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A Greedy Switch-box Router1 

W. K. LUK 
Computer Science Department 

Carnegie-Mellon University 
Pittsburgh, PA 15213 

A b s t r a c t . The greedy channel router of Rivest and Fiduccia is extended into an efficient switch-
box router. The algoridim is based on two simple operations called join-split-ncts and jog-to-
right-targct derived from die channel router. Terminals arc on the boundary of a rectangular 
region, and the router uses two orthogonal layers of wires to generate the solution. The router 
always succeeds in finding a solution by inserting sufficient horizontal and vertical tracks in case of 
insufficient routing area. The result is generated through a single column-wise scan across the 
routing region. The expected running time is proportional to M ( N + A w /), where M,N and are 
respectively the number of columns, rows and nets in the region. The scan direction is crucial to 
the algorithm and we have proposed good heuristic which is based on the augmented channel 
density distribution in finding it. Results from a number of examples are evaluated. The 
implemented router is designed for assembling custom VLSI designs, it works in parallel with 
other tools such as a layout editor via a simple interface. The router output is in CIF. 
Keywords', automatic routing, greedy algorithm, switch-box router, VLSI cad 

1. Introduction 
Placement and routing is an important part of design automation, both for printed circuit board and chip 

level layout [5]. The problem is: given a set of modules and interconnection information (net-list), how to 

place the modules and connect the terminals of the modules in an optimal way, namely minimum amount of 

layout area, shortest overall wiring length, etc. The process is generally divided into a number steps: 

placement of modules, creation and partition of routing region between the modules, global (or rough) 

assignment of the wiring paths for each net, detailed wiring of the individual routing regions. This report 

presents a specific tool for handling detailed routing: a switch-box router. 

A channel router, switch-box router and river router form a set of routers that are sufficient to handle the 

detail routing in a placement and routing system [5]. Switch-box routing may not be necessary for gate-array 

routing, where the fixed terminals are only on two opposing sides of a rectangular routing region. But for 

custom VLSI layout, it is not uncommon to have routing regions where terminals are located on all four sides. 

As there are no known polynomial-time optimal channel and switch-box routing algorithms, and also no 
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known algorithm to determine, die mutability for switch-box routing, a solution is usually based on a 

heuristic. 

We present a fast heuristic to handle switch-box routing, based on an extension of the greedy heuristic for 

channel routing proposed by Rivest and Fiduccia [4]. The switch-box algorithm is as time-efficient as the 

greedy channel router which has been found to be useful in VLSI layout The switch-box router has been 

implemented and can work integrally and in parallel with a VLSI layout tool such as CAESAR for generating 

the interconnection for cells, all the way down to the mask level description (CIF). 

The report first presents the greedy switch-box algoridim, then discusses some features about its 

implementation and examples. 

2 . The greedy switch-box algorithm 
We assume the placed modules are rectangular and their terminals are on the module boundaries, further 

the modules are aligned in such a way that they enclose a rectangular routing region. 

2 . 1 . D e f i n i t i o n 

A rectangular routing region is defined as R = {0,1,2 A/}x{0,l,2 N}, where A/.A'are positive integers. 

Each pair (x>>)€ R is called a grid point A set of grid points col(x) = {(JCJ')I>€ {0,1,2 N}} for JC=0,1.2 M 

is called a column. Similarly a set of grid points row(y)= {(x,y)\x€ {0,1,2 A / } } for >>=0,1,2 N Is called a 

row. The two columns col(0) and col(M) forms the left (LEFT) and right (RIGHT) boundaries of the routing 

region, likewise the two rows ro\\(0) and row(N) are the bottom (BOTTOM) and top (TOP) boundaries. 

The terminals from the modules are located on the four boundaries of the routing region R. Each 

terminal is related to an integer n called the net Each net n specifies the terminals on the four boundaries 

that are to be connected together, i.e. all the terminals that bear the same net number will eventually be 

connected by the router. The set of nets specifying the entire connectivity of the terminals is called a net-list 

Without loss of generality, we may assume the net-list of the routing problem is a set of integers {1,2 N^}. 

The connectivity and location of each terminal is represented as LEFT(i)=n or RIGHT(i)=n or 

TOP(i)=n or BOTTOM(i)=n, depending which edge the terminal is on, where / stands for the coordinate of 

the terminal along the edge and n stands for the net number. 

The routing problem is to find a solution for connecting all die terminals that belong to the same net 

within the given routing region. Connection is defined by wire (or track) which is allowed to run either 

horizontally or vertically along the rows and columns (along the grids). Only a single wire is allowed to 
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An example is shown in Figure 2-1. 
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Figure 2-1: A switch-box routing problem: 

(a) specification and a solution 
(b) solution from this switch-box router 

occupy each row and column segment, and cross-over of two wires (say a horizontal and a vertical wire) at a 

grid point is allowed. 
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2 . 2 . G r e e d y c h a n n e l r o u t i n g a l g o r i t h m 

Since optimal channel routing is NP-complcte [2], and determining mutability for switch-box has no 

known solution, we rely on finding efficient heuristics. The switch-box routing heuristic is an extension of the 

greedy channel routing algorithm [4]. 

2 . 2 . 1 . O p t i m a l l y 

In channel routing, we are interested in finding a routing solution which uses as few horizontal tracks as 

possible. A common lower bound for this solution is the channel density2 . Our heuristic is based on the 

following reasoning: 

Optimality can be achieved if we can guarantee for each column, there is only one horizontal track for 

each net. The routing heuristic is to minimize the number of horizontal tracks per column per net The 

method is to scan columns, say from left to right, and try to join the split horizontal tracks (assuming there are 

any) that belong to the same net as much as possible. 

