NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

EVALUATION OF ALTERNATIVE
COMPUTER ARCHITECTURES

M.R. Barbaccit, W.E, Burr?,
S.H. Fuilerl, and D.P. Siewiorek! (Eds.)

Department of Computer Science
Carnegie-Mellon University
Pittsburgh Pa. 15213

February 12, 1977

The Computer Family Architecture project was organized and supervised by the Army
Efectronics Command, Fort Monmouth, N.J. and the Naval Research Laboratory,
Washington D.C. The work described here was supported in part by the Defense
Advanced Research Projects Agency (ARPA) under contract F44620-73-C-0074, in
part by the National Science Foundation under grant GJ 32758X, and in part by the
Army Research Office under grant DAAG29-76-G-0299.

1 Also with the Naval Research Laboratory, Washington, D.C.

e U.S. Army Electronics Command, Ft. Monmouth, N.J.

Abstract

The Computer Family Architecture (CFA) Selection Committee was organized to select a
proven, well-known computer architecture, in addition to several widely used military
computer architectures, as the basis of the future series ot Military Computer Family
(MCF) computers. The set of four papers that make up this report provide an
overview of the work of the CFA Committee and a detailed discussion of the technical
methods used to quantitatively evaluate the alternative computer architectures under
consideration.

As the first paper describes, support software availability, life cycle costs, and
architecture licensing, in addition to architecturai efficiency, were considered in the
final evaluation process. As a result of this process, the CFA Committee ranked the
three architecture finalists in the following order: the DEC POP-11, the IBM
System/370, and the Interdata 8/32. The MCF project is now working on the
specification of a new standard architecture for military applications based on the
PDP-11. In addition, the MCF project is working on more clearly specifying the most
widely used existing military computer architectures to enable future re-
tmplementations of these architectures in new technologies.

Papers in this Technical Report

r:f-'
®

1. Burr, WE, AH Coleman, and W.R. Smith; Summary of the Final Report of

Computer Family Architecture Selection Committes

2*. Fuiler, S.H, W.E. Burr, and S.H. Stone: Initial Selection and Screening of the CFA

Candidate Computer Architectures

3% Fuller, S.H., W.E. Burr, P. Shaman, and D. Lamb: Evaluation of Computer Architectures

via Test Progprams

4x. Barbacei, MR, DP. Siewiorek, R. Gordon, R. Howbrigg, and S. Zuckerman:

Architecture Research Facility: ISP Descriptions, Simulation, and Data Collection

* These papers will appear in the 1977 National Computer Conference, Dallas, Texas,
June 13-16, 1977,

SUMMARY OF THE FINAL REPORT
OF THE ARMY/NAVY COMPUTER FAMILY ARCHITECTURE
SELECTION COMMITTEE

William E. Burr
U.S. Army Electronics Command
Fort Monmouth, N...

Aaron H Coleman
LLS. Army Electronics Command
Fort Monmouth, N.J.

and
William R. Smith

Naval Research Laboratory
Washington, 0.C.

Summary of the Final Report

TABLE QOF CONTENTS

SECTION PAGE

i Introduction e e e e e e e e e e 1
2 Background L e 2
3 The CFA/MCF Project e 4
a “The CFA Selection Committee oo 5
5 Candidate Architectures 6
6 Selection Procedure e 7
6.1 Initial Screening L 7

6.2 Final Candidates Evaluation 9

6.3 Final Seiection/Recommendations 16

7 Conclusions L 17
8 Appendix L e e, 19

Summary of the Final Report

Abstract

An Army/Navy Computer Family Architecture (CFA) Selection Committee,
compricing 10 Army and 17 Navy organizations was organized by the Naval Research
Laboratory and the Army Electronics Command in 1975 to select a proven, weli-known
computer architecture to be the basis of a Military Computer Family (MCF). The
Selection Committee met five times in the period between October, 1975, and August,
1976, and evaluated nine computer architecture candidates in accordance with criteria
established by the Committee. The Committee applied a preliminary screening process
to select three candidates (IBM $/370, DEC PDP-11, and Interdata 8/32) for more
intensive evaluation. This final evaluation process considered experimentally
determined architectural efficiency, support software availability, life cycle cost, and
architecture licensing. As a resuit of this process, the Committee ranked the three
architecture finalists in the following order:

1. PDP-11

2. §/370
3. 8/32

1. Introduction

This report describes the work performed by an Army/Navy Committee,
representing 10 Army and 17 Navy organizations, to select a Computer Family
Architecture (CFA) for use with a proposed software compatible family of military
computers and associated systems/support software. This family is known as the
Military Computer Family (MCF).

This report summarizes the contents of a full report on the work of the CFA

Selection Committee (i.e., "Final Report of the CFA Selection Committee”). References

I-1

Summary of the Final Report

to this full report will be made herein, in accordance with the table of contents shown

in the Appendix.

2. Background

The Department of Defense is spending over six billion dollars yearly for ADP
systems. A large portion of this goes for acquisition of militarized computers and
associated software that are used in tactical and strategic areas. Traditionally, these
computers have been specified by the individual organizations (military project offices
or commercial contractors) responsible for the development of each system. More
often than not, computer selections are based upon locai schedule, funding, or profit
considerations, rather than the impact that the selection would have on long range
hardware /software logistics costs. The result has been that the large number of types
of computers used in Army and Navy systems are causing serious problems in the
development and maintenance of software for those systems.

Military computers are usually procured as integral components of larger
systems (e.g., radars, missile systems); the hardware issues have historically been
given more attention than the logistics of the software, and in consequence, military
computers normally have only the most primitive sort of support software. The
development cycles for weapons systems are generally long enough (56 to 10 years)
that the military computers in these systems are often obsolete before they are ever
delivered to the Field Army or the Fleet. Past computer standardization efforts in the
military have concentrated on hardware packaging or obscure architectures of such
small market that there has been no incentive for the computer industry at large to

invest in developing software and hardware compatible with these computers. The end

1-2

Summary of the Final Report

result of these conditions is that the military pays over and over for development of
computer systems that frequently fall far short of perforntance expactations.

This can be contrasted with the situation in the commercial QEM (original
equipment manufacturer) marketplace. Here computers are produced for the much
targer commercial market by the thousands or even the tens of thousands. A number
of manufacturers such as DEC, Data General, and Interdata have software compatible
product lines, covering a wide range of processors of varying capabilities. Due to
tierce competitive market pressures, system deficiencies are corrected, or the systems
disappear. New products are developed much more quickly, and full advantage is
taken of the advances in semiconductor device technology. Finally, due to the much
larger user bases of commercial computers, and the competitive pressures of the
marketplace, the support software bases of successful commercial computers are
usually far superior to their military equivalents and are frequently improved or
augmented by organizations seeking a share of this market,

A solution to many of the software problems with contemporary military
computers would be to produce a family of software-compatible militarized computers.
Moreover, if such a family were based upon a proven, commercial instruction-set
architecture, then it would be possible to capture a good mature support software
base, and to be certain that any architectural shartcomings were known and
recognized, As the commercial system evolved, and the architecture was extended to
meet the competition, the military computer family could also take advantage of these
same extensions. Adhering to an established family in this way would avoid the

architectural mavericks that limited-production military computers are prone to be.

Summary of the Final Report

3. The CFA/MCF Project

Since early 1975, the Center for Tactical Computer Sciences (CENTACS) of the
U. S. Army Electronics Command and the Naval Air Systems Command (NAVAIR) have
been supporting a cooperative Army/Navy effort {o develop such a family of military
computers, based upon a common instruction-set architecture.

The fundamental premise of the MCF project is that software compatibility
should be achieved by the adoption of an existing, proven computer architecture for
the MCF, thereby minimizing the risks inherent in the design of a new computer
architecture and permitting the "capture” of an existing and evolving software base.
In this context, computer architecture is distinguished from implementation
considerations, and is defined as the structure of the computer which a machine level
programmer needs to know in order to write all programs which will run correctly on
the computer. For example, the architecture of the IBM S$/370 is defined in the 1BM
System/370 Principles of Operations Manual. There are many implementations of the
architecture (370-158, 370-168, etc.), but only one architecture, and every
implementation will execute the same software. Another premise upon which the
Army/Navy cooperative effort is based is the goal of software transportability from
prior generation military computers to the MCF, most probably via emulation. In other
words, the Army and Navy canno! abandon its investment in existing software. There
is a strong analogy here with IBM's continued support of such machines as the 1401
and the 7090 via emulation, when the 360 family was introduced.

The first task of the MCF project was the selection of the CFA. CENTACS and
the Naval Research Laboratory cooperated to lead that effort, and the following

sections of this report describe how that seiection was made.

1-4

Summary of the Final Report

The second task of the project is to deveiop a System Implementation Plan,
which in a commercial organization would probably be calied a product plan, to define
the form, fit, and function characteristics of the MCF and the individual family members.
The instruction-set architecture of the processors, not the detailed logic design will be
specified, so that various military equipment manufacturers (in general, ngt the
manufacturer of the commercial version of the CFA} will be able to independently
develop MCF members to meet the form, fit, and function requirements of the MCF, and
to run the CFA instruction set. This approach will permit multiple sources for the
various family members, and will aliow manufacturers to take maximum advantage of
rapidly developing semiconductor technology. The goal is a line of plug-compatible
modules that can be interconnected as computer systems in a variety of configurations,
to meet a wide range of performance/ application requirements.

A similar Support Softwars Implementation Plan contract is planned for FY 1978,
This plan will attempt to take maximum advantage of the existing support software

base for the selected CFA,

4. The CFA Selection Committee

The mechanism for selecting the CFA was a joint Army/Navy Selection
Committee. In order to achieve a wide representation of military computer
requirements in this etfort, letters were sent to Army and Navy Laboratories, System
Centers, and Project Managers, inviting them to nominate “"candidate" architectures, and
to participate in the CFA seiection process as members of the CFA Selection
Committee. Ten Army and 17 Navy organizations assigned representatives to the

Selection Committee, which was active between October 1975, and August 1976. The

Summary of the Final Report

members and officers of the Selection Committee are given in Volume | of the Final
Report.

Of the several procedural rules adopted by the Committee, the most important
was the requirement for a 2/3 vote of the members present to carry a committee

motion.
B. Candidate Architectures

The basic mechanism for deciding which architectures should be considered by
the committee was to ask Army and Navy organizations to nominate candidate
architectures. These nominations were augmented by the Committee in its early
meetings. The architectures which were considered by the Committee are:

Burroughs B-6700

DEC PDP-11

1BM S/370

Interdata 8/32

Litton An/GYK-12

NOVA/ROLM 1662

Systems Engineering Laboratories SEL 32
Univac AN/UYK-7

Univac ANJUYK-20

On the list of candidates the 5/370 and the B6700 are large scale commercial
data processing type architectures. The PDP-11, SEL-32, 8/32, and the NOVA are
classical OEM type minicomputers, and the AN/GYK-12, AN/UYK-7, and the AN/UYK-20
are three of the most widely used military computers.

Although the above list of architectures is not all inclusive, most of the Army
and Navy organizations who nominated candidates went through their own internal

screening process, considering a much wider selection of architectures prior to making

their nominations. As a result, the nine architectures considered by the Committee

1-6

Summary of the Final Report

represent the best candidates for a family of computers for military applications,

according to the consensus of over two dozen Army and Navy organizations.

6. Selection Procedure

It was apparent to the Committee after much discussion, that there were certain
key, critical characteristics that should be well satistied by the selected CFA., Further,
it became apparent that it made sense to perform an initial scregning and ranking of
the candidates, based on these characteristics, so that the obviously least acceptable
candidates could be discarded and those with the most potential could be retained and
investigated much more thoroughly. An initial screening process was therefore
devised to select several "best final candidates" for more detailed evaluation.

After the initial screening process was completed, the three final candidates
were subjected to a test program experiment to measure the efficiency of the
architectures. The support software bases of the three architectures wers studied,
and life-cycle cost models were constructed to determine if one of the three
architectures had a decisive economic advantage. Finally, the manufacturers were
contacted to determine the conditions under which they would be willing to license
their architectures for production by military vendors. This process is illustrated in
Figure 1, and is described in more detail below.

6.1. Initial Screening

The Selection Committee decided to select the final candidate architectures from
the initial list by means of two kinds of criteria. The first kind of criteria, which
served as pass/ffail tests of architectural adequacy, were called “absolute criteria".

The committee planned to eliminate all architectures which did not compietely satisfy

Summary of the Final Report

these criteria. Absolute criteria included such requirements as a satisfactory
protection mechanism, and a virtual to physical address transiation mechanism. The
second kind of criteria were caled "quantitative criteria”. The quantitative criteria
were intended to provide a relative ranking of the architectures in terms of
characteristics which the committee believed were important measures of a computer
architecture. Quantitative criteria included such characteristics as the size of the
physical address space, the size of the virtual address space, the number of bits which
had to be moved to save that state of the machine under various circumstances, and
the size of the installed user base. A listing and very brief description of the absolute
and quantitative criteria are shown in Table 1. The reader should see Volums Il of the
CFA Committee Final Report for a detailed discussion of these criteria. Each
quantitative criterion was assigned a weighing factor by each committee member
organization. An average weighing factor was computed for the entire committee for
each criterion. The quantitative criteria scores for each candidate were normalized,
weighted, and summed to give a composite figure of merit for each architecture.

Subcommittees were created to evaluate each architecture, in terms of the
absolute and quantitative criteria, A meeting ot the full committee was then devoted
principaly to verifying the consistency and correctness of the evaluations of the
candidate architectures. In addition, the results of this evaluation were audited by a
consultant to ensure the consistency and correctness of the evaluation.

A principal difficulty in making the evaluations was the imprecision of most of
the reference manuals of the candidate architectures, requiring frequent communication
with the manufacturers in some cases. Certain of the manuals, as typified by the IBM

§/370 Principals of Operation Manual, appeared to be complete and precise detinitions

1-8

Summary of the Final Report

of an architecture. Qthers left essential architectural datails ambiguously defined or
not defined at all.

The results of the absolute and quantitative criteria evaluations are summarized
in Table 2. The PDP-11 and the IBM S5/370 were the only two architectures which
clearly passed ail the absolute criteria, and they also were among the top three in the
quantitative criteria evaluation. The Interdata 8/32 was also selected as a finalist on
the basis of its very strong showing on the quantitative criteria, despite a nagging
technical uncertainty concerning the state of the machine atter interrupts, which the
committee was never able {0 resclve to its own satisfaction.

The reader is cautioned that the application of these criteria requires a great
deal of interpretation. The Selection Committee went to some considerable effort to
arrive at comparable interpretations for each architecture. It may not be at all
obvious from the simple definitions presented here, how the actual values used by the
committee were calculated. This is documented in detail in Volume Il of the CFA
Committee Final Report, and the interested reader :should refer to Volume 11

6.2. Final Candidates Evaluation

Architecture Efficiency Evaluation

A Test Program Subcommittee was appointed at the first Selection Committee
meeting. This subcommittee proposed a set of 23 potentiai test programs, which were
believed to be representative of the operations performed in military data processing
applications, The Committee ranked these programs by their relative importance, and
the top 12 programs were selected as the basis of the Test Program Experiment.
These 12 programs are listed and briefly described in Table 3.

Each of the 12 test programs was a relatively small kernel-type program, most

1-9

Summary of the Final Report

were subroutines, and most were defined as "structured" programs in a Program
Definition Language (PDL). Programmers wers then asked to "hand compile” the
programs into the assembly languages of the respective machines from their PDL
descriptions. This procedure was foliowed to minimize the etfects of programmer
variations. No large scale programs from "real" military systems were coded, because
of the excessive expense involved in coding and testing a statistically significant set of
such programs. High leve! language programs were not tested, because there is no
practical was to separate the effects of compiler efficiency from the effects of
architecture efficiency which the experiment was intended 1o measure.

Slightly over one hundred test program sampies were coded by 16 programmers
at participating organizations. The experiment was designed using analysis of variance
techniques to give the best possible estimates of the relative efficiency of the three
architectures.

Three measures were defined to gauge the efficiency of the architectures,
independently of hardware implementation features such as cycle time. These
measures were:

S The static storage requirement for the program in bits.

M The number of bits of program and data which were transferred
betwean the processor and main memory during execution of a
program. The M Measure is intended to be an index of the memory
bandwidth requirements of an architecture.

R The number of bits of program and data which were transferred
among the internal processor registers during execution of a
program. The R Measure is intended 1o be an index ot the processor
bandwidth requirements of an architecture.

The S, M and R measures are indicators of the relative amounts of hardware

capability that are necessary when implementing an architecture to do a certain job.

1-10

Summary of the Final Report

That is, larger S measure means that correspondingly more memory will be required to
handie a given set of applications programs. Clearly, the architecture that can execute
the programs with the smallest § is desirable. Similarly, M and R are indicators of the
relative hardware speed/bandwidth requirements for memory and processor
implementations.

The S, M and R raw data were gathered with the help of a special ISP language
compiler and simulator system. The three architectures were described in ISP
(instruction Set Processor), a formal language for describing computers at the
instruction/register level. These ISP descriptions were then compiled and run on the
ISP simulator which was designed to automatically gather statistics of register and
memory activity during execution of the test programs on the simulated candidate
architectures. See Volume IV of the Committee Report for a detailed treatment of the
ISP System and its use in the CFA effort.

The final results retlect the performance of each candidate architectura for each
measure. Those resuits are shown in Table 4. This experiment is described more fully
in Volume 111 of the final Committee Report.

The results are normalized so that unity indicated average performance; the
lower the score on any of the measures, the better the architecture handled the set of
test programs. In other words, the results indicate that the $/370 needs 21 percent
more memory than the average to store the test programs, the 8/32 needs only 83
percent as much memory as average, and the POP-11 is nearly average in its use of
memory. The differences between the 5/370 results and the average of the results of
the other two architectures were statistically significant at the 95 percent confidence

level, but the differences between the 8/32 and the PDP-11 results were not

Summary of the Final Report

statistically significant at this confidence level. The differences between the 8/32 and
the S/370 results were also statistically significant for the S and M measures at the 95
percent confidence tevel.

Support Software Evaluation

-A support Software Evaluation Subcommittee was appointed to study the
support software bases of the three final candidate architectures. This subcommittes
begar: by defining an extensive menu of support software tools, which might be useful
in military systems development. Committee member organizations were then asked to
rate each tool by its utility in developing software for military weapon systems. The
28 most important support software tools were selected from this rating. The CFA
candidate manufacturers and other commercial sources were investigated as to the
availability of these 28 software toois for each architecture. Table 5 lists the basic
tool types on the required support software menu.

The cost to develop each item of support software was estimated. The total
cost to develop the selected support software items was estimated to be
approximately 41 million dollars. The estimated value of the support software bases
for each of the final candidate architectures is summarized in Table 6 below; also
shown is the estimated cost to eliminate deficiencies as compaed to the desired
support software base:

See Volume V of the Committee Report tor a detailed treatment of the support
software evaluation.

Litfe Cycle Cost Evaluations

A Final Selection Methodology Subcommittee was formed at the third Selection

Committee meeting to investigate and pursue a methodology for combining the results

1-12

Summary of the Final Report

of the committee’s evaluations into a single evaluation criterion which would be
realistic and meaningful to DoD management. This subcommittee proposed a method of
converting the architecture and software evaluation results to life cycle costs so that a
final selection could be aided by data based on the comparative economics of using
each of the candidate architectures in military computer systems.

Two separate computer life cycle requirements models were used for the cost
analyses. Both used the data gathered in the Architecture Efficiency Evaluation and
the Support Software Base Evaluation described previously to convert the modslad
requirements into dollar costs.

The first model is a "top-down" model which represents total life cycle
requirements for DoD computers in the 1978-1990 time period, using each of the three
final candidate architectures for the MCF. It was based upon extrapoiating trends in
DoD wide expenditures and requirements for military computer hardware and softwars.

Figure 2 summarizes results of computing CFA life cycle costs summed over the
years 1378 to 1990 for the three candidates, for certain conditions. To simplify
comparisons, the total assumed costs (approximately 81 billion) are normalized with
respect to the IBM $/370.

The results are shown for specific values of two of the model input parameters.
The first is an expenditure rate (§2M/year) for completing development of the support
software base of each candidate. The second is a range of values (x-axis) of the total
cost ratio of software-to- hardware for military tactical computer systems. The resuits
are piotted as a function of the software-hardware cost ratio because it is one of the
most important parameters in the cost evaluations. Available data gives this ratio as

about 2.5 to 3.0 for generalized ADP systems but less than that for tactical, embedded

Summary of the Final Report

computers where many copies of a single hardware and software design are deployed.
How much less is not clear from available data. In the tower range of software/
hardware ratios the Interdata has the lowest cost, in the upper range the $/370 is
lowest, and the PDP-11 is lowest in the middle range and neither best nor worst
elsewbere.

