkage of optimizer to scheduler using the
optimized designs as constraints on scheduling.

10. System Requirements

The Optimizer runs as part of ORA, which is freely available from the CASOS website. The
front end of ORA is written in Java, and the back end in a C++ network analysis library called
NetStatPlus. The Optimizer is written in C++ and currently runs on Windows XP using an Intel
processor, and the code has been actively ported and tested on other platforms.
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