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ABSTRACT 

We describe a computation which shows that the Riemann zeta 

function £(s) has exactly 70,000,000 zeros a + it in the region 

0 < t < 30,549,654. Moreover, all these zeros are simple and lie on 

the line a = h. (A similar result for the first 3,500,000 zeros was 

established by Rosser, Yohe and Schoenfeld.) Counts of the number of 

Gram blocks of various types and the number of failures of "RosserTs 

rule" up to Gram number 70,000,000 are given. 
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INTRODUCTION 

The Riemann zeta function C(s) is the analytic function of 

s = a + it defined by 
00 

S C(s) = I n 
n=l 

for a > 1, and by analytic continuation for a £ 1, s ^ 1. Apart from 

"trivial" zeros at the negative even integers, all zeros of ?(s) lie 

in the critical strip 0 < o < 1. The Riemann hypothesis is the conjecture 

[22] that all nontrivial zeros of C(s) lie on the critical line a = h • 

For the number-theoretic significance of the Riemann hypothesis see, for 

example, Edwards [6], Ingham [10] and Lehman [12]. 

Since C(s) = £(s), we need only consider zeros = aj + it^ with 

t. > 0 . We assume that the zeros p.. are counted according to their multi-
3 

plicities and ordered so that 0 < t. < t. . (and a. < a. if t. = t. ,) 

for j S 1. By "the first n zeros of C(s)" we mean px, ... , p^ . For 

brevity we let H(n) denote the statement that the first n zeros of £(s) 

are simple and lie on the critical line. Thus, H(n) holds for arbitrarily 

large n if and only if the Riemann hypothesis is true and all zeros of £(s) 

are simple. 

In the era of hand computation, Gram [7], Backlund [2], Hutchinson 

[9], and Titchmarsh and Comrie [26] established H(10), H(79), H(138) and 

H(li041) respectively. For a description of these computations see 

Edwards [6]. 

D. H. Lehmer [13,14] performed the first extensive computation 

of zeros of £( s) on a digital computer, and established H(25,000). Using 

similar methods, Meller [16], Lehman [ll] , and Rosser, Yohe and Schoenfeld 
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[23] established H(35,337), H(250,000), and H(3,500,000) respectively. 

Using essentially the method introduced by Lehmer, we have 

established H(70,000,001). Moreover, there are precisely 70,000,000 

zeros with 0 < t̂  < 30,549,654 . The computational method is outlined 

in Section 4, and additional details are given in Section 5. In Section 

6 the results are summarized and various statistics regarding the distri

bution of the first 70,000,000 zeros are tabulated. Preliminary results 

are given in Sections 2 and 3. 

2. PROPERTIES OF C (s) 

In this section we summarize some well-known properties of £(s) 

which form the basis for the computational method described in Section 4. 

2.1 The Functional Equation for C (s) 

C(s) satisfies a functional equation which may be written in 

the form 

where 5(s) = 7r- s / 2rCs/2)c(s) 

It follows that, if 

(2.1) 6(t) - arg[;-^t r c % + J s. t )-j m f £ n r f t + % . t ) J _ h t l ^ 

then 

(2.2) 
Z(t) = exp|ie(t)Jc(% +it) 
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is real for real t. Thus, simple zeros of £(s) on the critical line 

can be located by finding changes of sign of Z(t) . 

(The first few zeros of Z(t) are tx = 14.1347 , t = 21.0220 , 

t 3 = 25.0109 , ... : see Haselgrove and Miller [8].) 

2.2 The Asymptotic Expansion for 9(t) 

From (2.1) and Stirling's formula for lnT(s/2) , we obtain the 

following asymptotic expansion for the phase 9(t) : 

<Kt) = ht m ( ^ ) - ht - ~ 

n B C l - 2 1 " 2 ^ 
* I — t 1 2 k

 + r ft) , 
k=l 4k(2k-l) 

where B = 1/6, B. = -1/30 , ... are Bernoulli numbers, and 
2 * 

C2n) ! 

| r n ( t ) l < ( 2 i r ) W 2 t 2 n t l + 

for all t > 0 and n > 0 . 

9(t) has a minimum of approximately -3.53 near t = 2ir , and 

is monotonic increasing for t > 7 . For m > -1, we define the m-th Gram 

point g^ to be the unique solution in [7,») of 

(2.3) 8CgJ = m T r 

Thus g x = 9.6669, g Q = 17.8456, gx = 23.1703, 

For future reference we note the inequality 

which holds for all m 5-1 . 



