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The objective of the "Family of Operating Systems” project has been to investigate
the feasibility of constructing systems which use identical or similar resources and
share basic design decisions. he concepts of "module”, "address space” and
“hierarchy” have been used with special care,

Common to all family members is the virtual memory facility which controls dynamic
address space transitions. Family members may differ in the facilities they prov?de in
static address spaces.

This report presents an overall description of the FAMOS system. Section 1
describes the basic ideas underlying the FAMOS system and Section 2 describes the
implementation. A more detailed description is tound in the official documentation of
the FAMOS system.2 This documentation consists of a number of "module documents™.
Each module document comprises two parts, an introductory description which
specifies the function and dependency of a module and a “"type description” which
defines the representation and implementation of a module as static address space.
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1. The Family Concept

1.1. Introduction

The design, specification, implementation, documentation, and maintenance of a
general purpose operating system is without question a huge project, requiring many
man-years of effort. The finished product is usually just that - general purpase. Such
a system can (is designed to) behave as any or all of a batch, timesharing,
communications, process control system, etc., at any time. A general purpose system
cannot be as efficient in any of its roles as would be a system specifically designed for
one particular purpose. Unforiunately, the development cost of even a uni-purpose
system usuazlly precludes the construction of several independent such systems,

The FAMOS project had two major goals. The first was a demonstration of the
feasibility of designing a system family. The idea of a family of operating systems
derives from [Parnas 72a] and [Price 73). Members of a system family are
developed as far as possible along common lines to avoid as much re-design and re-
coding as possible. The software system family concept is somewhat analogous to the
hardware concept illustrated by the 1BM System/360 series or the DEC PDP-11 family,
although hardware families are generally oriented towards very simitar user interfaces
among all family members. It might be argued that a particular computer is not well-
suited for more than one or two types of service, and therefore does not merit the
development of differing systems. While this may be true for larger machines (though
the manufacturers might disagree), it is definitely not true for the proliferation of mini-
computers on the market, most of which have a very large range of possible
applications, and tend to cost less than the systems which run on them.

Our second goal concerned the documentation and description of the family. In
[Habermann 73], we proposed the description of a system at various levels of
abstraction. Each partial description consists of a specification, a list of decisions, an
analysis, and an implementation description, The feasibility of this method has been
tested by applying it to the family design. An important aspect of the description is
that the specification of a system facility is separated from its implementation, As a
result, the implementation may be changed without atfecting programs that rely solely
on the specifications,

1.2. Design Methodology

The approach used in structuring the design of the family is incremental machine
design, similar to that introduced by Dijkstra in the T.HE. system [Dijkstra 68] and
used in {Liskov 72] and [Neumann 74] among others. Incremental machine design
denotes building a system up level by level. Each level defines a virtual machine for
use by higher levels. This machine models a hardware machine closely in the facilities
it provides to its users.



The various system concepts are introduced in such an order that decisions which
restrict the family are postponed as far as possible. The decisions which are made are
only those of specification, aliowing various family members to share the specification
of a level without necessarily sharing its implementation,
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Figure I: A family of operating systems

Figure 1 shows a possible relationship between family members. All the systems
share the specification of the address space management, process management, and
synchronization levels. The process control system, however, will not need to create
processes dynamically, nor to provide user facilities like the other systems. Instead, it
defines the special devices it will control. The batch system may use fixed memory
partitions, and not need to do any ot the swapping, which a timesharing system must



do. A very useful result of the design should be the compatibility of such things as
file systems between both the timesharing and batch systems supplied by a vendor.

1.3. Functional Hierarchy

The fact that we use the concept of partitioning a system design into levels implies
nothing per se about the interaction among those levels. In particular, the hierarchical
structuring is based upon functions - not processes as employed in the T.HE. system.
Each level is comprised of a set of functions whose names are statically known, The
leveis LO= Lisen L,, are ordered such that functions defined in level L; are also known
to Li,y (and, at the discretion of Lisps to L+ etcl). Lo corresponds to the hardware
instructions of the target machine. Each level, in tact, is regarded as providing new
"hardware” to the next higher level.

It is most important that the hierarchy is among functions. One of the arguments
against the T.HE. design is the overhead associated with inter-level communication
among processes. In a functional hierarchy where functions may acfually be macros, a
sequence of function calls may result in a single machine instruction (or possibly none
at all) when the system is compiied, It is the system design which is hierarchical, not
its implementation.

