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1. Introduction

The ISPS computer description language is an evolutionary step towards the formalization
of the digital design process at the higher or behavioral levels. ISPS is the second
implementation of ISP as a computer Iar\guage1 and has been used as a design tool which
covers a wider area of application that any other hardware description language. Thus,
besides simulation and synthesis of hardware, software generation, program verification, and
architecture evaluation and control are amongst the current applications based on ISPS. The
range of current and contemplated application areas are proof of the usefulness of the
notation and its extension mechanisms.

This paper is divided into two parts. The first part describes the notation, its intended use,
and the extension mechanisms which allow multiple applications or areas of research to
co-exist and share machine descriptions. The second part briefly describes some of the
current applications for ISPS; only enough detail is presented to illustrate the highly diverse
set of problem areas that depend on a formal machine description.

The appendix presents some language features not often found in programming languages
{or machine description languages, for that matter). Topically, the appendix belongs after the
first part however, it is not critical to the understanding of the of the applications for ISPS
and has been postponed to allow a smooth transition between the description of the notation
and the description of its uses.

lln this paper we shall make no dielinction betwesn ISP, the original notation [Bell, 1271}, and its implementations as
;;gpuior {anguages, ISPL [Barbacci, 1976s] and ISPS [Barbacci, 1977] All examples used in this paper sre based on
S.



2. The Notation

2.1 The ISPS Paradigm

High level programming languages reduce the complexity of the programming task and
increase reliability and readability through the use of abstractions.

By using abstractions, a program can be structured as a hierarchy of functions and data
structures. The proper use of these mechanisms allows a program to be developped in a
step-wise process. Advocates of "top-down" versus "bottom-up” techniques argue about the
relative merits of their approach. The arguments however, have more to do with the

structure or order of the program design process than with the nature of the process itself.

The same concerns that motivate the use of high level programming languages appear in
the digital system design process and many of the structured programming techniques can be
put to use in what has been traditionally the domain of hardware engineers. However,
although the methods can be borrowed, the differences in the problem domain suggest the
use of tools and notations specially designed for digital systems.

The design philosophy of ISPS was guided by two principles, flexibility and simplicity.
Specifically, it was desired to design a computer description language that would be
appropriate for diverse applications:  automated design, simulation (for both software
development and hardware debugging), and automatic generation of machine relative software
(in particular, compiler-compilers), [Barbacci, 1974b]. Thus, aithough ISPS can be viewed as a
programming language, the aim of the notation is to describe computers and other digital

systems, not necessarily general computational algorithms.

The ISPS paradigm is shown in Figure 2-1. The main characteristic is the use of a formally
defined intermediate representation for the parse trees. This intermediate format (called
Global Data Base or GDB, for short) can be easily used by a multitude of application

programs, written in any language, and running on any machine.

The definition of what constitutes a rcorrect’ 15PS description depends to some extent on
the nature of the application programs using the machine description. An assembler
generator (e.g. [Wick, 1975]) might, for instance, require the specification of the instruction
mnemonics but it might not have any use for the specification of the memory technology. The
situation is reversed when a design automation system (e.g. [Siewiorek, 1976)) uses the
same parse tree. A compiler-compiler (e.g. [Leverett, 1979)) system might be interested in
the ’cost’ of each instruction in order to generate optimal code.

To allow the co-existence of multiple applications, ISPS provides an extension facility for



ISPS Description

J

Parser

L

Global Data Base

(Parse Trees) 0ocooo

Fault Analysis
Automatic Programming

Architecture Evaluation
Design Automation
Architecture Certification

Simulation

Figure 2-1: ISPS Paradigm

the specification of application dependent information. This information is attached to the
parse trees and can be easily retrieved by the application programs. Because of the open
ended nature of the application dependent information, the parser can only perform syntactic
analysis of the extensions. Relatively little can be done at parse time with regard to the
semantic analysis and the bulk of the semantic analysis of the extensions thus lies in the
domain of the application areas .

The format of the parse trees used by the application programs is defined in the reference
manual ([Barbacci, 1977]). For the purposes of this paper we are only concerned with the
language constructs used to specify the application dependent information.

lAs exporionce wilh the language grows, the semantic knowledge built into the parser will be sugmented to
incorporate those aspects that are common to all spplications or which can result in contradictory assumptions by the
users of the machine descriplion.



2.2 The ISPS Notation

ISPS describes the interface (i.e. external structure) and the behavior of hardware units
(called entities in the language). The interface describes the number and types of carriers
used to store and transmit information between the units. The behavioral aspects of the unit
are described by procedures which specify the sequence of control and data operations in
the machine.

A complete separation between the specification of the structure and behavior of a digital
system is not an easily realizable or even desirable goal. Structure and behavior go hand in
hand and its is a measure of the power of any design language to be able to enhance one
aspect over the other. Thus, ISPS favors the behavioral aspects over the structural or
implementation aspects by hiding (abstracting) information. The structural information is
never compleiely eliminated; thus, the preocupation of ISPS with register lengths, data path
widths, connections of registers and functional units, etc; other details such as part numbers,
component speed, layouts, physical |ocation, integrated circuit technology, etc. are however,

successfully opaqued and need never be specified in an ISPS descriptionl.

