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ABSTRACT 

Iden t i f i c a t i on of re la t i ve ly high SNR regions in the short-t ime spect rum of a speech segment 

i s v e r y use fu l in speech process ing applications. Such regions usual ly occur a round the 

p e a k s in the spec t ra l enve lope. In this paper we propose a method for determin ing s u ch 

r e g i o n s automat ica l ly for a g iven speech segment. The method is based on a r e c en t l y 

d e v e l o p e d techn ique for po le - ze ro decomposit ion of speech spect ra . It is s hown that b y 

s e l e c t i v e l y p roces s i ng the high SNR regions of the spectrum, an unambiguous p i t ch peak in 

t h e h igh que f r en c y por t ion of the cepstrum can be obtained. The p rocess ing i n vo l ve s 

c ompu t a t i o n of Hi lbert enve lope of the select ively f i l tered cepstrum. Seve ra l examp les of 

s p e e c h segmen t s are cons idered to i l lustrate the improvement p rov ided by the p r o p o s e d 

me thod . 
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I. INTRODUCTION 

S p e e c h is the output of a time vary ing vocal tract system exc i ted by a time v a r y i n g 

e x c i t a t i on . Due to nonstat ionary nature of the speech signal, speech analys is is usua l l y 

p e r f o r m e d on shor t segments (10 -40 msec) of speech. Signal to Noise rat io (SNR) of s p e e c h 

s i gna l is d i f f e ren t for d i f ferent segments of the data. Further, for a g iven segment, the SNR 

is a f unc t i on of f requency in the short-t ime spectrum. For addit ive wh i te no ise, it is 

r e a s o n a b l e to assume that SNR is re lat ively higher over the regions co r respond ing to peaks 

in the e n ve l o pe of the short - t ime spectrum. Identification of such high SNR reg ions in the 

s i gna l s p e c t r um wou ld be v e r y useful in accurate analysis of speech, espec ia l ly in ob ta in ing a 

r e l i a b l e es t imate of vo ice pi tch. So far there has been no convenient method ava i lab le to r 

au tomat i ca l l y ident i f y ing such regions in the short-t ime spectrum. Recent ly it was s h o w n that 

the d e r i v a t i v e of phase spect rum (DPS) of the minimum phase cor respondent of a g i ven s igna l 

p r o v i d e s d i r e c t l y the information corresponding to peaks and va l leys of the s pe c t r a l 

e n v e l o p e * . The ob jec t i ve of this paper is to show the use of such an in format ion in 

i m p r o v i n g the re l iab i l i t y of p i tch estimation by cepstrum. 

P i t c h e x t r a c t on is a c lass ical problem in speech analysis which has been e lud ing s p e e c h 

r e s e a r c h e r s of a complete solut ion. Although there is only one intr insic mechanism caus ing 

t h e qua s i - p e r i od i c speech waveform, a large number of techniques exists for p i tch ex t r a c t i on . 

In s p i t e of the ava i lab i l i ty of severa l d iverse techniques, there is sti l l a need for a r obu s t 

t e c hn i que for ex t rac t i on of p i tch from noisy and f i l tered speech data. The prob lems in p i t ch 

d e t e c t i o n and the comparat ive performance of severa l pitch algorithms are d i s cus sed b y 

Rab i n e r et al ^. One genera l requirement of any pitch extract ion method is to r emove o r at 

l ea s t r e du ce the inf luence of the formant frequencies from the speech s ignal . The f i r s t 

f o rman t , in par t i cu lar , usual ly has a considerable influence on the accuracy of es t imat ion of 

p i t c h . Dur ing the p rocess of inverse f i ltering^ (or some other similar operat ion) to r emove 

t h e e f f ec t of formants , the signal to noise ratio of the f i l tered signal is reduced . Th i s is 

b e c a u s e the spec t ra l f lattening operat ion gives equal emphasis to peaks and va l l ey s in the 

s p e c t r a l enve l ope in which the va l leys correspond to re lat ive ly low SNR reg ions. M o r e o v e r 
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t h e r e is no sa t i s fac to ry method for determining an exact inverse f i l ter for short segments of 

s p e e c h . The ef fect of inaccurate inverse f i l ter ing is to introcjtfce^mbiguities in the es t imat ion 

