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Abstract

Learning the structure of graphical models is an important task, but one of considerable
difficulty when latent variables are involved. Because conditional independences using hidden
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1 Introduction
Latent variable models are often represented as graphical models such as Bayesian networks.
In a broad class of such models, sometimes called the measurement/structural model class
(Bollen, 1989), the only constraint is that an observed variable cannot be a parent of a latent
variable. This is especially useful in models where observed variables are indicators of latent
concepts, such as in many models of economics, socials sciences and psychology. Factor
analysis and its variations are standard models of such a class.

Learning the graphical structure of such models is of great interest. For causal analysis
(Spirtes et al., 2000; Pearl, 2000), which is in fact the main motivation behind several la-
tent variable models, knowing the model structure is essential. For probabilistic modeling
(Bishop, 1998), a parsimonious structure that is as simple as possible but not simpler than
the truth allows for more statistically efficient estimation of the joint.

A directed acyclic graphs (DAG) G can be defined in terms of conditional independencies
among the random variables represented as nodes in G. Those independencies arise from
the assumption that the Markov condition holds in such graphs: each node is independent of
its non-descendants (and non-parents) conditioned on its parents. Many other conditional
independencies are entailed from this local assumption. In special, d-separation is a sound
and complete criterion for deriving conditional independencies entailed in a DAG by the
Markov condition (Pearl, 2000). Therefore, one can also say that a DAG represents a set of
d-separations among its nodes.

The contribution of this paper is theoretical: a set of testable statistical conditions that
allows us to identify the presence of latent variables and several unobservable conditional
independencies in the class of measurement/structural models. Such identification conditions
can be used to create tests or search operators for learning the structure of Bayesian networks
with latent variables, where non-independence constraints have to be used (Tian and Pearl,
2002).

While we will assume that observed variables are linear functions of their parents with
additive noise, we will not assume any particular functional relationship among latents:
any arbitrary non-linear function can link a latent to its parents. Indicators that are linear
functions of their parents are acceptable in many situations (Bollen, 1989), but models where
latents are linearly related are not as widely applicable.

In the next section we present a brief overview of previous work. Section 3 formalizes the
problem and Section 4 presents an example on how to use our results. Section 5 provides
the main theoretical results and Section 6 provides more details concerning the application
of our results on learning the structure of latent graphical models. Section 7 describes some
experimental results.

2 Related work
Many latent variable models assume latents are marginally independent as in, e.g., the mix-
ture of factor analyzers of (Ghahramani and Hinton, 1996). For causal modeling this often
makes no sense: see all examples given by Bollen (1989), for instance. For probabilistic mod-
eling, this is also an inefficient representation: allowing latents to be dependent will eliminate



many edges connecting observed variables and latents. This can be observed by applying
"rotation methods" on factor analysis models with Gaussian variables (Bartholomew and
Knott, 1999).

Nachman et al. (2004) describe computationally efficient heuristics to create continuous
networks with hidden variables for a variety of practical uses, but with no theoretical guar-
antess about how close the resulting structures might be compared to the unknown true
structure that generated the data. Our contributions are on the theoretical aspects and
extend the work of Silva et al. (2003), one of the first principled approaches to introduce
hidden variables in continuous networks with linear and non-linear relations. However, some
extra structural assumptions were adopted in that work. Silva and Schemes (2004) intro-
duced new results while removing such assumptions. However, several results in (Silva and
Schemes, 2004) were established only for linear models. This report complements (Silva and
Schemes, 2004) by presenting the corresponding results in the non-linear case and simplifies
the description of previous results to match the presentation of (Silva et al., 2005). More
related work is discussed in the given references.

3 Approach
We assume that the latent variable model to be discovered has a graphical structure and
parameterization that obey the following constraints besides the Markov condition (Pearl,
2000; Spirtes et al., 2000):

Al. no observed variable is a parent of a latent variable;

A2. any observed variable is a linear function of its parents with additive noise of finite
positive variance;

A3. all latent variables have finite positive variance, and the correlation of any two latents
lies strictly in the open interval (-1, 1);

A4. there are no cycles that include an observed variable;

This means that observed variables can have observed parents, and that latents can
be (noisy) non-linear functions of their parents, and that cycles are allowed among la-
tents. These are more relaxed assumptions than those adopted in, e.g., factor analysis
(Bartholomew and Knott, 1999), a standard tool in latent variable modeling.

In classic results concerning algorithms for learning the structure of directed acyclic
graphs without hidden variables (Chickering, 2002; Pearl, 2000; Spirtes et al., 2000), an
essential assumption is the faithfulness assumption: a conditional independence holds in
the joint distribution if and only if it is entailed in the respective graphical model by d-
separation. The movitation is that observed conditional independences should be the result
of the graphical structure, not of an accidental choice of parameters defining the probabihty
of a node given its parents.

Instead of assuming faithfulness, our results will have a measure-theoretical motivation.
All results presented here have the following characteristics:



Cl. they hold with probability 1 with respect to the Lebesgue measure over the set of linear
coefficients and error variances that partially parameterize the density function of an
observed variable given its parents;

C2. they hold for any distribution of the latent variables (that obey the given assumptions);

One can show that the Lebesgue argument is no different from the faithfulness assumption
for typical families of graphical models, such as multinomial and Gaussian (Spirtes et al.,
2000)1.

Our goal is not to fully identify a graphical structure. The assumptions are too weak to
reallistically accomplish this goal. Instead we will focus on a more restricted task:

• GOAL: to identify d-separations between a pair of observed variables, or a pair of
one observed and one latent variable, conditioned on sets of latent variables. These
d-separations should be useful for existing algorithms that learn latent models.

We do not aim at identifying d-separations between latents: this is a topic for future re-
search, where specific assumptions concerning latent structure have to be adopted according
to the problem at hand. This was accomplished for the linear case (Silva et al., 2005).

The strategy to accomplish our goal is to use constraints in the observed covariance matrix
that will allow us to identify the following features of the unknown latent variable model:

Fl. which hidden variables exist;

F2. that observed variable X cannot be an ancestor of observed variable Y;

F3. that observed variable X cannot have a common parent with observed variable Y\

In the next section we describe a way of putting together these pieces of information
to learn a partial latent variable model structure, assuming features Fl, F2 and F3 can be
identified. Section 5 will describe testable methods that can in many cases identify the above
features.

4 Application: learning latent model structure
Features Fl, F2 and F3 compose all the information used in an algorithm described by Silva
et al. (2003) that discovers latent variable structures. However, that algorithm was designed
under a particular strong assumption: there is a subgraph G' of the true graph G where each
latent has at least three unique indicators (that is, observed children that are not children
of any other latent), and any two observed nodes in G' are d-separated given the latents.