2 . 2 . 2 . T h e g r e e d y a l g o r i t h m 

Without loss of generality, we scan the routing region columns from left to right. The control structure of 

the greedy heuristic can be formulated as follows. Assume the routing region is R = {0,1,2,...,A/}x{0,l,2 N}. 

(CHO) c a l c u l a t e channel d e n s i t y ; 
i n s e r t h o r i z o n t a l rows equa l to the channel d e n s i t y 

i n t o t h e i n i t i a l r o u t i n g c h a n n e l ; 
loop f o r i from 1 t o M-l do 

(CHI) i f e m p t y - t r a c k - e x i s t s than 
b r i n g TOP(i) and BOTTOM(i) i n t o empty rows; 

(CH2) j o i n s p l i t n e t s as much as p o s s i b l e ; 
(CH3) b r i n g s p l i t n e t s c l o s e r by j o g g i n g ; 
(CH4) s o l v e c o n f l i c t by j o g g i n g t o t h e nex t t o p / b o t t o m t e r m i n a l s ; 
(CH5) i f s t e p (CHI) f a i l e d then 

i n c r e a s e number of rows; 
r e p e a t (CHI); upda t e columns 1 t o i ; 

wh i l e s p l i t - n e t - e x i s t s do 
(CH6) i n c r e a s e number of columns by 1; 

j o i n s p l i t n e t s as much as p o s s i b l e ; 

For details about the greedy channel routing algorithm, see [4]. We review briefly the major control steps: 

• Step CHI (bring-in-top-bottom): Bring TOP(i) and BOTTOM(i) into empty rows to start the 

2 A lower bound on the number of horizontal tracks required for channel routing. Assume the columns are numbered from 0 to M and 
the terminals are lying along the TOP and BOTTOM edges at some of the integer points 1,2 M-1. Column 0 and column M are the 
left and right boundaries of the channel. Let dt be the minimum number of horizontal tracks that pass through the column /, in order to 
maintain the connectivity between the terminals on the left, on the right, and the current column L Channel density D is defined as 
m a x i d ^ dM_x}. The tuple (dvdx d M . { ) is called the density distribution </and can be used as a measure for the sparseness of a 
channel. 
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Figure 2-2: Net 1 enters from the top and net 2 from the bottom 

routing for each column. Sec Figure 2-2. 

• Step CH2 (join-split-ncts): It is the key step for the heuristic which joins split nets as much as 
possible. There arc priorities in choosing the nets to be joined, but such rules arc by no means 
unique. Naturally, split nets arc joined according to the following priority: a split net that when 
joined can free up the most number of tracks, a split net with tracks that are farther apart,.... See 
Figure 2-3. 

l • l 
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1 • l • > 

(•) (b) 
Figure 2-3: Joining split nets: (a) join net 1 to free more tracks, 

(b) join net 1 because tracks farther apart 

• Step CH3 (jog-for-join): Split nets are brought closer by jogging so that they may be more easily 
joined together. Because the farther apart the split net tracks are, the higher the chance of being 
blocked by rows in between. This is not a compulsory step for the heuristic, but making use of it 
may improve the routing result See Figure 2-4. 
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Figure 2-4: Bring split net closer by jogging 

• Step CH4 (jog-bypass-conflict): This is a means of solving the cyclic conflict by jogging a track of 
a certain net to its next top or bottom terminals, see Figure 2-5c. This step may also be considered 
as an optional one, since cyclic conflict may also be handled solely by step CH2, see Figure 2-5b. 
But making use of it may improve the routing result 

• Step CH5 (extend-row): In case the routing channel does not have sufficient rows, the router 
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Figure 2-5: (a) Cyclic conflict between net 1 and 2, 

(b) Solving by joining, (c) Solving by jogging 
increases the tracks by I or 2 to allow the top and bottom terminals to enter and continue the 
routing. 

• Step CH6 (cxtcnd-column): In case the routing reaches the far right edge and there are still some 
split nets, the router extends the routing region beyond the right-most column to join up all the 
remaining horizontal tracks. 

The step join-split-nets (CH2) is the key for the greedy channel router to function, whereas jog-for-join 

(CH3) and jog-bypass-conflict (CH4) are mainly for getting better results. This statement may be illustrated 

from the following tests on the Deutsch channel routing problem. This problem has a channel density of 19. 
test nb. of tracks used 

all CH2, CH3, CH4 used 20 
without CH3 . 22 
without CH4 27 

without CH3 and CH4 28 

2 . 3 . Extension to swi tch-box routing 

We extend the greedy heuristic to handle switch-box routing by relaxing some operations diat are not vital 

to the functioning of the greedy algorithm and modifying them to overcome the additional constraints on 

switch-box routing. Assuming the scanning is from left to right, these additional constraints are: 

• to match the terminals on the LEFTof the routing region 

• to match the terminals on the R I G H T of t h e routing region 

To overcome the constraint, we use the following heuristic: 

• Bring in left terminals: The left edge terminals enter directly into the routing region (column 1) as 
horizontal tracks. 

• Jog to right target (jogR): Instead of jogging to the next top and bottom terminals as in Step CH4 
of the greedy channel router which we call j o g J / B , the horizontal tracks arc jogged to a target row, 
a row where a right edge terminal is located. We call this step jog R . The following strategies are 
used: 
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o All nets that have right edge terminals arc put into a priority queue. The choice of the 
jogging nets is based on die following priority: First choose a net whose target row on die 
right is empty and for which dicrc also exists a vertical track from the net to a target row. 
Second jog a net whose target row on the right is empty with priority also based on how 
close to the empty target row it can be jogged. Third jog a net that can be brought closer to 
the target row. When a net reaches its target row. it is deleted from the queue. See Figure 
2-6. In case there are more than one nets satisfying each of the above conditions, higher 
priority is given to the one whose initial position is farther away from die target row, and 
then die one widi a closer final position from the target row. 

