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T h e ob jec t i ve of the "Family of Operating Systems" project has been to invest igate 

the feas ib i l i ty of construct ing systems which use identical or similar resources and 

sha r e bas ic Resign decisions. The concepts of "module", "address space" and 

" h i e r a r c hy " have been used with special care. 

Common to all family members is the virtual memory facil ity which controls dynamic 

add ress space transit ions. Family members may differ in the facilities they prov ide in 

s tat ic address spaces. 
Th i s r epo r t presents an overal l description of the FAMOS system. Sect ion 1 

d e s c r i b e s the basic ideas underlying the FAMOS system and Section 2 descr ibes the 

implementat ion. A more detai led description is found in the official documentat ion of 

t h e F A M O S s y s t em . 2 This documentation consists of a number of "module documents". 

Ea ch module document comprises two parts, an introductory descr ipt ion wh i ch 

spec i f i e s the funct ion and dependency of a module and a "type descr ip t ion" wh i ch 

de f i n e s the representat ion and implementation of a module as static address space. 
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1. The Family Concept 

i 

1*1. Introduction 

The des ign , speci f icat ion, implementation, documentation, and maintenance of a 

gene ra l pu rpose operat ing system is without question a huge project, requir ing many 

man-yea r s of e f for t . The f inished product is usually just that - general purpose. Such 

a sy s t em can (is des igned to) behave as any or all of a batch, t imesharing, 

communicat ions, process control system, e t c , at any time. A general purpose sys tem 

canno t be as ef f ic ient in any of its roles as would be a system specif ical ly des igned fo r 

o ne part i cu lar purpose . Unfortunately, the development cost of even a un i -purpose 

s y s t em usual ly prec ludes the construction of several independent such systems. 

T h e FAMOS project had two major goals. The first was a demonstrat ion of the 

feas ib i l i t y of designing a system family. The idea of a family of operat ing systems 

de r i v e s f rom [Parnas 72a] and [Price 73]. Members of a system family are 

d e v e l o p e d as far as possib le along common lines to avoid as much re-des ign and r e -

cod i ng as poss ib le . The sof tware system family concept is somewhat analogous to the 

h a r d w a r e concept i l lustrated by the IBM System/360 series or the DEC PDP-11 family, 

a l though ha rdware families are general ly oriented towards very similar user in ter faces 

among all family members. It might be argued that a particular computer is not w e l l -

su i t ed for more than one or two types of service, and therefore does not merit the 

deve l opment of d i f fer ing systems. While this may be true for larger machines (though 

the manufac turers might disagree), it is definitely not true for the prol i ferat ion of min i 

compu te r s on the market, most of which have a very large range of poss ib le 

app l i ca t ions , and tend to cost less than the systems which run on them. 

Our s e cond goal concerned the documentation and descr ipt ion of the family. In 

[Habermann 73], w e proposed the description of a system at various levels of 

abs t rac t i on . Each partial descr ipt ion consists of a specification, a list of decis ions, an 

ana lys is , and an implementation description. The feasibil ity of this method has been 

t e s t ed by app ly ing it to the family design. An important aspect of the descr ip t ion is 

that the spec i f i cat ion of a system facility is separated from its implementation. As a 

resu l t , the implementation may be changed without affecting programs that re ly so le ly 

o n the spec i f i cat ions. 

1.2. Design Methodology 

T h e app roach used in structuring the design of the family is incremental machine 

design, similar to that introduced by Dijkstra in the T.KE. system [Dijkstra 68 ] and 

u s ed in [L iskov 72] and [Neumann 74] among others. Incremental machine des ign 

deno t e s bui ld ing a system up level by level. Each level defines a virtual machine for 

use b y h igher levels. This machine models a hardware machine c losely in the faci l i t ies 

it p r ov i de s to its users. 
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The var ious system concepts are introduced in such an order that decis ions wh i ch 

res t r i c t the family are postponed as far as possible. The decisions which are made are 

on l y those of speci f icat ion, allowing various family members to share the spec i f i cat ion 

o f a leve l wi thout necessar i ly sharing its implementation. 

Time-sharing 
System 

A 
Batch 

System 

User Interface Job Control Language 

File System 

Disk I/O 

Process Creation 

Address Space Creation 

Swapping 

Process Control 
System 

Special Devices 

Synchronization 

Process Management 

Address Spaces 

Hardware 

Figure 1: A family of operating systems 

F igu re 1 shows a possible relationship between family members. Al l the systems 

sha re the spec i f icat ion of the address space management, process management, and 

synch ron i za t i on levels. The process control system, however, wil l not need to c reate 

p r o c e s s e s dynamical ly, nor to provide user facilities like the other systems. Instead, it 

de f i ne s the spec ia l devices it will control. The batch system may use f ixed memory 

par t i t i ons , and not need to do any of the swapping, which a timesharing system must 
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do . A v e r y usefu l result of the design should be the compatibil ity of such things as 

f i l e sys tems be tween both the timesharing and batch systems suppl ied by a vendor . 

1.3. Functional Hierarchy 

T h e fact that w e use the concept of partitioning a system design into levels implies 

no th ing per se about the interaction among those levels. In particular, the h ierarchica l 

s t r u c tu r i ng is based upon functions - not processes as employed in the T .KE . system. 

Each leve l is compr ised of a set of functions whose names are statically known. The 

l eve l s LQ, L J , . . . L n are ordered such that functions def ined in level Lj are also known 

to L j + £ (and, at the discret ion of L j + j , to Lj+2» etc.). LQ corresponds to the ha rdware 

ins t ruc t ions of the target machine. Each level, in fact, is regarded as prov id ing new 

" h a r d w a r e " to the next higher level. 