In the simplest case, a unit is simply a storage carrier (a register or a memory), completely

specified by its bit and word dimensions:

Accumulator<0:15> o 16-bit register
RLO:7]<15:0> a register array
MplO:#177777)<02 7> a 16K byte memory

In the general case, a unit may consiste of an interface and a procedure which describes
its behavior. The procedural part may contain not only data and control operations, but also
the declaration of local units of arbitrary complexity. Local units are not accessible to
external units, allowing the encapsulation of portions of the design in a well structured

lTl-la fact that they can be easily specified by the designer does not alter the argument. The language allows the
specification of these and other delails for the benefit of some but not necessarily all application programs. Thus, the
number of bila in a register is of concern to all applications since it impinges on the behavior of the system The fact
that it is build in MOS instesad of Bipoler is important only to ssy, 8 synthesis program, it is not important at oit to &
program verifier.



manner?.
Markl := The Mark-1 Computer, [Lavington, 1975]
Begin
*% Primary,Memory %% Primary Memory Section
M[0:8191]<31:0>, 8K words, 32 bits/word
**% Central,Processor &% Central Processor Section
Processor i=
Begin
*% Processor,State *& Processor State Section
PI\Present,Instruction<15:0>, Instruction Register
F\Function<0:2> := PI<15:13>, Opcode
$<0:12> := PI<12:0>, Operand Address
CR\Control,Register<12:0>, Program Counter
Acc\Accumulator<31:0>,
** [nstruction,Cycle #* Instruction Interpretation Section
I.Cycle :=
Begin
PI = MICR]}<15:0> next Instruction Fetch
Decode F => Instruetion Decoding
Begin
ON\JMP 1= CR = M[SI], Jump Indirect
INJRP  := CR = CR + M[S], Jump Relative
2\LDN  := Acc = - M[S], Load Complement
ANSTO  := MIS] = Acc, Store
4:5\SUB 1= Acc = Acc - M[S], Subtract
6\CMP 1= [f Acc Lss 0 =» Conditional Skip
CR=CR + 1,
I\STP 1= Stop(), Halt
End next
CR = CR + 1 next Increment Program Counter
Restart I,Cycle Repeat Instruction Cycle
End
End
End

Figure 2-2: The MARK-1 Computer

2The wame rules of scope infroduced by Algol-60 are used in ISPS.

PRETERT prasagee
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Figure 2-2 shows the complete description of the Manchester University Mark-1 Computer
[Lavington, 1975]. The description consists of two sections depicting the primary memory
and the central processor. The latter is further divided into the processor state declarations
and the instruction interpretation cycle. The entire behavior of the computer is described by
a single procedure (ICYCLE) which fetches, decodes, and executes the instructions. For
additional examples of ISPS descriptions the reader should consult [Bell, 1978}

2.3 Application Dependent Information

Premature binding is the root of all evil

ISPS provides mechanisms by which an application program can receive private or
semi-private information about a computer description. The type of information that might be
needed by an application program is unbound and not, necessarily, part of the basic
semantics of the notation understood by the parser.

Application dependent information is specified via qualifiers or attribute-value pairs of the

form:

{attributetvalue,value,,, ,sattributetvalue,value,,,.}

Attributes are user (i.e. application dependent) specified identifiers; Values are either

identifiers, constants, or text strings. Qualifiers can be attached to any declaration, operation,
or operand in a description. They are checked for syntactic correctness by the I5PS parser,

but no attempt is made to ascertain their semantic correctnessl.

While writing the ISPS description, related units can be grouped under a common heading
(called a section), as shown in Figure 2.3. By dividing a description into sections, application

programs can search parse trees for specific groups of declarations (say, all floating point
operations, processor state registers, external interface data and control signals, etc.).
Sections do not define new scopes of declarations (i.e. they do not define Algol-like blocks).

A section is therefore an organizational device, not an abstraction. A section header (an
identifier enclosed in **s) can have qualifiers attached to it to permit the specification of

attributes that are common to all units declared within the section.

Delaying some of the semantic checks until application time permits a graceful evolution of

a design. New applications can be developed and experiments with machine descriptions can

1nlesn of couras, the attrbute is siready known to the parser.
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Figure 2-3: Partition of a Description into Sections

be carried out without having to modify the ISPS parser, the global data base, other
application programs, or any other existing description.

To illustrate a simple use of the extension mechanism, the following section shows the type
of information that could be conveyed to a synthesis program,

2.4 Exampie: Component Specification

Data and controt operations in ISPS suggest the existence of corresponding functional units
and data paths but not to the extent that they constrain the implementation. Thus, the
register transfer operators "<=", and "=" indicate the existence of a logical path between
registers of the machine but they do not specify an actual data path. The implementor
(human or synthesis program) is free to realize all transfers with a single, shared bus, with a
set of buses, or even with dedicated buses for each register transfer. By the same token,
arithmetic and logical operators suggest the existence of functional units. The actual number,
type, and interconnection is left open. An implementor is free to select these units in a

variety of ways, depending on the cost, speed, size, reliability, etc. required of the target
system.



The lack of restrictions in the implementation of an ISPS description might not be a
desirable feature and one might wish to constraint the implementor. For instance,
declarations of registers and functional units can be qualified with the component part to be
used:

RL03131<0:3> {Module: SN74170) register file declaration
X = Y SLO {Module:SN54198} 3 logical shift left

In some cases the attribute name is sufficient to convey the information and a simplified

mechanism is provided:

ML 0: 2551 <0: 7> {ROM} Attribute as Qualifier
ROM ML[01255)<0:7>j Attribute as Keyword

In the second example, ROM is used as if it were a keyword specifying the °type’ of the
declaration. ROM is not a real keyword in the language and the syntax allows the specification
of an arbitrary number of these pseudo-keywords prefixing a declaration. They are all
collected by the parser and stored in the global data base format as if they had been
specified inside { and }. Thus, both declarations of the Read Only Memory (M) are equivalent.

