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1. Introduction 

T h e ISPS computer descr ipt ion language is an evolutionary step towards the formal izat ion 

o f the digital des ign process at the higher or behavioral levels. ISPS is the s e cond 

imp lementat ion of ISP as a computer language* and has been used as a des ign tool wh i ch 

c o v e r s a w ider area of application that any other hardware descr ipt ion language. Thus , 

be s i de s s imulat ion and synthesis of hardware, software generation, program ver i f i cat ion, and 

a r ch i t e c tu re evaluat ion and control are amongst the current applications based on ISPS. The 

r ange of cur rent and contemplated application areas are proof of the usefulness of the 

no ta t i on and its extens ion mechanisms. 

Th i s paper is d iv ided into two parts. The first part describes the notation, its in tended use, 

and the extens ion mechanisms which allow multiple applications or areas of r esea rch to 

co -ex i s t and share machine descriptions. The second part br ief ly descr ibes some of the 

c u r r en t appl icat ions for ISPS; only enough detail is presented to il lustrate the highly d i ve r se 

se t of p rob l em areas that depend on a formal machine description. 

T h e append ix presents some language features not often found in programming languages 

(or machine descr ip t ion languages, for that matter). Topically, the appendix belongs after the 

f i r s t par t however , it is not critical to the understanding of the of the appl ications for ISPS 

and has been pos tponed to allow a smooth transition between the descr ipt ion of the notat ion 

and the desc r ip t i on of its uses. 

*In this paper we shall make no distinction between ISP, the original notation [Bell, 1971 J, and its implementations as 

computer languages, ISPL [Barbacci, 1976.] and ISPS [Barbacci, 1977]. All examples used in this paper are based on 
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2. The Notation 

2.1 The ISPS Paradigm 

High leve l programming languages reduce the complexity of the programming task and 

i n c r ease re l iabi l i ty and readabil ity through the use of abstractions. 

B y us ing abstract ions, a program can be structured as a hierarchy of funct ions and da ta 

s t ru c tu re s . The proper use of these mechanisms allows a program to be deve l opped in a 

s t e p - w i s e p rocess . Advocates of " top-down" versus "bottom-up" techniques argue about the 

re l a t i ve merits of their approach. The arguments however, have more to do w i t h the 

s t r u c t u r e or o rder of the program design process than with the nature of the process itself. 

T h e same concerns that motivate the use of high level programming languages appear in 

the digita l sys tem design process and many of the structured programming techniques can be 

put to use in what has been traditionally the domain of hardware engineers. However , 

a l though the methods can be borrowed, the differences in the problem domain suggest the 

use of too ls and notations special ly designed for digital systems. 

T h e des ign phi losophy of ISPS was guided by two principles, f lexibi l ity and s impl ic i ty. 

Spec i f i ca l l y , it was des i red to design a computer description language that wou l d be 

app rop r i a t e for d iverse applications: automated design, simulation (for both s o f twa r e 

deve lopment and hardware debugging), and automatic generation of machine relat ive s o f twa re 

(in part icu lar , compi ler-compilers), [Barbacci, 1974b]. Thus, although ISPS can be v i ewed as a 

p rogramming language, the aim of the notation is to describe computers and other digita l 

s y s tems , not necessar i ly general computational algorithms. 

The ISPS paradigm is shown in Figure 2-1. The main characteristic is the use of a formal ly 

d e f i n ed intermediate representat ion for the parse trees. This intermediate format (cal led 

G loba l Data Base or GDB, for short) can be easily used by a multitude of app l i cat ion 

p rog rams , wr i t t en in any language, and running on any machine. 

The def in i t ion of what constitutes a 'correct ' ISPS description depends to some extent on 

the nature of the application programs using the machine descr ipt ion. An assembler 

gene ra t o r (e.g. [Wick, 1975]) might, for instance, require the specif ication of the ins t ruct ion 

mnemonics but it might not have any use for the specification of the memory techno logy. T h e 

s i tua t ion is r eve r sed when a design automation system (e.g. [Siewiorek, 1976]) uses the 

same pa r se t ree. A compiler-compiler (e.g. [Leverett, 1979]) system might be in te res ted in 

the ' cos t ' of each instruct ion in order to generate optimal code. 

T o a l low the co-ex istence of multiple applications, ISPS provides an extension fac i l i ty f o r 
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Figure 2-1: ISPS Paradigm 

the spec i f i ca t ion of appl ication dependent information. This information is attached to the 

p a r s e t r ees and can be easi ly retr ieved by the application programs. Because of the o p e n 

e n d e d nature of the application dependent information, the parser can only per form syntact i c 

ana lys i s of the extensions. Relatively little can be done at parse time wi th regard to the 

semant i c analysis and the bulk of the semantic analysis of the extensions thus lies in the 

doma in of the appl icat ion areas*. 

T h e format of the parse trees used by the application programs is def ined in the r e f e r en ce 

manual ([Barbacc i , 1977]). For the purposes of this paper we are only concerned w i th the 

l anguage const ruc ts used to speci fy the application dependent information. 

A s experience with the language grows, the semantic knowledge built into the parser will be augmented to 
incorporate those aspects that are common to all applications or which can result in contradictory assumptions by the 
users of the machine description 
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2.2 The ISPS Notation 

ISPS desc r i bes the interface (i.e. external structure) and the behavior of ha rdware units 

(ca l led ent i t ies in the language). The interface describes the number and types of c a r r i e r s 

u s ed to s to re and transmit information between the units. The behavioral aspects of the unit 

a r e d e s c r i b ed by procedures which specify the sequence of control and data opera t ions in 

the machine. 

A comple te separat ion between the specification of the structure and behavior of a dig ita l 

s y s t em is not an easi ly real izable or even desirable goal. Structure and behavior go hand in 

hand and its is a measure of the power of any design language to be able to enhance one 

aspec t ove r the other. Thus, ISPS favors the behavioral aspects over the s t ructura l o r 

implementat ion aspects by hiding (abstracting) information. The structural informat ion is 

n eve r complete ly eliminated; thus, the preocupation of ISPS with register lengths, data pa th 

w id ths , connect ions of registers and functional units, etc; other details such as part numbers , 

componen t speed , layouts, physical location, integrated circuit technology, etc. are howeve r , 

suc cess fu l l y opaqued and need never be specif ied in an ISPS descr ipt ion*. 