- 1.4, Modularization and the Grain of Hierarchy

Parnas [Parnas 74] has noted that the notions of level and module do not
necessarily coincide. We wish to elaborate upon this somewhat.

Information modules [Parnas 72b] are comprised of some data structures (possibly)
and a set of functions which share knowledge of a particutar design decision (reflected,
for example, in the details of the data structures). A level is a set of function names
which are implemented via functions in lower levels. There exists no necessary
relationship between the two concepls. This not only allows the division of a single
level into several distinct modules, but in addition allows for the selective spanning of
several levels by a single module! For example, a process manager may be
implemented above the memory manager so that it can create processes dynamically.
However, the memory manager may need scheduling facilities in order to suspend
allocation requests when memory is full. This apparent demonstration of the futility of
the tevel hierarchy can be resolved by the division of a module into more than one
level.

In figure 2 the memory and process management modules are interleaved in
such a way as to not violate the functional hierarchy. The two pieces of the memory
manager are part of the same module because they share knowledge about how virtual
memory structures are implemented (e.g. segment tables and descriptors). Imposing a
functional hierarchy may therefore (and in some cases does) result in a proliferation of
levels, which produces a finer grained hierarchy than those found in systems
previously developed. However, as mentioned earlier, this does not necessarily add to
run-time expense,
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1.5. Virtual Machine Definition

A good example of a firm boundary between levels is the boundary between a
hardware machine and its programs. In this case the hardware provides a set of data
registers {memory, device control words, status words, accumulators, etc.) and a set of
instructions for manipulating those registers. A program written for this partizular
machine is considered to be at a higher level, and it may or may not use the hardware
“eorrectly”. There is no opportunity for violation of the order of the program and the
hardware.

The hardware can be used in a variety of ways, some of which have been
anticipated, and others which are erroneous. A typical example of erronecus use of
hardware is an attempt to branch to an invalid address. Nevertheless, the hardware is
considered to be correct if the foliowing type of statements hold:

1) Valid instructions operating upon valid registers yield results as predicted by
the specifications (e.g. the add instruction on large numbers results in averflow).

2) No sequence of instructions can cause irreparable damage to the machine.

3) When invalid instructions or invalid operands to instructions are detect‘ed, a
specified action is taken (such as a trap) and side effects on registers behave as
specified for each condition.

Note that the hardware has nof failed if the programmer places the address of his



program code into the stack pointer register, or fails to provide a valid interrupt word
before the clock expires. The correctness of tha hardware level is determined without
regard to its use. The software level however, is dependent upon the correct
operation of the hardware (although it may attempt to be tolerant of intermittent
errors or failures in a restricted portion of the hardware).

The hardware analogy provides a prototype for virtual machine interfaces. A virtual
machine is a programmable computer with registers, instructions, and specified actions
for all improper uses of the machine. In general, a virtual machine is an incremental
modification of a lower level machine called its base. Using the term "facilities" to mean
the registers, instructions, and asynchronous activities of a given machine, the possible
modifications which a virtual machine can apply to its base may be classified as:

1) the hiding of a subset of the facilities - i.e. making them unavailzble to higher
levels.

2) the definition of new facilities.
3) the systematic modification of a subset of the existing facilities.

Some of the new registers may serve the function of trap or interrupt words for
higher leve! programs, (We differentiate traps, which result directly from program
actions, from interrupts, which result from external asynchronous events.) A trap word
provides an address to which contro! is to be passed if the trap or interrupt condition
occurs. The cide etfects of a trap are part of the specifications of the virtual machine.
Using this mechanism, the higher level program can exercise the functions of the
machine, handle erroneous uses (which in some cases may be desirable - e.g. page
faults), and process the results of asynchronously operating aspects of the virtual
machine,

1.5.1 Example |

A low level machine might have floating point aperations which can result in
underflow in magnitude, causing a trap through a special register known as the floating
point underflow trap word. A possible higher level machine might make a small change
to the base machine so that

1) the fioating point underflow trap word is hidden.

2) A "ftoating point underfiow count” register and -two operations on it, read and
clear, are defined.

3) The floating point instructions of the base machine are systematically modified
so that the phrase "causes a trap through the floating point underflow trap
word" in the documentation is changed to read "causes the floating point
underflow count word to be incremented”,

A straightforward implementation of this machine would be creat;ed by placing the
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address of the underflow count increment routine in the floating paint underflow trap
word, and making available two routines "clear underflow count” and "read underflow
count”., This- software implementation requires that several other base machine
registers, namely the memory locations occupied by the count word and routines must
also be hidden.