of p i t c h epochs f rom the residual s i gna l 4 . In order to obtain a re l iable p i tch est imat ion, l ow 

f r e q u e n c y reg ion of the spectrum is general ly used 2 > ^. But the low f requency reg ion may 

no t n e c e s s a r i l y c o r r e spond to a high SNR region. A lso for a bandpass f i l t e red s igna l as in 

t e l e p h o n e qua l i t y speech , signif icant harmonics of the fundamental in the low f r e q u e n c y 

r e g i o n a re a t tenuated. It wou ld defnitely be desirable to make use of the high SNR reg ions in 

t he s p e c t r um p rov i ded the location of such regions is known. In the absence of such a 

k n o w l e d g e , the low f requency region is the best choice. A lowpass f i l ter w i th a v a r i ab l e 

c u t - o f f f r e quen c y need to be used depending on the SNR and the spec t rum of the s p e e c h 

s egmen t be ing ana lysed . However, it is difficult to estimate the cut-of f f r e q u e n c y 

au tomat i ca l l y . 

A c c u r a t e and re l iab le p i tch measurement direct ly from speech wave fo rm alone is o f t en 

e x c e e d i n g l y di f f icult . Because of the imperfect per iodic i ty of glottal pu lses , and the 

i n t e r a c t i on of the voca l tract system and the excitation, there is an inherent d i f f i cu l ty in 

d e f i n i n g the exact beginning and end of each pitch per iod, and also in d i s t ingu ish ing an 

u n v o i c e d segment f rom a low level voiced segment. These diff icult ies are accentuated b y the 

p r e s e n c e of no ise and d is tort ion in communication channels. Time domain methods ba sed on 

max imum l i ke l ihood formulat ion have been proposed to get a rel iable p i tch est imat ion f r om 

s p e e c h wave f o rm in the presence of noise A highly rel iable and soph is t i ca ted method is 

t h e semiautomat i c p i tch detector (SAPD) proposed by Mcgonegal et ai ^ 

A m o n g the f r equency domain methods, the cepstrum pitch extractor** is a h igh ly r e l i ab l e 

me thod . Cep s t r um is the inverse Four ier transform of the log power spec t rum of the s p e e c h 

s egmen t . The harmonic s t ructure in the spectrum due to per iodic impulse exc i ta t ion g i v e s 

r i s e to a d ist inct peak in the cepstrum, while the spectra l enve lope is r e p r e s en t ed as 

f l c t ua t i ons most ly near the or ig in. Thus the formant information is separa ted f rom exc i t a t i on 

i n f o rma t i on in the cepst rum. The best flattening of spectra l enve lope can be ob ta ined b y 

e l im ina t ing the ceps t ra l components near the origin (low quefrency region). Because of i ts 
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p r e c i s i o n , c ep s t r um method has attained a status of being a standard by wh ich o ther methods 

a r e e va l u a t ed . But in case of noisy speech, noise distorts the harmonic s t ruc tu re in the log 

s p e c t r u m and thus reduces the discrimination of the cepstra l peak *\ 

In o r d e r to inc rease the re l iab i i ty while retaining the advantages of the ceps t rum p i t ch 

me thod , it is neces sa r y to improve the SNR of the cepstrum in the high que f rency r eg i on so 

as t o enhance the p i tch peak against the background noise. In this paper we p r e s en t a 

m e t h o d for automat ica l ly se lect ing the regions around the peaks in the spect ra l e n ve l o pe . 

T h e c e p s t r u m for each such region is separately computed. Thus there is an i n c r ea sed 

r o b u s t n e s s because of the se lect ive processing and an increased re l iab i l i ty due to the 

ava i l ab i l i t y of s eve ra l independent cepstra. 

IL SELECT ION OF HIGH SNR REGIONS 

S e l e c t i o n of reg ions cor respond ing to peaks in the envelope of short- t ime spec t rum is b a s e d 

o n a t echn ique for po l e - z e ro decomposit ion of speech spect ra*. Such a decompos i t i on is 

a c h i e v e d b a s ed on the p roper t i es of the der ivat ive of phase spectrum (DPS) of a minimum 

p h a s e s igna l^. 

