
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

EVALUATION OF ALTERNATIVE
COMPUTER ARCHITECTURES

M.R. Barbacci 1 , W.E. B u r r 2 ,
S.K Fu l le r 1 , and D.P. S iewiorck 1 (Eds.)

Department of Computer Science
Carnegie-Mellon University

Pittsburgh Pa. 15213

February 12, 1977

The Computer Family Archi tecture project was organized and supervised by the Army
Elect ronics Command, Fort Monmouth, NJ. and the Naval Research Labora tory ,
Wash ing ton D.C. The work described here was supported in part by the Defense
Advanced Research Projects Agency (ARPA) under contract F44620 -73 -C-0074 , in
p a r t by the National Science Foundation under grant GJ 32758X, and in part by the
A r m y Research Office under grant DAAG29-76-G-0299.

A lso w i th the Naval Research Laboratory, Washington, D.C.

U.S. Army Electronics Command, Ft. Monmouth, NJ.

Abstract

The Computer Family Archi tecture (CFA) Selection Committee was organized to select a

p r o v e n , w e l l - k n o w n computer architecture, in addition to several widely used mi l i tary

compu te r arch i tectures, as the basis of the future series of Mil i tary Computer Family

(MCF) computers . The set of four papers that make up this repor t prov ide an

o v e r v i e w of the work of the CFA Committee and a detailed discussion of the technical

methods used to quant i tat ively evaluate the alternative computer archi tectures under

cons idera t ion .

As the f i r s t paper describes, support software availabil ity, l ife cycle costs, and

a rch i tec tu re l icensing, in addition to architectural eff iciency, were considered in the

f ina l eva luat ion process. As a result of this process, the CFA Committee ranked the

t h r e e arch i tec ture finalists in the following order: the DEC PDP-11, the IBM

S y s t e m / 3 7 0 , and the Interdata 8 /32 . The MCF project is now work ing on the

spec i f i ca t ion of a new standard architecture for military applications based on the

P D P - 1 1 . In addi t ion, the MCF project is working on more clearly speci fy ing the most

w i d e l y used exist ing mil i tary computer architectures to enable fu tu re r e -

implementat ions of these architectures in new technologies.

Papers in this Technical Report

1. Bur r , W.E., A.K Coleman, and W.R. Smith: Summary of the Final Report of the

Compute r Family Archi tecture Selection Committee

2* . Ful ler, S.K, W.E. Burr, and S.K Stone: Initial Selection and Screening o f the CFA

Candidate Computer Archi tectures

3 * . Ful ler , S.K, W.E. Burr, P. Shaman, and D. Lamb: Evaluation of Computer Arch i tec tures

v ia Test Programs

4 * . Barbacci , M.R., DP. Siewiorck, R. Gordon, R. Howbrigg, and S. Zuckerman:

A r c h i t e c t u r e Research Facil ity: ISP Descriptions. Simulation, and Data Collection

* These papers wi l l appear in the 1977 National Computer Conference, Dallas, Texas,
June 1 3 - 1 6 , 1977.

SUMMARY OF THE FINAL REPORT
OF THE ARMY/NAVY COMPUTER FAMILY ARCHITECTURE

SELECTION COMMITTEE

William E. Burr
U.S. Army Electronics Command

Fort Monmouth, N.J.

Aaron K Coleman
U.S. Army Electronics Command

Fort Monmouth, NJ.

and

William R. Smith
Naval Research Laboratory

Washington, D.C.

Summary of the Final Report

SECTION PAGE

1 Introduction 1

2 Background 2

3 The CFA/MCF Project 4

4 The CFA Selection Committee 5

5 Candidate Architectures 6

6 Selection Procedure 7

6.1 Initial Screening 7

6.2 Final Candidates Evaluation 9

6.3 Final Selection/Recommendations 16

7 Conclusions 17

8 Appendix 19

T A B L E O F C O N T E N T S

Summary of the Final Report

1-1

Abstract

An Army/Navy Computer Family Architecture (CFA) Selection Committee,

compricing 10 Army and 17 Navy organizations was organized by the Naval Research

Laboratory and the Army Electronics Command in 1975 to select a proven, well-known

computer architecture to be the basis of a Military Computer Family (MCF). The

Selection Committee met five times in the period between October, 1975, and August,

1976 , and evaluated nine computer architecture candidates in accordance with criteria

established by the Committee. The Committee applied a preliminary screening process

to select three candidates (IBM S/370, DEC PDP-11, and Interdata 8 / 3 2) for more

intensive evaluation. This final evaluation process considered experimentally

determined architectural efficiency, support software availability, life cycle cost, and

architecture licensing. As a result of this process, the Committee ranked the three

architecture finalists in the following order:

1. PDP-11
2. S/370
3. 8 /32

1. Introduction

This report describes the work performed by an Army/Navy Committee,

representing 10 Army and 17 Navy organizations, to select a Computer Family

Architecture (CFA) for use with a proposed software compatible family of military

computers and associated systems/support software. This family is known as the

Mil i tary Computer Family (MCF).

This report summarizes the contents of a full report on the work of the CFA

Selection Committee (i.e., "Final Report of the CFA Selection Committee"). References

Summary of the Final Report

1-2

to this full report will be made herein, in accordance with the table of contents shown

in the Appendix.

2. Background

The Department of Defense is spending over six billion dollars yearly for ADP

systems. A large portion of this goes for acquisition of militarized computers and

associated software that are used in tactical and strategic areas. Traditionally, these

computers have been specified by the individual organizations (military project offices

or commercial contractors) responsible for the development of each system. More

often than not, computer selections are based upon local schedule, funding, or profit

considerations, rather than the impact that the selection would have on long range

hardware/software logistics costs. The result has been that the large number of types

of computers used in Army and Navy systems are causing serious problems in the

development and maintenance of software for those systems.

Military computers are usually procured as integral components of larger

systems (e.g., radars, missile systems); the hardware issues have historically been

given more attention than the logistics of the software, and in consequence, military

computers normally have only the most primitive sort of support software. The

development cycles for weapons systems are generally long enough (5 to 10 years)

that the military computers in these systems are often obsolete before they are ever

del ivered to the Field Army or the Fleet. Past computer standardization efforts in the

military have concentrated on hardware packaging or obscure architectures of such

small market that there has been no incentive for the computer industry at large to

invest in developing software and hardware compatible with these computers. The end

Summary of the Final Report

1-3

result of these conditions is that the military pays over and over for development of

computer systems that frequently fall far short of performance expectations.

This can be contrasted with the situation in the commercial OEM (original

equipment manufacturer) marketplace. Here computers are produced for the much

larger commercial market by the thousands or even the tens of thousands. A number

of manufacturers such as DEC, Data General, and Interdata have software compatible

product lines, covering a wide range of processors of varying capabilities. Due to

f ierce competitive market pressures, system deficiencies are corrected, or the systems

disappear. New products are developed much more quickly, and full advantage is

taken of the advances in semiconductor device technology. Finally, due to the much

larger user bases of commercial computers, and the competitive pressures of the

marketplace, the support software bases of successful commercial computers are

usually far superior to their military equivalents and are frequently improved or

augmented by organizations seeking a share of this market.

A solution to many of the software problems with contemporary military

computers would be to produce a family of software-compatible militarized computers.

Moreover, if such a family were based upon a proven, commercial instruction-set

architecture, then it would be possible to capture a good mature support software

base, and to be certain that any architectural shortcomings were known and

recognized. As the commercial system evolved, and the architecture was extended to

meet the competition, the military computer family could also take advantage of these

same extensions. Adhering to an established family in this way would avoid the

architectural mavericks that limited-production military computers are prone to be.

Summary of the Final Report

1-4

3. The CFA/MCF Project

Since early 1975, the Center for Tactical Computer Sciences (CENTACS) of the

U. S. Army Electronics Command and the Naval Air Systems Command (NAVAIR) have

been supporting a cooperative Army/Navy effort to develop such a family of military

computers, based upon a common instruction-set architecture.

The fundamental premise of the MCF project is that software compatibility

should be achieved by the adoption of an existing, proven computer architecture for

the MCF, thereby minimizing the risks inherent in the design of a new computer

architecture and permitting the "capture" of an existing and evolving software base.

In this context, computer architecture is distinguished from implementation

considerations, and is defined as the structure of the computer which a machine level

programmer needs to know in order to write all programs which will run correctly on

the computer. For example, the architecture of the IBM S/370 is defined in the IBM

Sys tem/370 Principles of Operations Manual. There are many implementations of the

architecture (370 -158 , 370 -168 , etc.), but only one architecture, and every

implementation will execute the same software. Another premise upon which the

Army/Navy cooperative effort is based is the goal of software transportability from

prior generation military computers to the MCF, most probably via emulation. In other

words, the Army and Navy cannot abandon its investment in existing software. There

is a strong analogy here with IBM's continued support of such machines as the 1401

and the 7 0 9 0 via emulation, when the 360 family was introduced.

The first task of the MCF project was the selection of the CFA. CENTACS and

the Naval Research Laboratory cooperated to lead that effort, and the following

sections of this report describe how that selection was made.

Summary of the Final Report

1-5

The second task of the project is to develop a System Implementation Plan,

which in a commercial organization would probably be called a product plan, to define

the form, fit, and function characteristics of the MCF and the individual family members.

The instruction-set architecture of the processors, not the detailed logic design will be

specified, so that various military equipment manufacturers (in general, nat the

manufacturer of the commercial version of the CFA) will be able to independently

develop MCF members to meet the form, fit, and function requirements of the MCF, and

to run the CFA instruction set. This approach will permit multiple sources for the

various family members, and will allow manufacturers to take maximum advantage of

rapidly developing semiconductor technology. The goal is a line of plug-compatible

modules that can be interconnected as computer systems in a variety of configurations,

to meet a wide range of performance/ application requirements.

A similar Support Software Implementation Plan contract is planned for FY 1978.

This plan will attempt to take maximum advantage of the existing support software

base for the selected CFA.

4. The CFA Selection Committee

The mechanism for selecting the CFA was a joint Army/Navy Selection

Committee. In order to achieve a wide representation of military computer

requirements in this effort, letters were sent to Army and Navy Laboratories, System

Centers, and Project Managers, inviting them to nominate "candidate" architectures, and

to participate in the CFA selection process as members of the CFA Selection

Committee. Ten Army and 17 Navy organizations assigned representatives to the

Selection Committee, which was active between October 1975, and August 1976. The

Summary of the Final Report

1-6

members and officers of the Selection Committee are given in Volume I of the Final

Report.

Of the several procedural rules adopted by the Committee, the most important

was the requirement for a 2 / 3 vote of the members present to carry a committee

motion.

5. Candidate Architectures

The basic mechanism for deciding which architectures should be considered by

the committee was to ask Army and Navy organizations to nominate candidate

architectures. These nominations were augmented by the Committee in its early

meetings. The architectures which were considered by the Committee are:

Burroughs B-6700
DEC PDP-11
IBM S/370
Interdata 8 / 3 2
Litton An/GYK-12
NOVA/ROLM 1662
Systems Engineering Laboratories SEL 32
Univac AN/UYK-7
Univac AN/UYK-20

On the list of candidates the S/370 and the B6700 are large scale commercial

data processing type architectures. The PDP-11, SEL-32, 8 /32 , and the NOVA are

classical OEM type minicomputers, and the AN/GYK-12, AN/UYK-7, and the AN/UYK-20

are three of the most widely used military computers.

Although the above list of architectures is not all inclusive, most of the Army

and Navy organizations who nominated candidates went through their own internal

screening process, considering a much wider selection of architectures prior to making

their nominations. As a result, the nine architectures considered by the Committee

Summary of the Final Report

1-7

represent the best candidates for a family of computers for military applications,

according to the consensus of over two dozen Army and Navy organizations.

6. Selection Procedure

It was apparent to the Committee after much discussion, that there were certain

key, critical characteristics that should be well satisfied by the selected CFA. Further,

it became apparent that it made sense to perform an initial screening and ranking of

the candidates, based on these characteristics, so that the obviously least acceptable

candidates could be discarded and those with the most potential could be retained and

investigated much more thoroughly. An initial screening process was therefore

devised to select several "best final candidates" for more detailed evaluation.

After the initial screening process was completed, the three final candidates

w e r e subjected to a test program experiment to measure the efficiency of the

architectures. The support software bases of the three architectures were studied,

and life-cycle cost models were constructed to determine if one of the three

architectures had a decisive economic advantage. Finally, the manufacturers were

contacted to determine the conditions under which they would be willing to license

their architectures for production by military vendors. This process is illustrated in

Figure 1, and is described in more detail below.

6 . 1 . Initial Screening

The Selection Committee decided to select the final candidate architectures from

the initial list by means of two kinds of criteria. The first kind of criteria, which

served as pass/fail tests of architectural adequacy, were called "absolute criteria".

The committee planned to eliminate all architectures which did not completely satisfy

Summary of the Final Report

1-8

these criteria. Absolute criteria included such requirements as a satisfactory

protection mechanism, and a virtual to physical address translation mechanism. The

second kind of criteria were caled "quantitative criteria". The quantitative criteria

w e r e intended to provide a relative ranking of the architectures in terms of

characteristics which the committee believed were important measures of a computer

architecture. Quantitative criteria included such characteristics as the size of the

physical address space, the size of the virtual address space, the number of bits which

had to be moved to save that state of the machine under various circumstances, and

the size of the installed user base. A listing and very brief description of the absolute

and quantitative criteria are shown in Table 1. The reader should see Volume I I of the

CFA Committee Final Report for a detailed discussion of these criteria. Each

quantitative criterion was assigned a weighing factor by each committee member

organization. An average weighing factor was computed for the entire committee for

each criterion. The quantitative criteria scores for each candidate were normalized,

weighted, and summed to give a composite figure of merit for each architecture.

Subcommittees were created to evaluate each architecture, in terms of the

absolute and quantitative criteria. A meeting of the full committee was then devoted

principaly to verifying the consistency and correctness of the evaluations of the

candidate architectures. In addition, the results of this evaluation were audited by a

consultant to ensure the consistency and correctness of the evaluation.

A principal difficulty in making the evaluations was the imprecision of most of

the reference manuals of the candidate architectures, requiring frequent communication

with the manufacturers in some cases. Certain of the manuals, as typified by the IBM

S / 3 7 0 Principals of Operation Manual, appeared to be complete and precise definitions

Summary of the Final Report

1-9

of an architecture. Others left essential architectural details ambiguously defined or

not defined at all.

The results of the absolute and quantitative criteria evaluations are summarized

in Table 2. The PDP-11 and the IBM S/370 were the only two architectures which

clearly passed all the absolute criteria, and they also were among the top three in the

quantitative criteria evaluation. The Interdata 8 /32 was also selected as a finalist on

the basis of its very strong showing on the quantitative criteria, despite a nagging

technical uncertainty concerning the state of the machine after interrupts, which the

committee was never able to resolve to its own satisfaction.

The reader is cautioned that the application of these criteria requires a great

deal of interpretation. The Selection Committee went to some considerable effort to

arr ive at comparable interpretations for each architecture. It may not be at all

obvious from the simple definitions presented here, how the actual values used by the

committee were calculated. This is documented in detail in Volume I I of the CFA

Committee Final Report, and the interested reader should refer to Volume II .

6.2. Final Candidates Evaluation

Architecture Efficiency Evaluation

A Test Program Subcommittee was appointed at the first Selection Committee

meeting. This subcommittee proposed a set of 23 potential test programs, which were

believed to be representative of the operations performed in military data processing

applications. The Committee ranked these programs by their relative importance, and

the top 12 programs were selected as the basis of the Test Program Experiment.

These 12 programs are listed and briefly described in Table 3.

Each of the 12 test programs was a relatively small kernel-type program, most

Summary of the Final Report

1-10

w e r e subroutines, and most were defined as "structured" programs in a Program

Definition Language (PDL). Programmers were then asked to "hand compile" the

programs into the assembly languages of the respective machines from their PDL

descriptions. This procedure was followed to minimize the effects of programmer

variations. No large scale programs from "real" military systems were coded, because

of the excessive expense involved in coding and testing a statistically significant set of

such programs. High level language programs were not tested, because there is no

practical was to separate the effects of compiler efficiency from the effects of

architecture efficiency which the experiment was intended to measure.

Slightly over one hundred test program samples were coded by 16 programmers

at participating organizations. The experiment was designed using analysis of variance

techniques to give the best possible estimates of the relative efficiency of the three

architectures.

Three measures were defined to gauge the efficiency of the architectures,

independently of hardware implementation features such as cycle time. These

measures were :

S The static storage requirement for the program in bits.

M The number of bits of program and data which were transferred
between the processor and main memory during execution of a
program. The M Measure is intended to be an index of the memory
bandwidth requirements of an architecture.

R The number of bits of program and data which were transferred
among the internal processor registers during execution of a
program. The R Measure is intended to be an index of the processor
bandwidth requirements of an architecture.

The S, M and R measures are indicators of the relative amounts of hardware

capability that are necessary when implementing an architecture to do a certain job.

Summary of the Final Report

1-11

That is, larger S measure means that correspondingly more memory will be required to

handle a given set of applications programs. Clearly, the architecture that can execute

the programs with the smallest S is desirable. Similarly, M and R are indicators of the

relat ive hardware speed/bandwidth requirements for memory and processor

implementations.

The S, M and R raw data were gathered with the help of a special ISP language

compiler and simulator system. The three architectures were described in ISP

(Instruction Set Processor), a formal language for describing computers at the

instruction/register level. These ISP descriptions were then compiled and run on the

ISP simulator which was designed to automatically gather statistics of register and

memory activity during execution of the test programs on the simulated candidate

architectures. See Volume IV of the Committee Report for a detailed treatment of the

ISP System and its use in the CFA effort.

The final results reflect the performance of each candidate architecture for each

measure. Those results are shown in Table 4. This experiment is described more fully

in Volume HI of the final Committee Report.

The results are normalized so that unity indicated average performance; the

lower the score on any of the measures, the better the architecture handled the set of

test programs. In other words, the results indicate that the S/370 needs 21 percent

more memory than the average to store the test programs, the 8 / 3 2 needs only 8 3

percent as much memory as average, and the PDP-11 is nearly average in its use of

memory. The differences between the S/370 results and the average of the results of

the other two architectures were statistically significant at the 95 percent confidence

level, but the differences between the 8 /32 and the PDP-11 results were not

Summary of the Final Report

1-12

statistically significant at this confidence level. The differences between the 8 / 3 2 and

the S / 3 7 0 results were also statistically significant for the S and M measures at the 95

percent confidence level.

Support Software Evaluation

A support Software Evaluation Subcommittee was appointed to study the

support software bases of the three final candidate architectures. This subcommittee

began by defining an extensive menu of support software tools, which might be useful

in military systems development. Committee member organizations were then asked to

rate each tool by its utility in developing software for military weapon systems. The

2 8 most important support software tools were selected from this rating. The CFA

candidate manufacturers and other commercial sources were investigated as to the

availability of these 28 software tools for each architecture. Table 5 lists the basic

tool types on the required support software menu.

The cost to develop each item of support software was estimated. The total

cost to develop the selected support software items was estimated to be

approximately 41 million dollars. The estimated value of the support software bases

for each of the final candidate architectures is summarized in Table 6 below; also

shown is the estimated cost to eliminate deficiencies as compaed to the desired

support software base:

See Volume V of the Committee Report for a detailed treatment of the support

software evaluation.

Life Cycle Cost Evaluations

A Final Selection Methodology Subcommittee was formed at the third Selection

Committee meeting to investigate and pursue a methodology for combining the results

Summary of the Final Report

1-13

of the committee's evaluations into a single evaluation criterion which would be

realistic and meaningful to DoD management. This subcommittee proposed a method of

converting the architecture and software evaluation results to life cycle costs so that a

final selection could be aided by data based on the comparative economics of using

each of the candidate architectures in military computer systems.

Two separate computer life cycle requirements models were used for the cost

analyses. Both used the data gathered in the Architecture Efficiency Evaluation and

the Support Software Base Evaluation described previously to convert the modeled

requirements into dollar costs.

The first model is a "top-down" model which represents total life cycle

requirements for DoD computers in the 1978-1990 time period, using each of the three

final candidate architectures for the MCF. It was based upon extrapolating trends in

DoD wide expenditures and requirements for military computer hardware and software.

Figure 2 summarizes results of computing CFA life cycle costs summed over the

years 1978 to 1990 for the three candidates, for certain conditions. To simplify

comparisons, the total assumed costs (approximately 81 billion) are normalized with

respect to the IBM S/370.

The results are shown for specific values of two of the model input parameters.

The first is an expenditure rate ($2M/year) for completing development of the support

software base of each candidate. The second is a range of values (x-axis) of the total

cost ratio of software-to- hardware for military tactical computer systems. The results

are plotted as a function of the software-hardware cost ratio because it is one of the

most important parameters in the cost evaluations. Available data gives this ratio as

about 2.5 to 3.0 for generalized ADP systems but less than that for tactical, embedded

Summary of the Final Report

1-14

computers whore many copies of a single hardware and software design are deployed.

How much less is not clear from available data. In the lower range of sof tware /

hardware ratios the Interdata has the lowest cost, in the upper range the S /370 is

lowest, and the PDP-11 is lowest in the middle range and neither best nor worst

e lsewhere.

The second model is a "bottom-up" life cycle requirements model, which is based

upon data gathered on 15 existing or developmental Army tactical data systems. This

model represented the life cycle requirements for these 15 systems, using each of the

three final candidate architectures. The cost to develop all of these systems in 1976

and then in 1985 was estimated. The results of this analysis are shown in Table 7

below. This table indicates that:

a. The average total life cycle cost for all 15 systems is estimated at
81.91B in 1976 and 8250M in 1985. The average software: hardware
cost ratio of these systems is 1:11 in 1976 and 1:2.3 in 1985.

b. In 1976, the number of systems in which the PDP-11 architecture
provides the lowest cycle cost is the largest (11). The PDP-11
architecture provides the lowest total life cycle cost by a small
margin (3.77.) over the 8 /32 architecture and by a larger margin
(20.07.) over the S/370 architecture.

c. In 1985, the number of systems in which the PDP-11 architecture
provides the lowest cost increases to 14. The PDP-11 architecture
continues to provide the lowest total life cycle cost for all 15
systems by margins of 8.87. and 17.67. over the 8 /32 and S /370
architectures.