The second mode! is a "bottom-up” life cycle requirements model, which is based
upon data gathered on 15 existing or developmental Army tactical data systems. This
model represented the life cycle requirements for these 15 systems, using each of the
three final candidate architectures. The cost to develop all of these systems in 1976
and then in 1985 was estimated. The results of this analysis are shown in Table 7
below. This table indicates that:

a. The average total life cycle cost for all 15 systems is estimated at

$1.91B in 1976 and $250M in 1985. The average software: hardware
cost ratio of these systems is 1:11 in 1976 and 1:2.3 in 1985.

b. In 1976, the number of systems in which the PDP-11 architecture
provides the lowest cycle cost is the largest {l1). The PDP-11}
architecture provides the lowest total life cycle cost by a small
margin (3.77) over the 8/32 architecture and by a larger margin
{20.07) over the 5/370 architecture.

¢. In 1985, the number of systems in which the POP-11 architecture
provides the lowest cost increases to 14. The POP-11 architecture
continues to provide the lowest total life cycle cost for all 15
systems by margins of 887 and 17.67 over the 8/32 and §5/370
architectures.

Assumptions applicable to the resuits shown in Table 7 are (1) hardware cost
reduction of a factor of 10 from 1976 to 1985, (2) hardware life cycle cost of twice
the acquisition cost, and (3) software life cycle cost of 6.5 times the acquisition cost.

The results shown in Table 7 are not significantly sensitive to changes in

applications software cost or in the annual support software investment for the

selected CFA,

1-14

Summary of the Final Report

A limited sensitivity analysis was performed with both models. If lower
estimates are made for software development costs (relative to hardware costs),
and/or if faster development of the support software base is projected (so that all
three architectures rapidly acquire a complete support software base), then the
Interdata 8/32 eventually becomes the least expensive architecture, because of its
efficient architecture as indicated by the test program results. If very high softwars
development cost estimates are made, and/or very slow support software development
is projected, then the $/370 becomes the least expensive architecture because of its
advantage in support software. Figure 2 illustrates this behavior. In the intermediate
ranges of software cost estimates, where top-down and bottom-up results were in the
best agreement, the PDP-11 appears to have a slight cost advantage. However,
compared to the expected errors in the results due to the uncertainties in the input
data and assumptions, the life-cycle cost differences between the two models and
among the three candidate architectures are small. The software/hardware ratio which
is one of the most important factors in both models is one of the hardest to pin down
with supporting data, and the resuits of both models can be made to change by using
values from different sources for the same input parameters. The strongest conclusion
to be derived is that the resuits agree and that, in terms of life cycle cost, all three
candidates would provide comparable choices for the CFA. See Volume VI of the Final
Report for details of the life-cycle cost evaluations.

Licensing

Meetings were held with IBM, DEC, and Interdata to discuss the terms and

conditions under which they woulg grant a non-exclusive license to the Government to

use their architecture for militarized processors. Al three manufacturers were

Summary of the Final Report

cooperative and proposed terms for such an agreement. Although the proposed
licensing agreements were a significant factor in the final selection process, the details
cannot be given here, due to the confidential nature of the discussions. Volume VII of
the Final Report, which is restricted to internal Government use, contains the details of
the licensing proposals.

6.3. Final Selection/Recommendations

The Selection Committee held its fifth and final meeting on 24 to 26 August
1976 at the Naval Underwater Systems Center, Newport, R. I, for the purpose of
selecting the recommended aachitecture for the MCF. At this mesting, the results of
the evaluations discussed in the preceding sections of this article were considered by
the committee and discussed at length. Based upon that data, and upon other concerns
specifically considered by the committee during its discussion of the final selection, the
respective strengths and weaknesses of each architecture can be summarized as

follows:

A. INTERDATA 8/32. The 8/32 was the highest rated architecture on
the Quantitative Criteria, and the Test Program Results. The 8/32
has a good interrupt structure for real-time processing. On the
other hand, the software base is relatively weak, which consequentty
compromised its performance in the life cycle cost evaluations.
There was a nagging question about how well the state of the
machine was preserved after interrupts.

B. IBM 5/370. The strongest virtue of the $/370 is its large support
software base. The 5/370 performed well on the life-cycle cost
analyses under assumptions of maximum relative cost of software
development. The §/370 is the only architecture demonstrated as an
easily virtualized computer in a standard product line. On the other
hand, its interrupt structure was considered cumbersome for real
time contro! applications. The test program results indicate that the
architecture is significantly less efficient than the 8/32 and the POP-
11. There was also concern that small subset versions might not
prove cost-effective for low-end applications, and that there was
insufficient experience with the §/370 in OEM type applications.

Summary of the Final Report

PDP-11. The PODP-11 enjoys a good support software base,
performed relatively well on the Test Programs, and has a good
interrupt structure for real-time control applications. It enjoys a
slight advantage on the cost models for a range of reasonable
assumptions. Small scale (microprocessor) implementations are
practical and have been built. On the negative side, the 16 bit virtual
address space is a limitation and it may be expensive to add a virtual
machine capability to the architecture.

The committee made four final recommendations:

A,

See

The DEC PDP-11 was determined by a vote of 14 to 4 ta be the most
advantageous architecture for the MCF, the IBM 5/370 was ranked
second, and the Interdata 8/32 was ranked third.

The committee unanimously agreed that a single instruction-set
architecture should be selected for the MCF, that the selection of
only one architecture is more important than which one of the
candidates is selected, and that any one of the three final candidate
architectures could provide a satisfactory basis for the MCF.

The committee agreed that an effort should be made to relieve the
limitations of the seiected architecture. In the case of the PDP-11
the major limitation is the small (16 bit} virtual address space.

A single organizational structure must be established to control the
architecture, or major incompatibilities between different
implementations will surely result,

Volume VIII of the Final Report for details of the CFA

seiection/recommendation process,

7. Conclusions

final

It is sometimes asserted that military systems have unique requirements which

preclude the use of a general purpose commerciai instruction set.

Developers of

computer based weapons systems often assert that they alone have such severe "real-

time" constraints that they compel the use of a particular processor. It is worth noting

that the Selection Committee compared three of the most widely used military

architectures with six of the most widely used commercial architectures and found that

1-17

Summary of the Final Report

the military architectures were deficient compared to the commercial architectures in
terms of those architectural characteristics believed to be most important in tactical
military applications. It is worth noting also that none of the military architectures had
any unique features which proved advantageous, while all three were found to have
architectural shortcomings. Moreover, the support software available for the three
military architectures is relatively weak. Considering how easily modern
microprogrammable processor hardware may be adapted to a given instruction-set
architecture, there appears to be httle reason to continue to use little-known or
immature developments in future mifitary computer systems.

The PDP-11 is one of the most successful architectures, in terms of user
acceptance, in the history of the computer industry. [t has been manufactured in the
tens of thousands, and is widely used in almost every sort of OEM application. An
extensive support software base exists for it, and DEC will continue to develop and
support the architecture for the foreseeable future. It is clearly a satisfactory choice
for the Military Computer Family. With the MCF inteliigently defined and implemented,
it will make available a family of militarized processors with excelient software
development tools, and the capability to develop and maintain software on less
expensive commercial equipment. This in turn will resuit in substantial cost and quality

benefits in the application of computers to military systems.

i-18

Summary of the Final Report

8. Appendix

Table of Contents of The Final Report of the CFA Selection Committee
A-1 Volume | - Introduction

Volume | explains the background, rational and organization of the
Computer Family Architecture effort and the Seiection Committee.

A-2 Volume Il - Selection of Candidate Architecture and Initial Screening

Volume Il describes the initial candidate selection, and discusses
architectural issues pertinent to CFA evaluation. The evaluation
criteria applied to the architectural candidates for preliminary
screening are described in detail, and the results of that evaluation
are discussed.

A-3 Volume III - Evaluation of Computer Architectures via Test Programs

Volume Il discusses the development of the measures used to gauge
architectural efficiency and describes the test programs selected for
the evaluation. The method of specifying the test programs and the
structure of the programming experiment to minimize programmer
effects are also discussed.

A-4 Volume IV -~ Architecture Research Facility: ISP Description,
Simulation, Data Collection

Volume IV discusses the use of the ISP machine architecture
description language in describing the candidate architecturas. It
describes the ISP interpreter facility and its application to simulation
of the candidates and in gathering the measurements discussed in
Volume 111

A-5 Volume V - Procedure for and Results of the Evaluation of the
Software Bases of the Candidate Architectures for the Military
Computer Family

Volume V describes a menu of support software tools determined to
be importan to the development of military software. It discusses
how a subset of those tools were selected as the necessary software
base for the Military Computer Family and the results of a study to
determine the availability and value of these tools.

A-6 Volume V] - Life Cycle Cost Analyses of the Computer Family
Architecture Candidates

Volume VI describes the methodology used to compute and compare

1-19

Summary of the Final Report

A-9

the life cycle costs of the CFA finalists and describes two life cycle
models (top-down and botlom-up) and the results of applying the
methodology to those two models.

Volume VII - CFA/Software Licensing Discussions with the Three CFA
Finalists (For Qfficial Use Only)

Volume VIl addresses the technical, financial, and legal issues arising
out of discussions with the ownor/manufacturer of each candidate
computer architecture and describes the outcome of these
discussions,

Volume VIII - CFA Final Selection

Volume VIII discusses the consideration by the Selection Committee
of the results of the architecture evaluations described in Volumes [i
through VII of this report. The influencessthat the various results
had on the final selection are described.

Volume IX - A Consideration of Issues in the Selection of a Computer
Family Architecture

Volume IX addresses questions and controversial issues regarding the

CFA Selection process that arose from both within and without the
Selsction Committes during the course of the CFA effort.

1-20

——— e ————

Vi

03434344

ON3WKWO0I3Y

A

SISIWNIA
¥4 40

NOILVNIVAZ

AUYHIWIT13Yd

[SWy3l |
INISNIDIT
NS/¥4)
INIWY3IL3Q

(

SISIIVYNIA

¥4) ¢ 1A 3417

ANVY

N

$1502

W31SAS
d3LN0dWH0I
IZAYNY

§35vE
JYYNL40S

—{SLSITVNI4 Y42

JLYNTYA3

SLSITYNIS
Vi) 40

9L oy

AN

NOILYNIYA3
SKYH9044
1531

-

ﬁmv
mpmﬁ4<z

Fuu;um
8314

CIEENER)
NO112373s
V4
AYYNIVIT 1344
HS118YLS3

YIYILTY)
NOI.12373S
>m<zm2_4uzm

43d
muhqomoz<u
LEN)

uh«:._gmk

v1vd
13371102
(4
SALVOIGNY)

Y4) HSI18Yis3

[)

33111WH0D
NOILI3IN3S
Y1) N/Y
3INIANDD

—
S¢ 130

CFA Selectian Procedure

FIGURE 1.

Summary of the Final Report

()

(2)

(3}

(4)

(5}

(6)

Table 1 - Absolute Criteria for CFA Evaluation

Virtual Maemory Suppert.- The architecture must support a virtual to physical
transiation mechanism.

Protoction.~ The architecture must have the capability to add new, experimental
{(i.e., not fully debugged) programs that may include 1/Q without endangering
reliable operaion of existing programs.

Floating Point Support.- The architecture must explicitly support one or more
floating point data types with at least one of the formats yielding more than 10
decimal digits of significance in the mantissa.

Intorrupts and Traps.- It must be possible to write a trap handler that is capable
of executing a procedure to respond to any trap condition and then resume
operation of the program. The architecture must be defined such that it is
capable of resuming execution following any interrupt.

Subsotability.- At least the following components of an architecture must be able
to be factored out of the full architecture:

Virtual-to-Physical Address Translation Mechanism

Floating Point Instructions and Registers (if separate from general purpose
registers)

Decimat Instructions Set {if present in full architecture)
Protection Mechanism
Multiprocessar Support.- The architecture must allow for multiprocessor

configurations. Specifically, it must support some form of “test-and- set"
instruction to allow the impiementation of synchronization functions such as P and

V.

(7)Controllability of I/0.- A processor must be able to exercise control over any 1/0

Processor and/or /O Controller.

(8)Extendibility.- The architecture must have some method for adding instructions to

the architecture consistent with existing formats. There must be at least one
undefined code point in the existing opcode space of the instruction formats.

(9)Read Only Codo.- The architecture must allow programs to be kept in a read-only

section of primary memory.

1-22

Summary of the Final Report

(1)

(2)

(3)
(4

(5)

(6)

(7)

Table 1 {cont.) - Quantitative Criteria for CFA Evaluation

Virtual Address Space

(a) Vj: The size of the virtual address space in bits.

{b) V5: Number of addressable units in the virtual address space.

Physical Addrasr Spaco

{a) Py: The size of the physical address space in bits.

(b) Pp: The number of addressable units in the physical address space.
Fraction of Imstruction Space Unassigned

Size of Comtral Processor State

(a} C.2: The number of bits in the processor state of the full

(b) Cg2: The number of bits in the processor state of the minimum subset of
the architecture (i.e., without Floating Point, Decimal, Protection, or Address
Transiation Registers).

(c) Cnl: The number of bits that must be transferred between the processor
and primary memory to first save the processor state of the full architecture

upon interruption and then restore the procaessor state prior to resumption.

(dy C,2: The measure anaiogous to C, 1 for the minimum subset of the
architecture.

Virtualizability

K: is unity if the architecture is virtualizable as defined in [PopG74] otherwise K
is zero.

Usage Base

(a) By: Number of computers delivered as of the latest date for which data
exists prior to [June 1976.

(b) Bp: Total dollar value of the instailed computer base as of the latest date
for which data exists prior to 1 June 1876,

I.70 Initiation
[: The minimum number of bits which must be transferred betweasn main memory

and any processor (central, or 1/0) in order to output one 8-bit to & standard
peripheral device.

1-23

Summary of the Final Report

(8)

(9)

Direct Instruction Addrescability

D: The maximum number of bits of primary memory wwich one instruction can
directly address given a single base register which may be used but not modified.

Maximum Interrupt Latency

Let L be the maximum number of bits which may need o be transferred between
memory and any processor (CP, IOC, etc.) between the time an interrupt is
requested and the time that the computer starts processing that interrupt (given
that interrupts are enabled).

1-24

Summary of the Final Report

Table 2 - Candidate Scores on Absolute and Quantitative Criteria

Architecture

8/32
POP-11
$/370
AN/GYK-12
ROLM/NOVA

B6700
SEL-32
AN/JUYK-7
AN/UYK-20

Quantitative

Criteria Score

1.68 (Best)
1.43

1.36

94

.92

91
.86
.46
44 {worst)

1-25

Absolute
Criteria Score

Problem with interrupts and traps
Passed atl

Passed all

Failed floating-point

Failed virtual memory mapping and
interrupts/traps

Faited protection

Failed virtual memory mapping
Failed floating point

Failed protection

Summary of the Final Report

10.

11,

12.

Table 3 - Test Programs

170 karnel, four priority levels, requires the processor to field interrupts from
four devices, each of which has its own priority level. While one device is being
processed, interrupts from higher priorily devices are allowed.

170 kernel, FIFQ procassing, also fields interrupts from four devices, but without
consideration of priority level. Instead, each interrupt causes a request for
processing {0 be gqueued; requests are processed in FIFQ order. While a request
is being processed, interrupts from other devices are allowed.

10 device handler, processes application programs' requests for I/0 block
transfers on a typical tape drive, and returns the status of the transfer upon
completion.

Large FFT, computes the fast Fourier transform of a large vector of 32 bit
fioating point numbers. This benchmark exercises the machine’s floating point
instructions, but principally tests its ability to manage a large address space.

Character search, searches a potentially large character string for the tirst
occurrence of a potentially large argument string. It exercises the ability to move
through character strings sequentially.

Bit test, set, or reset tests the initial value of a bit within a bit string, then
optionailly sets or resets the bit. It tests one kind of bit manipulation.

Runge-Kutta integration numerically integrates a simple differential equation
using third-order Runge-Kutta integration. It tests floating-point arithmetic.

Linked list insertion inserts a new entry in a doubly-linked list. It tests pointer
maniputation.

Quicksort sorts a potentially large vector of fixed-length strings using the
Quicksort algorithm. Like FFT, it tests the ability to manipulate a large address
space, but it also tests the ability of the machine to support recursive routines.

ASCII 1o floating point converts an ASCII string to a fioating point number. It
exercises character-to-numeric conversion,

Boolean matrix transpose transposes a square, tightly-packed bit matrix. It tests
the ability to sequence through bit vectors by arbitrary increments.

Virtual memory space exchange changes the virtual memory mapping context of
the processor.

1-26

Summary of the Final Report

Table 4 - Test Program Experiment Results

Architecture S
Interdata 8/32 83
PDP-11 1.00
IBM S/370 1.21

1-27

M

.85
93
1.27

170

83

94

1.29

Summary of the Final Report

Table 5 - Menu of Required Software Tool Types

Compilers

Macro Assemblers

Interactive Source Language Editors
interactive Symbolic Debuggers
Extended Overlay Linker

Test Case Design Advisors
Integrated Library

Text Processing System

Data Base Management System

GP System Simulator

Time Sharing Operating System {TSQOS} + VMM
Language Independent Maonitors
Test Data Generator
Non-Interactive Symbolic Debugger
Computer System Simulator

Batch Source Language Editors
Language Dependent Monitors
TSOS + MPOS + VMM

Basic Assembler

RTOS + TS0S

Test Instrumenters & Analyzers
Automatic SW Production & Test
Basic Linker

Standards Enforcers

Reformatters

Test Data Auditor

Simple Qverlay Linker

Data Base Design Aid

1-28

Summary of the Final Report

Table 6 - Tactical Support Software Base Evaluation

Architecture

8/32
PDP-11
$/370

Estimated Cost

tstimated Value of To Eliminate
Current SSW Base Deficiency
§153 M §259 M
8222 WM $19.1 M
§323 M § 36 M

1-29

1950 DISCOUNTED CUMULATIVE COST RATIO

2.00

1.80

1.80

1.70

1.60

1.80

1.40

1.30

1.20

1.00

0.90

6.80

0.70

SUPPORT SOFTWARE EXPENDITURE, Q=2 x 108
1990 CURVES

INT 8/32
DEC PDP-11

O~ O O O 18M 370

1 L ! 1 f 1

Y, % % 1 2 4 8

SOFTWARE-TO-HARDWARE RATIO (o)

FIGURE 2. Top Down Life Cycle Cost Curves

A.

B.

C.

AVERAGE TOTAL LIFE CYCLE COSTS ($000,000)

1976

Type Cost 1976 1985

Hardware $1750 8175

Software 162 15
TOTAL $192 $250

ARCHITECTURE COMPARISON

X # System Relative Total Cost*
Architecture Preferences HDW SW Total
8/32 1 .92 1.33 .96
POP-11 1 .9 1.00 .96
§/370 3 1.16 .67 1.12

1985

ARCHITECTURE COMPARISON

Architecture Pie?gigﬁges ﬁg&ativeslotangg:t*
T

8/32 - .92 1.20 1.00

POP-11 14.5 .91 .91 .9

§/370 0.5 1.16 1.09 1.09

TABLE 7.

Summary:

* with respect to average cost; 1.00 equals average cost

Bottom Up Life Cycle Cost Analysis

INITIAL SELECTION AND SCREENING
OF THE CFA CANDIDATE COMPUTER ARCHITECTURES

Samuel H. Fuller,
Carnegie-Meilen University and
Naval Research Laboratory

Harold 5. Stone,
University of Massachusetts

and

Wiilliam E. Burr
US Army Electronics Command

Initial Selection and Screening

TABLE OF CONTENTS

SECTION
i Introduction e
2 Initial Selection of Candidate Computer Architectures
3 Absolute Criteria
4 Quantitative Criteria o
5 Composite Score of the Quantitative Criteria
5.1 Relative Weighing of Criteria
5.2 Normalization.

5.3 Scaling and Composition of the Quantitative Measures

6 Summary . . L e e e

PAGE

Initial Selection and Screening

ABSTRACT

The initial selection criteria that were developed and used by the Army/Navy
Computer Family Architecture (CFA) committee in their evaluation of alternative
computer architectures is presented in this article. These initial criteria were usaed in
this first phase of the CFA evaluation process to reduce the number of computer
architectures from the coriginal set of nine to the most promising three ar four
architectures for the more intensive evaluation discussed elsewhere (FuiS77; WagJl?77;
SmiW77] The machines selected by this initial ranking and screening process for

further evaluation were the Interdata 8/32, DEC POP-11, and the IBM §/370.

1. Introduction

The CFA selection commitiee was concerned with selecting a computer
architecture to use in future military {ruggedized) computers and hence wanted to
evaluate the merits of the computer architecture independent of any features, or
flaws, of existing impiementations of the computer. For this reason, the following
definition of computer architecture was used by the CFA committee:

Computer Architecture: The structure ot the computer a

programmer needs to know in order to write any machine-
language program that wiil run correctly on the computer.

With a well specified architecture, details of data bus width, technology (core
memery versus semiconductor memory, TTL wversus ECL circuits), implementation
speedup techniques, physical size of computer, etc. need not be of concern to the
programmer and hence are not a part of the architecture. This separation of
architecture and implementation is not a radically new idea [AmdG64]. The IBM

System/360-370 series, the DEC PDP-11 series, and the Data General NOVA series are

2-1

Initial Selection and Screening

just three examples of where this has already been successfully accomplished to a
greater or lesser degree.

