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ABSTRACT 

Some scientific inference tasks (including mass spectrum identification 
[Dendral] , medical diagnosis [Mycin], and math theory development 
[AM]) have been successfully modelled as rule-directed search 
processes. These rule systems are designed quite differently from 
"pure production systems". By concentrating upon the design of one 
program (AM), we shall show how 13 kinds of design deviations arise 
from (i) the level of sophistication of the task that the system is 
des igned to perform, (U) the inherent nature of the task, and (lit) the 
designer's view of the task. The limitations of AM suggest even more 
radical departures from traditional rule system architecture. All these 
modifications are then collected into a new, complicated set of 
constraints on the form of the data structures, the rules, the 
interpreter , and the distribution of knowledge between rules and data 
structures. These new policies sacrifice uniformity in the interests of 
c lar i ty , efficiency and power derivable from a thorough 
characterization of the task. Rule systems whose architectures 
conform to the new design principles will be more awkward for many 
tasks than would "pure" systems. Nevertheless, the new architecture 
should be significantly more powerful and natural for building rule 
systems that do scientific discovery tasks. 
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1. T h e Basic Argument 

Although rule -based computation was originally used for formal and systems purposes 
[Post,Markov,Ftoyd], researchers in Artificial Intelligence (AI) found that the same 
methodology was also useful for modelling a wide variety of sophisticated tasks. Many 
of these early A I rule-based programs — called "production systems" — seVved as 
information processing models of humans performing cognitive tasks in several domains, 
(digit recall [19], algebra word problem solving [1], poker playing [23], etc. [16,18]). 

T h e r e w e r e many design constraints present in the classical formal rule based systems. 
Many of these details were preserved in the AI production rule based programs (e.g., 
forcing all state information into a single string of tokens). But there were many 
changes. The whole notion of "what a rule system really is" changed from an effect ive 
problem statement to a tendency to solve problems in a particular way. One typical 
coro l lary of this change of v iew was that instead of no external inputs whatsoever , 
there was now a presumption of some "environment" which supplied new entries into 
the token sequence. In the next section (see Figure 1) is an articulation of these neo 
classical (i.e., A I circa 1973; see [7]) principles for designing "pure" production 
systems. 

Due to the early successes, psychological applicability, and aesthetic simplicity 
af forded by production systems, AI researchers began to write rule systems (RSs) to 
per form informal inductive inference tasks (mass spectrum identification [4] , medical 
diagnosis [23] and consultation dialogue [6], speech understanding [14], non-resolut ion 
theorem proving [0] , math research [13], and many more). 

Yet it seems that most of the large, successful RSs have violated many of the "pure 
product ion system" guidelines. The purpose of this paper is to show that such 
"except ions" were inevitable, because any system satisfying the neo-classical design 
constraints, though universal in principle, is too impoverished to represent complex 
tasks for what they are. 

The essence of the neo-classical architecture is to opt for simplicity in all things, since 
there is v e r y little one can say about RSs in general. As more becomes known about 
the task of the RS, it turns out that some of that new knowledge takes the form of 
specif ic constraints on the design of the RS itself (as distinct from what specific 
knowledge we choose to represent within that design). Sometimes a new constraint 
d i rect ly contradicts the early, domain-independent one; sometimes it is merely a 
softening or augmentation of the old constraint. 

A f t e r examining the "pure" architecture, we shall examine in detail the design of one 
particular rule system which discovers and studies mathematical concepts. Deviations 
from the pure architecture will be both frequent and extreme. 

Subsequent sections will analyze these differences. It will be shown that each one is 
plausible — usually for reasons which depend strongly on the "scientific d i scovery" 



Lenat & Harris 

domain of the RS. Some of the limitations of this RS will be treated, and their 
elimination will be seen to require abandoning still more of the original design 
constraints. 

When these modifications are collected, in the final section, we shall have quite a 
d i f ferent set of principles for building RSs. Not only will naivete have been lost: so 
will general i ty (the breadth of kinds of knowledge representable, the totality of 
tractable tasks). Rule systems conforming to the new design will be awkward for many 
tasks (just as a sledge hammer is awkward for cracking eggs). However, they should 
be significantly more powerful and natural for scientific inference tasks. 

2. Early Design Constraints 

B y a rule system (RS) we shall mean any collection of condition-action rules, together 
w i th associated data structures (DS; also called memories) which the rules may inspect 
and alter. There must also be a policy for Interpretation: detecting and firing relevant 
rules. 

T h e s e definitions are deliberately left vague. Many details must be specified fori any 
actual rule system (e.g., What may appear in the condition part of a rule?). This 
specif ication process is what we mean by designing a RS. 

F igure 1 contains an articulation of the design of the early general -purpose A I 
product ion rule systems.. Notice the common theme: the adequacy of simplicity in all 
dimensions. 

FIGURE 1: Neo-classical Rule System Architecture 

1. Principle of Simple Memories. One or two uniform data structures define 
sufficient memories for a rule system to read from and write Into. The 
format for entries In these structures Is both uncomplicated and unchanging. 

2. Principle of Simple DS Accesses. The primitive read and write operations are 
as simple and low-level as possible; typically they are simply a membership-
test type of read, and an Insert-new-element type of write. More 
complicated, algorithmic operations on the memories are not available to the 
rules. 

3. Principle of Isolated DS Elements. Elements of the uniform DS cannot point 
to (parts of) other elements. This follows from the preceding principle: If we 
aren't allowed to chase pointers, there may as well not be any. 

4. Principle of Continuous Attention. In addition to the one or two simple data 
structures, there may be an external environment which continuously Inserts 
stimuli Into the DS. The Interleaving of stimuli and internally generated 
symbols Is managed quite trivially: (a) The stimuli are simply Inserted Into 
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the DS as new elements; (b) Each rale is so small and quick that no 
"interruption" mechanism is necessary. The interpreter may ignore any 
suddenly-added stimulus until the current rule finishes executing. The RS 
may be viewed as "continuously" attending to the environment. 

5. Principle of Opaque Rules. Rules need not have a format inspectable by 
other rules, but rather can be coded in whatever way is convenient for the 
programmer and the rule interpreter; i.e., the set of rules is not treated as 
one of the RSs data structures. E.g., the condition parts of rules may be 
barred from fully analyzing the set of productions [22J, and the action parts 
of rules may not be.allowed to delete existing rules [24]. 

6. Principle of Simple Rules. Rules consist of a left- and a right-hand side 
which are quite elementary: The left hand side (lbs* situation 
characterization, IF-part, condition) is typically a pattern-match composed 
with a primitive DS read access, and the right hand side (rhs, consequence, 
THEN-part, action) is also simply a primitive DS write access. There is no 
need for sophisticated bundles of DS accesses on either side of a rule. Thus 
several extra rules should be preferred to a single rule with several actions. 

7. Principle of Encoding by Coupled Rules. A collection of interrelated rules is 
used to accomplish each subtask; i.e., wherever a subroutine would be used in 
a procedural programming language. For example, programming an 
iteration may require many rules "coupled" by writing and reading special 
(Le., otherwise meaningless) loop control notes in the data structure. 

8. Principle of Knowledge as Rules. All knowledge of substance should be, can 
: be, and is represented as rules. This includes all non-trivial domain-

dependent information. The role of the DS is just to hold simple descriptive 
information, intermediate control state messages, recent stimuli from the 
environment, etc. 