C(s) may be calculated to any desired accuracy by taking m and n 

large enough in the Euler-Maclaurin formula 

n - 1 1 - S 
i i - 1 n m 

(2.5) CCs) = I ; - s • i - - s 

where 

l j + Jsn + + I T ( s ) + E f s ) 

j=l s-1 k=l , n m ' n 

(2k)! j = 0 

and 

' E m , n C s ) • < I V i , n ( s ) C^2m +1)/(a +2m +l) | 

for all m £ 0 , n £ 1 , and a = R(s) > -(2m+l) • 

If (2.5) is used to obtain C ft + it) to within a specified absolute 

tolerance, then it is necessary to take n > t/(2ir). It is also sufficient 

to take n = 0(t) and m = 0(t) . Thus, the computational work required is 

roughly proportional to t. 

2.4 The Riemann-Siegel Formula for Z(t) 

The Riemann-Siegel formula [5,6,25] is an asymptotic expansion for 

Z(t) (defined by (2.2)), The Rieman-Siegel formula is an improvement over 

the Euler-Maclaurin expansion for computing Z(t) if t is large, because 

the work required is O(t^) instead of 0(t) . 

Let x = t/(2ir) , m = | _ t J , and z = 2 ( t 2 - m) - 1 , Then the 

Riemann-Siegel formula with n+1 terms in the asymptotic expansion is 
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i 2 6 ) Z(t) = I 2k~'*cos[t. ln(k) - 9(t)] k=l 

where 

3=0 ' 

R ( x ) - 0 C T - ( 2 n + 3 V t t ) n^ 

for n > -1 and t > 0. Here the *^ (z) are certain entire functions 

which may be expressed in terms of the derivatives of 

$ 0(z) = *(z) = cosC7r(4z2+3)/8]/cos(7Tz) . 

Expressions for 9 , ... $ l g are given in the review of [ 5 ] . For our 

purposes it is sufficient to note that 

$ i C z ) = < & C 3 ) ( z ) / ( 1 2 7 T 2 ) 

and 

$ 2 ( Z ) = $ C 2 ) C z ) / C 1 6 t t 2 ) + $Cs)(z)/C288Trlf) . 

To establish changes of sign of Z(t) we need rigorous bounds on 

the error R „ C O . Titchmarsh [27 , pg. 331] showed that 
n 

| R n ( T ) i < f x - 3 7 " f o r T > 1 2 5 , 

and Rosser et al [23] used the bound 

-•?A t 
(2.7) r C t ) I < 2.28T ' for x > 2000 . 

t The number "2.88" appearing in [23] should have been "2.28", 
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small x) indicates that the constants 2.28 and 2000 in.(2.7) may be replaced 

by 0.006 and 10 respectively. In the computation described below we took 

n = 2 in (2.6) and used only the weak bound 

(2.8) | R 2 0 O | < 3x~ 7 / l* for T > 2000. 

The effect of rounding errors in accumulating the first sum in (2.6) was 

more of a problem than the inherent error (2.8) : see Section 5. 

3. GRAM BLOCKS AND THE LITTLEWOOD-TURING THEOREM 

"Gram's law11 is the observation [7] that Z(t) usually changes 

sign in each "Gram interval" Ĝ  = [g^, gj + 1)> j 5 -1 . A plausible explana

tion for this is that the leading (k=l) term in (2.6) at t = g.. is 2(-l) J . 

Following Rosser et al [23] , we call a Gram point g.. good if (-l)-,Z(gj) > 0 , 

and bad otherwise. (The first bad Gram point is g 1 2 6 ' ) A " G r a m block of 

length k" is an interval B. = [g., g. ,) such that g. and g. . are good 
3 3 j+k &3 &3+k 6 

Gram points, g j + 1 * ••• > gj+k-i a r e b a d G r a m P o i n t s > a n d k 5 1. We say 

that B. satisfies "Rosser1 s rule" if Z(t) has at least k zeros in B. . 
3 3 

Rosserfs rule fails infinitely often [6] , but it is still an extremely 
useful heuristic. The first exception is B 1 3 9 g g 5 2 5 (see Table 3). 