1.5.2 Example 2

The function of a virtual machine might be to provide multiple versions of a facility
provided only once in the base machine. For example, a virtual clock level could
replace the single clock of the hardware with several clocks which may be started and
stopped independently of one another. In this case, many new interrupt conditions
would be created, and an interrupt register would be provided for each of the clocks
defined by the virtual clock level.

1.6. Implementation Alternatives

Should the rules implied by the level structure and the modular structure be
checked at compile time or at run time? We decided to check functional hierarchy at
compile time and module boundaries at run time. A justification of these decisions
follows.

A compile time check has the obvious advantage that the check is performed only
once, before execution starts. Moreover, a compiler can optimize the code across level
or module boundaries and gain a reduction in space and time requirements. It seems
that for this reason both level hierarchy and modular structure should be checked at
compile time. Regarding hierarchy, we can afford to check the validity of a function
call at compile time because of the earlier design decision that function names are non-
computable objects and can specify the level at the detinition site. That is, function
names behave as constants which are known at compile time. (This decision does not
preclude that the parameters given in a function call, or their types, may trigger the
invocation of a particular version of the function, but all these versions carry the same
function name and are at the same level) Since a level is defined as a set of function
names, the rules defining hierarchy can be checked at compile time. Thus, a compiler
can optimize code across level boundaries. As a result, it may be hard to find
hierarchy in the compiled code, a situation not uniike nested control structures which
are compiled into jump instructions.

Within modules, addresses of objects are computed at run time. This means that a
program may generate an incorrect address and unintentionally modify arbitrary
locations. In order to limit the damage which results from incorrect address
computations, we associate a module with a collection of memory cells addressable only
by the functions which belpng to the module. (This corresponds very closely to the
"invisible® registers accessible by arithmetic logic or microcode in hardware.) Since
addresses are computed at run time, the check that a generated address is within the
bounds of a module must be made at run time. Inter-module function calls require a



change of environment which may or may not be expensive, depending upon the
appropriateness of the hardware. However, data local to a module is completely
protected from external addressing errors. Intra-module calls, since they do not
require a change of environment, can be compile-time optimized even across levels.

1.7. Description and Documentation

Description and documentation form an integral part of the design task. The
resuiting family is not merely defined by its code, but exists as a document describing
modules of the systems at various abstract levels. The data associated with a module
.is described by abstract data types. An abstract data type describes to the user of an
object the abstract states of such objects and the functions which manipulate them.
The "introductory description” of a module specifies the data types used in a module.
A "type description” gives the data representation and the implementation of
operations for each data type.

The description method given above facilitates the understanding and modification of
modules. It allows a programmer to get acquainted with the system family without
having to go through the tedious experience of deriving meaning from the cods. In
particular, by separating the specifications in the introductory description from the
implementation in the type description, one can understand how to use a module
without having to understand every detail of the implementation, In addition, the
implementation of the abstract states of an object, or the implementation of the
operations defined in a type definition, can be changed without affecting the users of
the typed object, provided that the specificaticns remain unaltered. An introduction to
the use of abstract data types as a design tool may be found in [Flon 75]

Dijkstra observed in [Dijkstra 68] that level hierarchy facilitates the debugging
process. The hierarchy makes it possible to debug the levels one by ane, starting at
the lowest level. Abstract data types provide an additional debugging tool, since the
operations on typed objects can be tested independently of their call sites. Moreaover,
if a bug is found, the programmer can be sure that the errant code is limited to the
type definition in which the bug occurs. The strict separation of specification and
implementation makes it impossible for an implementation change in one place to
require additional changes in an arbitrary number of other places.



2. Family Implementation

2.1. Introduction

The three methods of transition among the various modules of a system can be
summarized as: :

1) simple intra-module function calls
2) inter-module tunction calls
3) virtuat traps and interrupts

The concepts involved in this statement are considered to be universally basic to the
family, more so than any others. Therefore, a protected version of these facilities
comprises the fowest system level. Price {Price 73] has shown that such a basis is
sufficient to guarantee adequate protection for the system and its users. His
prototype implementation established that inter-module calls would not be overly
expensive on a machine with appropriate hardware of a simple nature. The
impiementation described in this paper is a follow-up to Price’s work. The design is
somewhat simplified with respect to inter-module connections. An important extension
is the processing of virtual interrupts, mentioned previously. The integration of this
level with the design of higher levels has led to more extensions and a growth of
confidence in the utility of the features provided.