A- P r o p e r t i e s of DPS 

A min imum phase s ignal has, by definit ion, all its poles and zeros within the unit c i r c le in the 

z - p l a n e * ^ . The po le part of the spectrum of the signal can be represented as a cascade of 

s e v e r a l f i r s t o r de r sect ions wi th real poles and second order sections w i th complex con juga te 

p o l e s . The DPS of a typ ica l f irst order pole fi lter usually has signif icant va lues con f i ned to 

f r e q u e n c i e s c lose to or ig in . The magnitude of the DPS of a second o rde r po le f i l t e r 

( r e s ona t o r ) a round the resonance frequency is approximately proport iona l to the s qua r ed 

magn i t ude r e sponse of the f i l ter. The DPS of the overal l f i l ter is a supe rpos i t i on of the 

c omponen t DPSs of the sect ions. These propert ies were shown to be use fu l in an 

unamb iguous ident i f i cat ion of formants from the DPS of the all pole f i l ter ob ta ined b y l i near 

p r e d i c t i o n analys is^. The DPS corresponding to zeros is similar to that of po les excep t f o r a 

c h a n g e in the s ign of the DPS function. Specif ical ly, the DPS of the pole part is negat i ve and 
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tha t of the z e r o part is pos i t ive. Any given port ion of the short - t ime spec t rum has a 

c o n s i d e r a b l e in f luence of all the poles and zeros present in \her t ransfer funct ion, w h e r e a s 

t h e r e is a neg l ig ib le mutual inf luence amongst the component DPS funct ions of the po l e s and 

z e r o s . These s imple but power fu l propert ies of DPS have been used to accompl i sh t he 

p o l e - z e r o decompos i t i on* desc r ibed in the fol lowing sect ion. 

B. P o l e - z e r o decompos i t ion 

In o r d e r to r ep re sen t the spectrum of a given signal by a po le - ze ro model, it is su f f i c ient t o 

c o n s i d e r the minimum phase correspondent of the signal. This is because the spe c t r a of t he 

min imum phase co r respondent and the original signal are identical by def in i t ion. Let V(w) be 

t h e F ou r i e r t r ans fo rm of the minimum phase correspondent of the signal be ing mode l l ed . 

S i n c e all t he po les and ze ros of V(w) lie within the unit c irc le in the z -p lane , In V(») c an be 

e x p r e s s e d in Fou r i e r se r ies expans ion as fol lows*^: 

I n V U ) « c < 0 ) + ° I c<n) e - i » " ( 1 ) 

n-1 

w h e r e {c(n)} are ca l led cepstral coefficients. Writ ing 

V(») - |V(c*)| e i * V ( w > , 

w e get the rea l and imaginary parts of In V(w) as 

(2) 
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oo 
In |V(«)| » 2 c(n) cos na> (rea l pa r t ) (3) 

n«0 

a n d 

oo 
ty(<*) + 2Xir * - 2 c(n) sin nw ( imaginary pa r t ) (4) 

n-1 

w h e r e X is an in teger . Note that tyha) represents the phase spectrum of a minimum pha se 

s i gna l . Tak i ng the der i va t i ve of 0y(o>), we get 

oo 
9yita) - - 2 n c(n) cos n<* . (5) 

n -1 

F r o m the p r ope r t i e s of DPS we know that the significant port ion of DPS due to po les is 

c o n f i n e d to the negat ive part of the DPS function and the signif icant por t ion of DPS due to 

z e r o s is con f i ned to the pos i t ive part. Hence the contr ibut ion of poles and z e r o s can be 

s e p a r a t e d b y cons ide r ing the negative and posit ive port ions of 0y(a>) respec t i ve l y . Let 

w h e r e 

and 

V«>- [ty«)r + [fy»)3* <6> 

i i t 

[6\/(<»)T - 9y(u) for 0yiu) < 0 

- 0 for ^<ca)>0 (7) 

- 0 for »v (» )<0 . (8) 

C . H igh SNR reg ions 

T h e s pe c t r a l enve l ope of a speech segment is represented by the low que f rency po r t i on of 

t h e c ep s t r um , say the f irst M j cepstra l coeff icents {c(n)} where M j is in the range of 1 0 - 3 0 
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f o r s p e e c h samp led at 10 kHz. The OPS 0j(w) of the spectra l enve lope can t he r e f o r e b e 

o b t a i n e d b y comput ing the summation in (5) for the first cepstra l coef f i c ients on ly , i.e., 