9. Principle of Simple Interpretation. The topmost control flow in the RS is via 
a simple rule interpreter. After a rule fires, it is essential that any rule in 
the system may potentially be the next one to fire (i.e., it is forbidden to 
locate a set of relevant rules and fire them off in sequence). When the rhs of 
a rule is executed, it can (and frequently will) drastically alter the situation 
that determined which rules were relevant. 

10. Principle of Closure. The representations allowed by (1-9) are sufficient and 
appropriate for organizing all the kinds of knowledge needed for tasks for 
which a given RS is designed. 

This design was plausible a priori, and worked quite well for its initial applications |(the 
simulation of simple human cognitive processes [16,19,24]). But is this design prbper 
for any RS, regardless of its intended task? In particular, what about scientific 
inference tasks? Over the years, several rule-based inference systems for scientific 
tasks have been constructed. With each new success have come some deviations from 
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the above principles [7]. Were these mere aberrations, or is there some valid reason 
for such changes in design? 

We claim the latter. The task domain — scientific discovery ~ dictates a new and 
quite different architecture for RSs. To study this phenomenon, we shall describe, in 
the next section, one particular RS which defines new mathematical concepts, studies 
them, and conjectures relationships between them. Subsequent sections will explore 
the deviations of its design from the neo-classical constraints in Figure 1. 

3. 'AM1: A Rule System For Math Theory Formation 

A recent thesis [13] describes a program, called "AM", which gradually expands a base 
of mathematical knowledge. The representation of math facts is somewhat related to 
Actors [10] and Beings [12] in the partitioning of such domain knowledge into 
ef fect ive , structured modules. Departing from the traditional control structures usually 
associated with Actors, Beings, and Frames [15], AM concentrates on one "interesting" 
mini - research question after another. These "jobs" are proposed by — and rated by — 
a collection of approximately 250 situation-action rules. Discovery in mathematics is 
modelled in AM as a rule-guided exploration process. This view is explained below in 
Section 3.1 (See also [21].) The representation of knowledge is sketched next, fol lowed 
b y a much more detailed description of the rule-based control structure of AM. 
Finally, in Section 3.5, the experimental results of the project are summarized. 

3.1. Discovery in Mathematics as Heuristic Rule-Guided Search 

The task which AM performs is the discovery of new mathematics concepts and 
relationships between them. The simple paradigm it follows for this task is to maintain 
a graph of part ial ly -developed concepts , and to obey a large collection of "heuristics" 
( rules which frequently lead to discoveries) which guide it to define and study the 
most plausible thing next. 

For example, at one point AM had some notions of sets, set-operations, numbers, and 
simple arithmetic. One heuristic rule it knew said "If / is an interesting relation, Then 
look at its inverse". This rule fired after AM had studied "multiplication" for a while. 
The rhs of the rule then directed AM to define and study the relation "d iv isors -o f" 
(e.g., d iv isors -of (12) * {1,2,3,4,6,12}). Another heuristic rule which later f i red said "7/ 
f is a relation from A into B% then it's worth examining those members of A which map 
into extremal members of 8". In this case, f was matched to "divisors-of" , A was 
"numbers", B was "sets of numbers", and an extremal member of B might be, e.g., a 
v e r y small set of numbers. Thus this heuristic rule caused AM to define the set of 
numbers with no divisors, the set of numbers with only 1 divisor, with only 2 div isors , 
etc. One of these sets (the last one mentioned) turned out subsequently to be quite 
important; these numbers are of course the primes. The above heuristic also directed 
A M to study numbers with ve ry many divisors; such highly-composite numbers w e r e 
also found to be interesting. 
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This same paradigm enabled AM to discover concepts which were much more primitive 
(e.g., cardinality) and much more sophisticated (e.g., the fundamental theorem of 
arithmetic) than prime numbers. We shall now describe the AM program in more detail. 

3,2. Representation of Mathematical Knowledge 
i 

What exactly does it mean for AM to "have the notion of" a concept? It means that! AM 
possesses a frame-like data structure for that concept. For instance, here is how one 
concept looked after AM had defined and explored it: 

FIGURE 2: A Typical Concept 

NAME: Prime Numbers 
DEFINITIONS: 

ORIGIN: Number-of -div isors-of(x) - 2 
PREDICATE-CALCULUS: Prime(x) s (Vz)(z|x -» z = l XOR z=x) 
ITERATIVE: (for x > l ) : For i from 2 to x -1 , -(i|x) 

EXAMPLES: 2, 3, 5, 7, 11, 13, 17 
BOUNDARY: 2, 3 
BOUNDARY-FAILURES: 0, 1 
FAILURES: 12 

GENERALIZATIONS: Numbers, Numbers with an even number of divisors, 
Numbers with a prime number of divisors 

SPECIALIZATIONS: Odd Primes, Prime Pairs, Prime Uniquely-addables 
CONJECS: Unique factorization, Goldbach's conjecture, Extrema of Div isors-of 
ANALOGIES: 

Maximally-divisible numbers are converse extremes of Divisors-of 
INTEREST: Conjectures tying Primes to Times, to Divisors-of, to closely related ops 
WORTH: 800 

3.3. Top-level Control: An Agenda of Promising Questions 

A M was initially g iven a collection of 115 core concepts, with only a few facets (i.e., 
s lots) filled in for each. AM repeatedly chooses some facet of some concept, and tries 
to fill in some entries for that particular slot. To decide which such job to work on 
next , AM maintains an agenda of jobs, a global queue ordered by pr ior i ty [2] . A 
typical job is "Fill-in examples of Primes''. The agenda may contain hundreds of 
entr ies such as this one. AM repeatedly selects the top job from the agenda and tries 
to ca r r y it out. This is the whole control structure! Of course, we must still explain 
how AM creates plausible new jobs to place on the agenda, how AM decides which job 
will be the best one to execute next, and how it carries out a job. 

If the job were "Fill in new Algorithms for Set-union", then satisfying it would mean 
actually synthesizing some new procedures, some new LISP code capable of forming 
the union of any two sets. A heuristic rule is relevant to a job if and only if executing 
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that rule brings A M closer to satisfying that job. Potential relevance is determined a 
priori b y where the rule is stored. A rule tacked onto the Domain/range facet of the 
Compose concept would be presumed potentially relevant to the job "Fill In the 
Domain of I nsert-Q-Delete". The Ihs of each potentially relevant rule is evaluated to 
determine whether the rule is truly relevant. 

Once a job is chosen from the agenda, AM gathers together all the potentially .relevant 
heuristic rules — the ones which might accomplish that job. They are executed, and 
then A M picks a new job. While a rule is executing, three kinds of actions or effects 
can occur : 

(I) Facets of some concepts can get filled in (e.g., examples of primes may actually be 
found and tacked onto the "Examples" facet of the "Primes" concept). A typical 
heuristic rule which might have this effect is: 

// examples of X are desired, where X Is a kind of Y (for some more general 
concept Y), 

Then check the examples of Y; some of them may be examples of X as welL 

For the job of filling in examples of Primes, this rule would have AM notice that 
Primes is a kind of Number, and therefore look over all the known examples of 
Number. Some of those would be primes, and would be transferred to the 
Examples facet of Primes. 

