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ABSTRACT

A new technique for design of digital filters based on a pole-zero model is proposed. The
technique is capable of realizing any desired magnitude response specified in discrete
frequency domain to the required degree of accuracy without significantly increasing the
complexity for the computation of filter coefficients. It is shown that excellent characteristics
for all types of the standard filters can be realized. The distinct featu.res of the technique
are: (a) Both the passband and the stopband have nearly flat characteristics; (b) A highpass
(bandstop) filter can be realized as the reciprocal of a lowpass (bandpass) filter; (¢) A high
degree of flexibility exists in the choice of design pararﬁeters permitting trade-off between
the realized response and the number of filter coefficients. The coefficients for the pole part
and the zero part of the model are obtained in an identical manner using FFT algorithms and
. recursive relations, without -the need for solving compiex nonlinear equations. These features
-in the design are a resuFt of application of a pole-zero decomposition technique for digital
filter design. The technique, which was developed for modeiling speech spectra, is based on

the properties of the derivative of phase spectrum of a minimum phase signal.



1. INTRODUCTION /

Synthesis of linear systems to satisfy a desired input-output rélation is a general problem of
interest to electrical engineers. Filter design is one such problem where the specification of
the system is made either in terms of the impu.lse response or frequency response or both.
In this paper we present an effective method for designing a linear discrete-time system to
realize any desired magnitude response specified in discrete frequency domain. The method
is based on the properties of the derivative of phase spectrum (DPS) of a minimum phase

signal and a new technique for pole-zero decomposition of speech spectra [1]-[31

A general linear discrete system H(z), shown in Fig.1, is given by

Hz) = G Nz)/Xz2) (1)

where

M,

N(z) = Z a*(n) 2", with a*(0)=1, - (2)
n=0

and

M

Dz) = i a’(n) 2™, with a™{0)=1, {3)
n=0 '

and G is a gain term. The output signal y(n) is obtained from the input signal x(n) by the

following recursive relation [4]:

\\“IL ™ P
yin} = G 2 a*(j) xtn-j) - 2. a~(j) yln-i), (4)
J=0 i=1

The frequency response of the system H(z) is defined as

H(el®) = H2)|,egiv . (5)

The response H(el¥) is periodic in w with periocd 2n. In discrete frequency domain the



normalized frequency range (0-2n) is divided into N equal parts. The discrete frequency

response of the system is then given by

H (eI2M&/Ny = 1 (i) oru /N k=0,1,2,N-1. (6)
For convenience we shall adopt the following simplified notation throughout this paper:

H(w) = H(el®) | m
and |

Hik) = HeI2me/Ny - ®

. For the system H(z) to be stable, all the roots of the denominater palynomial D(z), called
poles, must lie within the unit circle in the z-plane. If the roots of the numerator pelynomial
N(z), called zeros, also lie within the unit circle in the z-plane, then the impulse response of
H(z) is called a minimum phase signal {5], {61 An important property of the minimum phase
signal is that the magnitude and phase characteristics of its Fourier transform are related

through Hilbert transformation [6]

The probiem in digital filter design is to realize the desired frequency domain specifications
.through a filter of the type H(z}, such that the output y{n) of the fiiter is obtained.frcm the
input x(n) using a finite precision arithmetic. Digital filter design techniques are usually
classified aé infinite impulse response (IIR) and finite impulse res;:t;nse (FIR) filters. The filter
H(z) in (1) is in general an IIR filter because of the denominator polynomial. If D(z)=1 then
the filter is:referred to as an FIR filter. The choice between the two types depends upon the
relative weight one attaches to the advantages and disadvantages of each type of filter. IIR
filters have the advantage that a variety of frequency selective filters can be designed using
~ closed form design formulas. Such a simplicity is available only for a limited class of filters.
Complex IIR filter design uses optimization techniques leading to solution of nonlinear
equations to determine the coefficients of the filter. The phase response of IIR filters is
generally nonlinear, whereas it is desirable to realize a filter having linear phase

characteristics. FIR filters, on the other hand, can be designed with linear phase



characteristics.. They utilize the advantages of flexibility and computational speed of FFT
algorithms. But many FIR design methods involve iterative}r’ocedures even for modest
specifications such as equiripple in the passband and stopband. Thus the flexibility of an FIR
filter design is achieved at the expense of simplicity whereas the simplicity of an IIR filter

design is achieved at the expense of flexibility [7]