In the simplest case, a unit is simply a storage carrier (a register or a memory), comple te ly 

s pe c i f i e d b y its bit and word dimensions: 

In the genera l case, a unit may consists of an interface and a procedure which desc r i bes 

its behav io r . The procedural part may contain not only data and control operat ions, but also 

t he dec la ra t ion of local units of arbitrary complexity. Local units are not access ib le to 

ex te rna l units, al lowing the encapsulation of portions of the design in a wel l s t ru c tu red 

A c c u m u ! a t o r < 0 : 1 5 > 

R [ 0 : 7 ] < 1 5 : 0 > 

Mp[0 :#177777]<0:7> 

a 16-bit register 

a register array 

a 16K byte memory 
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manner* 

Markl := 
B e g i n 

* * Primary.Memory ** 

M[0:8191]<31:0>, 

** C e n t r a l . P r o c e s s o r ** 

P r o c e s s o r := 

Beg in 

** P r o c e s s o r . S t a t e ** 

PI \ P r e s e n t . I n s t r u c t i on<15:0>, 

F\Function<0:2> := PI<15:13>, 

S<0:12> := PI<12:0>, 

CRXCont ro1.Reg i st er<12:0> . 

Acc\Accumu1 ator<31:0>. 

The Mark-1 Computer, [Lavington, 1975/ 

Primary Memory Section 

8K words, 32 bits/word 

End 

Central Processor Section 

Processor State Section 

Instruction Register 

Opcode 

Operand Address 

Program Counter 

** I n s t r u c t i o n . C y c l e ** 

I . C y c l e := 

Begin 

PI = M[CR]<15:0> next 

Decode F => 

Begin 

0\JMP := CR = M[S], 

1\JRP := CR = CR + MIS], 

2\LDN := Acc = - M[S]. 

3\ST0 := M[S] = Acc, 

4:5\SUB s= Acc = Acc - M[S], 

6\CMP i= If Acc Lss 0 => 

CR = CR + 1, 

7\STP := S t o p O , 

End next 

CR = CR + 1 next 

Restar t I . C y c l e 

End 

End 

Instruction Interpretation Section 

Instruction Fetch 

Instruction Decoding 

Jump Indirect 

Jump Relative 

Load Complement 

Store 

Subtract 

Conditional Skip 

Halt 

Increment Program Counter 

Repeat Instruction Cycle 

Figure 2-2: The MARK-1 Computer 

The same rules of scope introduced by Algol-60 are used in ISPS. 

file:///Present
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F i gu re 2-2 shows the complete description of the Manchester University Mark-1 Computer 

[Lav ington , 1975]. The descript ion consists of two sections depicting the pr imary memory 

and the cent ra l processor . The latter is further divided into the processor state dec larat ions 

and the instruct ion interpretat ion cycle. The entire behavior of the computer is des c r i bed b y 

a s ing le p rocedu re (ICYCLE) which fetches, decodes, and executes the instruct ions. Fo r 

add i t iona l examples of ISPS descriptions the reader should consult [Bell, 1978} 

2.3 Application Dependent Information 

Premature binding is the root of all evil 

ISPS p rov ides mechanisms by which an application program can rece ive pr ivate or 

sem i -p r i va te information about a computer description. The type of information that might be 

n e e d e d b y an appl icat ion program is unbound and not, necessari ly, part of the bas ic 

semant i cs of the notat ion understood by the parser. 

App l i ca t i on dependent information is specif ied via qualifiers or attr ibute-value pa i rs of the 

f o rm: 

{ a t t r i b u t e s v a l u e , v a l u e , , . . ^ a t t r i b u t e : v a l u e , v a l u e , , , . } 

At t r i bu tes are user (i.e. application dependent) specif ied identif iers; Values are e i ther 

ident i f i e rs , constants, or text strings. Qualifiers can be attached to any declarat ion, ope ra t i on , 

o r o p e r a n d in a descr ipt ion. They are checked for syntactic correctness by the ISPS parse r , 

but no attempt is made to ascertain their semantic correctness*. 

Wh i le wr i t ing the ISPS descript ion, related units can be grouped under a common head ing 

(ca l led a sect ion), as shown in Figure 2.3. By dividing a description into sect ions, app l i cat ion 

p rog rams can search parse trees for specific groups of declarations (say, all f loat ing point 

ope ra t i ons , p rocessor state registers, external interface data and control s ignals, etc.). 

Sec t i ons do not def ine new scopes of declarations (i.e. they do not def ine Algol- l ike b locks). 

A sec t i on is there fo re an organizational device, not an abstraction. A sect ion header (an 

ident i f i e r enc losed in **s) can have qualifiers attached to it to permit the spec i f i cat ion of 

a t t r i bu tes that are common to all units declared within the section. 

De lay ing some of the semantic checks until application time permits a gracefu l evo lu t ion of 

a des ign . New appl ications can be developed and experiments with machine descr ip t ions can 

1 Unless of course, the attribute is already known to the parser. 
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unitl 
** s e c t i o n 1 ** 

u n i t l . 1 

u n i t l . 2 

** s e c t i o n 2 ** 

u n i t l , 3 

u n i t l . 4 

u n i t 2 

** s e c t i o n 3** 

u n i t 2 . 1 

uni t 2 . 2 

** s e c t i o n 4 ** 

u n i t 2 . 3 

u n i t 2 . 4 

Figure 2-3: Partition of a Description into Sections 

be c a r r i e d out without having to modify the ISPS parser, the global data base, o ther 

app l i ca t i on programs, or any other existing description. 

T o i l lustrate a simple use of the extension mechanism, the fol lowing sect ion shows the t y p e 

of in fo rmat ion that could be conveyed to a synthesis program. 

2.4 Example: Component Specification 

Data and contro l operat ions in ISPS suggest the existence of corresponding funct ional units 

and data paths but not to the extent that they constrain the implementation. Thus, the 

r eg i s t e r t rans fer operators M<= H, and W = M indicate the existence of a logical path b e t w e e n 

r eg i s t e r s of the machine but they do not specify an actual data path. The implementor 

(human or synthes is program) is free to realize all transfers with a single, shared bus, w i t h a 

se t of buses , or even with dedicated buses for each register transfer. By the same token , 

ar i thmet ic and logical operators suggest the existence of functional units. The actual number, 

t y p e , and interconnect ion is left open. An implementor is free to select these units in a 

v a r i e t y of ways , depending on the cost, speed, size, reliability, etc. requ i red of the ta rget 

s y s t em . 



8 

T h e lack of restr ict ions in the implementation of an ISPS descr ipt ion might not be a 

des i r ab l e feature and one might wish to constraint the implementor. For instance, 

dec l a ra t i ons of reg isters and functional units can be qualified with the component part to be 

u s e d : 

In some cases the attribute name is sufficient to convey the information and a s impl i f ied 

mechan ism is p rov ided: 

In the second example, ROM is used as if it were a keyword speci fy ing the ' t ype ' of the 

dec la ra t i on . ROM is not a real keyword in the language and the syntax allows the spec i f i ca t ion 

o f an a rb i t ra ry number of these pseudo-keywords prefixing a declaration. They are all 

c o l l e c t ed by the parser and stored in the global data base format as if they had b e e n 

s pe c i f i e d inside { and }. Thus, both declarations of the Read Only Memory (M) are equiva lent . 