1That is, in general no result concerning learning graphical models can be theoretically sound for all
possible models. For some choice of parameter values (that generate constraints that are not a result of the
graphical structure of the true model), several crucial results (Pearl, 2000; Spirtes et al., 2000) fail, and so do
our results. Those parameter values, however, form a set of Lebesgue measure zero, which can be interpreted
as having zero probability according to an uniform prior. The faithfulness condition is a way of excluding
such parameter values by assumption.



We call this assumption the "3-clustering" assumption, because G' defines a clustering
over its observed variables: each cluster is a set of observed nodes that share an unique
common parent, and each cluster has at least three members.

The work of Silva et al. (2003) is one of the few theoretically sound approaches for learning
latent graphs without imposing unrealistic restrictions on how latents are connected to other
latents. However, it relies on this strong and generally untestable assumption. Our paper
build on this previous result by proving which other guarantees the approach of Silva et al.
(2003) can give when the "3-clustering" assumption is dropped:

1. we will show that in general there is no fully automated way of identifying latents indi-
vidually (feature Fl) using covariance information only, but some data-driven methods
and generally weak prior knowledge can be combined to solve this issue;

2. we will show extra ways of identifying d-separations that were not discussed by Silva
et al. (2003);

3. we will show the existence of empirically testable ways of discovering F3 features that
are sound under fully linear models but not sound when non-linear relations among
latents are allowed;

4. we will show how to approximate marginal distributions by using sparse latent variable
models if this marginal can be approximated well by a mixture of Gaussians;

Our focus on using only the covariance matrix is motivated by a practical issue: since
learning latent variable graphs is a difficult statistical problem, using only covariance infor-
mation is desirable, since estimating second moments is easier than estimating higher order
moments of the observed joint. Knowing the limits of what can be done using only covariance
information is both of theoretical and practical interest.

5 Main results
Assume for now we know the true population covariance matrix. Without loss of generality,
assume also that all variables have zero mean. Let G(O) be the graph of the latent variable
model with observed variables O. The following lemma by Silva et al. (2003) illustrates
a simple result that is intuitive but does not follow immediately from correlation analysis,
since observed nodes can have non-linear dependencies:

Lemma 1 If for {A, B , C } C O we have pAs = 0 or PAB.C = 0, then A and B cannot share
a common latent parent in G.

where PXY.Z is the partial correlation of X and Y given Z. In general, Z can be a set.
Although vanishing partial correlations (i.e., partial correlations constrained to be zero)

can sometimes be useful, we are mostly motivated by problems where all observed variables
have hidden common ancestors. Bartholomew and Knott (1999) describe several of such
problems. In this case, vanishing partial correlations are useless. Instead, we will use rank
constraints on the covariance matrix of the observed variables.
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The following result, also by Silva et al. (2003), allows us to learn that observed variable
X cannot be an ancestor of observed variable Y in many situations:

Lemma 2 For any set O' = {A, B, C, D} C O, if OAB<JCD = °AC<JBD = °AD<TBC such that
for all triplets {X,Y, Z}, {X,Y} C O', Z e O, we have pXY.z ^ 0 and pXY ^ 0, then no
element in X G O' is an ancestor of any element in O'\X in G.

Notice that this result allows us to identify the non-existence of several ancestral relations
even when no conditional independences are observed and latents are non-linearly related.
All of the next lemmas and theorems in this paper are new results not previously described
by Silva et al. (2003). Detailed proofs are given in the Appendix.

A second way of learning how two observed variables can be d-separated conditioned on a
latent is as follows: let G(O) be a latent variable graph and {A, B} be two elements of O. Let
the predicate Factor\(A, B, G) be true if and only there exists a set {C, D\ C O such that
the conditions of Lemma 2 are satisfied for O' = {A, B, C, Z)}, i.e., (JAB^CD — OACOBD =
GAD°BC with the corresponding partial correlation constraints. The second approach for
detecting lack of ancestral relations between two observed variables is given by the following
lemma:

Lemma 3 For any set O' = {Xx,X2i Yu Y2} C O; if Factor l(Xl,X2, G) = true, Factor^, Y2, G)
true, <7xiYi&X2Y2 = &XiY2

crX2Yi, and aM elements of {Xi,X2,Yi,Y2} are correlated, then no
element in {Xi,X2} is an ancestor of any element in {Yi, Y2} in G and vice-versa.

One can verify that Lemma 2 is a special case of our new lemma.
We define the predicate Factor2{A,B,G) to be true if and only it is possible to learn

that A is not an ancestor of B in the unknown graph G that contains these nodes by using
Lemma 3.

We now describe two ways of detecting if two observed variables have no (hidden) com-
mon parent in G(O). Let first {X\,X2,X^Yi,Y2,Yz) C O. We define two identification
conditions:

CS1. If GXlY1^X2Xz = VX^VXsYx = CrXlX^X2Y1^X1Yl^Y2Yz = OXXY2°YXYZ = ^XXY^YXY2,
°XXX2°YXY2 ^ °XXY2°X2YX and for all triplets {X,Y,Z},{X,Y} c {XuX2,X3yYly

12,^3}, Z € O, we have pXy ¥" 0,PXY.Z ¥" °> then Xx and Y\ do not have a com-
mon parent in G.

CS2. If Factorx{Xi,X2,G), Factor^YuY^G), Xx is not an ancestor of X3, Yx is not an
ancestor of Y3f (^X1Y1(^X2Y2 = °XXY2°X2YX, ^X2Y^Y2Y3 = ^X2Y3^Y2YU

 aX!X2^x3Y2 =
vxxY^XsXv °XXX2OYXY2 ± <*x{Y2°x2Yi and for all triplets {X, Y, Z}, {X, Y} C {Xti X2l

X3,YllY2,Y3},Z e O, we have pXY ¥" ®,PXYZ ¥" °> then Xx and Yx do not have a
common parent in G.

"CS" here stands for "constraint set," a set of constraints in the observable joint that
are empirically verifiable. In the same way, call CS0 the separation rule of Lemma 1. The
following lemmas state the correctness of CS1 and CS2:



Lemma 4 CS1 is sound.

Lemma 5 CSS is sound.

It is clear that these identification conditions also hold in fully linear latent variable
models, since they are just a special case of the non-linear models here described. One
might conjecture that, as far as identifying ancestral relations among observed variables and
hidden common parents goes, linear and non-linear latent variable models are identical (since
any connection between a latent and an observed variable is always linear in our setup of
non-linear models). However, this is not true.