(li) New concepts may be created (e.g., the concept "primes which are uniquely 
representable as the sum of two other primes" may be somehow be deemed 
w o r t h studying). A typical heuristic rule which might result in this new concept 
is: 

// some (bat not most) examples of X are also examples of Y (for some 
concept Y), 

Then create a new concept defined as the intersection of those 2 concepts (X 
and Y). j 

! 
Suppose AM has already isolated the concept of being representable as the sum 
of two primes in only one way (AM actually calls such numbers "Uniquely -pr ime-
addable numbers"). When AM notices that some primes are in this set, the above 
rule will create a brand new concept, defined as the set of numbers which are 
both prime and uniquely prime addable. 

(ill) New jobs may be added to the agenda (e.g., the current activity may suggest that 
the following job is worth considering: "Generalize the concept of prime 
numbers"). A typical heuristic rule which might have this effect is: 

// very few examples of X are found, 
Then add the following job to the agenda: "Generalize the concept X": 

T h e concept of an agenda is certainly not new: schedulers have been around for a long 
time. But one important feature of AM's agenda scheme is a new idea: attaching ~ and 
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using — a list of quasi-symbolic reasons to each job which explain why the job is 
w o r t h considering, why it's plausible. It is the responsibility of the heuristic rules to 
include reasons for any jobs they propose. For example, let's reconsider the heuristic 
rule mentioned in (ill) above. It really looks more like the following: 

If very few examples of X are found, 
Then add the following job to the agenda: "Generalize the concept X", for the 

following reason: "X's are quite rare; a slightly less restrictive 
concept might be more interesting". 

If the same job is proposed by several rules, then several different reasons for it may 
be present . In addition, one ephemeral reason also exists: "Focus of attention" [9] . 
A n y jobs which are related to the one last executed get "Focus of attention" as a 
bonus reason. A M uses all these reasons to decide how to rank the jobs on the 
agenda. Each reason is given a rating (by the heuristic which proposed it), and the 
ratings are combined into an overall priority rating for each job on the agenda. The 
jobs are ordered by these ratings, so it is trivial to select the job with the highest 
rating. Note that if a job already on the agenda is re -proposed for a new reason, then 
its p r io r i t y will increase. If the job is re-proposed for an already-present reason, 
h o w e v e r , the overall rating of the job will not increase. This turned out to be an 
important enough phenomenon that it was presented in [13] as a necessary design 
constraint. 

A M uses each job's list of reasons in other ways. Once a job has been selected, the 
quality of the reasons is used to decide how much time and space the job will be 
permitted to absorb, before AM quits and moves on to a new job. Another use is to 
explain to the human observer precisely why the chosen top job is a plausible thing 
for A M to concentrate upcfn. • % 

3.4. Low-level Control: A Lattice of Heuristic Rules 

The hundreds of concepts AM possesses are interrelated in many ways. One main 
organizat ion is that provided by their Generalization and Specialization facets. The 
concepts may be viewed as nodes on a large lattice whose edges are labelled 
Genl/Spec. The importance of this organization stems from various heritability 
proper t ies . For example, Spec is transitive, so the specializations of Numbers include 
not only Primes but all its specializations as well. 

Let us descr ibe a second, ve ry important heritability property . Each of the 250 
heurist ic rules is attached to the most general (or abstract) concept for which it is 
deemed appropriate. The relevance of heuristic rules is assumed to be inherited by all 
i t s specializations. For example, a heuristic method which is capable of inverting any 
function will be attached to the concept "Function"; but it is certainly also capable of 
invert ing any permutation. If there are no known methods specific to the latter job , 
then A M will follow the Genl links upward from Permutation to Bijection to Function..., 
seeking methods for inversion. Of course the more general concepts' methods tend to 
be weaker than those of the specific concepts. 
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In other words , the Genl/Spec graph of concepts induces a graph structure upon the 
set of heuristic rules. This permits potentially relevant rules to be located efficiently. 
Here is one more example of how this heritability works in practice: Immediately after 
the job T i l l in examples of Set-equality" is chosen, AM asks each generalization of 
Set -equa l i t y for help. Thus it asks for ways to fill in examples of any Predicate, any 
Ac t i v i t y , any Concept, and finally for ways to fill in examples of Anything. One such 
heurist ic rule known to the Activity concept says: "// examples of the domain of the 
activity f are already known, Then actually execute f on some random members of its 
domain." Thus when AM applies this heuristic rule to fill in examples of Set-fequality, 
its Domain facet is inspected, and AM notes that Set-equality takes a pair of sets as its 
arguments. Then AM accesses the Examples facet of the concept Set, where it finds a 
large list of sets. The Ihs is thus satisfied, so the rule is fired. Obeying the heuristic 
ru le , A M repeatedly picks a pair of the known sets at random, and sees if they satisfy 
Set -equa l i t y (by actually running the LISP function stored in the Algorithms facet of 
Set -equal i ty ) . While this will typically return False, it will occasionally locate — by 
random chance — a pair of equal sets. 

Other heuristics, tacked onto other generalizations of Set-equality, provide additional 
methods for executing the job "Fill in examples of Set-equality." A heuristic stored on 
the concept Any-concept says to symbolically instantiate the definition. After spending 
much time manipulating the recursive definition of Set-equality, a few trivial examples 
(like { } = { } ) are produced. Notice that (as expected) the more general the concept is, 
the weaker (more time-consuming, less chance for success) its heuristics tend to be. 
For this reason, AM consults each concept's rules in order of increasing generalization. 

3.5. Behavior of this Rule System 

As the preceding four sections indicate, the dynamic behavior of AM was as follows: a 
j o b is chosen from the agenda, potentially relevant rules are located by their position 
in the Genl/Spec lattice, their Ihs's (left-hand sides) are evaluated to find those which 
actually t r igger , they are then executed (in order of decreasing specificity) until they 
are all executed (or until some local, self-imposed limit on time or space is exceeded), 
and the cycle repeats. AM has a modest facility that prints out a description of these 
activit ies as they occur. Here is a tiny excerpt of this self-trace monologue. 

** Job 65: ** Fill in Examples of the concept "Divisors-of". 

3 Reasons: (1) No known examples of Divisors-of so far, 
(2) TIMES, which is related to Divisors-of, is now ve ry interesting. 
(3) Focus of attention: AM recently defined Divisors-of.. 

26 examples found, in 9.2 seconds, e.g., Divisors-of(6)={1 2 3 6}. 
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** Job 66: ** Consider numbers having small sets of Divisors-of. 

2 Reasons: (1) Worthwhile to look for extreme cases. 
(2) Focus of attention: AM recently worked on Divisors-of. 

Filling in examples of numbers with 0 divisors. 
0 examples found, in 4.0 seconds. 
Conjecture : no numbers have precisely 0 divisors. 

Filling in examples of numbers with 1 divisors. 
1 examples found, in 4.0 seconds, e.g., D iv isors -of ( l ) - {1}. 
Conjecture : 1 is the only number with precisely 1 divisor. 

Filling in examples of numbers with 2 divisors. 
24 examples found, in 4.0 seconds, e.g., Divisors-of(13) =* {1 13}. 
No obvious conjecture. May merit more study. 
Creating a new concept: "Numbers-with-2-divisors". 