2.2. The Address Space

A module is characterized by
1) the information for which it is responsible

2) the set of functions it provides to other modules for manipulating that
information ' :

3) the set of mbduies of which it knows the existence
The instantiation {(execution)} of a module is characterized by

1) the function invoked and the subset of information it needs to operate

2) any additional information passed to it via the parameter mechanism

The concept of address space is introduced to implement these notions. When a
module is defined, a static address space (SAS) is created for it (figure 3).

Contained in the SAS are a segment table (ST) which represents information local to all
instances of the module, and a function tabls (FT) which is a vector of information
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about the invocation of each of the possible module entry points., The ST is a vector
of segment descriptors, each of which identifies a segment of memory, either by means
of a physical address or indirectly via a reference to a segment in another SAS. The
latter case allows for the sharing of segments among address spaces. Also provided in
the SAS is the known address space table (KAST) which consists of a vector of SAS
nNames.

The functions in a module have no direct access whatsoever to any of these tables,
“since an instance of a function runs in virtual memory i.e. all addresses are reiocated.
Instead, an active address space manipulates these tables by operations provided by
the virtual memory level (VM), including ASCALL and ASRETURN, which comprise the
-mechanism for inter-module calls, : i

ASCALL takes as parameters

1) a KAST index (i)

2) an FT index (j)

3} alist of parameters in the form of ST and PST indices (k4m,. . .)
4) _an optional ST or PST index q.for the return segmeﬁt.

In effect, an inter-module call can be read as "call the i'th module I know about,
inveking the j’th function it provides. Pass as parameters to that module the k'th, I'th,
m’th, etc., segments | know about.” If the function returns a segment, make it the q-th’
segment, '

The result of an ASCALL is the creation of a dynamic address spece (DAS). A DAS
consists of a working set (WS), a parameter segment table (PST), and an SAS reference
{figure 4). The WS is a vector of segment descriptors which comprise the virtual
address mapping for this DAS. The WS is initialized by VM according to information
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taken from the called-address-space’s FT, ie. the code segment and a local data
segment. A virtual address of the form (wd) indicates the w'th WS segment with
displacement d. The PST is initialized by VM with ‘indirect segment descriptors which
represent the parameter segments passed by the calling-address-space (access control
may be restricted).

When a function executes an ASRETURN instruction, the return segment (if any) is
stored in the caller’s address space, the function’s DAS is erased and the DAS which
called it is resumed following its ASCALL. During execution, a function may load and
unload the WS and ST with segments from ST or PST via the instructions SEGLOAD and
SEGUNLOAD.

Example: The behavior of ASCALL is illustrated in Figure 5. The calling program
would like to open a file. It makes an ASCALL on the file manager, passing as a
parameter a segment containing the file name. A segment will be returned which is an
open file.

The program’s static address space (SAS jsor) contains a segment table which has
descriptors for at least a code segment, data segment and file name segment. The
known address space table of SAS .., contains a reference to the file manager
address space (SAS;.). The file manager 5T contains descriptors for (at least) a code
and data segment. The data segment might contain the directory structure, mapping
file names to physical files. When the user program is executing, it has a dynamic
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Figure 5: ASCALL to OPEN a file

address space (DAS jgar) whose working set entries contain the ST and PST indices of
the segments currently addressable. DAS \cor also has a reference to SASuser and a
parameter segment table.

When the program executes

ASCALL(kast[3], 1, st[3], pst[3]

a new DAS (DASg;.) is created for the file manager {kast (3] = SASi1e). The function
to be executed is the first in the FT of SAS¢ile- The function table descriptor in the FT
indicates that the code for the function is to be found in the first slot of ST. The new
PST is loaded with a descriptor for the third segment in the SAS gor Segment table
(the data segment containing the file name). The fast parameter indicates that a
segment will be returned, whose descriptor should be stored in the third slot of
PST jcer DAS¢;1, then executes the code segment, loading its data segment and the
parameter data segment into its WS, and eventually creating a segment to describe the
state of the open file. When the called function completes and does an ASRETURN, the
descriptor for the return segment is stored in the caller’s PST (as specified by the
ASCALL), the fite DAS is erased, and the user DAS is resumed.
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2.3. Typed Segments

One of the problems arising from the desire to restrict data structure manipu?ation
to a particular module is where the actual data should be kept. In the file manager
example above, the file manager could have retained the data segment describing the
open file in its own ST. Such an arrangement poses problems for billing, allocation and
protection. The file manager would own and be billed for -resources which it was
holding for other users. Since all instances of the module share the same ST, it would
need to make some agreement about where these dynamically created segments would
go in the segment table. Furthermore, from a security viewpoint, a bug in some rarely
used function of the file manager address space could run rampant through the
segment table, destroying data belonging to users who had never invoked that
function.

