NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CARNEGIE-MELLON UNIVERSITY

Computer Science Department

A Greedy Switch-box Router

W.K.LUK
May 1984

VLSI Document V158

Keywords and index categories: automatic routing, greedy algorithm, switch-box router, VLSI cad

Copyright © 1984 W, K. Luk

Supported in part by the Defense Advanced Research Projects Agency, Department of Defense, ARPA Order
3597, monitored by the Air Force Avionics Laboratory under contract F33615-81-K-1539. The views and
conctusions contained in this document are those of the authors and should not be interpreted as representing
the officiai policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
U.S. Government. e

Sy Libraries

ity Libraries

Un“{er%h{i"n Lipiyarety
i el HAE R A

Carme s N inp12-3850

T O]
petspurgh PA 2

A Greedy Switch-box Router!

W. K. LUK
Computer Scicnce Department
Carcgic-Mcllon University
Pittsburgh, PA 15213

Abstract. The greedy channel router of Rivest and Fiduccia is extended into an cfficient switch-
box router. The algorithm is based on two simple operations called join-split-nets and jog-to-
right-target derived from the channel router. ‘Terminals are on the boundary of a rectangular
region, and the router uses two orthogonal layers of wires to generate the solution. The router
always succeeds in finding a solution by inserting sufficient horizontal and vertical tracks in case of
insufficient routing area. The result is generated through a single column-wise scan acruss the
routing region. The cxpected running time is proportional to M{N + N,_), where M N and NV, are
respectively the number of columns, rows and nets in the region. The scan direction is crucial to
the algorithm and we have proposed good heuristic which is based on the augmented channel
density distribution in finding it. Resuits from a number of cxampics are evaluated. The
implemented router is designed for assembling custom VI.SU designs, it works in parallel with
other tools such as a layout editor via a simple interface. The router output is in CIF.

Keywords: automatic routing, greedy algorithm, switch-box router, VLS[cad

1. Introduction

Placement and routing is an important part of design automation, both for printed circuit board and chip
level layout [S]. The probiem is: given a set of moduies and interconnection information (net-list), how to
place the modules and connect the terminals of the modules in an optimal way. namely minimum amount of
layout arca, shortest overall wiring length, etc. The process is generally divided into a number steps:
placement of modules, creation and partition of routing region between the modules, global (or rough)
assignment of the wiring paths for each net, detiled wiring of the individual routing regions. This report

presents a specific tool for handling detailed routing: a switch-box router.

A channel router, switch-box router and river router form a set of routers that are sufficient to handle the
detail routing in a placement and routing system [5]. Switch-box routing may not be necessary for gate-array
routing, where the fixed terminals are only on two opposing sides of a rectangular routing region. But for
custom VLSI layout, it is not uncommon to have routing regions where terminals are located on all four sides.

As there are no known polynomial-time optimal channel and switch-box routing atgorithms, and also no

1Su;:tpoﬂcd in part by the Defense Advanced Rescarch Projecis Agency, Department of Defense, ARPA Order 3597, monitored by the
Air Force Avionics Laboratory under contract F13615-81-K-1539. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

[NTRODUCTION . 3

known algorithm to determine the routability for switch-box routing, a solution is usually based on a

heuristic.

We present a fast heuristic to handle switch-box routing, based on an extension of the greedy heuristic for
channel routing proposcd by Rivest and Fiduccia [4]. The switch-box algorithm is as time-cfficient as the
greedy channel router which has been found to be useful in VIST layout. The switch-box router has been
implemented and can work integrally and in parallel with a VL.SI layout toot such as CAESAR for generating

the interconnection for cells, all the way down to the mask level description (CIF).

The report first presents the greedy switch-box algorithm, then discusses some features about its

implementation and cxamples.

2. The greedy switch-box algorithm
We assume the placed modules are rectangular and their terminals are on the module boundaries, further

the modules are aligned in such a way that they enclose a rectangular routing region.

2.1. Definition

A rectangular routing region is defined as R={0.1,2.... A/} x{0,1,2....N}, wherc M.N are positive integers.
Each pair (x.y)€ R is called a grid point. A set of grid points col{x)={(x.)|y€ {0.L2....N}} for x=0,1.2...M
is called a column. Similarly a set of grid points rom(y)={(x)fxe{0.12,...47}} for y=0,12....Nis called a
row. The two columns coi(0) and col(M) forms the left (LEFT) and right (R/G'HT) boundaries of the routing
region, likewisc the two rows ron{0) and row(N) are the bottom (BOTTOA!) and top (TOPF) boundaries.

The terminals from the modules are located on the four boundaries of the rowming region R. Each
terminal is related to an integer # called the net. Each nct n specifies the terminals on the four boundaries
that are to be connected together, i.e. all the terminals that bear the samc nct number will cventually be
connected by the router. The set of nets specifying the entire connectivity of the terminals is called a net-list.

Without loss of generality, we may assume the net-list of the routing probiem is a sct of integers {1,2.... N}

The connectivity and location of each terminal is rcpresented as LEFT()=n or RIGHT()=#n or
TOP()=nor BOTTOM({)=n, depending which edge the terminal is on, where i stands for the coordinate of

the terminal along the edge and # stands for the net number.

The routing problem is to find a solution for connecting all the terminals that belong to the same net
within the given routing region. Connection is defined by wire (or track) which is allowed to run either

horizontally or vertically along the rows and columns (along the grids). Only a single wire is allowed to

THE GREEDY SWITCH-BOX ALGORITHM) 3

occupy cach row and column segment, and cross-over of two wires (say a horizontal and a vertical wire) at a

grid point is allowed.

An example is shown in Figure 2-1.