Filling in examples of numbers with 3 divisors. 
11 examples found, in 4.0 seconds, e.g., Divisors-of(49) - {1 7 49}. 
All numbers with 3 divisors are also Squares. Definitely merits more study. 
Creating a new concept: "Numbers-with-3-divisors". 

** Job 67: ** Consider the square-roots of Numbers-with-3-divisors. 

2 Reasons: (1) Numbers-with-3-divisors. are unexpectedly also Perfect Squares. 
(2) Focus of attention: AM recently worked on Nos -wi th -3 -d iv isors . 

All square - roots of Numbers-with-3-divisors seem to be Numbers-with-2-div isors . 
e.g., Div isors-of(Square-root(169)) '* Divisors-of(13) • {1 13}. 

Even the converse of this seems empirically to be true. 
i.e., the square of each No-with-2-div isors seems to be a No-wi th -3 -d iv isors . 
The chance of coincidence is below acceptable limits. 

Boosting the interestingness rating of each of the concepts involved. 

** Job 68: ** Consider the squares of Numbers-with-3-divisors. 

3 Reasons: (1) Squares of Numbers-with-2-divisors were interesting. 
(2) Square-roots of Numbers-with-3-divisors were interesting. 
(3) Focus of attention: AM recently worked on Nos -wi th -3 -d iv isors . 

Now that we 've seen how AM works, and we've been exposed to a bit of "local" 
results , let's take a moment to discuss the totality of the mathematics which AM carr ied 
out. AM began its investigations with scanty knowledge of a hundred elementary 
concepts of finite set theory. Most of the obvious set-theoretic concepts and 
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relationships were quickly found (e.g., de Morgan's laws; singletons), but no 
sophisticated set theory was ever done (e.g., diagonalization). Rather, AM discovered 
natural numbers and went off exploring elementary number theory. Arithmetic 
operations were soon found (as analogs to set-theoretic operations), and AM made 
surpr is ing progress in divisibility theory. Prime pairs, Diophantine equations, the 
unique factorization of numbers into primes, Goldbach's conjecture ~ these were some 
of the nice discoveries by AM. Many concepts which we know to be crucial were never 
uncovered , however : remainder*, gcd, greater-than, infinity, proof, etc. 

All the discoveries mentioned were made in a run lasting one cpu hour ( Interl isp+lOOk, 
SUMEX PDP-10 KI). Two hundred jobs in toto were selected from the agenda and 
executed. On the average, a job was granted 30 cpu seconds, but actually used only 
18 seconds. For a typical job, about 35 rules were located as potentially relevant, and 
about a dozen actually fired. AM began with 115 concepts and ended up with three 
times that many. Of the synthesized concepts, half were technically termed "losers" 
(both by the author and by AM), and half the remaining ones were of only marginal 
interest . 

Al though AM fared well according to several different measures of performance (see 
Section 7.1 in [13]), of greatest significance are its Limitations. This subsection will-
merely report them, and the next section will analyze whether they were caused by 
radical departures from the neo-classical production-system architecture, or from 
depart ing not far enough from that early design. 

As A M ran longer and longer, the concepts it defined were further and further from 
the primitives it began with. Thus "prime-pairs" were defined using "primes" and 
"addition", the former of which was defined from "divisors-of", which in turn came from 
"multiplication", which arose from *'^addition", which was defined as a restriction of 
"union", which (finally!) was a primitive concept (with heuristics) that we had supplied 
to A M initially. When AM subsequently needed help with prime pairs, it was forced to 
re ly on rules of thumb supplied originally about union'mg. Although the heritability 
p r o p e r t y of heuristics did ensure that those rules were still valid, the trouble was that 
they were too general, too weak to deal effectively with the specialized notions of 
primes and arithmetic. For instance, one general rule indicated that AuB would be 
interesting if it possessed properties absent both from A and from B. This translated 
into the prime-pair case as "// p+q=ry and p,q,r are primes, Then r is interesting if it 
has properties not possessed by p or by q." The search for categories of such 
interesting primes r was of course barren. It showed a fundamental lack of 
understanding about numbers, addition, odd/even-ness, and primes. 

As the der ived concepts moved further away from finite set theory, the efficacy of the 
initial heuristics decreased. AM began to "thrash", appearing to lose most of its 
heuristic guidance. It worked on concepts like "prime triples", which is not a rational 
thing to investigate. The key deficiency was the lack of adequate me£a.-rules[6]: 
heuristics which cause the creation and modification of new heuristics. 

This concept, and many of the other "omissions", could have been discovered by the existing heuristic rules in 
AM. The paths which would have resulted in their definition were simply never rated high enough to explore. 
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Aside from the preceding major limitation, most of the other problems pertain to 
missing knowledge. Many concepts one might consider basic to discovery in math are 
absent from AM; analogies were under-util ized; physical intuition was absent; the 
interface to the user was far from ideal; etc. 

4. Reexamining the Design 

Let us now consider the major components of a RS's design and how AM treated them: 
the DS, the rules, the distribution of knowledge between DS and rules, and the rule 
interpretation policy. For each component, AM's architecture failed to adhere str ict ly 
to the pure RS guidelines. Were these departures worth the loss of simplicity? Were 
the deviations due to the task domain (scientific discovery), to the task v iew 
(heuristically guided growth of structured theories), or to other sources? These are 
the kinds of questions we shall address in each of the following subsections. 

4.1. Data Structures 

We recognize that a singte uniform DS (e.g., an infinite STM [19]) is universal in the 
Tur ing sense of being formally adequate: One can encode any representation in a 
linear, homogeneous DS. The completeness of such a DS design not withstanding, w e 
believe that encouraging several distinct, special-purpose DSs will enhance the 
performance of a discovery system. That is, we are willing to sacrifice aesthetic pur i ty 
of DSs for clarity, efficiency, and power. In this section we will explore this tradeoff. 

The data structures used in AM are unlike the uniform memories suggested by the f irst 
design constraint (see Figure 1). One DS ~ the agenda — holds an ordered list of 
plausible questions for the system to concentrate on, a list of jobs to work on. 
Another DS is the graph of concepts AM knows about. Each concept itself consists in 
much structured information (see Figure 2). The reasons AM has for each job have 
information associated with them. Still other information is present as values of 
certain functions and global variables: the cpu clock, the total number of concepts, the 
last thing t yped out to the user, the last few concepts worked on, etc. All these types 
of information are accessed by the Ihs's (left hand sides) of heuristic rules, and 
affected by rhs's (some "deliberately" in the text of the rule, some "incidentally" 
through a chain of i f -added methods). 

Why is there this multitude of diverse DSs? Each type of knowledge ( jobs, math 
knowledge, system status) needs to be treated quite differently. Since the primitive 
operations will v a r y with the type of information, so should the DS. For jobs, the 
primitive kinds of accesses will be: picking the highest-rated job, deleting the l o w e s t -
rated one, reordering some jobs, merging new ones. A natural choice to make these 
operations efficient is to keep the system's goals in a queue ordered by their rating or 
par t ia l l y -o rdered by those ratings that are commensurable. For resource information. 
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the usual request is for some statistic of some class of primary data. To maintain a 
table of such summary facts (like how much the CPU clock has run so far, or how many 
concepts there are) is to introduce an unnecessary DS and incur exorbitant costs to 
maintain many short-lived entries that will, most probably, never be used. It is far 
more reasonable to run a summarizing procedure to develop just that ephemeral, u p -
to -date information that you need. For math concepts, we have a much less volatile 
situation. We view them as an ever -growing body of highly- interrelated facts. 
Knowledge in this form is stable and rarely deleted. When new knowledge is adddd, a 
great many "routine" inferences must be drawn. In a uniform, linear memory, each 
would have to be drawn explicitly; in a structured one (as the Genl/Spec graph 
st ructure prov ides) . they may be accomplished through the tacit (analogical) 
characteristics of the representation, simply by deciding where to place the 
information. 