More recently, design techniques in quefrency domain are proposed in which Athe desired log
magnitude and phase responses are realized by approximating the log frequency response
with a finite length quefrency response [8] The quefrency response, also called the
cepsirum of the impulse response, is the inverse Fourier transform of the given log
frequency response. Each of the quefrency components is realized by a set of elementat
filters, the order of the elemental filter being dependent on the value of the quefrency
-component. By designing digital filters in the quefrency domain the best approximation (in
the mean-square sense) for the desired log frequency response can be realized. The
resulting error in this procedure is caused by truncation in the quefrency demain and the

approximation of the quefrency components by the elemental filters.

In this paper we present a new techni.que for determining the coefficients in H(z) to m;eet a
desired log magnitude specification in discrete frequency domain. The design proceduré is
simple and highly flexible, The filler can be designed for any desired accuracy by
7 appropriately choosing the orders of numerator and denominator polynomials of H(z), without
increasing the computational complexity. This has been possible due to application of FFT
algorithm and recursive relations for determining the coefficients of the IR filter. The
passband and stopband characteristics of the realized filter are nearly flat in most cases.
This enables transformation of a lowpass filter to a highpass filter or vice versa by merely
considering the reciprocal of H(z). Also by cascading a fowpass filter and a highpass filter it

is possible to realize a bandpass or a bandstop filter,

All these advantages of this new method are achieved due o application of the pole-zero
decomposition technique recently proposed for modelling speech spectra [2]1 In Sec.ll the

technique of pole-zero decomposition is discussed. The design procedure for digitat filters is



described in Sec.lll. The procedure is illustrated with examples in Sec.lV and aiso several

design choices available for a designer are discussed.

II. PRINCIPLE OF POLE-ZERO DECOMPOSITION

In this section some important properties of the derivative of phase spectrum (DPS) of a
minimum phase signal and the principle of pole-zero decomposition are briefly described.

Details can be found in [1] and [2]
A. Proparties of DPS:

A minimum phase signat has, by definition, all its poles and zeros within the unit circle in the
z-plane [6] The pole part of the sign_al spectrum can be represented as a cascade of several
first order sections with real poles and second order sections with complex conjugate poles.
The DPS of a typical first order pole filter uﬁuaily has all its significant values confined to
frequencies close to the of‘tgin. The DPS of a second order filter (resonator) is approximately
proportional to the squared magnitude response of the filter around the resonance frequency.
The DPS of the overall filter is a superposition of the DPS of each filter in the cascade.
These prOpertiés were shown to be very usefui for unambiguous identification of resonance
peaks from the DPS of an all-pole filter obtained in linear prediction analysis [1} The zero
part of the signal spectrum can similarly be considered as a cascade of several first order
sections with real zeros and second order sections with complex "conjuga_te zeras. The DPS
of the zero part will have similar behaviour as that of the pole part except for a sign change.
In particulér. the DPS due to poles is negative and that due to zeros is positive {2] These

simple properties were shown to accomplish the pole-zero decomposition of speech specfra
{2}

B. Pole-Zero Dacomposition

Let V(w) be the Fourier transform of a minimum phase signal. Since we consider only sampled

signals, V(w) is periodic in w with period 2n. The properties of minimum phase signals permit

the expansion of In V(w) in Fourler series as follows [}


http://Sec.1V

[»e]
In V(w) =2(0)+ 2. &n)eiwn
n=j

where {(n)} are called cepstral coefficients. Writing

V(w) = [V(w)| elfv(@)

we get the real and imaginary parts of In V(m)‘as

[+4]
In M@l = 2. &n) cos nw
n=0
and
[o¢]
fifw) + 2A7 = - 2. &) sin nw
n=1

9)

(10)

(real part) (11)

(imaginary part) (12)

where X is an integer. Notice that fy(w) represents the phase spectrum of the minimum

phase signal. Taking the derivative of 8\ w) with respect to w, we get

o
9\’,(w) =~ 2 n&ncos nw,
n=1

(13)

As discused before, the contributions of poles and zeros can be separated from 9{,{&7)

because they have opposite signs., Let
- byw) = [+ [BAW]*

where )
By = by for dylw) <0
=0 for 8w} 20
and _
[OA)]* = Byiw) for c\',m) 20
-0 for #fw)<0.