T 0 P
1 2 3
I | |
3 Leemedemes | | R
L | | | | .
1 em==t [[] [JE—— I
E] | | | 1
2 . ewmmbmmccpemaabacoa® Sewecpmm-e, G
F | | | 1
L e 1 $m--a. 1 H
T } | |
3 UGS PR]] [JR PR, . 2 ‘r
..... TN P PO
3 1 2

P 0 T T 0 M

- horiiontﬂ track, | vertical track, * layer change (viss)
R=1{0,1234567}x{01234.56}
TOM1.234,5.6)=(10.2030]
BOTTOM(1,23.456)=[3,01020]
LEFT(1,234.5)={30213}

RIGHT(12,34,5={21310]
(@
1 2 3
.....i.........i.........i
3 mmmmtemeee | |
. . | 1 |
{1 [~erefmccccecuecanas e Vmnwa, 4
I | | | |
2 e===n Poemcpmmunpannnbrmmnpmme=,]
| I | I 1
T - NS —— P —1
. | | |
Ry —— | J—— [PR, .2
..... [P
3 1 2
)

Figure 2-1: A switch-box routing problem:
(a) specification and a solution
(b} solution from this switch-box router

THE GREEDY SWITCIT-BOX ALGORITIIM . 4

2.2, Greedy channel routing algorithm
Since optimal channel routing is NP-complete [2], and determining routability for switch-box has no
known solution, we rely on finding cfficient heuristics. The switch-box routing heuristic is an extension of the

greedy channel routing algorithm 4],

2.2.1. Optimality
In channe! routing, we are interested in finding a routing solution which uscs as few horizontal tracks as
possible. A common lower bound for this solution is the channel dcnsity2 . Qur heuristic is based on the

following rcasoning:

Optimality can be achieved if we can guarantee for each column, there is only ere horizontal track for
each net. The routing heuristic is to minimize the number of horizontal tracks per columa per net. The
method is o scan columns, say from left to right, and try to join the split horizontal tracks (assuming there are
any) that belong to the same net as much as possible.

2.2.2. The greedy algorithm
Without loss of generality, we scan the routing region columns from left to right. The control structure of

the greedy heuristic can be formulated as follows. Assume the routing region is R = {0.12....M}x{012...N}.

(CHO) «calculate channel density:
insert horizontal rows equal to the channel density
into the initial routing channel;
loop for 1 from 1 to M-1 do
(CH1) 1if empty-track-exists than
bring TOP(i) and BOTTOM(1i) into empty rows;
(CH2) join split nets as much as possible;
(CH3) bring split nets closer by jogging;
(CH4) solve ¢onflict by jogging to the next top/bottom terminals;
(CH5) if step {CH1) failed then
increase number of rows;
rapeat (CH1); update columns 1 to 1;
while split-net-exists do
(CH8) increase number of columns by 1;
join split nets as much as possible;

For details about the greedy channel routing algorithm, see {4]. We review briefly the major control steps:

e Step CH1 (bring-in-top-bottom): Bring TOA(}} and BOTTOM() into cmpty rows to start the

2A tower bound on the number of horizontal tracks required for channel routing. Assume the columns are numbered from 0 to M and
the: terminais are lying along the TOP and BOTTOM edges at some of the integer points 1.2, .M-1 Column 0 and column M are the
left and right boundaries of the channcl. Let 4, be the minimum number of horizonlal tracks that pass through the column |, in order to
maintain the connectivily between the terminals on the left, on the right, and the current column i, Channel density D is defined as
max{dydy....dp.-1}. The wple {d).dh.....dy.|) is called the density distnbution 4 and can be used as 2 measure for the sparseness of a
channel.

THE GREEDY SWITCH-BOX ALGORITIIM

1

cwmmpmmm=)

Figure 2-2: Net | enters from the top and net 2 from the bottom

routing for each coiumn. Scc Figure 2-2.

o Stcp CH2 (join-split-ncts): It is the key step for the heuristic which joins split nets as much as
possible, There arc privritics in choosing the nets to be joined, but such rules are by no means
unique. Naturally, split ncts are joined according to the following priority: a split net that when
joined can free up the most number of tracks, a split net with tracks that are farther apart, ... See
Figure 2-3. ’

] ~—=cas 1 ===as
| |

2 wemcpuaue) 2 memmpanaa)
] |

1 emaabewae) d emmadmu=a)
I I

2 mseejaaes) 2 comapesw=)
| |

1 conal 1 ELLEL EE T
(a) (®)

Figure 23: Joining split nets: (a) join net 1 to free more tracks,
(b) join net 1 because tracks farther apart

Step CH3 (jog-for-join): Split ncts are brought closer Ly jogging so that they may be more ezsily
joined together. Because the farther apart the split net tracks are. the higher the chance of being
blocked by rows in between, This is not a compulsory step for the heuristic, but making use of it
may improve the routing result. See Figure 2-4.

*eammy
|

R
|

2 emeas

Figure 2-4: Bring split net closer by jogging

e Step CH4 (jog-bypass-conflict): This is a means of solving the cyclic conflict by jogging a track of
a certain net to its next top or bottom terminals, see Figure 2-5¢. This step may also be considered
as an optional one, since cyclic conflict may also be handied soiely by step CH2, see Figure 2-5b.
But making use of it may improve the routing result.

 Step CHS (extend-row): In case the routing channel does not have sufficient rows, the router

THE GREEDY SWITCIH-BOX ALGORITE M . 6

1 2 1 2 1 2
|}] | I
Sommap= ? .--)-*----. LS T l
| 7 | | | |
Sace=t 7 [BYFeReY | I Pommupmoe=l®
| ?]] ! |
l e 7 I LETY L1 I au)="
| | | | | |
2z 1 2 1 2 1
(a) (b) (¢)

Figure 2-5: () Cyclic conflict between net 1 and 2,
{b) Solving by joining, (¢) Solving by jogging

increases the tracks by 1 or 2 to allow the top and bottom terminals to enter and continue the
routing.

e Step CH6 (extend-column): In casc the routing reaches the far right edge and there are still some
split nets, the router extends the routing region beyond the right-most column to join up all the
rernaining horizontal tracks.