Assumptions applicable to the results shown in Table 7 are (1) hardware cost

reduction of a factor of 10 from 1976 to 1985, (2) hardware life cycle cost of twice

the acquisition cost, and (3) software life cycle cost of 5.5 times the acquisition cost.

The results shown in Table 7 are not significantly sensitive to changes in

applications software cost or in the annual support software investment for the

selected CFA.

Summary of the Final Report

1-15

A limited sensitivity analysis was performed with both models. If lower

estimates are made for software development costs (relative to hardware costs),

and/or if faster development of the support software base is projected (so that all

three architectures rapidly acquire a complete support software base), then the

Interdata 8 / 3 2 eventually becomes the least expensive architecture, because of its

efficient architecture as indicated by the test program results. If very high software

development cost estimates are made, and/or very slow support software development

is projected, then the S/370 becomes the least expensive architecture because of its

advantage in support software. Figure 2 illustrates this behavior. In the intermediate

ranges of software cost estimates, where top-down and bottom-up results were in the

best agreement, the PDP-11 appears to have a slight cost advantage. However,

compared to the expected errors in the results due to the uncertainties in the input

data and assumptions, the life-cycle cost differences between the two models and

among the three candidate architectures are small. The software/hardware ratio which

is one of the most important factors in both models is one of the hardest to pin down

with supporting data, and the results of both models can be made to change by using

values from different sources for the same input parameters. The strongest conclusion

to be derived is that the results agree and that, in terms of life cycle cost, all three

candidates would provide comparable choices for the CFA. See Volume VI of the Final

Report for details of the life-cycle cost evaluations.

Licensing

Meetings were held with IBM, DEC, and Interdata to discuss the terms and

conditions under which they would grant a non-exclusive license to the Government to

use their architecture for militarized processors. All three manufacturers were

Summary of the Final Report

cooperative and proposed terms for such an agreement. Although the proposed

licensing agreements were a significant factor in the final selection process, the details

cannot be given here, due to the confidential nature of the discussions. Volume VI I of

the Final Report, which is restricted to internal Government use, contains the details of

the licensing proposals.

6.3. Final Selection/Recommendations

The Selection Committee held its fifth and final meeting on 24 to 26 August

1976 at the Naval Underwater Systems Center, Newport, R. I., for the purpose of

selecting the recommended aachitecture for the MCF. At this meeting, the results of

the evaluations discussed in the preceding sections of this article were considered by

the committee and discussed at length. Based upon that data, and upon other concerns

specifically considered by the committee during its discussion of the final selection, the

respective strengths and weaknesses of each architecture can be summarized as

follows:

A. INTERDATA 8 /32 . The 8 /32 was the highest rated architecture on
the Quantitative Criteria, and the Test Program Results. The 8 / 3 2
has a good interrupt structure for real-time processing. On the
other hand, the software base is relatively weak, which consequently
compromised its performance in the life cycle cost evaluations.
There was a nagging question about how well the state of the
machine was preserved after interrupts.

B. IBM S/370. The strongest virtue of the S/370 is its large support
software base. The S/370 performed well on the life-cycle cost
analyses under assumptions of maximum relative cost of software
development. The S/370 is the only architecture demonstrated as an
easily virtualized computer in a standard product line. On the other
hand, its interrupt structure was considered cumbersome for real
time control applications. The test program results indicate that the
architecture is significantly less efficient than the 8 /32 and the PDP-
11 . There was also concern that small subset versions might not
prove cost-effective for low-end applications, and that there was
insufficient experience with the S/370 in OEM type applications.

1-16

Summary of the Final Report

C. PDP-11 . The PDP-11 enjoys a good support software base,
performed relatively well on the Test Programs, and has a good
interrupt structure for real-time control applications. It enjoys a
slight advantage on the cost models for a range of reasonable
assumptions. Small scale (microprocessor) implementations are
practical and have been built. On the negative side, the 16 bit virtual
address space is a limitation and it may be expensive to add a virtual
machine capability to the architecture.

The committee made four final recommendations:

A. The DEC PDP-11 was determined by a vote of 14 to 4 to be the most
advantageous architecture for the MCF, the IBM S/370 was ranked
second, and the Interdata 8 /32 was ranked third.

B. The committee unanimously agreed that a single instruction-set
architecture should be selected for the MCF, that the selection of
only one architecture is more important than which one of the
candidates is selected, and that any one of the three final candidate
architectures could provide a satisfactory basis for the MCF.

C. The committee agreed that an effort should be made to relieve the
limitations of the selected architecture. In the case of the PDP-11
the major limitation is the small (16 bit) virtual address space.

D. A single organizational structure must be established to control the
architecture, or major incompatibilities between different
implementations will surely result.

See Volume VII I of the Final Report for details of the CFA final

selection/recommendation process.

7. Conclusions

It is sometimes asserted that military systems have unique requirements which

preclude the use of a general purpose commercial instruction set. Developers of

computer based weapons systems often assert that they alone have such severe "real­

time" constraints that they compel the use of a particular processor. It is worth noting

that the Selection Committee compared three of the most widely used military

architectures with six of the most widely used commercial architectures and found that

1-17

Summary of the Final Report

1-18

the military architectures were deficient compared to the commercial architectures in

terms of those architectural characteristics believed to be most important in tactical

military applications. It is worth noting also that none of the military architectures had

any unique features which proved advantageous, while all three were found to have

architectural shortcomings. Moreover, the support software available for the three

military architectures is relatively weak. Considering how easily modern

microprogrammable processor hardware may be adapted to a given instruction-set

architecture, there appears to be little reason to continue to use little-known or

immature developments in future military computer systems.

The PDP-11 is one of the most successful architectures, in terms of user

acceptance, in the history of the computer industry. It has been manufactured in the

tens of thousands, and is widely used in almost every sort of OEM application. An

extensive support software base exists for it, and DEC will continue to develop and

support the architecture for the foreseeable future. It is clearly a satisfactory choice

for the Military Computer Family. With the MCF intelligently defined and implemented,

it will make available a family of militarized processors with excellent software

development tools, and the capability to develop and maintain software on less

expensive commercial equipment. This in turn will result in substantial cost and quality

benefits in the application of computers to military systems.

Summary of the Final Report

8. Appendix

Table of Contents of The Final Report of the CFA Selection Committee

A - l Volume I - Introduction

Volume I explains the background, rational and organization of the
Computer Family Architecture effort and the Selection Committee.

A - 2 Volume II - Selection of Candidate Architecture and Initial Screening

Volume II describes the initial candidate selection, and discusses
architectural issues pertinent to CFA evaluation. The evaluation
criteria applied to the architectural candidates for preliminary
screening are described in detail, and the results of that evaluation
are discussed.

A - 3 Volume II I - Evaluation of Computer Architectures via Test Programs

Volume HI discusses the development of the measures used to gauge
architectural efficiency and describes the test programs selected for
the evaluation. The method of specifying the test programs and thfe
structure of the programming experiment to minimize programmer
effects are also discussed.

A - 4 Volume IV - Architecture Research Facility: ISP Description,
Simulation, Data Collection

Volume IV discusses the use of the ISP machine architecture
description language in describing the candidate architectures. It
describes the ISP interpreter facility and its application to simulation
of the candidates and in gathering the measurements discussed in
Volume II I .

A - 5 Volume V - Procedure for and Results of the Evaluation of the
Software Bases of the Candidate Architectures for the Military
Computer Family

Volume V describes a menu of support software tools determined to
be important to the development of military software. It discusses
how a subset of those tools were selected as the necessary software
base for the Military Computer Family and the results of a study to
determine the availability and value of these tools.

A - 6 Volume VI - Life Cycle Cost Analyses of the Computer Family
Architecture Candidates

Volume VI describes the methodology used to compute and compare

1-19

Summary of the Final Report

the life cycle costs of the CFA finalists and describes two life cycle
models (top-down and bottom-up) and the results of applying the
methodology to those two models.

A - 7 Volume VII - CFA/Software Licensing Discussions with the Three CFA
Finalists (For Official Use Only)

Volume VII addresses the technical, financial, and legal issues arising
out of discussions with the owner/manufacturer of each candidate
computer architecture and describes the outcome of these
discussions.

A - 8 Volume VII I - CFA Final Selection

Volume VII I discusses the consideration by the Selection Committee
of the results of the architecture evaluations described in Volumes I I
through VII of this report. The influencessthat the various results
had on the final selection are described.

A - 9 Volume IX - A Consideration of Issues in the Selection of a Computer
Family Architecture

Volume IX addresses questions and controversial issues regarding the
CFA Selection process that arose from both within and without the
Selection Committee during the course of the CFA effort.

1-20

o
ZD

i—
c o

—J

L U 21

Q
2!
LU
2:

o
LjJ

L U
—J

LU LU >- OO
1 — 3 ! <~) J—
ZD L U

1 Q . u— L U O

<
O

CO
O >-<: O OO - J

2: 00
O h -

CO 1—• c o
S h - <C —1

h - <C Li 1
C O O f D C J <
L U C D —J 21
H O < U . m

a > o u .

y

>- 2: CO
cr: 0 h -

<c —• CO

—• <: u—1 2: zd 0 <:
— • 1 2:

l < L . ^
U > O L l
C£ L U
C u

CO

C O

—1
L U <C L U
I— 21 C £ CO
<T « < : L U

u- 3: CO Z D
« < : L U

u- 3: CO —J
< L L c a A3 L U O
O CO

s : 2: co co

L U \ L U C £
h < U U

Q U J

CO 1

CO
L U < o <

I— < t 1— a :
< < o a : 2: u u
Z D L u « L U »—• L U h—
—J O Q Q I _ J
<C 2T L U L U O f
> <C C X CO o
L U C J a .

<:
L U
C J C O

L U h-
co <X O

0 L U < :

_ j *o - J h—
CQ O —1 <:

O Q
t— <c 0
CO 0
L U

>-
zz < o <c
c o 2: •

« r>^ |
«-J 2. <C O L U I
CO • L u L U h—J
< J U J i
h - L U L U CC\
c o c t : co O f

o .

2: L U
0 L U

L U <: »—« h -
C O Z L u h -

L U C J 0 •

> L U
K— 2! —J 2:
O O L U O
O CO

FIGURE 1 . CFA S e l e c t i o n Procedure

Summary of the Final Report

1-22

Table 1 - Absolute Criteria for CFA Evaluation

(1) Virtual Memory Support- The architecture must support a virtual to physical
translation mechanism.

(2) Protection.- The architecture must have the capability to add new, experimental
(i.e., not fully debugged) programs that may include I/O without endangering
reliable operaion of existing programs.

(3) Floating Point Support.- The architecture must explicitly support one or more
floating point data types with at least one of the formats yielding more than 10
decimal digits of significance in the mantissa.

(4) Interrupts and Traps.- It must be possible to write a trap handler that is capable
of executing a procedure to respond to any trap condition and then resume
operation of the program. The architecture must be defined such that It is
capable of resuming execution following any interrupt.

(5) Subsotahility.- At least the following components of an architecture must be able
to be factored out of the full architecture:

Virtual-to-Physical Address Translation Mechanism

Floating Point Instructions and Registers (if separate from general purpose
registers)

Decimal Instructions Set (if present in full architecture)

Protection Mechanism

(6) Multiprocessor Support.- The architecture must allow for multiprocessor
configurations. Specifically, it must support some form of "test-and- set"
instruction to allow the implementation of synchronization functions such as P and
V.

(7)Controllahility of I/O.- A processor must be able to exercise control over any I/O
Processor and/or I/O Controller.

(8)Extendihility.~ The architecture must have some method for adding instructions to
the architecture consistent with existing formats. There must be at least one
undefined code point in the existing opcode space of the instruction formats.

(9)Rcad Only Code.- The architecture must allow programs to be kept in a read-only
section of primary memory.

Summary of the Final Report

1-23

Table 1 (cont.) - Quantitative Criteria for CFA Evaluation

(1) Virtual Address Space

(a) V | : The size of the virtual address space in bits.

(b) V^: Number of addressable units in the virtual address space.

(2) Physical Address Space

(a) P j : The size of the physical address space in bits.

(b) ?2'- The number of addressable units in the physical address space.

(3) Fraction of Instruction Space Unassigned

(4) Size of Central Processor State

(a) C s 2 : The number of bits in the processor state of the full

(b) C s 2 : The number of bits in the processor state of the minimum subset of
the architecture (i.e., without Floating Point, Decimal, Protection, or Address
Translation Registers).

(c) C m l : The number of bits that must be transferred between the processor
and primary memory to first save the processor state of the full architecture
upon interruption and then restore the processor state prior to resumption.

(d) C m 2 : The measure analogous to C m l for the minimum subset of the
architecture.

(5) Virtualizability

K: is unity if the architecture is virtualizable as defined in [PopG74] otherwise K
is zero.

(6) Usage Base

(a) B j : Number of computers delivered as of the latest date for which data
exists prior to 1 June 1976.

(b) Total dollar value of the installed computer base as of the latest date
for which data exists prior to 1 June 1976.

(7) I/O Initiation

I: The minimum number of bits which must be transferred between main memory
and any processor (central, or I/O) in order to output one 8-bit to a standard
peripheral device.

Summary of the Final Report

(8) Direct Instruction Addressability

D: The maximum number of bits of primary memory wwich one instruction can
directly address given a single base register which may be used but not modified,

(9) Maximum Interrupt Latency

Let L be the maximum number of bits which may need to be transferred between
memory and any processor (CP, IOC, etc.) between the time an interrupt is
requested and the time that the computer starts processing that interrupt (given
that interrupts are enabled).

1-24

Summary of the Final Report

Table 2 - Candidate Scores on Absolute and Quantitative Criteria

Architecture Quantitative
Criteria Score

Absolute
Criteria Score

8 / 3 2
PDP-11
S / 3 7 0
AN/GYK-12
ROLM/NOVA

B 6 7 0 0
SEL-32
AN/UYK-7
AN /UYK-20

1.68 (Best)
1.43
1.36
.94
.92

.91

.86

.46

.44 (worst)

Problem with interrupts and traps
Passed all
Passed all
Failed floating-point
Failed virtual memory mapping and
interrupts/traps
Failed protection
Failed virtual memory mapping
Failed floating point
Failed protection

1-25

Summary of the Final Report

Table 3 - Test Programs

1. I/O kernel, four priority level*, requires the processor to field interrupts from
four devices, each of which has its own priority level. While one device is being
processed, interrupts from higher priority devices are allowed.

2. I/O kernel, FIFO processing, also fields interrupts from four devices, but without
consideration of priority level. Instead, each interrupt causes a request for
processing to be queued; requests are processed in FIFO order. While a request
is being processed, interrupts from other devices are allowed.

3. I/O device handler, processes application programs* requests for I/O block
transfers on a typical tape drive, and returns the status of the transfer upon
completion.

4. Large FFT, computes the fast Fourier transform of a large vector of 32 bit
floating point numbers. This benchmark exercises the machine's floating point
instructions, but principally tests its ability to manage a large address space.

5. Character search, searches a potentially large character string for the first
occurrence of a potentially large argument string. It exercises the ability to move
through character strings sequentially.

6. Bit test, set, or reset tests the initial value of a bit within a bit string, then
optionally sets or resets the bit. It tests one kind of bit manipulation.

7. Runge-Kutta integration numerically integrates a simple differential equation
using third-order Runge-Kutta integration. It tests floating-point arithmetic.

8. Linked list insertion inserts a new entry in a doubly-linked list. It tests pointer
manipulation.

9. Quicksort sorts a potentially large vector of fixed-length strings using the
Quicksort algorithm. Like FFT, it tests the ability to manipulate a large address
space, but it also tests the ability of the machine to support recursive routines.

10. ASCII to floating point converts an ASCII string to a floating point number. It
exercises character-to-numeric conversion.

1 1 . Boolean matrix transpose transposes a square, tightly-packed bit matrix. It tests
the ability to sequence through bit vectors by arbitrary increments.

12. Virtual memory space exchange changes the virtual memory mapping context of
the processor.

1-26

Summary of the Final Report

Table 4 - Test Program Experiment Results

Architecture

ir>\ M R

Interdata 8 / 3 2 .83 .85 .83
PDP-11 1.00 .93 .94
IBM S /370 1.21 1.27 1.29

1-27

Summary of the Final Report

Table 5 - Menu of Required Software Tool Types

Compilers
Macro Assemblers
Interact ive Source Language Editors
Interact ive Symbolic Debuggers
Extended Overlay Linker
Test Case Design Advisors
Integrated Library
Text Processing System
Data Base Management System
GP System Simulator
Time Sharing Operating System (TSOS) + VMM
Language Independent Monitors
Test Data Generator
Non-Interact ive Symbolic Debugger
Computer System Simulator
Batch Source Language Editors
Language Dependent Monitors
TSOS + MPOS + VMM
Basic Assembler
RTOS + TSOS
Test Instrumenters & Analyzers
Automatic SW Production & Test
Basic Linker
Standards Enforcers
Reformatters
Test Data Auditor
Simple Overlay Linker
Data Base Design Aid

1-28

Summary of the Final Report

Table 6 - Tactical Support Software Base Evaluation

Architecture

8 / 3 2
PDP-11
S /370

Estimated Value of
Current SSW Base

S15.3 M
822.2 M
832.3 M

Estimated Cost
To Eliminate
Deficiency

825.9 M
819.1 M
8 9.6 M

1-29

SUPPORT SOFTWARE EXPENDITURE, CL = 2 x 10 6

1990 CURVES

FIGURE 2 . Top Down L i f e C y c l e Cost Curves

A. AVERAGE TOTAL LIFE CYCLE COSTS ($000.000)

Type Cost 1976 1985

Hardware $1750 $175

Software 162 75

TOTAL $1912 $250

B. 1976 ARCHITECTURE COMPARISON

Arch i tec tu re # System R e l a t i v e Total Cost* Arch i tec tu re Preferences HDW SW Total

8 /32 1 .92 1.33 .96

PDP-11 11 .91 1.00 .96

S/370 3 1.16 " .67 1.12

C. 1985 ARCHITECTURE COMPARISON

Arch i tec ture # System Relal t ive Total Cost* Arch i tec ture Preferences HDW SW Total

8 /32 - .92 1.20 1.00

PDP-11 14.5 .91 .91 .91

S/370 0.5 1.16 1.09 1.09

* wi th respect to average cost ; 1.00 equals average cost

TABLE 7. Summary: Bottom Up L i f e Cycle Cost Analysis

INITIAL SELECTION AND SCREENING
OF THE CFA CANDIDATE COMPUTER ARCHITECTURES

Samuel H. Fuller,
Carnegie-Mellon University and

Naval Research Laboratory

Harold S. Stone,
University of Massachusetts

and

William E. Burr
US Army Electronics Command

Initial Selection and Screening

SECTION PAGE

1 Introduction 1

2 Initial Selection of Candidate Computer Architectures 3

3 Absolute Criteria 3

4 Quantitative Criteria 9

5 Composite Score of the Quantitative Criteria 15

5.1 Relative Weighing of Criteria 15

5.2 Normalization 16

5.3 Scaling and Composition of the Quantitative Measures 17

6 Summary 17

T A B L E O F C O N T E N T S

Initial Selection and Screening

2-1

ABSTRACT

The initial selection criteria that were developed and used by the Army/Navy

Computer Family Architecture (CFA) committee in their evaluation of alternative

computer architectures is presented in this article. These initial criteria were used in

this first phase of the CFA evaluation process to reduce the number of computer

architectures from the original set of nine to the most promising three or four

architectures for the more intensive evaluation discussed elsewhere [FulS77; WagJ77;

SmiW77]. The machines selected by this initial ranking and screening process for

further evaluation were the Interdata 8 /32 , DEC PDP-11, and the IBM S/370.

1. Introduction

The CFA selection committee was concerned with selecting a computer

architecture to use in future military (ruggedized) computers and hence wanted to

evaluate the merits of the computer architecture independent of any features, or

f laws, of existing implementations of the computer. For this reason, the following

definition of computer architecture was used by the CFA committee:

Computer Architecture: The structure of the computer a
programmer needs to know in order to write any machine-
language program that will run correctly on the computer.

With a well specified architecture, details of data bus width, technology (core

memory versus semiconductor memory, TTL versus ECL circuits), implementation

speedup techniques, physical size of computer, etc. need not be of concern to the

programmer and hence are not a part of the architecture. This separation of

architecture and implementation is not a radically new idea [AmdG64], The IBM

S y s t e m / 3 6 0 - 3 7 0 series, the DEC PDP-11 series, and the Data General NOVA series are

Initial Selection and Screening

2-2

just three examples of where this has already been successfully accomplished to a

greater or lesser degree.

This article first describes how the CFA selection committee chose the initial

candidate architectures for evaluation, and then describes the criteria, the

methodology, and the data used in ranking these architectures during the preliminary

screening phase of the CFA project. At the point this procedure was formulated, it

was Known that time and money limitations would preclude doing a detailed analysis on

all nine candidates; consequently an initial screening was necessary to limit the field to

the three or four "best" candidates that would be subjected to a much more detailed

analysis. This more detailed analysis, based on test programs, the support software

bases of the architectures, and life cycle cost models is discussed in the accompanying

articles.

Many detailed questions arose during the evaluation of these nine initial

candidate architectures. It is impossible to review all these questions in this article,

but we will discuss here the most important questions that arose, and interested

readers are encouraged to refer to Volume II of the final report of the CFA committee

for a detailed presentation of how and why each candidate architecture was evaluated

as it was [FulS76a].

The mechanism for choosing the nine initial candidate architectures is discussed

in the next section. The third and fourth sections then describe the nine absolute and

seventeen quantitative criteria, respectively, and show how each of the candidate

architectures was ranked on these criteria. The fifth section describes how the CFA

committee combined the scores of the candidate architectures for each individual

criteria to form a single, composite score for each architecture that reflected the

relative importance of the seventeen quantitative criteria.