T h e abi l i ty to spec i fy the behavior of an entire family of implementations a l lows a 

manufac ture r to apply di f ferent trade-offs and produce machines aimed at d i f ferent segments 

of the market whi le preserv ing the basic compatibility between all the members of the family, 

t he abi l i ty of shar ing software. 

T h e abi l i ty to partial ly speci fy the structure and components of a system permits the 

manufac turer to place some bounds on the cost and performance of the implementations. In 

gene ra l , the more restr ic ted the description, the less variability among members of the fami ly. 

T h e s e howeve r , are design decisions which ISPS leaves entirely in the hands of the arch i tect 

o f the sys tem. 

S ince the behaviora l aspects do not change, other by-products of the descr ip t ion (e.g. 

comp i l e r s , p rogram ver i f iers, architecture evaluations, etc) can be obtained be fo re , after, o r 

e v e n dur ing the speci f icat ion of the implementation information. 

R[0:3]<0:3> {Module: SN74170} 

X = Y SLO {Module:SN54199} 3 

register file declaration 

logical shift left 

M[0:255]<0:7> {ROM} 

ROM M[0i255]<0s7>i 

Attribute as Qualifier 

Attribute as Keyword 
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3. The Applications 

3.1 Evaluation and Certification of Instruction Set Processors 

Se lec t ing a computing architecture is not a well established science. The prob lem is 

pa r t i cu l a r l y seve re when one tries to choose an architecture meant to serve a broad range of 

u s e r s who se present and future requirements are poorly understood. Recent work wi th in the 

Depar tment of Defense has resulted in the development of a methodology to spec i f y , 

eva lua te , and select candidate computer architectures for tactical applications [Burr, 1977; 

Wa l d , 1977; Ful ler, 1978; Dietz, 1978]. 

3.1.1 The C F A project 

The concept of wr i t ing benchmarks or test programs is not a new idea in the f ie ld of 

c ompu te r per formance evaluation. The main difference in the approach used in the C F A 

p ro j e c t was the departure from the traditional measured gathered from typical computer 

p e r f o rmance studies, namely the execution speed of a test program. A computer arch i tec ture 

d oe s not spec i f y the instruction execution times and the fol lowing alternative measures w e r e 

d e v e l o p e d : 

1. S — Number of bytes used to represent a test program. 

2. M Number of bytes transferred between primary memory and the processor 

dur ing the execut ion of a test program. 

3. R ™ Number of bytes transferred among (selected) internal registers of the 

p rocesso r dur ing the execution of the test program. 

The S measure is an indication of the amount of memory needed to represent the p rograms 

runn ing on a computer. For the same technology, two architectures that require d i f f e ren t 

amounts of memory would have different costs. A small S measure is a good feature of a 

c ompu te r arch i tecture. 

T he M and R measures characterize the bandwidth of the data paths be tween the cent ra l 

p r o c e s s o r and the primary memory, and between the internal registers of the cent ra l 

p r o ce s so r , respect ive ly . For the same technology, a higher M measure implies a larger vo lume 

of in format ion that has to be transferred, thus implying a slower instruction rate or a cost l ier 

implementat ion. Similarly, a higher R measure implies a slower instruction rate or cost l ier 

implementat ion. Notice that techniques such as memory interleaving, cache memories, and 

p ipe l i nes cou ld be used to improve the performance of a system. However, these are 

implementat ion detai ls and are not part of the architecture. That is, two arch i tectures w i t h 
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d i f f e r en t M (or R) measures could be implemented using these and other s p e e d - u p 

mechanisms. The relat ive ranking given by their M (R) measures would not change. 

3.1.2 Data Collection 

The exper iments we re conducted on the ISPS simulation facility depicted in F igure 3-1 

( [Barbacc i , 1976b]). The process starts with the creation of an ISPS descr ipt ion, as s h o w n at 

the top of the f igure. The ISPS parse tree is processed by a program (GDBRTM) wh i ch 

g ene r a t e s code for an artificial machine. This machine is dubbed the Register T rans f e r 

Mach ine (RTM) and its order code was selected to suit the syntax and semantics of ISPS (e.g. 

t h e r e is one R T M operat ion for each ISPS data or control operation). The ISPS simulator is 

s imp ly a so f twa re implementation of the RTM machine. 

Th roughou t the execut ion of the RTM code, the simulator keeps count of ALL act iv i t ies. 

T h e s e can be categor ized into three classes: 

1. Count ing the bits read from each register or memory declared in the ISPS 

desc r ip t i on . 

2. Count ing the bits wr i t ten into each register or memory declared in the ISPS 

desc r ip t ion . 

3. Count ing the number of times each procedure or labelled statement dec la red in 

the ISPS descr ipt ion has been encountered (i.e. executed). 

The arch i tecture evaluation is based on the computation of the S, M, and R for a co l lec t ion 

of benchmark or test programs. These programs are assembled into a simulator command f i le 

w h i c h loads the fiimulated memory and machine registers. Under control of the user, the 

p r og r am thus loaded can be started and run to completion, at which point the act iv i ty 

c oun t e r s can be dumped into computer files for post-processing, as depicted in f igure 3-2 . 

3.1.3 Architecture Certification 

T h e ISPS parser , the RTM code generator, and the simulator, together wi th a a number of 

aux i l ia ry programs (e.g. cross-assemblers, cross-compilers, data reduction rout ines, etc) have 

b e e n used in severa l architecture evaluation projects, patterned after the C F A se lec t i on 

p ro j e c t . The same tools have also been used to ver i fy the correctness of the machine 

desc r i p t i ons by running the manufacturer's machine diagnostics on the simulated machine 

[Ba rbacc i , 1978a]. 

A cu r ren t research project is attempting to generate the machine diagnostics f rom the ISPS 

de s c r i p t i o n [Lai, 1979} The dif ference between these two uses of the ISPS notat ion shou ld 
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Figure 3-1: ISPS Simulation 



12 

1 

ISPS Description 

i 
Test Program 

Assembler 
Target Machine 

Simu ator 
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Figure 3-2: Architecture Evaluation 

b e exp la ined . Ver i fy ing the correctness of a machine description by treat ing it as one more 

implementat ion of the machine, capable of correctly executing the manufacturer p r ov i ded 

d iagnost i cs , increases our level of confidence in the evaluation results. Once a desc r i p t i on 

has b e e n so cert i f ied, it can then be used as a procurement document, avai lable to 

s e c ond - s ou r c e manufacturers [Barbacci, 1979]. The second application complements and 

expands this use of ISPS. Any implementation of a computer, whether based on an ex is t ing 

a r ch i t ec tu re or a completely new architecture, must be cert i f ied as correct. By per fo rming a 

symbo l i c execut ion of the ISPS description ([Oakley, 1979]), a list of all archi tecture f ea tu res 

that must be present in any implementation can be compiled and used as a check list to 

gene r a t e the cert i f icat ion programs*, as shown in Figure 3-3. 