The step join-spiit-nets (CH2) is the key for the greedy channel router to function, whereas jog-for-join
(CH3) and jog-bypass-conflict (CH4) are mainly for getting better resuits. This statement may be illustrated

from the following tests on the Deutsch channel routing problem. This problem has a channel density of 19.

test ab. of tracks used
all CH2, CH3, CH4 used 20
without CH3 | 22
without CH4 27
without CH3 and CH4 28

2.3. Extension o switch-box routing
We extend the greedy heuristic to handle switch-box routing by relaxing some operations that are not vital
to the functioning of the greedy algorithm and modifying them to overcome the additional constraints on

switch-box routing. Assuming the scanning is from left to right, these additional constraints are:

o to match the terminais on the LEFT of the routing region

o to match the terminals on the R/GHT of the routing region

To overcome the constraint, we use the following heuristic:

o Bring in left terminals: The left edge terminals enter directly into the routing region (columa 1) as
horizontal tracks.

o Jog to right target (jogp): Instead of jogging to the next top and bottom terminals as in Step CH4
of the greedy channel router which we call jogy, g the herizontal tracks arc jogged to a target row,
a row where a right edge terminal is located. We call this step jogp. ‘The following strategies are
used:

THE GREEDY SWITCII-BOX ALGORITHM

o All nets that have right edge terminals are put into a priority queue. The choice of the
jogging nets is based on e following priority: First choose a net whose target row on the
right is empty and for which there also exists a vertical track from the net to a trgcet row.
Second jog a net whose target row on the rtight is empty with priority alse based on how
closc to the empty target row it can be jogged. “Third jog a net that can be brought closer to
the target row. When a net reaches its target row, it is deleted from the queuc. Sce Figure
2-6. In casc there are more than onc nets satisfying cach of the above conditions, higher
priority is given to the one whose initial position is farther away from the target row, and
then the one with a closer final position from the target row.

——— —

3 ==w)eca=® Ponccavsmmsnaansa

Figure 2-6: Net 1, 2 and 3 jog to the right side target terminals’

o In order to avoid the deadlock condition when jogging to the right side targets (see Figure
2-7). a net is allowed to jog as close as possible or pass the target row 5o as to destroy the
deadlock, and then such net is masked so that it will not be allowed to oscillate back to its
original row. Other deadlocked nets can in tum be jogged to the target rows.

L N -t
| I

1 e=)==t - fonenuaacaas 4
i I

2 m==decpwan=s L} L] am 1
1 |

d ==decjpoc==t Senmavrracccncnnasmans J
|

i ==daas L L L L LE PP R PR L S L 3

Figure 2-7: Cyclic condition when jogging to the right sidc target terminals,
Net 4 breaks the deadlock

We have shown that the jog-to-right-target is the basic operation for (1) bringing nets to their final
targets, (2) handling of cyclic conflict and deadlock between the left and right cdge terminals. Itis
as vital as the join-split-nets operation in channel routing. The combination of both of them
enables switch-box routing.

The optimal way for a net to arrive at its target row is by jogging only once as shown in nets 1 and
2 in Figure 2-6, and nets 1, 2 and 3 in Figure 2-7. Each of them uscs only a single vertical track,
whereas the other nets in the figures require two or more. Since cach jogging wastes one vertical
track. too many joggings may result in running out of tracks. A distance dependent threshold
scheme is used to avoid excessive jogging. A net is only allowed to jog to its target row only if it
can be brought to or beyond half way between the initial and the target positions.

o Fanout to targets: For nets that occupy more than one location on the right edge, when such net

THE GREEDY SWITCH-BOX ALGORITHM . 8

becomes unspiit and is clase to the right edge, Fan out the horizontal track to the final terminal
locations. We call this stcp fanout to target. See Figure 2-8. Close is a control parameter in the
algorithm, it depends on (1) the frec space (Sparsencss) of the vertical and horizontad tracks near
the right edge. (2} the number multiple terminals (terminals that belong w the same nct) un the
rigit cdge. and (3) the number of columns from the right edge. A typical default valuc is between
7 1o § columns from the right edge. The augmented density distribution d° (Section 25.1)
(dydy.-r-dpr} MY BE used for measuring sparsencss. Fanout operation is started when all the 475 to
the right of the scan column is below a certain threshold.

$emme i
|

Semampama= 2
P

1 --e-- Ymmmmmn pmmemtam=e 1
| |

2 ---e- ymmamne Sommabonnm 2
i

I |

Figure 2:8: Netl and 2 fan out to the right side target terminals

Steps bring-in-lel‘t-tenpinuls and fanout-to-targets are orthogonal to the greedy channel routing algorithm,
they can be inserted directly into the channel routing algorithm. Step jogg conflicts with the steps CHJ3 and

CH4 of the channel router, we next show how to handic the problem and give the algorithm for switch-box

routing.

2.3.1. Conflict between 091, and ibgR
As mentioned earlier, the switch-box rouier besides jogging to the top/bottom terminals (Step CH4),
allows nets that have right edge terminals to jog to the right edge targets. We use two kinds of jogging in

switch-box routing:

® jogpp jog to the next op of bottom terminals as in the channel routing algorithm

* jogg: jog o the right edge terminals

Figure 2-9 shows a simple example (Example 1) of how the two joggings conflict with each other and we

show how the joggings are handled.

scan . | 4 1
. 1A L]
———D . .[.1 B
. .o===> |
-2 1

Figure 2-9: Example 1: The two joggings conflicting each other

We assume the router scans from left to right. In region A. net 1 has to jog downward to solve the conflict

THFE GREEDY SWITCH-BOX ALGORITHM . 9

between net 1 and 2 as in the channel router. In region B, net 1 has to jog upward to mect the right edge

target. We illustrate a number of possible jogging combinations for the gencration of the solution. ‘They are

¢ SWJOGI (jogR): For nets that have terminals on the R/GHT, perform jogg until the nct has
occupied a track that matches with one of the right edge terminal positions. For nets that only
have terminals on TOP and BOTTOM, perform jogr . as in the greedy channel router, The
result for Example 1 is shown in Figure 2-10.