/ Ml 
- - S n c(n) cos nu (9) 

1 n=l 

T h e po l e par t of tfj(o>) determines the regions around peaks in the spect ra l enve l ope and 

h e n c e can be used to represent the high SNR regions of the spectrum. F ig . l shows the DPS 

f o r a v o i c e d s pee ch segment for three different values of M j . The negat ive of the DPS 

f un c t i o n (NDPS) is shown in the f igure because it is convenient to compare the pos i t i ve pa r t 

of the NDPS w i th peaks in the spectral envelope. Speech data was sampled at 10 kHz, 

p a s s e d t h r ough a preemphas is f i lter ( l -0.92z"*>, and then multipl ied w i th a Hamming w i n d o w 

b e f o r e comput ing the cepst rum and the DPS. The short-t ime spectrum of the segment is a l so 

s h o w n b y do t t ed cu rve in the f igure for comparison. It is interest ing to note that r eg i ons 

a r o u n d the peaks in the spectra l envelope are represented by the pos i t ive part of the NDPS 

and the va l l e y s b y the negat ive part of the NDPS. The resolut ion of the indiv idual po l e s in 

t h e DPS is imp roved as the value of M j is increased. The f requency bands co r r e spond i ng to 

h i gh SNR reg ions are g iven by the nonzero values of the function X(c*) wh ich is de f i ned as 

f o l l o w s : 

X<<*> 

1 for < 0 , 

0 for *!(«) >0 <10) 

T h u s w e have shown a method for automatically identifying the high SNR reg ions in the s igna l 

s p e c t r u m . 
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IIL P I TCH EXTRACTION 

A l t h o u g h p i t ch is a low f requency percept, unlike a low frequency s inusoid p i tch in fo rmat ion 

is p r e s e n t o v e r the ent i re f reqency range of a speech spectrum. It may be reca l led that the 

qua s i p e r i o d i c i t y in a speech waveform arises due to quasiper iodic glottal pulse exc i ta t i on of 

t h e vo ca l t rac t s y s tem. The quasiper iodic glottal pulses give r ise to near ly per iod ic s pe c t r a l 

p e a k s (harmonic s t ruc tu re) in the signal spectrum. In an ear l ier study it was shown that p i t ch 

e p o c h s can be obta ined by process ing the high f requency port ion of a vo i c ed s p e e c h 

s i g n a l * * . In fact any band of frequencies is good enough to prov ide the p i tch in fo rmat ion , 

a n d th i s band need not necessar i ly enclose the fundamental Thus the d i f fe rent h igh SNR 

r e g i o n s s e l e c t ed based on DPS can be used to obtain the pitch information. 

A . D P S of Exc i ta t ion 

A l t h o u g h re l i ab le p i tch est imate can be obtained by select ive f i l ter ing, accuracy is a s s u r ed 

o n l y if the in f luence of the formants is removed. There are severa l methods for r emov ing the 

e f f e c t of fo rmants . One of the effect ive methods is by the use of ceps t rum. The h igh 

q u e f r e n c y po r t i on of the cepst rum has neglegible influence due to the impulse r e spon se of 

t h e vo ca l t rac t sys tem. The log spectrum corresponding to high que f rency po r t i on of the 

c e p s t r u m wou l d possess a t ru ly flat spectra l envelope with the supe rposed harmon ic 

s t r u c t u r e due to p i tch. The harmonic structure is better represented in the DPS of t he 

e x c i t a t i o n po r t i on wh i ch is g iven by 

0o(a>) 
N / 2 

2 n c(n) cos no> (11 ) 

T h e u p p e r limit in the summation is determined by the order of FFT used for comput ing the 

DFT s to ob ta i n ceps t rum. Al l the DFTs used in the present work we re computed for a va l ue 

o f N=512 . Fig.2 shows the NDPS for the excitation port ion of the ceps t rum for the same 

v o i c e d segment cons ide red for obtaining F ig . l . A value of M2-2I was used in obta in ing the 