Let N(T) denote the number of zeros (counted according to their 

multiplicities) of C(s) in the region 0 <*(s) < T , and 

(3.1) S(t) = N(t) - 1 - 9(t)/TT 

It is each to show that Gramfs law holds in regions where 

|S(t)| < 1 , and Rosser's rule holds in regions where |S(t)| < 2. Thus , 

This bound is extremely conservative : computation of 

ax I*=(z)I for j = 3,4, ... (and computation of R f x ) for 
[-1,1] 3 2 
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Theorem 3.1 

If A = 3.1, B = 4.8, C = 100, and C < u < v , then 

rv 
S(t)dt 

u 
< A.ln(v) + B 

Proof 

Turing's proof contains some errors, so one can not rely on his 

values of A, B and C (which are smaller than those stated above). A correct 

proof was given by Lehman [11]. 

Since our program works with Gram blocks (see Section 4), it is 

convenient to deduce the following result from Theorem 3.1 . 

Theorem 3.2 

If K consecutive Gram blocks with union [g^, g p) satisfy Rosser's 

rule, where 

(3.2) K > ^[ln(g p)] 2 , 

then 

(3.3) N(g n) <? n + 1 

and 
(3.4) N(g p) > p + 1 . 

Before proving Theorem 3.2 we need some lemmas. 

the success of these heuristics is closely related to the distribution of 

values of S (t). 

Turing [28] showed that the following theorem, based on an idea 

of Littlewood [15], could be used to bound N(t) for certain values of t, 
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Lemma 3.1 

Let B. = J Cgj» g k) be 

rule. Then 

(3.5) SCgj) 

(3.6) S(gj) - 2 $ S(t) 

(3.7) S(gj) - 1 S S(t) 

and 

(3.8) S(t) * S(g, ) + 1 

for t e c , 

3 

for t e G, k-i 

Proof 

From (2.3) we have 6(g v) - 9(g.) = ir(k-j) , and as B. 
* 3 3 

satisfies Rosser's rule we have N(g v) - N(g.) ^ k-j . Thus, (3.5) 
K 3 

follows from (3.1). The remaining inequalities follow similarly from 

the assumption that B^ satisfies RosserTs rule. 

Lemma 3.2 

Under the conditions of Lemma 3.1 , 

(3.9) CS(t) - S(g.) + 2] dt >, g j + i - g. 

and 

(3.10) J tS(gk) - S(t) + 2] dt > 
>k * «1 

Proof 

(3.9) follows by integrating (3.7) over [g g ) and (3.6) 

over Eg j + 1, g k ) . (3.10) follows similarly from (3.6) and (3.8). 



Lemma 3.3 

and 

Under the conditions of Theorem 3.2 , 

r gp 

CS(t) - S(g n) + 2] dt > K(g p - gp^) 

CS(g ) - S(t) + 2] dt > K(g p - gp^D 
Proof 

The inequalities follow from (2.4), (3.5) and Lemma 3.2. 

Lemma 5.4 

Under the conditions of Theorem 3.2, if 

K ( g p " g p - l } * A - l n C g p ) + B 

(where A and B areas in Theorem 3.1), then 

(3.11) S(g n) * 0 $ S(g p) . 

Proof 

Since g n and g p are good Gram points, S(g n) and S(g p) must 

be even integers. Thus, the result follows from Theorem 3.1 and Lemma 3.3. 



Proof of Theorem 3. 2 

If n £ 125 then N(g n) = n+1 and, from (3.5), (3.4) also 

holds. Hence, we assume that n > 125, and thus g > C. 

It is easy to show that 

x - ln(27r) 
*5X2 > (Ax + B) 

2ir 

holds for all real x. Taking x = ln(gp) and using (2.4) and (3.2), 

we see from Lemma 3.4 that (3.11) holds. Thus, the result follows from 

(2.3) and (3.1). 

£. THE COMPUTATIONAL METHOD 

The first (and most expensive) part of the computational 

verification of H(n+1) is the location of n+1 sign changes of Z(t) 

in (g_x> g n) . Our program works in the following way. Suppose that 

j+1 sign changes have been found in (g x, g^) , where ĝ  is a good 

Gram point. Then Z(g^ + 1), Z(gj + 2), are evaluated until the next 

good Gram point g ^ is found. The program then evaluates Z(t) for 

various t e B. = Eg., g. v ) , until either 

(a) k sign changes are found in By when j is replaced by 

j+k and the process continues; or 

(b) after a large number of evaluations of Z(t) the program 

gives up and calls for help. 