The ability to specify the behavior of an entire family of implementations allows a
manufacturer to apply different trade-otfs and produce machines aimed at different segments
of the market while preserving the basic compatibility between all the members of the family,

the ability of sharing software.

The ability to partially specify the structure and components of a system permits the
manufacturer to place some bounds on the cost and performance of the implementations. In
general, the more restricted the description, the less variability among members of the family.
These however, are design decisions which ISPS leaves entirely in the hands of the architect

of the system.

Since the behavioral aspects do not change, other by-products of the description (e.g.
compilers, program verifiers, architecture evaluations, etc) can be obtained before, after, or
even during the specificalion of the implementation information.



3. The Applications

3.1 Evaluation and Certification of Instruction Set Processors

Selecting a computing architecture is not a well established science. The problem is
particularly severe when one tries to choose an architecture meant to serve a broad range of
users whose present and future requirements are poorly understood. Recent work within the
Department of Defense has resulted in the development of a methodology to specify,
evaluate, and select candidate computer architectures for tactical applications [Burr, 1977;
Wald, 1977; Fuller, 1978; Dietz, 1978).

3.1.1 The CFA project

The concept of writing benchmarks or test programs is not a new idea in the field of
computer performance evaluation. The main difference in the approach used in the CFA
project was the departure from the traditional measured gathered from typical computer
performance studies, namely the execution speed of a test program. A computer architecture
does not specify the instruction execution times and the following alternative measures were

developed:

1. 8§ -- Number of bytes used to represent a test program.

2. M -- Number of bytes transferred between primary memory and the processor
during the execution of a test program.

3. R -- Number of byfes transferred among (selected) internal registers of the
processor during the execution of the test program.

The S measure is an indication of the amount of memory needed to represent the programs
running on a computer. For the same technology, two architectures that require different
amounts of memory would have different costs. A small S measure is a good feature of a

computer architecture.

The M and R measures characlterize the bandwidth of the data paths between the central
processor and the primary memory, and between the internal registers of the central
processor, respectively. For the same technology, a higher M measure implies a larger volume
of information that has to be transferred, thus implying 2 siower instruction rate or a costlier
implementation. Similarly, a higher R measure implies a slower instruction rate or costlier
implementation. Notice that techniques such as memory interleaving, cache memories, and
pipelines could be used to improve the performance of a system. However, these are
implementation details and are not part of the architecture. That is, two architectures with
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different M (or R) measures could be implemented using these and other speed-up
mechanisms. The relative ranking given by their M (R) measures would not change.

3.1.2 Data Collection

The experiments were conducted on the ISPS simulation facility depicted in Figure 3-1
([Barbacci, 1976b])). The process starts with the creation of an ISPS description, as shown at
the top of the figure. The ISPS parse tree is processed by a program (GDBRTM) which
generates code for an artificial machine. This machine is dubbed the Register Transfer
Machine (RTM) and its order code was selected to suit the syntax and semantics of ISPS (e.g.
there is one RTM operation for each ISPS data or control operation). The ISPS simulator is
simply a software implementation of the RTM machine.

Throughout the execution of the RTM code, the simulator keeps count of ALL activities.
These can be categorized into three classes:

1. Counting the bits read from each register or memory declared in the ISPS
description.

2. Counting the bits written into each register or memory declared in the ISPS
description.

3. Counting the number of times each procedure or labelled statement declared in
the ISPS description has been encountered (i.e. executed).

The architecture evaluation is based on the computation of the S, M, and R for a collection
of benchmark or test programs. These programs are assembled into a simutator command file
which loads the simulated memory and machine registers. Under control of the user, the
program thus loaded can be started and run to completion, at which point the activity
counters can be dumped into computer files for post-processing, as depicted in figure 3-2.

3.1.2 Architecture Certification

The 1SPS parser, the RTM code generator, and the simulator, together with a a number of
auxiliary programs {(e.g. cross-assemblers, cross-compilers, data reduction routines, etc) have
been used in several architecture evaluation projects, patterned after the CFA selection
project. The same tools have also been used to verify the correctness of the machine
descriptions by running the manufacturer’s machine diagnostics on the simulated machine
[Barbacci, 1978a).

A current research project is attempting to generate the machine diagnostics from the ISPS
description [Lai, 1979]) The difference between these two uses of the ISPS notation should
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be explained. Verifying the correctness of a machine description by treating it as one more
implementation of the machine, capable of correctly executing the manufacturer provided
diagnostics, increases our level of confidence in the evaluation results. Once a description
has been so certified, it can then be used as a procurement document, available to
second-source manufacturers [Barbacci, 1979] The second application complements and
expands this use of ISPS. Any implementation of a computer, whether based on an existing
architecture or a completely new architecture, must be certified as correct. By performing a
symbolic execution of the ISPS description ([Oakley, 1979]), a list of all architecture features
that must be present in any implementation can be compiled and used as a check list to

generate the certification programsl, as shown in Figure 3-3.