It is most important that the hierarchy is among functions. One of the arguments 

against the T .KE . design is the overhead associated with inter- level communicat ion 

among p rocesses . In a functional hierarchy where functions may actually be macros, a 

s e quen ce of funct ion calls may result in a single machine instruction (or poss ib ly none 

at all) w h e n the system is compiled. It is the system design which is hierarchical , not 

its implementat ion. 

. 1.4. Modularization and the Grain of Hierarchy 

Parnas [Parnas 74] has noted that the notions of level and module do not 

neces sa r i l y coinc ide. We wish to elaborate upon this somewhat. 

In format ion modules [Parnas 72b] are comprised of some data structures (poss ib ly) 

and a set of funct ions which share knowledge of a particular design decis ion (ref lected, 

f o r example , in the detai ls of the data structures). A level is a set of funct ion names 

w h i c h are implemented via functions in lower levels. There exists no necessa ry 

re l a t i onsh ip be tween the two concepts. This not only allows the divis ion of a s ingle 

l eve l into severa l distinct modules, but in addition allows for the select ive spanning of 

s e ve r a l levels by a single module! For example, a process manager may be 

imp lemented above the memory manager so that it can create processes dynamical ly. 

Howeve r , the memory manager may need scheduling facilities in order to suspend 

a l locat ion requests when memory is full. This apparent demonstration of the fut i l i ty of 

t he leve l h ie ra rchy can be resolved by the division of a module into more than one 

l eve l . 

In f igure 2 the memory and process management modules are inter leaved in 

s u ch a w a y as to not violate the functional hierarchy. The two pieces of the memory 

manager are part of the same module because they share knowledge about how v i r tua l 

memory s t ruc tures are implemented (e.g. segment tables and descr iptors). Imposing a 

funct iona l h ie rarchy may therefore (and in some cases does) result in a pro l i ferat ion of 

l eve l s , wh i ch produces a finer grained hierarchy than those found in systems 

p r e v i ou s l y deve loped . However, as mentioned earlier, this does not necessar i ly add to 

run- t ime expense . 
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Process Creation 

Segment Creation 

Process Management 

Segment Management 

Figure 2: Modules and hierarchy 

1.5. Virtual Machine Definition 

A good example of a firm boundary between levels is the boundary be tween a 

h a r d w a r e machine and its programs. In this case the hardware provides a set of data 

r eg i s t e r s (memory, device control words, status words, accumulators, etc.) and a set of 

ins t ruc t ions for manipulating those registers. A program wri t ten for this part icu lar 

machine is cons idered to be at a higher level, and it may or may not use the hardware 

"correctly". The re is no opportunity for violation of the order of the program and the 

h a r dwa r e . 

T h e ha rdware can be used in a variety of ways, some of which have been 

ant i c ipated, and others which are erroneous. A typical example of e r roneous use of 

h a r d w a r e is an attempt to branch to an invalid address. Nevertheless, the hardware is 

c on s i d e r ed to be correct if the fol lowing type of statements hold: 

1) Va l id instruct ions operat ing upon valid registers yie ld results as pred ic ted by 

the spec i f icat ions (e.g. the add instruction on large numbers results in over f l ow) . 

2) No sequence of instructions can cause irreparable damage to the machine. 

3) W h e n inval id instructions or invalid operands to instructions are detected, a 

spec i f i ed action is taken (such as a trap) and side effects on registers behave as 

spec i f i ed fpr each condit ion. 

No te that the hardware has not failed if the programmer places the address of his 
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p r og r am code into the stack pointer register, or fails to provide a val id interrupt w o r d 

b e f o r e the c lock exp i res . The correctness of the hardware level is determined w i thout 

r e g a r d to its use. The sof tware level however, is dependent upon the co r rec t 

o p e r a t i o n of the hardware (although it may attempt to be tolerant of intermittent 

e r r o r s or fa i lures in a restr ic ted port ion of the hardware). 

T h e ha rdwa re analogy provides a prototype for virtual machine interfaces. A v i r tua l 

mach ine is a programmable computer with registers, instructions, and spec i f ied act ions 

fo r all improper uses of the machine. In general, a virtual machine is an incremental 

mod i f i ca t ion of a lower level machine called its base. Using the term "faci l i t ies" to mean 

the reg i s te rs , instruct ions, and asynchronous activities of a given machine, the poss ib le 

mod i f i ca t ions wh i ch a virtual machine can apply to its base may be classi f ied as: 

1) the hiding of a subset of the facilities - i.e. making them unavailable to h igher 
leve ls . 

2) the def in i t ion of new facilities. 

3) the systematic modification of a subset of the existing facil ities. 

Some of the new registers may serve the function of trap or interrupt words for 

h igher leve l programs. (We differentiate traps, which result d irect ly f rom program 

act ions, f rom interrupts, which result from external asynchronous events.) A t rap w o r d 

p r o v i d e s an address to which control is to be passed if the trap or interrupt condi t ion 

o c cu r s . The s ide e f fects of a trap are part of the specifications of the virtual machine. 

Us i ng this mechanism, the higher level program can exercise the funct ions of the 

machine, handle er roneous uses (which in some cases may be desirable - e.g. page 

faults), and p rocess the results of asynchronously operat ing aspects of the v i r tua l 

machine. 

1.5.1 Example 1 

A l ow leve l machine might have floating point operations which can result in 
u nde r f l ow in magnitude, causing a trap through a special register known as the f loat ing 
po in t unde r f l ow t rap word . A possible higher level machine might make a small change 
to the base machine so that 

1) the f loat ing point underf low trap word is hidden. 

2) A "f loat ing point underf low count" register and -two operations on it, read and 
c lear, are def ined. 