*It should be mentioned that although Oakley's work had the genera te of diagnostics as the initial g ^ it w t i 

•vident that the range of its application was much broader. For instance, we are currently interfacing^the output of the 

symbol icExecutor wrth the input required by the Production Quality Compiler Compiler (PQCC) project [Leverett, 1979], 

This application is described later in this paper. 
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Figure 3-3: Certif ication of Architecture Implementations 
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Th i s approach prov ides better coverage than the standard machine diagnostics cu r ren t l y in 

use . Even if model dependencies must be allowed, the automatic generat ion of the check- l i s t 

p r o v i d e s a good mechanism to document and highlight departures from the arch i tec ture 

spec i f i ca t i on . 

3.2 Technology Relative Synthesis 

The use of Large Scale Integration (LSI) has made complete processors and memor ies 

ava i lab le in a single si l icon chip. Two aspects of this technological revolut ion are w o r t h 

d i s cuss ing: 1) primitive components continue to increase in complexity, and 2) the rate of 

i n t roduc t i on of new components continues to increase. 

The inc reased power of the primitive components has reduced the need to descend into 

the l owe r levels of design. There exist standard families of components that al low des igners 

to remain ent i re ly within the register transfer level. While this simplifies the des ign task, the 

r ap i d evo lu t ion of components on the other hand, requires an acceleration in the des ign 

p r o c e s s if a new technology is to realize its potentiality. This can only be ach ieved th rough 

automat ic means. 

Convent i ona l des ign automation systems tend to be characterized by a f ixed, bu i l t - in 

t e chno l ogy and a stra ightforward or canonical implementation phi losophy. That is, the 

des i gne r ' s spec i f i cat ion is translated into hardware specifications in a manner ve ry similar to 

a macro-expans ion in an assembly language program. 

T h e C M U RT -CAD System [Siewiorek, 1976; Parker, 1979], Figure 3-4, attempts to el iminate 

b o t h const ra ints . The system accepts the description of the components as one of its inputs, 

thus speed ing up the incorporation of new technologies into the design process. Since the 

s y s t em ope ra tes on an abstract or symbolic description of the modules, a non-exist ing module 

se t can be f ed to the system for experimentation and evaluation of the potential advantages 

and d isadvantages of a proposed module or set of modules. The second input to the sys tem 

is an ISPS descr ip t ion of the behavior of the target system. This speci f icat ion is f i rs t 

t r ans l a ted into a graph representat ion of behavior. By using a set of graph t rans format ion 

a lgor i thms, this initial graph can be transformed into alternative graphs, all of wh i c h 

r e p r e s en t the same behavior. 

T h e s e a l ternat ive designs constitute points in the design space, [Barbacci, 1974]. G iven 

t w o po ints and a set of user goals and constraints, the design system can automatical ly 

accep t or re ject an alternative design. A new design is acceptable if it is c loser to the de s i r ed 

goa l than the des ign alternative from which it was derived, as depicted in F igure 3-5. 
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T h e eva luat ion of alternative solutions is heavily dependent on the particular techno logy 

u s e d to implement the target system. Moreover, within a given technology, there a re 

d i f f e r en t way s of connect ing components to achieve a certain target design. Organizat ional 

a spec t s are captured via a design style [Thomas, 1977]. A design style is a set of ru les that 

gu i de the interconnect ion of the abstract components used in the behaviora l g r a ph 

r ep resen ta t i on . 

Once a des ign sty le has been selected, a design style allocator (there is one for each 

de s i gn s ty le : p ipe l ined, central accumulator, distributed arithmetic, etc) is invoked to gene ra te 

the pa th g raph for the system [Hafer, 1978]. This is a layout of the registers, funct iona l 

uni ts , data paths, and their interconnections. It is still an abstract representat ion s ince no 

phys i ca l components have been selected and bound to the abstract components used in the 

pa th g r aph . The select ion of the actual components is the task of the module b inding phase 

[Le ive , 1977] . 

T h e module binding phase uses the information gathered in the previous stages as we l l as 

in fo rmat ion s to red in the module data base to select the physical components and the o r de r 

in w h i c h they are bound to the abstract components specif ied in the path graph. The output 
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of the module binding phase can then be evaluated and the result repor ted back to the 

p r e v i o u s stages, thus closing the design loop. 

Once a des ign is se lected as the best of the alternatives that have been cons idered , the 

modu le b ind ing phase generates the necessary information that is needed by the phys i ca l 

d e s i gn sys tem. This is the place where traditional design automation systems start i.e. w i th a 

log ic d iagram in which components and interconnections are completely spec i f ied . A s 

d e s c r i b e d in [Parker, 1979], our system interfaces with the Sandia Laboratory 's Des ign 

Au tomat i on System [Preas, 1977]. The complete system can then take an ISPS spec i f i ca t ion 

as input and generate the LSI masks. 

The key parameter that permits the realization of such an explorat ion of a l ternat ive 

des i gns is the fact that the initial, behavioral description does not spec i fy the actual 

implementat ion. By not speci fy ing the actual components, the system is f r ee to t r y 

a l te rna t i ve real izat ions, evaluate them, and select the best one according to the des igner 

goa l s . 

3*3 Software Generation 

The pro l i f e ra t ion of instruction sets brought about by the rapidly increasing rate of 

i n t roduc t i on of new computers demands an acceleration of the software generat ion p rocess . 

Not on ly opera t ing systems and utility programs must be developed but also compi lers and 

assemb le r s to help the users take advantage of the newer, faster, and cheaper computers in 

the market. 

Some of the items in the above list have been studied for a number of years and it is 

becom ing a real ist ic goal to attempt to automate their development. In particular, assemblers 

and compi le rs are wel l understood and can be automated to some degree[Wick, 1975; Cat te l l , 

1978; Levere t t , 1979]. 

3.3.1 Assembler Generators 

J ohn Wick [Wick, 1975] has demonstrated the feasibility of using a formal descr ip t ion of an 

i ns t ruc t i on set as one of the inputs to an automatic assembler generator. The sys tem is 

c apab l e of handl ing a wide variety of computers with substantially d i f ferent arch i tec tures . 

T h e t w o man contr ibut ions of his work were the formalization of the assembly p rocess and 

the techno logy for building assemblers in a manner independent of any part icular computer . 