• l 
I 

! > * • 3 
I 

Figure 2-6: Net 1,2 and 3 jog to the right side target terminals' 

o In order to avoid the deadlock condition when jogging to the right side targets (see Figure 
2-7), a net is allowed to jog as close as possible or pass the target row so as to destroy the 
deadlock, and then such net is masked so that it will not be allowed to oscillate back to its 
original row. Other deadlocked nets cai\ in turn be jogged to the target rows. 

I I 
1 - - > - - • • • 4 

I I 
2 - - > - - • • • 1 

I I 
3 — >~+ • • 2 

I I 
4 - - > - - • • 3 

Figure 2-7: Cyclic condition when jogging to die right side target terminals, 
Net 4 breaks the deadlock 

We have shown diat the jog-to-right-target is the basic operation for (1) bringing nets to their final 
targets, (2) handling of cyclic conflict and deadlock between the left and right edge terminals. It is 
as vital as the join-split-nets operation in channel routing. The combination of both of them 
enables switch-box routing. 

The optimal way for a net to arrive at its target row is by jogging only once as shown in nets 1 and 
2 in Figure 2-6, and nets 1, 2 and 3 in Figure 2-7. Each of them uses only a single vertical track, 
whereas the other nets in die figures require two or more. Since each jogging wastes one vertical 
track, too many joggings may result in running out of tracks. A distance dependent threshold 
scheme is used to avoid excessive jogging. A net is only allowed to jog to its target row only if it 
can be brought to or beyond halfway between the initial and the target positions. 

• Fanout to targets: For nets that occupy more dian one location on the right edge, when such net 
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Figure 2-8: Net i and 2 fan out to the right side target terminals 

Steps bring-in-left-tcrminals and fanout-to-targets are orthogonal to the greedy channel routing algorithm, 

they can be inserted directly into the channel routing algorithm. Step jog R conflicts with the steps CH3 and 

CH4 of die channel router, we next show how to handle die problem and give the algorithm for switch-box 

routing. 

2 . 3 . 1 . Conflict b e t w e e n j o g T / B and j o g R 

As mentioned earlier, the switch:box router besides jogging to the top/bottom terminals (Step CH4), 

allows nets that have right edge terminals to jog to the right edge targets. We use two kinds of jogging in 

switch-box routing: 
• J 0 g T / B : J ° 8 1 0 ^ n e x t t o p o r b o t t o m t c r m i n a l s a s i n t h e channel routing algorithm 

• jog R : jog to the right edge terminals 

Figure 2-9 shows a simple example (Example 1) of how the two joggings conflict with each other and we 

show how die joggings are handled. 
l г 

scan J « . I A . I 
- > • : ' - > : I ' : 

We assume the router scans 

2 1 

Figure 2-9: Example 1: The two joggings conflicting each other 

from left to right. In region A, net 1 has to p g downward to solve the conflict 

becomes unsplit and is close to the right edge, fan out die horizontal track to the final terminal 
locations. We call this step fanout to target. Sec Figure 2-8. Close is a control parameter in the 
algorithm, it depends on (1) the free space (sparscness) of the vertical and horizontal tracks near 
the right edge, (2) the number multiple terminals (terminals that belong to die same net) on the 
right edge, and (3) the number of columns from the right edge. A typical default value is between 
2 to 5 columns from the right edge. The augmented density distribution d" (Section 2.5.1) 
(doMx^ds,) may be used for measuring sparsencss. Fanout operation is started when all the J/s to 
the right of the scan column is below a certain threshold. 
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between net 1 and 2 as in the channel router. In region B, net 1 has to jog upward to meet the right edge 

target. We illustrate a number of possible jogging combinations for the generation of the solution. They are 

• S W J O G 1 (jogR): For nets that have terminals on the RIGHT, perform jog R until the net has 
occupied a track that matches with one of the right edge terminal positions. For nets that only 
have terminals on TOP and BOTTOM, perform j o g T / B as in the greedy channel router. The 
result for Kxample 1 is shown in Figure 2-10. 

1 2 
I I 
• + • 1 

scan | | 
> • • | 

I I | 
1 I 
2 1 

Figure 2-10: Routing Example 1 using jogging jog R 

• S W J O G 2 ( Jog T / B ; JogR): Another jogging scheme is to first perform j o g T / B for every net and 
then switch to perform jog R at the column where the last top and/or bottom terminals appear. 
The result for Example 1 is shown in Figure 2 - 1 1 . 

1 2 
1 I 
• • | • 1 

scan | I | 
> • * • | 

I I I 
I 
1 I 
2 1 

Figure 2-11: Routing Example 1 using jogging (JoSt/b^ J ° 8 R ) 

• S W J O G 3 G'ogj/B II i°8R)« Figure 2 - 1 2 shows another routing for Example 1. It applies both kind 
of joggings to the same net (net 1 in this case) in parallel. 