Initial Selection and Screening

2. Initial Selection of Candidate Computer Architectures

The CFA selection process was initiated in March and April of 1975 when letters

w e r e sent to 35 Army and Navy organizations soliciting proposals for candidate

computer architectures. As a result of these letters, and discussions at the first two

CFA meetings, the following set of nine computer architectures was chosen:

Burroughs 6 7 0 0 ROLM Corporation 1664 (AN/UYK-28) *
DEC PDP-11 SEL 32
IBM System/370 Univac AN/UYK-7
Interdata 8 / 3 2 Univac AN/UYK-20
Litton AN/GYK-12

There were on the order of 100 viable computer architectures in 1975 that

might have been considered by the CFA committee for selection [GMLC75]. The

decision as to what set of architectures would be evaluated remained open from March

through December of 1975. The nine architectures listed above were selected for

evaluation because they met two essential criteria: (1) the CFA committee agreed the

architecture might be a reasonable choice for future military computers and (2) there

was a CFA committee member sufficiently convinced of the value of the computer

architecture that he was willing to act as its advocate in the subsequent evaluation

phase.

3. Absolute Criteria

The CFA selection committee specified nine absolute criteria that they felt a

candidate computer architecture needs to satisfy if it is going to meet the

* The AN/UYK-28 is instruction-set upward-compatible with the Data General NOVA
computer architecture. Other ROLM computers that are also compatible with the NOVA
architecture are the AN/UYK-19 and AN/UYK-27. The AN/UYK-28 is incompatible with
the Data General ECLIPSE computer architecture, Data General's upward-compatible
extension of the NOVA.

2-3

Initial Selection and Screening

2-4

requirements of future military computer systems. All the absolute criteria (with the

exception of the subsetability criterion) had to be satisfied by an implementation of

the architecture which was operational by 1 January 1976. This eliminated speculative

decisions based on promises or potential solutions that looked inviting, but might not

come to fruition. Failure to satisfy any absolute criterion resulted in the elimination of

the architecture from further consideration. The nine absolute criteria are given

below. The formal statement of each criterion is underlined, while explanations and

examples are not underlined. Many of the comments that follow the definition of an

absolute criteria are the result of the experience gained when the CFA committee

evaluated the nine candidate architectures against these criteria [StoH76]. Table 3 - 1

shows which absolute criteria each candidate architecture passed or failed.

Virtual Memory Supyort.-The architecture must support a virtual to physical address

translation mechanism.

The intent of this criterion is to take advantage of the widely used feature of

many machines that is known as virtual memory. Many advantages accrue to

architectures that support virtual address translation mechanisms, the most notable of

which is the ability to simplify programming by freeing the programmer of explicit

management of his primary memory and providing a mechanism for keeping only the

active portions of a program in high-speed memory.

The answers for this criterion listed in Table 3-1 are not controversial, except

for the AN/UYK-20. This architecture provides the page registers necessary for

relocation, but does not limit the ability to change these registers to privileged

programs. Some members of the CFA committee felt that preventing user state access

to the page registers was a necessary aspect of virtual memory; others disagreed.

Initial Selection and Screening

2-5

The full CFA committee voted to fail the AN/UYK-20 on this criteria. The ROLM 1664

and SEL 3 2 both failed this criterion because each of these architectures provide a

mechanism commonly known as "bank switching", which the committee felt was not an

adequate memory translation mechanism.

Protoction.-The architecture must have the capability to add new, experimental (i.e..

not fully debugged) programs that may include I/O without endangering reliable

operation of existing programs. The intent of this criterion is to provide a mechanism

in the hardware for aiding software development, and for preventing certain

catastrophic software failures from occurring in the field. Architectures that use a

privileged mode to protect vital registers and system resources generally meet this

criterion.

The AN/UYK-20 failed this criterion because it lacks memory protection; any

user can modify the contents of the relocation registers, and thereby read and write

any word in memory. Another generic way for an architecture to fail the protection

criterion is for a program to have the ability to put the machine into a

noninterruptable state for an indefinite time. Architectures that permitted

nonterminating instructions were carefully examined to identify if these were, or were

not, interruptable.

Floating-Point Sit;jjport.-The architecture must explicitly support one or more floating­

point data types with a! least one of the formats yielding more than 10 decimal digits

2 i significance in. t_he mantissa. The significance measure was determined as

representat ive of the most stringent requirements actually encountered.

The AN/GYK-12 failed this criterion because it does not support floating point

Initial Selection and Screening

2-6

operations. The AN/UYK-7 failed because it supports a single, 64-bit floating point

format with only 31 bits (9.2 decimal digits) of mantissa. Because this is so close to

the borderline, one might reconsider requirements on significance to determine how

firm the 10 decimal digit criterion is. (Had the AN/UYK-7 looked like an otherwise

excellent architecture, it is likely that the committee would have relaxed the floating

point absolute criterion for it.)

Interrupts and Traps.-tt must be possible to write a trap handler that is capable of

executing a procedure to respond to an^ trap condition and then resume operation qf

the program.

For example, if the processor receives a page-fault trap from the address

translation unit, it must be able to request the appropriate page be brought in from

secondary storage and then resume execution. If resumption of execution is logically

impossible (e.g., an attempt to store an operand into a read-only segment of virtual

memory or fetch an instruction with a parity error) then the trap handler should be

able to abort the program with an indicator of which instruction and/or operand

caused the termination.

A similar requirement exists for interrupts: the architecture must be defined

such that i i is capable of. resuming execution following any interrupt (e.g., power

fai lure, disk read error, console halt).

Another intent of this criterion is to permit extensions and subsets of an

architecture to operate correctly so programs can be upward or downward compatible.

The subsets and extensions may differ drastically in size, cost, and performance, but

e v e r y program written for the native architecture can run on the subset or extended

machine.

Initial Selection and Screening

2-7

The Interdata 8 / 3 2 had difficulty satisfying this criterion since it has variable

length instructions, and there is no way after a trap or an interrupt to tell whether the

instruction which was being executed was a 16, 32, or 48 bit instruction. This may be

a problem when it is desirable to correct the cause of the fault, and then re-execute

(or resume) the instruction. Due to uncertainties in the definition of the Interdata 8 / 3 2

architecture, the CFA committee was not able to resolve whether or not the Interdata

8 / 3 2 satisfied this criterion.

SubsotaI)ility.-M least the following components of an architecture must be able to be

factored out of the full architecture:

a. Virtual-to-Physical Address Translation Mechanism

b. Floating Point Instructions and Registers (if separate from general
purpose registers)

c - Decimal Instructions Set (jtf present in fuH architecture)

d. Protection Mechanism

Implementations of the architectures on small machines for dedicated

applications must not be required to include features of the architecture intended for

use on larger, multiprogrammed, multi-application configurations. Existence of such

subsets did not have to be demonstrated in an operational implementation of the

architecture.

Because there was no operational method for testing subsetability, we could not

challenge positive replies for any of the nine candidate architectures. However, the B-

6 7 0 0 and the AN/UYK-7 have not been subsetted in the sense of the criterion, so that

their subsetability is more speculative.

In order to retain program compatibility across the implementations of the

Initial Selection and Screening

2-8

architecture, this criterion was extended to include the following requirement: The trap

mechanism of the architecture must be defined such that instructions in the full

architecture, but not implemented in the subset machine, trap on th£ subset machine

and that |t be possible to write trap routines for the subset machine that allow [t to

interpret ivelv execute those instructions not implemented directly in hardware (or

f i rmware) and then resume execution. (This is an elaboration of absolute criterion 4.)

Multiprocessor Support .-The architecture must support some form of. "test-and-set"

instruction to allow for the communication and synchronization of multiple processors.

The intent of this criterion is to be sure that the basic architecture can support

multiprocessor configurations.

Input/Output Controllability.-^ processor must be able to exercise absolute control

over any I/O processor and/or I/O controller.

The interpretation of the criterion proved rather difficult. While all

architectures necessarily permitted individual devices to be started and queried for

status, there were varying degrees of control exercisable with respect to stopping the

devices. It is reasonable to stop all input/output, or to stop selected devices. All

architectures had some way of stopping a single device and stopping all devices, but

how they did it varied widely in efficiency.

Extensibility.-The architecture must have some method for adding instructions to the

architecture consistent with existing formats. There must be at least one undefined

code point [n the existing opcode space of the instruction formats. All nine candidate

architectures have unused instructions, so all passed this criterion.

Read-Only Code.-U must be possible to execute programs from read-only storage.

Initial Selection and Screening

2-9

This criterion is intended to permit an added degree of reliability by permitting

programs to be stored in a nonvolatile read-only memory. However, a program can be

rewr i t ten to be read-only on any of the nine architectures, even if that architecture

does not support special types of instructions to facilitate this. It might have been

more meaningful to examine this question quantitatively.

Table 3 - 1 shows the score of each candidate architecture on each of the

absolute criteria. Note that none of the nine architectures failed to meet the last five

criteria: subsetability, multiprocessor support, I/O controllability, extensibility, and

read-only code. This is in part the case because we limited our evaluation to

reasonably successful architectures, but is partly the result of not defining these

criteria precisely enough prior to applying them to the candidate architectures. For

example, by not clearly defining how to test for the practical subsetability of an

architecture, we made it virtually impossible for an architecture to fail this criteria.

Subsequent studies would be well advised to consider more precise definitions of

these (and any additional) absolute criteria before evaluating alternative architectures

against them.

4- Quantitative Criteria

In addition to the absolute criteria, the CFA committee specified seventeen

quantitative criteria that they felt would be helpful in the initial screening process. A

number of these quantitative criteria measure attributes of a computer architecture

better measured by benchmarks, or test programs [FulS77a]. However, the CFA

committee recognized that it did not have the resources to run benchmarks on all nine

candidate architectures and therefore proceeded with the use of these quantitative

Initial Selection and Screening

2-10

criteria to help select three or four candidate architectures, out of the original nine

candidate architectures, for more intensive study via test programs.

The quantitative criteria are described below and the score of each architecture

on the quantitative criteria is given in Table 4 - 1 .

Virtual Address Spacc.-

V j : The size of the virtual address space in bits.

Vg* Number of addressable units in the virtual address space.

Two aspects of these measures were open to interpretation. The CFA

committee settled on the following interpretation for treating bank switching: the

virtual address for a machine with bank switching is the address within a bank. The

effect of bank switching is to increase the size of the physical rather than the virtual

address.

The second interpretation centered on the notion of "addressable unit". There

are several degrees of addressability. An item may be fully addressable in the sense

that it can be accessed by the address produced by an effective address computation.

The committee also decided, however, that instructions such as the IBM S /370 Test

Under mask, and the OR Immediate allowed the testing and setting of individual bits,

and provided a minimum addressable unit of 1 bit.

Physical Address Space.-

P} : The size of the physical address space in bits.

P 2 : The number of addressable units in the physical address space.

Where bank switching has been implemented, the physical address measures

include all the banks of memory available. For computers with virtual address

Initial Selection and Screening

translation, the physical address is the address resulting from the virtual-to-physical

address translation. The physical address space is defined apart from any

implementation, since the physical address space size is defined by the effective

address calculation process or the virtual address translation process and need not be

equal to the largest memory configuration yet delivered.

Fraction of Instruction Space Unassignod.-l\ is important to select an architecture that

will allow reasonable growth over its expected lifetime. Let U be defined as the

fraction of the instruction space in the architecture that is unassigned. Specifically:

U - 5L u i - 2 " ' < 4 - D
lli«x>

where Uj is the number of unassigned instructions of length i.

Size of Control Processor Statc.-The amount of information that must be stored or

loaded upon interrupt and/or context swapping is clearly an important factor in the

response of real time systems and in the overhead of multiprogramming systems. Let

the processor state be defined as all the bits of information in a processor that must

be saved in order to be able to restart an interrupted process at a later date.

Processor states normally include the accumulators, index registers, program counter,

condition codes, memory mapping registers, interrupt mask registers, e tc

C s i: The number of. bi]s in the processor state of the full architecture,

C s 2 ; The number o£ bits in the processor state of. the minimum subset of
the architecture (i.e., without Floating Point, Decimal, Protection, or
Address Translation Registers).

C m i : The number of. bits that must be transferred between the processor
and primary memory to first save the processor state of the fuH
architecture upon interruption and then restore the processor state
prior to resumption. This measure differs from C $ j above in that
"register bank switching", where provided for in the candidate

2-11

Initial Selection and Screening

2-12

architectures, may eliminate the need to save some registers in
primary memory, while the instruction fetches required to save the
state are included in C m j but not in C s j .

C m o « T h e measure analogous to Cml for the minimum subset of the
architecture.

These measures give an approximation to the complexity of the implementation

of the architectures, as well as a measure of the responsiveness of the architectures

to worst-case context changes for interrupt processing.

If an architecture provides for several sets of certain registers to provide fast

switching or multiple contexts, and if a program uses only one such register set when

it runs in one context, then only one set of these registers is used in calculating C $ j .

Usage Base.-

By. Number of computers delivered as of the latest date for which data
exists prior to 1. June 1976.

&2: Total dollar value of the installed computer base as. of the latest date
for which data exists prior to i June 1976.

These two measures are meant to be approximate indicators of the existing

software and programmer experience base. A single individual determined the value of

these measures for all candidate architectures from standard sources.

I/O Initiation-

I: The minimum number of bits which must be transferred between main
memory and any processor (central, or I/O) in order to output one 8^
bit byte to a standard peripheral device.

Although this measure was intended to give some insight into the

responsiveness of an architecture, it is very difficult to construct an interpretation of

the measure that serves this purpose well. The measure counts relatively few bits for

some architectures, and this, in turn, makes the measure very sensitive to changes of a

Initial Selection and Screening

2-13

few bits. The I measure is also sensitive to several assumptions about exactly what

actions are to be performed in doing the input/output operation, and where

parameters for the operation are found. Unfortunately, this sensitivity made the I

measure very arbitrary, and a rather inexact measure of input/output responsiveness.

The precise, and somewhat lengthy, definition of I is given in [FulS76a].

VirtunlizahUity.-

K*. is unity the architecture is virtualizable as defined in fPopG741.
otherwise. K [s zero.

The intent of this criterion is to capture the concept of virtual machines that has

been used to advantage in some commercial computer systems (e.g., IBM's VM/370) .

An architecture that supports virtual machines provides a mechanism for a privileged,

stand-alone program to run as an unprivileged task and produce the results identical

to those it produces as a privileged program. The importance of this idea is that an

operat ing system can be run in user mode as a subsystem of another operating

system.

The definition of virtual machine as provide by Popek and Goldberg in their

article in CACM [PopG74] is a very strict definition that guarantees that any operating

system that can run stand-alone on architecture X, can also run on architecture X in

nonprivileged mode. If an architecture fails this definition it may still support virtual

machines in a more limited sense.

Direct Instruction Addressability.-

D: The maximum number of, bits of primary memory which one
instruction can directly address given a single base register, which
may be used but not modified.

Large displacement fields in instructions generally simplify programming because

Initial Selection and Screening

2-14

they reduce the need to set base registers and to maintain addressability. Because an

architecture may have several different instruction formats, each with different

displacement field formats, the committee required that the format selected for this

measure be the one used for standard LOAD and STORE operations, or the equivalent

thereof. This eliminated anomalies, like the MOVE CHARACTER LONG in the IBM S / 3 7 0

architecture, from consideration.

Maximum Interrupt Latency.-Let L be the maximum number of bits which may need to

be transferred between memory and any processor (central processor. I/O controller,

etc.) between the time an interrupt is requested and the time that the computer starts

processing that interrupt (given that interrupts are enabled). This may be interpreted

as a measure of the longest non-interruptable instruction or sequence of instructions.

Architectures with nonterminating non-interruptable instructions have infinite L

measures and are so indicated in Table 4 - 1 .

Subroutine Linkage.-

J j : The number of bits which must be transferred between the
processor and memory to save the user state, transfer to the called
routine, restore the user state, and return to the calling routine, for
the full architecture. No parameters are passed.

The analogous measure to £1. above for the minimum architecture
(e.g.. without Floating Point registers).

This measure gives an indication of the size of overhead that might be

encountered in doing subroutine calls in the worst case for the biggest and smallest

machines in the family. The bits counted here are related to the count in C S j , CS21

CMj^, and C M 2 . By presumption, the bits that are stored for are exactly those for

C S j , except that it is not necessary to save the protection registers, memory map

Initial Selection and Screening

2-15

registers, interrupt mask, and other registers that determine the global context for a

program. Architectures with small processor states or that have LOAD/STORE

MULTIPLE instructions show up well on these measures.

5. Composite Score of the Quantitative Criteria

After applying the quantitative criteria just discussed, the CFA committee had to

determine how the performance of the candidate architectures on these criteria would

be used to screen out all but three or four of the architectures for further

consideration in the test program and software evaluation phases of the study.

Clearly, the candidate architectures should be ordered relative to each of the

seventeen quantitative criteria and these independent orderings studied to detect

weaknesses and strengths of the competing architectures. However, some summary

measure was ultimately needed to assist the committee in its selection of the final

architectures to undergo more intensive study. A variety of thresholding and weighing

schemes were proposed, but the particular scheme that follows was the scheme chosen

by the CFA committee.

5 . 1 . Relative Weighing of Criteria

Each voting organization of the CFA committee was given 100 points to

distribute among the various measures to indicate their relative importance to the

organization. The weight for criterion x, W[x], was defined as the total number of

points given criterion x by all the voting CFA organizations, divided by the total

number of points handed out. The weights for the quantitative criteria based on

responses from 24 voting CFA committee members is given in Table 5 - 1 .

Initial Selection and Screening

5.2. Normalization

When attempting to combine these quantitative measures into a composite

measure we faced two problems:

a. The measures are defined such that good computer architectures
maximize some measures and minimize others. Specifically, the
measures that a computer architecture should maximize are: V^, V2,
Pj i P 2» U, K, Bj , B2, and D; while the measures that should be
minimized are: C^, Cg, C4, I, L, J j , and J 2 .

Let our composite measure be a maximal measure and transform all minimal

measures to maximal measures by taking the reciprocal: X* « 1/X.

b. Measures that inherently involve large magnitudes are not
necessarily more important than smaller measures. For example, Vj
is on the order of 10^ to 1 0 9 while K is either 0 or 1.

To resolve this problem of differing scale, the values for the quantitative criteria

w e r e normalized by dividing each value by the average value of the criterion over the

set of nine architectures. For example, the nine measures for criteria I are (64, 16, 4 8 ,

16, 128, 64, 169, 80, 32), the average value is 68.6, and the normalized measures are

(0 .93 , 0.23, 0.70, 0.23, 1.87, 0.93, 2.47, 1.17, 0.47).

Normalized measures have the attractive properties that they all lie in the range

(0,M); have a mean across the set of M architectures of unity; and the standard

deviation of the set of normalized measures is in the interval (0,). We could

have taken the normalization process a step further and adjusted the spread of each

measure so that the measure gave a standard deviation of unity (or some other

constant) across the set of architectures being evaluated. We did not do this for all

measures. Some measures were better "discrimination functions" than others and we

did not want in general to lose this information by further normalization. However, the

committee agreed that it is important to normalize the standard deviation of some of

2-16

Initial Selection and Screening

2-17

the measures; specifically, V | , V2, P^, ?2 a n d D were normalized to have a mean and

standard deviation of unity. These measures may differ by several orders of

magnitude between candidate architectures, but the CFA Committee did not feel that

the utility, as expressed by the measures, differ by orders of magnitude.

5.3. Scaling and Composition of the Quantitative Measures

In order to combine the individual measures the committee used a simple, linear

sum of each normalized measure X scaled by its corresponding weighing coefficient

W[X] . The weighing coefficients have been defined so that they sum to unity and

hence the composite measure A is in fact a normalized measure with a mean of 1.

Using the weights given in Table 5 -1 and the values of the quantitative criteria given

in Table 4 - 1 , we get the composite measures for the candidate architectures shown in

Table 5 - 2 .

There was some valid concern by members of the CFA committee about the role

of the weighing of the measures, the normalization of the measures, and the measures

themselves in the selection of finalists. However, upon detailed examination of the

results we found that, given the weights applied by the committee as an indication of

the importance of idealized concepts, the finalists selected are very insensitive to the

exact details of the selection procedure. Almost any reasonable methodology for

measuring the key concepts quantitatively would select the same finalists.

6. Summary

This article has presented the nine absolute criteria and the seventeen

quantitative criteria used by the CFA committee in their initial screening on the initial

candidate computer architectures. The scores for each of the candidate architectures

Initial Selection and Screening

2-18

are given in Tables 3 -1 and 4 -1 for the absolute and quantitative criteria, respectively.

Only the IBM S /370 and PDP-11 architectures passed all the absolute criteria. The

Interdata 8 / 3 2 architecture is not well defined with respect to trap handling and there

remains some question as to whether it meets the requirements of the interrupt and

t rap handling criteria. The remaining six candidate architectures failed one or more of

the absolute criteria specified by the CFA committee. A weighing scheme was

developed by the CFA committee for the quantitative criteria and the composite scores

of the nine candidate architectures are given in Table 5-2. The quantitative criteria

showed that the Interdata 8 /32 , PDP-11, and IBM S/370 lead the other architectures

by comfortable margins. These results were used by the CFA committee to reduce the

field of candidate architectures to three finalists — the IBM S/370, the PDP-11, and

the Interdata 8 / 3 2 — for more thorough evaluation.

This article has indicated some of the areas where we had difficulty applying the

criteria and the final report of the CFA committee goes into these difficulties, and their

resolution, in much greater detail [FulS76a]. The fact remains, however, that if we had

to compare a set of computer architectures again, we would need to go through a

similar "initial screening" process; it is just too costly and time-consuming to expect to

be able to evaluate more than a small set of architectures via any more comprehensive

means such as benchmarking. The absolute and quantitative criteria used by the CFA

committee have the attractive property that they can be determined directly from the

definition of the computer architecture (or from a survey of computer installations for

criteria B j and B 2) . Reflecting back on the history of the CFA project, we estimate

that it took from two to five man-days to evaluate each of the computer architectures

against the criteria discussed in this article, plus a two day meeting of the entire CFA

Initial Selection and Screening

2-19

committee to resolve differences of interpretation, and it took from six to nine man-

months to evaluate each of the computer architectures via the set of test programs,

support software evaluation, and life cycle cost models in the subsequent stages of the

CFA project.