Case (b) could arise because of a pair of very close zeros of 

Z(t) in Bj (or a zero of even multiplicity), or because B.. does not 

satisfy Rosser's rule. In fact, during the computation to n = 70,000,000, 
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case (b) occurred only 15 times. In each case contained k - 2 

zeros of Z(t), and the preceding or following Gram block of length 

k f contained k 1 + 2 zeros of Z(t) : see Table 3. 

In this way we found the required n+1 sign changes, establishing 

that N(S n) ^ n+1. By running the computation a little further we also 

showed that there are K = 165 Gram blocks in [g , g „ _ ) , and all of 

them satisfy Rosser1s rule. Applying Theorem 3.2 gives N(g n) £ 

Thus, N(g R) = n+1, and H(n+1) holds. By locating the n-th and (n+l)-th 

zeros, it may be shown that N(30,549,654) = n = 70,000,000, as claimed in 

the abstract. 

5_. COMPUTATIONAL DETAILS 

In Section 4 we glossed over an essential point: how can the 

sign of Z(t) be determined with certainty? If Z(t) is evaluated 

numerically from the Riemann-Siegel formula (2.6) , the effect of rounding 

errors must be considered as well as the inherent error R n(x). 

5.1 Methods for Evaluating Z(t) 

It is desirable to have at least two methods for evaluating Z(t) : 

a fast method which usually determines the sign of Z(t) unambiguously, 

and a slower but more accurate method which may be used if the fast method 

fails. We used the Euler-Maclaurin formula (2.5) both for small t and 

for checking purposes, but for brevity we shall only analyse the use of 

the Riemann-Siegel formula (2.6). We shall also assume that n = 2 in 

(2.6), and that t > 20,000tt . Our program uses the following two methods 

to evaluate the Riemann-Siegel sum 

m x 

f 5 d s(t) = I 2k^2 cos[t.ln(k) -6(t)] . 
k=l 
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Method A : The constants ln(k), k = 1, 2, ... are precomputed (using 

double-precision) and stored in a table. For each value of 

k, f = frac { [ t . l n ( k ) - 9(t)] } is computed using double-

precision, then rounded to single-precision. (Here frac(x) 

denotes the fractional part of x.) Then cos (2irf) = 

cos[t.ln(k) - 8(t)] is approximated by a precomputed piecewise 

linear approximation, the result multiplied by the precomputed 

single-precision constant 2k 2 , and the sum (5.1) accumulated 

in double precision. 

Method B : As for method A except that all computations are done using 

double-precision arithmetic, and cos(2iTf) is evaluated as 

accurately as possible. 

All computations were performed on a Univac 1100/42 computer, 

which has a 36-bit word and hardware single and double-precision floating

point arithmetic (using 27 and 60-bit binary fractions,respectively). 

5.2 Rounding Error Analysis of Methods A and B 

The analysis is similar to that of Lehman [11] and Rosser et al 

[23] so we shall omit detailed (and tedious) proofs of the following 

results. Recall that m = L'^J > 100 . Lemmas 5.1 and 5.2 are elemen

tary, and Lemma 5.3 follows easily from them. 

Lemma 5.1 

m 

k=l 

and 

ra 
I k"^ln(k) $ 2m35lnCm) <: T^lnfx) 

k=l J 
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Lemma 5.2 

6(t) < tttIii(t) . 

Lemma 5.5 

Suppose that 

|L(k) - ln(k)| £ 5 j In (10 for k = 1, 2, m , 

|6(t) - 6(t)| < 529(t) , 

|c(x) - cos(x)| < 6, for 0 £ x < 2tt , 

and 

Then 

m ! 
s(t) = I 2k~^c[t.L(k) - e(t)] 

k=l 

|s(t) - s(t)| £ 4iTT5/,+ lnCT)(51 + 6 2) + 4x^6 3 . 

Lemma 5.3 accounts for the error in the computed value of s(t), 

given bounds on the relative errors in the evaluation of ln(k) and 0(t) 

and on the absolute error in the evaluation of cos(x). By the techniques 

of backward error analysis [29] , we can account for errors caused by the 

computation of t.L(k) - 8(t) , the computation of 2k" 2 and multiplication 

by c(x), and the final summation,by increasing 6^ + 5^ slightly. Since 

the required change in 6 j + 5 2 is small, we shall omit details of the 

analysis. 