This article first describes how the CFA selection committee chose the initial
candidate architectures for evaluation, and then describas the criteria, the
methodology, and the data used in ranking these architectures during the preliminary
screening phase of the CFA project. At the point this procedure was formulated, it
was known that time and money limitations would preclude doing a detailed analysis on
all nine candidates; consequently an initial screening was necessary to limit the field to
the three or four “"best” candidates that would be subjected fo a much more detailed
analysis. This more detailed analysis, based on test programs, the support software
bases of the architectures, and life cycle cost models is discussed in the accompanying
articles.

Many detailed questions arose during the evaluation of these nine initial
candidate architectures. It is impossible to review all these questions in this article,
but we will discuss here the most important questions that arose, and interested
readers are encouraged to refer to Volume 1l of the final report of the CFA committee
for a detailed presentation of how and why each candidate architecture was evaluated
as it was [FulS76a)

The mechanism for choosing the nine initial candidate architectures is discussed
in the next section. The third and fourlh sections then describe the nine absolute and
seventeen quantitative criteria, respectively, and show how each of the candidate
architectures was ranked on these criteria. The fifth section describes how the CFA
committee combined the scores of the candidate architectures tor each individual
criteria to form a single, composite score for each architecturse that reflected the

relative importance of the seventeen quantitative criteria.

2-2

Initial Selection and Screening

2. Initial Selection of Candidate Computer Architectures

The CFA selection process was initiated in March and April of 1975 when letters
werg sent to 35 Army and Navy organizations soliciting proposals for candidate
computer architectures. As a result of these letters, and discussions at the first two

CFA meetings, the following set of nine computer architectures was chosen:

Burroughs 6700 ROLM Corporation 1664 (AN/UYK-28) =
DEC PDP-11 SEL 32

IBM System /370 Univac AN/UYK-7

Interdata 8/32 Univac AN/UYK-20

Litton AN/GYK-12

There were on the order of 100 viable computer architectures in 1975 that
might have been considered by the CFA committee for selection [GMLC75] The
decision as to what set of architectures would be evaluated remained open from March
through December of 1975. The nine architectures listed above were selected for
evaluation because they met two essential criteria: (1} the CFA committee agreed the
architecture might be a reasonable choice for future military computers and (2) thers
was a CFA commitiee member sufficiently convinced of the value of the computer
architecture that he was willing to act as its advocate in the subsequent evaluation

phase.

3. Absolute Criteria

The CFA selection committee specified nine absolute criteria that they felt a

candidate computer architecture needs to satisty if it is going to meet the

* The AN/UYK-28 is instruction-set upward-compatible with the Data General NOVA
computer architecture. Other ROLM computers that are also compatible with the NOVA
architecture ars the AN/UYK-19 and AN/UYK-27, The AN/UYK-28 is incompatible with
the Data General ECLIPSE computer architecture, Data General’s upward-compatible
extension of the NOVA.

2-3

Initial Selection and Screening

requirements of future military computer systems. All the absolute criteria (with the
exception of the subsetability criterion) had to be satisfied by an implamentation of
the architecture which was operational by 1 January 1976. This eliminated speculative
decisions based on promises or potential solutions that looked inviting, but might not
come to fruition. Failure to satisty any absolute criterion resulted in the elimination of
the architecture from further consideration. The nine absolute criteria are given
below. The formal statement of each criterion is underlined, while explanations and
examples are not underlined. Many of the comments that follow the definition of an
absolute criteria are the result of the experience gained when the CFA committee
evaluated the nine candidate architectures against these criteria [StoH76]. Table 3-1

shows which absolute criteria each candidate architecture passed or faiied.

Virtual Memory Support.~The architecture must support a virtual to physical address

translation mechanism,

The intent of this criterion is to take advantage of the widely used feature of
many machines that is known as virtual memory, Many advantages accrue to
architectures that support virtual address translation mechanisms, the most notable of
which is the ability to simplify programming by freeing the programmer of explicit
management of his primary memory and providing a mechanism for keeping only the
active portions of a program in high-speed memory.

The answers for this criterion listed in Table 3-1 are not controversial, except
for the AN/UYK-20. This architecture provides the page registers necessary for
relocation, but does not limit the ability to change these registers to privileged
programs. Some members of the CFA committee felt that preventing user state access

to the page registers was a necessary aspect of virtual memory; others disagreed.

2-4

Initial Selection and Screening

The full CFA committee voted fo fail the AN/UYK-20 on this criteria. The ROLM 1664
and SEL 32 both failed this criterion because each of these architectures provide a
mechanism commoniy known as "bank switching”, which the committee felt was not an

adequate memory translation mechanism.

Protection.-The architecture must have the capability to add new, experimental {ie.

not fully debugged) programs that may include 1/Q without endangering reliable

operation of existing programs, The intent of this criterion is to provide a mechanism
in the hardware for aiding software development, and for preventing certain
catastrophic software failures from occurring in the field. Architectures that use a
privileged mode to protect vital registers and system resources generally meet this
criterion,

The AN/UYK-20 failed this criterion because it lacks memory protection; any
user can modify the contents of the relocation registers, and thereby read and write
any word in memory. Another generic way for an architecture to fail the protection
criterion is for a program to have the ability to put the machine into a
noninterruptable state for an indefinite time. Architectures that permitted
nonterminating instructions were carefully examined to identify if these were, or were

not, interruptable.

Floating-Point Support.-The architecture must explicitly support one or more floating-

oint data types with at least one of the formats yielding more than 10 decimal digits

E_

of significance in the mantissa. The significance measure was determined as

representative of the most stringent requirements actually encountered.

The AN/GYK-12 failed this criterion because it does not support tloating point

2-5

Initial Selection and Screening

operations. The AN/UYK-7 failed because it supports a single, 64-bit floating point
format with only 31 bits (9.2 decimal digits) of mantissa. Because this is so close to
the borderline, one might reconsider requirements on significance to determine how
firm the 10 decimal digit criterion is. (Had the AN/UYK-7 looked like an otherwise
excellent architecture, it is likely that the committee would have relaxed the floating

point absolute criterion for it.}

Intorrupts and Traps.-}t must be possible to write a trap handler that is capable of

executing a procedure to respond to any frap condition and then resume operation of
the program,

For example, if the processor receives a page-fault trap from the address
translation unit, it must be able to request the appropriate page be brought in from
secondary storage and then resume execution. If resumption of execution is logically
impossible (e.g., an attempt to store an operand into a read-only segmant of virtual
memory or fetch an instruction with a parity error) then the trap handler should be
able to abort the program with an indicator of which instruction andfor operand
caused the termination,

A similar requirement exists for interrupts: the architecture must be defined

such that it is capable of resuming execution foliowing any interrupt (e.g., power

failure, disk read error, console halt).

Another intent of this criterion is to permit extensions and subsets of an
architecture to operate correctly so programs can be upward or downward compatible,
The subsets and extensions may differ drastically in size, cost, and performance, but
every program written for the native architecture can run on the subset or extended

machine.

2-6

Initial Selection and Screening

The Interdata 8/32 had difficuity satisfying this criterion since it has variable
length instructions, and there is no way after a trap or an interrupt to teli whether the
instruction which was being executed was a 16, 32, or 48 bit instruction. This may be
a problem when it is desirable to correct the cause of the fault, and then re-execute
(or resume) the instruction. Due to uncertainties in the definition of the Interdata 8/32
architecture, the CFA committee was not able to resolve whether or not the Interdata

8/32 satisfied this criterion.

e able {o be

Subsotability.-At least the following components of an architecture must

a. Virtual-to-Physical Address Translation Mechanism

b. Floating Point Instructions and Registers (if separate from general
purpose registers)

¢. Decimal [nstructions Set (if present in full architecture)

d. Protection Mechanism

Implementations of the architectures on small machines for dedicated
applications must not be required to include features of the architecture intended for
use on larger, multiprogrammed, multi-application configurations. Existence of such
subsets did not have to be demonstrated in an operational impiementation of the
architecture.

Because there was no operational method for testing subsetability, we could not
challenge positive replies for any of the nine candidate architectures. However, the B-
6700 and the AN/UYK-7 have not been subsetted in the sense of the criterion, so that
their subsetability is more speculative.

In order to retain program compatibility across the implementations of the

Initial Selection and Screening

architecture, this criterion was extended to include the following requirement: The trap

mechanism of the architecture must be defined such that instructions in the full

architecture, but not impiemented in the subset machine, trap on the subset machine

and that it be possible to write trap routines for the subset machine that allow it ¢

interpretively execute those instructions not implemented directly in hardware (or

firmware) and then resume execution. (This is an elaboration of absolute criterion 4.)

Multiprocessor Suppert.-The architecture must support some form of “test-and-set"

instruction to allow for the communication and synchronization ot multiple processors.

The intent of this criterion is to be sure that the basic architecture can support

multiprocessor configurations.

Inpus/Ouiput Controllability.-A processor must be able lo exercise absolute control

over any /O processor and/or 1/Q controller.

The interpretation of the criterion proved rather difficult. While all
architectures necessarily permitted individual devices to be started and queried for
status, there were varying degrees of control exercisable with respect to stopping the
devices. It is reasonable to stop all inputfoutput, or to stop selected devices. All
architectures had some way of stopping a single device and stopping all devices, but

how they did it varied widely in efficiency.

Extensibility.-The architecture must have some method for adding instructions to the

architecture consistent with existing formats. There must be at least one undefined

code point in the existing opcode space of the instruction formats. All nine candidate

architectures have unused instructions, so all passed this criterion.

Read-Only Code.-It must be possible to execute programs from read-only storage.

2-8

Initial Selection and Screening

This criterion is intended to permit an added degree of reliability by permitting
programs to be stored in a nonvolatile read-only memory. However, a program can be
rewriften to be read-only on any of the nine architectures, even if that architecture
does not support special types of instructions to facilitate this. It might have been
more meaningful to examine this question quantitatively.

Table 3-1 shows the score of each candidate architecture on each of the
absolute criteria. Note that none of the nine architectures failed to meet the last five
criteria: subsetability, muitiprocessor support, 1/O controllability, extensibility, and
read-only code. This is in part the case because we limited our evaluation to
reasonably successful architectures, but is partly the resuit of not defining these
criteria precisely enough prior to applying them to the candidate architectures. For
example, by not clearly defining how to test for the practical subsetability of an
architecture, we made it virtually impossible for an architecture to fail this criteria.
Subsequent studies would be well advised to consider more precise definitions of
these (and any additional) absolute criteria before evaluating alternative architectures

against them,

4. Quantitative Criteria

In addition to the absolute criteria, the CFA committee specified seventeen
quantitative criteria that they felt would be heiptul in the initial screening process. A
number of these quantitative criteria measure attributes of a computer architecture
better measured by benchmarks, or test programs [FulS77a). However, the CFA
committee recognized that it did not have the resources to run benchmarks on all nine

candidate architectures and therefore proceeded with the use of these quarntitative

Initial Selection and Screening

criteria to help select three or four candidate architectures, out of the original nine
candidate architectures, for more intensive study via test programs.
The quantitative criteria are described below and the score of each architecture

on the quantitative criteria is given in Table 4-1.

Virtual Address Spoce.-

V,: The size of the virtual address space in bits.

V2: Number of addressable units in the virtyal address space.

e N e e e i it S wore——

Two aspects of these measures were open to interpretation. The CFA
committee settled on the following interpretation for treating bank switching: the
virtual address for a machine with bank switching is the address within a bank. The
effect of bank switching is to increase the size of the physical rather than the virtual
address.

The second interpretation centered on the notion of “addressable unit®. There
are several degrees of addressability. An item may be fully addressable in the sense
that it can be accessed by the address produced by an effective address computation.
The committee also decided, however, that instructions such as the IBM $/370 Test
Under mask, and the OR Immediate ailowed the testing and setting of individual bits,

and provided a minimum addressable unit of 1 bit.

Physical Address Space.-

Py: The size of the physical address space in bits.

Po: The number of addressable units in the physical address space.

Where bank switching has been implemented, the physical address measures

include all the banks of memory available. For computers with virtual address

Initial Selection and Screening

transiation, the physical address is the address resulting from the virtuel-to-physical
address transiation. The physical address space is defined apart from any
implementation, since the physical address space size is defined by the effective
address calculation process or the virtual address translation process and need not be

equal to the largest memory contiguration yet delivered.

Fraction of Instruction Space Unassigned.-1t is important to select an architecture that
will allow reasonable growth over its expected lifetime. Let U be defined as the

fraction of the instruction space in the architecture that is unassigned. Specifically:

U= 2 u2d (4.1)

1<i<eo

where u; is the number of unassigned instructions of length i.

Size of Contral Processor State.-The amount of information that must be stored or
foaded upon interrupt and/or context swapping is clearly an important factor in the
response of real time systems and in the overhead of multiprogramming systems. Let
the processor state be defined as all the bits of information in a processor that must
be saved in order to be able to restart an interrupted process at a later date.
Processor states normally include the accumulators, index registers, program counter,
condition codes, memory mapping registers, interrupt mask registers, etc.

Cs1: The number of bits in the processor state of the full architecture,

Csz‘ The number of bits in the processor state of the minimum subset of

the architecture (i.e., without Floating Point, Decimal, Protection, or
Address Transiation Registers).

:The number of bils that must be transferred between the processor
and primary memory to first save the processor state of the full
architecture upon interruption and then restore the processor state
prior to resumplion. This measure differs from Cg1 above in that
“register bank swiltching”, where provided for in the candidate

ml

2-11

Initial Selection and Screening

architectures, may eliminate the need to save some registers in
primary memory, while the instruction fetches required to save the
state are included in C, but not in Cg;.

Cmo:The measure apalogous fo Cml for the minimum subset of the
architecture.

These measures give an approximation to the complexity of the implementation
of the architectures, as well as a measure of the responsiveness of the architectures
to worst-case context changes for interrupt processing.

It an architecture provides for several sets of certain registers to provide fast
switching or multiple contexts, and if a program uses only one such register set when

it runs in one context, then only one set of these registers is used in calculating Cgy.

Usage Base.-

exists prior to 1 June 1976.

By: Number of computers delivered as of the latest date for which data

By: Total dollar value of the installed computer base as of the latest date
for which data exists prior to 1 June 1376,

These two measures are meant to be approximate indicators of the existing
software and programmer experience base. A single individual determined the value of

these measures for all candidate architectures from standard sources.

170 Initiation.-

I: The minimum number of bits which must be transterred between main
memory and any processor {central, or 1/Q} in order o output one 8-
bit byte to a standard peripheral device.

Although this measure was intended to give some insight into the
responsiveness of an architecture, it is very difficult to construct an interpretation of
the measure that serves this purpose well. The measure counts relatively few bits for

some architectures, and this, in turn, makes the measure very sensitive to changes of a

Initial Selection and Screening

few bits. The | measure is also sensitive to several assumptions about exactly what
actions are to be performed in doing the input/output operation, and where
parameters for the operation are found. Unfortunately, this sensitivity made the I
measure very arbitrary, and a rather inexact measure of input/output responsiveness.

The precise, and somewhat lengthy, definition of [is given in [FulS76al

Virtualizabiliiy.-

K: is un x if the architecture is virtualizable as defined in [PopG74],
otherwise, K is zero.

The intent of this criterion is to capture the concept of virtual machines that has
been used to advantage in some commercial computer systems (e.g., IBM’s VM/370).
An architecture that supports virtual machines provides a mechanism for a privileged,
stand-alone program to run as an unprivileged task and produce the results identical
to those it produces as a privileged program, The importance of this idea is that an
operating system can be run in user mode as a subsystem of another operating
system.

The definition of virtual machine as provide by Popek and Goldberg in their
article in CACM [PopG74] is a very strict definition that guarantees that any operating
system that can run stand-alone on architecture X, can aiso run on architecture X in
nonprivileged mode. If an architecture fails this definition it may still support virtual

machines in a more limited sense.

Direct I'natruction Addressability.-

D: The maximum number of bits g imary memory which one

pr
instruction can directly address iven a single base register, which

Initial Selection and Screening

they reduce the need to set base registers and to maintain addressability. Because an
erchitecture may have several different instruction formats, each with different
displacement field formats, the committee required that the format selected for this
measure be the one used for standard LOAD and STORE operations, or the eguivalent
thereof. This eliminated anomalies, like the MOVE CHARACTER LONG in the IBM S/370

architecture, from consideration.

Maximum Interrupt Latency.-Let L be the maximum number of bits which may need to

be transferred between memory and any processor {central processor, [/QO controlier,

etc.) between the time an interrupt is reguested and the time that the computer starts

processing that interrupt {given that interrupts are enabled). This may be interpreted

as a measure of the longest non-interruptable instruction or sequence of instructions.
Architectures with nonterminating non-interruptable instructions have infinite L

measures and are so indicated in Table 4-1.

Subrouvtine Linkage.-

Ji: The number of bits which must be transferred between the
processor and memory o save the user state, transfer to the calied
routine, restore the user state, and return to the calling routine, for
the full architecture. No parameters are passed.

Jot The analogous measure to 51 above for the minimum architecture
(e.g., without Floating Point registers).

This measure gives an indication of the size of overhead that might be
encountered in doing subroutine calls in the worst case for the biggest and smallest
machines in the family. The bits counted here are related to the count in CS, CSp,
CM,, and CM,. By presumption, the bits that are stored for J; are exactly those for

CS;, except that it is not necessary to save the protection registers, memory map

2-14

Initial Selection and Screening

registers, interrupt mask, and other registers that determine the global context for a
program. Architectures with small processor states or that have LOAD/STORE

MULTIPLE instructions show up well on these measuras.

5. Composite Score of the Quantitative Criteria

After applying the quantitative criteria just discussed, the CFA committee had to
determine how the performance of the candidate architectures on these criteria would
be used to screen out all but three or four of the architectures for further
consideration in the test program and software evaluation phases of the study.
Clearly, the candidate architectures should be ordered relative to each of the
seventeen quantitative criteria and these independent orderings studied to detect
weaknesses and strengths of the competing architectures. However, some summary
measure was ultimately needed to assist the committee in its selection of the final
architectures to undergo more intensive study. A variety of thresholding and weighing
schemes were proposed, but the particular scheme that follows was the scheme chosen
by the CFA committee.

5.1, Relative Weighing of Criteria

Each wvoling organization of the CFA committee was given 100 points to
distribute among the various measures to indicate their relative importance fo the
organization. The weight for criterion x, W[x], was defined as the total number of
points given criterion x by all the voting CFA organizations, divided by the total
number of points handed out. The weights for the quantitative criteria based on

responses from 24 voting CFA committee members is given in Tabie 5-1.

2-15

Initial Selection and Screening
5.2. Normalization

When attempting to combine these quantitative measures into a composite
measure we faced two problems:

a. The measures are defined such thal good computer architectures
maximize some measures and minimize others. Specificaily, the
measures that a computer architecture should maximize are: Vl' V2,

Py, Pp U, K, By, By, and D; while the measures that should be
minimized are: Cy, Cp, 03. Cau bty Jl' and Jo.

Let our composite measure be a maximal measure and transtorm all minimal

measures to maximal measures by taking the reciprocal: X' = 1/X.

b. Measures that inherently involve large magnitudes are not
necessarily more important than smaller measures. For example, V)
is on the order of 109 to 109 while K is either 0 or 1.

To resolve this problem of differing scale, the values for the quantitative criteria
were normalized by dividing each value by the average value of the criterion over the
set of nine architectures. For example, the nine measures for criteria [are (64, 16, 48,
16, 128, 64, 169, B0, 32), the average value is 68.6, and the normalized measures are
(0.93, 0.23, 0.70, 0.23, 1.87, 0.93, 2.47, 1.17, 0.47).

Normalized measures have the attractive properties that they all lie in the range
(OM); have a mean across the set of M architectures of unity; and the standard
deviation of the set of normalized measures is in the interval (0, M5). We could
have taken the normalization process a step further and adjusted the spread of each
measure so that the measure gave a standard deviation of unity (or some other
constant) across the set of architectures being evaluated. We did not do this for all
measures. Some measures were better "discrimination functions” than others and we

did not want in general to lose this information by further normalization. However, the

committee agreed that it is important to normalize the standard deviation of some of

Initial Selection and Screening

the measures; specifically, Vi, Vo, Py, P, and D were normalized to have a mean and
standard deviation of unity. These measures may differ by several orders of
magnitude belween candidate architectures, but the CFA Committee did not fee! that
the utility, as expressed by the measures, differ by orders of magnitude.

5.3. Scaling and Composition of the Quantitative Measures

In order to combine the individual measures the commitlee used a simple, linear
sum of each normalized measure X scaled by its corresponding weighing coefficient
W[X] The weighing coetficients have been defined so that they sum to unity and
hence the composite measure A is in fact a normalized measure with a mean of 1.
Using the weights given in Table 5-1 and the values of the quantitative criteria given
in Table 4-1, we get the composite measures for the candidate architectures shown in
Table 5-2.

There was some valid concern by members of the CFA committee about the role
of the weighing of the measures, the normalization of the measures, and the measures
themselves in the selection of finalists. However, upon detailed examination of the
resuits we found that, given the weights applied by the committee as an indication of
the importance of idealized concepts, the finalists selected are very insensitive to the
exact details of the selection procedure. Aimost any reasonable methodology for

measuring the key concepts quantitatively would select the same finalists.