NDPS . The pos i t i ve and negat ive parts of NDPS are separate ly shown as the uppe r and l o w e r 
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s o l i d c u r v e s respec t i ve l y . The short-t ime segment of the segment is also shown b y a d o t t e d 

c u r v e in the f igure. The f latness of the spectral envelope that can be obta ined in the DPS 

u s i n g the h igh que f rency port ion of cepstrum can be seen in Fig.2. The NDPS c u r v e a lso 

s h o w s the improved reso lut ion of the fluctuations observed in the short - t ime spec t rum. It is 

p o s s i b l e to d is t ingu ish the noisy pulses from harmonic pulses in the NDPS cu rve . F o r 

e xamp l e , the pu l ses in the reg ion 3.8 to 4 8 kHz is mostly due to noise. Such reg ions usua l l y 

o c c u r a r ound the va l l eys of the spectra l envelope. 

B. P r o c e s s e d Cep s t r a 

T h e h igh SNR por t ions of the DPS of the excitation can be obtained by mult ip ly ing fjgfo) w i t h 

t h e w i n d o w funct ion X(<$>). For each band of selected by X (« ) , the ceps t rum can be 

o b t a i n e d us ing the re lat ion (11). As a result of these operat ions not on ly an improvement in 

SNR is ob t a i ned in the resul t ing cepstrum but also severa l independent ceps t ra , one fo r e a c h 

n o n z e r o band in X(ci>), are available. Thus there is an increased robustness coup l ed w i t h 

r e l i a b i l i t y if the informat ion in the independent cepstra is p roper l y i n te rp re ted . But the 

n a r r o w f r equency bands in X(oi) reduce the resolution of the pitch peak in the c ep s t r um fo r 

t h e s e bands . This is a familiar problem of trade-off between SNR and reso lut ion, wh i ch o c cu r 

i n i n v e r s e f i l t e r ing prob lems as w e l l * 2 . The implication of this t rade-of f wi l l be d i s cus sed fo r 

s pe c i f i c ca ses in the next sect ion. The cepstrum for a bandpass DPS wil l have the modu la t ion 

e f f e c t of bandpass f i l ter ing. This makes it difficult to dist inguish the p i tch peak f r om o t h e r 

p e a k s in the ceps t rum. Moreover , the abrupt discontinuit ies at the edges of each band in 

$2^) wou l d p roduce undesirable r ipples in the cepstrum. This effect can be r educed b y 

u s i ng a su i tab le w indow funct ion in place of a rectangular window funct ion for each of the 

n o n z e r o bands in X ( « ) . The f luctuations in the cepstrum caused by the bandpass o pe r a t i o n 

c a n be ove r come by computing the Hilbert envelope*^ of the resul t ing ceps t rum. Th i s 

me t hod of p rocess ing to reduce the ambiguities is similar to the epoch f i l te r ing method 

p r o p o s e d for the ident i f icat ion of the significant instant of excitat ion of the voca l t ract s y s t e m 

f r o m a bandpass signal or its l inear predict ion r e s i dua l^* 1 ** 4 . The process ing s teps i n vo l v ed 

f o r g ene r a t i ng the ceps t ra from the DPS are as fol lows: 
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(a) C o n s i d e r each nonze ro band of ^ ( " ^ ( u ) separate ly. 

( b ) Mu l t i p l y the band w i th a suitable extended cos ine-bel l w i n d o w ^ in f r equency doma in . 

T h e w i d t h of the w indow depends on the width of the band being p rocessed . Fo r the 

s e l e c t e d l owpas s sec t ion the window function is symmetric about the or ig in. 

(c) C o m p u t e the ceps t rum c(n) and its Hilbert transform c^(n) for each of the w i ndowed bands 

of *2<*>>x<<*>-

(d) C o m p u t e the Hi lbert enve lope C(j(n) def ined as fol lows: 

c 0 ( n ) - [ c 2 ( n ) + c f j ( n ) ] 1 / 2 ( 12 ) 

T h e s igna l CQ(n) wi l l be referred to as processed cepstrurru We get one p roces sed c ep s t r um 

f o r e a c h non z e r o band in X(to). The details of the computational scheme are shown in F ig .3 . 