We address these problems in the above implementation by returning the segment
describing the open file to the caller. This has good properties with respect to bilting
and security, but circumvents the protection provided by modules, since the caller can
now read and write the returned segment indiscriminately.

Our solution to the latter problem involves the notion of "typed segments”. Each
segment is marked with a type, which is simply the name of the SAS which was
responsible for its allocation. Under normal circumstances, only the SAS of matching
type can load a segment into its working set, and hence read or modify it. In this way,
users may "own" file descriptor segments, but they are prevented from changing them
except via operations provided by the file manager address space. In certain
circumstances, an address space may wish to grant another address space the right to
load one of its segments, such as when two address spaces are communicating via a
buffer. To handle such situations, we permit an address space ta grant, to a czlled
function, loading privileges on a parameter segment of the caller’s type.

Example: After opening a file, the user program may wish to read the file. It does
so by calling the READ function of the file manager (see figure 6), passing as
parameters the file descriptor segment (of type "file manager"} and a buffer segment
(of the user’s type), with loading privileges. This permits the file manager to write
into the buffer segment the data it obtains from the file referred to by the file
descriptor segment. Upon completion of the call, the data is available for the user,
who retains ownership of both the buffer and file descriptor segments.
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2.4. Processes and Modules

Aithough the concept of process is unknown to the VM level, some thought must be
given to the relationship between processes and modules in order that the higher
levels have appropriate "virtual hardware" with which to work. In a conventional
system, system code is viewed as being executed by separate processes. When a user
requests a system function, his process is suspended while the system carries out his
request. The protection needs which prompted this approach are provided in our
system by the module mechanisms. Therefore a process can be thought of as a flow
of control which passes among various modules, some of which are user-written and
some of which are part of the system, A request for 1/0, for example, involves the
process actually executing system code.

This leads to a view of processes flowing between modules in a call/return manner,
and allows for more than one process to execute a given module at the same time.
Any necessary synchronization is defined in the module itself. The calt/return
discipline of control flow in a process is mirrored in VM by an address space history
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(ASH), a stack of DASs reflecting the nesting of ASCALLs executed by the process.
Upon ASCALL, the DAS describing the calling environment is pushed onto the process’s
ASH. Upon ASRETURN, the called environment is destroyed and the calling environment
is restored by popping it from the ASH,

VM maintains two ASH registers, referring to the current user process ASH and the
interrupt process ASH (IASH). (The justification for a separate interrupt ASH is
discussed below.) VM provides operations to set these registers, corresponding to the
action of a context swap. Each ASH is implemented in a separate segment (of type
VM), so that a module responsible for scheduling, for instance, can own a collection of
ASHs as components of process descriptors, Hence VM provides the primitive
mechanisms necessary to support the notion of processes, without overly specifying
the nature of a process.

2.5. Virtual Interrupts

We have reasoned that putting a protected addressing environment mechanism at
the lowest level of the system leads to strong modularity, and various other benefits.
Such a philosophy would suggest that a hardware interrupt should be mapped into a
protected procedure call, so that even interrupt processing routines can receive the
benefits of the protection mechanism. However, we quickly discovered that efficiency
precluded such a simple mechanism, because of the cost of the protected procedure
call, Qur first solution was to have VM "modify" all hardware devices into virtual
_devices, which had less stringent timing constraints. This design was unsatisfactory,
because it was an instance of the philosophy, “for efficiency, put it in the kernel”,
which we sought to avoid. Our final solution was to put into VM a virtual interrupt
mechanism, then let the low-level interrupt routines share the addressing environment
in which VM resides, even though conceptually the device routines executed on top of
the virtua! machine defined by VM.