6. Summary

This article has presented the nine absolute criteria and the seventeen
quantitative criteria used by the CFA committee in their initial screening on the initial

candidate computer architectures. The scores for each of the candidate architectures

2-17

Initial Selection and Screening

are given in Tables 3-1 and 4-1 for the absolute and quantitative criteria, respectively.
Only the IBM S$/370 and PDP-11 architectures passed all the absolute criteria. The
Interdata 8/32 architecture is not well defined with respect to trap handling and there
remains some guestion as to whether it meets the requirements of the interrupt and
trap handling criteria. The remaining six candidate architectures failed one or more of
the absolute criteria specified by the CFA committee. A weighing schems was
developed by the CFA committee for the quantitative criteria and the composite scores
of the nine candidate architectures are given in Table 5-2. The quantitative criteria
showed that the Interdata 8/32, PDP-11, and IBM $/370 iead the other architectures
by comfortable margins. These results were used by the CFA committee to reduce the
field of candidate architectures to three finalists -- the IBM §/370, the PDP-11, and
the Interdata 8/32 -~ for more thorough evaluation.

This article has indicaled some of the areas where we had difficulty applying the
criteria and the final report of the CFA committee goes into these difficulties, and their
resolution, in much greater detail [FuUIS76a} The fact remains, however, that if we had
to compare a set of computer architectures again, we would need to go through a
similar “initial screening” process; it is just too costly and time-consuming to expect to
be able to evaluate more than a small set of architectures via any more comprehensive
means such as benchmarking. The absolute and quantitative criteria used by the CFA
committee have the attractive property that they can be determined directly from the
definition of the computer architecture (or from a survey ot computer installations for
criteria By and By). Reflecting back on the history of the CFA project, we estimate
that it took from two to five man-days to evaluate each of the computer architectures

against the criteria discussed in this arlicle, plus a two day meating of the entire CFA

Initial Selection and Screening

committee to resolve differences of interpretation, and it took from six to nine man-
months to evaluate each of the computer architectures via the set of test programs,
support software evaluation, and life cycle cost models in the subsequent stages of the
CFA project.
Acknowledgements

The criteria and methodology described in this article benefited from the ideas
and criticism of many members of the CFA committes. R. Estell, L. Haynes, and N.
Tinkelpaugh, as members of the selection criteria subcommittee, each made important

contributions to the formulation of the initial SCreening process.

CANDIDATE COMPUTER ARCHITECTURES

1BM INTER- | ROLM | D¢ | tWIVAC | SEL | BURROUGHS | UNIVAC| LITTON
ABSOLUTE S/370 | DATA PDP- | AN/ 32 | B6700 AN/ AN/

CRITERION 8/32 11 | uyk-7 UYK-20| GYK-12
1| Vvirtual Memory Y Y N Y Y N Y N Y
2{ Protection Y Y Y Y Y Y? N N ¥?
3| Floating Peint Y Y Y Y N Y Y Y N
_ 4| Interrupts/Traps Y ? Y Y Y Y Y Y Y
__5|subsettability Y Y Y ¥? Y Y? Y Y?
6 {Muiti Processor Y Y Y Y Y Y Y Y Y
7|1/0 Controllability Y Y Y Y Y Y Y Y Y
8 |[Extensibility Y Y Y Y Y Y Y Y Y
9 |Read-Only Code Y Y Y Y Y Y Y Y Y
SUMMARY Y ? N Y N N N N N

Y Yes, Meets Criteria

N ©No, TFails Criteria
Y?
7 lUnresolved

Table 3-

1.

Yes (but with some reservations)

Candidate Architecture value ftor Absolute Criteria

CANDIDATE CFA's

QUANTI- | IBM INTER-| ROLM DEC UNIVAC | SEL | BURROUGHS | UNIVAC | LITTON
TATIVE $/370 |DATA PDP-11]| UYK-7 |32 |B6700 UYK=-20 | GYK-12
| CRITERIA 8/32
1 o+ 27 27 20 20 24 22 24 20 20
2 | vy 27 27 20 19 24 22 20 17 20
*iH
3 | p o+ 27 27 *ick22 25 23 26 24 20 29
* kA
b4 | PyRx 27 27 *xkD D 24 23 26 20 17 29
51y .371 }.355 .039 L0431 .15 450 .019 .125 .219
6 | Csy 1344 | 1632 1008 1168 992 304 306 1328 1008
7 cs, 576 | 576 112 144 | 448 288 204 336 752
8 | cM, 3168 | 1120 1882 736 | 1472 768 408 2256 1344
9 | o, 1312 32 S44 480 1472 704] 408 720 1088
10 | K 1 0 0 1 0 0 0 0 1
ek
11 | B, 17,300 | 185 |13,800 |14,700| 346 75 90 400 30
12 | B, **+kx | 16,000 14 169 311 147 23] 207 8 6
13| 1 64 16 48 16] 128 64 169 80 32
14 | D 15 27 20 19 18 22 18 20 29
15 | 1L 6192 | 560 114 1121 2112 28% 255 - 1376
16 | 3, 1904 | 2368 1360 1040) 1280 960 459 1408 1344
17| 3, 1136 | 1280 320 400| 1280 96q 459 640 1088

**These values are of

*eqlith memory bank switching.

Table 4-1,

of the form 3(2%).

the form 2* where x = indicated data except tor B6700 which is

Candidate CFA Values for Quantitative Criteria

Feue e

Includes

Novas.

6

*xkiekIn *X 10 .

FULL CFA

ARMY NAVY COMMITTEE
CRITERION WE IGHTS WE IGHTS WEIGHTS
v L0412 L0444 .0433
v, .0438 .0575 .0529
P1 L0425 .0706 .0612
P2 .0387 . 0637 .0554
U .0513 L0644 .0600
cs1 . 0587 .0375 L0466
€S2 L0675 .0219 L0371
cM1 .0700 . 0544 .0596
Cs2 .0713 .0319 L0450
K .0500 .0587 . 0558
Bl .0450 L0244 .0313
B2 .0200 ,0281 .0254
I .0875 L1419 .1238
D .0912 L1081 .1025
L .0812 .0969 .0917
J1 .0637 .0626 .0629
J2 L0762 .0331 L0475

Table 5~1. Quantitative Criteria Composite Weights

Initial Selection and Screening

Architecture Score
Interdata 8/32 1.68
PDP-11 1.43
IBM §/370 1.36
AN/GYK-12 0.94
ROLM 0.92
86700 0.9]
SEL-32 0.86
ANSUYK-7 0.46
AN/UYK-20 0.44

Table 5-2. Ranking Based on the Quantitative Criteria

EVALUATION OF COMPUTER ARCHITECTURES
VIA TEST PROGRAMS

Samuel H. Fulier

Carnegie-Mellon University and
Naval Research Laboratory

Wiiliam E. Burr
U.S. Army Electronics Command

Paul Shaman
Carnegie-Meilon University

and

David Lamb
Carnegie-Meilon University

Evaluation via Test Programs

TABLE OF CONTENTS

SECTION PAGE
1 Introduction 1
2 Test Program Specification. 3
2.1 Alternative Approaches 3
2.2 Guidelines for Test Programs Specification 4
23 Selection of the Twelve Test Programs 5

2.4 Procedures for Writing, Debugging, and Measuring the Test

Programs, 7

3 S, M and R: Measures of an Architecture’s Pertormance 8
3.1 TestProgram Size 9

3.2 Processor Execution Rate Measures 9

3.3 Processor Memory Transfers 10

3.4 Registers Transfers Within the Processor 11

4 Statistical Design of Test Program Assignments 14
5 Analysis of Test Program Results 16
5.1 Phase IModels 17

5.2 TransformationoftheData. 17

5.3 Gtatistical Analysis of Phase [Data 20

5.4 Phase Ill Models and Resuits 22

55 Combination of Phase | and Phase Il Results 22

Evaluation via Test Programs

7

5.6 PhaselIModeilsandResults

SUMMArY . . v v v v v v b b e s e e e e e e e e

Appendix A - S, M, and R Measures for Each Test Program

LI T

23

24

27

Evaluation via Test Programs

ABSTRACT

This article presents the evaluation of the Computer Family Architecture (CFA)
candidate architectures via a set of {est programs. The measures used to rank the
computer architectures were S, the size of the test program, and M and R, two
measures designed to estimate the principal components contributing to the nominal
execution speed of the architecture. Descriptions of the tweive test programs and
definitions of the S, M, and R measures are included here. The statistical design of the
assignment of test programs to programmers is also discussed. Each program was
coded from two to four. times on each machine to minimize the uncertainty due to
programmer variability. The final results show that for all three measures (S, M, and
R) the Interdata 8/32 is the superior architecture, followed closely by the POP-11, and

the IBM S/370 trailed by a significant margin,

1. jntroduction

While there are many useful parameters of a computer architecture that can be
determined directly from the principles of operation manuai, the only method known to
be a realistic, practical test of the quality of a computer architecture is to evaluate its
performance against a set of benchmarks, or test programs. In a previous article
[FulS77b), we presented a set of absolute and quantitative criteria that the CFA
committee felt provided some indication of the quality of the candidate compiiter
architectures. It is important to emphasize, however, that throughout the discussion of
these criteria it was understood that a benchmarking phase would be needed, and that
many of the quantitative criteria were being used to help construct a reasonabie

"prefilter” that would help to reduce the number of candidate computer architectures

3-1

Evaluation via Test Programs

from the original nine to a tinal set of three or four. As described in the preceding
article, this initial screening in fact reduced the set of candidate computer
architectures to three: the IBM S/370, the PDP-11, and the Interdata 8/32.

The concept of writing benchmarks or test programs, is not a new idea in the
field of computer performance evaluation and is generally considered the best test of
a computer system [cf. LucH7l; BerN75; WicB73]. For the purpose of the CFA
committee, we define a test program fo be a relatively small program (100 to 500
machine instructions) that was selected as representative of a class of programs. The
CFA committee’s test program evaluation study described here had to address the
central problems facing conventional benchmarking studies:

a. How is a representative set of test programs selected?

b. Given limited manpower, how are programmers assigned to writing

test programs in order to maximize the information that can be
gained?

We faced an additional problem because we evaluated computer architectures,
independent of any of their specific implementations. In other words, when evaluating
particular computers, time is the natural measure of how fast a test program can be
executed. However, a computer architecture does not specify the execution time of
any instructions and so an alternative to time must be chosen as a metric of execution
speed.

This article explains how the CFA committee addressed the above guestions and
presents the results of the test program evaluation of the three candidate
architectures. The next section, Section 2, describes how the 12 test programs used in
the evaluation process were selected. Section 3 explains the measures of architecture

performance that were used in this study. Section 4 explains how 16 programmers

Evaluation via Test Programs

were assigned from six to nine programs each, in order to get a set of slightly over
100 test program implementations that were used to compare the relative performance
of the candidate architectures. The principle results of the test program evaluation
are presented in Section 5 and Appendix A contains the actual S, M, and R
measurements of all of the test programs. For the actual specifications of the test
programs, details of the evaluation process beyond the scope of this article, and a

chronology of the CFA test program study see [Fui$76b].

2. Test Program Specification

2.1. Alternative Approaches

A number of alternative test program specifications were considered by the CFA
committee. A tempting proposal was to use test programs written in a Higher-Order
Language (HOL). This had the advantage of allowing a single HOL source program to be
used for all the architectures to be tested. This also would have permitted the use of
existing benchmark programs, which were available from several sources (FCDSSA, and
NADC), and which were extracted from "real" military systems. One disadvantage of
this approach was that no one language, even FORTRAN, was available on all the nine
initial candidate architectures and those languages developed for use in tactical
military applications (e.g., JOVIAL, CMS-2, CS-4, and TACPOL) were each available on
only a few of the candidate architectures. There are FORTRAN IV and COBOL
compilers available for each of the three final candidate architectures; however,
neither FORTRAN nor COBOL are widely used in tactical military applications. The
major disadvantage, however, was that there is no practical way to separate the

effects of compiler quality from the effects of architectural efficiency, and the object

3-3

Evaluation via Test Programs

of the test program study was to measure only the architecture. The results obtained
from HOL test programs would necessarily involve a significant undetermined
component, which would be due to variations in the efficiency of compilers that are
unlikely to be extensively used in tactical military applications, and because these
unmeasurable compiler effects might well mask genuine differences in the intrinsic
efficiencies of the architectures.

Using standard {(Machine-Oriented) assembly language for the test programs was
the obvious aiternative to the use of Higher Order languages, but it had several
obvious disadvantages. First, each program would have to be recoded for each
machine, adding to the effort involved. Moreover, this introduced programmer
variability into the experiment, and previous studies have shown programmer
variability to be large {variation of factors of 4:1 or more are commonly accepted).
Finally, it is much more expensive to code in assembly language than in Higher Order
Languages, and this would limit the size or number of the test programs. Nevertheless,
the committee feit that there were ways to limit, separate, and measure these
programmer effects, while there was no practical way to limit or separate the effects
of compiler efficiency. It was therefore decided that the test programs would, of
necessity, be coded in assembly language.

2.2. Guidelines for Test Programs_Specificalion

The Test Program Subcommittee attempted to establish a strategy for defining
and coding the test programs that would minimize the variability due to differences in
programmer skill. The strategy devised was as follows:

a. The test programs would be small "kernel” type programs, of not

more than 200 machine instructions. (In the end, a few test
programs required more than 200 instructions.) It was felt that only

small programs couid be specified and controlied with sufficient
precision to minimize the effects of programmer variabiiity.

3-4

Evaluation via Test Programs

Moreover, resources were not available to define, code, test, and
measure a sighificant set of larger programs.

b. The programs were defined as structured programs, using a PL/I-like
Program Definition Language (PDL) and then “"hand translated” into
the assembly languages of the respective architectures.

C. Programmers were not permitted to make algorithmic improvements
or modifications, but rather were required to transiate the POL
descriptions into assembly language. Programmers were free to
optimize their test programs to the extent possible with highly
optimizing compiters. This "hand translation” of strictly defined
algorithms was expected to reduce variations due to programmer
skill,

d. All test programs except the 1/O Interrupt test programs were coded
as reentrant, position-independent (or self-relocating) subroutines.
This was believed to be consistent with the best contemporary
programming practice and provides a good test of an architecture’s
subroutine and addressing capabilities.

2.3. Sejection of the Twelve Test Programs

The CFA committee appointed a subcommittee responsible for developing a set
of test program specifications consistent with the guidelines just discussed. This
subcommittee defined a set of 21 test programs that were intended to be broadly
representative of the basic types of operations performed by military computer
systems. The CFA committee reviewed these 21 test programs, committee members
were asked 1o rank the relevance of these test programs to the applications of their
particular organization, and it was agreed that the top 12 programs would be the basis
of the test program study. (The rationale for using 12 test programs is explained in
Section 4, where the statistical design of the test program assignments is presented.)
The full specification of the 12 selected test programs is given in [FulS76b] and a briaf
description of these test programs is given below.

A. 1/Q kernel four priority levels, requires the processor to field

interrupts from four devices, each of which has its own priority level.

While one device is being processed, interrupts from higher priority
devices are allowed.

3-5

Evaluation via Test Programs

B. 1/O kernel, FIFQ processing, also fields interrupts from four devices,
but without consideration of priority level. Instead, each interrupt
causes a request for processing to be queued; requests are
processed in FIFO order. While a request is being processed,
interrupts from other devices are allowed.

C. 1/O device handler processes application programs’ requests for 1/0
biock transfers on a typical tape drive, and returns the status of the
transfer upon completion.

D. Large FFT computes the fast Fourier transform of a large vector of
32-bit fioating point complex numbers. This benchmark does
exercise the machine’s floating point instructions, but principally
tests its ability to manage a large address space. (Up to one half of
a million bytes may be reguired for the vector.)

E. Character search, searches a long character string for the first
occurrence of a potentially large argument string. It exercises the
ability to move through character strings sequentiaily.

F. Bit test, set, or raset tests the initial value of a bit within a bit string,

then optionally sets or resets the bit. It tests one kind of bit
manipulation.

G. Runge-Kutta intesration numerically integrates a simple differential
equation using third-order Runge-Kutta integration. It is primarily a
test of floating-point arithmetic and iteration mechanisms.

H. Linked list insertion inserts a new entry in a doubly-linked list. It
tests pointer manipulation.

L. Quicksor! sorts a potentially large vector of fixed-length strings
using the Quicksort algorithm. Like FFT, it tests the ability to
manipulate a large address space, but it also tests the ability of the
machine to support recursive routines.

J. ASCI to floating point converts an ASCII string to a floating point
number. It exercises character-to-numeric conversion.

K. Boolean malrix transpose transposes a square, tightiy- packed bit
matrix. 1t tests the abiiity to sequence through bit vectors by
arbilrary increments.

L. Virtual memory space exchange changes the virtual memory mapping
context of the processor.

The specifications, written in the Program Definition Language, were infended to

Evaluation via Test Programs

completely specify the algorithm to be used, but allow a programmer the freedom to
implement the details of the program in whatever way best suited the architecturs
involved. For example, in the ASCII-to-floating-point benchmark, program J, the PDL
specification included the statement:

NUMBER « integer equivalent of characters POSITION to J-1 of Al whers
character Jof Al is "."

This description instructs the programmer to convert the character substring
POSITION, POSITION +1,..,J-1, to an integer and store the result in the integer NUMBER.
It teft up to the programmer whether he would sequence through the string character-
by-character, accumulating an integer number until he found a decimai point, or
perhaps (on the S$/370) use the Translate-and-Test (TRT) instruction to find the
decimal point, and then use PACK and Convert-to-Binary (CVB} to do the conversion..
It did forbid him to accumulate the result as a fioating point number directly, forcing
him to first convert to an integer and then to floating point.

2.4. Procedures for Writing, Debugging, and Measuring the Test Programs

The test programs were written by seventeen programmers at various Army and
Navy laboratories and at Carnegie-Mellon University. A set of reasonably
comprehensive instructions and conventions were needed to insure that the various
programmers produced results that could be compared in a meaningful way. Section 4
of this article discusses the assignments made to the programmers, and shows how
these assignments were made to minimize the distortion of the final conclusions due to
variations between programmers. In addition, we aiso agreed that it was not sufficient
to just write the test programs in assembly language. We instructed each programmer

that all of the test programs that he wrote had to be assembled and run on the

3-7

Evaluation via Test Programs

appropriate computers. Test data was distributed to the programmers, and a test
program was defined to be debugged for the purposes of the CFA committee’s work if

it performed correctly on the test data.

3. 5, M and R: Measures of an Architecture’s Performance

Very little has been done in the past to quantify the relative (or absolute)
performance of computer architectures, independent of specific implementations.
Hence, like it or not, we had little choice but to define measures of architecture
performance for ourselves.

Fundamentaliy, performance of computers is measured in units of space and time.
The measures that were used by the CFA Committee to measure a computer
architecture’s performance on the test programs were:

Measure of Space
S: Number of bytes used to represent a test program.

Measures of Execution Time:

M: Number of bytes transferred between primary memory and the
processor during the execution of the test program.

R: Number of bytes transterred among internal registers of the
processor during execution of the test program.

All of the measures described in this section are measured in units of 8-bit
bytes. A more fundamental unit of measure might be bits, but we faced a number of

annoying problems with respect to carry propagation and fieid alignment that make the

% The exceptions were test programs A, B, C, and L since they all require the use of
privileged instructions and it was impractical to require programmers to get stand-
alone use of all the candidate machines. In these four cases, an "expert" on a test
program was designated and he was responsible for reading in detail all
implementations of the test program and returning the test programs to the
programmer for correction if he detected any errors.

3-8

Evaluation via Test Programs

measurement of S, M, and R in bits unduly complex. Fortunately, all the computer
architectures under consideration by this committee are based on 8-bit bytes (rather
than 6, 7, or 9-bit bytes) and hence the byte unit of measurement can be conveniently
applied to all these machines.

3.1. Test Program Size

An important indication of how well an architecture is suited for an application
(test program) is the amount of memory needed to represent it. We define Si,j,k to be
the number of 8-bit bytes of memory used by programmer i to represent test program
j in the machine language of architecture k. The S measure includes ali instructions,
indirect addresses, and temporary work areas required by the program.

The only memory requirement not included in S is the memory needed to hold
the actual data structures, or parameters, specified for use by the test programs. For
example, in the Fourier transform test program S did not include the space for the
actual vector of complex floating-point numbers being transformed but it did include
pointers used as indices into the vector, loop counters, booleans required by the
program, and save-areas to hoid the original contents of registers used in the
computation.

3.2. Processor Execution Rate Measures

In selecting among computer architectures, as opposed to alternative computer
systems, we are faced with a fundamental dilemma: one of the most basic measures of
a computer is the speed with which it can solve problems, yet a computer architecture
is an abstract description of a computer that does not define the time required to
perform any operation. (In fact, it is exactly this time-independence that makes the

concept of a computer architecture so atiractive!) Given this dilemma, one reaction

Evaluation via Test Programs

might be to ignore performance when selecting among alternative computer
architectures and leave it to the engineers implementing the various physical
realizations to worry about execution speed. However, to adopt this attitude would
invite disaster. In other words, although we were evaluating architectures, not
implementations, it was essential that the architecture selected yield cost/effective
implementations, i.e., the architecture must be “implementable”.