Each kind of knowledge dictates a set of appropriate kinds of primitive operations to 
be performed on it, which in turn suggest natural data structures in which to realize it. 
The generality of this perspective on rule-based systems is made more plausible by 
examining other RSs which deal with many types of knowledge (e.g., [5]). If this is so, 
if the design proceeds from "knowledge to be represented" to "a data structure to 
hold it", then fixing a priori the capabilities of the DS access primitives available to 
rules is suspect. 

The re fo re , we advocate the opposite: the RS designer is encouraged to name e v e r y 
combination of "machine" operations that together comprise a single conceptual access 
of data by rules. In AM, it is quite reasonable to expect that a request like "find all 
generalizations of a given concept" would be such a primitive (i.e., could be r e f e r r e d to 
b y name). Even though it might cause the "machine" (in this case, LISP) to run around 
the Genl/Spec graph, a single rule can treat this as merely an "access" operation. The 
use of complex tests and actions is not new; we simply claim that it is always 
preferable to package knowledge (for which a reasonably fast algorithm is available) 
as a single action (though it may have side-effects in the space of concepts) or a 
single test (so long as its sole side-effect — modulo caches — is to signal). Primitive 
tests and actions should be maximally algorithmic, not minimally computational. 

The neo-classical v iew of designing a production rule system was that of defining a 
machine. Our present view is that RSs do not compute so much as they guide attention. 
In adopting this v iew (thereby separating the controller from the effector) , w e 
recognize that we are giving up an attractive feature of pure rule systems: a 
homogeneous basis for definition. For example, the rule system designer must now 
spell out in detail the definitions of the DS accessing functions; but the designer of a 
neo-classical RS is simply able to take as givens the matching and inserting operations 
(as specified in neo-classical principle #6, Figure 1), and he builds each more 
complicated one out of these primitives^. In giving up the old view of the RS as an 
abstract computing machine, the RS designer must use another homogeneous substrate 

2 Either by stringing out a sequence of primitives on one side of a rule, or by handcrafting a t ightly 'coupled 
bundle of rules (so firing such a rule would simulate traversing one link of the kind that abound in A M s Dbs). 
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(e.g., LISP) in terms of which to define his DSs and especially the procedures that 
process them. In exchange, he obtains a clear distinction between two kinds of 
knowledge contained in the neo-classical rule: plausible proposals for what to do next, 
and how to accomplish what might be proposed. 

We have seen that admitting complicated and varied DSs leads to sty l ized sets of DS 
accesses. The DSs and their sets of read/write primitives must in turn be explicit ly 
defined (coded) by the designer. This seems like a high price to pay. Is there any 
br ight side to this? Yes, one rather interesting possibility is opened up. Not only the 
RS designer, but the RS itself may define DSs and DS access functions. In AM, this 
might take the form of dynamically defining new kinds of facets (slots). E.g., after 
" inject ive Function" is defined, and after some properties of it have been d iscovered, it 
would be appropriate to introduce a new facet called "inverse" for each (concept 
represent ing an) injective function. In AM, the actual definitions of the facets of e v e r y 
concept are complex enough (shared structure), inter-related enough (shared meaning), 
and interesting enough (consistent heuristic worth) that a special concept was included 
for each one (e.g., a concept called "Examples") which contained a definit ion, 
description,. . . of the facet. Thus the same techniques for manipulating and discovering 
math concepts may be applied to DS design concepts. Not only do math theories 
emerge, so can new DS access functions (new slots; e.g., "Small Boundary Examples", 
"Factorization", or "Inverse"). 

It should be noted that in opting for non-uniform DSs, we have not in general 
sacrif iced efficiency. One has only to compare the time to access a node in a t ree , 
ve rsus in a linear list, to appreciate that efficiency may, in fact, be increased b y n o n -
uniformity. 

Just how tangle.d up a DS should we tolerate? Should memory elements be permitted 
to refer to (to "know about") each other? We believe the answer to depend upon the 
type of data structure involved. For the homogeneous DS called for in the neo-classical 
design, much simplicity is preserved by forbidding this kind of interrelationship. But 
consider a DS like AM's graph of concepts. It is growing, analogically interrelated, and 
it contains descriptions of its elements. This richness (and sheer quantity^ of 
information can be coded only inefficiently in a uniform, non-self - referential mariner. 
For another example, consider AM's agenda of jobs. One reason for a job may simply 
be the existence of some other job. In such a case, it seems natural for part of one 
e n t r y on the agenda(a reason part of one job) to point to another ent ry in the same 
DS (point to another specific job on the agenda). Thus, inter-element pointers are 
allowed, even though they blur a "pure" distinction between a DS and its entr ies.^ 
Inter -e lement references play a necessary role in organizing large bodies of highly 
interrelated information into structured modules. 

T h e r e is ye t another motivation for special-purpose DSs when the task of the RS 
includes sensing an external environment. Using a uniform memory, external stimuli 
are dumped into the working memory and rub shoulders with all the other data. J h e y 

In section 4.3 we will mention work that blurs this distinction even further. 
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must then be distinguished from the others. ("Must" because to f reely intermingle 
what one sees or is told with what one thinks or remembers is to give way to endless 
confusion.) How much cleaner, less distracting, and safer it is for stimuli to arive in 
their own special place — a place which might well be a special purpose store such as 
an intensity array (not even a list structure at all), or a low-level speech-segment 
queue. A linear memory (e.g., an infinite STM) is of course adequate; one could tag 
each incoming environmental stimulus with a special flag. But the design philosophy 
we are proposing is aimed at maximizing clarity and efficiency, not uniformity or 
universal i ty . 

We know that this view of DSs means making a specialized design effort for each class, 
of knowledge incorporated into the RS. But that is desirable, as it buys us three 
things: (i) system performance is increased, (ii) some forms of automatic.learning are 
facilitated, (ill) knowledge is easier to encode. 

4.2. Rules 

In the "pure" view of RSs, the rule store is not a full-fledged DS of the RS. For 
example, in Waterman's [24] poker player, rules may not be deleted. Rychener [22] 
states that the only way his RS may inspect rules is by examining the effect of those 
rules which have recently fired. Although AM had no explicit taboo against inspecting 
rules, such analyses were in practice never possible, since the rules were ad hoc 
blocks of LISP code. This eventually turned out to be the main limitation of the design 
of AM. The ultimate impediment to further discovery was the lack of rules which could 
reason about, modify, delete, and synthesize other rules. AM direly needed to 
synthes ize specialized forms of the given general heuristic rules (as new concepts 
arose; see the end of 3.5.) 

We want our heuristic rules to be added, kept track oly reasoned about, modified, 
deleted, generalized, specialized, ... whenever there is a good reason to do so. Note 
that those situations may be ve ry different from the ones in which such a rule might 
f i re . E.g., upon discovering a new, interesting concept, AM should t ry to create some 
special ly - tai lored heuristic rules for it. They wouldn't actually fire until much later, 
when their Ihs's were tr iggered. After having constructed such rules, A M might 
subject them to criticism and improvement as it explores the new concept. 