114 should be mentioned that although Oakley's work had the generation of diagnostics as the initinl goal, it was soon
evidant that the range of ite application was much broader. For inglance, we are currently interfacing the output of the
symbolic executor with the inpul required by {he Production Quality Compiler Compiler (PQCC) project [Leverett, 19791
This application is described later in this paper.
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This approach provides better coverage than the standard machine diagnostics currently in
use. Even if model dependencies must be allowed, the automatic generation of the check-list
provides a good mechanism to document and highlight departures from the architecture
specification.

3.2 Technology Relative Synthesis

The use of Large Scale Integration {LSI) has made complete processors and memories
available in a single silicon chip. Two aspects of this technological revolution are worth
discussing: 1) primitive components continue to increase in complexity, and 2) the rate of

introduction of new components continues to increase.

The increased power of the primitive components has reduced the need to descend into
the lower levels of design. There exist standard families of components that allow designers
to remain entirely within the register transfer level. While this simplifies the design task, the
rapid evolution of components on the other hand, requires an acceleration in the design
process if a new technology is to realize its potentiality. This can only be achieved through

automatic means.

Conventional design automation systems tend to be characterized by a fixed, built-in
technology and a straightforward or canonical implementation philosophy. That is, the
designer’s specification is translated into hardware specifications in a manner very similar to

a macro-expansion in an assembly language program.

The CMU RT-CAD System [Siewiorek, 1976; Parker, 1979}, Figure 3-4, attempts to eliminate
both constraints. The system accepts the description of the components as one of its inputs,
thus speeding up the incorporation of new technologies into the design process. Since the
system operates on an abstract or symbolic description of the modules, a non-existing module
set can be fed to the system for experimentation and evaluation of the potential advantages
and disadvantages of a proposed module or set of modules. The second input to the system
is an ISPS description of the behavior of the target system. This specification is first
transiated into a graph representation of behavior. By using a set of graph transformation
algorithms, this initial graph can be transformed into alternative graphs, all of which

represent the same behavior.

These alternative designs constitute points in the design space, [Barbacci, 1974]. Given
two points and a set of user goals and constraints, the design system can automatically
accept or reject an alternative design. A new design is acceptable if it is closer to the desired
goal than the design alternative from which it was derived, as depicted in Figure 3-5.
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The evaluation of alternative solutions is heavily dependent on the particular technology
used to implement the target system. Moreover, within a given technology, there are
different ways of connecting components to achieve a certain target design. Organizational
aspects are captured via a design style {Thomas, 1977]. A design style is a set of rules that
guide the interconnection of the abstract components used in the behavioral graph

representation.

Once a design style has been selected, a design style allocator {there is one for each
design style: pipelined, central accumulator, distributed arithmetic, etc} is invoked to generate
the path graph for the system [Hafer, 1978] This is a layout of the registers, functional
units, data paths, and their interconnections. It is still an abstract representation since no
physical components have been selected and bound to the abstract components used in the
path graph. The selection of the actual components is the task of the module binding phase
[Leive, 1977]

The module binding phase uses the information gathered in the previous stages as well as
information stored in the module data base to select the physical components and the order
in which they are bound to the abstract components specified in the path graph. The output
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of the module binding phase can then be evaluated and the result reported back to the
previous stages, thus closing the design loop.

Once a design is selected as the best of the alternatives that have been considered, the
module binding phase generates the necessary information that is needed by the physical
design system. This is the place where traditional design automation systems start i.e. with a
logic diagram in which components and interconnections are completely specified. As
described in [Parker, 1979}, our system interfaces with the Sandia Laboratory’s Design
Automation System [Preas, 1977). The complete system can then take an ISPS specification
as input and generate the LSI masks.

The key parameter that permits the realization of such an exploration of alternative
designs is the fact that the initial, behavioral description does not specify the actual
implementation. By not specifying the actual components, the system is free to try
alternative realizations, evaluate them, and select the best one according to the designer
goals.

3.3 Software Generation

The proliferation of instruction sets brought about by the rapidly increasing rate of
introduction of new computers demands an acceleration of the software generation process.
Not only operating systems and utility programs must be developed but also compilers and
assemblers to help the users take advantage of the newer, faster, and cheaper computers in
the market.

Some of the items in the above list have been studied for a number of years and it is
becoming a realistic goal to attempt to automate their development. In particular, assemblers
and compilers are well understood and can be automated to some degree[Wick, 1975; Catteil,
1978; Leverett, 1979].

3.3.1 Assembler Genarators

John Wick [Wick, 1375] has demonstrated the feasibility of using a formal description of an
instruction set as one of the inputs to an automatic assembler generator. The system is
capable of handling a wide variety of computers with substantially different architectures.
The two man contributions of his work were the formalization of the assémbly process and
the technology for building assemblers in a manner independent of any particular computer.
The second main contribution, and the one of more relevance to this paper was the
formalization of a method for describing the target computer to the generator. Wick’s
notation (ISP’} is an implementation of Bell and Newell’s ISP, in which through the judicious
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use of keywords and writing style guidelines, the characteristics of the machine that are
relevant to the assembly process (e.g. operation codes and mnemonics, instruction formats,
data types, etc) can be highlighted for the benefit of the assembler generator. Although Wick
did not use ISPS, his approach bears a striking resemblance to the ISPS paradigm:
application dependent information is added on to a formal machine description in such a way
that different aspects of the machine can be selectively extracted, without affecting other
applications or descriptions.