T h e s e cond main contr ibut ion, and the one of more relevance to this paper was the 

fo rma l i za t i on of a method for describing the target computer to the generator. Wick 's 

no ta t i on (ISP') is an implementation of Bell and Newell's ISP, in which through the jud ic ious 
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use of k e ywo rd s and writ ing style guidelines, the characteristics of the machine that a re 

r e l evan t to the assembly process (e.g. operation codes and mnemonics, instruct ion formats , 

da ta t ypes , etc) can be highlighted for the benefit of the assembler generator. A l though Wick 

d i d not use ISPS, his approach bears a striking resemblance to the ISPS parad igm: 

app l i ca t i on dependent information is added on to a formal machine descr ipt ion in such a w a y 

that d i f f e ren t aspects of the machine can be selectively extracted, without af fect ing o the r 

app l i ca t ions or descr ipt ions. 

3.3.2 Compiler-Compilers 

A more ambitious project, dubbed the Production Quality Compiler Compiler, or PQCC fo r 

sho r t [Leveret t , 1979], is an investigation of the code generation process. The pract ica l goa l 

o f the pro jec t be ing the construction of truly automatic compi ler-writ ing systems wh i ch 

p r o d u c e compi lers that are competitive with hand generated compilers in e ve r y respec t . 

T h e s e are ca l led Product ion Quality Compilers or PQC's for short. 

T o ach ieve this goal, the PQCC system must operate from descriptions of both the sou r ce 

l anguage and the target computer, Figure 3-6. The PQCC project builds on wo rk in two 

a reas : code optimizat ion, and compiler-writ ing systems: 

1. "With some notable exceptions, previous work in compiler development tools has 

f o cused on the parsing and lexical analysis phases of compilation. Thus 

"compi ler-compi ler" has come to be almost synonymous with "parser generator" . 

We wou ld like to extend the function of compiler-compilers, to include the 

p roduc t i on of optimizers and code generators. We bel ieve that 

compi ler-compi lers will become far more popular as commercial so f tware 

deve lopment tools when this is done. 

2. "A great many code optimization techniques are known and have appeared in the 

l i terature. Nevertheless, construction of optimizing compilers is still near ly a 

b lack art. As a result such compilers tend to be expensive both to bui ld and to 

use. They also tend to be unreliable, in that the object code produced after 

opt imizat ion may be either worse than unoptimized code or altogether wrong . We 

wou l d like to organize, even to formalize, the huge "bag of tr icks" assoc iated 

w i th code optimization. Ultimately optimization should be done as rout ine ly, 

cheap ly , and rel iably as pars ing" [Leverett, 1979] 

Impl ied in the above goals is the reason for the failure of previous attempts to bui ld use fu l 

comp i l e r - comp i l e r s : In order to generate good code, the target machine instruction set is bui lt 

in to the system, thus preventing any reasonable degree of transportabi l i ty. In those 

s i tuat ions w e r e transportabi l i ty has been a required feature the solution has been to 

g ene r a t e pseudo-machine code. For each new instruction set the pseudo-machine instruct ions 

a re t hen t rans lated via macros written in the target machine language [Feldman, 1966]. Wh i le 
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runab l e programs are produced by this technique, they are poor in terms of s ize and run 

t ime e f f i c i ency . There are several reasons behind this problem: bui lt- in p reconcep t i ons 

about ex is t ing instruct ions, the introduction of an extra level of abstraction that must be hand 

t rans la ted , and the lack of consideration for specific machine features that can do ce r ta in 

th ings more ef f ic ient ly than others. 

In the PQCC project, machine independence is achieved by generat ing machine relative 

PQC 's , that is, compi lers whose code generation algorithms take advantage of the spec i f i c 

t a rge t machine language, the machine being specif ied as a set of input/output asser t ions 

abou t the format, cost, and side effects of each instruction. 

i 
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F igure 3-7: Code Generator Generation (Figure 1 in [Cattell, 1978]) 

C o d e genera t ion in a PQC is a two step procedure, as shown in Figure 3-7, [Cattel l , 1978] . 

Dur ing compi ler-compi le time, the assertions about the machine instruct ions (Mach ine 

OPe ra t i ons or MOPs for short) are generated. A language dependent subset of these is 
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s e l e c t e d and used to dr ive the actual PQC code generation phase. 

T h e code generat ion phase of a PQC, uses the assertions as a l ibrary of templates. Each 

temp la te cons is ts of a subtree pattern and a code sequence. Br ief ly, if a sub t ree of the 

p r o g r a m (parse) t ree matches the pattern, the instructions in the code sequence are emit ted, 

the i r ope rands be ing determined by the value of the pattern "parameters". Thus, ea ch 

i ns t ruc t i on is r ep resen ted not by an algorithm to simulate it, but by a group of p r e - and 

pos t - cond i t i ons (in terms of machine state i.e. the contents of various locations in the 

mach ine) of its execut ion. 

3.3.3 Symbolic Execution 

A n asser t ion descr ipt ion expresses the semantics of an instruction more d i rect ly than a 

p r o c edu r a l descr ip t ion can. This has been shown not only in code generat ion but also in 

p r o g r a m ver i f i ca t ion [Crocker, 1977]. A procedural description on the other hand, is more 

de s i r ab l e in other applications (not the least important of which being human readabi l i ty) . 

Thus , to p rov ide a link between procedural and assertion descriptions is to prov ide the l ink 

b e t w e e n those appl ications which for whatever reason prefer one flavor of descr ip t ion o ve r 

the o ther . 

T h e feas ib i l i ty of this link has been shown by John Oakley [Oakley, 1979] th rough the 

symbo l i c execut ion of ISPS descriptions. 

"Conceptua l l y , Symbolic Execution is just like normal program execution except that inputs 

t o the p rog ram are symbols (representing unknown, but fixed values) rather than numbers . 

Exp re s s i on s involv ing such symbols are called symbolic values. Variables on the l e f t -hand 

s ide , ca l led output variables, are set to symbolic values rather than calculated numer ic 

quant i t i es . Thes symbol ic output really represent output assertions... 

"When an ISPS condit ional statement, an IF or DECODE, is executed symbol ica l ly, the 

p r ed i c a t e usual ly involves symbolic values. Since the truth value of the pred icate wi l l be 

de t e rm ined by the numeric value eventually given to the symbolic inputs, it is not genera l l y 

po s s i b l e to determine which branch out of a conditional statement wil l be executed du r i ng 

symbo l i c execut ion. Consequently, each branch must be executed, one at a time, us ing 

back t rack ing to re turn to unexecuted branches. Associated with each branch is the symbol i c 

p a t h cond i t ion, taken from the IF or DECODE predicate, that must be true for this part i cu lar 

b r a n c h to be taken. This symbolic path condition is called an input assertion s ince it 

r e p r e s e n t s a constraint on the possible values that the input symbols can have if this b r anch 

is t o be taken." [Oakley, 1979} 
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B y tak ing the instruct ion cycle procedure as the root node, the t ree of all poss ib l e 

e xe cu t i on paths throughout the procedural machine descript ion can be t raversed . Each 

execu t i on path def ines a functional instruction, completely descr ibed in terms of its input and 

ou tpu t asser t ions*. These are the inputs required by the PQCC. 