Acknowledgements

The criteria and methodology described in this article benefited from the ideas

and criticism of many members of the CFA committee. R. Estell, L Haynes, and N.

Tinkelpaugh, as members of the selection criteria subcommittee, each made important

contributions to the formulation of the initial screening process.

CANDIDATE COMPUTER ARCHITECTURES

ABSOLUTE
CRITERION

V i r t u a l Memory

IBM
S / 3 7 0

INTER­
DATA
8 / 3 2

ROLM DEC
PDP-
11

UNIVAC
AN/
UYK-7

SEL
32

BURROUGHS
B 6 7 0 0

UNIVAC
AN/
UYK-20

N

LITTON
AN/
GYK-12

P r o t e c t i o n

F l o a t i n g P o i n t

Y? N Y?

N

Y

i / O C o n t r o l l a b i l i t y

E x t e n s i b i l i t y

R e a d - O n l y Code

SUMMARY N N N

Y Y e s , M e e t s C r i t e r i a
N N o , F a i l s C r i t e r i a
Y? Yes (b u t w i t h some r e s e r v a t i o n s)
? U n r e s o l v e d

N

Y

Y

T a b l e 3 - 1 . C a n d i d a t e A r c h i t e c t u r e V a l u e f o r A b s o l u t e C r i t e r i a

QUANTI­
TATIVE
CRITERIA

CANDIDATE CFA's

QUANTI­
TATIVE
CRITERIA

IBM
S / 3 7 0

INTER­
DATA
8 / 3 2

ROLM DEC
P D P - 1 1

UNIVAC
UYK-7

SEL
32

BURROUGHS
B 6 7 0 0

UNIVAC
UYK-20

LITTC*
GYK-12

1
v l

2 7 2 7 2 0 2 0 24 22 2 4 2 0 2 0

v 2
2 7 27 2 0 19 24 22 2 0 17 2 0

3 P * *
r l

27 27 * * * 2 2 2 5 2 3
**•£
2 6 2 4 2 0 2 9

4 r 2
2 7 2 7 * * * 2 2 2 4 2 3

* * *
2 6 2 0 17 2 9

5 U . 3 7 1 . 3 5 5 . 0 3 9 . 0 4 3 . 1 5 . 4 5 0 . 0 1 9 . 1 2 5 . 2 1 9

6 c s 1 1 3 4 4 1 6 3 2 1 0 0 8 1 1 6 8 9 9 2 3 0 4 3 0 6 1 3 2 8 1 0 0 8

7 c s 2 5 7 6 5 7 6 112 144 4 4 8 2 8 8 2 0 4 3 3 6 752

8 CMX 3 1 6 8 1 1 2 0 1 8 8 2 7 3 6 1472 7 6 8 4 0 8 2 2 5 6 1344

9 CM2 1 3 1 2 3 2 5 4 4 4 8 0 1 4 7 2 7 0 4 4 0 8 7 2 0 1 0 8 8

10 K 1 0 0 1 0 0 0 0 0

11
B i

1 7 , 3 0 0 1 8 5
* * * *

1 3 , 8 0 0 1 4 , 7 0 0 3 4 6 75 9 0 4 0 0 3 0

12 V. -kkk-k-k
*2 1 6 , 0 0 0 14 169 3 1 1 147 2 3 2 0 7 8 6

13 I 64 16 4 8 16 128 64 1 6 9 8 0 32

14 D 15 27 2 0 19 18 22 18 2 0 2 0

15 L 6 1 9 2 5 6 0 114 112 2 1 1 2 2 8 8 2 5 5 1 3 7 6

16 J i 1 9 0 4 2 3 6 8 1 3 6 0 104 0 1 2 8 0 9 6 0 4 5 9 14 08 1344

17
_ ...

J 2 1 1 3 6 1 2 8 0 3 2 0 4 0 0 J 1 2 8 0 9 6 0 4 5 9 6 4 0 1 0 8 8

**These values are of thfc form 2 where x = indicated data except tor B6700 which is
of the form 3(2 X).

;*7ith memory bank switching. * Includes Novas. * * * v r * i n *x 10 .

Table 4-1. Candidate CFA Values for Quantitative Criteria

ARMY
CRITERION WEIGHTS

v l . 0 4 1 2

V 2
. 0 4 3 8

P I . 0 4 2 5

P2 . 0 3 8 7

U . 0 5 1 3

CS1 . 0 5 8 7

CS2 . 0 6 7 5

CM1 . 0 7 0 0

CS2 . 0 7 1 3

K . 0 5 0 0

B l . 0 4 5 0

B2 . 0 2 0 0

I . 0 8 7 5

D . 0 9 1 2

L . 0 8 1 2

J l . 0 6 3 7

J2 . 0 7 6 2

FULL CFA
M V Y COMMITTEE
WEIGHTS WEIGHTS

. 0 4 4 4 . 0 4 3 3

. 0 5 7 5 . 0 5 2 9

. 0 7 0 6 . 0 6 1 2

. 0 6 3 7 . 0 5 5 4

. 0 6 4 4 . 0 6 0 0

. 0 3 7 5 . 0 4 6 6

. 0 2 1 9 . 0 3 7 1

. 0 5 4 4 . 0 5 9 6

. 0 3 1 9 . 0 4 5 0

. 0 5 8 7 . 0 5 5 8

. 0 2 4 4 . 0 3 1 3

, 0 2 8 1 . 0 2 5 4

. 1 4 1 9 . 1 2 3 8

. 1 0 8 1 . 1 0 2 5

. 0 9 6 9 . 0 9 1 7

. 0 6 2 6 . 0 6 2 9

. 0 3 3 1 . 0 4 7 5

T a b l e 5 - 1 . Q u a n t i t a t i v e C r i t e r i a C o m p o s i t e W e i g h t s

al Selection and Screening

Architecture Score

Interdata 8 / 3 2 1.68
PDP-11 1.43
IBM S/370 1.36
AN/GYK-12 0.94
ROLM 0.92
B6700 0.91
SEL-32 0.86
AN/UYK-7 0.46
AN/UYK-20 0.44

e 5 -2 . Ranking Based on the Quantitative Criteri

EVALUATION OF COMPUTER ARCHITECTURES
VIA TEST PROGRAMS

Samuel H. Fuller
Carnegie-Mellon University and

Naval Research Laboratory

William E. Burr
U.S. Army Electronics Command

Paul Shaman
Carnegie-Mellon University

and

David Lamb
Carnegie-Mellon University

Evaluation via Test Programs

T A B L E O F C O N T E N T S

SECTION PAGE

1 Introduction 1

2 Test Program Specification 3

2.1 Alternative Approaches 3

2.2 Guidelines for Test Programs Specification 4

2.3 Selection of the Twelve Test Programs 5

2.4 Procedures for Writing, Debugging, and Measuring the Test
Programs 7

3 S, M and R: Measures of an Architecture's Performance 8

3.1 Test Program Size 9

3.2 Processor Execution Rate Measures 9

3.3 Processor Memory Transfers 10

3.4 Registers Transfers Within the Processor 11

4 Statistical Design of Test Program Assignments 14

5 Analysis of Test Program Results 16

5.1 Phase I Models 17

5.2 Transformation of the Data 17

5.3 Statistical Analysis of Phase I Data 2 0

5.4 Phase I I I Models and Results 2 2

5.5 Combination of Phase I and Phase II I Results 2 2

Evaluation via Test Programs

5.6 Phase II Models and Results

6 Summary

7 Appendix A - S, M, and R Measures for Each Test Program

Evaluation via Test Programs

3-1

ABSTRACT

This article presents the evaluation of the Computer Family Architecture (CFA)

candidate architectures via a set of test programs. The measures used to rank the

computer architectures were S, the size of the test program, and M and R, two

measures designed to estimate the principal components contributing to the nominal

execution speed of the architecture. Descriptions of the twelve test programs and

definitions of the S, M, and R measures are included here. The statistical design of the

assignment of test programs to programmers is also discussed. Each program was

coded from two to four, times on each machine to minimize the uncertainty due to

programmer variability. The final results show that for all three measures (S, M, and

R) the Interdata 8 / 3 2 is the superior architecture, followed closely by the PDP-11 , and

the IBM S / 3 7 0 trailed by a significant margin.

1. Introduction

While there are many useful parameters of a computer architecture that can be

determined directly from the principles of operation manual, the only method known to

be a realistic, practical test of the quality of a computer architecture is to evaluate its

performance against a set of benchmarks, or test programs. In a previous article

[FulS77b] , we presented a set of absolute and quantitative criteria that the CFA

committee felt provided some indication of the quality of the candidate computer

architectures. It is important to emphasize, however, that throughout the discussion of

these criteria it was understood that a benchmarking phase would be needed, and that

many of the quantitative criteria were being used to help construct a reasonable

"prefi l ter" that would help to reduce the number of candidate computer architectures

Evaluation via Test Programs

3-2

from the original nine to a final set of three or four. As described in the preceding

article, this initial screening in fact reduced the set of candidate computer

architectures to three: the IBM S/370, the PDP-11, and the Interdata 8 / 3 2 .

The concept of writing benchmarks or test programs, is not a new idea in the

field of computer performance evaluation and is generally considered the best test of

a computer system [cf. LucH71; BerN75j WicB73]. For the purpose of the CFA

committee, we define a test program to be a relatively small program (100 to 5 0 0

machine instructions) that was selected as representative of a class of programs. The

CFA committee's test program evaluation study described here had to address the

central problems facing conventional benchmarking studies:

a. How is a representative set of test programs selected?

b. Given limited manpower, how are programmers assigned to writing
test programs in order to maximize the information that can be
gained?

We faced an additional problem because we evaluated computer architectures,

independent of any of their specific implementations. In other words, when evaluating

particular computers, time is the natural measure of how fast a test program can be

executed. However, a computer architecture does not specify the execution time of

any instructions and so an alternative to time must be chosen as a metric of execution

speed.

This article explains how the CFA committee addressed the above questions and

presents the results of the test program evaluation of the three candidate

architectures. The next section, Section 2, describes how the 12 test programs used in

the evaluation process were selected. Section 3 explains the measures of architecture

performance that were used in this study. Section 4 explains how 16 programmers

Evaluation via Test Programs

3-3

w e r e assigned from six to nine programs each, in order to get a set of slightly over

1 0 0 test program implementations that were used to compare the relative performance

of the candidate architectures. The principle results of the test program evaluation

are presented in Section 5 and Appendix A contains the actual S, M, and R

measurements of all of the test programs. For the actual specifications of the test

programs, details of the evaluation process beyond the scope of this article, and a

chronology of the CFA test program study see [FulS76b].

2. Test Program Specification

2 . 1 . Alternative Approaches

A number of alternative test program specifications were considered by the CFA

committee. A tempting proposal was to use test programs written in a Higher-Order

Language (HOL). This had the advantage of allowing a single HOL source program to be

used for all the architectures to be tested. This also would have permitted the use of

existing benchmark programs, which were available from several sources (FCDSSA, and

NADC), and which were extracted from "real" military systems. One disadvantage of

this approach was that no one language, even FORTRAN, was available on all the nine

initial candidate architectures and those languages developed for use in tactical

military applications (e.g., JOVIAL, CMS-2, CS-4, and TACPOL) were each available on

only a few of the candidate architectures. There are FORTRAN IV and COBOL

compilers available for each of the three final candidate architectures; however,

neither FORTRAN nor COBOL are widely used in tactical military applications. The

major disadvantage, however, was that there is no practical way to separate the

effects of compiler quality from the effects of architectural efficiency, and the object

Evaluation via Test Programs

3-4

of the test program study was to measure only the architecture. The results obtained

from HOL test programs would necessarily involve a significant undetermined

component, which would be due to variations in the efficiency of compilers that are

unlikely to be extensively used in tactical military applications, and because these

unmeasurable compiler effects might well mask genuine differences in the intrinsic

efficiencies of the architectures.

Using standard (Machine-Oriented) assembly language for the test programs was

the obvious alternative to the use of Higher Order languages, but it had several

obvious disadvantages. First, each program would have to be recoded for each

machine, adding to the effort involved. Moreover, this introduced programmer

variabil ity into the experiment, and previous studies have shown programmer

variability to be large (variation of factors of 4:1 or more are commonly accepted).

Finally, it is much more expensive to code in assembly language than in Higher Order

Languages, and this would limit the size or number of the test programs. Nevertheless,

the committee felt that there were ways to limit, separate, and measure these

programmer effects, while there was no practical way to limit or separate the effects

of compiler efficiency. It was therefore decided that the test programs would, of

necessity, be coded in assembly language.

2.2. Guidelines for Test Programs Specification

The Test Program Subcommittee attempted to establish a strategy for defining

and coding the test programs that would minimize the variability due to differences in

programmer skill. The strategy devised was as follows:

a. The test programs would be small "kernel" type programs, of not
more than 200 machine instructions. (In the end, a few test
programs required more than 200 instructions.) It was felt that only
small programs could be specified and controlled with sufficient
precision to minimize the effects of programmer variability.

Evaluation via Test Programs

Moreover, resources were not available to define, code, test, and
measure a significant set of larger programs.

b. The programs were defined as structured programs, using a P L / H i k e
Program Definition Language (PDL) and then "hand translated" into
the assembly languages of the respective architectures.

c. Programmers were not permitted to make algorithmic improvements
or modifications, but rather were required to translate the PDL
descriptions into assembly language. Programmers were free to
optimize their test programs to the extent possible with highly
optimizing compilers. This "hand translation" of strictly defined
algorithms was expected to reduce variations due to programmer
skill.

d. All test programs except the I/O Interrupt test programs were coded
as reentrant, position-independent (or self-relocating) subroutines.
This was believed to be consistent with the best contemporary
programming practice and provides a good test of an architecture's
subroutine and addressing capabilities.

2.3. Selection of the Twelve Test Programs

The CFA committee appointed a subcommittee responsible for developing a set

of test program specifications consistent with the guidelines just discussed. This

subcommittee defined a set of 21 test programs that were intended to be broadly

representat ive of the basic types of operations performed by military computer

systems. The CFA committee reviewed these 21 test programs, committee members

w e r e asked to rank the relevance of these test programs to the applications of their

particular organization, and it was agreed that the top 12 programs would be the basis

of the test program study. (The rationale for using 12 test programs is explained in

Section 4, where the statistical design of the test program assignments is presented.)

The full specification of the 12 selected test programs is given in [FulS76b] and a brief

description of these test programs is given below.

A. UQ kernel four priority levels, requires the processor to field
interrupts from four devices, each of which has its own priority level.
While one device is being processed, interrupts from higher priority
devices are allowed.

3-5

Evaluation via Test Programs

B. HQ Kernel, FIFO processing, also fields interrupts from four devices,
but without consideration of priority level. Instead, each interrupt
causes a request for processing to be queued; requests are
processed in FIFO order. While a request is being processed,
interrupts from other devices are allowed.

C. I/O device handler processes application programs' requests for I/O
block transfers on a typical tape drive, and returns the status of the
transfer upon completion.

D. Large FFT computes the fast Fourier transform of a large vector of
32-b i t floating point complex numbers. This benchmark does
exercise the machine's floating point instructions, but principally
tests its ability to manage a large address space. (Up to one half of
a million bytes may be required for the vector.)

E. Character search, searches a long character string for the first
occurrence of a potentially large argument string. It exercises the
ability to move through character strings sequentially.

F. B[t test, set, or reset tests the initial value of a bit within a bit string,
then optionally sets or resets the bit. It tests one kind of bit
manipulation.

G- Runge-Kutta integrat ion numerically integrates a simple differential
equation using third-order Runge-Kutta integration. It is primarily a
test of floating-point arithmetic and iteration mechanisms.

Linked list insert ion inserts a new entry in a doubly-linked list. It
tests pointer manipulation.

I. Quicksort sorts a potentially large vector of fixed-length strings
using the Quicksort algorithm. Like FFT, it tests the ability to
manipulate a large address space, but it also tests the ability of the
machine to support recursive routines.

J- ASCII to f loat ing point converts an ASCII str ing to a floating point
number. It exercises character-to-numeric conversion.

K. Boolean matrix transpose transposes a square, tightly- packed bit
matrix. It tests the abil ity to sequence through bit vectors by
arbitrary increments.

L. Virtual memory space exchange changes the virtual memory mapping
context of the processor.

The specifications, written in the Program Definition Language, were intended

3 - 6

Evaluation via Test Programs

3-7

completely specify the algorithm to be used, but allow a programmer the freedom to

implement the details of the program in whatever way best suited the architecture

involved. For example, in the ASCII-to-floating-point benchmark, program J, the PDL

specification included the statement:

NUMBER «- integer equivalent of characters POSITION to J - l of A l where
character J of A l is

This description instructs the programmer to convert the character substring

POSITION, POSITION + 1,...,J-1, to an integer and store the result in the integer NUMBER.

It left up to the programmer whether he would sequence through the string character-

by-character , accumulating an integer number until he found a decimal point, or

perhaps (on the S/370) use the Translate-and-Test (TRT) instruction to find the

decimal point, and then use PACK and Convert-to-Binary (CVB) to do the conversion..

It did forbid him to accumulate the result as a floating point number directly, forcing

him to first convert to an integer and then to floating point.

2.4. Procedures for Writing. Debugging, and Measuring the Test Programs

The test programs were written by seventeen programmers at various Army and

Navy laboratories and at Carnegie-Mellon University. A set of reasonably

comprehensive instructions and conventions were needed to insure that the various

programmers produced results that could be compared in a meaningful way. Section 4

of this article discusses the assignments made to the programmers, and shows how

these assignments were made to minimize the distortion of the final conclusions due to

variations between programmers. In addition, we also agreed that it was not sufficient

to just write the test programs in assembly language. We instructed each programmer

that all of the test programs that he wrote had to be assembled and run on the

Evaluation via Test Programs

3-8

appropriate computer*. Test data was distributed to the programmers, and a test

program was defined to be debugged for the purposes of the CFA committee's work if

it performed correctly on the test data.

3. S. M and R: Measures of an Architecture's Performance

Very little has been done in the past to quantify the relative (or absolute)

performance of computer architectures, independent of specific implementations.

Hence, like it or not, we had little choice but to define measures of architecture

performance for ourselves.

Fundamentally, performance of computers is measured in units of space and time.

The measures that were used by the CFA Committee to measure a computer

architecture's performance on the test programs were:

Measure of. Space

S: Number of bytes used to represent a test program.

Measures o£ Execution Time:

M: Number of bytes transferred between primary memory and the
processor during the execution of the test program.

R: Number of bytes transferred among internal registers of the
processor during execution of the test program.

All of the measures described in this section are measured in units of 8-bit

bytes. A more fundamental unit of measure might be bits, but we faced a number of

annoying problems with respect to carry propagation and field alignment that make the

* The exceptions were test programs A, B, C, and L since they all require the use of
privileged instructions and it was impractical to require programmers to get stand­
alone use of all the candidate machines. In these four cases, an "expert" on a test
program was designated and he was responsible for reading in detail all
implementations of the test program and returning the test programs to the
programmer for correction if he detected any errors.

Evaluation via Test Programs

3-9

measurement of S, M, and R in bits unduly complex. Fortunately, all the computer

architectures under consideration by this committee are based on 8-bit bytes (rather

than 6, 7, or 9-bit bytes) and hence the byte unit of measurement can be conveniently

applied to all these machines.

3 . 1 . Test Program Size

An important indication of how well an architecture is suited for an application

(test program) is the amount of memory needed to represent it. We define S j j ^ to be

the number of 8-bit bytes of memory used by programmer i to represent test program

j in the machine language of architecture k. The S measure includes all instructions,

indirect addresses, and temporary work areas required by the program.

The only memory requirement not included in S is the memory needed to hold

the actual data structures, or parameters, specified for use by the test programs. For

example, in the Fourier transform test program S did not include the space for the

actual vector of complex floating-point numbers being transformed but it did include

pointers used as indices into the vector, loop counters, booleans required by the

program, and save-areas to hold the original contents of registers used in the

computation.

3.2. Processor Execution Rate Measures

In selecting among computer architectures, as opposed to alternative computer

systems, we are faced with a fundamental dilemma: one of the most basic measures of

a computer is the speed with which it can solve problems, yet a computer architecture

is an abstract description of a computer that does not define the time required to

perform any operation. (In fact, it is exactly this time-independence that makes the

concept of a computer architecture so attractive!) Given this dilemma, one reaction

Evaluation via Test Programs

3-10

might be to ignore performance when selecting among alternative computer

architectures and leave it to the engineers implementing the various physical

realizations to worry about execution speed. However, to adopt this attitude would

invite disaster. In other words, although we were evaluating architectures, not

implementations, it was essential that the architecture selected yield cost/effective

implementations, i.e., the architecture must be "implementable".

The M and R measures defined below were developed to measure those aspects

of a computer architecture that will most directly affect the performance of its

implementations.

3.3. Processor Memory Transfers

If there is any single, scalar quantity that comes close to measuring the "power"

of a computer system, it is the bandwidth between primary memory and the central

processor(s) [cf. BelC71; GMLC75; StoH75}

This measure is not concerned with the internal workings of either the primary

memory or the central processor; it is determined by the width of the bus between

primary memory and the processor and the number of transfers per second the bus is

capable of sustaining. Since processor/memory bandwidth is a good indicator of a

computer's execution speed, an important measure of an architecture's effect on the

execution speed of a program is the amount of information it must transfer between

primary memory and the processor during the execution of the program. If one

architecture must read or write 2x10^ bytes in primary memory in order to execute a

test program and the second architecture must read or write 10^ bytes in order to

execute the same test program, then, given similar implementation constraints, we

would expect the second architecture to be substantially faster than the first.

Evaluation via Test Programs

3-11

The particular measure of primary-memory/central-processor transfers used by

the CFA Committee is called the M measure. M g ^ is the number of 8-bit bytes that

must be read or written from primary memory by the processor of computer

architecture k during the execution of test program j as written by programmer i.