2.5.1 Daevites as processes

Devices are modeled as low-level processes which orddnarily execute on peripheral
hardware, but which sometimes cail routines which must be executed on the CPU
(interrupt routines). The device processes compete with the current user process for
access to the CPU. This competition is arbitrated by the hardware priority mechanism.
The user process may of course be executing in either user space or kernel space; the
device routines execute in kernel space. Thus it is only programming convention which
separates the device routines from the implementation of VM, even though
conceptually they are in separate modules.
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2.5.2 Virtual Interrupt Vectors

The process model for devices takes care of the worst of the timing constraints on
devices; it remains to provide a synchronization mechanism between the device
processes and the user system. For this purpose VM provides a set of wvirtual
interrupt vectors, and operations for setting them and for evoking them. Each register
is dedicated to a particular hardware device, and may be set to contain the name of an
SAS and a function within thal SAS which is to be executed when a virtual interrupt
for that device occurs. Then any davice process which needs to notify the user
sysfem of some event may signal the occurrence of a virtual interrupt from its device,
via a VM operation.

Since the VM implementation is non-reentrant, virtual interrupts can only be
processed when the user process is not executing a VM operation. Consequently
virtual interrupts are entered in a system of priority queues, which is polied by VM
after every VM operation. (Note that raising a virtual interrupt is a VM operation, so
that if the user process is interrupted by a device process while in user space, the
virtual interrupt is fielded as soon as it is raised.) Naturally, the queue of virtual
interrupts is protected from simuitaneous access by masking all interrupts while
modifying it

The mechanism just described permits the low level interrupt routines to be stacked
by the hardware mechanism in the usual way, so that classical real-time programming
techniques apply. Oniy certain critical sections of VM turn off all interrupts, namely
the sections which save and restore state on interrupts and traps, and the virtual
interrupt mechanism itself.

2.5.3 Virtual Interrupt Handling

When VM polis the virtual interrupt vectors after an operation, and discovers a
pending interrupt, it mus force an ASCALL fo the address space entry point listed in
the vector. Instead of using the user's ASH for executing the protected procedures
VM uses a separate address space history, the IASH, for two reasons:

1. For billing purposes, it will be preferable to separate DAS's associated with “the
system" from those associated with a particular user.

2. Interrupts often precipitate rescheduling operations. The scheduler must be able
to swap user contexts (by resetling the ASH register) and still be able to return to the
active DAS’s associated with its own and other virtual interrupt routines,

All virtual interrupts share the same IASH; a high priority routine may force a
currently executing lower priority one to be stacked on the IASH, and later resumed
when the former is completed.
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2.6. Virtual Traps

The functional hierarchy of the modules of VM would not be practical for a real
operating system unless some means were available for exception handling. For this
purpose VM provides a set of virtual trap vectors, each associated with a particular
exceptional condition which VM is not programmed to handle. When such a condition
occurs, VM aborts whatever it was doing and forces an ascall to the function named in
the corresponding virtual trap vector.In addition to conditions which arise within VM,
there are a set of uninterpreted trap vectors which higher levels of the operating
system may use for exception handling. For instance, when the clock module detects
that one of its virtual clocks has run out of time, it cannot call the module to which the
virtual clock belongs, because that would violate the functional hierarchy. Instead, the
clock module associates a virtual trap vector with each virtual clock, and requires the
user of a clock to set the corresponding trap vector with an appropriate function; then
when the clock’s value drops to zero, the clock module may evoke a virtual trgp to
whatever function is named in the trap vector.
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3. Some Implemented Modules

3.1. Clocks

In order to accommodate family members with different clock usage requirements,
two versions of the clock module were implemented. Both versions implement identical
specifications, but vary in the relative speeds of clock operations and in their storage
requirements, The clock module uses the hardware line clock to provide a collection of
clocks, removing the line clock from the virtual machine presented to higher levels of
the system. The clocks could be used by higher levels for scheduling, accounting or
perfarmance measurements.

There are seven operations applicable to a clock. A clock can be turned on and off
and can have its alarm set or furred off ("enazbling" and "disabling" the clock). The
clock time can be read and set. The function to be called when a clock’s alarm goes
off can be specified. When a clock is running, its time is decremented once every time
unit (0.1 seconds for the present system). If a clock is running with its alarm set and
it decrements past zero, an interrupt is issved, calling the function associated with the
clock. At this level of the system, there is no atiempt to enforce the notion of
ownership of a clock, A clock resource manager would be designed at a higher‘level
of some family members.