3.3.2 Compiler-Compilers

A more ambitious project, dubbed the Production Quality Compiler Compiler, or PQCC for
short [Leverett, 1379], is an investigation of the code generation process. The practical goal
of the project being the construction of truly automatic compiler-writing systems which
produce compilers that are competitive with hand generated compilers in every respect.
These are called Production Quality Compilers or PQC’s for short.

To achieve this goal, the PQCC system must operate from descriptions of both the source
language and the target computer, Figure 3-6. The PQCC project builds on work in two
areas: code optimization, and compiler-writing systems:

1. "With some notable exceptions, previous work in compiler development tools has
focused on the parsing and lexical analysis phases of compilation. Thus
"compiler-compiler” has come to be almost synonymous with "parser generator”.
We would like to extend the function of compiler-compilers, to include the
production of optimizers and code generators. We believe that
compiler-compilers will become far more popular as commercial software
development tools when this is done.

2. "A great many code optimization techniques are known and have appeared in the
literature. Nevertheless, construction of optimizing compilers is still nearly a
biack art. As a result such compilers tend to be expensive both to build and to
use. They also tend to be unreliable, in that the object code produced after
optimization may be either worse than unoptimized code or altogether wrong. We
would like to organize, even to formalize, the huge "bag of tricks" associated
with code optimization. Ultimately optimization should be done as routinely,
cheaply, and reliably as parsing” [Leverett, 1979]

Implied in the above goals is the reason for the failure of previous attempts to build useful
compiler-compilers: In order to generate good code, the target machine instruction set is built
into the system, thus preventing any reasonable degree of transportability. In those
situations were transportability has been a required feature the solution has been to
generate pseudo-machine code. For each new instruction set the pseudo-machine instructions
are then translated via macros written in the target machine language [Feldman, 1966]. While
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runable programs are produced by this technique, they are poor in terms of size and run
time efficiency. There are several reasons behind this problem: built-in preconceptions
about existing instructions, the introduction of an extra level of abstraction that must be hand
translated, and the lack of consideration for specific machine features that can do certain
things more efficiently than others.

In the PQCC project, machine independence is achieved by generating machine relative
PQC’s, that is, compilers whose code generation algorithms take advantage of the specific
target machine language, the machine being specified as a set of input/output assertions
about the format, cost, and side effects of each instruction.

| TCOoL

Program
I Parse Tree

Compiler-Compile time | Compile time

(once fcompiler) | (once/program)
|
|
ISP MOP LOP;
machine [————f machine-op TCOL ta e Code
description to TCOL machirle-op Generator
mapping mapfmg

Machine

|
!
]
: Code

Figure 3-7: Code Generator Generation {Figure 1 in [Cattell, 1978])

Code generation in a PQC is a two step procedure, as shown in Figure 3-7, [Cattell, 1978)
During compiler-compile time, the assertions about the machine instructions (Machine
OPerations or MOPs for short) are generated. A language dependent subset of these is
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selected and used to drive the actual PQC code generation phase.

The code generation phase of a PQC, uses the assertions as a library of templates. Each
template consists of a subtree pattern and a code sequence. Briefly, if a subtree of the
program (parse) tree matches the pattern, the instructions in the code sequence are emitted,
their operands being determined by the value of the pattern “parameters”. Thus, each
instruction is represented not by an algorithm to simulate it, but by a group of pre- and
post-conditions {in terms of machine state ie. the contents of various locations in the

machine) of its execution.

3.3.3 Symbolic Execution

An assertion description expresses the semantics of an instruction more directly than a
procedural description can. This has been shown not only in code generation but also in
program verification [Crocker, 1977). A procedural description on the other hand, is more
desirable in other applications (not the least important of which being human readability).
Thus, to provide a link between procedural and assertion descriptions is to provide the link
between those applications which for whatever reason prefer one flavor of description over
the other.

The feasibility of this link has been shown by John Qakley [Oakley, 1979} through the
symbolic execution of 1SPS descriptions.

"Conceptually, Symbolic Execution is just like normal program execution except that inputs
to the program are symbols {representing unknown, but fixed values) rather than numbers.
Expressions invoiving such symbols are called symbolic values. Variables on the left-hand
side, called output variables, are set to symbotlic values rather than calculated numeric

guantities. Thes symbolic output really represent output assertions...

"When an ISPS conditional statement, an IF or DECODE, is executed symbolically, the
predicate usually involves symbolic values. Gince the truth value of the predicate will be
determined by the numeric value eventually given to the symbolic inputs, it is not generally
possible to determine which branch out of a conditional statement will be executed during
symbolic execution. Consequently, each branch must be executed, one at a time, using
backtracking to return to unexecuted branches. Associated with each branch is the symbolic
path condition, taken from the IF or DECODE predicate, that must be true for this particular
branch to be taken. This symbolic path condition is called an input assertion since it
represents a constraint on the possible values that the input symbols can have if this branch
is to be taken." [Oakley, 1979]
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By taking the instruction cycle procedure as the root node, the tree of all possible
execution paths throughout the procedural machine description can be traversed. Each
executfion path defines a functional instruction, completely described in terms of its input and
1 These are the inputs required by the PQCC.

cutput assertions

3.4 Reliability and Fault Tolerance

At the time of this writing (May, 1979) an entire new area of applications for ISPS
descriptions is being developed at CMU. The simulation of digital circuits under faults has
been used with great success in the development of fault tolerant digital systems [Avizienis,
1978] We are currently trying to extend these techniques to a higher level of design, where
the structural information is not available.