F o r the p u r p o s e of comput ing the Hilbert transform, the p roper ty that the imaginary par t of 

t h e i n v e r s e DFT of a one-s ided complex sequence is the Hlibert t ranform of the rea l par t , is 

u s e d . The one - s i d ed complex sequence is obtained by sett ing all DFT samples b e yond N/2 to 

z e r o . S p e e c h segments of 25.6 msec duration sampled at 10 kHz is mult ip l ied w i t h an 

e x t e n d e d co s i ne -be l l data window before computing the DFT. A cos ine-be l l data w i ndow is 

f l a t o v e r the middle por t ion and has raised cosine character ist ics at e i ther end . We have 

f o u n d that the cos ine -be l l window does not signif icantly distort the signal w a v e f o r m in 

d i f f e r e n t p i t ch pe r i ods of the analysis segment and hence is a suitable choice fo r c ep s t r a l 

p i t c h es t imat ion . A l l the DFT computations are performed using a 512 point FFT. The number 

of p r o c e s s e d c ep s t r a depends on the number of nonzero bands in X(o>), wh ich in tu rn d epend s 

b o t h on the ana lys is segment and the number of coeff ic ients M j used in obta in ing O^**)  m  

(11) . 
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IV. RESULTS AND DISCUSSION 

A segmen t of v owe l sound of telephone quality speech is analysed to i l lustrate the a bove 

me thod . The wave fo rm, the log spectrum and the cepstrum for this segment are s h o w n in 

F ig .4 . The ceps t r um has a c lear ly distinguishable pitch peak. The DPS for low que f r enc i e s of 

t h e c e p s t r um for a va lue of M j ~ 5 is shown in Fig.4f. The cor respond ing w indow func t i on 

X(o>) has two high SNR regions. It may be noted that these regions c o r r e spond to peak 

r e g i o n s in the enve lope of the log spectrum. The DPS for the high que f rency par t of t he 

c e p s t r u m is computed using a value of M2 equals to 32 . The se lected port ions of DPS of the 

e x c i t a t i o n is s hown in Fig.4h. Over the selected regions the DPS of the exc i tat ion has c l e a r l y 

m a r k e d harmonic s t ruc tu re . The processed cepstrum for both the regions show unamb iguous 

p i t c h peak. The p rocessed cepstrum corresponding to bandpass region has a sha rpe r p i t ch 

p e a k c ompa r ed to the pitch peak for the lowpass region because the f requency band for the 

b a n d p a s s r eg ion is broader . Although for this case the pitch peaks in the c ep s t r a a r e 

unamb iguous , the improvemet in SNR is evident when we observe the p i tch peaks at tw i c e 

t h e p i t ch pe r i od (shown by arrows). 

T h e improvement in SNR is obta ined at the cost of resolut ion. Since we are i n t e r e s t ed in 

l o ca t i ng on l y a s ingle p i tch peak, we can afford to sacrif ice reso lut ion. The number of 

i n dependen t segments avai lable for processing depends on the value of M j and the pa r t i cu l a r 

s egmen t be i ng ana lysed. A large value of M j results in more number of nonzero bands w i t h 

n a r r o w e r w id ths in X(G>). The SNR can be expected to be higher for these bands, but the 

r e s o l u t i o n of p i t ch peak wil l be ve r y poor. On the other hand, a low value for w i l l r e su l t 

i n b r o a d e r bands in X(w) thus re lat ive ly reducing the SNR. These remarks are i l l us t ra ted b y 

ana l y s i ng a vo i ced s top segment /b / . The cepstrum and the processed ceps t ra for t h r e e 

d i f f r en t va lues of M j are shown in Fig.5 . The processed ceps t ra for the low f r e q u e n c y 

r e g i o n on l y are shown . The DPS of excitation for each case is also g iven in the f i gu re to 

s h o w the bandw id th of the se lected segments. It may be noted f rom the DPS that the 

numbe r of segments is more for a larger value of M j . In the p rocessed ceps t rum F ig .5c 

t h e r e is a sha rp peak at the pitch per iod but there are also many spur ious peaks p r e s en t . 
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T h e s e s pu r i ou s peaks are absent in processed cepstra Figs.5d and 5e but the p i tch peaks a re 

much b r o ade r . A t rade-o f f ex ists between the resolut ion and SNR depend ing on the va l ue of 

M j c h o s e n . A s is increased, though the number of avai lable independent measu rements 

i n c r e a s e s , not all segments may prove to be useful. The optimum value for M j to be u s ed 

d e p e n d s on the segment, but we have found a value of 5 to be genera l ly sa t i s fac tory . 