The M and R measures defined below were developed to measure those aspects
of a computer architecture that will most directly affect the performance of its
implementations.

3.3. Processor Memory Transfers

If there is any single, scalar quantity that comes close to measuring the "power"
of a computer system, it is the bandwidth between primary memory and the central
processor(s) [cf. BelC71; GMLC75; StoH75]

This measure is not concerned with the internal workings of either the primary
memory or the central processor; it is determined by the width of the bus between
primary memory and the processor and the number of transters per second the bus is
capable of sustaining. Since processor/memory bandwidth is a good indicator of a
computer’s execution speed, an important measure of an architecture’s effect on the
execution speed of a program is the amount of information it must transter between
primary memory and the processor during the execution of the program. If one
architecture must read or write 2x 108 bytes in primary memory in order to execute a
test program and the second architecture must read or write 106 bytes in order to
execute the same test program, thenm, given similar implementation constraints, we

would expect the second architecture to be substantially taster than the first.

Evaluation via Test Programs

The particular measure of primary-memory/central-processor transfers used by
the CFA Committee is calied the M measure. Mi,j,k is the number of 8-bit bytes that
must be read or written from primary memory by the processor of computer
architecture k during the execution of test program | as written by programmer i.

Clearly, there are implementation techniques used in the design of processors
and memories to improve performance by attempting to reduce processor/memory
traffic, ie., cache memories, instruction lookahead {or behind) buffers, and other
buffering schemes. However, with the intention of keeping our measure of
processor/memory traffic as simple, clean, and implementation-independent as possible,
none of these buffering techniques were considered. At the completion of one
instruction, and before the initiation of the next instruction, the only information
contained in the processor is the contents of the registers in the processor state.

Table 3-1 shows an example of a small IBM S$/370 instruction sequence which
shoutd help to illustrate the calculation of M. The instructions are the basic loop of a
routine for calculating the inner product of two single precision floating point vectors
of length 10.

3.4, Registers Transfers Within the Processor

The processor/memory traffic measure just described is our principle measure
of a computer architecture’s execution rate performance. However, it should not be
too surprising that this M measure does not capture all we might want to know about
the performance potential of an architecture. In this section a second measure of
architecture performance is defined: R -- register-to-register traffic within the
processor. Whereas the M measure looks at the data traffic between primary memory

and the central processor, R is a measure of the data tratfic internal to the centra!

3-11

Evaluation via Test Programs

processor. The fundamental goal of the M and R measures was to enable the CFA
committee to construct a processor execution rate measure from M and R (ultimately
an additive measure: aM + bR, where the coefficients a and b can be varied to model
projections of relative primary memory and processor speeds). An unfortunate but
unavoidable property of the R measure is that it is very sensitive to assumptions
about the register and bus structure internal to the processor; in other words, the
"implementation” of the processor.

The definition of R is based on the idealized internal structure for a processor
shown in Figure 3-1. By using the register structure in Figure 3-1 we do not imply
that this is the way processors ought to be built. On the contrary, the structure in
Figure 3-1 has a much more regular data path structure than would be practical in
contemporary processors. There exist both data paths of marginal utility and non-
existent data paths that, if present, could significantly speed up the processor. This
structure was selected because the very regular data path, ALU, and register array
structure helped simplify our anaiysis.

R: : y is defined as the number of 8-bit bytes that are read to and written from

Py
the internal processor registers during execution of test program j on architecture k

as written by programmer 1.

ALU Oporations. The ALU in Figure 3-1 is aliowed to perform any common integer,

fioating point, or decimal arithmetic operation; increment or decrement; and perform

arbitrary shift or rotate operations.

Only Data Traffic Measured. All data tratfic is measured in R and no control traffic

measured. Figure 3-1 is intended to specify what will be defined to be control tratfic

3-12

Evaiuation via Test Programs

and what will be data tratfic for the purposes of the R measure. The R measure does

not count the following "control” traffic:

(1) The setting of the condition codes by the ALU {or control unit) and -
the use of the condition codes by the ALUL. The only time that
movement of data into or out of the Program Status Word will be
counted in the R measure is when a Load PSW instruction is

performed or a trap or interrupt sequence moves a new PSW into or
out of the PSW register.

(2) Bits transmitted by the control unit to activate or otherwise control
the register file, ALU, or memory unit, are not counted in the R
measure.
(3) Reading of the Instruction Register by the control unit as it decodes
the instruction to determine the instruction execution sequence is not
counted in the R measure. In other words, the Instruction Register
(with the exception of displacement tields) will be for most practical
purposes a write-only register as far as the R measure is concerned.
(4) Loading the Memory Address Register is counted in the R measure,
but use of the contents of the Memory Address Register to specify
the address of data to be accessed in primary memory is not
counted.
Virtual Address Translation. The virtual to real address translation process is not
counted in the R measure. In other words, the final memory address in the MAR is a
virtual address and the work involved in translating this virtual address to a real
address is not included in the R measure.
The definition of the R measure was the center of considerable discussion within
the CFA committee. The full set of rules that are necessary to completely detine the R
measure is too voluminous to present here; readers interested in the details of the R
measure are referred to Volume 111 of the CFA Selection Commitiee’s final report

[Fuls76b]. Figure 3-2 illustrates the calculation of the R measure for an IBM/370 add

instruction.

3-13

Evaluation via Test Programs

4, Statistical Design of Test Program Assignments

The test program phase of the CFA evaluation process involved comparison of
twelve test programs on three machines. Approximately sixteen programmers were
available for the study and a compliote factorial design would have required each
programmer to write all of the test programs on each of the machines (for a total of
676 programs). This was clearly not feasible with the given time and resource
constraints, and, consequently, a fractional design (or several fractional designs) had to
be selected. Fractional factorial designs are discussed by [DavO71), eg. The
fractional designs to be described below incorporate balance in the way test program,
machine, and programmer combinations are assigned.

It was necessary to consider designs which required each programmer to write
test programs for all three machines. Otherwise, comparisons among the machines
could not be separated from comparisons among the programmers. A desirable design
would have instructed each programmer to write a total of six or nine different test
programs, one third of them on each of the three machines. For most of the
programmers in the study time limitations preciuded this type of design, and some
compromise was required. The compromise design selected aiso had to allow for
precise comparisons among the three competing architectures. A typa of design that
meets both of these objectives is the nested factorial [AndV74, e.g.}

The test program part of the study actually invoived the use of three separate
experimental designs, henceforth referred to as Phase I, Phase II, and Phase III
Nested factorial designs were used for Phase I and Phase [Il. Phase 1l was a one-third
fraction of a 34 factorial design. Phase | was used to study test programs A through

H, those deemed to be of primary interest. Phase Il was used to study test programs

Evaluation via Test Programs

1 through L. Phase Il inciuded test programs A-B, E-H, and J-L. Plans of the three
designs are depicted in Figure 4-1.

The Phase 1 design is a pair of nested factorials, each involving four
programmers. Each programmer was ashed to write two test programs for all three
machines. Each of the eight test programs in Phase I appears once on each machine in
each of the nested factorials. When this design was originally formulated, the plan
included requiring programmers to write their six test programs in a preassigned
randomly selected order, so as to eliminate possible biases due to learning during the
course of completing the assignments. This procedure was discarded, however, when
the programmers objected because of the varying availability of the three machines
for debugging. Programmers were instructed to compiete the assigned jobs in
confarmity with their typical practices and working habits with regard to order,
consuitation with other individuals, and other such considerations. Programmers in the
study were not permitted to consult with each other, however, on any substantive
matters concerning their designated assignments. All programmers were instructed to
keep diaries of their work on the experiment.

As noted above, the Phase | design was formulated with the goal of obtaining
maximum possible information about differences between the competing architectures.
With the given Phase | design, comparisons among the thres architectures are not
confounded by effects of either test programs or programmers, The Phase | design
called for 48 observations and was viewed as the most important of the three designs
formulated.

The design termed Phase Il was formulated according to the same plan as was

Phase 1, except that four test programs and four programmers were utilized. The

3-15

Evaluation via Test Programs

Phase Il design contains half as many observations as the Phase 1 design and thus
gives statistical results of less precision. The test programs in the Phase Il design are
of lesser interest than those in Phase 1. The four programmers in Phase Il are distinct
from the eight in Phase L

Together the Phase I and Phase 1il designs provide a view of all three machines
and the operation of all twelve test progrems selected tor consideration. A third
experiment, labelled Phase I, was also planned . This was viewed as an auxiliary effort
and was to be completed only if it was clear that the programmers assigned to it
would not be needed to aid in the completion of Phase | and Phase {Il. The Phase Il
design called for three programmers to write nine different test programs, three on
each of the three machines. The programmers assigned to Phase [were able to
devote enough time to the test program study to permit use of a design which
required them to write nine different programs. Some comparisons among programs
not possible in Phase | and Phase 11 could be made, and the statistical results of Phase
I could be compared to those of the other two experiments. The design used was the
3.4.3 plan in [ConW58]. This was made possible by dividing the factor representing
test programs, which appears at nine levels, into two pseudofactors (see [AndV74]},
each at three levels. One of the Phase 1l programmers also participated in the Phase |
design. The only duplicate assignment, however, was test program G on the IBM

§/370.

5. Analysis_of Test Program Results

This section describes the experimental results and statistical analysis of the

test program data. We shall first discuss the Phass | experiment, then the Phase I

Evaluation via Test Programs

experiment, and then the analysis combining data from Phase 1 and Il Finally, the
Phase 1l experiment will be described.

5.1. Phase] Modeis

A possible model for the nested factorial designs in Phase I is
Yijk-C+Pf +Tij +Mk +PMik+TMijk+eijk (5.1)
i=1,234j=12k=123

In this equation Yijk is some response (i.e, on S, M. or R measure) generated by the

ith programmer writing the jth test program on the kth machine. Also,

c = constant, termed the grand mean

f = effect due to the ith programmer

Tij = effect of the jth test program assigned to the ith programmer

My = effect of the kth machine

PMiy = interaction between the ith programmer and the kth machine

TM“-R = interaction between the jth test program written by the ith
programmmer and the kth machine

€iik = a random error term, assumed to be normally distributed with
mean O and variance nol dependent ont the values of i, j, and k.

The Phase | experiment may also be modelled in a manner somewhat different
from that just described. In Phase | there are two factors at eight levels each,
programmers and tesl programs, and one factor at three levels, machines. The two
eight-level factors may each be replaced by three pseudofactors at two levels each.
Then we are concerned with a complete factorial experiment involving 3126 « 192
total observations. The actual Phase I experiment is a 1/4 fraction of this. A model
may be fit using dummy variables to account for various effects and interactions.

B.2. Transformation ot the Data

Examination of the S, M, and R data values collected clearly shows there is wide
variation in the data from one test program to another, e.g., especially for the M and R

measures. Various statistical considerations suggest that some transformation of the

Evaluation via Test Programs

raw data prior to analysis is desirable. A technical discussion of transformation of
statistics is given by [RaoC73), who illustrates use of the methodology in various
contexts.

In the CFA study the purpose of a transformation of the data is to stabilize
variance, so that an additive model such as (5.1) will hold for each of the designs.
Specifically, the model (5.1) assumes that the variance of the error term €jjk is
independent of i, j, and k. Under this assumption inferences which follow from analysis
of variance (ANOVA) calculations, as described below, are valid.

A variance stabilizing transformation is frequently suggested by consideration of
the experimental situation and prior understanding of the variation to be expsacted in
the data. For example, consider the M and R measures. Suppose some programmers
each write two test programs and the average run time of the second one is k times
the average run time of the first, Then if the standard deviation of the M or R
readings is V for the first test program, it can be expected to be proportional to kV
for the second test program. In other words, the variability (standard deviation} in run
times is directly proportional to the average run time. The accuracy of this conjecture
may be tested by examination of the data, but clearly there is strong intuitive support
for it. Consider the Runge-Kutta test program. Its M and R measures are dominated
by the computation of the inner loop perfarming the step-wise solution of the
differential equation, Variations in M and R measures will be a result of alternative
encodings of this inner loop. Average M and R measures will be doubled if the number
of iterations requested is doubled. Moreover, doubling the number of iterations will
also cause the differences between the different Runge- Kutta programs to double,

When the standard deviation of the test data is directly proportional to the mean, a

3-18

Evaluation via Test Programs

logarithmic transformation will stabilize the variance, that is, remove the dependence of
the variance on the size of the test program [RaoC73, Section 6g.1].

The model of (5.1} may be termed an additive model. When a logarithmic
transtormation is used for the data, Yijk in (8.1) becomes the logarithm of the

response, such as the M or the R reading. In this case a multiplicative model in fact

underlies {5.1} and we write

i UXT T R TR TR S
(3.2,
i b 1:2:3341 .j L4 1,2. k & 1!2’3'

The connection between (5.1} and (5.2) is
1
n :iJk | 3 yiJK.
Inx =g,

mn, =P,

In Ti.i = ‘r”.
1n P = Hl('

In i © mik'
" TGk T ™
1

n e jk = eljlt'

Thus, use of the logarithmic transformation on both sides of {5.2) yields (5.1), and the

muitiplicative model (5.2} may be viewed as the meaningful basic underlying model.
Similarly, consideration of the underlying properties of the S measure suggest a

square root transformation is appropriate to stabilize its variance. This transformation

arises because the variance, rather than the standard deviation, of the S measure can

be expected to .be proportional to kV (See [FulS76b]). Use of the square root

transformation would imply use of the model in (6.1) with Yijk denoting the square root

of the measured § value.

Evaluation via Test Programs

It should be noted that the square root and logarithmic transformations are only
two of a large number of possible transformations. A particular family of
transformations takes a response z and transforms it according to z® for an a > 0.
With an appropriate interpretation, the logarithmic transformation corresponds to the
limiting value a = 0. This family of power transformations is discussed in detail by
[Box(G64].

5.3. Statistical Analysis of Phase | Data

ANOVA calculations were performed on both halves of the Phase [experiment
for JS, In M, and In R values. In gach analysis the sample variance of the 24 values
was decomposed into sums of squares attributable to variations among programmers
test programs, machines, programmer- machine interactions, and test program-machine
interactions. The proportions of the total variance due to the various sums of squares
are given in Table B-1 ot [Ful$76]. The ANOVA calculations indicate that test program
and programmer variations account for most of the variation in the data in the case of
the M and R measures, and that machine differences are relatively small. Machine
differences are more noticeable for the S measure.

Using dummy variables, we also fit models using the formulation discussed at the
end of Section 5.1. In each model 24 parameters were fit, leaving 24 degrees of
freedom to measure experimental error. Estimates of the variance of the error term in
the model (5.1) are 18.175, 0.377, and 0.400 for S, In M, and In R, respectively. The
actual data values for the S, M, and R measures are given in the Appendix, and these
estimates of variance reflect the magnitude of the experimental error companent in the
model {(5.1). Table 5-1 shows estimates of various machine comparisons for the Phase

I data. A 957 confidence interval is quoted below each estimate. The 957 confidence

3-20

Evaluation via Test Programs

intervals which do not cover the value O correspond to comparisons statistically
significant at level 0.05(=1-.95). Thus at level .05 the Interdata 8/32 is superior to
the IBM S/370 on ail measures. The PDP-1] is adjudged superior to the IBM $/370 at
level .05 on two of the measures and barely misses being superior when VS is
considered. Moreover, the IBM $/370 is inferior to the average performance of the
other two machines on all measures. It is worth noting that these comparisons among
the competing architectures are based upon consideration of test programs A through
H only. It is reasonable, however, to view the eight programmers in Phase | as
representative of a larger population of programmers.

Table 5-2 displays estimates of the effects My and M for the various measures.
The H, estimales are obtained by exponentiating the estimates of M, and eare
appropriate for the logarithmic models only. Estimates have been included for
architecture comparisons obtained from the model (5.1) with the response In §. These
are also given in Tables 5-4 and 5-6 below. Use of the In § model leads to estimates
which are qualitatively simitar to those obtained from the ¥yS model, and it permits
more convenient comparisons of the three architectures. Since the effects noted in
Table 5-2 are differential values, a value of 0 is neutral for My and a value of 1 is
neutral for M. The tiguras in Table 5-2 are consistent for the different measures and
transformations. The IBM $/370 is noticeably worse than the other two architectures.
For all but the in R response, the Interdata 8/32 appears to be modestly better than
the PDP-11.

One may interpret the last three lines of Table 5-2 in the following way. The
in M measure results indicate the IBM §/370 requires 156.77 as many

processor/memory transfers to "execute” programs A through H as the average of the

3-21

Evaluation via Test Programs

three machines, while the PDP-11 and Interdata 8/32 require 79.57 and 80.9%,
respectively.

5.4. Phase [II Modeis and Results

The models for Phase IIl experiments are the same as in (5.1) and (5.2}, except
that the subscript i assumes the values | and 2 only. Estimates of the variance of the
error term in the Phase lII version of model (5.1} are based on eight degress of
freedom and are 18.606, 0.374, and 0.308 for VS, In M, and In R, respectively.

Table 5-3 is the analog of Table 5-1, and Table 5-4 the analog of Table 5-2.
None of the confidence intervals shewn in Table 5-3 fails to cover the value 0.
Howe\{er, it is apparent that the PDP-11 performed noticeably worse than the other
two machines in Phase IIl. Also, there is very little difference between the 1BM $/370
and the Interdata 8/32 in Phase 1L

The relatively poor performance of the POP-11 in Phase 1l appears to be due
to its inability to handle test program I, quicksort. Certainly part of the explanation
for the poor performance of the IBM S$/370 in Phase 1 can be attributed to test
program A, 1/0 kernel with four priority levels. In the next section results from Phase
| and Phase 1l are combined to produce overall estimates of machine effects and
overall comparisons of the machines.

5.5, Combination of Phase | and Phase IIl Resuits

Let ©; denote an estimate of a machine effect or comparison, such as M) or Mg-
My, in Phase I Let By denote the estimate of the same effect or comparison in Phase
[Il. In the previous two sections such estimates were given, as well as some
confidence intervals. The purpose of this section is to present estimates of the form

u(.el + (1-0{.)6111 {5-3)

3-22

Evaluation via Test Programs

where o¢ is chosen o minimize the variance of the resulting linear combination and 0 <
ot < 1. Table 5-5 shows estimates of machine comparisons and 957 confidence
intervals. The value of o« for each column in the table is given along the top border.
In all columns more weight is given to the Phase I data. Table 5-6 gives estimates of
machine effects with Phase I and Phase ! data combinéd,

All of the confidence intervals for My-M, in Table 5-5 fail to cover the value
zero. Thus, the evidence suggests that the Interdata 8/32 performs better than the
IBM S/370 on all three measures, 5, M, and R. Also, the IBM $/370 tends to be worse
than the average of the other two machines,

The estimates of M, in Table 5-6 provide a summary of the Phase I and Phase III
data. The 1BM S5/370 requires 120.87 as much storage as the average of all three
machines for the twelve test programs studied. According to the In M measure
estimate, the IBM S/370 required 126.67 as many processor/memory transfers to
"execute” the test programs as the average of the three machines. The other figures
in the lower part of Table 5-6 are interpreted similarly.

5.6. Phase Il Models and Results

Analysis of variance calculations were performed on data arising from the Phase
Il design. Some of the results for responses VS, In R, and In M are summarized in
Table 5-7. This table indicates the proportions of the total variance attributable to
various sums of squares. The variance was split into sums of squares each with two
degrees of freedom. Since two of the factors in the design were in fact pseudofactors
at three levels each to account for the nine test programs, several sets of sums of
squares were combined. There is some aliasing in the design involving the second-

order interactions.

3-23

Evaluation via Test Programs

Estimates of differential effects in a model comparable to (5.1) for the three
machines can also be given. For the JS measure they are -.952 for the PDP-11], 1.605
for the IBM S/370, and -.653 for the Interdata 8/32. For the In M measure the values
are -0.691, 0508, and 0.183 for the machines quoted in the same order, and the
figures are -.662, 538, and .123 for the In R measure. Thus, the experimental results
for this phase tend to rank the machines with the PDP-11 first by a substantial margin,
and the Interdata 8/32 ranks second. However, it should be noted that test program A

was included in the Phase Il design, and test programs D and I were not.

6. Summary

This article has described how the test program phase of the CFA study was
developed, what methodologies were used, and what were the results of the study.
We began with a discussion of the twelve test programs used in this study and how
the CFA committee selected these twelve from a larger set of test programs as most
representative of the expected applications of miiitary computers. A Program Definition
Language (PDL) was used to clearly specify these test programs so that it was clear to
the programmers exactly what aigorithm was to be implemented yet aiso indicate to
what extent we expected the programmer to optimize the coding of the test programs
to take advantage of the features ot the architecture under test.