3*4 Reliability and Fault Tolerance 

At the time of this wri t ing (May, 1979) an entire new area of appl ications for ISPS 

desc r i p t i ons is be ing deve loped at C M U The simulation of digital circuits under faults has 

b e e n used w i th great success in the development of fault tolerant digital systems [Av iz ien is , 

1978] , We are current ly try ing to extend these techniques to a higher level of des ign, w h e r e 

t he s t ruc tu ra l information is not available. 
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Target Machine 
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Coverage Information 
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Description 

Figure 3-8: Functional Fault Simulation 

This is a very rough sketch of the process followed in Oakley's system. In particular, the distinction between a 

functional instruction and what most programmers understand as a machine instruction is a critical aspect of his work. 
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T h e ISPS simulator is being extended to allow the specif ication of a var iety of data and 

con t r o l faults, of a permanent or transient nature, Figure 3-8. Thus, a user wi l l be able to 

s p e c i f y s tuck-at faults and shorts in the registers, data paths, functional units, and cont ro l 

e l ements of the machine*. 

T h e use fu lness of simulating and studying faults at a level removed from the phys i ca l 

mach ine becomes apparent when one considers the potential uses of the results. By in ject ing 

fau l t s at the ISP level, we are in fact simulating the effect of a fault across all 

implementat ions. 

T o see how this is possible, consider the effect of the fol lowing fault descr ip t ion: "The 

s i gn bit of Register 5 is always 0". If we translate this fault (stuck-at-0) into its 

c o r r e s pond i n g physica l real ization, we have to take into consideration many detai ls that are 

pecu l i a r to one implementation: board and pin position, electrical propert ies (what does 0 

mean?), gate de lays, etc. All of these attributes vary from implementation to implementat ion 

and l i tt le can be carr ied over to other models. At the ISP level the fault is c lear ly de f ined and 

i ts e f f e c t (e.g. make all data coming from register 5 positive) can be readi ly t raced. B y 

runn ing test programs, the effect of faults in the instruction set processor can be o b s e r v e d 

at the programming level. If the test programs have diagnostic capabil it ies, the ident i f icat ion 

of the fau l ty funct ion can be used to narrow down the identification of the phys ica l fault . 

Wh i l e this might not be detai led enough to allow the isolation of the faulty gate, wi l l be 

de ta i l ed enough to isolate the group of components that implement the sign bit of reg is ter 5. 

G i v en the ever decreas ing costs of hardware, this type of diagnostic ability might be enough 

to a l low the replacement of the faulty board by a new one and this might be the ex tend of 

t he repa i r . For certa in applications, where repairs are not possible (e.g. ae rospace 

compute r s ) , simulation of the fault tolerance characteristics of the programming level might be 

u s e d to des ign systems in which the critical components (i.e. those implementing cr i t ica l 

f unc t i ons ) are repl icated. It also permits the design of software that adapts to the p r e sence 

o f fau l ts (e.g. by repl icat ion or relocation, by changing the register allocation scheme, b y 

us i ng a l ternat ive algorithms, e t c ) . 

l H should be clarified thai we are referring to the abstract data paths, functional units, etc. since the actual physical 

characteristics are not specified in the ISPS description. 
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3.5 Conclusions 

In th is paper we present some applications in the area of automatic des ign of bo th 

h a r d w a r e and so f tware in which a computer description language serves as the veh ic le fo r 

s pe c i f y i n g the behavior of the target system. The goal is to achieve a unif ied env i ronment 

f o r r e s ea r ch on multiple application areas. We visualize an environment which wi l l suppo r t 

mult ip le , concur rent users, investigating different aspects of the problem domain. T h e 

env i ronment should permit the implementation of application programs in d i f f e ren t 

p rogramming languages which manipulate machine descriptions wri t ten in d i f ferent computer 

de s c r i p t i on languages. So far, application programs to process GDB trees have been wr i t t en 

in BLISS, LISP, SAIL, and SIMULA-67. The only machine descript ion language in use is ISPS 

but the re are no inherent limitations in the GDB format that would prevent translat ing o the r 

machine descr ip t ion languages into the same data base use by the appl icat ion programs. 

In te res t ing ly enough, these application programs can include translators from GDB t rees into 

o t he r machine descr ipt ion languages. This would permit us to use and expand on p rev i ous 

w o r k ba sed on other machine descript ion languages. 
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4.1 Invocation of Units 

T o i l lustrate how units of varying complexity can be descr ibed in the language, w e wi l l 

d e s c r i b e an arithmetic unit, its interface, and its use, Figure 4-1. 

ALU<A<0:15>,B<0:15>,F\Function<3:0>)<0:15> : = 

BEGIN 

DECODE F => 

BEGIN 

0\Add := ALU = A + B, 

l\Sub := Alu = A - B, 

2\Not.A := Alu = Not A, 

3\Not.B := Alu = Not B, 

4\0r := Alu = A Or B, 

14\Zero := Alu = 0, 

15\0nes := Alu = "FFFF 

END 

END, 

Figure 4-1: The Behavior of an Arithmetic Unit 

T h e in ter face to the arithmetic unit consists of four carr iers. Three of these car r ie rs (A, B, 

and F) are used to rece ive and retain the input operands and the function code. The f ou r t h 

c a r r i e r has, by convent ion, the same name as the functional unit (ALU)*. P ictor ia l ly, the 

ar i thmet ic unit desc r ibed above could be conceived to have the structure dep ic ted in F i gu re 

4 - 2 . 

The arithmetic unit can be used to specify the behavior of other entit ies. Thus, assume that 

s o m e w h e r e e lse in the descr ipt ion we encounter a line of the form: 

. . . . next X = A l u ( Y , Z , 5 ) next . . . . 

Fu r the r assume that X, Y, and Z have been declared e lsewhere (assume they are reg is ters) . 

T h e example indicates that the input carriers of the arithmetic unit are loaded w i th the 

*For simplicity we are appealing to the intuition of the reader and we use terms such as "input carrier" or "output 

carrier". The language allows the specification of multiple input, output, or even bidirectional carriers, as we shall see in 

later examples. 

