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Abstract 

The Computer Family Archi tecture (CFA) Selection Committee was organized to select a 

p r o v e n , w e l l - k n o w n computer architecture, in addition to several widely used mi l i tary 

compu te r arch i tectures, as the basis of the future series of Mil i tary Computer Family 

(MCF) computers . The set of four papers that make up this repor t prov ide an 

o v e r v i e w of the work of the CFA Committee and a detailed discussion of the technical 

methods used to quant i tat ively evaluate the alternative computer archi tectures under 

cons idera t ion . 

As the f i r s t paper describes, support software availabil ity, l ife cycle costs, and 

a rch i tec tu re l icensing, in addition to architectural eff iciency, were considered in the 

f ina l eva luat ion process. As a result of this process, the CFA Committee ranked the 

t h r e e arch i tec ture finalists in the following order: the DEC PDP-11, the IBM 

S y s t e m / 3 7 0 , and the Interdata 8 /32 . The MCF project is now work ing on the 

spec i f i ca t ion of a new standard architecture for military applications based on the 

P D P - 1 1 . In addi t ion, the MCF project is working on more clearly speci fy ing the most 

w i d e l y used exist ing mil i tary computer architectures to enable fu tu re r e -

implementat ions of these architectures in new technologies. 
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1. Bur r , W.E., A.K Coleman, and W.R. Smith: Summary of the Final Report of the  
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Abstract 

An Army/Navy Computer Family Architecture (CFA) Selection Committee, 

compricing 10 Army and 17 Navy organizations was organized by the Naval Research 

Laboratory and the Army Electronics Command in 1975 to select a proven, well-known 

computer architecture to be the basis of a Military Computer Family (MCF). The 

Selection Committee met five times in the period between October, 1975, and August, 

1976 , and evaluated nine computer architecture candidates in accordance with criteria 

established by the Committee. The Committee applied a preliminary screening process 

to select three candidates (IBM S/370, DEC PDP-11, and Interdata 8 / 3 2 ) for more 

intensive evaluation. This final evaluation process considered experimentally 

determined architectural efficiency, support software availability, life cycle cost, and 

architecture licensing. As a result of this process, the Committee ranked the three 

architecture finalists in the following order: 

1. PDP-11 
2. S/370 
3. 8 /32 

1. Introduction 

This report describes the work performed by an Army/Navy Committee, 

representing 10 Army and 17 Navy organizations, to select a Computer Family 

Architecture (CFA) for use with a proposed software compatible family of military 

computers and associated systems/support software. This family is known as the 

Mil i tary Computer Family (MCF). 

This report summarizes the contents of a full report on the work of the CFA 

Selection Committee (i.e., "Final Report of the CFA Selection Committee"). References 
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to this full report will be made herein, in accordance with the table of contents shown 

in the Appendix. 

2. Background 

The Department of Defense is spending over six billion dollars yearly for ADP 

systems. A large portion of this goes for acquisition of militarized computers and 

associated software that are used in tactical and strategic areas. Traditionally, these 

computers have been specified by the individual organizations (military project offices 

or commercial contractors) responsible for the development of each system. More 

often than not, computer selections are based upon local schedule, funding, or profit 

considerations, rather than the impact that the selection would have on long range 

hardware/software logistics costs. The result has been that the large number of types 

of computers used in Army and Navy systems are causing serious problems in the 

development and maintenance of software for those systems. 

Military computers are usually procured as integral components of larger 

systems (e.g., radars, missile systems); the hardware issues have historically been 

given more attention than the logistics of the software, and in consequence, military 

computers normally have only the most primitive sort of support software. The 

development cycles for weapons systems are generally long enough (5 to 10 years) 

that the military computers in these systems are often obsolete before they are ever 

del ivered to the Field Army or the Fleet. Past computer standardization efforts in the 

military have concentrated on hardware packaging or obscure architectures of such 

small market that there has been no incentive for the computer industry at large to 

invest in developing software and hardware compatible with these computers. The end 
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result of these conditions is that the military pays over and over for development of 

computer systems that frequently fall far short of performance expectations. 

This can be contrasted with the situation in the commercial OEM (original 

equipment manufacturer) marketplace. Here computers are produced for the much 

larger commercial market by the thousands or even the tens of thousands. A number 

of manufacturers such as DEC, Data General, and Interdata have software compatible 

product lines, covering a wide range of processors of varying capabilities. Due to 

f ierce competitive market pressures, system deficiencies are corrected, or the systems 

disappear. New products are developed much more quickly, and full advantage is 

taken of the advances in semiconductor device technology. Finally, due to the much 

larger user bases of commercial computers, and the competitive pressures of the 

marketplace, the support software bases of successful commercial computers are 

usually far superior to their military equivalents and are frequently improved or 

augmented by organizations seeking a share of this market. 