Section 3 of this arlicle defined the three measures of performance used to
evaluate the candidate computer architectures on each test program:

S: The number of bytes used to represent a test program

M: The Number of bytes transfered between primary memory and the
processor during execution of the test program

R: The number of bytes transfered among internal registers of the
processor during execution of the test program

3-24

Evaluation via Test Programs

The test programs were assigned to programmers based on a statistical design
involving three phases, denoted as I, 1I, and 1Il. In Phase I eight programmers were
assigned two test programs to implement on each of the three machines. Phase Il was
a smaller version of Phase I, involving only four programmers. Phase Il was a
somewhat more complex design that involved each of three programmers writting nine
different test programs, three on each machine. Phase Il was intended to give some
information on the interaction between particular test programs and machines that was
not availabie with much precision from Phases [and IlI.

The principal results of the test program study that were passed along to the
life-cycle cost models [CorJ77] was the composite performance of the candidate
architectures for phases | and Il on the set of 12 test programs. An analysis of
Variance (ANOVA) procedure was used to determine the overall relative performance
of the three candidate machines, as shown in Table 6-1. Unity indicates average
performance and the lower the score on any of the measures, the better the machine
handled the set of test programs.

In other words, the test program results indicate that the IBM $/370 needs 467
more memory than the Interdata 8/32 to represent the set of test programs (or 217
more than the average of the three architectures) and the PDP-11 is essentially
average in its use of memory.

Considering the test program results in a little more detail, in Phase I the data
revealed the IBM 5/370 to be significantly worse than the other two machines on S, M,
and R measures at a significance level of 0.05 (i.e. the 957 confidence intervals all
failed to include the point where the IBM S/370 equals the performance of the other

machines). Moreover, the overall performance of the PDP-11 was virtually identicai to

3-25

Evaluation via Test Programs

that of the Interdata 8/32. Some par! of the poor performance of the IBM S/370 can
be traced to test program A (the priority 1/0 kernel). In Phase III alone, none of the
comparisons among the three machines was significant at the 0.05 level because of the
small number of data points (24). However, the POP-11 was noticeably the worst of
the three machines on all three measures. The IBM $/370 dominated the Interdata
8/32 with regard to the M measure, the Interdata was better for the S measure, and
there was little difference between the two for the R measure. The relatively poor
performance of the PDP-1]1 appeared to be due to the quicksort test program, test
program I, which worked with a list much larger than the 64k byte virtual address
space of the PDP-11.

Statistical results from Phases | and Il were combined. In this analysis the
ranking of the three machines from best to worst on the three measures was:
Interdata 8/32, PDP-11, and IBM §/370. The average performance of the three
architectures in Phases | and Il is given in Table 6-1.

The outcome of Phase Il largely corroborates the resuits of the other two
experiments. The ranking of the three machines, from best to worst is: PDP-11,
Interdata 8/32, I1BM $/370. This ranking prevails for all three measures, 5, M, and R.
It is important to recall {(See Table 4-1) that Phase Il included test program A, for
which the IBM S/370 performs relatively poorly, and does not include test programs D
and I, which are relatively difficuit to implement on the PDP-11, because they have
large data structures. Because of the magnitude of the experimental error in these
test programs and the relatively small number of data paints in Phase Il (27}, we wero
not able to detect any test program/architecture interactions that were statistically

significant.

Acknowledpements

3-26

Evaluation via Test Programs

During the specification of the test programs and development of the S, M, and R
measures, we had heipful discussions with many individuals related to the CFA project.
Mario Barbacci, Lynn DeNoia, Robert Gordon, David Parnas, John Shore, Daniel
Siewiorek, and William Smith. We are especially indebted to a group of graduate
students at Carnegie-Mellon University who proved crucial to the successful
completion of the full set of test programs. Three of these students, Navindra Jain,
George Mathew, and Leland Szewerenko were particularly heipful through their

continued effort on behalf of this project.

7. Appendix A - S, M, and R Measures for Each Test Program

On the foliowing pages are actual measurements for each of the test programs
written for the CFA program. The unit of measurement for all data is (8-bit) bytes.
The number in brackets following each measurement is the identifying number of the
programmer who wrote and debugged the particular test program. Data followed by
an "A" are auxillary data points. Data followed by a "+" were associated with
programming assignments not completed in time to be used by the CFA Committee and
the pseudo-values shown were used in the ANOVA calculation (when the actual data
points became available at a latter date, insertion of the real values for these

programs had no significant effect on the resuits).

3-27

Evaluation via Test Programs

Test Program

A. Priority 1/0 Kernel

B. FIFO 1/0 Kernel

C. 1/O Device Handler

.D. Large FFT

E. Character Search

F. Bit Test, Set, Reset

G. Runge-Kutta Int.

H. Linked List Insertion

I. Quicksort '

J. ASCII to Fioat-Pt.

K. Boolean Matrix

L. Virtual Memory Exchange

INDIVIDUAL S MEASURES
Computer Architecture

IBM §/370

216 {3]
286 {12]
742 [14]

372 [2]
465 [13]
308 {17]

192 {1}
252 [17]

454 [11]
454 [9)s

104 {11
92 [4)
154 [11]

144 [9)
122 [12]
116 [17]

202 {2]
238 {17]

144 [4)
228 [13]
176 [14)

340 [6]
407 [5]

256 (4]
441 [5]
241 [7]

224 [3]
267 [6]
284 (8]

292 [3]
382 [7]
414 [8]

POP-11

48 [4)
32 [12]
32 {14]

133 2]
124 [3]
246 [13)

132 (1]
216 {17)

766 [11]
766 [9]s

88 [1]
136 [11]
90 [17]

68 [3]
78 [9]
86 [12]

184 [2]
172 [3]
248 [17]

162 [13]
182 [14)
194 [17]

940 [6]
1534 [5]

164 [5]
208 (7]
172 [17)

174 [4)
232 [6]
284 (8]

254 [4)
250 [7]
378 (8]

Interdata 8/32

26 [12]
28 [14]
26 {17]

144 [2]
142 [8)
98 [13]

176 [1]
241 [17]

550 [11]
402 [9]
402 [17]A

120 [1)
144 [3)
168 [11}

82 [4)
90 [9]
98 {11]JA
98 {12]

166 [12]
158 (4)
232 [11]A
190 [17]

148 [3)
198 [13]
164 {14]

426 (6]
524 [5]

206 3]
238 {5)
204 [7]

156 [17]
130 [6]
180 [8]

328 [17]
310 {7]
334 (8]

Evaluation via Test Programs

Test Program

A. Priority 1/0 Kerne!

B. FIFO 1/0 Kernel

C. 1/0 Device Handler

D. Large FFT

E. Character Search

F. Bit Test, Set, Rese!

G. Runge-Kutta Inl.

H. Linked List Insertion

I. Quicksort

J. ASCI] to Float-Pt.

K. Boclean Matrix

L. Virtual Memory Exchange

INDIVIDUAL M MEASURE

IBM 5/370

212 [3)
354 [12]
522 [14]

424 [2]
920 [13]
434 [17]

328 {1]
304 [17]

10810 [11]
10810 [9)s

854 [1]
940 [4]
1724 [11]

378 [9]
358 [12]
238 [17]

141074 [2)
228056 [17]

228 [4]
304 (13}
264 [14]

1024 [5)
1008 [6]

24] {4)
437 {5)
433 [7]

832 [3)
909 6]
896 [8]

532 [3]
532 [7]
645 [8)

Computer Architecture

PDP-11

28 [4]
24 [12]
24 [14]

208 (2]
188 (3]
296 [13]

309 (1]
290 [17]

14746 [11]
14746 [9]s

730 (1]
770 [11]
520 [17]

162 [3)
178 [9]
152 [12)

102662 [2]
94960 (3]
176960 {17]

204 [13]
218 [14]
240 [17]

14960 [5]
2756 [6]

292 (5]
275 [7]
283 [17]

582 [4]
776 [6]
932 [8]

541 {4]
566 [7]
945 [8]

Interdata 8/32

28 [12]
32 [14]
28 [17]

192 [2]
226 [4]
114 [13)

426 [1]
279 [17]

10886 [11]
8560 [9)s
8560 [17]A

958 (1]
1044 [3]
1021 [11]

222 [4]
176 [9]
296 [11]A
276 [12]

100062 [2]
100042 [4]
117984 [11JA
138414 [17]

224 [3)
260 [13]
238 [14]

2968 (5]
1732 [6]

363 [3]

423 [5)
334 [7]

384 [6]
566 [8)
640 (17]

721 7]
1058 [8]
780 [17]

Evaluation via Test Programs

Test Program

A. Priority /O Kernel
B. FIFO 1/0 Kernel

C. 1/0 Device Handler

D. Large FFT
E. Character Search

F. Bit Test, Set, Reset

G. Runge-Kutta Int,

H Linked List Insertion

I. Quicksort

J. ASCI[to Float-Pt.

K. Boolean Matrix

L. Virtual Memory Exchange

IBM §/370

947 [3]
2146 [12]
3052 [14)

2222 [2]
4583 [13]
2226 [17]

1789 [1]
1729 [17]

62904 [11]
62904 [9]¢

5603 [1)
5549 [4)
10239 [11]

1674 [9]

1542 [12]
1212 [17]

845966 (2]

1203952 (17]

950 [4]
1741 [13]
1137 {14]

7618 [5]
7540 [6]

1330 (4]
2578 [5]
2226 {7]

5576 [31]
5661 [6]
5277 (8]

1931 [3]
1934 {7]
2529 [8]

INDIVIDUAL R MEASURES

Computer Architecture

PDP-11

108 (4]
106 [12]
106 [14]

1096 [2]
810 [3)
1419 [13]

1480 [1]
1416 [17]

70512 [11}
70512 [9]s

4348 [1]
4326 (11]
3091 [17]

832 [3]
917 [9]
801 {12]

724372 (2]
665529 [3]

1012727 {17]

1025 [13]
1087 {14]
1210 [17]

74278 [5]
15205 (6]

1726 [5]
1512 {7]
1716 {17]

3180 [4]
3905 [6]
4446 [8]

2616 [4)
2911 (7]
4226 [8)]

Interdata 8/32

166 [12]
166 [17]
214 [14]

698 [2]
937 [4]
482 [13)

1902 1)
1391 [17]

60446 [11]
50045 [9)¢
50045 [17]A

5885 [1)
3139 [3)
5767 [11]

891 [4]
887 [9]
1167 [12}
1281 [113A

696085 (2]
696049 [4)
777846 {11]A
874923 [17]

834 (3]
1049 [13]
965 [14]

13315 [5]
9609 [6]

2100 [3]
2270 [5]
1897 [17]

2216 [6]
3154 [8]
3945 [17]

2539 [7]
4573 (8]
2643 [17]

Evaluation via Test Programs

R Comments
(1) LA 2,10(0,0) Set R2 to 10, the length of the vectors.
(2) LA 3XVEC Load R3 with starting address of X vector.

4
4
(3) LA 4)YVEC 4 Load R2 with starting address of Y vector.
(4) SDR 2,2 2 Clear floating paint reg. 2.

Use it to accumulate inner product,
(5) SR 7,7 2 Clear R7

Use it as index into floating point vectors.

(6) LOOP LE 4,0(7,3} 8 Load X(i) into floating point register 4.

(7) ME 4,0(7,4) 8 Multiply X(i} by Y(i).

(8) ADR 2,4 2 Sum := Sum + X(i) = Y{).

(9) LA 7,8(0,7) 4 Increment index by 4 bytes.

(10} BCT 2,L00P 4 Decrement loop count and branch back if not done
26 (Loop Total)
260 (Loop (6-10)¢ 10)

(11) STO 2,5UM 12 Store double precision result in SUM

2B8 Grand Total

Table 3-1. M Measure for IBM 370 Inner Product Example

Primary

Momory

—————

General Purpose

Register File

Accumulators,
Base Registors,
Indlox regislors,
Temporarias,

Reod dals
from memory

Wrile data
to memory

-_—

sic.

-

LEGEND

——w Data Path

~ Control Path

A B Inpuls to

Innlruction Rag

Mp Addrass Rog

1= AL and dost. |
F - ———- -+
--p

Processor’s

Control
Unit

Program Countor

Program Sistus

- o - -

Arithmelic &
Logic Unit

Conlrol Momery Qperations

— s o mm am v e o e Sm e e

Figure 3k Canonical Processor Architecture

. e = R e e = = m -

Evaluation via Test Programs

RX ' TRUCTION RPRETAT
R Comment

IR<0:15> « Mh{MAR] 2 Get halfword in instruction register
MAR « MAR + 2 3 Incrementation counts only 1 byts
IR<15:31> « Mh[MAR] 2 Get rest of instruction in IR
PC«PC+4 3 Increasing Program Counter
address interpretation -
instruction execution -
MAR « PC 6 Set up MAR for next instruction
TOTAL i6

RX_ADDRESS CALCULATION

1.B2=0,X2=0
MAR & IR<20:31>

2.B2=0,X2>0
MAR ¢« IR<20:31> + R[x2]<8:31>
3.B2>0,X2=0
MAR « IR<20:31> + R[B2]<8:31>
4.8B2>0,X2>0
MAR « IR<20:31> + R[B2]<8:31>
MAR « R[x2] + MAR

TOTAL

R

8

8

8
9

17

Comment

Read 12 bits from the IR

Add 12 bits from IR to 24 bits from index

Full 24 bit (3 byte) addition

EXAMPLE INSTRUCTIQN: A R4,DISP(R2,R7)

RX Add Instruction

RX instruction interpretation
address interpretation

MBR « Mw[MAR)

R{R1]) « R[R1] + MBR

TOTAL

R

16
17
4

12

43

Figure 3-2. IBM S5/370 R Measure Example

Test Program
Phase Programmer A B C D E F G H I J K L

I 14 all all
1 all all

2 all ' all

9 all all

11 all all
12 all all

13 all all

17 all all

3 370 11 832 11 11 832 832 370 370
11 4 11 832 370 832 832 370 370 11 11

17 832 370 11 370 370 11 11 832 832

5 all all

8 all all

11T
6 all all

7 all all

Figure 4-1. Layouts of Phase I, II, and III Designs

Pall" designates all three machines

Comparison of

Measure

Machines NS In M in R

My - My - .586 .018 .012
(-3.696,2.524) | (-.430,.466) (- .449, .674)

My - M, -3.535 -.655 -.717
(-6.645,-.425) | (~-1.103,~.207)| (~1.178,-.255)

M, - M, 2.949 .673 .729
(-.161,6.059) (.225,1.121) (.267,1.191)

1

S MMM, -3.242 -.664 -.723

MI:
Mz:
H3:

model (5.1):

effect
effect

effect of Interdata 8/32

(-5.936,-.548)

of PDP-11
of IBM 5/370

Table 5-1,

(-1.052,-.276)

(- 1.122 e '323)

Estimates of Machine Comparisons and

95% Confidence Intervals, Phase I

Measure MEI In S In M In R

Machine Effects

My -.788 -.148 -.230 =.247
M, 2.161 .354 443 482
¥, -1.374 -.205 -.212 -.235
Hy .862 .795 .781
Ha 1.425 1.557 1.619
M3 <815 .809 791

Ml, ul: effects for PDP-11
My, byt effects for IBM s/370

My, uy: effects for Interdata 8/32

Table 5-2. Estimates of Machine Effects in Models (5.1) and (5.2), Phase 1

Comparison of

Measure

Table 5-3.

Machines S In M ln R
- -3.806 -.295 -.348
My
(-8.780,1.168) | (-1.000,.410) (-.988,.291)
M,-M, -1.585 .099 -.027
(-6.559,3.389) | (-.606,.804) (- .666,.613)
- '2-221 "0394 -c321
My-¥y

1
E(MI+H3)-H2

Mlz effect of PDP-11

("7 .195'2 .753)
.318

(-3.990,4.626)

M,: effect of IBM s/370

My: effect of Interdata 8/32

(-1.099,.311)
.247

(~.364,.858)

(-.960,.318)
147

(-.407,.701)

Estimates of Machine Comparisons and 95% Confidence Intervals,

Phase III

Measure aﬁg In § In M In R

Machine Effects

M, 2.009 .133 .229 .223
M, -.212 .042 -.165 -.098
M, ~1.797 -.174 -.066 -.125
™ 1.142 1.257 1.250
By 1.043 .848 .907
by .840 .936 .882

Ml’ Byt effects for PDP-1l
H2. Mo ¢ effects for IBM S/370

H3. By effects for Iaterdata 8/32

Table 5-4. Estimates of Machine Effects in Models (5.1) and (5.2), Phase IIX

Compar ison casure N3 In M In R
of Machines o= 67 o= .66 o= ,61
M- My -1.649 -.088 -.128
(~4.119,.821) (-.442,.266) (-.517,.261)
My-M, -2.892 -.399 -.448
(-5.362,~.422) | (~.753,-.045) | (-.837,-.059)
M,-M, 1.243 .310 .320
(-1.227,3.713) | (-.044,.664) (-.069,.708)
%(MI+M3)-M2 -2.067 -.354 -.384
(-4.207,.073) (-.661,-.047) | (~.721,-.047)

M.: effect of PDP-11

M2: effect of IBM §/370

effect of Interdata 8/32

Table 5-5. Estimates of Machine Comparisons and 95% Confidence Intervals,

Phase I and Phase III Data Combined

Measure VS In S in M In R

_Machine Effects o= .67 o= 47 ¥ = .66 o= .61

My .135 .001 .075 . 064
M, 1.378 .189 .236 .256
My ~1.514 -.189 -.163 -.192
ky 1.001 .928 .938
Hy 1.208 1.266 1.292
Ha .828 .850 .825

Ml’ Byt effects for PDP-11
My, py: effects for IBM S/370
M, Wy effects for Interdata 8/32

Table 5- 6. Estimates of Machine Effects in Mocdels (5.1) and (5.2)
Phase I and Phase III Data Combined ’

Measure VE ln M ln R

Sum of Squares Degrees of freedom

Programmers 2 .027 .018 .026

Test Frograms 8 .623 .653 .660

Machines 2 .132 .076 .068

Programmers 2 .039 053 . 047
X Machines

Test Programs 8 .132 124 121

X Machines
Test Programs 4 047 .076 .078

X Programmers

Table 5-7. Phase II ANOVA Calculations
Proportion of Variance Attributable to Each Sum of Squares

Evaluation via Test Programs

ARCHITECTURE S M R

PDP-11 1.00 0.93 0.94
IBM 5/370 1.21 1.27 1.29
Interdata 8/32 0.83 0.85 0.83

Table 6-1 Average Performance of the Architectures on the 12 test Programs.

AN ARCHITECTURAL RESEARCH FACILITY:
ISP DESCRIPTIONS, SIMULATION, DATA COLLECTION

Mario R. Barbacci
Carnegie-Mellon University and
Naval Research Laboratory

Daniel P. Siewiorek
Carnegie-Melion University and

Navai Research Laboratory

Robert Gordon
Naval Underwater Systems Center

Rosemary Howbrigg
Naval Underwater Systems Center

angd

Susan Zuckerman
Naval Research Laboratory

Architectural Research Facility

TABLE QF CONTENTS

SECTION PAGE

1 Introduction L e e e i
2 A Typical ISP Description o000 e e 3
3 Abstractions and Implementation Dependencies 5
3.1 Abstractions Lo e 5

3.2 Implementation Dependencies N

4 The Architecture Research Facility 9
4.1 Debugging e e e e e e e e e e 10

4.2 Preparation of Simulation Tests L. 10

4.3 Instrumentation 0L Lo Lo Lo Lo 11

4.4 Artificial Labels in the ISP Descriptions 12

5 Architecture Parameters L. 00000 13
6 Advantages of an Architectural Research Facility 17
6.1 A Simulator as a Training Toel 17

6.2 Architecture Evaluation L0000 L. 17

6.3 Experimentation i8

6.4 Machine Relative Software 18

Architectural Research Facility

ABSTRACT

The objectives of this paper are twofoid. In the first place we discuss some
issugs related to the formal description of computer systems and how these issues
were handled in a specific project, the selection of a standard computer architecture
for the Army/Navy Computer Family Architecture (CFA) project. The second purpose
is to present a methodology for automatically gathering architectural data which can be
used for evaluation and comparison purposes. We will not discuss the rationale behind
the selection of specific test programs and the statistical experiment set up to
ascertain the influence of the programmers, the test programs, and the machine

architecture on the results. These issues belong in a companion paper,
1. Introduction

There have been many attempts to specify computer architectures in some
formal notation, The CFA project included, to our knowledge, the first attempt to
describe the complete instruction set of several iarge, commercially available
architectures. The candidate architectures were the IBM $/370, DEC PDP-11, and the
Interdata 8/32. The experiment described in this paper invoived the preparation of
formal computer descriptions, the execution of machine ianguage programs under an
instrumented simulator, and the collection of data used to evaluate the architectures.
Three aspects of the experiment are important to observe: 1) We did not implement
specific simulators, taillored for each architecture; the system used in this project is a
general purpose computer simulator driven by a formal machine description, 2) We

executed a large number of test programs ¥, each ranging from less than a dozen

* A total of 114 simulation runs were executed. They correspond to a total of 70
different programs (some of which called for several test cases, in other instances a
test case had to be divided into separated sub-cases.) The 70 programs were divided
as follows: 26 for the PDP-11, 22 for each of the IBM S$/370 and Interdata 8/32.

4-

Architectural Research Facility

instructions to several hundred instructions, 3) We used real programs that had been
executed on actual physical machines and then used to initialize the simulators.