T h e re su l t of ana lys i s for a high pitched vowel sound spoken by a female speaker is s h o w n in 

F ig .6 . Th i s f igure i l lustrates the automatic choice of the cut-off f requency for l owpass r eg i on 

b y t he NDPS cu r ve Fig.6e. It is also to be noted that the harmonic s t ruc ture in the s p e c t r um 

is p o o r b e y o n d the cut -o f f f requency. The improvement in SNR in the p rocessed c ep s t r um is 

e v i d en t in the appea rence of pitch peaks at twice and three times the pi tch pe r iod . 

T h e resu l t of ana lys is for a transit ion segment of noisy speech is shown in Fig.7 . No i s y 

s p e e c h was gene r a t ed b y adding zero mean white Gaussian noise to the speech samples . The 

a v e r a g e SNR o v e r the utterance was 10 dB. There are noticable d iss imi lar i t ies in the 

s u c c e s s i v e pe r i ods of the waveform arising due to noise. The select ion of f r equency r eg i ons 

con t a i n i ng the harmonic s t ructure is c lear ly seen. The processed ceps t rum for the l ow 

f r e q u e n c y r eg i on has a dist inct peak. But for the bandpass region there are two d is t inc t 

p e a k s in the p r o ce s sed cepstrum. Since the clean data for this frame was ava i lab le , t he 

ana l y s i s of the c lean data showed that the occurrence of two peaks is not due to no ise. F r om 

t he w a v e f o r m the measured pitch per iods show a large di f ference for the two per iods s e en in 

t he w a v e f o r m . This is a case of a rapid transit ion. To define a per iod there must be at least 

t w o r epe t i on s . Thus for transit ions one can not define an average pi tch for the segment . In 

t h e f r e q u e n c y domain the harmonic spacing would be different in d i f ferent f r equency bands . 

Th i s a lso s hows that for synthes is of transit ions, the instants of signif icant exc i ta t ion of the 

v o c a l t rac t cav i t y have to be deduced. 

P r o c e s s e d c ep s t r a for f ive success ive frames in the utterance of the wo rd "zero* are s h o w n 

in F ig.S. The f rames are separated by 2 0 msec. The f irst frame shown is a segment of 

v o i c e d f r i ca t i ve . Only one processed cepstrum for each frame is shown. There is no c l ea r 

e v i d e n c e of p i t ch peak in the cepstrum for the voiced fr icat ive segment (frame (a)). But the 
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amb igu i t y can be reduced by fol lowing the pitch peaks in the adjecent frames. The re l i ab i l i t y 

Of a p i t ch con tour de r i ved from the processed cepstra can be fur ther imp roved b y 

c o n s i d e r i n g the contour de r i ved from the peaks appearing at twice the p i tch pe r i od . It is a lso 

c l e a r that it is much s impler to der ive a pitch contour from the processed ceps t r a t han f r om 

t h e u n p r o c e s s e d ceps t rum. 

T h e s equence of the p rocessed cepst ra for a transit ion from unvoiced to vo i ced sound in t he 

w o r d "six" is s hown in Fig.9. The successive frames in the f igure are separa ted b y 10 msec 

i n o r d e r to s tudy the resu l ts for transit ion. The processed cepstrum for the unvo i ced f r ame 

(a) is d i s t i nc t l y d i f ferent from that for voiced frames. There are many signif icant peaks e v e n 

f o r h igh que f renc i e s . This suggests a method of distinguishing vo iced frames f rom unvo i c ed 

f r ame s . The p ro ce s sed cepst rum for the transit ion frame (b) contains severa l s ign i f icant h igh 

q u e f r e n c y components bes ides a distinct pitch peak. It appears that the p resence of t he se 

s tgn i f i ca t h igh que f r ency components is an indication of the presence of unvo iced data in the 

ana l y s i s f rame (also see processed cepstrum for frame (a) in Fig.8). The p i tch peaks in the 

p r o c e s s e d c ep s t r a for vo iced frames (c), (d) and (e> are quite distinct. It is easy to v i sua l i z e 

t h e p i t ch con tou r f rom the processed cepstra of successive frames, whereas the unp r o c e s s ed 

c e p s t r a do not g ive a c lear indication of pitch contour. The SNR improvement in the 

p r o c e s s e d ceps t r um is also evident from the distinct peak at twice the p i t ch p e r i o d f o r 

f r a m e s (d) and (e). 