For both methods A and B, analysis of the algorithm used to compute 

double-precision logarithms and 6(t) gives the (conservative) bounds 
-59 -59 

5, :< 2 and 6„ < 3x2 . (We assume here that t is exactly 
1 2 v 
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representable as a floating-point number- This is true in our program, 

where T is used rather than t in the critical computations.) 

For method A we approximate COS(2TTX) for 0 £ x < 1 using 

piecewise linear approximations on the intervals [ih, (i+l)h) for 
-10 

i = 0, 1023 and h = 2 . It is easy to show that, with exact 

arithmetic, the approximation error is bounded by 2" TT < 2.36x10 

Allowing for rounding errors in evaluating the linear approximations 

a + bx (with |a| £ 3TT/2 , |b | < 2TT , 0 £ x < 1) increases this bound 
- 2 7 - 6 

by (13 + 2TT)2 , so we have 5 3 <: 2.497x10 

For method B it turns out that 6 3 is negligible, because the 

errors in the cosine and logarithm evaluation are the same order of 

magnitude, but the error in the evaluation of ln(k) contributes much 

more to the bound on the error in s(t) because it is amplified by the 

factor t > 20,000TT. 

It is possible to allow for errors in evaluating t 2 (and hence m) 

and the (z) in (2.6) , but as these contribute little to the final error 

bound we shall omit the details. Collecting the results, and including 

the inherent error (2.8) , we have the following bounds for the error in 

the computed value Z(t) (rounded to single-precision) of Z(t): 

(5.2) |Z(t) - Z(t)| * (2xl0~5
 + 5xlO~16Tln(T) + 3T~ 2)r* for method A , 

(5xHT 1 6Tln(T) + 3 T - 2 ) T
% + 8xlO"9|Z(t)| for method B 

These are the bounds actually used in the program, and are weaker than could 

be justified by the analysis sketched above. 
U N I V E R S I T Y L I B R A R I E S 

C A R N E G I E M E U 0 N U N I V E R S I T Y 
PITTSBURGH, P E N N S Y L V A N I A 1 5 2 1 3 
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5.5 Efficiency Considerations 

When evaluating Z(t) our program always tries method A first. 

If the computed |Z(t)| is smaller than the bound (5-2), the sign of 

Z(t) can not be guaranteed, so method B is used. (Method B is also 

used once in 1000 evaluations to give a dynamic check on the consistency 

of the error bounds (5.2).) Occasionally method B is unable to guarantee 

the sign of Z(t). If we are searching for sign changes in a Gram block 

and t is not a Gram point, we simply discard t and try another nearby 

point. If t is a Gram point the sign of Z(t) must be determined to 

ensure the accuracy of Tables 1-4 below. Thus, we occasionally use a 

multiple-precision arithmetic package [4] to evaluate Z(t) accurately 

at Gram points. (Actually, method B always gives the - correct sign of 

Z(g^) for n S 70,000,000, esren though the bound (5.2) is too weak to 

guarantee this.) 

Nearly all the computation time is spent in the inner loop of 

method A, so not much would be gained by speeding up method B or increasing 

the accuracy of method A. It also seems unlikely that the inner loop could 

be speeded up much without using a faster machine, as the loop compiles 

into only 19 machine instructions which execute in about 22 ysec. (The 

double-precision evaluation of cos(2irx) using the standard library routine 

[l] takes about 79 ysec, and the inner loop of method B takes about 

150 ysec.) 

To separate the first 70,000,000 zeros our program evaluated 

Z(t) at about 99,000,000 points. Thus, the heuristic of using Rosser*s 

rule is very efficient - the number of evaluations of ZCt) could not be 

reduced by more than 29 percent. 
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Our program requires about 35[n/ln(n)]2 ysec of CPU time per Gram 

point near g , n ^ 10 . Thus, the time required to verify H(n) is about 

6.5 x 10 n[n/ln(n)] 2 hours. Our program is about 3.6 times faster than 

the CDC 3600 program of Rosser et al [23], and about 11 times faster than 

the IBM 7090 program of Lehman [ll]. This is roughly what one would 

expect, given the relative speeds of the different machines. (The times 

given for our program are approximate because of the variability of 

factors such as the ratio of primary to extended memory references, system 

load, etc.) 