ISPS Description

!

Diagnostic
Program
Target Machine Fault
Assembler Simi’ator Description
Trace
Analysis

s

Coverage Information

Figure 3-8: Functional Fault Simulation

1Thia is a very rough skeich of the process followed in Oakley's aystem. In parlicular, the diatinction between a
functionsl instruction and what most programmers understand as a machine instruction is » critical aspect of his work.
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The ISPS simulator is being extended to allow the specification of a variety of data and
control faults, of a permanent or transient nature, Figure 3-8. Thus, a user will be able to
specify stuck-at faults and shorts in the registers, data paths, functionat units, and control
elements of the machinel.

The usefulness of simulating and studying faults at a level removed from the physical
machine becomes apparent when one considers the potential uses of the results. By injecting

faults at the ISP level, we are in fact simulating the effect of a fault across all

implementations.

To see how this is possible, consider the effect of the following fault description: “"The
sign bit of Register b is always 0". If we translate this fauit (stuck-at-0) into its
corresponding physical realization, we have to take into consideration many details that are
peculiar to one implementation: board and pin position, electrical properties (what does O
mean?), gate delays, etc. Ali of these attributes vary from implementation to implementation
and little can be carried over to other models. At the ISP level the fault is clearly defined and
its effect (e.g. make all data coming from register 5 positive) can be readily traced. By
running test programs, the effect of faults in the instruction set processor can be observed
at the programming level. 1f the test programs have diagnostic capabilities, the identification
of the faulty function can be used to narrow down the identification of the physical fault.
Whiie this might not be detailed enough to allow the isotation of the faulty gate, will be
detailed enough to isolate the group of components that implement the sign bit of register 5.
Given the ever decreasing costs of hardware, this type of diagnostic ability might be enough
to allow the replacement of the faully board by a new one and this might be the extend of
the repair. For certain applications, where repairs are not possible (e.g. aerospace
computers), simulation of the fault tolerance characteristics of the programming level might be
used to design systems in which the critical components (i.e. those implementing critical
functions) are replicated. It also permits the design of software that adapts to the presence
of faults (e.g. by replication or relocation, by changing the register allocation scheme, by

using alternative algorithms, etc.).

L1t should be clerified that we are referring 1o the abstract date paths, funclionsl units, stc. since the actual physical
characterigtics are not specified in the ISPS description.
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3.5 Conclusions

In this paper we present some applications in the area of automatic design of both
hardware and software in which a computer description language serves as the vehicle for
specifying the behavior of the target system. The goal is to achieve a unified environment
for research on multiple application areas. We visualize an environment which will support
multipte, concurrent users, investigating different aspects of the problem domain. The
environment should permit the implementation of application programs in different
programming languages which manipulate machine descriptions written in different computer
description languages. So far, application programs to process GDB trees have been written
in BLISS, LISP, SAIL, and SIMULA-67. The only machine description language in use is ISPS
but there are no inherent limitations in the GDB format that would prevent translating other
machine description languages into the same data base use by the application programs.
Interestingly enough, these application programs can include translators from GDB trees into
other machine description languages. This would permit us to use and expand on previous
work based on other machine description languages.
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I. Appendix: Invocation and Dynamic Control of Units

4.1 Invocation of Units

To illustrate how units of varying complexity can be described in the language, we will

describe an arithmetic unit, its interface, and its use, Figure 4-1.

ALU(A<0:15>,B<0t15>,F\Function<3:0>)<0:15> 1=

BEGIN

DECODE F =>
BEGIN
O\Add := ALU = A + B,
1\Sub 1= Alu = A - B,
2\Not,A := Alu = Not A,
3\Not.B = Alu = Not B,
a\Dr t= Alu = A Or B,
148\Zero 1= Alu = 0,
15\Dnes := Alu = "FFFF

END
END,

Figure 4-1: The Behavior of an Arithmetic Unit

The interface to the arithmetic unit consists of four carriers. Three of these carriers (A, B,
and F) are used to receive and retain the input operands and the function code. The fourth
carrier has, by convention, the same name as the functional unit (ALU)I. Pictorially, the
arithmetic unit described above could be conceived to have the structure depicted in Figure
4-2,

The arithmetic unit can be used to specify the behavior of other entities. Thus, assume that
somewhere else in the description we encounter a line of the form:

[ next X = AIU(Y,Z,5) next ...

Further assume that X, Y, and 7 have been declared elsewhere (assume they are registers).
The example indicates that the input carriers of the arithmetic unit are loaded with the

Ipor gimplicity we are appealing 1o the intuition of the reader and we use terms auch as “input carrier® or "output
carrier”. The language allows the specification of muliple input, oulput, or even bidirectional carriera, as we shall see in
Inter examples.
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A'16 A16 A3

Activate A B F
______ Y —— Data
Commm e n Arithmetic Unit | Control
Complete
ALU
A16

Figure 4-2: Arithmetic Unit Interface

contents of Y, Z, and the constant 5. The unit is then invoked and when its operation has
been completed, the result appears in the output carrier (ALU<0:15>). The transfer operation
can then proceed. Pictorially, the operation is depicted in Figure 4-3(a).