In sum, we have found that the discovery of heuristic rules for using new math 
concepts is a necessary part of the growth of math knowledge. Hence, following the 
argument in 4.1, the rules themselves should be DSs, and each rule might be descr ibed 
b y a concept with effective (executable) and non-effective (purely descript ive) facets. 
This lesson was made all the more painful because it was not new [5]. Apparent ly the 
need for reasoning about rules is common to many tasks. 

The current re-coding of AM does in fact' have each rule represented as a concept. 
What kinds of non-effective "facets" do they have? Recall that one of the features of 
the original AM (as described in Section 3.3) was that with each rule were associated 
some symbolic reasons which it could provide whenever it proposed a new job for the 
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agenda. So one kind of facet which every rule can possess is "Reasons". What others 
are there? Some of them describe the rule (e.g., its average cost); some facets prov ide 
a road map to the space of rules (e.g., which rule schemata are mere specializations of 
the g i ven one); some facets record its derivation (e.g., the rule was proposed as an 
analog to rule X because ...), its redundancy (some other rules need not be tried if this 
one is), etc. . 

T h e r e are some far-reaching consequences of the need to reason about rules just as if 
t h e y w e r e any other concepts known to AM. When one piece of knowledge relates to 
severa l rules, then one general concept, a rule schema, should exist to hold that 
common knowledge. Since each rule is a concept, there will be a natural urge to 
exploit the same Genl/Spec organization that proved so useful before. Heritability still 
holds; e.g., any reason which explains rule R is also somehow a partial explanation of 
each specialization of R. 

Rule schemata have cause to exist simply because they generalize — and hold much 
information which would otherwise have to be duplicated in — several specific rules. 
T h e y may tend to be "big" and less directly productive when executed, yet they are of 
value in capturing the essence of the discovery techniques.^ We put "big" in quotes 
because sheer length (total number of Ihs tests allowed, total number of rhs action's) is 
not d i rect ly what we're talking about here. A general rule schema will capture many 
regular i t ies , will express an idea common to several more specific rules. It will contain 
dual forms of the same rule, sophisticated types of variable-binding (for the duration 
of the rule application), and searching may even be required to find the actions of such 
a general rule. We may even wish to consider every rule in the RS as a rule schema of 
some level of generality, and much processing may go on to find the particular 
instance(s) of it which should be applied in any particular situation. 

Let us consider a rule schema called the "rule of enthusiasm". It subsumes several 
rules in the original AM system (pp. 247-8 of [13]), e.g., those that said; 

m 

If concept G is now very interesting, and G was created as a generalization 
of some earlier concept C, 

Give extra consideration to generalizing G, and to generalizing C in other 
ways. 

and: 

// concept S proved to be a dead-end, and S was created as a specialization 
of some earlier concept C, 

Give less consideration to specializing S, and to specializing C in other ways 
in the future. 

* In A M , even the specific rules may be "big" in the sense that their very precise knowledge may involve much 
testing to trigger and. once triggered,.may conclude some elaborate results. 
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The proposed rule schema is: 

// concept X has very high/low interest and X can be derived from some 
concept C by means m, 

Give more/less consideration to finding (and elaborating) concepts derived 
from C, X (and their "neighbors") by means analogous to m. 

There are four variables to be matched and coordinated in the Ihs of this rule: a 
concept X, the direction (high or low) of its extreme .interest rating, a derivation 
procedure m and an associated source concept C. The action itself is to search for 
jobs of a certain type and give them a corresponding (high or low) rating change. 
T h r e e types of matching are present: (i) ranging over a set of alternatives which are 
Known at the time the rule is written (e.g., the "high/low" alternative); (ii) ranging over 
a set of alternatives which can be accessed easily at any moment the rule is run, like 
the set of concepts and connections between them now in existence (e.g., the variables 
X and C range over this kind of set); (Hi) ranging over a set of alternatives which must 
be heuristically searched for as part of the rule execution (e.g., "analogous" and 
"neighbors" only make sense after a nontrivial amount of searching has been 
performed). 

Since the "rule of enthusiasm" is ve ry general, it will only be tried if no more specific 
rules (such as the two which were listed just above it) are relevant at the time. 
Ideally, the search to specify the action should create a new, specialized form of the 
rule of enthusiasm to catch this situation and handle it quickly, should it arise again. 
Note that versions of this schema that mention generalization or specialization are also 
schemata (without any specification search); they are simply less general schemata 
than the rule of enthusiasm itself. Whenever a new subject for discovery gets defined, 
the abstract, hard - to -execute rule schemata can be specialized (compiled, refined , 
etc.) into efficient heuristics for that subject. 

Another use of a rule schema might be to name a collection of neo-classical rules that 
are coupled by together fulfilling a single function. Consider a collection of rules 
which is t ightly coupled, say to perform an iteration. Much knowledge about the 
iteration loop as a whole may exist. Where is such descriptive information to be stored 
and sought? Either it must be duplicated for each of the coupled rules, or there must 
be a rule- l ike concept which "knows about" the iteration as one coherent unit. We 
conclude that even if some intertwined rules are kept separate, an extra rule (a 
schema) should exist which (at least implicitly) has a rhs which combines them ( b y 
containing knowledge common to all of them). Thus rule schemata do more than just 
unify general propert ies of rules: there must also be schemata of the kind that relate 
function to mechanism. 

Another problem crops up if we consider what happens if one of the coupled rules is 
modified. Often, some corresponding change should be made in all its companions.] For 
example, if a term is generalized (replacement of "prime" by "number" e v e r y w h e r e ) 
then the same substitution had probably better be done in each rule with which 1 this 
one is supposed to couple. What we are saying is that, for RSs which modify their 
o w n rules, it can be dangerous to split up a single conceptual process into a bunch of 
rules which interact in more or less fixed ways when run, without continuing to reason 
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about them as an integrity, like any other algorithm composed of parts. Here again, 
we find pressure to treat RSs as algorithms, not v ice-versa. 

Finally, let us make a few irresistable observations. The whole notion of coupling via 
meaningless tokens is aesthetically repugnant and quite contrary to "pure" production 
system spirit . By "meaningless" we mean entries in DS that provide a narrow h a n d 
crafted channel of communication between two specific rules that therefore "know 
about each other".^ At the least, when a coupled rule deposits some "intermediate-
state" message in a DS, one would like that message to be meaningful to many rules in 
the system, to have some significance itself. We can see that entries in a DS have an 
expected meaning to the read access functions that examine the DS.** If this pur i ty is 
maintained, then any apparent "coupling" would be merely superficial: each rule could 
stand alone as a whole domain-dependent heuristic. Thus no harm should come from 
changing a single rule, and more rules could be added that act on the "intermediate 
message" of the coupling. Such meaningful, dynamic couplings should be encouraged. 
Only the meaningless, tight couplings are being criticized here. 

4.3. Distribution of Knowledge Between Rules and DS 

A common "pure" idea is that all knowledge of substance ought to be represented as 
rules. Independent of such rules, the DS forms no meaningful whole initially, nor has it 
any final interpretation. The "answer" which the RS computes is not stored in the DS; 
rather , the answer consists in the process of rule f i r ings/ The DS is " just" an 
intermediate vehicle of control information. 