Theorem 1 Consider the problem of learning if two observed variables do not share a hidden
common parent in a latent variable graph. There are identification rules for learning this
information that are sound in linear models, but not sound for non-linear latent variable
models.

In other words, one gains more identification power if one is willing to assume full linearity
of the latent variable model. We will see more of the implications of assuming linearity later.

Another important building block in our approach is the identification of which latents
exist. Define an immediate latent ancestor of an observed node O in a latent variable graph
G as a latent node L that is a parent of O or the source of a directed path L —• V —••..—> O
where V is an observed variable. Notice that this implies that every element in this path,
with the exception of L, is an observed node.

Lemma 6 Let S C O lie any set such that, for all {A, B, C} C S; there is a fourth vari-
able D € O where i. GAB^CD = &AC&BD = &AD&BD <m>& «- for every set {X,Y} C
{yl, B, C, D}, Z € O we have PXY.Z ^ 0 and PXY ¥" 0- Then S can be partioned into two
sets Si,S2 where

1. all elements in Sx share a common immediate latent ancestor, and no two elements in
Si have any other common immediate latent ancestor;

2. no element S G S2 has any common immediate latent ancestor with any other element
in S\S;

3. all elements in S are d-separated given the latents in G;

We will see an application of our results in the next section, where they are used to
identify interesting clusters of indicators, disjoint sets of observed variables that measure
disjoint sets of latents.

6 Learning a semiparametric model
Our results can be used to learn graphical and probabilistical features of the true unknown
model, as explained in the following subsections.



6.1 Structure learning
Given a set of observed variables O, let O' C O, and let C be a partition of O' into k
non-overlapping sets { C i , . . . , Ck} such that

SCI. for any {*i, X2, X3} C Ci, there is some X4 G O' such that aXlx2^x3x4 = °XiX3ox2x4 =
I <i <k and X4 is correlated with all elements in {X1,X2, X3}]

SC2. for any Xi G Ci, X2 G Cj, i ^ j, we have that X\ and X2 are separated by CSO, CS1
or CS2;

SC3. for any XX,X2 G Cu Factorl(XllX2yG) = true or Factor2(XuX2, G) = true;

SC4. for any {XUX2} C Ci, X3 G Cj, pXlx3 ^ 0 if and only if px2x3 ^ 0;

Any partition with structural conditions SC1-SC4 has the following properties:

Theorem 2 If a partition C = { C i , . . . , Ck} ofO' respects structural conditions SC1-SC4,
then the following should hold in the true latent variable graph G that generated the data:

1. for all X G Ci, Y G Cj, i ^ j, X and Y have no common parents, and X is d-separated
from the latent parents ofY given the latent parents of X;

2. for all X,Y G O', X is d~separated from Y given the latent parents of X;

3. every set Ci can be partitioned into two groups according to Lemma 6;

An algorithm for learning such a partition is given by Silva et al. (2003) using statistical
tests for deciding if the required constraints in the covariance matrix hold in the population.
Notice that algorithm does not make use of CS2 (a less general form of CS1 is used), but it
can be naturally added, as it was done in the algorithm for linear models introduced by Silva
et al. (2005). Unlike the algorithm by Silva et al. (2003), we allow in principle partitions
where some sets Ci are such that |Ci| = 1 or |Ci| = 2. In those cases, the properties
established by Lemma 6 hold vacuously. A greedy Bayesian search algorithm can also be
readily constructed by using the given identification rules. A particular algorithm will be a
topic of future research.

This algorithm cannot identify how each set Ci can be further partitioned into two
subsets, one where every node has an unique common immediate latent ancestor, and one
where each node has no common immediate latent ancestor with any other node. It might
be the case that no two nodes in Ci have a common immediate latent ancestor. It might
be the case that all nodes in in Ci have an unique common immediate latent ancestor.
The combination of Lemma 6 and domain knowledge can be useful to find the proper sub-
partition.

These are weaker results than the ones obtained for linear models, as described by Silva
et al. (2005). There, each set Ci is associated with an unique latent variable L» from G (as
long as |Ci| > 2). Furthermore, conditioned on Li each node in Ci is d-separated from all
other nodes in O', as well as from their respective latent parents. There might be no latent
node in the non-linear case with these properties.
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Figure 1: It is possible that PLXL^M ¥" 0 even though L2 does not d-separate L\ and L3.
That happens, for instance, if L2 = A1L1 + 62, L3 = A2Lf + A3L2 + ^3, where Li, e2 and 63
are normally distributed with zero mean.

For instance, consider the graph in Figure 1, which depicts a latent variable graph with
three latents Li, L2 and L3, and four measured variables, W, X, Y, Z. L^ does not d-separate
L\ and L3, but there is no constraint in the assumptions that precludes the partial cor-
relation of L\ and L3 given L2 of being zero. If this is the case, the trivial partition
C = {{W,X,Y,Z}}, with a single element, will satisfy the structural conditions SC1-SC4,
and therefore the properties of Theorem 2. However, there is no unique latent variable in
this system that d-separates all elements of {W, X,Y, Z}. This would not be the case in a
linear system.

There is an even more fundamental difference between the work presented here and the
one developed by Silva et al. (2003). There, the 3-clustering assumption was used, i.e., each
latent was assumed to have three observed children that were d-separated by it. In this way,
it was possible to use a stronger version of CS1 and Lemma 2 to identify all latents and a
bijective mapping between set { Q } and the set of latents in the true graph2.

Although one might adopt the 3-clustering assumption in studies where one already has
a strong idea of which latents exist, this is in general an untestable assumption. This present
work explores what is possible to achieve when minimal assumptions about the graphical
structure are adopted, and expands it with extra identification rules. With the stronger
assumptions of Silva et al. (2003), all latents could be identified, which highly simplified the
problem. This is not the case here.

6.2 Parameter learning
As in the linear case, it is still possible to parameterize a latent variable model using the
partition C = { C i , . . . , Ck} of a subset O' of the given observed variables such that the
first two moments of the distribution of O' can still be represented. Given a graph G, a
linear parameterization of G associates a parameter with each edge and two parameters with
each node, such that each node V is functionally represented as a linear combination of its

2That is, every latent L» in the true graph would be a hidden common cause d-separating elements in
some set Cf, and all observed nodes in some set Cj would be d-separated by a common hidden parent Lj in
the true graph, where L» = Lj if and only if Ci = Cj.



parents plus an additive error: V = \xy + T,i\iPayi + ey, where {Pa^} is the set of parents
of V in G, and ey is a random variable with zero mean and variance C,y (/Ay and £y are the
two extra parameters by node). Notice that this parameterization might not be enough to
represent all moments of a given family of probability distributions.