1 2 
I I 
• » + I 

scan | | 
> • + • 

I I 
I • • 
1 I 
2 1 

Figure 2-12: Routing Example 1 using parallel jogging Qo^/B || jog R ) 
Net 1 in the Figure 2 - 1 2 tends to jog downward to solve the cyclic conflict (between net 1 and 2 ) 
but its right side terminal tends to make it stay upward towards the target. We should not apply 
both joggings jogy / B and jog R to each column, otherwise it would lead to fanout of horizontal 
tracks and contradict die basic greedy heuristic - minimize the number of horizontal tracks per 
column. Consequently these fanout nets have to be joined and results in oscillation between the 
fanning out and joining operations. Parallel jogging is basically a different heuristic for switch-
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box routing and cannot be incorporated into the original greedy heuristic. 
Careful observation reveals that the parallel jogging which leads to a fanout net can be obtained 
by scanning the routing region from right to left using the scheme SWJOG1 (jogR) (Figure 2-13). 
This shows that die single jogging rule jog R can give a good routing if a suitable scanning direction 
has been chosen. So the routing result depends on the scan direction as is the case for the greedy 

channel router, 

2 
J I 1 scan 

i i <—-

i 
2 1 

Figure 2-13: Routing Example I using jogging jog R with scan reversed, 
same result as ( j o g T / B II J°8 R ) 

2 .3 .2 . The jogging s t r a t egy for swi tch-box routing SWJOG 

SWJOG3 (jogx/e II jog R ) contradicts the original greedy idea of trying to minimize the number of 

horizontal tracks by joining split nets. One has to keep track of the fanning out (due to the parallel jogging) 

and joining operations. This complicates the algorithm though it is less sensitive to the scan direction. The 

same result can be obtained if the scanning direction is reversed. In other words, the choice of the scan 

direction is more crucial. We present in the sequel a heuristic to determine the scan direction. 

SWJOG1 (jogR) performs better than SWJOG2 Qogj/Q:'}ogR) because jog R handles the right side 

constraint of the switch-box directly and earlier. Though (jog T / B ; jog R ) may sometime use less horizontal 

tracks than j og R since it always jogs to the top and bottom terminals to handle cyclic conflict, we think that 

the most important constraint for switch-box routing is the right side terminals which should not be handled 

too late in the scan which may result in running out of room to jog to the right side terminals. 

To improve the use of ]ogj/B and jog R for nets diat have right side terminals, we may make the following 

compromise between SWJOG1 (jogR) and SWJOG2 Gog T / B ; jog R ) . We call such rules SWJOG: 

• For nets that do not have right side terminals, always perform j o g ^ . 

• For nets that have a right side terminal and whose right-most top/bottom terminal is on the right 
p-portion of the routing region, perform jog R radier than j o g ^ for that net (see Figure 2-14a). 

• For nets that have a right side terminal and whose right-most top/bottom terminal is on the left 
^portion of the routing region, perform (jogj / B;jog R), i.c. j o g ^ before the last top/bottom 
terminal and jog R at and after the last top/bottom terminal (sec Figure 2-14b). 

• p may vary between 0 and 1. If /7=0, it performs jog R . If /?=0, it performs Gog T / Q ; jog R ) . A 
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typical value for p is 0.5. 

11 

n 

. n 

it n 
O p 1 O p 1 

(a) (*» 
Figure 2-14: The modified jogging SWJOG for switch-box routing: 

(a) jog R for net n, (b) Go& l V B:jogR) for net n 

2.4. The swi tch-box routing algorithm 

Based on the extended jogging strategies related to the switch-box routing, the general structure of the 

switch-box routing algorithm is as follows. Assume the routing region is /? = {0,l,2,....A/}x{0,1.2 N\. 

(SWO) d e t e r m i n e scan d i r e c t i o n ; 
b r i n g in LEFT t e r m i n a l s i n t o column 1; 

loop fo r i from 1 to M-l do 
(SW1) i f e m p t y - t r a c k - e x i s t s then 

b r i n g TOP(i) and BOTTOM(i) i n t o empty rows; 
(SW2) j o i n s p l i t n e t s as much as p o s s i b l e ; 
(SW3a) for n e t - w i t h - n o - r i g h t - t e r m i n a l s do 

b r i n g s p l i t n e t s c l o s e r by j o g g i n g ; 
(SW3b) for n e t - w i t h - r i g h t - t e r m i n a l s do 

SWJOG; 
(SW4) when c l o s e - t o - r i g h t - e d g e do 

f a n o u t t o t a r g e t s ; 
(SW5) i f s t e p (SW1) f a i l e d then 

i n c r e a s e number of rows; 
r e p e a t (SW1); u p d a t e columns 1 t o i ; 

w h i l e s p l i t - n e t - e x i s t s do 
(SW6) i n c r e a s e number of columns by 1; 

j o i n s p l i t n e t s as much as p o s s i b l e ; 

The algorithm terminates in a single column-wise scan across the routing region and always succeeds in 

finding a solution by inserting enough horizontal and vertical tracks (sreps SW5 and SW6). Next we estimate 

the expected running time for finding a solution, in terms of M%NtN^ the total number of columns, rows and 

nets. The running time ^ for step SWO is proportional to M+ N+ since it is the time to determine the 

augmented density distribution </+. At each column, step SW1 requires a time ix proportional to N% the 

column height The complexity to carry out steps SW2, SW3a, SW3b and SW4 depends on the search for 

priority to join split nets, and priority to jog and fan out nets to the target rows. In general, it is a function of 

Nnel and N, inefficient heuristic may lead to exponential searching time. In practice, the different combination 

of split nets and nets that can be jogged to targets are small, so the expected time tUA is basically proportional 
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to N+NM. The overall time for steps SW1 to SW4 to scan through the M columns is proportional to 

t\f(tl + ¿2.3.4)= + The time required to insert an extra horizontal track (step SW5) is proportional to 

MN. ITic dmc required to insert an extra column (step SW6) is proportional to N+ Nner In practice, the 

extra rows and columns needed to complete a routing is a small constant. So the overall expected running 

time is proportional to M(N+ JV„J. 