C o n t r a r y to this, we say that rules ought to have a symbiotic relationship to DSs. The 
DSs hold meaningful domain-dependent information, and rules process knowledge 
represented in them. For RSs designed to perform scientific research, the DSs contain 
the theory , and the rules contain methods of theory formation. 

But much domain-dependent knowledge is conditional. E.g., "If n and m are relatively 
prime and divide x, then so must nm". Shouldn't such If/Then information be encoded 
as rules? We answer an emphatic No. Just as there is a distribution of "all knowledge 
of substance" between rules and DSs, so too must the conditional information be 
part i t ioned between them. We shall illustrate two particular issues: (i) Much 
information can be stored implicitly in DSs; (ii) Some conditional knowledge is 
inappropriate to store as rules. 

5 B y contrast, a "meaningful" DS entry will embody a piece of information which is specific to the RS's task, not 
to the actual rules themselves. 

Perhaps this "meaning" could even be expressed formally as an invariant which the write access functions for 
the DS must never violate. 

^ The sequence of actions in time. In addition, perhaps, the "answer" may involve a few of their side-effects. 
E.g., (Respond 'YES'). 
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When designing a DS, it is possible to provide mechanisms for holding a vast amount of 
information Implicitly. In AM, e.g., the organization of concepts into a Genl/Spec • 
h ie ra rchy (plus the assumed heritability properties; see 3.4) permits a rule to ask for 
"all concepts more general than Primes" as if that were a piece of data explicit ly 
s t o r e d in a DS. In fact, only direct generalizations are stored ("The immediate 
general izat ion of Primes is Numbers"), and a "rippling" mechanism automatically runls up 
the Genl links to assemble a complete answer. Thus the number of specific answers the 
DS can provide is far greater than the number of individual items in the DS. T r u e , 
these DS mechanisms will use up extra time in processing to obtain the answer; this is 
eff ic ient since any particular request is very unlikely to be made. Just as each rule 
knows about a general situation, of which it will only see a few instances, that same 
qual i ty (of wide potential applicability) is just as valuable for knowledge in DSs. These 
are situations where, like Dijkstra's multiplier [8], the mechanism must provide any of 
the consequences of its knowledge quickly on demand, but in its lifetime will only be 
asked a few of them. 

Now that we have seen how tacit information can be encoded into DSs, let us see some 
cases where it should be — i.e., where it is not appropriate to encode it as rules of 
the system. Many things get called implication, and only some of them cbrrespond to 
rule application. For instance, there is logical entailment (e.g., if A A B then A), physical 
causation (e.g., if it rains, then the ground will get wet), probable associations (e.g., if it 
is w e t underfoot, then it has probably been raining.) These all describe the way the 
w o r l d is, not the way the perceiver of the world behaves. Contrast them with 
knowledge of the form "If it is raining, then open the umbrella". We claim that this last 
kind of situation-action relationship should be encoded as rules for the RS, but that the 
o ther t ypes of implication should be stored declaratively within the DS. Let's t r y to 
jus t i f y this distinction; 

T h e situation-action rules indicate imperatively how to behave in the world; the other 
t y p e s of implication merely indicate expected relationships and tendencies within the 
w o r l d . The rules of a RS are meant to indicate potential procedural actions which are 
o b e y e d b y the system, while the DSs indicate the way the world (the RSs environment) 
behaves in terms of some model of it. The essential thing to consider is what relations 
are to be caused in time; these are the things we should cast as rules. The Ihs of a 
rule measures some aspect of knowledge presently in DSs, while the rhs of the rule 
def ines the attention of the system (regarded as a processor feeding off of the DS) in 
the immediate future. 

This is the heart of why rule-sets are algorithms. They are algorithms for guiding the 
application of other (DS processing) algorithms. It also explains why other kinds of 
implications are unsuitable to be rules. Consider causal implication ("Raining — > Wet"). 
While the Ihs could be a rule's Ihs (it measures an aspect of any situation), the rhs 
should not be a rule's rhs (it does not indicate an appropriate action for the system to 
t a k e ) . 8 

8 I n a RS thai aspires to any generality at all, an antecedent theorem of the form "if [you know that] it is raining, 
then [assert that] it is wet" is not the appropriate form to store this knowledge; it is too comp.led a form, 
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Most purist production systems have (often implicitly!) a rule of the form "If the left 
side of an implication is true in the database, Then assert the right side". This is only 
one kind of rule, of course, capable of dealing with implications. For example, MYCIN 
and LT [17] (implicitly) follow a very different rule: "If the rhs of an implication will 
sat is fy my goal, Then the Ihs of the implication is now the new goal". Other rules are 
possible; many rules for reasoning may feed off the same "table" of world knowledge. 
The point is that the implications themselves are declarative knowledge, not rules. In 
summary, then, it may be v e r y important to distinguish rules (attention guides) from 
mere implications (access guides), and to store the latter within the DSs. This policy 
was not motivated by the scientific inference task for our RS. We believe it to be a 
wor thwhi le guideline in the design of any RS. 

4.4. Interpreter 

Af te r a rule fires, the neo-classical interpretation policy (*9 in Figure 1) demands that 
any rule in the system can potentially be the next one selected to fire. This is true 
regardless of the speed-up techniques used in any particular implementation (say, by 
preprocessing the Ihs's into a discrimination net [22]). But consider RSs for scientific 
d i scove ry tasks. Their task — both at the top level and frequently at lower levels — is 
quite open-ended. If twenty rules trigger as relevant to such an open-ended activity 
(e.g., gathering empirical data, inducing conjectures, etc.) then there is much motivation 
for continuing to execute just these twenty rules for a while. They form an ad hoc 
plausible search algorithm for the agenda, item selected. 

A RS for d iscovery might reasonably be given a complex interpreter ( ru le - f i r ing 
pol icy) . AM, for example, experimented with a two-pass interpreter: first, a best - f i r s t , 
agenda -dr i ven resource allocator and attention focusser selects the job it finds most 
interest ing; second, it locates the set of relevant rules (typically about 30 to 40 rules) 
for the job, and begins executing them one after another (in best - f i rst order of 
speci f ic i ty ) until the resources allocated in the first step run out [20]. The overall 
rat ing of the job which these rules are to satisfy determines the amount of cpu time 
and list cells that may be used up before the rules are interrupted and job is 
abandoned. 

For example, say the job were "Find examples of Primes". It's allotted 35 cpu seconds 
and 300 list cells, due to its overall priority rating just before it was plucked from the 
agenda. Say, 24 rules are relevant. The first one quickly finds that "2" and "3" are 
primes. Should the job halt right then? No, not if the real reason for this job is to 
gather as much data as possible, data from which conjectures will be suggested and 
tested. In that case, many of the other 23 rules should be fired as well. They will 
p roduce not only additional examples, but perhaps other types of examples. 

standing alone I f told (or given) a rule like this, a learning system should "parse" it as a familiar kind of 
deduction file the residue of new information away as a conjectured tendency of wetness to fol low rain, and 
start checking for exceptions. A sophisticated (and lucky) discovery RS might thereby develop the concept of 
shelter . 
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The jobs on AK/Ts agenda are really just mini-research questions which are plausible to 
spend time investigating. Although phrased as specific requests, each one is really a 
research proposal , a topic to concentrate upon. We found it necessary to deviate from 
the simplest uniform interpreter for clarity (e.g., a human can follow the f i rst -pass ( job 
selection) taken alone and can follow the second-pass (job execution) by itself), for 
eff ic iency (knowing that all 24 rules are relevant, there is no need to find them 35 
times), and for power (applying qualitatively different kinds of rules yields var ious 
t y p e s of examples). We claim this quality of open-endedness will recur in any RS 
whose task is free concept exploration. This includes all scientific discovery but not all 
scientific inference. 