A linear latent variable model is a latent variable graph with a particular instance of a
linear parameterization. In general, building a model that uses a particular set of constraints,
such as the rank constraints of Section 5, might impose other constraints over the joint
distribution that do not necessarily hold in the population. It is not obvious if a linear model
obtained from the algorithm discussed in the previous section can be used to represent the
population covariance matrix without any bias. We show this is true.

Theorem 3 Given a partition C of a subset O' of the observed variables of a latent variable
graph G such that C satisfies structural constraints SC1-SC4, there is a linear latent variable
model for the first two moments of O'.

Consider the graph Glinear constructed by the following algorithm:

1. initialize Gun^r with a node for each element in O';

2. for each Q G C, add a latent Li to G, and for each V G Ci, add an edge Li—>V

3. fully connect the latents in Giinear to form an arbitrary directed acyclic graph;

The constructive proof of Theorem 3 shows that Gunear can be used to parameterize a
model of the first two moments of O'. This has an important heuristic implication: if the
joint distribution of the latents and observed variables can be reasonably approximated by
a mixture of Gaussians, where each component has the same graphical structure, one can
fit a mixture of Giinear graphical models. This can be motivated by assuming each mixture
component represents a different subpopulation probabilistic model where the same causal
structures hold, and the distributions are close to normal (e.g., a drug might have different
quantitative effects on different genders but with the same qualitative causal structure).
Each model will provide unbiased estimates of the mean and covariance of the observed
variables for a particular component of the mixture: since each component has the same
graphical structure, the same required constraints in the component covariance matrix hold,
and therefore the same parametric formulation can be used.

Notice this is less stringent than assuming that the causal model is fully linear. Assuming
the distribution is fully linear can theoretically result in a wrong structure that might not be
approximated well (e.g., if one applies unsound identification rules, as suggested by Theorem
1). Here, at least in principle the structure can be correctly induced. The joint distribution
is approximated, and the quality of approximation will be dependendent on the domain.

6.3 Final remarks
Finally, it has to be stressed that there is no guarantee of how large the subset O' will be.
It can be an empty set, for instance, if all observed variables are children of several latents.



An algorithm such as the one described by Silva et al. (2003) is still able to asymptotically
find the largest submodel where each latent d-separates three or more of its children.

In principle, much of the limitations here described can be treated if one explores con-
straints that uses information besides the second moments of the observed variables. Still, it
is of considerable interest to know what can be done with covariance information only, since
using higher order moments highly increases the chance of commiting statistical mistakes.
This is especially difficult concerning learning the structure of latent variable models.

7 Experiments
The main contribution of this paper is theoretical, but there are several aspects of our
approach that can be evaluated empirically. For instance, if the correct qualitative causal
relations are learned from data. This is usually accomplished through simulations, and an
exhaustive study for linear models was done by Silva et al. (2005). For the non-linear case,
some studies are shown in Silva et al. (2003).

In this paper, we will concentrate on evaluating our procedure as a way of finding good
fitting submodels. We run the algorithm described by Silva et al. (2003) over some datasets
from the UCI Machine Learning Repository to obtain a graphical structure analogous to
Gunear described in the previous section. Following Silva et al. (2005), we call this algorithm
a special version of BUILDPURECLUSTERS (BPC). We then fit the data to such a structure
by using a mixture of Gaussian latent DAGs with a standard EM algorithm. Each component
has a full parameterization: different linear coefficients and error variances for each variable
on each mixture component. The number of mixture components is chosen by fitting the
model with 1 to up to 7 components and choosing the one that maximizes the BIC score
(see, e.g., Chickering, 2002).

We compare this model against the mixture of factor analyzers, M O F F A (Ghahramani
and Hinton, 1996). In this case, we want to compare what can be gained by fitting a model
where latents are allowed to be dependent, even when we restrict the observed variables to
be children of a single latent. Therefore, we fit mixtures of factor analyzers using the same
number of latents we find with our algorithm. The number of mixture components is chosen
independently, using the same BIC-based procedure. Since BPC can return only a model
for a subset of the given observed variables, we rim M O F F A for the same subsets given by
our algorithm.

In practice, our approach can be used in two ways. First, as a way of decomposing the
full joint of a set O of observed variables by splitting it into two sets: one set where variables
X can be modeled as a mixture of Giinear models, and another set of variables Y = O\X
whose conditional probability / (Y |X) can be modeled by some other representation of choice.
Alternatively, if the observed variables are redundant (i.e., many variables are intended to
measure the same latent concept), this procedure can be seen as a way of choosing a subset
whose marginal is relatively easy to model with simple causal graphical structures. This
is sometimes called "purification" and has several applications in sciences where designing
proper indicators is of special concern, such as econometrics and psychology (Spirtes et al.,
2000).
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Table 1: The difference in average test log-likelihood of BPC and M O F F A with respect to
a multivariate mixture of Gaussians. Positive values indicate that a method gives a better
fit that the mixture of Gaussians. The statistics are the average of the results over a 10-fold
cross-validation. A standard deviation is provided. The average number of variables used
by our algorithm is also reported.

Dataset
IONO

SPECTF

WATER

WDBC

1.
-0
-0
-0

BPC
56
.33
.01
.88

±
±
±
±

1.
0
0
1

1 0
.73
.74
.40

MOFFA

-3.03
-0.75

-0.90
-1.96

± 2.55
» ±0.88
± 0.79
± 2.11

% variables
0.37
0.34
0.36
0.24

±
±
±
±

0.06
0.07
0.04
0.13

As a baseline, we use a standard mixture of Gaussians ( M O F G ) , where an unconstrained
multivariate Gaussian is used on each mixture component. Again, the number of mixture
components is chosen independently by maximizing BIC. Since the number of variables used
in our experiments are relatively small, we do not expect to perform significantly better than
M O F G in the task of density estimation, but a similar performance is an indication that our
highly constrained models provide a good fit, and therefore our observed rank constraints
can be reasonably expected to hold in the population.

We ran a 10-fold cross-validation experiment for each one of the following four UCI
datasets: IONO, SPECFT, WATER and WDBC, all of which are measured over continuous or
ordinal variables. We tried also the small dataset WINE (13 variables), but we could not find
any structure using our method. The chosen datasets have from 30 to 40 variables. The
results given in Table 1 show the average log-likelihood per data point on the respective
test sets, also averaged over the 10 splits. These results are subtracted from the baseline
established by M O F G . We also show the average percentage of variables that were selected
by our algorithm. The outcome is that we can represent the joint of a significant portion
of the observed variables as a simple latent variable model where observed variables have a
single parent. Such models do not significantly lose information compared to the full mixture
of Gaussians. In one case (IONO) we were able to significantly improve over the mixture of
factor analyzers when using the same number of latent variables.