1 2

] |

W o - L EE T Y 1
scan } i
———— Ponmsvnaen - |

| |

‘ [TR]

i |

4 1

Figure 2-10: Routing Example | using jogging jogg

e SWIOG2 Gog /s jogR): Another jogging scheme is to first perform jog, o for every net and
then switch w perform jog, at the column where the last top and/or bottom terminals appear.
'The result for Example 1 is shown in Figure 2-11.

1 2

] I

LT) l L e] 1
scan | | |
wmm=) L PP e I

o |

I fnanalacanld

I |

2 1

Figure 2-11: Routing Example 1 using jogging (o, g: jogg)

s SWIOG3 (jogT /n It jogR): Figure 2-12 shows another routing for Exampie 1. [t applies both kind
of juggings to the same net (net 1 in this case} in parallel.

1 2

] !

[L LY 1
scan | §
P [T

I |

| Bmuma®

| |

2 1

Figure 2:12: Routing Example 1 using parallel jogging (jog 5 Il jogg)

Net 1 in the Figure 2-12 tends to jog downward to solve the ¢cyclic conflict (between net 1 and 2)
but its right side terminal tends to make it stay upward towards the target, We should not apply
both joggings jog,,, and jogy to each column, otherwise it would lead to fanout of horizontal
tracks and contradict the basic greedy heuristic — minimize the number of horizontai tracks per
column. Consequently these fanout ncts have to be joined and results in oscillation between the
fanning out and joining opcrations. Parallel jogging is basically a different heuristic for switch-

THE GREEDY SWITCLI-BOX ALGORITIM 10

box routing and cannot be incorporated into the original greedy heuristic.

Careful observation ceveals that the paralicl jogging which lcads to & fanout nct can e obtained
by scanning the routing region from right ©© left using the scheme sWJIOGH (jugg) (Figure 2-13).
This shows that the single jogging rule jogy, can give a good routing if a suitable scanning direction
has been chosen. So the routing result depends on the scan direction as is the case for the greedy

channel router.

1 2

| |

l---—‘----+ ------------ 1 sca“
i |

Semmapuma=® Lmm="

| |

l Pmmmm

| |

2 1

Figure 2-13: 1touting Example L using jogging i08p with scan reversed,
same result as (o&q/p I jogg)

2.3.2.The jogging strategy for switch-box routing swJ0G

SWJIOG3 (jogt,p | jogg) contradicts the original greedy idea of trying 10 minimize the aumber of
horizontal tracks by joining split nets. One has to keep track of the fanning out (due 10 the parallcl jogging)
and joining operations. This complicates the algorithm though it is less sensitive to the scan direction. The
same result can be obtained if the scanning direction is reversed. [0 other words. the choice of the scan

direction is moOre crucial. We present in the sequel a heuristic 0 determine the scan direction.

SWJIOG! (iogy) performs petter than SWIOG2 (ogr /B;jogR) because jofg handles the right side
constraint of the switch-box directly and earlier. Though (Jog ‘,B:jogk) fnay sometime use less horizontal
tracks than 08¢ since it always Jogs to the top and botom terminals 10 handle cyclic conflict, we think that

the most important constraint for switch-box routing is the right side terminats which should not be handled

100 late in the scan which may result in running out of room to jog @ the right side terminals.

To improve the use of jo and jog,, for nets that have right side terminals, we may make the following
&1/8 R

compromise between SWIOG1 (jogp) and SWJOG2 (jog¢ ,B;jogR). We call such rules SWJOG:

o For nets that do not have right side terminals, always perform j08y,p:

o For nets that have a right side terminal and whose right-most top/bottom terminal is on the right
prportion of the routing region, perform iogg rather than jogy/g for that net (see Figure 2-14a).

 For nets that have a right side terminal and whose right-most top/bottom terminal is on the left
pportion of the routing region. perform (jogy /5108), ie. joBy/p before the last top/botom
terminal and joBg at and after the last top/bottom terminal (sce Figure 2-14b).

e p may vary petween 0 and 1. Ifp=0,1it performs jogg- If p=0. 1t performs (08 /B;jogR). A

TIIE GREEDY SWITCH-BOX ALGORITHM 1

typical value for pis 0.5.

--

(e) (k)
Figure 2-14: The modificd jogging SWIOG for switch-box routing:
(a) jogg for net n, (b) (jog,l. /B:jogR) fornetn

2.4, The switch-box routing algorithm
Based on the extended jogging strategies related to the switch-box routing. the general structure of the
switch-box routing algorithm is as follows. Assume the routing region is R = {0,1.2,...M}x{0,1.2....N}.

(SW0) determine scan direction;
bring in LEFT terminals into columa 1;
toop for i from 1 to M-1 do
(SW1) if empty-track-exists then :
bring TOP(i) and BOTTOM(i) into empty rows;
(SW2) join split nets as much as possible; -
(SW3a) for net-with-no-right-terminals do
bring split nets closer by jogging;
(SW3b) for net-with-right-tarminals do
SWJOG;
(SW4) when closa-to-right-edge do
fanout to targets;
(SW5) if step (SW1) failaed then
increase number of rows;
repeat (SW1); update columns 1 to i;
while split-net-axists do .
(SW6) increase number of columns by 1;
join split nets as much as possible;

The algorithm terminates in a single column-wise scan across the routing region and always succeeds in
finding a solution by inserting enough horizontal and vertical tracks (steps SWS$ and SW6). Next we estimate
the expected running time for finding a solution, in terms of M NN, the total number of columans, rows and
nets. The running time ¢, for step SWO0 is proportional o M+ N+ N, siﬁcc it is the time to determine the
augmented density distribution d*. At each column, step SW1 requires a time ¢ proportional to ¥, the
column height The complexity to carry out steps SW2, SW3a, SW3b and SW4 depends on the scarch for
priority to join split nets, and priority to jog and fan out nets to the target rows. [n general, it is a function of
N, and N, inefficient heuristic may lcad to exponential scarching time. In practice, the different combination

of split nets and nets that can be jogged to targets are smail, so the cxpected time 1, ,, is basically proportional

[HE GREEDY SWITCH-BOX ALGORITHM : 12

to N+ N, The overall ime for steps SW1 to SW4 to scan through the A columns is proportional to
M(t, + t,)=MN+ N,,). Thetime required to insert an extra horizontal track (step SWS5) is proportional to
AN. The time required to insert an extra column (stcp SW6) is proportional o N+ N, In practice, the
extra rows and columns needed to compicte a routing is a small constant. So the overall expected running

time is proportional to M(N+ N,).