3) The f loat ing point instructions of the base machine are systematical ly modi f ied 
so that the phrase "causes a trap through the floating point under f low t rap 
w o r d " in the documentation is changed to read "causes the f loat ing point 
unde r f l ow count wo rd to be incremented". 

A s t r a i gh t f o rwa rd implementation of this machine would be created by placing the 



6 

add ress of the under f low count increment routine in the floating point under f low t rap 

w o r d , and making available two routines "clear underf low count" and "read under f l ow 

count" . This* so f tware implementation requires that several other base machine 

r eg i s t e r s , namely the memory locations occupied by the count wo rd and rout ines must 

a lso be h idden. 

1.5.2 Example 2 

The funct ion of a virtual machine might be to provide multiple vers ions of a fac i l i ty 

p r o v i d e d on ly once in the base machine. For example, a virtual clock level cou ld 

r ep l a c e the s ingle clock of the hardware with several clocks which may be s tar ted and 

s t o p p e d independent ly of one another. In this case, many new interrupt condit ions 

w o u l d be c rea ted , and an interrupt register would be provided for each of the c locks 

d e f i n ed b y the virtual clock level. 

1.6. Implementation Alternatives 

Shou ld the rules implied by the level structure and the modular s t ructure be 

c he c ked at compi le time or at run time? We decided to check functional h ie rarchy at 

comp i l e time and module boundaries at run time. A justif ication of these dec is ions 

f o l l ows . 

A compi le time check has the obvious advantage that the check is per fo rmed on ly 

once , b e f o r e execut ion starts. Moreover, a compiler can optimize the code across leve l 

o r module boundar ies and gain a reduction in space and time requirements. It seems 

that for this reason both level hierarchy and modular structure should be checked at 

compi le time. Regarding hierarchy, we can afford to check the validity of a funct ion 

ca l l at compi le time because of the earlier design decision that function names are n o n -

computab le objects and can speci fy the level at the definition site. That is, funct ion 

names behave as constants which are known at compile time. (This decis ion does not 

p r e c l ude that the parameters given in a function call, or their types, may tr igger the 

invoca t ion of a part icular vers ion of the function, but all these versions car ry the same 

func t i on name and are at the same level.) Since a level is def ined as a set of funct ion 

names, the rules def in ing hierarchy can be checked at compile time. Thus, a compi ler 

c an opt imize code across level boundaries. As a result, it may be hard to f ind 

h i e r a r chy in the compi led code, a situation not unlike nested control s t ructures wh i ch 

a re compi led into jump instructions. 

W i th in modules, addresses of objects are computed at run time. This means that a 

p r og r am may generate an incorrect address and unintentionally modify a rb i t ra ry 

locat ions. In order to limit the damage which results from incorrect address 

computat ions , we associate a module with a collection of memory cells addressable on ly 

b y the funct ions which belpng to the module. (This corresponds ve ry c lose ly to the 

" inv i s ib le " reg is ters accessible by arithmetic logic or microcode in hardware.) Since 

add res ses are computed at run time, the check that a generated address is wi th in the 

bounds of a module must be made at run time. Inter-module function calls requ i re a 
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change of environment which may or may not be expensive, depending upon the 

app rop r i a t enes s of the hardware. However, data local to a module is complete ly 

p r o t e c t e d f rom external addressing errors. Intra-module calls, since they do not 

r e qu i r e a change of environment, can be compile-time optimized even across levels. 

1.7. Description and Documentation 

Desc r ip t i on and documentation form an integral part of the design task. The 

resu l t i ng family is not merely def ined by its code, but exists as a document descr ib ing 

modu les of the systems at various abstract levels. The data associated wi th a module 

. is d e s c r i b e d by abstract data types. An abstract data type descr ibes to the user of an 

ob j e c t the abstract states of such objects and the functions which manipulate them. 

T h e " in t roduc to ry descr ip t ion" of a module specif ies the data types used in a module. 

A " t ype desc r i p t i on" gives the data representation and the implementation of 

ope r a t i on s for each data type. 

T h e desc r ip t i on method given above facilitates the understanding and modif ication of 

modu les . It a l lows a programmer to get acquainted with the system family w i thout 

hav ing to go through the tedious experience of deriving meaning from the code. In 

par t i cu la r , b y separat ing the specif ications in the introductory descr ipt ion f rom the 

implementat ion in the type description, one can understand how to use a module 

w i t hou t hav ing to understand every detail of the implementation. In addit ion, the 

implementat ion of the abstract states of an object, or the implementation of the 

ope ra t i on s de f ined in a type definition, can be changed without affect ing the users of 

t he t y p e d object , p rov ided that the specifications remain unaltered. An introduct ion to 

the use of abstract data types as a design tool may be found in [Flon 75]. 

D i jkst ra ob se r ved in [Dijkstra 68] that level hierarchy facil itates the debugg ing 

p r o ce s s . The h ierarchy makes it possible to debug the levels one by one, start ing at 

the l owes t level . Abstract data types provide an additional debugging tool, s ince the 

ope ra t i on s on t yped objects can be tested independently of their call sites. Moreove r , 

if a bug is found, the programmer can be sure that the errant code is limited to the 

t y p e def in i t ion in wh ich the bug occurs. The strict separat ion of speci f icat ion and 

implementat ion makes it impossible for an implementation change in one place to 

r e qu i r e addit ional changes in an arbitrary number of other places. 
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2.1. Introduction 

T h e th ree methods of transition among the various modules of a system can be 

summar i zed as: 

1) s imple intra-module function calls 

2) in ter-module funct ion calls 

3) v i r tua l t raps and interrupts 

T h e concep t s invo lved in this statement are considered to be universal ly basic to the 

fami ly, more so than any others. Therefore, a protected vers ion of these faci l i t ies 

compr i s e s the lowest system level. Pr ice [Price 73] has shown that such a basis is 

su f f i c i en t to guarantee adequate protection for the system and its users. His 

p r o t o t y p e implementation established that inter-module calls would not be ove r l y 

e xpen s i v e on a machine with appropriate hardware of a simple nature. The 

implementat ion desc r ibed in this paper is a fol low-up to Price's work. The des ign is 

s omewha t s impl i f ied wi th respect to inter-module connections. An important extens ion 

is the p rocess ing of virtual interrupts, mentioned previously. The integrat ion of this 

l eve l w i t h the des ign of higher levels has led to more extensions and a g rowth of 

c on f i dence in the uti l ity of the features provided. 