The output carrier from the arithmetic unit can be used directly, as in:

Zec = Alu Egql O

A condition code flag {Zcc) is set based on the result of the last operation performed by
the arithmetic unit. The absence of an invocation (syntactically represented by a possibly
empty, list of carrier names or expressions enclosed in parenthesis) indicates that this use of
the arithmetic unit does not activate the bshavioral part.

By defauit, the input carriers to the arithmetic unit (A, B, and F} can retain the values
transmited during the invocation. These values are retained throughout the activation of the
unit and are not affected by any changes in the values contained in the initial sources (Y and
Z). Some arithmetic units are build this way, and the example clearly depicts the behavior.
This is not however, the only way to build the unit. For instance, one could conceive a
situation in which for cost or speed considerations, the arithmetic unit is not to have its own
storage. Instead, it must operate directly on the original carriers used at the invocation site.
This is easily described in ISPS as:
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ALUCREF A<0:15>, REF B<0:15>, F\Function<310>)<0115> 1=
BEGIN I FEENERNENN ] END!

When the keyword REF {short for reference) is used to prefix the name of a carrier, the
carrier is said not to have any retention properties and is simply a synonym for the actual
carrier used in an invocation. When invoked, the arithmetic unit operates directly on Y and Z
(F is still latched), Figure 4-3(b). If Y and Z are being used concurrently somewhere else,
their value may change during the activation of the arithmetic unit and the result of the

invocation might be unpredictable {caveat emptor).

The notation allows the specification of more complicated patterns of behavior. In the
previous examples, the caller of the arithmetic unit does not receive the result until the unit
has completed its operation. In some systems, speed is a critical factor and perhaps waiting
for an operation to complete is not desirable. Let’s assume that we have the situation where
the arithmetic unit is too slow for the caller to wait for the completion of the operation.
Instead, we want to be able to start the unit and proceed doing some other operations until
some time later when the result will be available. This is easily described by modifying the
description of the unit as follows:

PROCESS ALU(A<0:15>, B<0:15>, F\Function<3:10>)<0115> :=
BEGlN [ N N NN N NN END

The keyword PROCESS indicates that the unit can operate independently of the caller, and
moreover, that the caller does not have to wait for the completion of the activation, Figure
4-4(a)..

The new unit can now be used as in:

..., next ALU(Y,2,5) next ,,.. next X = ALUs Zcc = ALU EQL ©

When a PROCESS-like unit is invoked, it is possible to execute other operations while the
unit completes its activation, as depicted in Figure 4-4(a). Notice that it is not necessarily
true that the unit has finished by the time its carrier is used (X = ALU). If the designer has
been careful to allow for sufficient time to elapse before using the output of the unit, no
problems arise. In situations when not enough work is available to overlap the operation of
the unit, some other mechanism must be used to synchronize the operatiéns of the system.
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Let’s examine one method (by no means the only one): Assume the existence of a flag which
is set whenever the arithmetic unit completes its operation, Figure 4-4(b). The invocation of
the unit and the use of the result can now be described as follows:

ess ALUCY,Z,5) next

seensss DNEXL

Hait(alu,done) next

X = ALU; 2cc = ALU Eql 0 next

and the arithmetic unit is, of course, modified as follows:

PROCESS ALU(A<0:15>, B<0:15>, F<3:10>)<0:15> i=
BEGIN
ALU,done = 0 next
DECODE F =»
BEGIN

END next
ALU.done = 1
END

When concurrent activations of units (whether they have the PROCESS attribute or not) can
appear, it might not be advisable to start a new activation before a prior one is completed.
To protect the activities of a unit, the keyword CRITICAL can be used as a prefix to the

declaration of the unit, as in:

CRITICAL ALU(A<D:15>, B<0115>, F<3:0>)<0:15> t=
BEGIN ,,...., END,

A CRITICAL entity is protected by an arbitration mechanism which delays concurrent
activations until a prior activation is completed.

The different ways of specifying the arithmetic unit used in these examples suggests the
parsimonious nature of the notation. A careful attempt has been made not to overburden the
language with a multiplicity of syntactic constructs; similar concepts are expressed in similar
syntax. Thus, regardiess of the specific nature of the arithmetic unit, the invocation
mechanism is the same [ALU(..)] The unit declaration provides the rest of the information via
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its qualifiers (PROCESS, CRITICAL, REF, etc.)

The same characteristics appear in the specification of the control operations, specially in
the RETURN-like operators described in the following section.

4,2 Dynamic Control

In programming languages, errors and exceptional conditions detected by =z called
procedure are handled by the caller. Typically, the procedure will set some global variable to
a termination code which must then be examined by the caller. In a step wise refinement
process, new procedures and {possibly) new error conditions can be introduced. It is also
the case that one might want to rewrite a procedure, replacing a previous version. In either
case, it is not a good practice to have to retrofit the unmodified code to accommodate for

new error conditions,

ISPS, in addition to the standard programming-like return mechanisms, allows the called
procedure to determine where control is to return, bypassing the caller. This is not achieved
through a goto (there is none in the language), instead, ISPS provides a generalized return
mechanism that allows the callee to specify the termination of multiple levels of invocation, up

to a level where the error condition can be handled.

Three control operations, LEAVE, RESTART, and RESUME allow the writer of an ISPS
description to model the modes of termination of an entity activation. Of the three, only the
first one bears resemblance to a programming-like return operation.