We conjecture these results can be greatly improved by using Bayesian search algorithms
(BPC is a very simple algorithm that tests hypothesis of rank constraints). We intend also
to expand our method to allow the insertion of more observed variables, and not only those
that have a single parent in a linearized graph.

8 Conclusion

We presented empirically testable conditions that allows one to learn structural features of
latent variable models where latents are non-linearly related. These results can be used
in an algorithm for learning the graphical structure of a subset of the observed variables
without making any assumptions about the true graphical structure, besides the fairly general

11



assumption by which observed variables cannot be parents of latent variables. We intend
to extend this work in the future by exploring kernel methods to learn probabilistic models
(Bach and Jordan, 2002) based on the discovered structures, to evaluate it as a technique
to discover instrumental variables in non-linear regression problems with measurement error
(Carroll et al., 1995) and, finally, as a fundamental step on discovering the causal structure
among latent variables when non-linear relations are allowed.
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A Appendix
All of the following proofs hold with probability 1 with respect to the Lebesgue measure
taken over the set of linear coefficients and error variances that partially parameterize the
density function of an observed variable given its parents. The main idea used across most
proofs is that some covariance constraints boil down to polynomial identities with probability
1. These identities will imply other identities that in many cases will be used to prove results
by contradiction. A few of these proofs have appeared before in Silva and Schemes (2004).

The term "immediate latent ancestor," used in several points of this document, is defined
in the paper. The symbol pxy.z is the partial correlation of X and Y given Z.

In all of the following proofs, G is a latent variable graph with a set O of observable
variables. In some of these proofs, we use the term "edge label" as a synonym of the co-
efficient associated with an edge that is into an observed node (e.g., as in linear Gaussian
networks). Without loss of generality, we will also assume that all variables have zero mean,
unless specified otherwise. The symbol {Xt} will stand for a finitely indexed set of variables.

The following lemma will be useful to prove Lemma 3:

Lemma 7 For any set {A, B, C, D} = O' C O, if (JAB°CD = GAC&BD = &ADOBD such that
for every set {X, Y} C O', Z £ O we have PXY.Z 7̂  0 an& PXY ¥" ®> then no pair of elements
in Of has an observed common ancestor.

Proof: Assume for the sake of contradiction that some pair in O' has an observed common
ancestor. Let K be a common ancestor of some pair of elements in O' such that no descendant
of if is also a common ancestor of some pair in O'.

Without loss of generality, assume if is a common ancestor of A and B. Let a be the
concatenation of edge labels in some directed path from K to A, and /? the concatenation of
edge labels in some directed path from K to B. That is,

A =
B =

where Rx is the remainder of the polynomial expression that describes node X as a function
of its immediate latent ancestors and K.

By the given constraint crABaCD = GAC°BD, it follows OL(3(a2
KacD-^CK^DK) + f{G) = 0,

where

f{@) = (aaKRB + PVKRA + <7RARB)<7CD — &CRA — °DRB

However, no term in f(G) can contain the symbol a(3: by Lemma 2 no element X in O'
can be an ancestor of any element in O'\X; also, by construction no descendant of K (with
the possible exception of K) can be an ancestor of C or D and therefore no sequence a or /?
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can be generated from the polynomial / that is a function of GKRB > °KRA , GRARB > °CD, &CRA

or <JDRB -

It follows that with probability 1 we have OL^{a\acD — OCKGDK) = 0, and since a/3 ^ 0
by assumption, this implies G\OCD — <7CK&DK = 0 => PCD.K = 0. Contradiction. •

Lemma 3 For any set O' = {XUX2, YUY2} C O, if Factor x (Xu X2, G) = true, Factorx(YuY2, G)
true, (TX1Y1^X2Y2 = OXXY2OX2YX, and all elements of {X\,X2lY\^Y2} are correlated, then no
element in {X\, X2} is an ancestor of any element in {Yi, Y2} *n G and vice-versa.

Proof: Assume for the sake of contradiction that X\ is an ancestor of Yi. Let P be an
arbitrary directed path from X\ to Y\ of K edges such that the edge coefficients on this
path are ct\... a#. One can write the covariance of X\ and Yi as OXXYX = COLIOJ^ + F(G),
where F(G) is a polynomial (in terms of edge coefficients and error variances) that does
not contain any term that includes the symbol <*i, and c = a2 . . . a# . Also, the polynomial
corresponding to a\x cannot contain any term that includes the symbol OL\.

Also analogously, (TX2YL
 c a n ^ e written as cct\(7x1x2+Ff(G), where F'{G) does not contain

c^, since X\ cannot be an ancestor of X2 by the given hypothesis and Lemma 2.
By Lemma 2 and the given conditions, Y2 cannot be an ancestor of Yi and therefore, not

an ancestor of X\. X\ cannot be an ancestor of Y2, by Lemma 7 applied to pair {Yi, Y2}.
This implies that OXXY2 cannot contain any term that includes OL\. By the same reason, the
polynomial corresponding to OX2Y2 cannot contain any term that includes OL\.

This means that the constraint OX\Y\GX2Y2 = °X\Y2
Gx2Y\ corresponds to the polynomial

identity a1(ajClaX2Y2 - ^XxY^XxX^ + F"(G) = 0, where the polynomial F"{G) does not
contain any term that includes c*i, and neither does any term in the factor {O\IGX2Y2 —
<fX{Y2Gxxx2)- This will imply with probability 1 that ^x1

ax2Y2 -
 crx1Y2<^x1x2 = 0 (which is

the same of saying that the partial correlation of X2 and Y2 given X\ is zero).
The expression o\xax2Y2 contains a term that include Oru the error variance for X\,

while ^X1Y2^X1X2 cannot contain such a term, since X\ is not an ancestor of either X2 or
Y2. That will then imply the term QXXGX2Y2 should vanish, which is a contradiction since
Cxi / 0 by assumption and <JX2Y2 7̂  0 by hypothesis. D

Lemma 4 CS1 is sound.

Proof: Analogous to a result given by Silva et al. (2003). D

Lemma 5 CS2 is sound.

Proof: Suppose X\ and Yi have a common parent L in G. Let X\ = ah + ^2 avAv and
Yi = bL + ^pbiBi. To simplify the presentation, we will represent Y^ <*?&? by random
variable Px and £ p &,£, by Py, such that Xx = ah + Px and Yi = bL + Py. We will assume
that E[PXP] and E[PyP] are not zero, for P e {XUX2,YUY2} to shorten the proof. The
case where these expectations are zero can be derived in an analogous (and simpler) proof.