2.5, Scan direction

Determination of the scan dircction is equivalent to the assignment of the LEIT edge to one of the four

cdges ¢, €,. ¢, and ¢, of the routing region. The scan dircction is determined in two steps:
L}

o Step 1: Locate the TOP-BOTTOM and LEFT-RIGHT pairs.

e Step 2: Then scparate out the LEFT and RIGHT edges.

2.5.1. Augmented channel density

First we need the following measures in order to determine the scan direction.

Given a switch-box routing probiem, we call the two pair of opposite edges respectively p; and p;. Take

n={e,e} and p={e;e}

Let the numbes of tracks for p, and p, be respectively ¢, and ¢, these two numbers are M=1 and N1

according to the definition for a routing region R.

The augmented channel density D of p, is defined as the density D, which is the overall minimum
number of tracks required to maintain the connectivity of the terminals on two opposite edges pll (¢, and ¢,) as
in a channel routing problem, plus the trac-ks required to connect the nets on the other two edges p; (¢, and e,)
with those nets on p,. Assuming p, is the top and bottom pair. One can view it as the case of an infinitely long
channel, with the nets belonging to the edges ¢, (e,} span from the left (right) infinity into the finite channel
through the left (right) edge. The augmented channel density D; of p, is similarly defined.

Using the same notation as for the channcl density, d (respectively d,,) stands for the minimum number of
tracks required to bring all the nets on e, (e,) edge into the routing region through the left-most (right-most)

column. The augmented density distribution &* is
d* = (dpd.dy) = (dpdy. .. dpg-phe)

THE GREEDY SWITCH-BOX ALGORITHM : 13

The track availability or tracks to auginented channel density ratio s, i=12 for the edge pair p, and p, is
defined as

s;=4/D; and 5=4/D7

Example: Refer to the cxample in Section 3.4.1, let p; be the cdge pair e, and ¢,, and p, be the cdge pair e,

and Gy

The augmented density distribution for p, and p, are

d; =(13,14,14,13,12,12,13,13,12,13,12,11,9.8.7.7.8.99.9.10.11 11,11,11)

d; =(16,16,17,17.16,16,14,15.15,16.16.16.16.16,17.17,16.16)

Each number represents the minimum number of tracks required at each column of the channel. The

augmented channel density D* is the maximum of each set of numbers.

$=23

h= 16

D{ = augmented-densityfe,e,)= 14
D] = augmemed-densily{c,.;.‘) =17
s=1/D} =23/17=135

s=4/D{ =16/14=1.14

2.5.2. Finding the scan direction

We first describe how to locate the TOP-BOTTOM and LEFT-RIGHT pair. It is based on a property of
the greedy heuristic which tends to minimize the number of tracks that are perpendicular to the scan
direction. Given a switch-box routing problem, it is natural to assign the LEFT-RIGHT pair as one that has a

smaller number of track availability ot tracks to augmented channe! density ratio s.

So the LEFT-RIGHT pair is chosen according to:

LEFT-RIGHT = {"1 i 5<
B if 558
And the TOP-BOTTOM is chosen as the remaining pair of edges.

Example: In the above example, we should choose the LEFT-RIGHT pair as p,=(e,e,), and the

TIE GREEDY SWITCH-BOX ALGORITHM 14

TOP-BOTTOM pair as p,=(e,.¢,). So the scan direction should be parallel to the edges e, and ¢,
a

The starting LEFT cdge for scanning is decided between the two remaining opposing LEFT-RIGHT

edges based on the following rules (sce Figure 2-15):

e Rulc 1: The LEFT edge should be chosen from the edge which has more terminals and especially
multiple terminals (terminals that belong to the same net and appear more than once on the same
cdge). This poses less of burden on the jogp and fanout operations,

e Rule 2: The RIGHT edge should be close to the region which is potentially less populated with
wires (tracks). ‘This implics more free vertical tracks for the router to join the split nets and fan
out to target terminals. The track sparscuess can be measured by the augmented density
distribution. '

...... e oXeoeeoKevoooroKoooKeuoannnonnenne
x %
X

. A scan B

X ., wm——eaaea >

X sparse X
x x
........ KevvereKooveoKeoooKeowoKeouarasann

x = terminal

Figure 2-15: Choice of scan direction from A to B:
’ more terminals and multiple terminals on side A,
mere free space on side B

The above rules can be formulated by the selection weighing function:
we)=win)+ wln)+ wiZ ¢ 1@ larna]) for i=1234

w,, w,, and w, are monotonic increasing functions for evaluating Rule 1 and Rule 2. n,, stands for the number
of single terminals on the edge e, n,,, stands for the number of additional multiple terminals on the edge e,
and 3 ¢ 4y d;]_(,,l,,zj measures the track density of the region close to the edge e, i) is an index function, it
represents a set of columns residing inside half of the routing region that is next to the edge e,.

X)={N-|(N=1)/2}..N=2LN=1} for i=1
A)={12..[(N=1)/2]~1} for i=2
Xy={12..[(M=1)/2}=1} for i=3
AD={M=|(M=1)/2]..M=2.M~1} for i=4

Further the contribution from the single terminals a2, on the two opposite edges may have been absorbed

in that of the augmented density distribution, so the selection function may be simplified to:

MHEGREEDYSWITCH-BOXALGORITIIM s

we)=wn)+ wlZ e xydilewa))

The LEFT edge is chosen as the edge that has the higher w(e,), the RIGHT cdge is taken as the renuaining
edge.