6̂  SUMMARY OF THE COMPUTATIONAL RESULTS 

During the course of the verification of H(70,000,001) we accumulated 

various statistics which are summarized in Tables 1 to 4'. Table 1 gives the 

number J(k,n) of Gram blocks B_. of length k <: 7 with 0 <: j < n 

and various n < 70,000,000. (Note that B = [g , g ) and the zero 
-1 -1 o 

ti e B are excluded from the statistics given in Tables 1 to 4.) No 

Gram blocks of length greater than 7 were found."'* The average block length 

up to n = 70,000,000 is 1.1873, and appears to increase slowly with n. 

(If the Z(g..) had random independently distributed signs then the average 

block length would be 2.) 

In Table 2 we give the number of Gram intervals G.. = [g^, gj + 1) , 

0 < j < n , which contain exactly m zeros of Z(t) , 0 £ m £ 4 . About 

74 percent of the Gram intervals up to n = 70,000,000 contain precisely 

one zero, and this percentage decreases slowly with n. We found only one 

Gram interval (G & 1 753) which contains more than three zeros. 

t Blocks of length 8 , e.g. B 1 g Q 1 g 9 4 4 9 3 , have been found by a 
different method (mentioned later) . 
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n 

100 
200 
500 

1,000 
2,000 
5,000 
10,000 
20,000 
50,000 
100,000 
200,000 
500,000 

1,000,000 
2,000,000 
5,000,000 
10,000,000 
20,000,000 
30,000,000 
40,000,000 
50,000,000 
60,000,000 
70,00X>,000 

100 
194 
474 
916 

1,766 
4,283 
8,374 
16,404 
39,911 
78,694 
155,327 
382,162 
755,132 

1,493,597 
3,683,812 
7,297,808 
14,468,638 
21,596,795 
28,697,661 
35,780,082 
42,844,351 
49,898,904 

3 
13 
42 
117 
348 
780 

1,680 
4,545 
9,445 
19,338 
49,374 
100,203 
202,964 
513,502 

1,034,545 
2,079,342 
3,126,675 
4,176,596 
5,227,670 
6,280,945 
7,333,132 

7 
22 
76 
325 
779 

1,928 
6,040 
13,822 
30,659 
85,804 
184,107 
390,564 
604,103 
821,276 

1,041,204 
1,263,391 
1,487,914 

2 
6 
19 
52 
230 
709 

2,018 
7,559 
19,115 
46,989 
78,370 
112,050 
147,419 
184,290 
222,034 

1 
1 
10 
32 
84 
294 
821 

2,422 
4,491 
6,951 
9,623 
12,450 
15,530 

1 
11 
36 
151 
264 
387 
514 
668 
849 

2 
4 
6 
13 
24 
30 

TABLE 2 : Number of Gram Intervals Containing Exactly m Zeros 

m = 0 m = 1 m = 2 m = 3 m = 4 

100 
200 
500 

1,000 
2,000 
5,000 
10,000 
20,000 
50,000 
100,000 
200,000 
500,000 

1,000,000 
2,000,000 
5,000,000 
10,000,000 
20,000,000 
30,000,000 
40,000,000 
50,000,000 
60,000,000 
70,000,000 

0 
3 
13 
42 
117 
358 
808 

1,770 
4,915 
10,330 
21,528 
56,236 
116,055 
238,441 
614,253 

1,253,556 
2,550,785 
3,861,692 
5,181,785 
6,507,746 
7,839,959 
9,174,803 

100 
194 
474 
916 

1,766 
4,287 
8,390 
16,472 
40,209 
79,427 
157,153 
388,110 
769,179 

1,525,833 
3,778,577 
7,507,820 
14,929,745 
22,324,402 
29,700,949 
37,065,811 
44,418,273 
51,765,709 

3 
13 
42 
117 
352 
796 

1,746 
4,837 
10,157 
21,110 
55,072 
113,477 
233,011 
600,087 

1,223,692 
2,488,155 
3,766,121 
5,052,747 
6,345,140 
7,643,577 
8,944,174 

3 
6 
12 
39 
86 
209 
582 

1,289 
2,715 
7,083 
14,932 
31,315 
47,785 
64,519 
81,303 
98,191 
115,313 

TABLE 1 : Number of Gram Blocks of Given Length 

J(l,n) J(2,n) J(3,n) J(4,n) J(5,n) J(6,n) J(7,n) 
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In Table 3 we list the 15 exceptions to Rosser's rule up to 
B70,000,000" E a c h exception is associated with a small region where 

|S(t)| exceeds 2, and the table gives the local extreme values of 

|S(t)|. Selberg [24] has shown that 

set) = n+ccin t ) l / 3 ( l n In t ) " 7 / 3 ] , •7/3. 

and, assuming the Riemann Hypothesis, Montgomery [19] has shown that 

S(t) = JU[(ln t)%(ln In t)~hl . 