Clearly, there are implementation techniques used in the design of processors

and memories to improve performance by attempting to reduce processor/memory

traff ic, i.e., cache memories, instruction lookahead (or behind) buffers, and other

buffering schemes. However, with the intention of keeping our measure of

processor/memory traffic as simple, clean, and implementation-independent as possible,

none of these buffering techniques were considered. At the completion of one

instruction, and before the initiation of the next instruction, the only information

contained in the processor is the contents of the registers in the processor state.

Table 3 - 1 shows an example of a small IBM S/370 instruction sequence which

should help to illustrate the calculation of M. The instructions are the basic loop of a

routine for calculating the inner product of two single precision floating point vectors

of length 10.

3.4. Registers Transfers Within the Processor

The processor/memory traffic measure just described is our principle measure

of a computer architecture's execution rate performance. However, it should not be

too surprising that this M measure does not capture all we might want to know about

the performance potential of an architecture. In this section a second measure of

architecture performance is defined: R — register-to-register traffic within the

processor. Whereas the M measure looks at the data traffic between primary memory

and the central processor, R is a measure of the data traffic internal to the central

Evaluation via Test Programs

3-12

processor. The fundamental goal of the M and R measures was to enable the CFA

committee to construct a processor execution rate measure from M and R (ultimately

an additive measure: aM + bR, where the coefficients a and b can be varied to model

projections of relative primary memory and processor speeds). An unfortunate but

unavoidable property of the R measure is that it is very sensitive to assumptions

about the register and bus structure internal to the processor; in other words, the

"implementation" of the processor.

The definition of R is based on the idealized internal structure for a processor

shown in Figure 3 - 1 . By using the register structure in Figure 3 -1 we do not imply

that this is the way processors ought to be built. On the contrary, the structure in

Figure 3 - 1 has a much more regular data path structure than would be practical in

contemporary processors. There exist both data paths of marginal utility and non­

existent data paths that, if present, could significantly speed up the processor. This

structure was selected because the very regular data path, ALU, and register array

structure helped simplify our analysis.

Rj j ^ is defined as the number of 8-bit bytes that are read to and written from

the internal processor registers during execution of test program j on architecture k

as wri t ten by programmer i.

ALU Operations. The ALU in Figure 3-1 is allowed to perform any common integer,

floating point, or decimal arithmetic operation; increment or decrement; and perform

arbi t rary shift or rotate operations.

Only Data Traffic Measured. All data traffic is measured in R and no control traffic

measured. Figure 3 - 1 is intended to specify what will be defined to be control traffic

Evaluation via Test Programs

and what will be data traffic for the purposes of the R measure. The R measure does

not count the following "control" traffic:

(1) The setting of the condition codes by the ALU (or control unit) and
the use of the condition codes by the ALU. The only time that
movement of data into or out of the Program Status Word will be
counted in the R measure is when a Load PSW instruction is
performed or a trap or interrupt sequence moves a new PSW into or
out of the PSW register.

(2) Bits transmitted by the control unit to activate or otherwise control
the register file, ALU, or memory unit, are not counted in the R
measure.

(3) Reading of the Instruction Register by the control unit as it decodes
the instruction to determine the instruction execution sequence is not
counted in the R measure. In other words, the Instruction Register
(with the exception of displacement fields) will be for most practical
purposes a write-only register as far as the R measure is concerned.

(4) Loading the Memory Address Register is counted in the R measure,
but use of the contents of the Memory Address Register to specify
the address of data to be accessed in primary memory is not
counted.

Virtual Address Translation. The virtual to real address translation process is not

counted in the R measure. In other words, the final memory address in the MAR is a

virtual address and the work involved in translating this virtual address to a real

address is not included in the R measure.

The definition of the R measure was the center of considerable discussion within

the CFA committee. The full set of rules that are necessary to completely define the R

measure is too voluminous to present here; readers interested in the details of the R

measure are referred to Volume III of the CFA Selection Committee's final report

[FulS76b]. Figure 3 - 2 illustrates the calculation of the R measure for an IBM/370 add

instruction.

3-13

Evaluation via Test Programs

3-14

4. Statistical Design of Test Program Assignments

The test program phase of the CFA evaluation process involved comparison of

twelve test programs on three machines. Approximately sixteen programmers were

available for the study and a complete factorial design would have required each

programmer to write all of the test programs on each of the machines (for a total of

5 7 6 programs). This was clearly not feasible with the given time and resource

constraints, and, consequently, a fractional design (or several fractional designs) had to

be selected. Fractional factorial designs are discussed by [Dav071], e.g. The

fractional designs to be described below incorporate balance in the way test program,

machine, and programmer combinations are assigned.

It was necessary to consider designs which required each programmer to wri te

test programs for all three machines. Otherwise, comparisons among the machines

could not be separated from comparisons among the programmers. A desirable design

would have instructed each programmer to write a total of six or nine different test

programs, one third of them on each of the three machines. For most of the

programmers in the study time limitations precluded this type of design, and some

compromise was required. The compromise design selected also had to allow fpr

precise comparisons among the three competing architectures. A type of design that

meets both of these objectives is the nested factorial [AndV74, e.g.].

The test program part of the study actually involved the use of three separate

experimental designs, henceforth referred to as Phase I, Phase I I , and Phase I I I .

Nested factorial designs were used for Phase I and Phase III . Phase II was a one-third

fraction of a 3 ^ factorial design. Phase I was used to study test programs A through

H, those deemed to be of primary interest. Phase II I was used to study test programs

Evaluation via Test Programs

3-15

I through L Phase II included test programs A-B, E-H, and J -L Plans of the three

designs are depicted in Figure 4 - 1 .

The Phase I design is a pair of nested factorials, each involving four

programmers. Each programmer was asked to write two test programs for all three

machines. Each of the eight test programs in Phase I appears once on each machine in

each of the nested factorials. When this design was originally formulated, the plan

included requiring programmers to write their six test programs in a preassigned

randomly selected order, so as to eliminate possible biases due to learning during the

course of completing the assignments. This procedure was discarded, however, when

the programmers objected because of the varying availability of the three machines

for debugging. Programmers were instructed to complete the assigned jobs in

conformity with their typical practices and working habits with regard to order,

consultation with other individuals, and other such considerations. Programmers in the

study were not permitted to consult with each other, however, on any substantive

matters concerning their designated assignments. All programmers were instructed to

keep diaries of their work on the experiment.

As noted above, the Phase I design was formulated with the goal of obtaining

maximum possible information about differences between the competing architectures.

With the given Phase I design, comparisons among the three architectures are not

confounded by effects of either test programs or programmers. The Phase I design

called for 4 8 observations and was viewed as the most important of the three designs

formulated.

The design termed Phase II I was formulated according to the same plan as was

Phase I, except that four test programs and four programmers were utilized. The

Evaluation via Test Programs

3-16

Phase I I I design contains half as many observations as the Phase I design and thus

gives statistical results of less precision. The test programs in the Phase I I I design are

of lesser interest than those in Phase I. The four programmers in Phase I I I are distinct

from the eight in Phase I.

Together the Phase I and Phase II I designs provide a view of all three machines

and the operation of all twelve test programs selected for consideration. A third

experiment, labelled Phase I I , was also planned . This was viewed as an auxiliary effort

and was to be completed only if it was clear that the programmers assigned to it

would not be needed to aid in the completion of Phase I and Phase I I I . The Phase I I

design called for three programmers to write nine different test programs, three on

each of the three machines. The programmers assigned to Phase I I were able to

devote enough time to the test program study to permit use of a design which

required them to write nine different programs. Some comparisons among programs

not possible in Phase I and Phase I I I could be made, and the statistical results of Phase

I I could be compared to those of the other two experiments. The design used was the

3.4.3 plan in [ConW59]. This was made possible by dividing the factor representing

test programs, which appears at nine levels, into two pseudofactors (see [AndV74]),

each at three levels. One of the Phase I I programmers also participated in the Phase I

design. The only duplicate assignment, however, was test program G on the IBM

S / 3 7 0 .

5. Analysis of Test Program Results

This section describes the experimental results and statistical analysis of the

test program data. We shall first discuss the Phase I experiment, then the Phase I I I

Evaluation via Test Programs

experiment, and then the analysis combining data from Phase I and I I I . Finally, the

Phase I I experiment will be described.

5 . 1 . Phase I Models

A possible model for the nested factorial designs in Phase I is

Y j j k - C • Pj • Tjj • M k • P M j K * T M j j k * e i j k (5.1)

i - 1,2,3,4 j « 1,2 k - 1,2,3

In this equation y j j k is some response (i.e., on S, M. or R measure) generated by the

ith programmer writing the jth test program on the kth machine. Also,

C • constant, termed the grand mean
Pj - effect due to the ith programmer
Tjj - effect of the jth test program assigned to the ith programmer
M k - effect of the kth machine
P M j k - interaction between the ith programmer and the kth machine
T M j j k - interaction between the jth test program written by the ith

programmmer and the kth machine
e j j k « a random error term, assumed to be normally distributed with

mean 0 and variance not dependent ont the values of i, j , and k.

The Phase I experiment may also be modelled in a manner somewhat different

from that just described. In Phase I there are two factors at eight levels each,

programmers and test programs, and one factor at three levels, machines. The two

eight- level factors may each be replaced by three pseudofactors at two levels each.

Then we are concerned with a complete factorial experiment involving 3*2** - 192

total observations. The actual Phase I experiment is a 1/4 fraction of this. A model

may be fit using dummy variables to account for various effects and interactions.

5.2. Transformation of the Data

Examination of the S, M, and R data values collected clearly shows there is wide

variation in the data from one test program to another, e.g., especially for the M and R

measures. Various statistical considerations suggest that some transformation of the

3-17

Evaluation via Test Programs

3-18

raw data prior to analysis is desirable. A technical discussion of transformation of

statistics is given by [RaoC73], who illustrates use of the methodology in various

contexts.

In the CFA study the purpose of a transformation of the data is to stabilize

variance, so that an additive model such as (5.1) will hold for each of the designs.

Specifically, the model (5.1) assumes that the variance of the error term e ^ is

independent of i, j , and K. Under this assumption inferences which follow from analysis

of variance (ANOVA) calculations, as described below, are valid.

A variance stabilizing transformation is frequently suggested by consideration of

the experimental situation and prior understanding of the variation to be expected in

the data. For example, consider the M and R measures. Suppose some programmers

each wri te two test programs and the average run time of the second one is K times

the average run time of the first. Then if the standard deviation of the M or R

readings is V for the first test program, it can be expected to be proportional to kV

for the second test program. In other words, the variability (standard deviation) in run

times is directly proportional to the average run time. The accuracy of this conjecture

may be tested by examination of the data, but clearly there is strong intuitive support

for it. Consider the Runge-Kutta test program. Its M and R measures are dominated

by the computation of the inner loop performing the step-wise solution of the

differential equation. Variations in M and R measures will be a result of alternative

encodings of this inner loop. Average M and R measures will be doubled if the number

of iterations requested is doubled. Moreover, doubling the number of iterations will

also cause the differences between the different Runge- Kutta programs to double.

When the standard deviation of the test data is directly proportional to the mean, a

Evaluation via Test Programs

IN IIJ

H "WK C WIK*

* RM£JK - W I J K .

9 EUK-
Thus, use of the logarithmic transformation on both sides of (5.2) yields (5.1), and the

multiplicative model (5.2) may be viewed as the meaningful basic underlying model.

Similarly, consideration of the underlying properties of the S measure suggest a

square root transformation is appropriate to stabilize its variance. This transformation

arises because the variance, rather than the standard deviation, of the S measure can

be expected to be proportional to kV (See [FulS76b]), Use of the square root

transformation would imply use of the model in (5.1) with yy^ denoting the square root

of the measured S value.

3-19

logarithmic transformation will stabilize the variance, that is, remove the dependence of

the variance on the size of the test program [RaoC73, Section 6g. l] .

The model of (5.1) may be termed an additive model. When a logarithmic

transformation is used for the data, yy^ in (5.1) becomes the logarithm of the

response, such as the M or the R reading. In this case a multiplicative model in fact

underlies (5.1) and we write

* • T.2,3,*, j * 1 , 2 , K * 1 , 2 , 3 .

The connection between (5.1) and (5.2) is

Evaluation via Test Programs

3-20

It should be noted that the square root and logarithmic transformations are only

two of a large number of possible transformations. A particular family of

transformations takes a response z and transforms it according to z a for an a > 0.

With an appropriate interpretation, the logarithmic transformation corresponds to the

limiting value a 0. This family of power transformations is discussed in detail by

[BoxG64].

5.3. Statistical Analysis of Phase I Data

ANOVA calculations were performed on both halves of the Phase I experiment

for >fS, In M, and In R values. In each analysis the sample variance of the 24 values

was decomposed into sums of squares attributable to variations among programmers

test programs, machines, programmer- machine interactions, and test program-machine

interactions. The proportions of the total variance due to the various sums of squares

are given in Table 5 -1 of [FulS76]. The ANOVA calculations indicate that test program

and programmer variations account for most of the variation in the data in the case of

the M and R measures, and that machine differences are relatively small. Machine

differences are more noticeable for the S measure.

Using dummy variables, we also fit models using the formulation discussed at the

end of Section 5 .1 . In each model 24 parameters were fit, leaving 24 degrees of

freedom to measure experimental error. Estimates of the variance of the error term in

the model (5.1) are 18.175, 0.377, and 0.400 for >fS, In M, and In R, respectively. The

actual data values for the S, M, and R measures are given in the Appendix, and these

estimates of variance reflect the magnitude of the experimental error component in the

model (5.1). Table 5 -1 shows estimates of various machine comparisons for the Phase

I data. A 957. confidence interval is quoted below each estimate. The 957. confidence

Evaluation via Test Programs

3-21

intervals which do not cover the value 0 correspond to comparisons statistically

significant at level 0 .05 (- l - . 95) . Thus at level .05 the Interdata 8 / 3 2 is superior to

the IBM S / 3 7 0 on all measures. The PDP-11 is adjudged superior to the IBM S /370 at

level .05 on two of the measures and barely misses being superior when >fS is

considered. Moreover, the IBM S/370 is inferior to the average performance of the

other two machines on all measures. It is worth noting that these comparisons among

the competing architectures are based upon consideration of test programs A through

H only. It is reasonable, however, to view the eight programmers in Phase I as

representat ive of a larger population of programmers.

Table 5 - 2 displays estimates of the effects M^ and for the various measures.

The M k estimates are obtained by exponentiating the estimates of M k and are

appropriate for the logarithmic models only. Estimates have been included for

architecture comparisons obtained from the model (5.1) with the response In S. These

are also given in Tables 5 -4 and 5-6 below. Use of the In S model leads to estimates

which are qualitatively similar to those obtained from the >[S model, and it permits

more convenient comparisons of the three architectures. Since the effects noted in

Table 5 - 2 are differential values, a value of 0 is neutral for M^ and a value of 1 is

neutral for M .̂ The figures in Table 5-2 are consistent for the different measures and

transformations. The IBM S/370 is noticeably worse than the other two architectures.

For all but the In R response, the Interdata 8 /32 appears to be modestly better than

the PDP-11 .

One may interpret the last three lines of Table 5-2 in the following way. The

In M measure results indicate the IBM S/370 requires 155.7% as many

processor/memory transfers to "execute" programs A through H as the average of the

Evaluation via Test Programs

3-22

three machines, while the PDP-11 and Interdata 8 /32 require 79.57. and 80.97.,

respectively.

5.4. Phase I I I Models and Results

The models for Phase I I I experiments are the same as in (5.1) and (5.2), except

that the subscript i assumes the values 1 and 2 only. Estimates of the variance of the

er ror term in the Phase I I I version of model (5.1) are based on eight degrees of

freedom and are 18.606, 0.374, and 0.308 for >fS, In M, and In R, respectively.

Table 5 - 3 is the analog of Table 5 - 1 , and Table 5 -4 the analog of Table 5 - 2 .

None of the confidence intervals shown in Table 5-3 fails to cover the value 0.

However, it is apparent that the PDP-11 performed noticeably worse than the other

two machines in Phase III . Also, there is very little difference between the IBM S / 3 7 0

and the Interdata 8 / 3 2 in Phase II I .

The relatively poor performance of the PDP-11 in Phase I I I appears to be due

to its inability to handle test program I, quicksort. Certainly part of the explanation

for the poor performance of the IBM S/370 in Phase I can be attributed to test

program A, I/O kernel with four priority levels. In the next section results from Phase

I and Phase I I I are combined to produce overall estimates of machine effects and

overall comparisons of the machines.

5.5. Combination of Phase I and Phase III Results

Let 9j denote an estimate of a machine effect or comparison, such as M j or M3-

M j , in Phase I. Let 6JH denote the estimate of the same effect or comparison in Phase

I I I . In the previous two sections such estimates were given, as well as some

confidence intervals. The purpose of this section is to present estimates of the form

uQl •(l-od)ejn <5-3)

Evaluation via Test Programs

3-23

where oc is chosen to minimize the variance of the resulting linear combination and 0 <

oc < 1. Table 5 -5 shows estimates of machine comparisons and 952 confidence

intervals. The value of u for each column in the table is given along the top border.

In all columns more weight is given to the Phase I data. Table 5 -6 gives estimates of

machine effects with Phase I and Phase II I data combined.

All of the confidence intervals for M3-M2 in Table 5 -5 fail to cover the value

zero . Thus, the evidence suggests that the Interdata 8 /32 performs better than the

IBM S / 3 7 0 on all three measures, S, M, and R. Also, the IBM S/370 tends to be worse

than the average of the other two machines.

The estimates of M k in Table 5-6 provide a summary of the Phase I and Phase I I I

data. The IBM S/370 requires 120.82 as much storage as the average of all three

machines for the twelve test programs studied. According to the In M measure

estimate, the IBM S /370 required 126.67, as many processor/memory transfers to

"execute" the test programs as the average of the three machines. The other figures

in the lower part of Table 5 -6 are interpreted similarly.

5.6. Phase I I Models and Results

Analysis of variance calculations were performed on data arising from the Phase

I I design. Some of the results for responses >[S, In R, and In M are summarized in

Table 5 -7 . This table indicates the proportions of the total variance attributable to

various sums of squares. The variance was split into sums of squares each with two

degrees of freedom. Since two of the factors in the design were in fact pseudofactors

at three levels each to account for the nine test programs, several sets of sums of

squares were combined. There is some aliasing in the design involving the second-

order interactions.

Evaluation via Test Programs

3-24

Estimates of differential effects in a model comparable to (5.1) for the three

machines can also be given. For the measure they are - .952 for the PDP-11 , 1.605

for the IBM S /370 , and - .653 for the Interdata 8 /32 . For the In M measure the values

are - 0 . 6 9 1 , 0.508, and 0.183 for the machines quoted in the same order, and the

figures are - .662 , .538, and .123 for the In R measure. Thus, the experimental results

for this phase tend to rank the machines with the PDP-11 first by a substantial margin,

and the Interdata 8 / 3 2 ranks second. However, it should be noted that test program A

was included in the Phase I I design, and test programs D and I were not.

6. Summary

This article has described how the test program phase of the CFA study was

developed, what methodologies were used, and what were the results of the study.

We began with a discussion of the twelve test programs used in this study and how

the CFA committee selected these twelve from a larger set of test programs as most

representat ive of the expected applications of military computers. A Program Definition

Language (PDL) was used to clearly specify these test programs so that it was clear to

the programmers exactly what algorithm was to be implemented yet also indicate to

what extent we expected the programmer to optimize the coding of the test programs

to take advantage of the features of the architecture under test.

Section 3 of this article defined the three measures of performance used to

evaluate the candidate computer architectures on each test program:

S: The number of bytes used to represent a test program

M: The Number of bytes transfered between primary memory and the
processor during execution of the test program

R: The number of bytes transfered among internal registers of the
processor during execution of the test program

Evaluation via Test Programs

3-25

The test programs were assigned to programmers based on a statistical design

involving three phases, denoted as I, I I , and I I I In Phase I eight programmers were

assigned two test programs to implement on each of the three machines. Phase III was

a smaller version of Phase I, involving only four programmers. Phase I I was a

somewhat more complex design that involved each of three programmers writting nine

dif ferent test programs, three on each machine. Phase I I was intended to give some

information on the interaction between particular test programs and machines that was

not available with much precision from Phases I and III.

The principal results of the test program study that were passed along to the

l i fe-cycle cost models [CorJ77] was the composite performance of the candidate

architectures for phases I and III on the set of 12 test programs. An analysis of

Variance (ANOVA) procedure was used to determine the overall relative performance

of the three candidate machines, as shown in Table 6 - 1 . Unity indicates average

performance and the lower the score on any of the measures, the better the machine

handled the set of test programs.

In other words, the test program results indicate that the IBM S/370 needs 46%

more memory than the Interdata 8 /32 to represent the set of test programs (or 2 1 %

more than the average of the three architectures) and the PDP-11 is essentially

average in its use of memory.

Considering the test program results in a little more detail, in Phase I the data

revealed the IBM S/370 to be significantly worse than the other two machines on S, M,

and R measures at a significance level of 0.05 (i.e. the 95% confidence intervals all

failed to include the point where the IBM S/370 equals the performance of the other

machines). Moreover, the overall performance of the PDP-11 was virtually identical to

Evaluation via Test Programs

that of the Interdata 8 /32 . Some part of the poor performance of the IBM S / 3 7 0 can

be traced to test program A (the priority I/O Kernel). In Phase I I I alone, none of the

comparisons among the three machines was significant at the 0.05 level because of the

small number of data points (24). However, the PDP-11 was noticeably the worst of

the three machines on all three measures. The IBM S/370 dominated the Interdata

8 / 3 2 with regard to the M measure, the Interdata was better for the S measure, and

there was little difference between the two for the R measure. The relatively poor

performance of the PDP-11 appeared to be due to the quicksort test program, test

program I, which worked with a list much larger than the 64k byte virtual address

space of the PDP-11.

Statistical results from Phases I and III were combined. In this analysis the

ranking of the three machines from best to worst on the three measures was:

Interdata 8 / 3 2 , PDP-11, and IBM S/370. The average performance of the three

architectures in Phases I and III is given in Table 6 - 1 .