Example: Using the previous cxample, we remain to decide between ¢ and ¢, Assuming the weighing

functions for w, and w, arc linear and have same weight. Recall that

d; =(1314,14.13,12.12,13.13,12,13,12.] 1,9.8,7.7.8.99.9,10.1 111111}
K(CJ)= "m,] + EJE.(J) d}tz

=0+ (144 14+ 13+ 12+ 2+ B+ 13+ 12+ 13+ 12+ 11)=139
we)=n,,+ 2,544) dj:'l

. =3+@B+7+7+8+94+9+9+10+11+11+11)=100

So we should assign e, as the LEFT cdge aﬁd ¢, as the RIGHT cdge, i.e. scan from e, to e,
' a

We have tested the same example using the four possible scan directions. Result agrees with the
prediction that the best scan is from e, to e,. The given routing region is 23 by 16, so only the predicted scan

succeeds.in finding a solution without the use of additional tracks.

scan direction tracks used
e e ‘ 23x 18
e, —de 23x20
AN 23x 16
e, 08 24x 16

3. Implementation

3.1. General features

The implemented router takes a mask description (CIF file) as input, and gencrates a routing output as an
individual cell in the form of another CIF file. A user can specify the routing problem via a VLSI layout
editor (e.g. CAESAR) or an input specification. The input specification includes a layout plus a routing
region s‘pcciﬁcd in the form of a rectangular window. The router will connect all the terminals that intersect
the samc label (character string) touching the above region. These labels will also appear as namce extensions

in the CIF file containing the routing results.

IMPLEMENTATION : 16

The resulting cell can then be inscrted into the user’s own layout hicrarchy. We rccommend running the
router in parallel as background job when other CAESAR cditing is going on, since it may take a while for the

router to complete its job.

If the routing area initially specificd is not enough, the router will increase its arca in order to compicte the
routing. So the router always succeeds in finding a soiution by inserting horizontal or vertical tracks, pushing

into neighboring cells in this case.

The router works in two steps. A technology independent wiring is first generated, and then transformed
into the final mask description. Two layers are used for connection. Currently, the transformation only

supports NMOS based on the Mead-Conway design rules.

Metal and polysilicon layers arc used to run in each of the vertical and horizontal directions. Usually
metal runs along the longer span and polysilicon along the other. Contacts are added whenever layer changes.
Polysilicon and metal wires for signal ncts {(not VDD and GND) arc converted into nominal width inside the

routing region, the nominal width is 2 lambdas for polysilicon and diffusion, and 4 lambdas for metal.

The interface between the input format of the router and the layout editor CAESAR is written in C (by
Hank Walker) and the router and the CIF translator are written in Franz Lisp. All the programs are running
on a VAX-11/780. The switch-box router is used as part of a set of routing tools: channel, river, switch-box

routers for custom VLSI layout [3).

3.2. Guard regicn

There is a space called a guard region between the internal wiring and the terminals on the four edges of
the routing region. It is used for matching the different layers (if any) between the inside wiring which is
either polysilicon or metal and the terminals which may be polysilicon, diffusion or metal. Further, due to the
mismatch of the terminal coordinates and the routing grid, the terminals may not be able to go straight into
the inside routing region. The guard region allows them to jog a little bit to match the internal routing grid

{see Figure 3-2). A typical guard has a size of about § to 10 lambdas on cach side of the routing region.

3.3. Three sided routing
The router can route a region with terminals fixed on any three sides. The algorithm is simpiy based on
the greedy channe! router with the rows of the left-most column initialized to the LEFT terminals (see Figure

3.

IMPLEMENTATION 17

S Y TR Kevunan | TION PR IN
3 scan

. wmaw)

X

veeKevsXRevaaReneos | TS PP PR FRE

x — termingis
Figure 31 A }-sided routing problem

3.4. Example

3.4.1.Example SW1
A switch-box routing example is taken from [1]. The specification is:

R={0.12..24}x{0,12...17}

NET={12...24}

e; =[15.0.2.4,12,7,6.9.5.8,13,15,14.15.0.21,20,1,2,19.1,18.0]
e, =[24,17, 16.4,7,6,5,9.8.0.9.12.. 15,24,15,10,23.1,0,0.22,18,0]
¢;=[03.10.4.16,12, 17.2.9.1.24.11. 13,14.0.04

e, = [0.1-8.22.2.23. 18,21,11,20,18,20,0,24,19.3,15}

0 represents a location that is not occupied by a terminals. The routing result is shown in Figure 3-3. Tt
requires a region of 23x16 tracks. We have not been able to come up with a better hand-routed solution.
This result is compared with two lower bounds on switch-box routing based on the number of terminals and

- augmented density. They suggest that the grid must be greater than 20x 14 (bascd on the two lower bounds).

The result requires 2 to 3 tracks more in both directions.

e (erminal number: The minimum grid size required to hold the terminals on the four edges. This
bound is 20x 14 in the example.

e augmented density: The augmented channel density (D, D) for the two edge pairs (Section -
2.5.1). This bound is 17x14 in the example.

The cpu time on a VAX-11/780 required to generate the wiring is 1.1 s (which is about 0.2 5 to read input

data and 0.9 sto run the wiring) and the time to translate the wiring into CIF is 0.84 s.
' - a

The switch-box router was tested for the Deutsch difficult problem and the cpu time on a VAX-11/780

required to generate the wiring is about 4.5 5. It requires 20 tracks (the channc! density is 19).

18

neo Buuoqubiay

guard

ox routing

Guard regiot in switch-b

2

igure ¥

F

— | '
| RN

L]

o TR]

//’// S
__ -.-7//[/////‘.“.04.r ___

POy 7////////. NG
_ 43 NN N SN

_.I—— »

$os B

e

LA -..,-,IA,. - R -n
- _—

NN i WD NI L AR pese .////7//././//////4

DN T R e ., S IORNNNNIN

_r.?/.//‘ m,///////////////ﬂ . P R S
.mu////, I

e 7///////////.////— I ?///.////////////, aaaNe

Cmt b :////////////l_ N 7/////!..(7}/1..//// a3

N N s

LS

mr/r/é W 4//.///////. .