2.2. The Address Space 
A module is character i zed by 

1) the informat ion for which it is responsible 

2) the set of funct ions it provides to other modules for manipulating that 

in format ion 

3 ) the set of modules of which it knows the existence 

t h e instant iat ion (execution) of a module is characterized by 

1) the funct ion invoked and the subset of information it needs to operate 

2) any addit ional information passed to it via the parameter mechanism 

T h e concept of address space is introduced to implement these notions. When a 

modu le is def ined, a static address space (SAS) is created for it ( f igure 3). 

Con ta i ned in the SAS are a segment table (ST) which represents information local to all 

i ns tances of the module, and a function table (FT) which is a vector of informat ion 
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ST FT KAST 

S A S k 

©iFigure 3: Static address space] 

about the invocat ion of each of the possible module entry points. The ST is a vec tor 

of segment descriptors^ each of which identifies a segment of memory, either by means 

of a phys i ca l address or indirectly via a reference to a segment in another SAS. The 

la t ter case a l lows for the sharing of segments among address spaces. A lso p rov ided in 

the SAS is the known address space table (KAST) which consists of a vector of SAS 

names. 

data 
segment 

T h e funct ions in a module have no direct access whatsoever to any of these tables, 

s i n ce an instance of a function runs in virtual memory i.e. all addresses are re located. 

Ins tead, an act ive address space manipulates these tables by operat ions p rov ided by 

the v i r tua l memory level (VM), including ASCALL and ASRETURN> which compr ise the 

• mechan ism for inter-module calls. 

• ASCALL takes as parameters 

1) a KAST index (i) 

2) an F T index ,(j) 

3 ) a list of parameters in the form of ST and PST indices (k,l,m,...) 

4) an opt iona l ST or PST index q for the return segment. 

In e f f ec t , an inter-module call can be read as "call the Pth module I know about, 
i nvok ing the j ' th funct ion it provides. Pass as parameters to that module the k'th, Pth, 
m'th, e t c , segments I know about." If the function returns a segment, make it the q- th 
segment . 

T h e resu l t of an ASCALL is the creation of a dynamic address space (DAS). A DAS 

cons i s t s of a working set (WS), a parameter segment table (PST), and an SAS r e f e rence 

( f igure 4). The WS is a vector of segment descriptors which comprise the v i r tua l 

add res s mapping for this DAS. The WS is initialized by V M according to informat ion 
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Figure 4: Dynamic address space 

t aken f rom the cal led-address-space's FT, i.e. the code segment and a local data 

segment . A v irtual address of the form (w,d) indicates the w'th WS segment w i th 

d i sp lacement d. The PST is initialized by V M with indirect segment descr iptors wh i ch 

r e p r e s en t the parameter segments passed by the cal l ing-address-space (access cont ro l 

may be restr ic ted). 

W h e n a funct ion executes an ASRETURN instruction, the return segment (if any) is 

s t o r e d in the cal ler 's address space, the function's DAS is erased and the DAS wh i ch 

ca l l ed it is resumed fol lowing its ASCALL During execution, a function may load and 

un load the WS and ST wi th segments from ST or PST via the instructions SEGLOAD and 

SECUNLOAD. 

Example: The behavior of ASCALL is i l lustrated in Figure 5. The call ing program 

w o u l d l ike to open a fi le. It makes an ASCALL on the fi le manager, pass ing as a 

pa ramete r a segment containing the file name. A segment will be returned wh ich is an 

o p e n f i le. 

T h e program's static address space ( S A S u s e r ) contains a segment table wh ich has 

de s c r i p t o r s for at least a code segment, data segment and file name segment. The 

k n o w n address space table of S A S u s e r contains a reference to the fi le manager 

add ress space (SASfj| e). The file manager ST contains descriptors for (at least) a code 

and data segment. The data segment might contain the d irectory structure, mapping 

f i l e names to physica l fi les. When the user program is executing, it has a dynamic 
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Figure S: ASCALL to OPEN a file 

add res s space < D A S u s e r ) whose working set entries contain the ST and PST indices of 
the segments cur rent ly addressable. D A S u s e r " 
pa ramete r segment table. 

W h e n the program executes 

also has a reference to S A S u s e r and a 

ASCALL(kas t [3] , 1, st[3], pst[3]) 

a n e w DAS (DASfj| e) is created for the file manager (kast [3] « SASfj| e). The funct ion 

to be execu ted is the first in the FT of SASfj| e. The function table descr iptor in the FT 

ind icates that the code for the function is to be found in the first slot of ST. The new 

P S T is loaded wi th a descr iptor for the third segment in the S A S u s e r segment table 

( the data segment containing the file name). The last parameter indicates that a 

segment wi l l be returned, whose descriptor should be stored in the th i rd slot of 

P S T u s e r DASf j | e then executes the code segment, loading its data segment and the 

pa ramete r data segment into its WS, and eventually creating a segment to descr ibe the 

s ta te of the open fi le. When the called function completes and does an ASRETURN, the 

des c r i p t o r for the return segment is stored in the caller's PST (as spec i f ied by the 

ASCALL ) , the fi le DAS is erased, and the user DAS is resumed. 