2.5. Scan direction 
Determination of the scan direction is equivalent to the assignment of die /L/T/Tcdgc to one of the four 

edges c h e2, e3 and e 4 of the routing region. The scan direction is determined in two steps: 
e l 
> 

I Pi I 
e3 t p2 p2 t «4 

I Pi I > 
•2 

• Step 1: Locate the TOP-BOTTOM and LEFT-RIGHT pairs. 

• Step 2: Then separate out the LEFT and RIGHT edges. 

2.5.1. Augmented channel density 
First we need the following measures in order to determine the scan direction. 

Given a switch-box routing problem, we call the two pair of opposite edges respectively p t and p 2 . Take 

Pi = {ei,e2} and p 2 = { e 3 , e 4 } 

Let the number of tracks for px and p2 be respectively tx and /2, these two numbers are A/— 1 and — 1 

according to the definition for a routing region R. 

The augmented channel density D f of p x is defined as the density Dx which is the overall minimum 

number of tracks required to maintain the connectivity of the terminals on two opposite edges px (ex and as 

in a channel routing problem, plus the tracks required to connect the nets on the other two edges p 2 (c 3 and e 4) 

with those nets on p t . Assuming p x is the top and bottom pair. One can view it as the case of an infinitely long 

channel, with the nets belonging to the edges e3 (e 4) span from the left (right) infinity into the finite channel 

through the left (right) edge. The augmented channel density Dl of p 2 is similarly defined. 

Using the same notation as for the channel density, d^ (respectively dM) stands for the minimum number of 

tracks required to bring all the nets on e3 (c4) edge into the routing region through the left-most (right-most) 

column. The augmented density distribution d+ is 

*=<<W*n)=(*4 d M . l 9 d M ) 
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The track availability or tracks to augmented channel density ratio st, /=1.2 for the edge pair p t and p 2 is 

Example: Refer to the example in Section 3.4.1, let p t be the edge pair e t and e 2, and p 2 be the edge pair e3 

and e4. 

The augmented density distribution for p1 and p2 are 

dl =(13,14,14,13.12,12,13,13,12,13,12,11,9,8,7,7,8,9,9,9,10,11,11,11,11) 

d\ =(16,16,17,17,16,16,14,15,15,16,16,16,16,16,17,17.16,16) 

Each number represents the minimum number of tracks required at each column of the channel. The 

augmented channel density D + is the maximum of each set of numbers. 

/i=23 

/ 2 =16 

DI = augmented-densityte^ = 14 

Di ^augmented'densityi^yt^ll 

s^tx/D2 =23/17 = 1.35 

s1=t1/Dt =16/14=1.14 

2.5.2. Finding the scan direction 

We first describe how to locate the TOP-BOTTOM and LEFT-RIGHT pair. It is based on a property of 

the greedy heuristic which tends to minimize the number of tracks that are perpendicular to the scan 

direction. Given a switch-box routing problem, it is natural to assign the LEFT-RIGHT pair as one that has a 

smaller number of track availability or tracks to augmented channel density ratio s. 

So the LEFT-RIGHT pair is chosen according to: 

And the TOP-BOTTOM is chosen as the remaining pair of edges. 

Example: In the above example, we should choose the LEFT-RIGHT pair as p 2=(e 3,e 4), and the 

defined as 

*i='i/02 and si = /2/Z>!+ 

= | P i if sl<sl 

Ipj if sl<sl 
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T O P - B O T T O M pair as px =(e 1 (C2). So the scan direction should be parallel to the edges e x and c2. 
• 

The starting LZT/Tcdge for scanning is decided between the two remaining opposing LEIT-RIGHT 

edges based on the following rules (see Figure 2-15): 

• Rule I: The LZT/Tcdgc should be chosen from the edge which has more terminals and especially 
multiple terminals (terminals that belong to the same net and appear more than once on the same 
edge). This poses less of burden on die jog R and fanout operations. 

• Rule 2: The RIGHT edge should be close to the region which is potentially less populated with 
wires (tracks). This implies more free vertical tracks for the router to join the split nets and fan 
out to target terminals. The track sparscness can be measured by the augmented density 
distribution. 

X. .X X X. . .X 
X . X 
X . . 
. A scan B 
x . > 
x . sparse x 
x . x 

x x x . . . . x . . . .x 

x - terminal 

Figure 2-15: Choice of scan direction from A to B: 
more terminals and multiple terminals on side A, 

more free space on side B 

The above rules can be formulated by the selection weighing function: 

h ( 0 = w/ / iJ+wJ^ for /=1,2,3,4 

wp wm and wd are monotonic increasing functions for evaluating Rule 1 and Rule 2. nu stands for the number 

of single terminals on the edge e t, stands for the number of additional multiple terminals on the edge ê , 
a n c * 2y€Jw l̂o+-i)/2j measures the track density of the region close to the edge e,. /(/) is an index function, it 

represents a set of columns residing inside half of the routing region that is next to the edge ê . 

7(/)={Ar-[(iV-i)/2J f . . . fiV-2,iV-l} for / = 1 

J ( / )={U L(JV-1)/2J-1} for i=2 

J(/)={1,2 L(A/-1)/2J-1} for / = 3 

y(0={A/-L(A/- l) /2j , . . . ,A/-2,A/- l} for /=4 

Further the contribution from the single terminals nu on the two opposite edges may have been absorbed 

in that of the augmented density distribution, so the selection function may be simplified to: 
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The LETT edge is chosen as the edge that has the higher n<e,), the RIGHT edge is taken as die remaining 

edge. 