.;._////.
_ ,’-..//,

ARV WS A

/w BN -’
R 0 DTN

F MR RN S AN

W AN Lot BN R = L 7/.///////; R e

T L

v SN o R ks NN 2

=

7/////////// 3

< NN S

i DRI - o RN e Y ./././4»//7)’/
e e s an ML Wi b EEES

171 N N A I

- /o
S by

Aot S i o N e R AR S A ot B s

z.

EELTCEL Tk 2enaz § saork g tnoPY
3.1 qei9g19t €2 Kup poMLLAN

IR

A result for the switch-box router

igure gk

F

IMPLEMENTATION 19

3.4.2. Terminal-intensive example
We discuss another cxample in which all the grid points on the four edges are completely occupied by

terminals. We call such case ierminai-intensive.
R={012..24}x{0,1.2,..17}

NET={12....24}

¢, =[15.52.4.12,7,6,9.5.8,13,15,14,19,15,21,20,1.2.19,1.18.3}
e,=[24,17,16,4,7.6.5.98.8,9,12,6,24,15.10,23,1,10,3.22.18.11]
¢,;=[8.3,104,1612,172,9,1.24,11.13,14,24,15]
e, = [10.18.22,2.23,13.21.11.20.18.20,3,24.19.3,15]

The density distributions are
dy .=(15.15.16,15.14.14.15.14.14,14,13.12,10.9.8.8.9‘11.11.11.11.12.12,12.12)
d, =(18.18,18,18,17,17,15,16,15.16,16,16,16.16,18,18,17,17)

And the augmented densities (D Dy) for the two edge pairs are (13,16).

The routing result is shown in the following Figure 3-4. !t requires a grid of 23x16. Itis optimal in the
sense of the lower bound based on the terminal number, but is not in the sense of that based on the
augmented density. The result is obtained by using a constant jog-to-target threshold of 1 instead of the
distance dependent threshold scheme,

3.4.3. Dense example

The last example attains the lower bound set by the terminal number. [n general, it is more difficuit to
attain the lower bound that is determined by the augmented density, especiaily those with a density
distribution 4* uniformly dense through out the region. We call such case a dense switch-box routing
problem. The heuristic for finding a good scan direction tries to scan from the end that is denser towards to
the end that is less dense. This can be seen from the exampie SW1 and the terminal-incensive example. In
both cases, one of the two density distributions has a less dense end.

We illustrate another example in which the two density distributions are uniformly dense.
R={012..17}x{012,..19}

NET={12,..19}

IMPLEMENTATION - 20

e,=[15.5.2.4,12,7,19.9,68,1315.1,3.18.0]
e,=[18.17.164.7,6,19.2.5,09,10.12,014,0]
e,=[08.3,104,16,12,172,19,9,10.11,13,14,18,15]

¢,=[08,3,10,6,19,12,2,79.11,15.14,13,0,18.15]

The density distributions are

d; =(16.16,17,16,15,15.16,16.16,16,16.16.16,16.16,16,16,16)

di =(13,13,14,15,15.14,14,13,13.12,12,13,14,14,14.14,14,13.14,14)

The two values of track availability are respectively s;=4/D; =16/15=1.067, ,=4/D [=18/17=1059.
The uniformness of the two density distributions and the closeness of s; and 5, to 1 shows that this routing
problem is dense. s, < s, suggests to scan in the direction along the d, distribution. Actual experimental resuits
show that scanning alo‘ng the other 4, direction is better: along d| (¢,--e,) requires a 16x18 grid and along d,

(ey~->e,) requires a 16x20 grid. This discrepancy may be due to 5 and s, being too close to each other.

The grid size based on the augmented density lower bound is (D 5 .D¢)=(1517). The actual grid size is
16x18. and is 1 track in both directions from the augmented density lower bound. The result is shewn in

Figure 3-5. We do not know whcther'or not the augmented density bound can be achieved.

4, Conclusion

We have presented an efficient algorithm and implementation for-a switch-box router for VLSI layout
The objective of this experiment is intended to come up with a set of routers and eveutually integrate them
into an automatic placement and wiring tool for custom VLSI design. In addition, the router is designed to
work independently for assembling custom cells, and communicate with other tools such as a layout editor via

a simple interface. Thus it serves as a tool for both.immediate usage and future need.

The greedy channel routing algorithm can be nicely extended to handle switch-box routing ct’ﬁcientl.y. It
functions by relaxing some of the non-critical operations of the channel router, namely jog-bypass-conflice
and jog-for-join, and modifying them into some operations, €.g. jog-to-right-target, that are basic in solving
the switch-box constraints. The cxpected running time is proportional to M{¥ + N,,), where MNand N,
are respectively the number of columns, rows and nets in the routing region, The scan direction is crucial to

the algorithm and we have proposed good heuristic in finding it

The basic control structure of the algorithm can be casily medified to study the effect of different

o, -

L
- L -2 o~ -
] 1 1 1
- e Il_ .lq
4
~N - I._TII.“.II.."-
1 .
al‘l.tl.fl%l.“-
1]
lalfl.fl.u.ll&-.
1 1
- o e
1 1)]
& W - o om b =

]
nl.“.
- P -

1
Lo e
]

]
[L.
] 1 ¥

=T
- e
" -4
==

-
~

-
¥
—n
¥
-
]
-
]

P~
-y

———f———

|
+
|
.