• j <- i 5 
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2.3. Typed Segments 

One of the problems arising from the desire to restrict data structure manipulat ion 

to a part icu lar module is where the actual data should be kept. In the f i le manager 

example above, the fi le manager could have retained the data segment descr ib ing the 

o p e n f i le in its o w n ST. Such an arrangement poses problems for bill ing, al location and 

p ro tec t i on . The fi le manager would own and be billed for resources which it was 

ho ld ing for o ther users. Since ail instances of the module share the same ST, it wou l d 

n e ed to make some agreement about where these dynamically created segments wou l d 

go in the segment table. Furthermore, from a security viewpoint, a bug in some ra re ly 

u sed funct ion of the fi le manager address space could run rampant through the 

segment table, dest roy ing data belonging to users who had never invoked that 

func t ion . 

W e address these problems in the above implementation by returning the segment 

des c r i b i ng the open fi le to the caller. This has good propert ies with respect to bi l l ing 

and secur i ty , but circumvents the protection provided by modules, since the cal ler can 

n o w r ead and wr i te the returned segment indiscriminately. 

Our so lut ion to the latter problem involves the notion of "typed segments". Each 

segment is marked with a type, which is simply the name of the SAS wh ich was 

r e spons i b l e for its allocation. Under normal circumstances, only the SAS of matching 

t y p e can load a segment into its working set, and hence read or modify it. In this way , 

u se r s may " o w n " fi le descr iptor segments, but they are prevented from changing them 

excep t v ia operat ions provided by the file manager address space. In cer ta in 

c i r cumstances , an address space may wish to grant another address space the right to 

load one of its segments, such as when two address spaces are communicating v ia a 

bu f f e r . To handle such situations, we permit an address space to grant, to a ca l led 

func t i on , loading pr iv i leges on a parameter segment of the caller's type. 

Example: A f te r opening a file, the user program may wish to read the fi le. It does 

s o b y cal l ing the READ function of the file manager (see f igure 6), pass ing as 

pa ramete r s the f i le descr iptor segment (of type "file manager") and a buf fer segment 

(of the user 's type), with loading privi leges. This permits the file manager to w r i t e 

into the buf fer segment the data it obtains from the file re fe r red to by the f i le 

de s c r i p t o r segment. Upon completion of the call, the data is available for the user, 

w h o reta ins ownersh ip of both the buffer and file descriptor segments. 
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Figure 6: ASCALL to READ a file 

2 A Processes and Modules 

A l though the concept of process is unknown to the V M level, some thought must be 

g i v en to the relat ionship between processes and modules in order that the higher 

l eve l s have appropr ia te "virtual hardware" with which to work. In a convent ional 

s y s t em, sys tem code is v iewed as being executed by separate processes. When a user 

r eques t s a system function, his process is suspended while the system carr ies out his 

r eques t . The protect ion needs which prompted this approach are prov ided in our 

s y s t em b y the module mechanisms. Therefore a process can be thought of as a f l ow 

of con t ro l wh i ch passes among various modules, some of which are user -wr i t ten and 

some of wh i ch are part of the system. A request for I/O, for example, involves the 

p r o c e s s actual ly execut ing system code. 

Th is leads to a v iew of processes f lowing between modules in a ca l l / return manner, 

and a l lows for more than one process to execute a given module at the same time. 

A n y necessa ry synchronizat ion is defined in the module itself. The ca l l / re turn 

d i sc ip l i ne of contro l f low in a process is mirrored in V M by an address space h i s to ry 
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(ASH), a stack of DASs ref lect ing the nesting of ASCALLs executed by the process . 

U p o n ASCALL , the DAS descr ib ing the calling environment is pushed onto the process ' s 

A S K Upon ASRETURN, the called environment is destroyed and the call ing env i ronment 

is r e s t o r ed by popp ing it from the A S K 

V M maintains two ASH registers, referr ing to the current user process ASH and the 

i n te r rup t p rocess ASH (IASH). (The justification for a separate interrupt ASH is 

d i s cu s sed below.) V M provides operations to set these registers, corresponding to the 

ac t ion of a context swap. Each ASH is implemented in a separate segment (of t ype 

VM) , so that a module responsib le for scheduling, for instance, can own a co l lect ion of 

ASHs as components of process descriptors. Hence V M provides the pr imit ive 

mechanisms necessary to support the notion of processes, without over ly spec i f y ing 

the nature of a process. 

2.5. Virtual Interrupts 

W e have reasoned that putting a protected addressing environment mechanism at 

the l owes t level of the system leads to strong modularity, and various other benef i ts . 

Such a ph i losophy wou ld suggest that a hardware interrupt should be mapped into a 

p r o t e c t e d p rocedure call, so that even interrupt processing routines can rece ive the 

bene f i t s of the protect ion mechanism. However, we quickly d iscovered that e f f i c iency 

p r e c l u ded such a simple mechanism, because of the cost of the protected p rocedure 

ca l l . Our f irst solut ion was to have V M "modify" all hardware devices into v i r tua l 

dev i ces , wh i ch had less stringent timing constraints. This design was unsat is factory, 

b e cause it was an instance of the philosophy, "for eff iciency, put it in the kerne l " , 

w h i c h w e sought to avoid. Our final solution was to put into V M a virtual in ter rupt 

mechanism, then let the low-level interrupt routines share the addressing environment 

in wh i c h V M res ides, even though conceptually the device routines executed on top of 

the v i r tua l machine def ined by VM. 