I. Appendix: Invocation and Dynamic Control of Units 
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Figure 4-2: Arithmetic Unit Interface 

con ten t s of Y, Z, and the constant 5. The unit is then invoked and when its opera t i on has 

b e e n comple ted, the result appears in the output carrier (ALU<0:15>). The transfer ope ra t i on 

c an then p roceed . Pictorial ly, the operation is depicted in Figure 4-3(a). 

T h e output carr ier from the arithmetic unit can be used directly, as in: 

Zee = A l u Eql 0 

A cond i t ion code f lag (Zee) is set based on the result of the last operat ion pe r fo rmed by 

the ar i thmetic unit. The absence of an invocation (syntactically represented by a poss ib l y 

emp ty , list of carr ier names or expressions enclosed in parenthesis) indicates that this use of 

the ar i thmet ic unit does not activate the behavioral part. 

B y defaul t , the input carr iers to the arithmetic unit (A, B, and F) can retain the va lues 

t ransmi ted dur ing the invocation. These values are retained throughout the act ivat ion of the 

unit and are not a f fected by any changes in the values contained in the initial sources (Y and 

Z). Some arithmetic units are build this way, and the example clearly depicts the behav io r . 

Th i s is not however , the only way to build the unit. For instance, one could conce ive a 

s i tua t ion in wh i ch for cost or speed considerations, the arithmetic unit is not to have its o w n 

s t o r age . Instead, it must operate directly on the original carr iers used at the invocat ion s i te . 

Th i s is eas i ly desc r ibed in ISPS as: 
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ALIKREF A<0:15>, REF B<0:15>, F\Function<3iO>)<0:15> i= 

BEGIN END, 

W h e n the keywo rd REF (short for reference) is used to prefix the name of a carr ier , the 

ca r r i e r is sa id not to have any retention properties and is simply a synonym for the actual 

c a r r i e r used in an invocation. When invoked, the arithmetic unit operates d irect ly on Y and Z 

(F is sti l l latched), F igure 4-3(b). If Y and Z are being used concurrent ly somewhere e l se , 

the i r va lue may change during the activation of the arithmetic unit and the result of the 

i nvoca t i on might be unpredictable (caveat emptor). 

The notat ion al lows the specif ication of more complicated patterns of behavior. In the 

p r e v i ou s examples, the caller of the arithmetic unit does not receive the result until the unit 

has comp le ted its operat ion. In some systems, speed is a critical factor and perhaps wa i t ing 

f o r an opera t i on to complete is not desirable. Let's assume that we have the situat ion w h e r e 

the ar i thmetic unit is too slow for the caller to wait for the completion of the opera t i on . 

Ins tead, w e want to be able to start the unit and proceed doing some other operat ions unti l 

some time later when the result will be available. This is easily descr ibed by modi fy ing the 

de s c r i p t i on of the unit as fol lows: 

PROCESS ALU(A<0:15>, B<0:15>, F\Function<3*0>)<0:15> i= 

BEGIN END 

The k e y w o r d PROCESS indicates that the unit can operate independently of the cal ler, and 

moreove r , that the caller does not have to wait for the completion of the act ivat ion, F i gu re 

4-4(a).. 

The new unit can now be used as in: 

. . . next ALU(Y ,Z ,5) next . . . . next X = ALU* Zee = ALU EQL 0 

W h e n a PROCESS-l ike unit is invoked, it is possible to execute other operat ions whi le the 

unit comp le tes its activation, as depicted in Figure 4-4(a). Notice that it is not necessar i l y 

t r ue that the unit has f inished by the time its carrier is used (X - ALU). If the des igner has 

b e e n care fu l to al low for sufficient time to elapse before using the output of the unit, no 

p r ob l ems ar ise. In situations when not enough work is available to over lap the opera t i on of 

the unit, some other mechanism must be used to synchronize the operat ions of the sys tem. 
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Let ' s examine one method (by no means the only one): Assume the existence of a f lag wh i ch 

is set wheneve r the arithmetic unit completes its operation, Figure 4-4(b). The invocat ion of 

t he unit and the use of the result can now be described as fol lows: 

. . . ALU(Y ,Z ,5) next 

••••••• next 

M a i t ( a l u . d o n e ) next 

X = ALU; Zee = ALU Eql 0 next 

and the arithmetic unit is, of course, modified as follows: 

PROCESS ALU(A<0:15>, B<0:15>, F<3i0>)<0:15> i = 

BEGIN 

ALU.done = 0 next 

DECODE F => 

BEGIN 

END next 

ALU.done = 1 

END 

W h e n concur rent activations of units (whether they have the PROCESS attr ibute or not) can 

appea r , it might not be advisable to start a new activation before a pr ior one is comp le ted . 

T o p ro tec t the activit ies of a unit, the Keyword CRITICAL can be used as a pref ix to the 

dec l a ra t i on of the unit, as in: 

CRITICAL ALU(A<0:15>, B<0:15>, F<3i0>)<0s15> != 

BEGIN . . . . . . END, 

A CRITICAL ent i ty is protected by an arbitration mechanism which delays concur ren t 

ac t ivat ions until a pr ior activation is completed. 

The d i f fe rent ways of speci fy ing the arithmetic unit used in these examples suggests the 

pars imon ious nature of the notation. A careful attempt has been made not to ove rbu rden the 

language w i th a multiplicity of syntactic constructs; similar concepts are expressed in similar 

syn tax . Thus, regardless of the specific nature of the arithmetic unit, the invocat ion 

mechan ism is the same [ALLK...)]. The unit declaration provides the rest of the informat ion v ia 
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its qua l i f i e rs (PROCESS, CRITICAL, REF, etc.) 

T h e same character ist ics appear in the specification of the control operat ions, spec ia l ly in 

t he RETURN- l ike operators descr ibed in the following section. 

4.2 Dynamic Control 

In programming languages, errors and exceptional conditions detected by a ca l led 

p r o c e d u r e are handled by the caller. Typically, the procedure will set some global var iab le to 

a te rminat ion code which must then be examined by the caller. In a step wise re f inement 

p r o c e s s , new procedures and (possibly) new error conditions can be introduced. It is also 

the case that one might want to rewrite a procedure, replacing a previous vers ion. In e i ther 

c a se , it is not a good pract ice to have to retrofit the unmodified code to accommodate fo r 

n e w e r r o r condit ions. 

ISPS, in addit ion to the standard programming-like return mechanisms, al lows the ca l led 

p r o c e d u r e to determine where control is to return, bypassing the caller. This is not ach ieved 

t h r o u g h a goto (there is none in the language), instead, ISPS provides a genera l i zed r e tu rn 

mechan ism that al lows the callee to specify the termination of multiple levels of invocat ion, up 

t o a leve l whe r e the error condition can be handled. 