(14)

(15)

(16)

We can express {Gé(w)]' and [9\:,{01)]" separately in terms of the cepstral coefficients for the

pole part and the zero part respectively, since the relation given in (13) is valid for poles or



zeros or for both, except for a constant term (C) on the right hand side. That is

© /
[0\',((»)]' =-C -z n €7(n) cos nw | 7 7
n=| :
and
i ® .
[Byw))* = € - 2. n &*(n) cos nw, (18)
n=}

where {€7(n)} and {¢*(n)} represent the cepsiral coefficients for pole and zero spectra of
V(w) respectively. Notice that &(n)=c (n)+c*(n) for n=1,2,.;,0. In other words, the cepstral
coefficients are split into two parts, one corresponding to poles and the other ta zeros. Here
[9:/(03}]' represents the significant portion of OPS for the poles of V{w) and [Bé(w)]"' ‘
represents the significant portions of DPS for the zeros of V{w). By significant portion we
mean that the shape of the curve in the negative portion of 8\:,(0.1) is mainly due to poles and

, .
that in the positive portion of 8y{w) is mainly due to zeros.

We now describe a method for deriving the coefficients in D(z) and N{z) from {3"(n)} and

{e*(n)} respectively. Let us consider the expansion of In D(z) in Taylor series as fallows [10]):

. oo _ .
InD(2) = - 2 cy{mz™" . a9

n=1

where {cl(n)i are the cepstral coefficients corresponding to 1/D{z). Using the expression for
D(z) from (3) and differentiating both sides of (19) with respect to z, and rearranging the

terﬁxs, we get

™Mp [‘
Z._n a2z M= - z n cl(n) z” a T}z . : (20)
n=1%



Multiplying out the series and using the fact that a™(0)=1, we get

a(l)=- Cl(l) ’
i1
jat) == jcyi - Z;‘ cy(m) 3 (j-n}, i"23.M,  (21)
n-=
It is to be noted from (21) that we can obtain {a7(n)} from {c1(m} or vice versa. Only Mp

~values of {c{(n)} are required to determine {a™(n}}.

It is worth noting that the coefficients {a™(n)} obtained from {ci(n)} using the recursion {21)
is meaningful only if it is known a priori that {c1(n)} correspond to the cepstral coefficients
of a minimum phase polynomial like D(z). This is the reason for splitting the cepstral

coefficients in (9) inte {€7(n)} and {€*(n)} through DPS.

IIl. DESIGN OF DIGITAL FILTERS

In the previous section the theoritical relations among various .parameters have been derived
using Fourier series in which the upper limit in the summation is infinity. However, in
practice the design has to be made using sequences of finite length, The design of digital
filters when the specification is in discrele fequency domain will now be discussed. For a

discrete sequence x(n) the discrete Fourier transform {DFT) is defined as [4]:

N
X(k) = 2 x(n} [ cos (2nkn/N) - j sin (2nkn/N) ], k=0,1,.,N~1  (22a)

n=0 _ :
and the inverse DFT (IDFT) is defined as

N-1

x(n) = —;—Z X(k) [ cos (2nkn/N) +  sin (2nkn/N) ], n=0,1,.N-1 (22b)
k=0 .

The DFT and IDFT are computed using FFT algorithms. Let the desired log magnitude
response In jV(w)fz be specified for w=27k/N, k=0,1,..,N-1, with InIV(m)E2 being symmetric
around w=m. The IDFT x(n) of X(k)=lnjV(k)|2 is called in literature as power cepstrum [4]

The cepstral coefficients {c(n)} for the given data are given by



¢(0) = 05 x(0), )
eny = x(m, n=1,2,...N/2-1 (23)
en)= O , nsN/2,N/2+1,.. N-1,

For the discrete frequency domain specification there are only N/2 cepstral coefficients

{c(n}}. The discrete DPS 8\',(k) is obtained as the real part of the DFT of the sequence {nc{m)}.