2.5.1 Devices as processes 

Dev i ces are modeled as low-level processes which orddnari ly execute on per iphera l 

h a r dwa r e , but wh ich sometimes call routines which must be executed on the C P U 

( in te r rup t rout ines). The device processes compete with the current user p rocess for 

access to the CPU . This competition is arbitrated by the hardware pr ior i ty mechanism. 

T h e user p rocess may of course be executing in either user space or kernel space; the 

d ev i c e rout ines execute in kernel space. Thus it is only programming convent ion wh i ch 

s epa r a t e s the device routines from the implementation of VM , even though 

concep tua l l y they are in separate modules. 

s 
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2.5.2 Virtual Interrupt Vectors 

T h e p rocess model for devices takes care of the worst of the timing constra ints on 

dev i c e s ; it remains to provide a synchronization mechanism between the dev i ce 

p r o c e s s e s and the user system. For this purpose V M provides a set of virtual 

interrupt vectors, and operat ions for setting them and for evoking them. Each reg is ter 

is ded i ca ted to a part icular hardware device, and may be set to contain the name of an 

S A S and a funct ion with in that SAS which is to be executed when a virtual in ter rupt 

f o r that dev i ce occurs. Then any device process which needs to not i fy the user 

s y s t em of some event may signal the occurrence of a virtual interrupt from its dev ice, 

v i a a V M opera t ion . 

S ince the V M implementation is non-reentrant, virtual interrupts can on ly be 

p r o c e s s e d when the user process is not executing a V M operat ion. Consequent ly 

v i r tua l in ter rupts are entered in a system of priority queues, which is pol led by V M 

a f ter e v e r y V M operat ion. (Note that raising a virtual interrupt is a V M operat ion, so 

that if the user process is interrupted by a device process whi le in user space, the 

v i r tua l in ter rupt is f ie lded as soon as it is raised.) Naturally, the queue of v i r tual 

i n t e r rup t s is p ro tec ted from simultaneous access by masking all interrupts wh i le 

mod i f y ing it. 

T h e mechanism just descr ibed permits the low level interrupt routines to be s tacked 

b y the ha rdware mechanism in the usual way, so that classical real-time programming 

techn iques apply. Only certain critical sections of V M turn off all interrupts, namely 

the sec t ions wh i ch save and restore state on interrupts and traps, and the v i r tua l 

i n t e r rup t mechanism itself. 

2.5.3 Virtual Interrupt Handling 

W h e n V M pol ls the virtual interrupt vectors after an operat ion, and d iscovers a 

pend i ng interrupt , it mus force an ASCALL to the address space ent ry point l isted in 

the vec to r . Instead of using the user's ASH for executing the protected p rocedures 

V M uses a separa te address space history, the IASH, for two reasons: 

1. For bi l l ing purposes, it will be preferable to separate DAS's associated w i th "the 
s y s t e m " f rom those associated with a particular user. 

2. In ter rupts o f ten precipitate rescheduling operations. The scheduler must be able 

to s w a p user contexts (by resett ing the ASH register) and still be able to return to the 

ac t ive DAS's associated wi th its own and other virtual interrupt routines. 

A l l v i r tua l interrupts share the same IASH; a high prior ity routine may fo r ce a 
c u r r e n t l y execut ing lower pr ior i ty one to be stacked on the IASH, and later resumed 
w h e n the former is completed. 
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2.6. Virtual Traps 

T h e funct ional h ierarchy of the modules of V M would not be practical for a rea l 

ope r a t i ng sys tem unless some means were available for exception handling. For this 

p u r p o s e V M prov ides a set of virtual trap vectors, each associated with a part icu lar 

excep t i ona l condit ion which V M is not programmed to handle. When such a condi t ion 

o c cu r s , V M aborts whatever it was doing and forces an ascall to the funct ion named in 

the co r r e spond ing virtual trap vector.In addition to conditions which arise wi th in V M , 

t h e r e are a set of uninterpreted trap vectors which higher levels of the opera t ing 

s y s t em may use for except ion handling. For instance, when the clock module detec ts 

that one of its virtual clocks has run out of time, it cannot call the module to wh ich the 

v i r tua l c lock belongs, because that would violate the functional hierarchy. Instead, the 

c lock module associates a virtual trap vector with each virtual clock, and requires the 

user of a c lock to set the corresponding trap vector with an appropr iate funct ion; then 

w h e n the c lock's value drops to zero, the clock module may evoke a virtual tr^p to 

w h a t e v e r funct ion is named in the trap vector. 
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3. Some Implemented Modules 

3.1. Clocks 

In o r de r to accommodate family members with different clock usage requirements, 

t w o ve r s i ons of the clock module were implemented. Both versions implement identical 

spec i f i ca t ions , but va ry in the relative speeds of clock operations and in their s torage 

requ i rements . The clock module uses the hardware line clock to provide a co l lect ion of 

c locks , remov ing the line clock from the virtual machine presented to higher levels of 

the sys tem. The clocks could be used by higher levels for scheduling, account ing or 

p e r f o rmance measurements. 

T h e r e are seven operat ions applicable to a clock. A clock can be turned on and of f 

and can have its alarm set or turned off ("enabling" and "disabl ing" the clock). The 

c lock t ime can be read and set. The function to be called when a clock's alarm goes 

o f f can be spec i f i ed . When a clock is running, its time is decremented once eve ry time 

unit (0.1 seconds for the present system). If a clock is running with its alarm set and 

it dec rements ' pas t zero, an interrupt is issued, calling the function associated w i th the 

c lock . At this level of the system, there is no attempt to enforce the not ion of 

o w n e r s h i p of a clock. A clock resource manager v/ould be designed at a h igherMeve l 

of some family members. 