The Naval Research Laboratory selected ISP [BelC71] as the notation to formally
describe the candidate machines. This decision was based on the availability of
expertise and software support at CMU and in the fact that ISP was better suited than
other candidate notations for describing a computer architecture, indepandently of
timing and other implementation issues * . This however, does not imply that ISP is
free of blemishes. Some of its virtues and defects are discussed in [BarM75] In this
paper we will point out some characteristics of the notation that prevent a complete
separation between architectural and implementation details.

Volume IV of the final report of the CFA committee [BarM76b] includes the ISP
descriplions of the three candidate architectures and more information about the
writing and debugging of ISP descriptions. It also discusses the issue of the
correctness of the ISP descriptions and other matters which could not be covered in a
short paper.

Section 2 presents a brief introduction to ISP through a simplified version of the
IBM S§/370 ISP description. Section 3 discusses the separation of architecture vs.
implementation details. Section 4 describes the Architectural Research Facility.
Section 5 describes the collection of architectural data from the simulation of ISP
descriptions. Section 6 concludes the paper by outlining the areas in which future

work could benefit from the use of the Architecture Research Facility.

* The CFA selection committee adopted the definition of architecture proposed by the
designers of the IBM S/360: "The term architecture is used here to describe the
attributes of a system as seen by the programmer, i.e., the conceptual structure and
functional behavior, as distinct from the organization of the data flow and control, the
logical design, and the physical implementation”[AmdG64]

-2

Architectural Research Facility

2. A Typical ISP Description

The ISP notation was developed to formalize the information normally given in
basic machine manuals and to supplement or, if possible, eventually replace the
“programming reference manuals”. Hence its essential requirements were readability,
completeness, flexibility, and brevity,

The original notation was introduced for descriptive purposes and, in the context
of a book [BelC71], certain ambigueties were permitted. For more formal uses, the
notation had to be revised and a language named ISPL was developed between 1973-
1975 [BarM76a). Further developments on the notation continue at CMU, and a
tanguage tentatively named ISPS is being impiemented. For the remainder of this

paper we shall refer exclusively to ISPL, the dialect used in the description of the CFA

- architectures.

The example shown in Figure 1 is derived from the IBM S/370 ISP description.
We will only present the main declarations and the instruction interpretation cycle *.

The control flow for all instructions in Figure 1 follows a well definad path. The
main body of the ISP description is defined by the Run procedure which continuously
performs a loop of instruction cycles (IFetch followed by IExec). After an instruction
has been executed, a special section of code (INT} is executed. INT checks for the
presence of exceplional conditions (errors or external interrupts) and performs the
proper context switching to handle these conditions,

The inslruction fetch section (IFetch) reads the first half-word of the instructions

and from the first two bits (Instr<8> and Instr<i>) it computes the length of the

* In order to keep the exampies within the space limitations of this paper, we have
taken some minor liberties with the syntax of ISPL. These alterations should not
overly confuse readers familiar with ISPL.

4-3

Architecturat Research Facility

instruction (PSW<32:33>) and updates the program counter (PSW<48:63>). IFetch then
proceeds to read one or two more half-words, the rest of the instruction,

The instruction execution section {IExec) uses the first two bits of the instruction
(Instr<B:1>) to select an instruction-type specific section. The RR, RX, RS5l, and §5
sections handle the corresponding instruction types. RX, RSSl, and S5 begin by
computing the effective address of the operand(s). After this step is completed the
next 6 bits of the instruction (Instr<2:7>) are used to select a "routine” which describes
the behavior of the instruction.

If any errors are detected during the instruction cycle (address boundary
errors, illegal operations, storage protections, etc) the rest of the instruction is
aborted and the proper error code is sel in the PSW. This premature termination
allows the interrupt handler (INT) to take care of the situation (the usual mechanism is
to switch PSWs thus automatically starting the execution of interrupt specific system
routines).

We have tried to keep the example as simple as possible by avoiding any details
beyond those extrictly necessary to follow the example. In particular, the reader
might have noticed that we were making explicit references to fields of the Instruction
Register (Instr) and the Program Status Word (FSW). It is clear that when we deal with
large descriptions such exphcit references tend to become cumbersome and error
prone *. The following section deais with the issues of how to improve the readability
and writeability of ISP descriptions by using abstractions like pseudo-registers,

procedures, temporary registers, etc.

* Even though some portions of the Architectures were left out of the ISP
descriptions, notably the Floating-Point Instructions, the ISP descriptions used in this
project are non-trivial computer programs. Each description takes between 30 and 40
pages of code. The size of the descriptions (1445 lines for the PDP-11, 2345 lines for
the Interdata 8/32, and 2132 lines for the IBM §/370) reflects the size of the
instruction set, not necessarily the complexity of the architecture.

4-4

Architectural Research Facility

3. Abstractions and Implementation Dependencies

ISP can be viewed as a programming language for a specific class of algorithms,
i.e. Instruction Set Processors or Architectures. Ideally, a language to describe
architectures should avoid the specification of any implementation details. Any
components introduced beyond these are unnecessary for the programmer of the
machine and might even bias the implementor working from the description. While
these items must appear in a description of an implementation, the problem arises
when describing a family of machines where the abstractions and/or algorithms may
vary across members of the family. The rest of this section itlustrates this problem.
3.1. Abstractions

An ISP description written using only the architectural components would not
only be unreadable but also unwritable. Some form of abstraction is required. The
following subsections demonstrate this point by introducing pseudo-registers,
procedures, and lemporary registers. These abstractions may or may not have a
counterpart in some or all physical impiementations of the ISP description.

Pseudo-Registers.- When writing an ISP description for a real machine it immediately

becomes apparent that describing everything in terms of just the components of the
architecture would lead to a cumbersome and unreadabie description. The concept of
a pseudo-register to rename a frequently used field of a register greatly relieves this
problem. For example, consider the PDP-11 which has an autoincrement addressing
mode. During the address computation an architecture register, pointed to by a
subfield of the current instruction, must be incremented. Dealing only with components
of the architecture would yield an expression like: R{M[Pc}<2:8>] « R[M[Pc])<2:8>] + 2

where M[Pc] represents the current instruction in memory, pointed to by the program

Architectural Research Facility

counter. Introducing the pseudo-register Ir (instruction register) for the current
instruction would yieid: R[Ir<2:8>] « R[Ir<2:8>] + 2. We could further define a pseudo-
register, Dr (for destination register), for the frequently used three bit subfieid Ir<2:8>,
as in: R[Dr] « R[Dr] + 2

The pseudo-registers may suggest a register {(e.g.: Ir} or a set of wires (e.g.: Dr)
in some physical implementation. In reality they may have no physical correspondence
at all. In any event, pseudo-registers are a useful and necessary abstraction for
readable {and writable) ISP descriptions. However creating pseudo-registers for
infrequently used fields or using obscure names may defeat the usefulness of this
abstraction leading to reader confusion and excessive page flipping to find definitions.
Procedures.~- Just as there are frequently used register fields in a machine description,
there are frequently used sequences of operations. Forming these operations into
procedures greatly enhances readability.

For example, consider operand fetching. Every machine has a more or less
complicated effective address calculation that is performed when accessing these
operands. A memory reference to a destination operand might appear as: M[Dest]
where Dest is a procedure for caiculating the effective address of the destination
operand. Without procedures the same reference for the PDP-11 would appear as
shown in Figure 2. The situation would further be aggravated if the etfective address
had to be processed by some form of memory management which provides for address
transiation and rights checking. These operations would have to be performed in the
description on top of the effective address calculation. It should be noted that many
minicomputers and all larger computers have some form of memory management.

Temporaries.- Occasionally readabiiity is improved by introducing a temporary register

Architectural Research Facility

in cases where the operands before and after the operation are required or a complex
result is used repeatedly. Figure 3 shows a portion of the memory management
procedures for the PDP-11.

The Read procedure shows the translation of a virtual address into a physical
address. A temporary Memory Address Register (Mar) initially contains the virtual
address (the result of the sffective address calculation) which is then translated into a
physical address in the line that reads:

Mar « (PAR[Temp]<il:B> + Mar<12;6>) @ Mar<5:8> next

The PAR (Page Address Register) and PDR (Page Data Register) arrays contain
the necessary address translation information. A bounds check is performed before
the actual memory fetch from physical memory. Without the temporary variable Mar
the Read procedure would be substantially complicated by having to replace every
appearance of the temporary by the complex expression given above. Of course, the
temporary variable may or may not have a counterpart in some impiementation.

3.2. Implementation Dependencies

There are muitiple examples of details that must be specified in an
impiementation description but do not belong in an architecture description. Typically,
these are features thal exhibit model dependencies. For instance, in the specification
of the interrupt handling facility of a computer system, it could be the case that
because of cost/performance requirements, different models must respond to
simultaneous interrupts in different orders. An ISP description must by its very nature
describe a specific order of interrupt trapping, thus losing a degree of freedom that
one might wish to provide the machine implementors.

Figure 4 shows how the specific order in which simultaneous interrupts are

4-7

Architectural Research Facility

fielded is build inte an ISP description. Individual bits of INTVEC indicate the presence
of a pending interrupt of a given priority. When only one interrupt is pending the
proper context switching will take place. When more than one is pending there wili be
muitiple context swaps and lower priority interrupts will be delayed to be processed
later (the "new PSW" associated with a low priority interrupt wiil be stored into the
“old PSW" position associated with a higher level interrupt).

It is not clear whether having to be specific about ordering of interrupts or
similar events is a bad practice. Although one can claim that machine designers will be
constrained in their choice of designs, the fact stili remains that somebody must write
the interrupt handling software, and for these programm.ers the order of interrupt
fielding is important. This type of dilemma occurs quite often when dealing with ISP
descriptions. The solution might be simply to write model-dependent ISP procedures
whenever this conflict arises and then indicate in the ISP description which version of
a given procedure must be implemented for a given model.

Another problem with implementation dependencies is that the definition of the
input foutput behavior of an instruction might actually imply a particular
implementation. For example, consider the PDP-11 Subtract instruction. The carry
condition code (C) is set according to the borrow during the subtraction. The PDP-11
Processor Handbooks describes the setting of the C bit as:

"C condition code is cleared if there was a carry from the most significant bit of
the result, set otherwise.”

This definition implicitly assumes that subtraction is implemented by forming the
two’s complement and adding. Figure 5 illustrates the situation. Consider four-bit
numbers and the two methods to perform subtractions, by using a subtractor, and by

using an adder after forming the two’s complement.

4-8

Architectural Research Facility

In the adder case, the carry is the complement of the borrow which is exactly
the definition given by the PDP-11 Processor Handbook. The ISP description of the
setting of C becomes:

C « (dest - source)<16>; ! Subtraction

C « NOT (dest + NOT(source) + 1)<16>; ! Addition

As in the previous example (the order of interrupt handiing), a complete
algorithm had to be given. In this case, the subtractor/borrow algorithm is preferred
since it presupposes only the properties of the two's complement number system.
However, if an alternate implementation (such as forming the two’s complement and
adding) is utilized, then the implementor should be aware of possible changes in other

algorithms in the ISP description.

4. The Architecture Research Facility

The facility used for the data collection phase of the CFA project is depicted in
Figure 6. Reference [BarM76a] explains in full detail the features of the ISP compiler
and simulator. Some familiarity with their capabilities is needed in order to understand
the data collection phase described fater. The foilowing paragraphs attempt to satisfy
this need.

The ISP compiler produces code for a hypothetical machine, dubbed the Register
Transfer Machine (RTM). The "object code" produced by the compiler can be linked
together with a program which is capable of interpreting RTM instructions. This
separation between the ISP description, the RTM code, and the RTM interpreter allows
the simulation of arbitrary, user defined architectures. The result of linking the RTM

code with the RTM interpreter is a running program, a simulator.

4-9

Architectural Research Facility

The simulator accepts commands from a teletype or user designated command
file. The state of the simulator can be dumped to a command file which can be read at
a future date when the simulation is continued. Command files can also be used to load
programs and data into the simulated target machine memory and registers.

4.1. Debugging

Most of the test programs were debugged and run on the real machines, other
programs were executed exclusively under the simulator. The latter included those
programs using privileged instructions that were not directly available to non-system
programmers (e.g. interrupt and 1/0 handlers.) Results from the actual runs, whenever
available, were used to check the simulated execution.

Only minor modifications and corrections were performed during the data
collection phase. The largest unforeseen problem was presented by the memory
management feature of the PDP-11 which was based on the PCP-11/40. The test
programs which made use of this feature had been tested on a PDP-11/45 which t;ses
different Unibus addresses for the memory management registers. This difference
required minor modifications in the test programs. Most other problems were of a
simpler nature and required only a few minutes to correct. It should be noted here
that the simuiator facility was also used to debug some programs for the Interdata
8/32 before they were executed on the real machine. This was dictated by the fact
that no 8/32 was available near CMU and a large turn-around time {several days)
would have complicaled the debugging of the test programs.

4.2. Preparation of Simulation Tests

The ISP simuiator provides commands for the loading and initialization of the

simulated machine memory and internal registers. The single most important feature of

Architectural Research Facility

the command language which permitted the fast execution and collection of statistics
was the ability to read command files containing the test programs to be executed.
The command language cannot handle programs in symbolic form (assembly language);
it requires the preassembly of the programs into absolute, numeric, code. To get
around this problem, a set of utilities was developed at CMU which permitted the
transformation of assembly listings prepared by the real machine’s assembler into
simulation command files. This operation was performed off-line as shown in Figure 6.

Figures 7 and 8 show the transcript of a typical session using the ISP simulator.
The session consists of running one of the test programs (Bit Test, Set, and Reset) on
the PDP-11. The input for a simulation session consists of several files prepared off-
line. These files include: The test program (derived from the assembly tisting), a driver
(simulation commands used to initialize the parameters for the test program), and
finally, a command file with a list of those ISP procedures which must be "opaqued"
(these are the procedures during which the activity counters are disabled). A typical
command file, derived from an assembler listing is shown in Figure 9. This was the test
program used in the sample simulator session shown in Figures 7 and 8.

4.3. Instrumentation

The ISP simulator permits the instrumentation of an ISP description by
associating activity counters with each of the machine registers and memories. These
counters allow the collection of statistics indicating the number of times each
component of the machine is read from or written into. A separate counter is kept for
each label in the ISP description. Labels are included in the ISP descriptions to
identify machine instructions, addressing modes, loops (used to describe vector-like

instructions like move character on the $/370), as well as other ISP procedures.

4-11

Architectural Research Facility

During the execufion of the test programs, a data base was created by collecting
dumps of the counters after each test case was completed. The files containing the
counters were then processed by other, off-ling, programs in order to arrive at the M
and R measures.

4.4, Artificial Labels in the ISP Descriptions

Certain modifications not normally needed were made to the ISP descriptions to
aid in the collection of data during the running of the test programs for the CFA
project. Several labels and "do-nothing" procedures were added to identify certain
phases in the instruction interpretation algorithm and to measure selected events {e.g.,
different addressing modes). The labels added to count these events are clearly not
part of the architecture or even the implementation.

Figure 10 shows an exampie extracted from the 5/370 ISP Description. It shows
the use of artificial labels to identify different addressing modes for the RX instruction
set. According to the definition of the $/360 and $/370 architectures, The RX
instructions can specify both a base and an index register to be added together with
the displacement field of the instruction to compute the address of the memory
operand. The architecture furiher specifies that R[8], when specified as either a base
or index register does not take place in the effective address calculation, ie., R[8]
should be specified whenever one of these two companents (base or index) is missing.
In the above example four dummy in-line procedures where introduced to count the
number of times each possible combination of base/index modes occurs. Thus RX8888
is "executed” whenever R[B] is specified as both the base and the index register.
RXAON2 is "executed” whenever R[B] is used as the base register and any of R[1:18] is

used as the Index register. RXBIBB is "executed” whenever R[B] is specified as the

Architectural Research Facility

index register and any of R[1:15] is specified as the base register. Finally, RXBIN2 is
"executed” whenever R{8] is not specified as either the base or index registers. NOP

is a dummy procedure which does not have any side effects.

5. Architecture Parameters

As a means of comparing architectures, three measures were defined for the
CFA project [Ful577a):
Measure of Space
S The number of bytes used to represent a test program.

Measures of Execution Time

M The number of bytes transterred between primary memory and the
processor during the execution of the test programs.

R The number of bytes transferred among internal registers of the
processor during execution of the test program,

The S measure is a static parameter which can be computed independently of
the ISP description. For the purposes of this paper we will restrict the discussion to
the other two measures. The actual computation of the M and R measures was done
through a semiautomatic process. The raw data coliected from the simulator was used
to count frequencies of instructions and addressing modes. These counters were
muitiplied by certain hand caiculated factors in order to arrive at the M and R
measures for each test program. Ideally, the ISP simulator should perform the entire
operation and this would be a better approach, less subject to human errors. We had
to use the hand computed factors due to our inability to determine the influence of the
ISP writing style on the architecture parameters as defined above.

The exact methodology for writing ISP descriptions so that the M and R

Architectural Research Facility

measures can be calculated automatically has yet to be developed. It is clear,
however, that a careful control of the counting mechanism is paramount to the
collection of meaningful data. During the data collection phase we made use of the
following techniques towards this goal.

Opaqued Procedures.- A Simulator command aliows the selective masking of in-line and

off-line procedures. Mashing or opaguing a procedure inhibits all activity counts inside
the body of the procedure.

Certain operations, such as incrementing the program counter after an
instruction, or the setting of the condition codes as a resuit of an instruction do not
affect the R measure and should not be counted. This is typical of those actions which,
in a reasonable implementation, would be done using ad-hoc circuitry, separate from
the main operational units of the machine. These operations could be implemented by
combinational logic (e.g.: setting condition codes from ALU lines), special registers (e.g.:
using a counter instead of a simple register for the program counter), or even compiex
sequential networks (e.g.: the virtual address translation can be perfarmed using its
own arithmetic units and data paths).

Operations like those described above can be easily marked by adding artificial
labels to the ISP description and then disabling the counters while the selected
pperation is being performed.

Pseudo-Register Chains.~ Every component declared in an ISP description has activity

counters associated with it. When a register is defined in terms of another register,
such as: Pe<15:8> ;= R[7]<15:B>; a redefinition chain is established. Accesses higher up
in the chain increment ail counters lower in the chain but not vice-versa. In the above

example an access of the Pc causes the register file counter for R to be incremented

4-14

Architectural Research Facility

but accessing R[7] does not increment the program counter (Pc). By establishing
appropriate redefinition chains, distinction between access types can be maintained.
One variation of this technique is the use of "shadow" registers. For example twp
instruction registers can be defined: Ir<i5:8> :m Ir1<15:8>; where Irl is the shadow
register. The loading of the Ir from memory is to be counted in the R measure,
however, the combinational logic decoding of the instruction and effective addressing
mode is not to be counted. The former is performed on Ir, the latter on Irl thus
distinguishing the two different types of accesses.

Memory Access Procedures.- Modern machines provide the user with an address space

defined in terms of small units of information, typicaily 8-bit bytes. For convenience,
however, the architectures also define larger access units in multiples of bytes. Thus,
the IBM $/370 provides bytes, half-words, full-words, and double-words. Since the
physical memory is the same, the ISP description must declare the different address
spaces by building a redefinition chain in which the different address spaces are
declared as "pseudo-memories” so that the M measure component of each address
space is properly accounted for.

Machines like the PDP-11 add some more complexity to the issue of having
multiple address spaces. The PDP-11 architecture defines the concept of an /O page
as a reserved portion of the address space, not necessarily implemented as a physical
memory. Addresses in the upper 4K bytes of the POP-11 are used to address 1/0
devices, machine registers, etc. Addresses in the I/O page must be handied differently
when computing the M measure. If one attempts to include in-line address checks in
the ISP description, the description quickly becomes buiky and unreadable. A

satisfactory solution is simply to define memory access procedures (Read and Write),

4-15

Architectura! Research Facility

which can then be properly instrumented, thus enabling the automatic computation of
the M measure.

Temporary Registers.- The automatic computation of the R measure is more difficult. In
an ISP description there are three types of registers to consider: architectural,
standard implementation, and temporaries. Architectural registers and certain standard
implementation registers (instruction register, memory address register, and memory
buffer register) can be handled using the same techniques used to automate the M
measure (declaration chains and encapsulating procedures). Handling temporary
registers presents a more difficuit problem. The number, type, and manipulation of
temporary registers are a matter of writing style.

Architecture paramefers which are based solely on architecture registers while
ignoring temporary registers introduced for clarity might overlook hidden computations
performed on these registers. Unlike the memory, architectural registers, and standard
implementation registers, a tightly defined writing style cannot be developed for
temporary registers. One solution would be to use well known expression optimization
techniques [WulW75] on the ISP description to uniformly minimize the temporary
register activity. Hopefully the optimization would lead to simifar results for equivalent
algorithms.

Architectural parameters should be independent of the experience, style, and
objectives of the ISP writer. This will then guarantee that the ISP descriptions which
make use of abstractions (pseudo-registers, procedures, and temporary registers, efc)
to enhance clarity and readability will not be penalized. By the same token, no
advantage should be derived from the use of “clever" programming tricks which might

attempt to bias the measurements.