V . CONCLUSIONS 

A me thod fo r automatical ly select ing the relat ively high SNR regions of the sho r t - t ime 

s p e c t r u m of a s pee ch signal has been presented. Significat improvement in the d i sc r im inat ion 

o f p i t ch peak against background noise is possible by process ing the se lec ted f r e quen c y 

bands . Ambigu i t i es in the identif ication of the pitch peak in the ceps t rum is r educed b y 

c ompu t i ng the Hi lbert enve lope of the bandpass f i l tered cepstrum. Rel iabi l i ty is a ch i eved as a 

r e su l t of ava i lab i l i ty of severa l independent cepstra, each represent ing a high SNR po r t i on of 

t h e s pe c t r um . In most cases the rel iabi l i ty of pitch estimation is fur ther enhanced b y t he 

p r e s e n c e of an unambiguous pitch peak at twice the pitch per iod. An algor i thm for r e l i ab l e 
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p i t c h con tou r can be obta ined based on the processed cepst ra for seve ra l s u c ce s s i v e 

s e g m e n t s and also on the knowledge of severa l factors such as spect ra l leve l in each band , 

t h e w i d t h of each band, the t rade-of f between SNR and resolut ion. 
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FREQUENCY IN KHz 

F i g . l NDPS funct ion for low quefrency cepstal coefficients of a vowel segment for d i f f e ren t 

v a l ue s of M j : (a) M j - 1 0 (b) M2~20 , (c) M 3 =30. The short-t ime spectrum of the segment Is 

1 a lso shown in the f igure by a dotted curve. . t 
i 
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FREQUENCY IN KHz 

Fig.2 NDPS funct ion for high quefrency cepstral coefficients of the same vowe l sound as In 

F l g . l (a) po le part of NDPS (upper plot), (b) zero part of NDPS (lower plot). The sho r t - t ime 

spe c t r um of the segment Is also shown in the figure by a dotted curve. 
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F ig.4 Ana l y s i s of a vowe l segment of telephone quality: (a) Speech waveform, (b) c ep s t r um , 

(c) P r o c e s s e d ceps t rum for reg ion A, (d) Processed cepstrum for reg ion B, (e) Log spec t rum, 

(f) DPS of low quef renc ies <M|-5), (g) Window function X(«) for high SNR reg ions, (h) NDPS 

f o r h igh que f renc ies (M2-32) . 
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F ig.5 T rade -o f f be tween resolut ion and SNR; (a) voiced stop segment, (b) ceps t rum , (c) 

p r o c e s s e d ceps t rum for M j - 3 , (d) processed cepstrum for M j - 7 , (e) p rocessed ceps t rum fo r 

1 - Mi-.1-3, (f) iog spect rum, (g) NDPS for M j - 3 , (h) NDPS for M j - 7 , (I) NDPS for M j f 13 
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Fig.6 Ana l y s i s of a high pi tched vowel segment of female voice: (a) vowe l segment, (b) 

c ep s t r um , (c) p roces sed cepstrum. (d) log spectrum, (e) NDPS for low quefrenc ies ( M j - 5 ) , (f) 

ij W i ndow funct ion X(w), (g) NDPb ior nigh quefrencies (M2-32) j 
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Fig.7 Ana l y s i s of. a transit ion segment: (a) transition segment, (b) cepstrum, (c) p r o c e s s e d 

c ep s t r um for reg ion A, (d) processed cepstrum for region B, (e) log spectrum, (f) NDPS f o r 

1 . low c r i e f renc los <Mj«5), (g) Window function X(w), (h) NDPS for high quefrenc les (JM 2 «32) £ 
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F lg .8 P r o c e s s e d ceps t ra for severa l successive frames separated by 20 msec for a t r ans i t i on 

f r om vo i c ed f r rca i ive to vowe l in the word zero 
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Fig.9 P r o c e s s ed ceps t ra for severa l successive frames separated by 10 msec for a t r ans i t i on 

f rom unvo i ced f r icat ive to vowel In the word six ' 