One implementat ion of the clock module uses an array of clocks. Since it is too 

e xpen s i v e to update clocks every time unit, all clocks contain their time as of the last 

c l o ck in ter rupt . At that interrupt, the line clock was set to the shortest time value of 

the runn ing, enab led clocks. This value is saved in LASTVAL At any instant, the actual 

va l ue of a running clock is: clocktime - (LASTVAL - lineclocktime). This implementation 

makes changes to the state of a clock quick and easy. In most cases, turning a c lock 

o n o r off, d isabl ing or enabl ing its alarm, or reading or setting a clock time requ i res 

chang ing the values in the clock, and perhaps changing LASTVAL and the line clock. 

Howeve r , handl ing interrupts requires that every clock in the array be checked to 

de te rm ine whether or not it is running and should be updated. All c locks must be 

i n spec t ed , even if only one is in use. 

The second implementation of the clock module maintains all running clocks in a 

doub ly - c i r cu i a r l y - l i nked list. Each running clock contains the d i f ference be tween its 

t ime and the time of the clock preceding it, rather than its actual time. The next c lock 

to decrement past ze ro is designated FIRSTRUNNING, and the clock whose alarm goes 

o f f next is des ignated FIRSTENABLED. To obtain a running clock's actual time, add the 

va lues of all c locks between FIRSTRUNNING and that clock, and subtract (LASTVAL-I ine 

c l o ck time) as in the array implementation. In the list implementation, changing the 

s ta te of a c lock is relat ively expensive because inserting and removing clocks from the 

r i ng is complex. However, interrupts can be handled very quickly, since one need only 

s can d o w n the list past any clocks which have gone off and reset the values of 

FIRSTRUNNING, FIRSTENABLED, LASTVAL and the line clock. 

A sys tem wou ld use the array implementation if it expected to per form clock 
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ope ra t i ons more f requent ly than clock interrupts occurred, or if space we r e tight, 

s i nce the a r ray implementation doesn't need space for storage links. If the number of 

runn ing c locks var ied greatly during the running of the system, the a r ray 

implementat ion wou ld be poor, since interrupt handling always checks the maximum 

number of c locks ever used. The list implementation would be preferab le if the c lock 

modu le wou l d be primari ly handling clock interrupts. 

S ince the speci f icat ions of both implementations are identical, they can be used 

in te rchangeab ly , depending on performance requirements. 

3.2. Processes 

T h e p rocess module implements the concept of a process. A process is the 

sequent ia l f l ow of control through address spaces; it is represented by an address 

s p a c e h is tory . A process is executed by loading its ASH into the virtual stack reg is ter 

p r o v i d e d by V M . The process module is decomposed into several functional levels. 

T h e lowest level , process management, has been designed and implemented. P rocess 

c r ea t i on is env is ioned as a functional level depending on segment creat ion, and thus 

res id ing higher in the hierarchy. 

P r o ce s s management makes available a f ixed number of processes and sets to wh i ch 

p r o c e s s e s be long. Processes in process sets are maintained in their order of arr iva l 

and have wai t ing values associated with them. The ready list, a process set managed 

b y the p rocess module, represents a collection of processes that are ready to be 

e xe cu t ed on a processor . The currently running process is the first element on that 

l ist. A round- rob in schedul ing policy is implemented on the ready list w i th the aid of a 

v i r tua l c lock. A virtual trap at the end of a specif ied number of tirrie intervals s ignals 

that the time sl ice which has been allotted to the currently running process has 

e l ap sed . This process is then moved to the end of the ready list and the next p rocess 

is d i spa tched . 

T h e p rocess management level provides a collection of waiting lists ( sets of 

p r o c e s s e s ) and operat ions to move processes between waiting lists and the ready list. 

A p r o ce s s a lways resides in exactly one process set. The current process can block 

b y invok ing the operat ion haltme} which removes the currently running process f rom 

the r eady list and places it into a specif ied waiting list with a given wait ing value. A 

p r o c e s s is react ivated through a conditional continue operat ion: A spec i f ied wai t ing 

list is scanned from the beginning for a process with a waiting key sat is fy ing a 

cond i t i on . If there is at least one such process, it is transferred to the ready list. The 

wa i t i ng key of a process can be tested to see if it is equal to a value, not less than a 

va lue , or if the logical AND of the key and a value is non-zero. This mechanism is 

su f f i c i en t l y genera l to allow for prior ity scheduling on wait ing lists and for the 

implementat ion of severa l synchronizat ion mechanisms. 
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3.3. Synchronization 

Synchron i za t i on is an example of the generation of two family members based on 

the same under ly ing virtual machine. Semaphores and path expressions are p rov ided 

as synch ron i za t i on mechanisms. Either or both modules may exist in a system, 

d e p e n d i n g upon wh ich synchronizat ion tools are required by higher levels of the 

s y s t em. 

3.3.1 Semaphores 

T h e semaphore module implements counting semaphores [Habermann 72] w i th P 

and V opera t ions . A semaphore consists of a counter and a wait ing list for b locked 

p r o c e s s e s , p rov ided by the process module. Processes waiting on a semaphore are 

r eac t i va ted in f i rs t- in f i rst-out order using the operations on waiting lists p rov ided by 

the p rocess module. 

3,3.2 Path Expressions 

The goal of path express ions is to state the concurrency restr ict ions on a sha red 

ob j e c t at a higher level, analogous to control f low constructs like the u/fti/e-statement. 