The outcome of Phase II largely corroborates the results of the other two

experiments. The ranking of the three machines, from best to worst is: PDP-11 ,

Interdata 8 / 3 2 , IBM S/370. This ranking prevails for all three measures, S, M, and R.

It is important to recall (See Table 4-1) that Phase II included test program A, for

which the IBM S/370 performs relatively poorly, and does not include test programs D

and I, which are relatively difficult to implement on the PDP-11, because they have

large data structures. Because of the magnitude of the experimental error in these

test programs and the relatively small number of data points in Phase I I (27), we wero

not able to detect any test program/architecture interactions that were statistically

significant.

Acknowledgements

3-26

Evaluation via Test Programs

3-27

During the specification of the test programs and development of the S, M, and R

measures, we had helpful discussions with many individuals related to the CFA project.

Mario Barbacci, Lynn DeNoia, Robert Gordon, David Parnas, John Shore, Daniel

Siewiorek, and William Smith. We are especially indebted to a group of graduate

students at Carnegie-Mellon University who proved crucial to the successful

completion of the full set of test programs. Three of these students, Navindra Jain,

George Mathew, and Leland Szewerenko were particularly helpful through their

continued effort on behalf of this project.

7. Appendix A - S. M. and R Measures for Each Test Program

On the following pages are actual measurements for each of the test programs

wr i t ten for the CFA program. The unit of measurement for all data is (8-bit) bytes.

The number in brackets following each measurement is the identifying number of the

programmer who wrote and debugged the particular test program. Data followed by

an "A" are auxiliary data points. Data followed by a V were associated with

programming assignments not completed in time to be used by the CFA Committee and

the pseudo-values shown were used in the ANOVA calculation (when the actual data

points became available at a latter date, insertion of the real values for these

programs had no significant effect on the results).

Evaluation via Test Programs

A. Priority I/O Kernel

B. FIFO I/O Kernel

C. I/O Device Handler

•D. Large FFT

E. Character Search

F. Bit Test, Set, Reset

GL Runge-Kutta Int.

K Linked List Insertion

I. Quicksort

J. ASCII to Float-Pt.

K. Boolean Matrix

L. Virtual Memory Exchange

INDIVIDUAL S MEASURES

IBM S/370 PDP-11 Interdata 8 / 3 2

216 [3]
286 [12]
742 [14]

48 [4]
32 [12]
32 [14]

26 [12]
28 [14]
26 [17]

372 [2]
465 [13]
308 [17]

133 [2]
124 [3]
246 [13]

144 [2]
142 [4]
98 [13]

192 [1]
252 [17]

132 [1]
216 [17]

176 [1]
241 [17]

454 [11]
454 [9 >

766 [11]
766 [9 >

550 [11]
402 [9]
402 [17]A

104 [1]
92 [4]
154 [11]

88 [1]
136 [11]
90 [17]

120 [1]
144 [3]
168 [11]

144 [9]
122 [12]
116 [17]

68 [3]
78 [9]
86 [12]

82 [4]
90 [9]
98 [11]A
98 [12]

202 [2]
238 [17]

184 [2]
172 [3]
248 [17]

166 [12]
158 [4]
232 [11]A
190 [17]

144 [4]
228 [13]
176 [14]

162 [13]
182 [14]
194 [17]

148 [3]
198 [13]
164 [14]

340 [6]
407 [5]

940 [6]
1534 [5]

426 [6]
524 [5]

256 [4]
441 [5]
241 [7]

164 [5]
208 [7]
172 [17]

206 [3]
238 [5]
204 [7]

224 [3]
267 [6]
284 [8]

174 [4]
232 [6]
284 [8]

156 [17]
130 [6]
180 [8]

292 [3]
382 [7]
414 [8]

254 [4]
250 [7]
378 [8]

328 [17]
310 [7]
334 [8]

Computer Architecture

Evaluation via Test Programs

Test Program

A. Priority I /O Kernel

B. FIFO I/O Kernel

C. I /O Device Handler

D. Large FFT

E. Character Search

F. Bit Test, Set, Reset

G. Runge-Kutta Int.

K Linked List Insertion

I. Quicksort

J. ASCII to Float-Pt.

K. Boolean Matrix

L. Virtual Memory Exchange

INDIVIDUAL M MEASURE

IBM S/370 PDP-11 Interdata 8 / 3 2

212 [3]
354 [12]
522 [14]

28 [4]
24 [12]
24 [14]

28 [12]
32 [14]
28 [17]

424 [2]
920 [13]
434 [17]

208 [2]
188 [3]
296 [13]

192 [2]
226 [4]
114 [13]

328 [1]
304 [17]

309 [1]
290 [17]

426 [1]
279 [17]

10810 [11]
10810 [9 >

14746 [11]
14746 [9 >

10886 [11]
8560 [9 >
8560 [17]A

854 [1]
940 [4]
1724 [11]

730 [1]
770 [11]
520 [17]

958 [1]
1044 [3]
1021 [11]

378 [9]
358 [12]
238 [17]

162 [3]
178 [9]
152 [12]

222 [4]
176 [9]
296 [11]A
276 [12]

141074 [2]
228056 [17]

102662 [2]
94960 [3]
176960 [17]

100062 [2]
100042 [4]
117984 [l l] A
138414 [17]

228 [4]
304 [13]
264 [14]

204 [13]
218 [14]
240 [17]

224 [3]
260 [13]
238 [14]

1024 [5]
1008 [6]

14960 [5]
2756 [6]

2968 [5]
1732 [6]

241 [4]
437 [5]
433 [7]

292 [5]
275 [7]
283 [17]

363 [3]
423 [5]
334 [7]

832 [3]
909 [6]
896 [8]

582 [4]
776 [6]
932 [8]

384 [6]
566 [8]
640 [17]

532 [3]
532 [7]
645 [8]

541 [4]
566 [7]
945 [8]

721 [7]
1058 [8]
780 [17]

Computer Architecture

Evaluation via Test Programs

INDIVIDUAL R MEASURES

Test Program
IBM S/370

Comouter Architecture
PDP-11 Interdata 8 / 3 2

A. Priority I /O Kernel 947 [3]
2146 [12]
3052 [14]

108 [4]
106 [12]
106 [14]

166 [12]
166 [17]
214 [14]

B. FIFO I/O Kernel 2222 [2]
4583 [13]
2226 [17]

1096 [2]
810 [3]
1419 [13]

698 [2]
937 [4]
482 [13]

C. I /O Device Handler 1789 [1]
1729 [17]

1480 [1]
1416 [17]

1902 [1]
1391 [17]

D. Large FFT 62904 [11]
62904 [9 >

70512 [11]
70512 [9 >

60446 [1 1]
50045 [9 >
50045 [17]A

E. Character Search 5603 [1]
5549 [4]
10239 [11]

4348 [1]
4326 [11]
3091 [17]

5885 [1]
3139 [3]
5767 [11]

F. Bit Test, Set, Reset 1674 [9]
1542 [12]
1212 [17]

832 [3]
917 [9]
8 0 1 [1 2]

891 [4]
887 [9]
1167 [12]
1281 [11]A

G. Runge-Kutta Int. 845966 [2]
1203952 [17]

724372 [2]
665529 [3]
1012727 [17]

696085 [2]
696049 [4]
777846 [l i] A
874923 [1 7]

K Linked List Insertion 950 [4]
1741 [13]
1137 [14]

1025 [13]
1087 [14]
1210 [17]

834 [3]
1049 [13]
965 [14]

I. Quicksort 7618 [5]
7540 [6]

74278 [5]
15205 [6]

13315 [5]
9609 [6]

J. ASCII to Float-Pt. 1330 [4]
2578 [5]
2226 [7]

1726 [5]
1512 [7]
1716 [17]

2100 [3]
2270 [5]
1897 [17]

K. Boolean Matrix 5576 [3]
5661 [6]
5277 [8]

3180 [4]
3905 [6]
4446 [8]

2216 [6]
3154 [8]
3945 [17]

L. Virtual Memory Exchange 1931 [3]
1934 [7]
2529 [8]

2616 [4]
2911 [7]
4226 [8]

2539 [7]
4573 [8]
2643 [17]

Evaluation via Test Programs

(1) LA 2,10(0,0)
(2) LA 3,XVEC
<3> LA 4.YVEC
(4) SDR 2,2

(5) SR 7,7

(6) LOOP LE 4,0(7,3)
(7) ME 4,0(7,4)
<8> ADR 2,4
(9) LA 7,4(0,7)
(1 0) BCT 2.L00P

(11) STO 2.SUM

R Comments

4 Set R2 to 10, the length of the vectors.
4 Load R3 with starting address of X vector.
4 Load R2 with starting address of Y vector.
2 Clear floating point reg. 2.

Use it to accumulate inner product.
2 Clear R7

Use it as index into floating point vectors.

8 Load X(i) into floating point register 4.
8 Multiply X(i) by Y(i).
2 Sum Sum • X(i) * Y(i).
4 Increment index by 4 bytes.
4 Decrement loop count and branch back if not done

26 (Loop Total)
260 (Loop (6 -10)* 10)
12 Store double precision result in SUM.

288 Grand Total

Table 3 - 1 . M Measure for IBM 370 Inner Product Example

Primary

Memory

Reed date
from memory

Write delis
to memory

General Purpose
Register File

Accumulators,
Bast? Registers,
Index regiptors,
Temporaries,

etc.
L A,B Inputs to
*~ALlTei>d'3ostH

Instruction Rog

Mp Address Rog

Program Countor

Program Status

LEGEND

Data Path

Control Path

condition
codo
lines

Arithmetic &
Logic Unit

z

Processor's
Control

Unit

Specify ALU oporation

Control Momory Operations

Figure ^ j : Canonical Processor Architecture

Evaluation via Test Programs

RX. RS. & SI INSTRUCTION INTERPRETATION

R Comment

IR<0:15> <- Mh[MAR]
MAR «- MAR + 2
IR<15:31> «- Mh[MAR]
PC <- PC + 4
address interpretation
instruction execution

MAR «- PC

TOTAL

2
3
2
3

6

16

Get halfword in instruction register
Incrementation counts only 1 byte
Get rest of instruction in IR
Increasing Program Counter

Set up MAR for next instruction

RX ADDRESS CALCULATION

R Comment

1. B2 - 0, X2 - 0
MAR <- IR<20:31> 5 Read 12 bits from the IR

2 . B2 - 0 , X2 > 0
MAR «- IR<20:31> + R[x2]<8:31> 8

3. 8 2 > 0, X2 - 0
MAR «- IR<20:31> + R[B2]<8:31> 8

4. B2 > 0, X2 > 0
MAR <- IR<20:31> + R[B2]<8:31> 8
MAR «- R[x2] + MAR 9

TOTAL 17

Add 12 bits from IR to 24 bits from index

Full 24 bit (3 byte) addition

EXAMPLE INSTRUCTION: A R4,DISP(R2,R7)

RX Add Instruction R

RX instruction interpretation 16
address interpretation 17
MBR <- MwfMAR] 4
R[R1] «- R[R1] + MBR 12

TOTAL 49

Figure 3-2 . IBM S/370 R Measure Example

T e s t P r o g r a m
P h a s e Programmer A B C D E F G H I J K L

I 14 a l l a l l

1 a l l a l l

2 a l l a l l

9 a l l a l l

11 a l l a l l

12 a l l a l l

13 a l l a l l

17 a l l a l l

3 3 7 0 11 8 3 2 11 1 1 8 3 2 8 3 2 3 7 0 3 7 0

I I 4 11 8 3 2 3 7 0 8 3 2 8 3 2 3 7 0 3 7 0 11 11

17 8 3 2 3 7 0 11 3 7 0 3 7 0 11 11 8 3 2 8 3 2

5 a l l a l l

00 a l l a l l
I I I

6 a l l a l l

7 a l l a l l

F i g u r e 4 - 1 . L a y o u t s o f P h a s e I , I I , a n d I I I Des i g n s

" a l l " d e s i g n a t e s a l l t h r e e m a c h i n e s

^ ^ v ^ Measure
Comparison o r * * ^ .
Machines ^ s * v * ^ In M In R

M 3 - Mj - . 5 8 6 . 0 1 8 . 0 1 2

(- 3 . 6 9 6 , 2 . 5 2 4) (- . 4 3 0 , . 4 6 6) (- . 4 4 9 , . 4 7 4)

M3 - - 3 . 5 3 5 - . 6 5 5 - . 7 1 7

(- 6 . 6 4 5 , - . 4 2 5) (- 1 . 1 0 3 , - . 2 0 7) (- 1 . 1 7 8 , - . 2 5 5)

M 2 - M 1 2 . 9 4 9 . 6 7 3 . 7 2 9

(- . 1 6 1 , 6 . 0 5 9) (. 2 2 5 , 1 . 1 2 1) (. 2 6 7 , 1 . 1 9 1)

^ (M ^) - ^ - 3 . 2 4 2 - . 6 6 4 - . 7 2 3

(- 5 . 9 3 6 , - . 5 4 8) (- 1 . 0 5 2 , - . 2 7 6) (- 1 . 1 2 2 , - . 3 2 3)

Mj: e f f e c t of PDP-11

model (5 . 1) : M^. e f f e c t o f IBM s / 3 7 0

hij : e f f e c t o f I n t e r d a t a 8 / 3 2

T a b l e 5 - 1 . E s t i m a t e s o f Machine Comparisons and
9 5 $ C o n f i d e n c e I n t e r v a l s , Phase I

Measure ^ i n s

M a c h i n e E f f e c t s

M l

» * 1

*2

^ 3

- . 7 8 8 - . 1 4 8 - . 2 3 0 - . 2 4 7

2 . 1 6 1 . 3 5 4 . 4 4 3 . 4 8 2

- 1 . 3 7 4 - . 2 0 5 - . 2 1 2 - . 2 3 5

. 8 6 2 . 7 9 5 . 7 8 1

1 . 4 2 5 1 . 5 5 7 1 . 6 1 9

. 8 1 5 . 8 0 9 . 7 9 1

e f f e c t s f o r P D P - 1 1

M j , : e f f e c t s f o r IBM S / 3 7 0

Mg, u 3 : e f f e c t s f o r I n t e r d a t a 8 / 3 2

T a b l e 5 - 2 . E s t i m a t e s o f M a c h i n e E f f e c t s i n M o d e l s (5 . 1) a n d (5 . 2) , P h a s e I

Measure
Compar ison o f
Machines I n M I n R

- 3 . 8 0 6 - . 2 9 5 - . 3 4 8

(- 8 . 7 8 0 , 1 . 1 6 8) (- 1 . 0 0 0 , . 4 1 0) (- . 9 8 8 , . 2 9 1)

- 1 . 5 8 5 . 0 9 9 - . 0 2 7

(- 6 . 5 5 9 , 3 . 3 8 9) (- . 6 0 6 , . 8 0 4) (- . 6 6 6 , . 6 1 3)

- 2 . 2 2 1 - . 3 9 4 - . 3 2 1

(- 7 . 1 9 5 , 2 . 7 5 3) (- 1 . 0 9 9 , . 3 1 1) (- . 9 6 0 , . 3 1 8)

1< M 1 + M 3) - M 2 . 3 1 8 . 247 .147

(- 3 . 9 9 0 , 4 . 6 2 6) (- . 3 6 4 , . 8 5 8) (- . 4 0 7 , . 7 0 1)

M j : e f f e c t o f PDP-11

K^: e f f e c t o f IBM s/370

M 3 : e f f e c t o f I n t e r d a t a 8 / 3 2

T a b l e 5 - 3 . E s t i m a t e s of Machine Comparisons and 9 5 * Conf idence I n t e r v a l s , Phase I I I

M e a s u r e */s I n S I n M I n R

M a c h i n e E f f e c t s

M l

" 2

»3

M j , \Xy e f f e c t s f o r PDP-11

M j , u ^ : e f f e c t s f o r IBM s / 3 7 0

H j , u 3 : e f f e c t s f o r I n t e r d a t a 8 / 3 2

2 . 0 0 9 . 1 3 3 . 2 2 9 . 2 2 3

- . 2 1 2 . 0 4 2 - . 1 6 5 - . 0 9 8

- 1 . 7 9 7 - . 1 7 4 - . 0 6 6 - . 1 2 5

1 . 1 4 2 1 . 2 5 7 1 . 2 5 0

1 . 0 4 3 . 8 4 8 . 9 0 7

. 8 4 0 . 9 3 6 . 8 8 2

T a b l e 5 - 4 . E s t i m a t e s o f M a c h i n e E f f e c t s i n M o d e l s (5 . 1) a n d (5 . 2) , P h a s e I I I

C o m p a r i s o n
o f M a c h i n e s

^•Heasure

a = . 6 7

I n M

a " . 6 6

I n R

a - . 6 1

- 1 . 6 4 9 - . 0 8 8 - . 1 2 8

(- A . 1 1 9 , . 8 2 1) (- . 4 4 2 , . 2 6 6) (- . 5 1 7 , . 2 6 1)

- 2 . 8 9 2 - . 3 9 9 - . 4 4 8

(- 5 . 3 6 2 , - . 4 2 2) (- . 7 5 3 , - . 0 4 5) (- . 8 3 7 , - . 0 5 9)

1 . 2 4 3 . 3 1 0 . 3 2 0

(- 1 . 2 2 7 , 3 . 7 1 3) (- . 0 4 4 , - 6 6 4) (- . 0 6 9 , . 7 0 8)

^ (M ^) - ^ - 2 . 0 6 7 - . 3 5 4 - . 3 8 4

(- 4 . 2 0 7 , . 0 7 3) (- . 6 6 1 , - . 0 4 7) (- . 7 2 1 , - . 0 4 7)

M ^ e f f e c t o f P D P - 1 1

h ^ : e f f e c t o f IBM s / 3 7 0

M~: e f f e c t o f I n t e r d a t a 8 / 3 2

T a b l e 5 - 5 . E s t i m a t e s o f M a c h i n e C o m p a r i s o n s a n d 9 5 $ C o n f i d e n c e I n t e r v a l s ,
P h a s e I and P h a s e I I I D a t a C o m b i n e d

M e a s u r e I n S I n M I n R

M a c h i n e E f f e c t s a • . 6 7 a m . 4 7 y - . 6 6 a - . 6 1

M i . 1 3 5 . 0 0 1 . 0 7 5 . 0 6 4

1 . 3 7 8 . 1 8 9 . 2 3 6 . 2 5 6

M 3 - 1 . 5 1 4 - . 1 8 9 - . 1 6 3 - . 1 9 2

1 . 0 0 1 . 9 2 8 . 9 3 8

^ 1 . 2 0 8 1 . 2 6 6 1 . 2 9 2

»2 . 8 2 8 . 8 5 0 . 8 2 5

^2$ e f f e c t s f o r I B M S / 3 7 0

K j , M-3- e f f e c t s f o r I n t e r d a t a 8 / 3 2

T a b l e 5 - 6 . E s t i m a t e s o f M a c h i n e E f f e c t s i n M o d e l s (5 - 1) a n d (5 - 2) ,
P h a s e I a n d P h a s e I I I D a t a C o m b i n e d

M e a s u r e Js I n M I n R

Sum o f S q u a r e s D e g r e e s o f f r e e d o m

P r o g r a m m e r s

CM
 . 0 2 7 . 0 1 8 . 0 2 6

T e s t P r o g r a m s 8 . 6 2 3 . 6 5 3 . 6 6 0

M a c h i n e s

CM
 . 1 3 2 . 0 7 6 . 0 6 8

P r o g r a m m e r s
X M a c h i n e s

2 . 0 3 9 . 0 5 3 . 0 4 7

T e s t P r o g r a m s
X M a c h i n e s

8 . 1 3 2 . 1 2 4 . 1 2 1

T e s t P r o g r a m s 4 . 0 4 7 . 0 7 6 . 0 7 8
X P r o g r a m m e r s

T a b l e 5 - 7 . P h a s e I I ANOVA C a l c u l a t i o n s
P r o p o r t i o n o f V a r i a n c e A t t r i b u t a b l e t o E a c h Sum o f S q u a r e s

Evaluation via Test Programs

ARCHITECTURE S M R

PDP-11 1.00 0.93 0.94
IBM S /370 1.21 1.27 1.29
Interdata 8 / 3 2 0.83 0.85 0.83

Table 6 - 1 Average Performance of the Architectures on the 12 test Programs.

AN ARCHITECTURAL RESEARCH FACILITY:
ISP DESCRIPTIONS, SIMULATION, DATA COLLECTION

Mario R. Barbacci
Carnegie-Mellon University and

Naval Research Laboratory

Daniel P. Siewiorek
Carnegie-Mellon University and

Naval Research Laboratory

Robert Gordon
Naval Underwater Systems Center

Rosemary Howbrigg
Naval Underwater Systems Center

and

Susan Zuckerman
Naval Research Laboratory

Architectural Research Facility

T A B L E O F C O N T E N T S

SECTION PAGE

1 Introduction 1

2 A Typical ISP Description 3

3 Abstractions and Implementation Dependencies 5

3.1 Abstractions 5

3.2 Implementation Dependencies 7

4 The Architecture Research Facility 9

4.1 Debugging 10

4.2 Preparation of Simulation Tests 10

4.3 Instrumentation 11

4.4 Artificial Labels in the ISP Descriptions 12

5 Architecture Parameters 13

6 Advantages of an Architectural Research Facility 17

6.1 A Simulator as a Training Tool 17

6.2 Architecture Evaluation 17

6.3 Experimentation 18

6.4 Machine Relative Software 18

Architectural Research Facility

ABSTRACT

The objectives of this paper are twofold. In the first place we discuss some

issues related to the formal description of computer systems and how these issues

w e r e handled in a specific project, the selection of a standard computer architecture

for the Army/Navy Computer Family Architecture (CFA) project. The second purpose

is to present a methodology for automatically gathering architectural data which can be

used for evaluation and comparison purposes. We will not discuss the rationale behind

the selection of specific test programs and the statistical experiment set up to

ascertain the influence of the programmers, the test programs, and the machine

architecture on the results. These issues belong in a companion paper.