4-16

Architectural Research Facility

6. Advantages of an Architectural Research Faciiity

Although for the purposes of this paper we have presented the uses of the ISPL
compiler and simulator in the context of a specific project, we should point out the
wider range ot applications in which a system like ARF can be of great value.

6.1. A Simulator as a Training Tool

In this paper we described how machine langugge test programs can be
executed under the simulator. The implied assumption during the data collection phase
was thal we were dealing with correct, finished programs. With no extra effort the
ISP simulator can be a powerful training device for novice programmers. Speed of
simulation is not an issue in this application. Programmers learning a new machine
language tend to spend long hours single-stepping via the machine console. An
interactive simulator can easily satisfy the needs of these users, while providing much
better diagnostic and debugging facilities than a computer console (did you ever see a
"help” button on a machine?.) ISP descriptions exist for the following machines: DEC
PDP-8, PDP-10, PDP-11, 1BM §/370, Interdata 8/32, and Intel 8080.

6.2. Architecture Evaluation

The S, M, and R measures are by no means the only set of architecture
parameters one might wish to evaluate. Nothing in the ISP simulator depends upon
this particular set of parameters. The instrumentation in the simulator allows counting
every event we care to define by simply labelling the event. There is no need to
create new procedures which might impact the organization or readability of the

description; even a single register transfer operation can be labeiled and counted.

Architectural Research Facility

6.3. Experimentation

Once the inilial effort of writing an ISP description is accomplished, only
moderate effort is required to perturb it to reflect proposed or actual changes in the
architecture. Thus the effect of a modification in an architecture can be measured and
studied before any funds are commited to the development of a new machine. By a
careful design of the ISP description it is possible to pattern a description along the
lines of the organization of the physical machine. Thus one would be able to measure
and evaluate different models of the architecture. For instance, functional units and
data paths can be represented by separate procedures in the ISP description. An ISP
description could then be parameterized to invoke these procedures in different order,
concurrently or sequentially, with or without intermediate steps, etc. as the different
models differ in their implementation. An exampie might be determining the effect of a
cache memory on the apparent instruction execution speed in high performance
implementations.

6.4. Machine Relative Software

As the number of different architectures coming into existence increases every
year, it is becoming more and more expensive to develop the necessary software
support base that allows the effective use of these machines. The availability of user
micro-programmable machines enlarges the space of possible architectures to the point
that automatic software generation systems wili become a necessity. Tools that
operate relative to a computer description could represent a significant breakthrough
in the manner that computer systems (hardware/software) are designed and evaluated.
The Advanced Research Projects Agency (ARPA) of the Department of Defense is

currently sponsoring this area of research at CMU and elsewhere {BarM741

Architectural Research Facility

In the tuture one can foresee hardware and software automation systems that
take as input computer descriptions, and language and problem specifications; and from
these, generate operating systems, compilers, and other support and application
software automatically. Other areas of current research include automatic diagnostic
generation, microcode generation, machine verificaiion, etc.

Formal computer descriptions will play an increasing and important role in the
evaluation, procurement, verification, and programming of computers. The ARF facility

is a step in this direction.

4-19

Architectura! Research Facility

S370:=

begin declare
Memory{8:"FFFFFP]<B:7>; ! Primary Memory
R[B:15])<B:31>; ! General Purpone Regislers
PSW<B:53>; ! Pragram Status Waord
....... ! Auxiliary Registers (Instr, Mar, Mbr, eic.)
eralced ! End of Declarations

Run:= begin

end

[Petch;=

IExec:=

INT:=
Run
end

! Main Executable Program

begin ! [nstruction Fetch Section

Mar«P5W<48:63> next ! Initial Instruction Address

Instr<@:19>«Memary[Mar:Mar+1] next ! Read Pirat Halé-Waord of Instruction

PSYW<32:33>¢Inatr<@>+Instr<1>+1 next ! Instruction Length

PSW<482:63>«PSW<48:63>+PSW<32:33>42 next ! Program Caunter

....... ! Petch the rest of the Instruction

end;

begin ! Instruction Execution Sectian

decode Instr<d:l> => ! Seiect Instruction Type;

RR:= begin ! RR Instruction Decade Table
(decad Instr<2;7> => , . ., } ! Select RR Instruclions
end;

RX:= buyin ! RX Instruction Decode Tahle
MareInstr<28:31> next ! Bisplacement
(it Insir<16;19> => MareMar+R[Instr<16:13>}) next ! Base
(it Instr<12:15> => MareMar+R{Instr<i2:15>]) next ! Index
(decole Instr<2:7> => |) ! Select RX Instructione
end,

RSSL= beyin { RS,SI Instruction Decode Table
Mar « Instr<28:31> next ! Displacement
(if Instr<1B:19> => Mar « Mar+R[Instr<16:13>]) next ! Base
(decode Instr<2:;7> =>) ! Select RS, SI Instructions
end;

S8:= begin { S5 Instruction Decode Tahie
AMarleInsir<20:31>; AMar2«<Instr<36:47> naxt ! Displacements
(if Instr<iG:19> => AMarleAMarl+R[Instr<16:19>]); ! Buse
(if Instr<32:35> => AMar2AMar2+R[Inatr<32:35>]) next ! Base
(decade Instr<2:7> => .,) ! Select 55 Instructions
end;

end;

begin end next ! Interrupt Handling Section

! Repeat Main Precedure

Figure 1 - A Simplified Version of the IBM S/370 ISP Description

4-20

Architectural Research Facility

M[{ decode Dd =>

{decode Dm =>
#374B8aDr;
R{Dr]~R[Dr]+2 next R[Dr}-2;
R[Drje-R[Dr)-2 next R{Dr};
M(Pc+2] + R[Dr]

%

{(decode Dm «=>
M[«37488&Dr};
R[DrJ-R{Dr]}+2 next M[R[Dr]-3};
R[Dr]«R[Dr]-2 noxt M{R[Dr]};
M[M{Pc+2] + R[Dr]]

)

Figure 2 - Inline Effective Address Calculation

4-21

! Direct Addressing

! Regisier Mode

! Autaincrement Maode
! Autodecrement Maode
! Index mode

! Deferred Mode

! Register mode

! Auteincrement Mode
! Autadecrement made
! Index mode

Architectural Research Facility

Read:=begin
Temp « Mar<15:13> next
Mar « (PAR[Temp]<11:8> + Mar<12:6>) ® Mar<5:8> next ! Compute Physical Addrass
(if not PDR[Temp]<2:1> => Abort) next
(if (Mar<12:6> gtr PDR[Temp}<14:8>) and not PDR[Temp)<3> => Abort) next

(if (Mar<12:6> lss PDR[Temp)<14:8>) and PDR[Templ<3> => Abort) next
! Read from Physical Memory

Figure 3 - A Portion of the PDP-11 Memory Management

4-22

Architectural Research Facility

Int;= begin
TempePS5W<32:33> next ! Save Instruction Length
(if INTVEC AND P5W<13> > ! Handle Priarity (1) Interrupts
) next
(it INTVEC<]> => ! Handie Prierity (2) Interrrupts
} next

(it INTYEC<2> =>

.......

} next

(if INTVEC<3> AND PSW<8.7> => ! Handle Priority (3) Interrupts
) next

(if INTVEC<4> AND IOMSK => ! Kandle Priarity (4) Intecrupts
) next

PSW<1B6:31>+8; PSW<32:33>«Temp ! Reset Instruction Length & Interrupt Code

end;

Figure 4 - Explicit Interrupt Processing Order in the IBM S/370

4-23

Architectural Research Facility

5 ~3 =2 {no borrow) 3-5=-2(borrow)

0101 0011 Subtracting
00ll1 0101
0 0010 1 1110
borrow borrow
0101 0011 Adding Two’s Complement
1101 1011
1 0010 o 1110
carry carry

Figure 5 - Implementation Dependant Condition Code Setting

4-24

Test

ISP

Simulator |

Program
>

Assembler

ISP
Description ISP RTM Coce
Compiler LINK-10
P
<t
Listing and Diagnostics PDP-10
SHR File
Interactive
Command Lvi Frequency Rand M
Larguage Counts Post- Measures
—>
: Processor I
Assgmbly Command Target _
Listing Reformat/ | File Machire | Trace Files
Relocate . — ¥
| Em—— pr——————¥% Simulator
Simulation State Files
S
Test Data >
Target Simulation
Machine Results
Object
Program
—3 Target | —————p Comparison

Machine

Execution
Results

Figure 6 - Test Program Execution Under ARF

Architectural Research Facility

ru piplle

ISP SINULATOR V3 - NRL ARF STAOE 2

Friday 18 Sep 76 17:13158 POPLAN, ISP (L418NB25}
SERIALIZATION COHPLETED

SPACE ALLOGCATED

TYPE HELP FOR HELP

TYPE <ESC»> TO INTERRUPY SIHULRTION LGOPS

>raad fadi.gim | Read in thd benchmark {ile
>>RANIX OCTAL
>>DECHD | The benchmark file disables the lisiing

! on tha user larminal.

>>1080 LINES RERD
»>read fa.dr3 | Read in the driver tile
> HERE CONES THE ORIVER (CALLS)
>>SETVAL NII3000] -0L3746 005202 ! nov ads202, - (5P) i
>>SETVAL NHHI3I0821 013766 805200 ! MOV a¥s204, - (SP)]
>>SETVAL MHL30B6) ~812746 004600 b Hav #4000, - (5P) ; Al
>>SETVAL HH {30061 -612746 005200 ! ngv 5280, - (5P) ; RC
»>SETVAL NHI13018)~012746 085206 ! nov 5208, - (5P 3

! ;

'

»>>SETVAL Mi[3012)+880737 BRLOOG JSR PC,asl000 BYSR

>>SETVAL HHI3014) 000000 ‘ HLT

>>) The above sequance ot POP-11 instructions pushoms the parawetars
| onto tho stack, cali the bonchnark as & routine, and halt,

>>SETVAL HWI(20001+123457 871234 167806 165670 ! BIT STRING

>>SETVAL HU 25001 -8 ! RETURK CCGDE

»>SETYAL HHI2L811+2 ! F

>>SETVAL HH125021+25 ! N

>>SETVAL HHI?2LB31 0 ! WORK AREA

>>5ETVAL PL-500D

»>SETVAL 5P.280
! The aboue saguance initializes tha data (paranetars), tha stack
{ pointer antd tha progran counter fuhich new points to the coda
| sequoncn that pushes the paransters and call the routine.

»>»SETVAL A8 I This is an ISP internal variable - indicates whather the
| machine is running, halted, or waiting.

»»SETCTR ALL 2,0 ! Roset activity counters

>>READ OPQL1.SINILALIGNB2S) | PDP11 Opaquad Procodures

>»>>NECHD

»»>>53 LINES READ

>>REAN UUD11.SINI[L&16RNB25) ! UNIMPLEMENTED OPERATION BREALS

»>»»DECHD

»>>15 LINES READ

>>TRACE IR,PC,R,HHI0 Traco a few salected registers

IR is the Instruction Rogister,

PC is the Program Countar {RI7}},

RI18:7) ara the goraral registers,

MWI0 is the 1/0 page (R is mapped onto HHIDQ)
Broal on salected instructions

>>BREML JSR,RTS
»»26 LINES RERD

Figure 7 - Initialization of a Simulation Run

4-26

Architectural Research Facility

»start inter ! Here we Btart the sinuiation
& INTER + 15 iR = 13746
@ INTER + 20 PC = G802
@ SINCD + 22 R [7)= 68BG
@ DDECRO + 21 R [8]l= 176
@ INTER 4+ 15 IR = 13746
G e e e ¥ Pughing Paranatars
a INTER + 15 IR = 12746
@ INTER + 28 PC = 6822
@ SINCD + 22 R [7)= BB24
@ DDECRD + 21 R [6l= 166
e INTER 4+ 15 IR = 4737
e INTER + 28 PC = 6826

BREAK AFYER JSR
#setctir all 8,8

! The sinujation stops on a breakpoint

! The real benchnart starts hare, W must
! recet all countars {(they wers modified
I during the banchnark calling sequence)
|

Heont ! we continue the sinuiation
@ DINCRD + 22 R [7)= BG30
@ JSR + 14 R { 7)= 6030
& JSA + 15 PC = 1000
@ INTER + 15 IR = 10646
& INTER + 28 PC = 1882
+ « « + ! Program Execution Trace
e INTER + 28 PC n 1872
@ SINCD + 22 R [81« 164
e WRITE + 131 HHIO { 3740008l= 0
@ INTER «+ 15 IR = 287
@ INTER + 28 PC = [874
BREAK AFTER RTS I the simulation stops at the and ot the
| benchuark {ihe raturn instruction}
*outctr fadl.rmd I we duup all tha counters into a file
kcont ! we continua the mimulation
e RTS + 2 PC = 1874
& RTS + 7 R [7)= 6830
@ INTER + 15 IR = 8
@ INTER + 280 PC = 6832
SIMULNTION COMPLECTEQD ! wp exacuted the Halt instruction

RUN TINE (10 usec units)=831678

RTH OPS EXECUTED=45235%

»axit ! we finish tha session
EXIT

Figure 8 - Program Execution Trace

4-27

Architectural Research Facility

RANIX OCTAL
DECHO

; Otisets of parameters irom stack p

ICFAF HACH1l VBO3F 5-JUL-76 12:54 PRGE 1
IBTSRY M1l
t
e « v + 4+ + . ! Program, Programmer Identiiication (Suprossed)
! 13 ei3en
! 14 ele00
! 15 BOBODG 81500 SAVE=S
t 16 Bl1600
! 17 200016 61780 Fol2+45AVE
! 18 B0ODL4 @1BB8 Nal04SAVE
t 19 800012 81988 AL=6+SAVE
! 26 800010 02000 RC=44SAVE
! 21 280006 82180 WORLaoZ4SAVE
! 22 02280
! 23 8a0000’ 02300 BTSR:
! 24 DBBOOD" 010DNG 82400 Hav
! 25 8opoos' 0108146 52500 Hav
! 26 8pe00n’ 005076 608019 §26060 CLR
1 27 BOGO1B’ D166G0 DBDO1G 82788 nov
. . ! Relocatabie Objoct Code Listling
! 41 peppGe” 012601 06180 GUIT: HOV
! 42 pRNO?H’ 012600 04200 Hav
! 43 apop?2' epoze? 84300 RTS
t 44 apppre’ 1568118 84400 SET: BisSB
! 45 epsonre’ 800773 24500 BR
! 46 08061 84600 .EMD

! Crosc-Reterenca Listing

SETVAL HH[4001 0108045
SETVAL HHI4BII~B18146
SETVAL HW402)+805076 000010
SETVAL HHI4D6]+0E6600 0B0GLG

P Hara hogin tha Binulation conmands
! derived fron the akovo listing

! relocalion addross = word 400 {octal) = byte 10889

| Target Machine Pregran Loading

SETVAL KH{433]1+012661
SETVHL NMH[4361+812600
SETVAL HHI435).000207
SETVAL HHI{436)~150110
SETVAL MH{6a37).060773

ECHO

4-28

; We noed to save 2

R@, - (5P)
R1,-(5P)
@RC (5P)

N(SP),RE

(5P) +,R1
(SP)+,RE
PC
R1,eRE
auiTr

Figure 9 - A Command File Derived from an Assembly Listing

function code
relative bit numbe
addrons of hit mte
addraes ot reaturn
addrage of work ar

ze
ge

L 1]

FC

Architectural Research Facility

RX:= begin
Mare«Insir<28:31> next
(decade (Instr<16:19> NEQ B)@(Inatr<12:15> NEQ B)=>

\B8 RXB808:= {NOP; ! No Base, No Index

\81 RXBOXZ:= (NOPy; ! No Base, Indexing

\18 RXB188:= (NDPy; ! Base, No Index

\1i RXBIX2:= (NOP) ! Base, Indexing
) next

(if Instr<16:13> => MareMar+R[Instr<16:19>]) naxt
(it Instr<12:15> => MareMar+R{Instr<12:15>]) next
(decode Instr<2:7> =>

! Seiect RX Instructions

Figure 10 - Use of Artificial Labels

4-29

[AmdG64]

[AndV74]

[BarM74]

[BarM75]

[Barm76a]

[BarM76b]

[BelC71)

[BerN75]

[BoxG64]

[GMLC75]

[ConW59]

[Cor77]

[DavO71]

References

Amdahl, G. M, Blaauw, G. A, and Brooks, F. P, "Architecture of the IBM
System/360", IBM Journal of Research and Development, Vol. 8, No. 2,
April 1964, pp. 87-101.

Anderson, V. L. and Mclean, R. A, Design of Experiments, a Realistic
Approach, Marcel Dekker, Inc., New York, 1974,

Barbacci, MR and Siewiorek D.P.. Some Aspects of the Symbolic
Manipulation of Computer Descriptions, Department of Computer Science,
Carnegie-Mellon University, July 1974.

Barbacci, M.R.: "A Comparison of Register Transfer Languages for
Describing Computers and Digital Systems™ IEEE Transactions on
Computers, Volume C-24, Number 2, February 1978, pp. 137-149.

Barbacci, MR.: "The Symbolic Manipulation of Computer Descriptions: ISPL
Compiler and Simulator™. Technical Report, Department of Computer
Science, Carnegie-Mellon University, 1976.

Barbacci, M.R, D.P. Siewiorek, R. Gordon, R. Howbrigg, and S. Zuckerman:
"Architecture Research Facility: ISP Descriptions, Simulation, Data
Collection.” Volume IV of Computer Family Architecture Selection
Committee Final Report. Naval Research Laboratory, Washington 0.C,
December 1976.

Bell, C. G. and A. Newell, Computer Structures: Readings and Examples,
McGraw-Hill, New York, 1971.

Bernwell, N. (editor), Benchmarking: Camputer Evaluation and
Measurement, John Wiley & Sons, New York, 1975.

Box, G. E. P. and Cox, B. R, "An Analysis of Transformations”, The
Journal of the Royal Statistical Society, Series B, Vol. 26 (1964), 211-252.

Computer Review {formerly Computer Characteristics Review, GML
Corporation, Lexington, MA, 02173, 1975.

Connor, W. S. and Zelen, M, "fractional Factorial Experiment Designs for
Factors at Three Levels", National Bureau of Standards, Applied
Mathematics Series Vol. 54, 1959,

Cornyn, J.J, Smith, W.R,, Svirsky, W.R, and Coleman, AH: "Two Life-Cycle
Cost Models for Comparing Computer Architectures”. Submitted to
National Computer Conference, NCC-77.

Davies, Q. L. (edilor), Design and Analysis of Industrial Experiments, 2nd
ed., Oliver and Boyd, Edinburgh, 1971.

[Fuls76a]}

[FulS76b]

[FulS77a]

(FulS776]

[LucH71]

(PopG74]

[RaoC73]

[SmMiW76]

[StoH75]

[StoH76]

[(WagJ76]

[WicB73]

[Wulw75]

Fuller, S. H., Storne, H. S, and Burr, W. E, "Selection of Candidate
Computer Architectures and Initial Screening.”" Volume Il of Computer
Family Architecture Selection Committee Final Report, Naval Research
Laboratory, Washington, D.C. 20375. | December, 1976.

Fuller, S.F., W.E. Burr, P. Shaman, and D. Lamb: “Evaluation of Computer
Architectures via Test Programs". Volume Il of Computer Family
Architecture Selection Commitlee Final Repart. Naval Research
Laboratory, Washington D.C,, 1 December 1976,

Fuller, S. H, Burr, W. E., Shaman, P, and Lamb, D. A, “Evaluation of
Computer Architectures via Test Programs." This Volume.

Fuller, SF., HS. Stone, and W.E. Burr: "Initial Selection and Screening of
the CFA Candidate Computer Architecture.” This Volume.

Lucas, H C, "Performance Evaluation and Monitoring", ACM Computing
Surveys, 3, 3 (1971), pp 79-91.

Popek, G. J, and Goldberg, R. P, "Formal Requirements for Virtualizable
Third Generation Architectures,” Communications of the ACM, Vol. 17, Ne.
7, Juty 1974, 412-421,

Rao, C. R, Linear Statistical Inference and its Applications, 2nd ed., John
Wiley & Sons, New York, 1973.

Smith, W.R,, J.J. Cornyn, AH Coleman, W. Svirsky, R. Estell, P. Sabin: "Life
Cycle Cost Models for Comparing Computer Family Architectures".
Submitted to National Computer Conference, NCC-77.

Stone, H. S. (editor), Introduction to Computer Architecture, Science
Research Associates, Chicago, 1975.

Stone, H. S, "An Audit of the Selection Criteria for Computer Family
Architecture,” CFA memorandum, January, 1976. Distributed at the 18-20
February CFA meeting.

Wagner, J, B. Lieblain, J Rodriguez, HS. Stone: "Evaluation of the
Candidate Architectures for the Military Camputer Famity™. Submitted to
Nationatl Computer Conference, NCC-77.

Wichmann, B. A, Algot 60 Compilation and Assesment, Anderson Press,
New York, 1973.

Wulf, W. et. al.: The Design of an Cptimizing Compiler. American Elsevier,
Programming Language Series, New York, 1975.