~ [] w - o ™) . [} -] -
R G O A S S T R L S S W S Y
[1 L}
l.ﬂ'.ﬂ'h—l’l.ﬁll.ﬂ.l.rli - l..-'.fllflt.ﬂl%'..f'.—.
1] 1]]] 1 t 1 1] ¥ 1]
— e e e S e e W e e e 1 “ n “ " ‘.Il..f'."-lﬂ 1
1 (] 1 L] 1] t 1 t 1
P A P s A dnl & == I.“.ll..fl..vl."..lo —
1 1] [}] 1 1]
l.fl.ﬂ'hlfllflf'. * =—e——— |.rllf|."-|l+||%l|ll|+
1 1 3] [} 1 1 1 1]
lf'flf'-.v'*lfl‘]] n ‘Il.«.ll.u.l.- O._I...
] 1] 1 1)] t 1]]
L N e T ¥ .IO_]] -ll.. " " l',u-'.".
[}] 1
S R S ot R et Rttty R
1] 1) 1 1 [} 1 1 [} 3)
'.rl.fl.-vll. Y el) B sy e = 1 1 ']]
t) 1 t]] (] (] 1 Ll 1 [] [} [} L]
] ' B o e e e ——— 1] lll.d.'."-l.“..llﬁllll..l%
] I 1 1 [} 1 1 1
.l-,fl.rllll.fllf'.fl.t'llfl.r-fl‘ .I.ﬂlf'ﬂ'l'f
1] 4 }] 13 1 1 1 1 +] 1
— e e e e e e e [1]) 1 1] »
] 3 3 1] 1 r 1 1 1 1 3 1 1]]
s =g & wmop P 1] 1 i L] 1 [} L] € e e e e e e
1 1)] 1 3 J] 1 1 1)] [}]
) @ s o e e o e 1 1 . l.u- l.". - ll;.-l'lf
[} 1 1 1 1 [} L] 1 [} [}
'..r'.vll.fla.llllfl...lf'.flfl.v'. " “ ..'.. 0'.".
1]]] 1 1 1 1 | []]
l..r'.v'.rl.fIl'l..-ll.r'.-.'..vll.fl.fll._vl.fll.u.lt " “ 0_
3 [} H] 1 L]] L} [} i
— e e G =g] 1 i ' 1 P A el D el e o
! t 4 1 1 1 L) [i [[} 1 1 1 [] L) 1 1
~ L -] L -2 L -] L] o ~ - - -] [, oy - o L) o~ []
- ~ - - ~ - o~ -
.
Figure 34: A terminal-intensive example
o~ = " w -
o o~ - - ~ - L-] L - - - - ™ L
1)]] 1 1 1]]] t ' 1]
l.ﬂ.'.u-l."d-'.ﬂll.“.l.".lfll.tlu-.l‘ll.tll..f'.“-l.l.lllql.
1
I.l.fl.l..-l.-'l'+'...'.fl.fl..?'h-l.fl'.ll*l.fl. ——— Y
1 [] ' 1 t 1 [} 1 1]
l*'flflf'*l*iflflhlfl. “ & -
1] * 1] [} 1 1
I.u-l.fl..'l.t'.'l.ﬂll.fl.-tlh-ll‘ ll...'.ﬂllll'l.ﬂ.lala
1 1 1 1 ¥ i]]]
I.fl.flfl.fl*.l*.ll.fl.vlh. -y . l..v'll. - WP
13]] !]]] (] [] 1 [} i [
‘l..f'.u.'.vl.fl.vl.“.ll.".ll.u.l.vlllﬂlll - e ——
]]] 1 [} ¥]
——— e eun e mww o mw mmm g mm ok s W o ER o IR o e e S e S o
i [} ' L] [} 1 [} 1 4] !
lll&...'.fll.fl.fll{l. 1] ..""l.“.l.fl.fllll
1 [) J 1 1]] [}
l'l.".l-..-ll.“.ul..fll-.‘ B mm ommp == .lllul..llll.fl*lh-lo
] } 1 1 [} 1
— ¥ 1 ‘Il.vlll.flh-ll.fllll-l-.“-l&.'%',
] i] t 1 1] !]
- 0'*'4'%'#'. l.fl...'.ﬂllllll.tl!fllu.lz
i t 1 1 1)
- IRy s = = e e o e e e AP e e s .'..?'.".l._flalz
]] ' U [}] L] 1 1 [} 1
Il..vl.. “ » =g § m el em o i wm e ehEme s et s e B
[} [] ']] 1 i
ll-..f'.u-l.- “ ._l.“-'u.ln]u*l.f'll..flh.lh.l.rl“
! 1]] 1
I.u-ll.-f.l...l.f.l.fl.f'.f'llflfl.l.flfl.f.l..tnl.l.o
1 [} 1 [} [}] 1 (]] 1 [}]
l..flu-l.ﬂlu-l."ll.fl!ﬁlllll.u.I.“vlt..l.fl.rI.Tl.li-
1 L)
— e e o e e v e e e em e e e e e llP llk — e ——)
¥ 1] [}] 1 1 1 1 1 1 1
1 1] + [} 3 1 § cammmwmm e e ome e G [
i 1] t 1 t]] 1 1 1 1
P~ L -] -« P~ = -] o~ w L) = ~ -
L] -t = - - -

Figure 3-5: A dense switch-box routing problem

e

—
— vy

—
-_—
— vy

-— &
-— O
-
-
—
- @

— 3

-ty N
-— o
—— D

CONCLUSION - 22

heuristics on the routability for a given switch-box routing problem, and tradeoff between routability and its
exccution time. Though the router always succeeds in giving a route by extending the routing region, the

problem of finding routability of such switch-box router remains open.

Acknowledgements _
Thanks are duc to Hank Walker for contributing the CAESAR to router interface and comments on the

report.

References

i1 Burstein, M. and Pclavin, R.
Hierarchical wire routing.
IEEE Trans. on Computer Aided Design CAD-2(4):223-234, October, 1983.

2] LaPaugh, A.S.
Algorithms for integrated circuit layout: an analytic approach.
PhD thesis, Dept. of EE and CS, MIT, December, 1980.
MIT VLSI memo 80-38.

(31 Luk,W.K.
ROUTER: A set of routing tools for VLSI layout.
April, 1984.
Computer Science Dept., Carnegie-Mellon University, VLSI doc. V155, April, 1984,

4] Rivest, R. L. and C. M. Fiduccia.
A greedy channel router. ,
In 19th Desiun Automation Conference, pages 418-424. 1EEE, 1982.

{51 Soukup, J.
Circuit layout.
Proc. of IEEF 69(10):1281-1304, October, 1931.