With probability 1 with respect to a Lebesgue measure over the linear coefficients parame-
terizing the graph, the constraint &XIYI<7X2Y2 — 0XiY2&x2Yi = 0 corresponds to a polynomial
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identity where some terms contain the product 06, some contain only a, some contain only
b, and some contain none of such symbols. Since this is a polynomial identity, all terms
containing ab should sum to zero. The same holds for terms containing only a, only b and
not containing a or b. This constraint can be rewritten as

ab(E[L2}aX3Y2 - E[LY2]E[LX2]) +
a(E[LPy]ax2Y2 - E[LY2}E[X2Py}) +
b(E[LPx]aX2Y2-E[Y2Px]E[LX2]) +
(E[PxPy]<TX2Y2 - E[PxY2]E{PyX2])

Prom Lemmas 2 and 3 and the given hypothesis, X\ cannot be an ancestor of any element
of {X2iYi,Y2} and Yx cannot be an ancestor of any element in {XuX2, Y2}. Therefore, the
symbols a and b cannot appear inside any of the polynomial expressions obtained when terms
such as 0X2Y2

 o r [̂̂ 2-Px] are expressed as functions of the latent covaxiance matrix and the
linear coefficients and error variances of the measurement model. AD symbols a and 6 of
<^X1Y1^X2Y2 — 0x1Y2

ax2Yi were therefore factorized as above. Therefore, with probability 1
we have:

E[I?\aX2Y2 = E[LX2]E[LY2] (1)

E[LPy)oX2Y2 = E[LY2]E[X2Py] (2)

E[LPX]<TX2Y2 = E\Y2PX]E[LX2] (3)

(4)

Analogously, the constraint OX2YXOY2Y3 — OX2Y%0Y2YX = 0 will force other identities. Since
Y\ is also not an ancestor of Y3, we can split the polynomial expression derived from
OX2Y^Y2Y3 - <rx2Y3<7Y2Yi = 0 into two parts

b{E[LX2]aY2Y3 - E[LY2)<TX2Y3}+

{E[X2PY]aY2Y3 - E[Y2PY]<TX2Y3} = 0

where the second component, E[X2PY](TY2Y3—E\Y2PY]crXiY3, cannot contain any term that in-
cludes the symbol 6, and neither can the second factor of the first component, E[LX2]cY2Y3 —
E[LY2]<rX2Y3. With probability 1, it follows that:

E[LX2)OY2Y3 = E[LY2]aXiY3

= E[Y2PY]OX2Y3

Since we have that <JY2Y3 ¥" 0 a n d CTX2Y3 ̂  0, from the two equations above, we get:

E[LX2)E[Y2PY) = E[LY2]E[X2PY] (5)

Prom the constraint 0XIX3CTX3Y2 = OXIY20X3X2 and a similar reasoning, we get

E[LX2)E[Y2PX) = E[LY2]E[X2PX] (6)
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from which follows
E[X2PX]E\Y2PY] = E[X2PY]E[Y2PX) (7)

Combining (2) and (5), we have

aE[LPy]aX2Y2 = aE[LX2]E\Y2PY] (8)

Combining (3) and (6), we have

bE[LPx)aX2Y2 = bE[X2Px]E[LY2] (9)

Combining (4) and (7), we have

E[PxPy}aX2Yi = E[X2PX]E\Y2PY] (10)

Prom (1), (8), (9) and (10) and the given constraints:

°XXX2°Y,Y2 = abE[LX2]E[LY2] + aE[LX2)E[Y2Px] + bE[X2Px]E[LY2] + E[X2PX)E[Y2PY]
= abE[L2]ax2Y2 + E[LPy]aX2Y2 + E[LPy]aX2Y2 + E[PxPy]cX2Y2 = (TXIY1^X2Y2 = (^X1Y2(TX2Y1

Contradiction. D

Theorem 1 Consider the problem of learning if two observed variables do not share a hidden
common parent in a latent variable graph. There are identification rules for learning this
information that are sound in linear models, but not sound for non-linear latent variable
models.

Proof: Consider first the following test: let G(O) be a linear latent variable model. As-
sume {Xi,X2,Xs,Yi,Y2, Y3} C O and CTXIYI^Y2Y3 =

and that for all triplets {A, B, C}, {A, B} C {Xu X2, X3, Yu Y2, Y3}, C 6 O, we have
0} PAB.C ¥" 0- Then X\ and Y\ do not have a common parent in G.

Call this test CS3. Test CS3 is sound for linear models: if its conditions are true, then
X\ and Yi do not have a common parent in G. The proof of this result is given by Silva et al.
(2005). However, this is not a sound rule for the non-linear case. To show this, it is enough
to come up with a latent variable model where X\ and Y\ have a common parent, and a
latent covariance matrix such that, for any choice of linear coefficients and error variances,
this test applies. Notice that the definition of a sound identification rule in non-linear models
allows us to choose specific latent covariance matrices but the constraints should hold for
any choice of linear coefficients and error variances (or, more precisely, with probability 1
with respect to the Lebesgue measure).

Consider the graph G with five latent variables La, 1 < i < 5, where L\ has X\ and Yi as
its only children, X2 is the only child of L2i X3 is the only child of L3, Y2 is the only child
of L4 and Y3 is the only child of L5. Also, {XUX2,X3,YUY2,y3}, as defined in CS3, are
the only observed variables, and each observed variable has only one parent besides its error
term. Error variables are independent.

The following simple randomized algorithm will choose a covariance matrix EL for {Lu L2,
L3, L4, L5} that entails CS3. The symbol a^ will denote the covariance of L» and Lj.
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1. Choose positive random values for all an, 1 < i < 5

2. Choose random values for oyi and o\z

3. <J23 <— 0"i20i3/an

4. Choose random values for 045, 025

5. 014 <— 0"l20"45/0"25

6. 0"15 < /

7. 035 <

8. 034 <

9. Repeat from the beginning if EL is not positive definite or if 0"i4023 = 012034

Notice that the intuition behind this example is to set the covariance matrix of the latent
variables to have some vanishing partial correlations, even though one does not necessarily
have any conditional independence. For linear models, both conditions are identical, and
therefore this identification rule holds in such a case. D.

Lemma 8 For any set {A, B, C, D} = O' C O, if OAB&CD = &AC&BD = ^AD^BD such that
for every set {X, Y} C O', Z 6 O we have pxy.z ¥" 0 and pxy ¥" 0, then A and B do not
have more than one common immediate latent ancestor in G.