N-1

BuAK) = 2 n ctn) cos (2nkn/N) , | keOy1pN- 1. (24)
n=0

The discrete DPS is separated into positive and negative part as given by

(0] = Byk) for By(k) <O
-0 for O k) 20 (25)
and '
[av(k)]*' = 0y(K) for 8y(k) 2 0
=0 for Bk} <O. (26)

The iDFT of [EG(R)]" is given by
o |
‘ .
nc(n) = —Z BT cos (@nkn/N 1,2, Nf2-1, (27)

-C = ——% YY)

Similarly {nc*(n)} can be obtamed through the IDFT of [ﬂv(k}]"' as
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N-1
n c*(n) = 2 [By()]* cos (2nkn/N), n=1,2,.,N/2-1 (28)

k=0
N~1
1
C =12 [y
x=0

The coefficients {a™(n}} and {a*(n)} of the denominator and numerator polynomials of the

- realized filter H(z) are computed using the following recursive relations:

Pole Coefficients:
a (1) =¢7(1)

. i‘l
ja) = je() + D oncn)a(en), for j=23,.M, (29)
) n=]

Zero Coefficients:
' at(1) = - c*(1)

j-1
jat) = et - 2 ncHnatGem, for j=2,3,.M,+ (30)
n=|

Tha above recursive relations are valid for Mp and M, not exceeding N/2. The log spectra in

dB of the 'pole part and that of the zero part are given by the following relations:

Pole Spectrum:

- 20 log |D(@)|~ ~20 log|L + 2 a(n) el | _ | (31)

Zero Spectrum:

20 IoglN(w)[- 20 Iog]l + 2 a*n) ej”"’, . {32)

The log spectrum in dB of the overall filter is given by

20 log [H(w) = 20 log|N(w)| - 20 log|D(w)| , (33)

The response H(w) will have smooth passband and stopband characteristics. At the edges of
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the transition band, however, there will be an overshoot and an undershoot, the values of

which depend upon the width and the nature of the transition band.

In order tc apply this method, the cepsiral coefficients {c{n)} in {23) éhould be free frﬁm
aliasing errors as far as possible. Aliasing is caused by the finite N-point DFT used to
‘compute {c{n)}. This is because, for a given frequency response V(w), the cepstral
coefficients are infinite as shown in (9). Discretizing @ and computing {c(n)} in (23) through
DFT results in a finite number of cepstral coefficients {c(n)} which are related to {c(n}} in (9)

~ by the relation

o0

cn) = 2. An+eN), n=0,1,..N/2-1, (39)
r=0

where r is an integer. What is desirable is a rapid decay of the values of Vc(n) with n or a
large value of N or both in order to reduce the effects of aliasing errors in. {c{n}}. The values
of c{n) for large n depend on the natur‘e of the transition band and the dynamic range of the
ma'gnitude response specification. Once a sufficiently large value of N is chosen to reduce
the effects of aliasing, it may be possible to use filters with orders considerably lower than
N/2. It may aiso be possible to realize the desired characteristics through a lower order
_ filter by multiplying the cepstral coefficients with a suitable ;weighting function.  But
muitiplying the cepstral coefficients with a weighting function alters the desired specification
itself. Some of these issues are discussed in detail through illustrative exam;:;ies in the

following section .
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IV. RESULTS AND DISCUSSION

A lowpass filter for the following specifications is designed using the proposed method.

In|V(K)|= In 100 k=0,1,..,62
= In t(k) k=63,64,...,74
win 1 | k=75,76,...,256
© and ’ - |
In|[V(k+255)] = In|V(257-k)| | k=1,2,.,256, - (3D)

where t{k) is the specification over the transition band. Inilially a linear variation for In t{k)
was chosen and the filter was designed for Mp-Mz=-63 in (29) and (30). The specified
magnitude response in dB and the negative derivative of the phase spectrum i.e, -9\',(1&} are
shown in Fig.2. The distribution of poles and zeros can be seen from the negative DPS curve.
The positive part of the curve, which occurs anly in the passband, corresponds entirely to
poles. Similarly the negative part of the curve, which occurs only in the stopband, is entirely
due to zeros. The log spectra of the pole part and the zero part are shown separately in
Fig.3. The individual responses have poor lowpass characteristics, with the accompanying
minimum phase characteristics. This sho;ws that the pole part and the zero part are optimized
simultanédusly to yield the desired OVEI"BH magnitude response. The realized magnitude and

phase responses are shown in Fig.4.