T h r e e contro l operat ions, LEAVE, RESTART, and RESUME allow the wr i ter of an ISPS 

de s c r i p t i o n to model the modes of termination of an entity activation. Of the three, on ly the 

f i r s t one bears resemblance to a programming-like return operation. 

The simplest use of LEAVE is to indicate a return or completion of an act ivat ion, F i gu re 

4-5(a) . The format of this operat ion is: 

LEAVE unitname 

T h e ident i f ier fo l lowing the operator must be the name of a unit, not necessar i ly a 

l ex i cograph ica l l y enclos ing one: The only condition that must be met is that the ope ra t i on 

must occur inside the activation of the unit named in the operat ion*, F igure 4-5(b). T he 

L E A V E opera t i on terminates the activation as it had been completed. In addit ion, any 

ac t iva t ions init iated dur ing the execution of the activation to be terminated and not ye t 

c omp l e t ed are also terminated. 

T h e example in F igure 4-6 shows the use of LEAVE in a dynamic context. 

1, n 9 ,de means both static and dynamic nesting. The former is defined by the lexicographical nesting of the entities. 

The latter is defined by the nesting of entity activations. 
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Figure 4-5: Static and Dynamic Control 
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I n t e r p r e t e r := 

Begi n 

. . . . next 

I eye 1 e O next Invoke Instruction Interpretation 

I f E r r o r Eql 1 => Begin . . . . End next Error Handler 

E n d , 

I c y c l e s = 

B e g i n 

PC = PC + 2 next 

IR = Rword(PC) next 

Decode IR<0:3> => 

Beg in 

ACC = ACC + Rword(IR<4:15>) 

End, 

Increment Program Counter 

Instruction Fetch 

Instruction Decoding 

Data Fetch 

Rword(Addr<0: l l>)<0:15> := 

B e g i n 

I f Addr Gt r Upper.Bound => 

( E r r o r = 1 next Leave I c y c l e ) next 

Rword = MPIAddr] 

E n d , 

Address Boundary Check 

Abort 

Memory Read 

Figure 4-6: Example of Dynamic Leave Operation 

In the example, INTERPRETER activates ICYCLE which fetches, decodes, and executes the 

ins t ruc t ions . In doing so, ICYCLE activates RWORD which is used to access the memory (MP) 

of the machine. RWORD checks that the memory address is in bounds before per forming the 

access opera t i on . If a boundary error is detected, a flag (ERROR) is set and the rest of the 

o pe r a t i o n of ICYCLE is aborted (RWORD returns directly to INTERPRETER, at the point w h e r e 

it ac t i va ted ICYCLE). Notice that we could have let ICYCLE handle the er ror by terminat ing 

RWORD w i th ' LEAVE RWORD\ However, this would have meant that the ICYCLE p rocedure had 

to check the e r ro r f lag (ERROR) after every call to RWORD. Depending on the s i ze or 

comp lex i t y of the descr ipt ion, this might be undesirable. 
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The o ther two ISPS control operators, RESUME and RESTART have a format similar to that 

Of the L EAVE operator: 

RESUME unitname 

RESTART unltname 

T h e RESUME operator specif ies the name of a unit to which control is to re tu rn . The 

R E S T A R T opera to r terminates and re-activates the unit named in the operat ion. F igures 

4-5(c) , 4~5(d), and 4-5(e) illustrate the general case of these operators. It is a matter of 

s t y l e and of course , of the problem on hand, to decide which mechanism is more desc r ip t i ve 

or app rop r i a t e . 

T he condi t ions for abort ing multiple levels of activation might not be er rors or unpred i c ted 

s i tuat ions at all, as the previous example implies; they might very wel l be part of the normal 

o p e r a t i o n of the machine. The example in Figure 4-7 illustrates this s ituat ion v ia the 

R E S T A R T operator . 

INTERPRET depicts the instruction interpretation cycle of the DEC PDP-8 . The normal 

s equence of operat ions is to fetch an instruction from memory, increment the p rog ram 

coun te r (PC), and decode/execute the instruction. After each instruction has been comple ted , 

the p ro ces so r tests for the presence of pending interrupts. If interrupts are enab led and 

pend ing , the processor saves the program counter in location 0 and starts execut ing 

ins t ruc t ions at locat ion 1 (the interrupt handling routine). 

INPUT.OUTPUT is invoked to perform input and output operations and also to cont ro l the 

i n t e r rup t mechanism. Two I/O operations are of particular interest. IOF is used to tu rn o f f 

the INTERRUPT.ENABLED flag, thus preventing the processor from trapping on fu tu re 

i n t e r rup t requests . This operat ion would typically be the first instruction of the in ter rupt 

hand l ing rout ine. ION enables interrupts. It typically occurs at the end of the in ter rupt 

hand l ing rout ine. However, its effect must be delayed for one instruction, to a l low the 

p r o c e s s o r to execute one more instruction (the return from the interrupt handler). If 

i n t e r rup t s w e r e to be al lowed immediately after the ION operation, any pending in te r rupts 

w o u l d cause the processor to save the program counter (which is pointing to the ins t ruct ion 

f o l l ow ing the ION, the return instruction) into location 0, thus destroying its initial va lue (the 

use r ' s p rog ram counter). The delay is achieved by aborting the rest of the instruct ion c y c l e 

(the test for pending interrupts) and RESTARTing the cycle from the beginning. This wi l l a l low 

the r e t u rn instruct ion to be executed. Pending interrupts can then be t rapped in the user ' s 

con tex t , and can be serv iced in the normal manner. 
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I n t e r p r e t J = 

B e g i n 

Repeat Beg in 

IR = M[PC] Next 

PC = PC + 1 Next 

Decode op => 

Begin 

PDP-8 Instruction Interpretation Cycle 

Instruction Fetch 

Increment Program Counter 

Decode and Execute 

#6\iot i = i n p u t . o u t p u t O , 

End Next 

I f i n t e r r u p t . e n a b l e d And i n t e r r u p t . r e q u e s t => 

Begin 

M[0] = PC Next 

PC = 1 

End 
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opcodes 0 through 5 

opcode 7 

interrupts? 

Save Program Counter 
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E n d , 

i n p u t . o u t p u t := 

B e g i n 

Decode IR<3:11> => 

Beg in 

#001\ion := 

Begin 

i n t e r r u p t . e n a b l e d = 1 Next 

Restar t i n te rpre t 

End, 

#002\iof *= 

Begin 

i n t e r r u p t . e n a b l e d = 0 

End, 

Turn Interrupt ON 
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other i/o operations 

End 

E n d , 

Figure 4-7: PDP-8 Interrupt Control 

UNIVERSITY LIBRARIES 
CARNEGIE-NIELLOM ( j ? i " r i ~ y 

PITTSBURGH. PENNSYLVANIA ! W i 3 