One implementation of the clock module uses an array of clocks. Since it is too
expensive to update clocks every time unit, all clocks contain their time as of the last
clock interrupt. At that interrupt, the line clock was set to the shortest time value of
the running, enabled clocks. This value is saved in LASTVAL. At any instant, the actual
value of a running clock is: clocktime - (LASTVAL - lineclocktime). This implementation
makes changes to the state of a clock quick and easy. In most cases, turning a clock
on or off, disabling or enabling its alarm, or reading or setting a clock time requires
changing the values in the tlock, and perhaps changing LASTVAL and the line clock.
However, handling interrupts requires that every clock in the array be checked to
determine whether or not it is running and should be updated. Al clocks must be
inspected, even if only one is in use.

The second implementation of the clock module maintains all running clocks in a
doubly-circularly-linked list. Each running clock contains the difference between its
time and the time of the clock preceding it, rather than its actual time. The next clock
to decrement past zero is designated FIRSTRUNNING, and the clock whose alarm goes
off next is designated FIRSTENABLED. To obtain a running clock’s actual time, add the
values of all clocks between FIRSTRUNNING and that clock, and subtract (LASTVAL-line
clock time) as in the array implementation. In the fist implementation, changing the
state of a clock is relatively expensive because inserting and removing clocks from the
ring is complex. However, interrupts can be handled very quickly, since one need only
scan down the list past any clocks which have gone off and reset the values of
FIRSTRUNNING, FIRSTENABLED, LASTVAL and the line clock.

A system would use the array implementation if it expected to perform clock
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operations more frequently than clock interrupts occurred, or if space were tight,
since the array implementation doesn’t need space for storage links., If the number of
running clocks varied greatly during the running of the system, the array
implementation would be poor, since interrupt handling always checks the maximum
number of clocks ever used. The list implementation would be preferable if the clock
module would be primariiy handling clock interrupts,

Since the specifications of both implementations are identical, they can be .used
interchangeably, depending on performance requirements.

- 3.2. Processes

The process module implements the concep! of a process. A process is the
sequential flow of control through address spaces; it is represented by an address
space history. A process is executed by loading its ASH into the virtual stack register -
provided by VM. The process module is decomposed into several functional levels.
The lowest level, process management, has been designed and implemented. Process
creation is envisioned as a functional level depending on segment creation, and thus
residing higher in the hierarchy.

Process management makes availabie a fixed number of processes and sets to which
processes belong, Processes in process sels are maintained in their order of arrival
and have waiting values associated with them. The ready list, a process set managed
by the process module, represents a collection of processes that are ready to be
executed on a processor. The currently running process is the first element on that
fist. A round-robin scheduling policy is implemented on the ready list with the aid of a
virtual clock. A virtual trap at the end of a specified number of time intervals signals
that the time slice which has been allotted to the currently running process has

"elapsed. This process is then moved to the end of the ready list and the next process
is dispatched.

The process management level provides a collection of waiting lists (sels of
processes ) and operations to move processes between waiting lists and the ready list.
A process always resides in exactly one process set. The current process can block
by invoking the operation haltme, which removes the currently running process from
the ready list and places it into a specified waiting list with a given wailing value. A
process is reactivated through a conditional continue operation: A specified waiting
list is scanned from the beginning for a process with a waiting key satistying a
condition. If there is at least one such process, it is transferred to the ready list. The
waiting key of a process can be tested to see if it is equal to a value, not less than a
value, or if the logical AND of the key and a value is non-zero. This mechanism is
sufficiently general to allow for priority scheduling on waiting lists and for the
implementation of several synchronization mechanisms,

-
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3.3. Synchronization

Synchronization is an example of the generation of two family members based on
the same underlying virtual machine. Semaphores and path expressions are provided
-as synchronization mechanisms, Either or both modules may exist in a system,
depending upon which synchronization tools ars required by higher lsvels of the
sysfem.

3.3.1 Semaphores

The semaphore module implements counting semaphores [Habermann 72] with P
and V operations. A semaphore consists of a counter and a waiting list for blocked
processes, provided by the process module. Processes waiting on 2 semaphore are
reactivated in first-in first-out order using the operations on waiting lists provided by
the process module,

3.3.2 Path Expressions

The goal of path expressions is to state the concurrency restrictions on a shared
object at a higher level, analogous to contro! flow constructs like the while-statement.
A shared object is described by a type definition, ie. a specification of its data
structure and a collection of operations for manipulation of an cbject of that type. A
path expression, defined for an object as part of its type definition, describes the
allowable sequences of operations, guaranteeing mutua! exclusion of operations on the
shared object. All information aboul the concurrency restrictions on a shared object is
localized in the path expression for its data type.