5. Speculations for a New Discovery System 

The spirit of this paper has been to give up straightforward simplicity in RSs for 
c lar i ty , eff iciency, and power. Several examples have been cited, but we speculate that 
there are further tradeoffs of this kind which are applicable to RSs whose purpose is 
to make new discoveries. 

Of ten, there are several possible ways the designer may view the task of (and 
subtasks of) the intended RS. We wish to add the notion of "proof" to AM, say. Should 
w e represent proof as a resolution search, as a process of criticism and improvement 
[11 ] spiralling toward a solution, as a natural deduction cascade, ...? Although any one 
of these task-v iews might perform respectably, we advocate the incorporation of all of 
them, despite the concomittant costs of added processing time, space, and interfacing. 
In fact, we wish never to exclude the possibility of the system acquiring another task -
v iew . 

We look for the development of further discovery tools in the form of domain-
independent meta-heuristics that synthesize heuristic rules, and in the form of abstract 
heuristic schemata that specialize into efficient rules for each newly -d iscovered 
domain. These discovery tools are all part of "getting familiar" with shallowly 
understood concepts, such as synthesized ones tend to be initially. It may even be 
that symbolic analogy techniques exist, cutting across the traditional boundaries of 
knowledge domains. 

We contemplate a system that keeps track of (and has methods with which it attempts 
to improve) the design of its own DSs, its own control structure, and perhaps even its 
o w n design constraints. Although working in (a collection of) specific domains, this 
would be a general symbol system discoverer, capable of picking up and explor ing 
formulations, testing them and improving them. 

5.1. A New Set of Design Constraints 

Below are 13 principles for designing a RS whose task is that of scientific theory 
formation. They are the result of reconsidering the original principles (Figure 1) in the 
light shed b y work on AM. Most of the "pure" principles we mentioned in Figure 1 are 
changed, and a few new ones have emerged. 
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FIGURE 3: Scientific Discovery RS Architecture 

1. Principle of Several Appropriate Memories. For each type of knowledge 
which mast be dealt with In Its own way, a separate DS should be 
maintained. The precise nature of each DS should be chosen so as to 
facilitate the access (read/write) operations which will be most commonly 
requested of It. 

2. Principle of Maximal DS Accesses. The set of primitive DS access operations 
(I.e., the read tests which a rule's ihs may perform, and the write actions 
which a rhs may call for) are chosen to include the largest packages (clusters, 
chunks,...) of activity which are commonly needed and which can be 
performed efficiently on the DS. 

3. Principle of Facetted DS Elements. For ever-growing data structures, there Is 
much to be gained and little lost by permitting parts of one DS Item to point 
to other DS Items. In particular, schematic techniques of representing content 
by structure are now possible. 

4. Principle of Rules as Data. The view which the RS designer takes of the 
system's task may require that some rules be capable of reasoning about the 
rules In the RS (adding new ones, deleting old ones, keeping track of rules9 

performance, modifying existing rules,...). Some of the methods the RS uses to 
deal with scientific knowledge may be applicable to dealing with rules as 
welL In such cases, the system's rules may thus be naturally represented as 
new entries In the existing DS which holds the scientific theory. 

5. Principle of Regularities Among Rules. Each rule Is actually a rule schema. 
Sophisticated processing may be needed both to determine which Instance(s) 
are relevant and to find the precise sequence of actions to be executed. Such 
schemata are often quite elaborate. 

6. Principle of Avoiding Meanlnglessly-Coupled Rules. Passing special-pur pose 
loop control notes back and forth Is contrary to both the spirit of pure RSs 
and to efficiency. If rules are to behave as coupled, the least we demand Is 
that the notes they write and read for each other be meaningful entries In DS 
(any other rule may Interpret the same note, and other rules might have 
written one Identical to It). 

7. Principle of Controlled Environment. For many tasks, It Is detrimental to 
permit external stimuli (from an environment) to enter any DS at random. 
At the least, the RS should be able to distinguish these alien Inputs from 
Internally-generated DS entries. 

8. Principle of Tacit Knowledge. In designing the DS, much knowledge may be 
stored Implicitly; e.g., by where facts are placed In a hierarchical network. 
The DS should be designed so as to maximize this kind of concentrated, 
analogical Information storage. Hence, hard-working access functions are 
needed to encode and decode the full meaning of DSs. 
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9. Principle of Named Algorithms. When basic, "how to" knowledge is available, 
it should be packaged as an operation and used as a part of the Ihs or rhs of 
various rules. Embodying this chunk of knowledge as several coupled rules is 
not recommended, for we will want to manipulate and utilize this knowledge 
as a whole. 

10. Principle of Rules as Attention Guides. Knowledge should be encoded as rules 
when it is intended to serve as a guide of the system's attention; to direct its 
behavior. Other kinds of information, even if stated in conditional form, 
should be relegated to DSs (either explicitly as entries, or implicitly as special 
access functions). 

11. Principle of Inertial Interpreter. In tasks like scientific research, where 
relevant rules will be performing inherently open-ended activities (e.g., data-
gathering), such rules should be allowed to continue for a while even after 
they have nominally carried out the activity (e.g., gathered one piece of 
data). In such cases, the occasional wasted time and space is more than 
compensated for by the frequent acquisition of valuable knowledge that j was 
concentrated in the later rules. For scientific discovery, no single \rule 
(however "appropriate") should be taken as sufficient: a single rule must 
necessarily view the task in just one particular way. All views of the task 
have something to contribute; hence variety depends on a policy of always 
applying several rules. 

12. Principle of Openness. A discovery rule system can be enriched by 
incorporating into its design several independent views of the knowledge it 
handles. Never assume everything is known about a class of knowledge. All 
appropriate formulations of a knowledge class have something to contribute; 
hence variety depends on openness to new formulations. 

13. Principle of Support of Discovery by Design. By representing its own design 
explicitly (say, as concepts), the RS could study and improve those ooncepts, 
thereby improving itself. This includes the DS design^, the access function 
algorithms, how to couple them, the function of various rules, the 
interpretation policy of the RS, etc. This suggests that the study of designs 
of computational mechanisms may be a worthy area for a discovery system 
to pursue, whether its own design is available to it or not. 

Rule systems whose designs adhere to these guidelines will be large, elaborate, and 
non-classical. We have mentioned throughout the paper several new complications 
which the principles introduce. Trying to produce such a RS for a task for which a 

9 e.g., the facet specifications. I f the input/output requirements change with time, so should the rule system's 

data structures. 

file:///rule
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p u r e , neo-classical production rule system was appropriate will probably result in 
disaster . Nevertheless, empirical evidence suggests that RSs having this architecture 
are quite natural — and relatively tractable to construct — for open-ended tasks like 
scientific discovery. 
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