The deviation from the desired passband and stopband characteristics is shown in Fig.5. The
error over the passband and stop band} is negligible except near the edges of the transition
band where there is an overshoot in th;e passhand and an undershoot in the stopband. The
maximum devialion due ic overshoot is.O.ZdB in this case. The amplitudes of the overshoot
and the ripples in the passband and stopband depend upon the width of the transition band
and the dynamic range of the filter, w:zhich in the present case are 12 samples and 40dB

respectively. '

The impulse response of the realized filter is shown in Fig.6. The response decays with time,
;

- ———



13

indicating that the system is stable.

The same filter was designed with In t(k} having a raised cosine char/acteristic. The overshoot
was reduced to 0.17dB. In this case the reduction in the overshoot appears to be
insignificant. But when the transition width was made 8 samples, the overshoot waé 1.1dB
for linear transition compared to 0.37dB for a raised cosine transition, which is a significant
reduction. Obviously, the width and the nature of transition band specitfication is a design

choice.

In order to pbtain a good overall performance of the filter for a given order Mp(-Mz), the
filter specifications may have to be rélaxed. The most convenient way of designing such a
filter is to start with an ideal filter specification for the transition band in the discrete
frequency domain. The width of the transition band then becomes one sample. The fiiter is
designed by preprocessing the cepsitrum before computing the DPS. The preprocessing
consists of muliiplying the cepstral coefficients ¢(n) with a weighting function w(n}), so that
the values of_ w(n)c{n) for large n are significantly reduced before computing the DPS. An

exponential window function of the form

w(n) = ean/M, : | (36)
has been found to be very convenient for this purpese. The decay constant & can be varied
according to the order of the fiiter desired. The effect of this windowing ts to broaden the
transition band for the desired response, The factor a is 2 design parameter. The realized
magnitude response and phase response for the lowpass filter specification in (35) for a=1

are shown in Fig.7. It may be noted that there is no overshoot or undershoot and also that

the transition characteristics are smooth,

The effect of a on the realized magnitude response is shown in Fig.8 for Mp==15. It may be
noted that as a is increased the ripples in the filter response disappear. However the
transition width becomes broader. For a given order of the filter a trade-off exists between
the transition width and the magnitude of ripples in the passband and stopband. A narrower

transition band with a smooth filter response (i.e., with reduced ripples) can be obtained by
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using a higher order filter. The filter responses for different orders of the filter for a=1 are
shown in Fig.9. The curves on the left side are the desired responses after the exponential

weighting. The curves on the right side are the corresponding realized responses.

. Since the lowpass filter designed by this method has nearly flat passband and stopband
characteristics, it is possible to realize a highpass filter using the reciprocal of a lowpass
. filter i.e., D(2)/N(z). For the same reason, a bandpass or a bandstop filter can be designed by
cascading a lowpass filter and a highpass filter. Fig.10 shows the response of a bandpass
filter obtained by cascading a lowpass filter and a highpass filter, each of order 127, with

a=05,

V. CONCLUSIONS

A highly flexible and effecfive design technique for digital filters has been proposed. The
technigue can be used to realize s desired magnitude response characteristics to the required
degree of accuracy. The effectiveness of the technique is due to a pole-zero decomposition
method based on the derivative of phase spectrum. More stringent requirements on the filter
characteristics can be met either by using a higher order filter or by cascading several low
order filters. Th._e complexity of the fiiter design remains almost independent of the order of

the filter being designed. This is because of the use of FFT techniques for the design.

The design technique proposed here differs from the conventional FIR or quefrency domain
designs, where the impulse response or the quefrency response is truncated usiﬁg suitable
windows. In the present method the cepstral coefficients of the desired response are
matched by the realized filter upto a specified order and the cepstral coefficients are then
eétrapola.ted upto infinity by the realized filter. This provides the desired smooth behaviour
in the magnitude response which is responsible for achieving nearly flat response
characteristics in the passband and stopband. Presently, we are exploring the possibility of
e'xtendingr' the method to realize a given phase response specification. The technique has
already been found to be very effective in modelling speech spectra and we expect it to be

useful for applications in general linear system modelling as well,
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' c) szﬂz-IS, =1
i d) M,=M,=7, a=1
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Fig.18 HResponse of a bandpass fifter reallzed by
cascading a loupass filter and a highpass filter
(M,=M, =127, a=@.5).
{a) HMagnitude response
{) Phase response