The simplest use of LEAVE is to indicate a return or completion of an activation, Figure
4-5(a). The format of this operation is:

LEAYE unltname

The identifier following the operator must be the name of a unit, not necessarily a
lexicographically enclosing one: The only condition that must be met is that the operation
must occur inside the activation of the unit named in the operationl, Figure 4-5(b). The
LEAVE operation terminates the activation as it had been completed. In addition, any
activations initiated during the execution of the activation to be terminated and not yet
completed are also terminated.

The example in Figure 4-6 shows the use of LEAVE in a dynamic context.

liufmida means both static snd dynamic nesting. The former is defined by the lexicographical nesting of the entities.
The Iatier is defined by the nesting of enlity aclivations.
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P1(..... )=
Begin
2 P2(..... )
End
P2(..... )=
Begin

.....

(c) Static RESTART

Figure 4-5: Static and Dynamic Control
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End S .
P2(..... ) =
Begin
—— Leave P1
.~ End .

(b) Dynamic LEAVE

Pl( ----- ) =
Begin
2 P2(..... )
..... (____
End
Pe(..... ) 1=
Begin
3 —— Resume Pl
L~ End

{e) Dynamic RESUNT
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Interpreter =

Begin
TR next
Icycle() next Invoke Instruction Interpretation
1¢f Error Egql 1 => Begin ,,,, End next Error Handler
End,
Icycle :=
Begin
PC = PC + 2 next Increment Program Counter
IR = Rword(PC) next Instruction Fetch
Decode IR<0:3> => Instruction Decoding
Begin
ACC = ACC + Rword(I1R<4:15>) Data Fetch
End,
Rword(Addr<0:11>)<0:15> =
Begin
14 Addr Gtr Upper,Bound => : Address Boundary Check
(Error = 1 next Leave Icycle) next Abort
Rword = MP[ Addr] Memory Read
End,

Figure 4-6: Example of Dynamic Leave Operation

In the example, INTERPRETER activates ICYCLE which fetches, decodes, and executes the
instructions. In doing so, ICYCLE activates RWORD which is used to access the memory (MP)
of the machine. RWORD checks that the memory address is in bounds before performing the
access operation. If a boundary error is detected, a flag (ERROR) is set and the rest of the
operation of ICYCLE is aborted (RWORD returns directly to INTERPRETER, at the point where
it activated ICYCLE). Notice that we could have let ICYCLE handle the error by terminating
RWORD with 'LEAVE RWORD’. However, this would have meant that the ICYCLE procedure had
to check the error flag (ERROR) after every call to RWORD. Depending on the size or
complexity of the description, this might be undesirable.
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The other two ISPS control operators, RESUME and RESTART have a format similar to that
of the LEAVE operator:

RESUME unitname
RESTART unitnanme

The RESUME operator specifies the name of a unit to which control is to return. The
RESTART operator terminates and re-activates the unit named in the operation. Figures
4-5(c), 4-5(d}), and 4-B(e) illustrate the general case of these operators. It is a matter of
style and of course, of the problem on hand, to decide which mechanism is more descriptive
or appropriate.

The conditions for aborting multiple levels of activation might not be errors or unpredicted
situations at all, as the previous example implies; they might very well be part of the normal
operation of the machine. The example in Figure 4-7 illustrates this situation via the
RESTART operator.

INTERPRET depicts the instruction interpretation cycle of the DEC PDP-8. The normal
sequence of operations is to fetch an instruction from memory, increment the program
counter (PC), and decode/execute the instruction. After each instruction has been completed,
the processor tests for the presence of pending interrupts. If interrupts are enabled and
pending, the processor saves the program counter in location O and starts executing
instructions at location 1 (the interrupt handling routine).

INPUT.QUTPUT is invoked to perform input and output operations and also to control the
interrupt mechanism. Two 1/0O operations are of particular interest. 10F is used to turn off
the INTERRUPT.ENABLED flag, thus preventing the processor from trapping on future
interrupt requests. This operation would typically be the first instruction of the interrupt
handling routine. JON enables interrupts. It typically occurs at the end of the interrupt
handling routine. However, its effect must be delayed for one instruction, to allow the
processor to execute one more instruction (the return from the interrupt handler). If
interrupts were to be allowed immediately after the ION operation, any pending interrupts
would cause the processor to save the program counter {which is pointing to the instruction
following the ION, the return instruction) into location 0, thus destroying its initial value (.the
user’s program counter). The delay is achieved by aborting the rest of the instruction cycle
(the test for pending interrupts) and RESTARTing the cycle from the beginning. This will allow
the return instruction to be executed. Pending interrupts can then be trapped in the user’s

context, and can be serviced in the normal manner.
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interpret 1= PDP-8 Instruction Interpretation Cycle
Begin
Repeat Begin
IR = M[PC] Next Instruction Fetch
PC = PC + 1 Next Increment Program Counter
Decode op => Decode and Execute
Begin
cens opcodes 0 through 5
#6\iot t= Input,output(),
sane opcode 7
End Next
I1¥ interrupt,enabled And interrupt,request => interrupts?
Begin
M[0] = PC Next Save Program Counter
PC =1 Branch to location 1
End
End
End,
input,output =
Begin
Decode IR<3:11> =»
Begin
#001\ion :=
Begin Turn Interrupt ON
interrupt,enabled = 1 Next Enable Interrupts
Restart interpret Delay Interrupt Checks
End,
#002\iof :=
Begin Turn Interrupt OFF
interrupt,enabled = 0
End,
T other (/o operations
End
End,

Figure 4-7: PDP-8 Interrupt Control
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