Example: Using the previous example, we remain to decide between e 3 and e 4. Assuming die weighing 

functions for wm and wd arc linear and have same weight Recall that 

dl =(13J4J4J3J2J2a3J3a2J3J2J l ,9 ,8J7 ,8 ,9 ,9 ,9J0aiUl . l ia i ) 

H<C3)=/^+2y€J(3)<2 

= 0 + (14+ 14 + 13 +12 + 12 + 13 + 1 3 + 12 + 13 + 12 + 11) = 139 

H<c4)=Aiw,4+2y€J(4)^Ja 

= 3 + (8 + 7 + 7 + 8 + 9 + 9 + 9 + 1 0 + 11 + 11 + 1 1 ) = 100 

So we should assign e 3 as the LEFT edge and c 4 as the RIGHT edge, i.e. scan from e 3 to e4. 

• 

We have tested the same example using the four possible scan directions. Result agrees with the 

prediction that the best scan is from e 3 to e4. The given routing region is 23 by 16, so only the predicted scan 

succeeds in finding a solution without the use of additional tracks. 
scan direction tracks used 

tx—>ej 23x18 
e 2 — > e t 23x20 
e 3 —> e 4 23 x 16 
e4 —> e 3 24 x 16 

3. Implementation 

3.1. General features 

The implemented router takes a mask description (CIF file) as input, and generates a routing output as an 

individual cell in the form of another CIF file. A user can specify the routing problem via a VLSI layout 

editor (e.g. CAESAR) or an input specification. The input specification includes a layout plus a routing 

region specified in the form of a rectangular window. The router will connect all the terminals that intersect 

the same label (character string) touching the above region. These labels will also appear as name extensions 

in the CIF file containing the routing results. 
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The resulting cell can then be inserted into the user's own layout hierarchy. We recommend running the 

router in parallel as background job when other CAESAR editing is going on, since it may take a while for the 

router to complete its job. 

If the routing area initially specified is not enough, the router will increase its area in order to complete the 

routing. So the router always succeeds in finding a solution by inserting horizontal or vertical tracks, pushing 

into neighboring cells in diis case. 

The router works in two steps. A technology independent wiring is first generated, and then transformed 

into die final mask description. Two layers are used for connection. Currently, the transformation only 

supports NMOS based on the Mead-Conway design rules. 

Metal and poly silicon layers arc used to run in each of the vertical and horizontal directions. Usually 

metal runs along the longer span and polysiiicon along the other. Contacts are added whenever layer changes. 

Polysilicon and metal wires for signal nets (not VDD and GND) are converted into nominal width inside the 

routing region, the nominal width is 2 lambdas for polysilicon and diffusion, and 4 lambdas for metal. 

The interface between the input format of the router and the layout editor CAESAR is written in C (by 

Hank Walker) and the router and the CIF translator are written in Franz Lisp. All the programs are running 

on a VAX-11/780. The switch-box router is used as part of a set of routing tools: channel, river, switch-box 

routers for custom VLSI layout [3]. 

3.2. Guard region 

There is a space called a guard region between the internal wiring and the terminals on the four edges of 

the routing region. It is used for matching the different layers (if any) between the inside wiring which is 

either polysilicon or metal and the terminals which may be polysilicon, diffusion or metal. Further, due to the 

mismatch of the terminal coordinates and the routing grid, the terminals may not be able to go straight into 

the inside routing region. The guard region allows them to jog a little bit to match the internal routing grid 

(see Figure 3-2). A typical guard has a size of about 8 to 10 lambdas on each side of the routing region. 

3.3. Three sided routing 
The router can route a region with terminals fixed on any three sides. The algorithm is simply based on 

the greedy channel router with the rows of die left-most column initialized to the LEFT terminals (see Figure 

3-D. 
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. . .X. . . ,X X X . . . . X . . J . , 

x scan 
> 

x 
, . ,X. , ,X, , , ,X X. . .X . . . .X . . .X . . . . 

x - terminals 

Figure 3-1: A 3-sidcd routing problem 

3.4. Example 

3.4.1. Example SW1 

A switch-box routing example is taken from [1). The specification is: 

/f = {0,1,2 24}x{0,l,2 17} 

;V£r={l,2,...,24} 

el=[15,0,2A12J,6,9,5,8a3,15,14f15f0.21f20,L2a9,l,18,01 

e2=[24,17,16A7,6,5,9,8,0,9,12a5,24,15,10,23,l,0f0f22,18,0] 

c3=[0,3,10 A16,12.17,2,9.1,24.11,13,14t0,01 

e4=[0,18,22,2,23,18,21,ll,20,18,20,0,24,19,3,15] 

0 represents a location that is not occupied by a terminals. The routing result is shown in Figure 3-3. It 

requires a region of 23x16 tracks. We have not been able to come up with a better hand-routed solution. 

This result is compared with two lower bounds on switch-box routing based on the number of terminals and 

augmented density. They suggest that the grid must be greater than 20x14 (based on the two lower bounds). 

The result requires 2 to 3 tracks more in both directions. 

• terminal number. The minimum grid size required to hold the terminals on the four edges. This 
bound is 20x14 in the example. 

• augmented density: The augmented channel density (D 2 , D{) for the two edge pairs (Section 
2.5.1). This bound is 17x14 in the example. 

The cpu time on a VAX-11/780 required to generate the wiring is 1.1 s (which is about 0.2 s to read input 

data and 0.9 s to run the wiring) and the time to translate the wiring into CIF is 0.84 s. 

• 
The switch-box router was tested for the Dcutsch difficult problem and the cpu time on a VAX-11/780 

required to generate the wiring is about 4.5 s. It requires 20 tracks (the channel density is 19). 