Unfortunately, it appears that the "interesting" region where |S(t)| 

greatly exceeds 2 is well outside the range of feasible computation by 

the Riemann-Siegel formula. 

TABLE 3 : Exceptions to Rosser's Rule 

Type 2  

Type 3 

13,999,525 
30,783,329 
30,930,927 
37,592,215 
40,870,156 
43,628,107 
46,082,042 
46,875,667 
49,624,541 
50,799,238 
55,221,454 
56,948,780 
60,515,663 
61,331,766 
69,784,844 

Type Extreme Sft") 
1 
1 
2 
1 
1 
1 
1 
1 
2 
1 
2 
2 
1 
3 
2 

-2.004138 
-2.002594 
+2.050625 
-2.076426 
-2.003797 
-2.024243 
-2.031132 
-2.004600 
+2.001841 
-2.028778 
+2.024216 
+2.017714 
-2.008143 
-2.054298 
+2.063683 

M o c T b ^ «.^Vjjf 3«° — , preceded b y 

All exceptions to Roger's rule up to B are incl„H»H 
70,000,000 e included. 
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k n 

1 133 
2 125 

1 3,356 
2 2,144 
3 4,921 

1 83,701 
2 39,889 
3 18,243 
4 67,433 

1 1,833,652 
2 243,021 
3 601,944 
4 68,084 
5 455,256 

1 20,046,223 
2 2,656,216 
3 4,718,714 
4 1,181,229 
5 2,842,089 
6 19,986,469 

2 13,869,654 
3 17,121,221 
4 37,091,042 
5 20,641,464 
-6- 52,266,282 

B is the first Gram block of type (j,k) n 

Let = [g m > g m +j) D e a Gram block which satisfies Rosser's 

rule and has length j > 2. We say that B m is of type (j, k) if 

1 £ k £ i and [g . , g ,) contains at least two zeros of Z(t). 
J m+k-l m+k 

This is neither an unambiguous nor a complete classification, but it is 

sufficient to deal with all nontrivial Gram blocks up to B ^ q q ^ q , 

except for those noted in Table 3. The first occurrences of Gram blocks 

of various types are noted in Table 4. No blocks of type (7, 1) or (7, 7) 

occur up to B_„ n n n . y 70,000,000 

TABLE 4 : First Occurrences of Gram Blocks of Various Types 

j 

2 
2 

3 
3 
3 

4 
4 
4 
4 

5 
5 
5 
5 
5 

6 
6 
6 
6 
6 
6 

7 
7 
7 
7 
7 



22 -

Our program did not explicitly search for pairs of close zeros 

of Z(t), but we did detect some such pairs when the program had difficulty 

in finding the expected number of sign changes in the Gram block containing 

them. For example, 

t - t < 0.00053 and max |Z(t)| < 0.00000248 
n n te(t ,t ) 

for n = 41,820,581. This is a more extreme example of the phenomenon 

first observed by Lehmer [13,14]. See also Montgomery [17,18,20,21]. 

Our program regularly printed out the largest value of |Z(g.)| 

found so far. For example, Z(g 6 5 3 7 9 3 9 4 ) > 75.6, and the first 42 terms 

in the Riemann-Siegel sum (5.1) are positive at this point! 

In all cases where an exception to Rosser1s rule was observed, 

there was a large local maximum of |Z(t)| nearby. This suggests that 

"interesting" regions might be predicted by finding values of t such that 

the first few terms in the Riemann-Siegel sum reinforce each other. Pre

liminary computations suggest that this is a promising approach. To verify 

the feasibility of such computations for Gram numbers near 1 0 1 0 we ran 

our program (slightly modified) from g n^ I + 0 0 to g n + 6 H o o , where n = 10 1 0. 

All Gram blocks in this region satisfy Rosser1s rule and, using Theorem 3.2, 

we can show that p^, P n + 1> > p
n+sooo a r e s i m P l e a n d l i e on the critical 

line. 
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