Proof: Assume for the sake of contradiction that L\ and L2 are two common immediate
latent ancestors of A and B in G. Let the structural equations for A, B, C and D be:

A = aiLi + a2L2 + RA
B =
C =

where ax is a sequence of labels of edges corresponding to some directed path connecting Lx

and A. Symbols a2j /?i, $2 are defined analogously. Rx is the remainder of the polynomial
expression that describes node X as a function of its parents and the immediate latent
ancestors L\ and L2.

Since the constraint <TAB&CD = OAC<*BD is observed, we have (JAB^CD — &AC<7BD = 0 =>
(aiA^i i + «i/%^L!L2 + ^PiVLiL* + ocifaa2^ + a1aLlRB + a2aL2RB + /3I<TLIRA + ^L^RA +
ORARB)CCD - (<*1 Ej CjVCjLi + <*2 Ej WCjL* + E; CJVCJRA)

(A E* dkVD^+fo E* dkaDkL2+?2k dk(jDkRB)) = 0 => a i /M^acD- tE , Cj^LxXE* dkaDkLl))+
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f(G) = 0, where

f(G) =
a2/31aLlLii 2

fh°L>iRA + aRARB)aCD~
Ej CjVCjLx (fa E* dk(?DkL2 + E* dk°DkRB))-
Ej CjVCjLztfl Ylk dk<7 J2
fc dk°DkRB)) ~ Z)j cJaCjRA(A T,k

No element in O' is an ancestor of any other element in this set (Lemma 2) and no
observed node in any directed path from L{ G {Iq, L2} to X 6 {̂ 4, B} can be an ancestor
of any node in O'\X (Lemma 7). That is, when fully expanding f(G) as a function of the
linear parameters of G, the product ai/3\ cannot possibly appear.

Therefore, since with probability 1 the polynomial constraint is identically zero and
nothing in f(G) can cancel the term ai/?i, we have:

j k

Using a similar argument for the coefficients of c*i/?2, ^Pi and a2/32, we get:

i Yl dk<JDkL2 (12)

x (13)
j k

= X) WCiL* X dk°DkL2 (14)
j k

Prom (11),(12), (13), (14), it follows: GACGAD =

[al Eik

j C/̂ QLa Eik
a2 Ej Cĵ QLa Eife
[[

= ^

which implies aC£> - ^ C ^ A J D ( ^ ) " 1 = 0 => PCD.A = 0. Contradiction. •
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Lemma 9 For any set {A, B, C, D} = O' C O ; if OAB°CD = GAC°BD = OAD°BD such that
for every set {X, Y} C O', Z E O we have PXYZ 7̂  0 and PXY ¥" °> then if A and B have
a common immediate latent ancestor L\ in G, B and C have a common immediate latent
ancestor L2 in G, we have L\ = L2.

Proof: Assume A, B and C are parameterized as follows:

A = aLx
B = b1L1

C = cL2

where as before {Ap} U {Bi} U {Cj} represents the possible other parents of A, B and C,
respectively. Assume L\ ^ L2. We will show that PhxL* = 1» which contradicts our assump-
tions. Prom the given constraint OAB^CD = &AD&BCI and the fact that from Lemma 2 we
have that, for no pair {X, Y} C O', X is an ancestor of Y, if we factorize the constraint
according to which terms include ab\c as a factor, we obtain with probability 1:

^ (15)

If we factorize such constraint according to 062c, it follows:

O^cla^i^a^D - VLiDOJJ (16)

Prom (15) and (16), it follows that (Tjdl(^2 = (0L1L2)2 => PL1L2 = 1- Contradiction. •

Lemma 10 For any set {A,B,C,D} = O' C O, if OAB<*CD = CTAC^BD = VADVBD such
that for every set {X, Y} C Ox, Z € O we have pxY.z ¥" 0 and PXY 7^ 0, then if A and B
have a common immediate latent ancestor L\ in G, C and D have a common immediate
latent ancestor L2 in G, we have L\ = L2.

Proof: Assume for the sake of contradiction that L\ ^ L2. Let PA be a directed path from
L\ to J4, and a.\ the sequence of edge labels in this path. Analogously, define a<i as the
sequence of edge labels from L\ to B by some arbitrary path PB, Pi & sequence from L2 to
C according to some path Pc and /% a sequence from L2 to D according to some path Pp.

PA and PB cannot intersect, since it would imply the existance of an observed common
cause for A and 2?, which is ruled out by the given assumptions and Lemma 7. Similarly, no
pair of paths in {PA, PB, PC, PD} can intersect. By Lemma 9, L\ cannot be an ancestor of
either C or D, or otherwise L\ = L2. Analogously, L2 cannot be an ancestor of either A or
B.

By Lemma 2 and the given constraints, no element X in O' can be ancestor of an element
in O'\X.

It means that when expanding the given constraint GAB^CD — 0AD0BC = 0, and keep-
ing all and only the terms that include the sequence of symbols OL1OL2P1P21 we obtain
^ l ^ A A ^ i ^ i a - aiOfcA&flTLii* = 0, which implies pLlL2 = 1 with probability 1. Con-
tradiction. D
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Lemma 6 Let S C O be any set such that, for all {A, B, C} C S; there is a fourth vari-
able D 6 O where i. GAB^CD = &AC&BD = <7AD&BD vnd »• for every set {X, Y} C
{A, B,C,D},Z 6 O we have PXY.Z ¥" 0 and PXY ¥" 0- Then S can be portioned into two
sets Si,S2 where

1. all elements in Si share a common immediate latent ancestor, and no two elements in
Si have any other common immediate latent ancestor;

2. no element S € S2 has any common immediate latent ancestor with any other element
inS\S

3. all elements in S are d-separated given the latents in G;

Proof: Follows immediately from the given constraints and Lemmas 2, 9 and 10. •

Theorem 2 If a partition { C i , . . . , Q J of O' respects structural conditions SCI, SC2 and
SC3, then the following should hold in the true latent variable graph G that generated the
data:

1. for all X E Ci, Y £ Cj, i ^ j , X and Y have no common parents, and X is d-separated
from the latent parents ofY given the latent parents of X;

2. for all X,Y G O', X is d-separated from Y given the latent parents of X;

3. every set C\ can be partitioned into two groups according to Lemma 6;

Proof: Follows immediately from the given constraints and Lemmas 1, 4, 5 and 6. D

Before showing the proof of Theorem 3, the next two lemmas will be useful:

Lemma 11 Let set {A, B, C, D} = O' C O be such that <TAB&CD = &AC&BD =
for every set {X, Y} C O', Z 6 O we have PXY.Z ¥" 0 and PXY ^ 0. / / an immediate latent
ancestor Lx of X 6 O' is uncorrelated with some immediate latent ancestor Ly ofYe O',
then Lx is uncorrelated with all immediate latent ancestors of all elements in O'\X or Ly
is uncorrelated with all immediate latent ancestors of all elements in O'\Y.