IS 



IMPLEMENTATION 19 

3.4.2. Terminal-intensive example 
Wc discuss another example in which all the grid points on the four edges are completely occupied by 

terminals. Wc call such case terminal-intensive. 

/? = {0,1.2,...,24}x{0,l,2 17} 

# £ 7 = {1,2 24} 

ei=[15,5,2,4,12J,6,9,5,8,13,15,14,19,15,21,20,l,2,19,l,18,3] 

с 2 = [24,17Д6Л7Д5,9,8,8,9Д2,6,24,15Л0,23Д,10,3,22,18,11] 

c3=[8,3,10,4,16,12,17,2,9,1,24,11,13.14,24,15] 

е4=[10Д8.22,2,23,18.21,11,20,18,20,3.24Д9.3Д5] 

The density distributions are 

d{ =(15Д5Д6Д5Д4Д4Д5Д4Д4Д4ДЗД2Д0,9,8.8,9Д1Д1Д1Д1Дг12Д2Д2) 

d; =(18.18Д8Д8Д7,17,15,16Д5Д6Д6Д6Д6Д6Д8Д8Д7Д7) 

And the augmented densities (D 2* %D {) for the two edge pairs are (18,16). 

The routing result is shown in the following Figure 3-4. !t requires a grid of 23x16. It is optimal in the 

sense of the lower bound based on the terminal number, but is not in the sense of that based on the 

augmented density. The result is obtained by using a constant jog-to-target threshold of 1 instead of the 

distance dependent threshold scheme. 

3.4.3. Dense example 
The last example attains the lower bound set by the terminal number. In general, it is more difficult to 

attain the lower bound that is determined by the augmented density, especially those with a density 

distribution d+ uniformly dense through out the region. We call such case a dense switch-box routing 

problem. The heuristic for finding a good scan direction tries to scan from the end that is denser towards to 

the end that is less dense. This can be seen from the example SW1 and the terminal-intensive example. In 

both cases, one of the two density distributions has a less dense end. 

We illustrate another example in which the two density distributions are uniformly dense. 

Я = {0Д,2 17}х{0,1,2 19} 

#ЕГ={1,2 19} 
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c l = [15.5A4f12l7.19i916.8.13l15Ill3i18F01 

c 2 = [18.17,16.4.7.6,19.2.5.0.9.10.12.0.14.01 

e3=[0.8,3,10,4,16,12,17,2.19,9,l,0,ll,13,14,18.15] 

e4=[0,8,3.10,6,19,12,2,7.9.11,l,5,14,13,0.18.15] 

The density distributions are 

d { =(16,16,17,16,15,15,16,16,16,16,16,16,16,16,16,16,16,16) 

=(13,13,14,15,15,14,14.13,13,12,12,13,14,14,14,14,14,13,14,14) 

The two values of track availability are respectively sx = //Z) 2 = 16/15 = 1.067, s2 = t2/D { = 18/17 = 1.059. 

The uniformness of the two density distributions and the closeness of sL and s2 to 1 shows that this routing 

problem is dense. s2<sx suggests to scan in the direction along the distribution. Actual experimental results 

show that scanning along the other dx direction is better: along ix ( c ^ - ^ ) requires a 16x18 grid and along ^ 

(ea-->e4) requires a 16x20 grid. This discrepancy may be due to sl and s2 being too close to each other. 

The grid size based on the augmented density lower bound is (D2 ,D {)=(15,17). The actual grid size is 

16x18, and is 1 track in both directions from the augmented density lower bound. The result is shown in 

Figure 3-5. We do not know whether or not the augmented density bound can be achieved. 

4 . Conclusion 
We have presented an efficient algorithm and implementation for a switch-box router for VLSI layout 

The objective of this experiment is intended to come up with a set of routers and eventually integrate them 

into an automatic placement and wiring tool for custom VLSI design. In addition, the router is designed to 

work independently for assembling custom cells, and communicate with other tools such as a layout editor via 

a simple interface. Thus it serves as a tool for both.immediate usage and future need. 

The greedy channel routing algorithm can be nicely extended to handle switch-box routing efficiently. It 

functions by relaxing some of the non-critical operations of the channel router, namely jog-bypass-conflict 

and jog-for-join, and modifying them into some operations, e.g. jog-to-right-target, that are basic in solving 

the switch-box constraints. The expected running time is proportional to M(N+Nnet\ where M,N and Nm 

are respectively the number of columns, rows and nets in the routing region. The scan direction is crucial to 

the algorithm and we have proposed good heuristic in finding it 

The basic control structure of the algorithm can be easily modified to study the effect of different 



8 3 
I I 

l e — • ­ • 
I I 

17 +-+ 
I I 

16---+-+ 
I I 

4---+-+ 
I I 

7—+-+ 
I I 

6—•-• 
I I 

18---+-+ 
I I 

2—-+-+ 
I I 

6-» 
I 
I 
I 

0-+-+-+ 
I I I 

10-+-+-+ 
I I I 

12-+-+-+ 
I I I 
• ­+­+ 

I I 
14---+-+ 

I I 
I

 . 

I I 
6 3 

I I 
I I 

I I 

1 
0 4 
1 I 

• • ­ + • 
I I 

• • ­ + • 

I I 

I I 

I 
•+­­• 
I 

••-• 
I I 

• + - • • 
I I 

•• - •• 
I I 
I * 
I I 

• • - • • 
I I 
I I 
• I 
I I 
I I 

• • - • • 
I I 

• + - • • 
I I 
I I 
1 в 
0 

1 1 1 
в 2 7 
I I I 
+­+­+­
I I I 
+­+­• 
I I 
• , .. 