The basic path expression is a regular expression from which all possible execution
sequences can be derived. Its operands are the function names of operations, and the
operators are repetition (%), sequencing {;), and ezclusive selection ( +) (in
precedence order, which can be overruled by parentheses ). The path expression is
delimited by a Path End pair, which implies repetition of the whole path expression.
For example the path expression for a file

path open ; ( read * + write ) ; ¢close end
requires first the execution of an open, then either one write or ( exclusively ) zero or
more reads, which must be followed by a close before the path expression can be
repeated.

A path expression can be defined by a deterministic finite state machine, and can be
represented by a directed graph in which the nodes correspond to states and an arc
tabeled with function name p indicates the execulion of p. A function may execute in
more than one path expression state if repetition of function names is permitted in a
path expression,
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Upon entry to a function a prologue is executed which determines whether the
function is permitted to execute by checking the current path expression state
associated with the shared object. The process either is blocked on the path
expression waiting list or enters the function body. The waiting key of a blocked
process contains all possible states in which it may start execution. At the end of a
function execution, an epilogue performs the state transition of the path expression. If
the path expression waiting list contains a process which may execute from the new
state, the epilogue activates the process and releases the critical section on the shared
object.

L

Several extensions have been considered to the basic path expression
[Habermann 75]Campbelllthesis}. We have implemented a restricted form of the
numerical path element. A numerical path element permits specification of additional
constraints on the execution sequence of operations. It limits the number of
invocations of two functions relative to one another. For example the path expression

path { push - pop ) " end

restricts the number of push and pop operations on a bounded stack to satisfy: »
pop < # push < # pop + n. In order to permit a simple and efficient implementation of
the numerical path element, a function name in a numerical path element may not
appear more than once in a path expression. Every numerical path element in a path
expression has a counter containing the difference in the number of invocations of its
two functions and its own waiting list. A process trying to execute a function in a
numerical path eiement will be blocked if the invocation count would not satisfy the
numerical path element constraint. It can only be reactivated by another function in
the same numerical path element. The process then proceeds to check the path
expression state. The numerical path element condition is not required to be
reevaluated if the process blocks on the path expression state.
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4, Conclusion

Our first experience with the design of a system family is favorable. We are
confident that we will be able to design several differing family members. Fundamental
to our design are the notions of level and modute. The levels are constructed via an
incremental machine design. This melhod greatly enhances the design and debugging
processes because it becomes possible to concentrate on one fevel at a time. The
module concept leads to an unconventional ordering of the levels. Traditionally, one
finds the multiprogramming and processor allocation facilities immediately above the
hardware. However, since protection of modules is common to all family members
whereas the processor allocation strategies may differ from one member to another,
the level placed on top of the hardware is the one which implements the protected
address spaces in which modules operate. Other levels which have been designed
inctude a virtual clock level to reside immediately above VM, and the process definition
tevel which resides above that. ' '

The virtual memory system described has been implemented on a PDP-11/45 with
segmentation feature. We argue that it is a virtual machine as we have defined, by
providing a definition of the base machine and the modifications made to it by this first
level.

The VM1 machine is the PDP-11/45 with

1) the program status word, relocation registers, segmentation status registers,
register set 0, and emulate trap word hidden and therefore unavailable to the
user, Also, the halt, wait, reset, and emulate instructions are no longer available,

2) new complex registers added, namely address spaces, working sets, known
address space fables, the ASH, etc. Also new instructions, namely “segload",
"segunload", "ascall”, "asreturn”, etc. are added to the instruction set.

3) all mempry references by instructions systematically altered from 16 bit physical
addresses to {working set slot, displacement} pairs. All interrupt and trap
vectors are systematically aitered from 16 bit physical addresses to {address
space, FT index} pairs,

A module is described at various abstract levels so that its meaning does not have to
be derived from the code. The building blocks for modules are type definitions. These
allow us to separate specification from implementation issues. Type definitions provide
yet another protection tool by limiting the extent of bugs. Continuation of the
research effort will produce several running family members with highly non-trivial
differences, including batch and timesharing systems with widely differing storage
management strategies.
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