Proof: Since the immediate latent ancestors of O7 are linked to O' in that set by directed
paths that do not intersect (Lemma 7) other than at the sources, and the model is linear
below the latents, we can treat them as parents of O' without loss of generality. We will
prove the lemma in two steps.

Step 1: let X, Y e O'. If a parent Lx of X is uncorrelated with all parents of Y, then
Lx is uncorrelated with all parents of all elements in O'\X. To see this, without loss of
generality let A = aLA + 52pa>pAp, and let LA be uncorrelated with all parents of B. Let
C = cLc+Ylj cjCj- This means that when expanding the polynomial oAB&CD—O AC&BD = 0,
the only terms containing the symbol ac will be acaLAicaBD- Since ac ^ 0, GBD i=- 0, this
will force (TLALC = ° with probability 1. By symmetry, LA will be uncorrelated with all
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parents of C and D.

Step 2: now we show the result stated by the lemma. Without loss of generality let
A = ah A + YlpthAp, B = bLs + X^&i#t and let LA be uncorrelated with LB- Then
no term in the polynomial corresponding to OAB°CD can contain a term with the symbol a6,
since <TLALB

 = 0- ^ ^B is uncorrelated with all parents of D, then LB is uncorrelated will
all parents of all elements in O'\B, and we are done. Otherwise, assume LB is correlated
with at least one parent of D. Then at least one term in (JAC^BD will contain the symbol ab
if there is some parent of C that is correlated with LA (because GBD will contain some term
with 6). It follows that LA has to be uncorrelated with every parent of D, and by the result
in Step 1, with all parents of all elements in O'\A D

Lemma 12 Let set {A, B, C, D} = O' C O be such that OABOCD = ^AC^BD = 0AD°BD
and for every set {X, Y} C O', Z 6 O we have PXY.Z i1 0 OLnd pxy ¥" 0- Let {Ap} be the
set of immediate latent ancestors of A, {Bi} be the set of immediate latent ancestors of B,
{Cj} be the set of immediate latent ancestors of C, {Dk} be the set of immediate latent
ancestors of D. Then (JA^^CjDk = ^ApCjCrBiDk = ^APDk^BiCj for all {Ap^B^Cj^Dk} €
{Ap} x {B{} x {Cj} x

Proof: Since the immediate latent ancestors of O; are linked to O7 in that set by directed
paths that do not intersect (Lemma 7) other than at the sources, and the model is linear
below the latents, we can treat them as parents of O; without loss of generality. Let Op be the
coefficient linking A and Ap. Define bi,Cj,dk analogously. The lemma follows immediately
by the same measure theoretical arguments of previous lemmas applied to the terms that
include OpbiCjd^. D

Theorem 3 Given a partition C of a subset O' of the observed variables of a latent variable
graph G such that C satisfies structural constraints SC1-SC4, there is a linear latent variable
model for the first two moments ofO1.

Proof: We will assume that all elements of all sets in C are correlated. Otherwise, C
can be partitioned into subsets with this property (because of the SC4 condition), and the
parameterization given below can be applied independently to each member of the partition
without loss of generality.

Let Ani be the set of immediate latent ancestors of the elements in C| G C = {Ci, . . . , Ck}.
Split every Ani into two disjoint sets An? and An,^, such that An? contains all and only
the those elements of An? that are uncorrelated with all elements in Ani U • • • U An^. This
implies that all elements in AnJ U • • • U AnJ are pairwise correlated by Lemma 11.

Construct the graph Gf-near as follows. For each set Ani, add a latent LAni to Gj<near, as
well as all elements of An*. Add a directed edge from LAni to each element in AnJ. Let
^linear ^e als° a linear latent variable model. We will define values for each parameter in
this model.

Fully connected all elements in {LATH} as a n arbitrary directed acyclic graph (DAG).
Instead of defining the parameters for the edges and error variances in the subgraph of
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Glinear induced by {LATH}, we will directly define a covaxiance matrix Ex, among these nodes.
Standard results in linear models can be used to translate this covariance matrix to the
parameters of an arbitrary fully connected DAG (Spirtes et al., 2000). Set the diagonal of
EL to be 1.

Define the intercept parameters fix of all elements in GjJ
inear to be zero. For each V in

An? we have a set of parameters for the local equations V = XyLAm + £v, where ey is a
random variable with zero mean and variance (&.

Choose any three arbitrary elements {X,Y,Z} C An?. Since the subgraph LATH —•
X,LAni ~* YiLAni —* Z has six parameters (Ax, Ay, XZ,(X,(Y,(Z) and the population co-
variance matrix of X, Y and Z has six entries, these parameters can be assigned an unique
value (Bollen, 1989) such that <JXY = Ax Ay and (x = X2

X ~~ ax- Let ^ ̂ e any other element
of An?: set Xw = &wx/Xx, (w = &w ~~ tfv- Fr°m Lemma 12, we have the constraint
0WY<*XZ — &WX&YZ = 0, from which one can verify that oy/Y = A^Ay does hold in the
population. By symmetry and induction, for every pair P, Q in An?, we have OPQ = ApAg.

Let T be some element in An?, i ^ j : set the entry a{j of EL to be <TTX/(XTXX)- Let
R and S be another elements in An?. Prom Lemma 12, we have the constraint <TXT&RS —
0XR&ST = 0? frora which one can verify that OXR = AxA/ja^. Let Y and Z be another
elements in An?. Prom Lemma 12, we have the constraint (JXT°YZ — &XY<JZT = 0 from
which one can verify that GZT = Xz\vij. By symmetry and induction, for every pair P, Q
in An? x An?, we have OPQ = ApAgtr .̂

Finally, let Giinear be a graph constructed as follows:

1. start Gunear with a node for each element in O';

2. for each C\ G C, add a latent Lx to G, and for each V € Q, add an edge L» —• V

3. fully connect the latents in Glinear to form an arbitrary directed acyclic graph

Parameterize a linear latent model based on G as follows: let V 6 Cj such that V has
immediate latent ancestors {Ly^}. In the true model, let V = fiy + EiA^Lv; + e£, where
every latent has zero mean. Construct the equation V = fiy + XyLi + ey by instantiating
t*v = f>v and A^ = EtA^A^^., where XLv. is the respective parameter for LVi in Gfinear if
Lyi G An?, and 0 otherwise. The variance for ey is defined as ay — A .̂ The Li variables
have covariance matrix Ex as defined above. One can then verify that the covariance matrix
generated by this model equals the true covariance matrix of O'. •
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