I I 
—+­+­

I I 
• 
I I I 
•­+­+• 

I I 
•­+­+­
I I I 
+­+­• 
I I I 
+ ­ + ­ + • 
I I I 

.+ - + - + . 
I I I 
+­+­+­

I I I 
! I I 
I I I 
• ­ • i 
I I I 
+-+-+ 
I I I 

• ­ • ­ • « 

I i I 

I I I 
1 1 2 
8 2 

1 
2 9 9 
I I I 
•­+­+­

I I I 
I I I 
I I I 
• ­ • ­ + ­

I I 
I i 

—+­+­

I I 
• ­ • ­ + • 
! I I 
* ­ • ­ • • 
I I 
I — 
I I 

I I 
• ­ + ­ ­ • 
I I 

.. 
I I I 
I I I 
I I I 
I I I 
I I I 

I I I 
• -•-•• 
I I I 

• • - • - •« 
I I I 
7 9 1 

1 

111 
13 4 
I I I 

­ • ­ • ­ • ­
I I I I 
I •­•­•­•fr­

i l l I I 
••­•­•­•­•fr­

i l l I I 
• • - • - • - • - • • 

I I I I I 
• • - • - • - • - •« 

I I I I I 
• • - • - • - • - • • 

I I I I I 
• • - • - • - • - • • 

I I I I I 
• • - • - • - • - • • 

I I I I I 
• • - • - • - • - • • 

i i 11 i 
•+-+-+-+-+• 
i i i и 
+-+-• •-+ 
i i i i 
i i 
i i i i 
• ­ + ­ + ­ + ­ ­

I M I 
• ­ . I 
I I I 

­ + ­ + ­ • 
I I I 

•+-+-+-• 
I I I I 
1 6 1 1 

4 3 

I •• 
I I 
I I 
I I 

1 1 
• б 
I I 
• »-16 
I I 
•-+-6 
I I 
I I 
• -+-4 
I I 
• - • - 1 2 
I I 
I I 
• - • - 1 « 
I I 
• ­ • ­ в 
I I 
I I 
+-•-6 
I I 
• - • - 1 3 
I I 
I »-16 
I I 
• - • - 1 
I I 
+-+-3 
I I 
11 
11 
11 
1 1 
« 6 

1 1 1 1 2 1 1 1 2 1 
8 3 0 4 6 2 7 2 9 1 4 1 3 4 4 6 
M i l l 1 1 I l I I M 1 M 

24-+-+-+-+-+-•+-+-••-+-+-•-+-+-+-• 
I I 1 1 1 1 1 I M M I M 

17-+-+-+-+-+ 1 1 1 .-+-•-•-•.•-( 
M i l l 1 M I M I M I 

16-+-+-+-+-» 1 * -•-+-•-+-•-+-+-+-+-; 
1 I I 1 1 1 1 M I I I I 1 

4-+-+-+-»-- —+-•-•-•-•-•-•-•-4 
1 1 1 1 1 M I M 1 1 1 

7-+-+-+ • —+-+-•-+-+-+-•-+-: 
M l 1 1 1 M I M M I 

e- +-+-+-• •• —•-•-+-+-+-•-+-•-; 
1 1 1 1 1 1 M I M M I 

6-+-+-+-+-» 1 1 • - • - • - • - • - • - • - • - • - ( 
M i l l 1 1 1 I I I I 1 1 I I 

Q-+-+-+-+-+ - • - • - • - • - • - • - • - • - • - I 
M i l l 1 1 I I 1 1 1 1 I I 1 

« ­ • I I I * -+-+-+-•-•-+-+-+-•-( 
M M 1 1 1 I I M i l l 

8-»-+-+-+-- ­ + ­ + • - • - • - • — • - • - • - • - • - ( 
M I M I I I I I I I I 

9 +­•­+ • ­ + ­ + ­ • I • ­ • •­+­+­+­

I l I M I I I I I I 
12— + ­ • ­ + ­ — • I I • ­ • ­ • • ­ + ­ • • ­

M I I I I I I I I 
e—+-•-• •-• J J J •---+-

I l I I I I I 
24 •-+ + +-• • • • -

I I I I I I I I 
16-- -+-+-- + - - - + - • + - + - - - • -

I l I I I M I 
10-»-+-* • — Ф - Ф 1 • +-•• +-2 

1 1 i i 1 1 1 1 1 
23-+-+---•+-• • -•+- --•+- •+ +-J 

1 1 i i i i 1 
• Ф -

1 1 1 1 
•• — •—•— 1 1 1 i i i i 1 1 1 1 1 

io-* •-+- •+- +- -- •—+-+-••-•-•-a 
1 1 i i i i 1 1 1 1 1 

+-+-•-• ­ + ­ +- --. Ф 
. . . 1 •-+-+-] 

1 i i i i 1 1 1 1 1 1 
1 •-•-! 2 2 - + — • i i i i Ф . 

••-• 1 
1 1 1 
1 •-•-! 1 1 i i i i 1 1 1 1 1 

-•-•- . Ф . •+ +-1 
1 1 1 1 1 i i i 1 1 1 1 1 1 

11-+-+-+- ••-­ + ­ . Ф Ф . ­ + ­
1 1 1 

1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 
112 2 2 1 2 1 2 1 2 3 2 13 1 
0 8 2 3 a 1 1 0 6 0 4 0 6 



CONCLUSION 22 

heuristics on the routability for a given switch-box routing problem, and tradeoff between mutability and its 

execution time. Though the router always succeeds in giving a route by extending the routing region, the 

problem of finding routability of such switch-box router remains open. 
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