1. Introduction

There have been many attempts to specify computer architectures in some

formal notation. The CFA project included, to our knowledge, the first attempt to

describe the complete instruction set of several large, commercially available

architectures. The candidate architectures were the IBM S/370, DEC PDP-11, and the

Interdata 8 / 3 2 . The experiment described in this paper involved the preparation of

formal computer descriptions, the execution of machine language programs under an

instrumented simulator, and the collection of data used to evaluate the architectures.

Three aspects of the experiment are important to observe: 1) We did not implement

specific simulators, tailored for each architecture; the system used in this project is a

general purpose computer simulator driven by a formal machine description, 2) We

executed a large number of test programs *, each ranging from less than a dozen

* A total of 114 simulation runs were executed. They correspond to a total of 70
dif ferent programs (some of which called for several test cases, in other instances a
test case had to be divided into separated sub-cases.) The 70 programs were divided
as follows: 26 for the PDP-11, 22 for each of the IBM S/370 and Interdata 8 / 3 2 .

4-1

Architectural Research Facility

4 -2

instructions to several hundred instructions, 3) We used real programs that had been

executed on actual physical machines and then used to initialize the simulators.

The Naval Research Laboratory selected ISP [BelC71] as the notation to formally

describe the candidate machines. This decision was based on the availability of

expert ise and software support at CMU and in the fact that ISP was better suited than

other candidate notations for describing a computer architecture, independently of

timing and other implementation issues * . This however, does not imply that ISP is

f ree of blemishes. Some of its virtues and defects are discussed in [BarM75], In this

paper we will point out some characteristics of the notation that prevent a complete

separation between architectural and implementation details.

Volume IV of the final report of the CFA committee [BarM76b] includes the ISP

descriptions of the three candidate architectures and more information about the

writ ing and debugging of ISP descriptions. It also discusses the issue of the

correctness of the ISP descriptions and other matters which could not be covered in a

short paper.

Section 2 presents a brief introduction to ISP through a simplified version of the

IBM S / 3 7 0 ISP description. Section 3 discusses the separation of architecture vs.

implementation details. Section 4 describes the Architectural Research Facility.

Section 5 describes the collection of architectural data from the simulation of ISP

descriptions. Section 6 concludes the paper by outlining the areas in which future

work could benefit from the use of the Architecture Research Facility.

* The CFA selection committee adopted the definition of architecture proposed by the
designers of the IBM S/360: "The term architecture is used here to describe the
attributes of a system as seen by the programmer, i.e., the conceptual structure and
functional behavior, as distinct from the organization of the data flow and control, the
logical design, and the physical implementation"[AmdG64].

Architectural Research Facility

4 -3

2. A Typical ISP Description

The ISP notation was developed to formalize the information normally given in

basic machine manuals and to supplement or, if possible, eventually replace the

"programming reference manuals'1. Hence its essential requirements were readability,

completeness, flexibility, and brevity.

The original notation was introduced for descriptive purposes and, in the context

of a book [BelC71], certain ambigueties were permitted. For more formal uses, the

notation had to be revised and a language named ISPL was developed between 1 9 7 3 -

1975 [BarM76a]. Further developments on the notation continue at CMU, and a

language tentatively named ISPS is being implemented. For the remainder of this

paper we shall refer exclusively to ISPL, the dialect used in the description of the CFA

architectures.

The example shown in Figure 1 is derived from the IBM S/370 ISP description.

We will only present the main declarations and the instruction interpretation cycle *.

The control flow for all instructions in Figure 1 follows a well defined path. The

main body of the ISP description is defined by the Run procedure which continuously

performs a loop of instruction cycles (IFetch followed by IExec). After an instruction

has been executed, a special section of code (INT) is executed. INT checks for the

presence of exceptional conditions (errors or external interrupts) and performs the

proper context switching to handle these conditions.

The instruction fetch section (IFetch) reads the first half-word of the instructions

and from the first two bits (Instr<8> and Instr<l>) it computes the length of the

* In order to keep the examples within the space limitations of this paper, we have
taken some minor liberties with the syntax of ISPL. These alterations should not
over ly confuse readers familiar with ISPL.

Architectural Research Facility

4 -4

instruction (PSW<32:33>) and updates the program counter (PSW<48:63>). IFetch then

proceeds to read one or two more half-words, the rest of the instruction.

The instruction execution section (IExec) uses the first two bits of the instruction

(Instr<8:l>) to select an instruction-type specific section. The RR, RX, RSSI, and SS

sections handle the corresponding instruction types. RX, RSSI, and SS begin by

computing the effective address of the operand(s). After this step is completed the

next 6 bits of the instruction (Instr<2:7>) are used to select a "routine" which describes

the behavior of the instruction.

If any errors are detected during the instruction cycle (address boundary

errors , illegal operations, storage protections, etc) the rest of the instruction is

aborted and the proper error code is set in the PSW. This premature termination

allows the interrupt handler (INT) to take care of the situation (the usual mechanism is

to switch PSWs thus automatically starting the execution of interrupt specific system

routines).

We have tried to keep the example as simple as possible by avoiding any details

beyond those extrictly necessary to follow the example. In particular, the reader

might have noticed that we were making explicit references to fields of the Instruction

Register (InRtr) and the Program Status Word (PSW). It is clear that when we deal with

large descriptions such explicit references tend to become cumbersome and error

prone *. The following section deals with the issues of how to improve the readability

and writeability of ISP descriptions by using abstractions like pseudo-registers,

procedures, temporary registers, etc.

* Even though some portions of the Architectures were left out of the ISP
descriptions, notably the Floating-Point Instructions, the ISP descriptions used in this
project are non-trivial computer programs. Each description takes between 30 and 40
pages of code. The size of the descriptions (1445 lines for the PDP-11, 2345 lines for
the Interdata 8 / 3 2 , and 2132 lines for the IBM S/370) reflects the size of the
instruction set, not necessarily the complexity of the architecture.

Architectural Research Facility

ISP can be viewed as a programming language for a specific class of algorithms,

i.e. Instruction Set Processors or Architectures. Ideally, a language to describe

architectures should avoid the specification of any implementation details. Any

components introduced beyond these are unnecessary for the programmer of the

machine and might even bias the implementor working from the description. While

these items must appear in a description of an implementation, the problem arises

when describing a family of machines where the abstractions and/or algorithms may

vary across members of the family. The rest of this section illustrates this problem.

3 . 1 . Abstractions

An ISP description written using only the architectural components would not

only be unreadable but also unwritable. Some form of abstraction is required. The

following subsections demonstrate this point by introducing pseudo-registers,

procedures, and temporary registers. These abstractions may or may not have a

counterpart in some or all physical implementations of the ISP description.

Pseudo-Registers.- When writing an ISP description for a real machine it immediately

becomes apparent that describing everything in terms of just the components of the

architecture would lead to a cumbersome and unreadable description. The concept of

a pseudo-register to rename a frequently used field of a register greatly relieves this

problem. For example, consider the PDP-11 which has an autoincrement addressing

mode. During the address computation an architecture register, pointed to by a

subfield of the current instruction, must be incremented. Dealing only with components

of the architecture would yield an expression like: R[M[Pc]<2:8>] <- R[M[Pc]<2:8>] + 2

where M[Pc] represents the current instruction in memory, pointed to by the program

4-5

3. Abstractions and Implementation Dependencies

Architectural Research Facility

4-6

counter. Introducing the pseudo-register Ir (instruction register) for the current

instruction would yield: R[Ir<2:0>] <- R[Ir<2:8>] + 2. We could further define a pseudo-

register, Dr (for destination register), for the frequently used three bit subfield Ir<2:8>,

as in: R[Dr] <- R[Dr] + 2

The pseudo-registers may suggest a register (e.g.: Ir) or a set of wires (e.g.: Dr)

in some physical implementation. In reality they may have no physical correspondence

at all. In any event, pseudo-registers are a useful and necessary abstraction for

readable (and writable) ISP descriptions. However creating pseudo-registers for

infrequently used fields or using obscure names may defeat the usefulness of this

abstraction leading to reader confusion and excessive page flipping to find definitions.

Procedures.- Just as there are frequently used register fields in a machine description,

there are frequently used sequences of operations. Forming these operations into

procedures greatly enhances readability.

For example, consider operand fetching. Every machine has a more or less

complicated effective address calculation that is performed when accessing these

operands. A memory reference to a destination operand might appear as; M[DeBt]

where Dest is a procedure for calculating the effective address of the destination

operand. Without procedures the same reference for the PDP-11 would appear as

shown in Figure 2. The situation would further be aggravated if the effective address

had to be processed by some form of memory management which provides for address

translation and rights checking. These operations would have to be performed in the

description on top of the effective address calculation. It should be noted that many

minicomputers and all larger computers have some form of memory management.

Temporaries.- Occasionally readability is improved by introducing a temporary register

Architectural Research Facility

4-7

in cases where the operands before and after the operation are required or a complex

result is used repeatedly. Figure 3 shows a portion of the memory management

procedures for the PDP-11.

The Read procedure shows the translation of a virtual address into a physical

address. A temporary Memory Address Register (Mar) initially contains the virtual

address (the result of the effective address calculation) which is then translated into a

physical address in the line that reads:

Mar <- (PAR[Temp]<ll:8> + Mar<12:B>) © Mar<5:8> next

The PAR (Page Address Register) and PDR (Page Data Register) arrays contain

the necessary address translation information. A bounds check is performed before

the actual memory fetch from physical memory. Without the temporary variable Mar

the Read procedure would be substantially complicated by having to replace every

appearance of the temporary by the complex expression given above. Of course, the

temporary variable may or may not have a counterpart in some implementation.

3.2. Implementation Dependencies

There are multiple examples of details that must be specified in an

implementation description but do not belong in an architecture description. Typically,

these are features that exhibit model dependencies. For instance, in the specification

of the interrupt handling facility of a computer system, it could be the case that

because of cost/performance requirements, different models must respond to

simultaneous interrupts in different orders. An ISP description must by its very nature

describe a specific order of interrupt trapping, thus losing a degree of freedom that

one might wish to provide the machine implementors.

Figure 4 shows how the specific order in which simultaneous interrupts are

Architectural Research Facility

4-8

fielded is build into an ISP description. Individual bits of INTVEC indicate the presence

of a pending interrupt of a given priority. When only one interrupt is pending the

proper context switching will take place. When more than one is pending there will be

multiple context swaps and lower priority interrupts will be delayed to be processed

later (the "new PSW" associated with a low priority interrupt will be stored into the

"old PSW" position associated with a higher level interrupt).

It is not clear whether having to be specific about ordering of interrupts or

similar events is a bad practice. Although one can claim that machine designers will be

constrained in their choice of designs, the fact still remains that somebody must write

the interrupt handling software, and for these programmers the order of interrupt

fielding is important. This type of dilemma occurs quite often when dealing with ISP

descriptions. The solution might be simply to write model-dependent ISP procedures

whenever this conflict arises and then indicate in the ISP description which version of

a given procedure must be implemented for a given model.

Another problem with implementation dependencies is that the definition of the

input/output behavior of an instruction might actually imply a particular

implementation. For example, consider the PDP-11 Subtract instruction. The carry

condition code (C) is set according to the borrow during the subtraction. The PDP-11

Processor Handbooks describes the setting of the C bit as:

"C condition code is cleared if there was a carry from the most significant bit of

the result, set otherwise."

This definition implicitly assumes that subtraction is implemented by forming the

two's complement and adding. Figure 5 illustrates the situation. Consider four-bit

numbers and the two methods to perform subtractions, by using a subtractor, and by

using an adder after forming the two's complement.

Architectural Research Facility

4-9

In the adder case, the carry is the complement of the borrow which is exactly

the definition given by the PDP-11 Processor Handbook. The ISP description of the

setting of C becomes:

C 4 - (dest - source)<16>; ! Subtraction

C NOT (dest + NOT(source) • 1)<16>j ! Addition

As in the previous example (the order of interrupt handling), a complete

algorithm had to be given. In this case, the subtractor/borrow algorithm is preferred

since it presupposes only the properties of the two's complement number system.

However, if an alternate implementation (such as forming the two's complement and

adding) is utilized, then the implementor should be aware of possible changes in other

algorithms in the ISP description.

4. The Architecture Research Facility

The facility used for the data collection phase of the CFA project is depicted in

Figure 6. Reference [BarM76a] explains in full detail the features of the ISP compiler

and simulator. Some familiarity with their capabilities is needed in order to understand

the data collection phase described later. The following paragraphs attempt to satisfy

this need.

The ISP compiler produces code for a hypothetical machine, dubbed the Register

Transfer Machine (RTM). The "object code" produced by the compiler can be linked

together with a program which is capable of interpreting RTM instructions. This

separation between the ISP description, the RTM code, and the RTM interpreter allows

the simulation of arbitrary, user defined architectures. The result of linking the RTM

code with the RTM interpreter is a running program, a simulator.

Architectural Research Facility

4 -10

The simulator accepts commands from a teletype or user designated command

file. The state of the simulator can be dumped to a command file which can be read at

a future date when the simulation is continued. Command files can also be used to load

programs and data into the simulated target machine memory and registers.

4 . 1 . Debugging

Most of the test programs were debugged and run on the real machines, other

programs were executed exclusively under the simulator. The latter included those

programs using privileged instructions that were not directly available to non-system

programmers (e.g. interrupt and I/O handlers.) Results from the actual runs, whenever

available, were used to check the simulated execution.

Only minor modifications and corrections were performed during the data

collection phase. The largest unforeseen problem was presented by the memory

management feature of the PDP-11 which was based on the PDP-11/40. The test

programs which made use of this feature had been tested on a PDP-11/45 which uses

different Unibus addresses for the memory management registers. This difference

required minor modifications in the test programs. Most other problems were of a

simpler nature and required only a few minutes to correct. It should be noted here

that the simulator facility was also used to debug some programs for the Interdata

8 / 3 2 before they were executed on the real machine. This was dictated by the fact

that no 8 / 3 2 was available near CMU and a large turn-around time (several days)

would have complicated the debugging of the test programs.

4.2. Preparation of Simulation Tests

The ISP simulator provides commands for the loading and initialization of the

simulated machine memory and internal registers. The single most important feature of

Architectural Research Facility

4-11

the command language which permitted the fast execution and collection of statistics

was the ability to read command files containing the test programs to be executed.

The command language cannot handle programs in symbolic form (assembly language);

it requires the preassembly of the programs into absolute, numeric, code. To get

around this problem, a set of utilities was developed at CMU which permitted the

transformation of assembly listings prepared by the real machine's assembler into

simulation command files. This operation was performed off-line as shown in Figure 6.

Figures 7 and 8 show the transcript of a typical session using the ISP simulator.

The session consists of running one of the test programs (Bit Test, Set, and Reset) on

the PDP-11 . The input for a simulation session consists of several files prepared off­

line. These files include: The test program (derived from the assembly listing), a driver

(simulation commands used to initialize the parameters for the test program), and

finally, a command file with a list of those ISP procedures which must be "opaqued"

(these are the procedures during which the activity counters are disabled). A typical

command file, derived from an assembler listing is shown in Figure 9. This was the test

program used in the sample simulator session shown in Figures 7 and 8.

4.3. Instrumentation

The ISP simulator permits the instrumentation of an ISP description by

associating activity counters with each of the machine registers and memories. These

counters allow the collection of statistics indicating the number of times each

component of the machine is read from or written into. A separate counter is kept for

each label in the ISP description. Labels are included in the ISP descriptions to

identify machine instructions, addressing modes, loops (used to describe vector-like

instructions like move character on the S/370), as well as other ISP procedures.

Architectural Research Facility

4-12

During the execution of the test programs, a data base was created by collecting

dumps of the counters after each test case was completed. The files containing the

counters were then processed by other, off-line, programs in order to arrive at the M

and R measures.

4.4. Artificial Labels in the ISP Descriptions

Certain modifications not normally needed were made to the ISP descriptions to

aid in the collection of data during the running of the test programs for the CFA

project. Several labels and "do-nothing" procedures were added to identify certain

phases in the instruction interpretation algorithm and to measure selected events (e.g.,

dif ferent addressing modes). The labels added to count these events are clearly not

part of the architecture or even the implementation.

Figure 10 shows an example extracted from the S/370 ISP Description. It shows

the use of artificial labels to identify different addressing modes for the RX instruction

set. According to the definition of the S/360 and S/370 architectures, The RX

instructions can specify both a base and an index register to be added together with

the displacement field of the instruction to compute the address of the memory

operand. The architecture further specifies that R[8], when specified as either a base

or index register does not take place in the effective address calculation, i.e., R [8]

should be specified whenever one of these two components (base or index) is missing.

In the above example four dummy in-line procedures where introduced to count the

number of times each possible combination of base/index modes occurs. Thus RX8888

is "executed" whenever R[8] is specified as both the base and the index register.

RX80X2 is "executed" whenever R[8] is used as the base register and any of R[l:15] is

used as the Index register. RXB180 is "executed" whenever R[8] is specified as the

Architectural Research Facility

4-13

index register and any of R[l:15] is specified as the base register. Finally, RXB1X2 is

"executed" whenever R[8] is not specified as either the base or index registers. NOP

is a dummy procedure which does not have any side effects.

5. Architecture Parameters

As a means of comparing architectures, three measures were defined for the

CFA project [FulS77a]:

Measure of Space

S The number of bytes used to represent a test program.

Measures of Execution Time

M The number of bytes transferred between primary memory and the
processor during the execution of the test programs.

R The number of bytes transferred among internal registers of the
processor during execution of the test program.

The S measure is a static parameter which can be computed independently of

the ISP description. For the purposes of this paper we will restrict the discussion to

the other two measures. The actual computation of the M and R measures was done

through a semiautomatic process. The raw data collected from the simulator was used

to count frequencies of instructions and addressing modes. These counters were

multiplied by certain hand calculated factors in order to arrive at the M and R

measures for each test program. Ideally, the ISP simulator should perform the entire

operation and this would be a better approach, less subject to human errors. We had

to use the hand computed factors due to our inability to determine the influence of the

ISP writing style on the architecture parameters as defined above.

The exact methodology for writing ISP descriptions so that the M and R

Architectural Research Facility

4-14

measures can be calculated automatically has yet to be developed. It is clear,

however , that a careful control of the counting mechanism is paramount to the

collection of meaningful data. During the data collection phase we made use of the

following techniques towards this goal.

Qpaqued Procedures.- A Simulator command allows the selective masking of in-line and

off- l ine procedures. Masking or opaquing a procedure inhibits all activity counts inside

the body of the procedure.

Certain operations, such as incrementing the program counter after an

instruction, or the setting of the condition codes as a result of an instruction do not

affect the R measure and should not be counted. This is typical of those actions which,

in a reasonable implementation, would be done using ad-hoc circuitry, separate from

the main operational units of the machine. These operations could be implemented by

combinational logic (e.g.: setting condition codes from ALU lines), special registers (e.g.:

using a counter instead of a simple register for the program counter), or even complex

sequential networks (e.g.: the virtual address translation can be performed using its

own arithmetic units and data paths).

Operations like those described above can be easily marked by adding artificial

labels to the ISP description and then disabling the counters while the selected

operation is being performed.

Pseudo-Register Chains.- Every component declared in an ISP description has activity

counters associated with it. When a register is defined in terms of another register,

such as: Pc<15:8> R[7]<15:B>; a redefinition chain is established. Accesses higher up

in the chain increment all counters lower in the chain but not vice-versa. In the above

example an access of the Pc causes the register file counter for R to be incremented

Architectural Research Facility

4-15

but accessing R[7] does not increment the program counter (Pc). By establishing

appropriate redefinition chains, distinction between access types can be maintained.

One variation of this technique is the use of "shadow" registers. For example twp

instruction registers can be defined: Ir<15:8> Irl<15:8>; where I r l is the shadow

register. The loading of the Ir from memory is to be counted in the R measure,

however, the combinational logic decoding of the instruction and effective addressing

mode is not to be counted. The former is performed on Ir, the latter on I r l thus

distinguishing the two different types of accesses.

Memory Access Procedures.- Modern machines provide the user with an address space

defined in terms of small units of information, typically 8-bit bytes. For convenience,

however, the architectures also define larger access units in multiples of bytes. Thus,

the IBM S / 3 7 0 provides bytes, half-words, full-words, and double-words. Since the

physical memory is the same, the ISP description must declare the different address

spaces by building a redefinition chain in which the different address spaces are

declared as "pseudo-memories" so that the M measure component of each address

space is properly accounted for.

Machines like the PDP-11 add some more complexity to the issue of having

multiple address spaces. The PDP-11 architecture defines the concept of an I/O page

as a reserved portion of the address space, not necessarily implemented as a physical

memory. Addresses in the upper 4K bytes of the PDP-11 are used to address I/O

devices, machine registers, etc. Addresses in the I/O page must be handled differently

when computing the M measure. If one attempts to include in-line address checks in

the ISP description, the description quickly becomes bulky and unreadable. A

satisfactory solution is simply to define memory access procedures (Read and Write),

Architectural Research Facility

4-16

which can then be properly instrumented, thus enabling the automatic computation of

the M measure.

Temporary Registers.- The automatic computation of the R measure is more difficult. In

an ISP description there are three types of registers to consider: architectural,

standard implementation, and temporaries. Architectural registers and certain standard

implementation registers (instruction register, memory address register, and memory

buffer register) can be handled using the same techniques used to automate the M

measure (declaration chains and encapsulating procedures). Handling temporary

registers presents a more difficult problem. The number, type, and manipulation of

temporary registers are a matter of writing style.

Architecture parameters which are based solely on architecture registers while

ignoring temporary registers introduced for clarity might overlook hidden computations

performed on these registers. Unlike the memory, architectural registers, and standard

implementation registers, a tightly defined writing style cannot be developed for

temporary registers. One solution would be to use well known expression optimization

techniques [WulW75] on the ISP description to uniformly minimize the temporary

register activity. Hopefully the optimization would lead to similar results for equivalent

algorithms.

Architectural parameters should be independent of the experience, style, and

objectives of the ISP writer. This will then guarantee that the ISP descriptions which

make use of abstractions (pseudo-registers, procedures, and temporary registers, etc)

to enhance clarity and readability will not be penalized. By the same token, no

advantage should be derived from the use of "clever" programming tricks which might

attempt to bias the measurements.