A s ha r ed ob jec t is descr ibed by a type definition, i.e. a specif icat ion of its data 

s t r u c t u r e and a col lect ion of operations for manipulation of an object of that type . A 

pa th express i on , def ined for an object as part of its type definit ion, descr ibes the 

a l l owab le sequences of operations, guaranteeing mutual exclusion of operat ions on the 

s h a r e d ob jec t . Al l information about the concurrency restrictions on a shared object is 

l o ca l i zed in the path express ion for its data type. 

T h e basic path expression is a regular expression from which all possib le execut ion 

s equen ce s can be der ived. Its operands are the function names of operat ions, and the 

o p e r a t o r s are repetition ( * ), sequencing ( ; ), and exclusive selection ( + ) ( i n 

p r e c e d e n c e order , wh ich can be overruled by parentheses ). The path express ion is 

de l imi ted by a Path End pair, which implies repetit ion of the whole path express ion . 

Fo r example the path express ion for a file 

path o pen ; ( read * + wr i te ) ; close end 

r equ i r e s f i rst the execut ion of an open, then either one write or ( exclusively ) z e r o or 

more reads, wh i ch must be fo l lowed by a close before the path express ion can be 

r e p ea t e d . 

A pa th express ion can be def ined by a deterministic finite state machine, and can be 
r e p r e s e n t e d by a d i rected graph in which the nodes correspond to states and an arc 
l abe l ed w i th funct ion name p indicates the execution of p. A function may execute in 
more than one path express ion state if repetit ion of function names is permitted in a 
p a t h exp ress i on . 
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Upon en t r y to a function a prologue is executed which determines whether the 

f unc t i on is permit ted to execute by checking the current path express ion state 

assoc ia ted wi th the shared object. The process either is b locked on the path 

e xp r e s s i o n wai t ing list or enters the function body. The waiting key of a b locked 

p r o c e s s conta ins all possible states in which it may start execution. At the end of a 

f unc t i on execut ion, an epilogue performs the state transition of the path express ion . If 

the pa th express i on wait ing list contains a process which may execute f rom the new 

s ta te , the ep i logue activates the process and releases the critical sect ion on the sha red 

ob jec t . 

Seve ra l extens ions have been considered to the basic path express ion 

[Habermann 75]Campbel l!thesis). We have implemented a restr icted form of the 

numerical path element. A numerical path element permits specif ication of addit ional 

cons t ra in t s on the execut ion sequence of operations. It limits the number of 

invocat ions of two functions relative to one another. For example the path express ion 

path ( push - pop ) n end 

res t r i c t s the number of push and pop operations on a bounded stack to sat is fy: # 

pop < * push < * pop + ru In order to permit a simple and efficient implementation of 

the numer ica l path element, a function name in a numerical path element may not 

appea r more than once in a path expression. Every numerical path element in a path 

e xp r e s s i o n has a counter containing the difference in the number of invocations of its 

t w o funct ions and its own waiting list. A process trying to execute a funct ion in a 

numer ica l path element wil l be blocked if the invocation count would not sat is fy the 

numer ica l path element constraint. It can only be reactivated by another funct ion in 

the same numerical path element. The process then proceeds to check the path 

e xp r e s s i o n state. The numerical path element condition is not requ i red to be 

r eeva l ua t ed if the process blocks on the path expression state. 
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4. Conclusion 

Our f i rst exper i ence with the design of a system family is favorable. We are 

con f i den t that w e wi l l be able to design several differing family members. Fundamental 

to our des ign are the notions of level and module. The levels are constructed via an 

inc rementa l machine design. This method greatly enhances the design and debugg ing 

p r o c e s s e s because it becomes possible to concentrate on one level at a time. The 

modu le concept leads to an unconventional ordering of the levels. Tradit ional ly, one 

f inds the mult iprogramming and processor allocation facilities immediately above the 

ha r dwa r e . However , since protect ion of modules is common to all family members 

w h e r e a s the processor allocation strategies may differ from one member to another, 

the leve l p laced on top of the hardware is the one which implements the p ro tec ted 

add ress spaces in which modules operate. Other levels which have been des igned 

inc lude a v i r tua l clock level to reside immediately above VM, and the process def in i t ion 

l eve l wh i ch res ides above that. 

T h e v i r tua l memory system descr ibed has been implemented on a PDP -11 /45 w i th 

segmenta t i on feature. We argue that it is a virtual machine as we have def ined, b y 

p r ov i d i ng a def in i t ion of the base machine and the modifications made to it by this f i rst 

l e v e l 

T he VM1 machine is the PDP-11/45 with 

1) the program status word, relocation registers, segmentation status reg is ters , 

reg i s te r set 0, and emulate trap word hidden and therefore unavailable to the 

user . A lso , the halt, wait, reset, and emulate instructions are no longer avai lable. 

2) new complex registers added, namely address spaces, work ing sets, known 

address space tables, the ASH, e t c Also new instructions, namely "segload", 

"segunload", "ascall", "asreturn", e t c are added to the instruction set. 

3) all memory re ferences by instructions systematically altered from 16 bit phys ica l 

addresses to {working set slot, displacement} pairs. All interrupt and t rap 

vec to r s are systematical ly altered from 16 bit physical addresses to {address 

space , FT index} pairs. 

A module is desc r i bed at various abstract levels so that its meaning does not have to 

b e d e r i v ed f rom the code. The building blocks for modules are type definit ions. These 

a l low us to separa te specif icat ion from implementation issues. Type definit ions prov ide 

y e t another protect ion tool by limiting the extent of bugs. Continuation of the 

r e s e a r c h e f fo r t wi l l produce several running family members with highly non-tr iv ia l 

d i f f e r ences , including batch and timesharing systems with widely d i f fer ing s torage 

management strategies. 
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