Architectural Research Facility

4-17

6. Advantages of an Architectural Research Facility

Although for the purposes of this paper we have presented the uses of the ISPL

compiler and simulator in the context of a specific project, we should point out the

wider range of applications in which a system like ARF can be of great value.

6 . 1 . A Simulator as a Training Tool

In this paper we described how machine language test programs can be

executed under the simulator. The implied assumption during the data collection phase

was that we were dealing with correct, finished programs. With no extra effort the

ISP simulator can be a powerful training device for novice programmers. Speed of

simulation is not an issue in this application. Programmers learning a new machine

language tend to spend long hours single-stepping via the machine console. An

interactive simulator can easily satisfy the needs of these users, while providing much

better diagnostic and debugging facilities than a computer console (did you ever see a

"help'* button on a machine?.) ISP descriptions exist for the following machines: DEC

PDP-8, PDP-10, PDP-11, IBM S/370, Interdata 8 /32 , and Intel 8080.

6.2. Architecture Evaluation

The S, M, and R measures are by no means the only set of architecture

parameters one might wish to evaluate. Nothing in the ISP simulator depends upon

this particular set of parameters. The instrumentation in the simulator allows counting

e v e r y event we care to define by simply labelling the event. There is no need to

create new procedures which might impact the organization or readability of the

description; even a single register transfer operation can be labelled and counted.

Architectural Research Facility

4-18

6.3. Experimentation

Once the initial effort of writing an ISP description is accomplished, only

moderate effort is required to perturb it to reflect proposed or actual changes in the

architecture. Thus the effect of a modification in an architecture can be measured and

studied before any funds are commited to the development of a new machine. By a

careful design of the ISP description it is possible to pattern a description along the

lines of the organization of the physical machine. Thus one would be able to measure

and evaluate different models of the architecture. For instance, functional units and

data paths can be represented by separate procedures in the ISP description. An ISP

description could then be parameterized to invoke these procedures in different order,

concurrently or sequentially, with or without intermediate steps, etc. as the different

models differ in their implementation. An example might be determining the effect of a

cache memory on the apparent instruction execution speed in high performance

implementations.

6.4. Machine Relative Software

As the number of different architectures coming into existence increases every

year , it is becoming more and more expensive to develop the necessary software

support base that allows the effective use of these machines. The availability of user

micro-programmable machines enlarges the space of possible architectures to the point

that automatic software generation systems will become a necessity. Tools that

operate relative to a computer description could represent a significant breakthrough

in the manner that computer systems (hardware/software) are designed and evaluated.

The Advanced Research Projects Agency (ARPA) of the Department of Defense is

current ly sponsoring this area of research at CMU and elsewhere [BarM74].

Architectural Research Facility

4-19

In the future one can foresee hardware and software automation systems that

take as input computer descriptions, and language and problem specifications; and from

these, generate operating systems, compilers, and other support and application

software automatically. Other areas of current research include automatic diagnostic

generation, microcode generation, machine verification, etc.

Formal computer descriptions will play an increasing and important role in the

evaluation, procurement, verification, and programming of computers. The ARF facility

is a step in this direction.

Architectural Research Facility

S378:
begin dcclurc

Memory[0:"FFFFFF]<B:7>;
R[8:15]<B:31>;
PSW<8:63>;

eralced

! Primary Memory
! General Purponn Registers

! Program Status Word
! Auxiliary Registers (Instr, Mar, Mbr, etc.)

! End of Declarations

Run: begin
IFetch:- begin

Mar«-PSW<4B:B3> next
Instr<8:15>«-Mcmory[Mar:Mar+l] next
PSW<32:33>*-Inatr+Instr<l>+l next

IExec:

INT:«
Run
end

! Main Executable Program
! Instruction Fetch Section

! Initial Instruction Address
! Read First Half-Word of Instruction

! Instruction Length
PSW<48:B3>*-PSW<48:63>+PSW<32:33>*2 next Program Counter

! Fetch the rest of the Instruction
end;
begin
decade Instr<B:l> «=>
RR:«

! Instruction Execution Section
! Select Instruction Type;

! RR Instruction Decode Table
! Select RR Instructions

begin
(decade Instr<2:7> «>)
end;

RX:« begin ! RX Instruction Decode Table
Mar<-Instr<2B:31> next ! Displacement
(if Instr<lS;19> «> Mar<-Mar+R[Instr<16:19>]) next ! Base
(if Instr<12:15> => Mar«-Mar+R[Instr<12:l5>]) next ! Index
(decode Instr<2:7> «>) ! Select RX Instructions
end;

RSSI:- begin ! RS.SI Instruction Decode Table
Mar <- Instr<28:31> next ! Displacement
(if Instr<16:19> «> Mar <- Mar+R[Instr<16:19>]) next ! Base
(decade Instr<2:7> «>) ! Select RS, SI Instructions
end;

SS:« begin ! SS Instruction Decade Table
AMarl«-Instr<2B:31>; AMar2<-Instr<36:47> next ! Displacements
(if Inntr<lB:19> «> AMarl«-AMarl+R[Instr<16:19>]); ! Base
(if Instr<32:35> •> AMar2*-AMar2+R[Instr<32:35>]) next ! Base
(decade Instr<2:7> ->) ! Select SS Instructions
end;

end;
begin end next ! Interrupt Handling Section

! Repeat Main Procedure

end

Figure 1 - A Simplified Version of the IBM S/370 ISP Description

4-20

Architectural Research Facility

M [decodp Dd =>
(decade Dm ~>

#37480£>Dr;
R[Dr]<-R[Dr]+2 next R[Dr]-2;
R[Dr].-R[Dr]-2 next R[Dr];
M[Pc+2] + R[Dr]
);

(decade Dm >•=>
M[*37480s>Dr];
R[Dr] . -R[Dr>2 next M[R[Dr]-2]j
R[Dr].-R[Dr]-2 next M[R[Dr]£
M[M[Pc+2] + R[Dr]]
)

! Direct Addressing
! Register Mode

! Autoincrement Made
! Autadecrement Made

! Index made

! Deferred Made
! Register made

! Autoincrement Mode
! Autadecrement made

! Index made

Figure 2 - Inline Effective Address Calculation

4-21

Architectural Research Facility

Read:»bnyin
Temp <- Mar<15:13> next
Mar <- (PAR[Temp]<ll:8> + Mar<12:B>) @ Mar<5:8> next ! Compute Physical Address
(if not PDR[Temp]<2:l> => Aborl) next
(if (Mar<12:6> gtr PDR[Temp]<14:8>) and not PDR[Temp]<3> »> Abort) next
(if (Mar<12:B> lss PDR[Temp]<14:8>) and PDR[Temp]<3> -> Abort) next

! Read from Physical Memory
end;

Figure 3 - A Portion of the PDP-11 Memory Management

4-22

Architectural Research Facility

In t : - begin
Temp«-PSW<32:33> next
(if INTVEC<8> AND PSW<13> «>

) ncxl
(if INTVEC<1> «>

) next
(if INTVEC<2> «>

) next
(if INTVEC<3> AND PSW<8:7> «>

) next
(if INTVEC<4> AND IOMSK ->

) next
PSW<16;31>*-8; PSW<32:33>*-Temp !
end;

Figure 4 - Explicit Interrupt Processi

! Save Instruction Length
! Handle Priority (1) Interrupts

! Handle Priority (2) Interrrupts

! Handle Priority (3) Interrupts

! Handle Priority (4) Interrupts

set Instruction Length & Interrupt Code

Order in the IBM S/370

4-23

Architectural Research Facility

0 1 0 1 0011 Subtracting
0 0 1 1 0101

0 0 0 1 0 1 1110
borrow borrow

0 1 0 1 0011 Adding Two's Complement
1101 1011

1 0 0 1 0 0 1110
carry carry

Figure 5 - Implementation Dependant Condition Code Setting

4-24

5 - 3 - 2 (no borrow) 3 - 5 - -2 (borrow)

ISP
Description ISP

Compiler

ISP

Simulator

RJM Code LINK-10

Listing and Diagnostics

Interactive
Command

PDP-10

SHR File

K U n 5 U 3 S S *

/

Test
Program

*>

—-t
Assembler

Assembly
Listing Reformat/

Relocate

Command
File

Test Data

Target
Machine
Object
Program

Target
Machine

£f Simulator

Frequency R and M
Counts Post- Measures

Processor
• • j :

Trace Files

Simulation State Files
j>

45| Target
Machine

Simulation
Results

-t> Comparison
Execution
Results

Figure 6 - Test Program Execution Under ARF

Architectural Research Facility

r u p d p l l n
ISP SIMULATOR V3 - NRL ARF STAGE 2
F r i d a y 18 Sop 76 1 7 : 1 3 : 5 8 PDP11M. ISP IL418MB25)
SERIALIZATION COMPLETED
SPACE ALLOCATED
TYPE HELP FOR HELP
TYPE <ESC> TO INTERRUPT SIMULATION LOOPS

> r e a d f a d l . s i m
>>Rnnix OCTAL
»DECHO

! Read in the benchmark: f i l e

! The benchnark f i l e d i s a b l e s the l i s t i n g
! on the user t e r m i n a l .

» 1 8 0 LINES RERD
> r e a d f a . d r 3 ! Read in the d r i v e r f i l e
» ! HERE COMES THE DRIVER (CALLS)
» S E T V A L MM (30001 .-013746 005202 ! MOV 6*5282,-<SP> ; F
» S E T V A L MM (30021 .-013746 005204 ! MOV 8*5204,-<SP> • $ N
>>SETVflL MM (30041 -812746 004000 ! MOV *4000,~<SP> j Al
» S E T V A L MM (30061 .-012746 005200 ! MOV *5200,-<SP> j RC
» S E T V A L MM (30101 .-012746 005206 ! MOV *5286,-<SP> j U
>>SETVAL MM(30121-804737 881800 ! JSR PC,8*1808 j BTSR
>>SETVAL MM(30141-000000 ! HLT
>> ! The above sequence of PDP-11 i n s t r u c t i o n s pushos the parameters

! on to tho s t a c l : , c a l l the benchmark as a r o u t i n e , and h a l t .
» S E T V A L MM(20001-123457 871234 167806 145670 ! BIT STRING
>>SETVflL MM (21)003 - 0 ! RETURN CODE
» S E T V A L MM(2! iQl l -2 ! F
» S E T V A L MM (21)02)-25 ! N
»SETVML MM(2l i031-8 ! WORK AREA
» S E T V A L PC-6000
» S E T V A L SP-280

! The abovo coquonr.o i n i t i a l tzes the data (parameters) , the stacU
! p o i n t e r and tho program countor (which now points to the code
! sequonco tha t puchon tho parameters and c a l l the r o u t i n e ,

>>SETVAL A-0 ! Th is is an ISP i n t e r n a l v a r i a b l e - ind ica tes whether the
! machine is r u n n i n g , h a l t e d , or w a i t i n g .

>>SETCTR ALL 0,0
>>READ 0PQ11.SIMIL410MB25J
>>>nrcno
» > 5 3 LINES READ
»RF.nn UUO11.SIMIL410MB25)
» > D E C H 0
> » 1 5 LINES RERD
>>TRflCE IR,PC,R,MMI0

» B R E A i : JSR,RTS
» 2 6 LINES READ

! Roset a c t i v i t y counters
! PDP11 Opaquod ProcoduroB

! UNIMPLEMENTEO OPERATION BREAKS

Trace a few se lec ted r o g i s t e r s
IR is the I n s t r u c t i o n R o g i s t e r ,
PC is the Program Counter (R I 7)) ,
R (8:71 are the gonoral r e g i s t e r s ,
MMIO is the I/O P A G E (R is N A P P B D onto MHIO)
Breal: on se lec ted i n s t r u c t i o n s

Figure 7 - Initialization of a Simulation Run

4-26

Architectural Research Facility

> s t a r t i n t e r Here N O B T A R T T H E S I M U L A T I O N

6 I N T E R
8 I N T E R
S S I N C O
e ODECRD
t I N T E R

15
26
22
21
I S

IR
PC
R
R
IR

13746
6002
7) . 6004
6J« 176
13746

e I N T E R 4
6 I N T E R +
e S I N C O +
9 DDECRD 4
6 I N T E R 4
e I N T E R +
BREAK AFTER JSR
• s e t c t r a l l 6 , 8

• c o n t

15
26
22
2 1
15
26

I Pushing Parameters

IR « 12746
PC « 6822
R i 7) . 6824
R C 6) « 166
IR » 4737
PC ° 6826

! The s i m u l a t i o n stops on a breakpoint
! The r e a l benchmark s t a r t s h e r e , H O must
! r e s e t a l l counters (they M E R E M o d i f i e d
! dur ing the benchmark c a l l i n g sequence)
! H E cont inue the s i m u l a t i o n

e DINCRO 4 22 R t 73 = 6030
e JSR 4 14 R [73x 6030
e JSR 4 15 PC n 1000
e INTER • 15 IR = 16046
e INTER 4 26 PC « 1602

1 Program Execut ion

a INTER 4 26 PC a 1872
e SINCD 4 22 R [6 3 * 164
e WRITE 4 131 MWIO [3748881» 6
e INTER 4 15 IR « 287
e INTER 4 26 PC » 1674
BREAK AFTER RTS ! the s i m u l a t i o n stopB at the end of the

! benchnarfc (the r e t u r n i n s t r u c t i o n)

• o u t c t r
*co?it
6 RTS
3 RTS
e INTER
e INTER

< a d l . r m 3

4 2
4 7
4 15
4 28

PC
R
IR
PC

SIMULATION C0MPLETE0
RUN T I M E (1 8 usoc u n i t s) « 8 3 1 6 7 8
RTM OPS EXECUTE0«4535
>ox i t
E X I T

! we duup a I I
! H E cont inue

1874
7 3 * 6830
0
6032

! ne executed

the counters into
the s i m u l a t i o n

a f i le

the Ha 11 i n s t r u c t ion

! He f in ish the B O S S ion

Figure 8 - Program Execution Trace

4-27

Architectural Research Facility

RADIX OCTAL
DECHO
ICFAF MACN11 V863F 5-JUL-76 12:54 PAGE 1
IBTSR1 f i l l
!

! Program, Programmer I d e n t i f i c a t i o n (SuproBsed)

13 81360 ; O f f s e t s of parameters from s tack p

14 81400 ;
15 000004 61500 SAVE»4 ; ye need to save 2

16 61600 >

17 800016 01780 F*12+SAVE j f u n c t i o n code

18 000014 61800 NniO+SAVE ; r e l a t i v e b i t numbe

19 000012 01900 Aln6*SAVE ; address of b i t s t r

28 000010 02000 RCn4*SAVE) address of r e t u r n

2 1 000000 82100 W0RKB2*SAVE ; address of H o r k a r

22 02200 »

23 800000 ' 02300 BTSR:
24 800000 ' 010040 02400 MOV R 0 ^ (S P >

25 800002 ' 010146 02500 MOV R1, - (SP>

26 800000 ' 005076 000010 02600 CLR eRC(SP)

27 800010 ' 016600 000014 O27O0 MOV N(SP>,R8 j g«

. ! R e l o c a t a b l e Object Codo L i s t i n g

41 8000C6* 012601 04100 QUIT: MOV <SP)+,R1 j ex

42 000070 ' 012600 04200 MOV <SP)+,R6

43 8 0 0 0 7 2 ' 000207 04300 RTS PC
J FC 44 800074 ' 1S0118 04400 SET: BISB Rl,eR6 J FC

45 800076 ' 000773 04500 BR QUIT

46 000001 04600 .END

! Cross -Reference L i s t i n g

! Here bogin the s imu la t ion commands
! de r ived from the abovo l i s t i n g
! r e l o c a t i o n addross a nord 400 (o c t a l) • by te 1866

f

SETVflL MIU400I .-018046
SETVflL MIH4O1J-810146
SETVflL MIH4021 - 0 0 5 0 7 6 000010
SETVflL MWC404J-016600 000014

! Target Machine Program Loading

SETVflL M H (4 3 3) - 0 1 2 6 0 1
SETVflL MM (4 3 4) - 0 1 2 6 0 0
SETVflL MU (4 3 5 1 - 0 0 0 2 0 7
SETVflL M I H 4 3 6 } - 1 5 0 1 1 0
SETVflL MW(437)^800773

ECHO
Figure 9 - A Command File Derived from an Assembly Listing

4-28

Architectural Research Facility

RX:« beyin
Mar«-Instr<2B:31> next
(dccadu (Inslr<lG:19> NEO 8)@(Instr<12:15> NEQ B)->
\BB RX8BB8:- (NOP):
\B1 RX80X2:* (NOP)
\1B RXB1B8:« (NOP)
\11 RXB1X2:- (NOP)

) next
(if Instr<lB:19> «> Mar<-Mar+R[Instr<lB:19>]) next
(if Instr<12:15> «> Mar^Mar+R[Instr<12:l5>]) next
(decade Instr<2:7> «>

end;
)

! Na Base, No Index
! No Base, Indexing

! Base, No Index
! Base, Indexing

! Select RX Instructions

Figure 10 - Use of Artificial Labels

4-29

References

[AmdG64] Amdahl, G. M. f Blaauw, G. A., and Brooks, F. P., "Architecture of the IBM
System/360", IBM Journal of Research and Development. Vol. 8, No. 2,

' April 1964, pp. 8 7 - 1 0 1 .

[AndV74] Anderson, V. L and McLean, R. A., Design of Experiments, a Realistic
Approach, Marcel Dekker, Inc., New York, 1974.

[BarM74] Barbacci, M.R. and Siewiorek D.P.: Some Aspects of the Symbolic
Manipulation of Computer Descriptions. Department of Computer Science,
Carnegie-Mellon University, July 1974.

[BarM75] Barbacci, M.R.: "A Comparison of Register Transfer Languages for
Describing Computers and Digital Systems". IEEE Transactions on
Computers, Volume C-24, Number 2, February 1975, pp. 137-149 .

[BarM76a] Barbacci, M.R.: "The Symbolic Manipulation of Computer Descriptions: ISPL
Compiler and Simulator". Technical Report, Department of Computer
Science, Carnegie-Mellon University, 1976.

[BarM76b] Barbacci, M.R, D.P. Siewiorek, R. Gordon, R. Howbrigg, and S. Zuckerman:
"Architecture Research Facility: ISP Descriptions, Simulation, Data
Collection." Volume IV of Computer Family Architecture Selection
Committee Final Report. Naval Research Laboratory, Washington D.C,
December 1976.

[BelC71] Bell, C. G. and A. Newell, Computer Structures: Readings and Examples.
McGraw-Hill, New York, 1971.

[BerN75] Bernwell, N. (editor), Benchmarking: Computer Evaluation and
Measurement. John Wiley & Sons, New York, 1975.

[BoxG64] Box, G. E. P. and Cox, B. R., "An Analysis of Transformations", The
Journal of the Royal Statistical Society, Series B, Vol. 26 (1964) , 2 1 1 - 2 5 2 .

[GMLC75] Computer Review (formerly Computer Characteristics Review, GML
Corporation, Lexington, MA, 02173, 1975.

[ConW59] Connor, W. S. and Zelen, M., "Fractional Factorial Experiment Designs for
Factors at Three Levels", National Bureau of Standards. Applied
Mathematics Series Vol. 5 4 , 1 9 5 9 .

[CorJ77] Cornyn, J.J, Smith, W.R., Svirsky, W.R., and Coleman, A.K: "Two Life-Cycle
Cost Models for Comparing Computer Architectures". Submitted to
National Computer Conference, NCC-77.

[D a v 0 7 1] Davies, 0 . L. (editor), Design and Analysis of Industrial Experiments. 2nd
ed., Oliver and Boyd, Edinburgh, 1971.

[FulS76a] Fuller, S. H., Stone, H. S., and Burr, W. E., "Selection of Candidate
Computer Architectures and Initial Screening." Volume II of Computer
Family Architecture Selection Committee Final Report. Naval Research
Laboratory, Washington, D.C. 20375. 1 December, 1976,

[FulS76b] Fuller, S.F., W.E. Burr, P. Shaman, and D. Lamb: "Evaluation of Computer
Architectures via Test Programs". Volume III of Computer Family
Architecture Selection Committee Final Report. Naval Research
Laboratory, Washington D.C, 1 December 1976.

[FulS77a] Fuller, S. K, Burr, W. E., Shaman, P., and Lamb, D. A., "Evaluation of
Computer Architectures via Test Programs." This Volume.

[FulS77b] Fuller, S.F., H.S. Stone, and W.E. Burr: "Initial Selection and Screening of
the CFA Candidate Computer Architecture." This Volume.

[LucH71] Lucas, K C , "Performance Evaluation and Monitoring", ACM Computing
Surveys, 3, 3 (1971), pp 79 -91 .

[PopG74] Popek, G. J., and Goldberg, R. P., "Formal Requirements for Virtualizable
Third Generation Architectures," Communications of. the ACM. Vol. 17, No.
7, July 1974, 4 1 2 - 4 2 1 .

[RaoC73] Rao, C. R., Linear Statistical Inference and its Applications, 2nd ed., John
Wiley & Sons, New York, 1973.

[SmiW76] Smith, W.R., J.J. Cornyn, A.K Coleman, W. Svirsky, R. Estell, P. Sabin: "Life
Cycle Cost Models for Comparing Computer Family Architectures".
Submitted to National Computer Conference, NCC-77.

[StoH75] Stone, K S. (editor), Introduction to Computer Architecture. Science
Research Associates, Chicago, 1975.

[StoH76] Stone, H. S., "An Audit of the Selection Criteria for Computer Family
Architecture," CFA memorandum, January, 1976. Distributed at the 1 8 - 2 0
February CFA meeting.

[WagJ76] Wagner, J., B. Lieblain, J. Rodriguez, H.S. Stone: "Evaluation of the
Candidate Architectures for the Military Camputer Family". Submitted to
National Computer Conference, NCC-77.

[WicB73] Wichmann, B. A., Algol 60 Compilation and Assesment. Anderson Press,
New York, 1973.

[WulW75] Wulf, W. et. al.: The Design of an Optimizing Compiler. American Elsevier,
Programming Language Series, New York, 1975.