A solution to many of the software problems with contemporary military 

computers would be to produce a family of software-compatible militarized computers. 

Moreover, if such a family were based upon a proven, commercial instruction-set 

architecture, then it would be possible to capture a good mature support software 

base, and to be certain that any architectural shortcomings were known and 

recognized. As the commercial system evolved, and the architecture was extended to 

meet the competition, the military computer family could also take advantage of these 

same extensions. Adhering to an established family in this way would avoid the 

architectural mavericks that limited-production military computers are prone to be. 
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3. The CFA/MCF Project 

Since early 1975, the Center for Tactical Computer Sciences (CENTACS) of the 

U. S. Army Electronics Command and the Naval Air Systems Command (NAVAIR) have 

been supporting a cooperative Army/Navy effort to develop such a family of military 

computers, based upon a common instruction-set architecture. 

The fundamental premise of the MCF project is that software compatibility 

should be achieved by the adoption of an existing, proven computer architecture for 

the MCF, thereby minimizing the risks inherent in the design of a new computer 

architecture and permitting the "capture" of an existing and evolving software base. 

In this context, computer architecture is distinguished from implementation 

considerations, and is defined as the structure of the computer which a machine level 

programmer needs to know in order to write all programs which will run correctly on 

the computer. For example, the architecture of the IBM S/370 is defined in the IBM 

Sys tem/370 Principles of Operations Manual. There are many implementations of the 

architecture ( 370 -158 , 370 -168 , etc.), but only one architecture, and every 

implementation will execute the same software. Another premise upon which the 

Army/Navy cooperative effort is based is the goal of software transportability from 

prior generation military computers to the MCF, most probably via emulation. In other 

words, the Army and Navy cannot abandon its investment in existing software. There 

is a strong analogy here with IBM's continued support of such machines as the 1401 

and the 7 0 9 0 via emulation, when the 360 family was introduced. 

The first task of the MCF project was the selection of the CFA. CENTACS and 

the Naval Research Laboratory cooperated to lead that effort, and the following 

sections of this report describe how that selection was made. 
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The second task of the project is to develop a System Implementation Plan, 

which in a commercial organization would probably be called a product plan, to define 

the form, fit, and function characteristics of the MCF and the individual family members. 

The instruction-set architecture of the processors, not the detailed logic design will be 

specified, so that various military equipment manufacturers (in general, nat the 

manufacturer of the commercial version of the CFA) will be able to independently 

develop MCF members to meet the form, fit, and function requirements of the MCF, and 

to run the CFA instruction set. This approach will permit multiple sources for the 

various family members, and will allow manufacturers to take maximum advantage of 

rapidly developing semiconductor technology. The goal is a line of plug-compatible 

modules that can be interconnected as computer systems in a variety of configurations, 

to meet a wide range of performance/ application requirements. 

A similar Support Software Implementation Plan contract is planned for FY 1978. 

This plan will attempt to take maximum advantage of the existing support software 

base for the selected CFA. 

4. The CFA Selection Committee 

The mechanism for selecting the CFA was a joint Army/Navy Selection 

Committee. In order to achieve a wide representation of military computer 

requirements in this effort, letters were sent to Army and Navy Laboratories, System 

Centers, and Project Managers, inviting them to nominate "candidate" architectures, and 

to participate in the CFA selection process as members of the CFA Selection 

Committee. Ten Army and 17 Navy organizations assigned representatives to the 

Selection Committee, which was active between October 1975, and August 1976. The 
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members and officers of the Selection Committee are given in Volume I of the Final 

Report. 

Of the several procedural rules adopted by the Committee, the most important 

was the requirement for a 2 / 3 vote of the members present to carry a committee 

motion. 

5. Candidate Architectures 

The basic mechanism for deciding which architectures should be considered by 

the committee was to ask Army and Navy organizations to nominate candidate 

architectures. These nominations were augmented by the Committee in its early 

meetings. The architectures which were considered by the Committee are: 

Burroughs B-6700 
DEC PDP-11 
IBM S/370 
Interdata 8 / 3 2 
Litton An/GYK-12 
NOVA/ROLM 1662 
Systems Engineering Laboratories SEL 32 
Univac AN/UYK-7 
Univac AN/UYK-20 

On the list of candidates the S/370 and the B6700 are large scale commercial 

data processing type architectures. The PDP-11, SEL-32, 8 /32 , and the NOVA are 

classical OEM type minicomputers, and the AN/GYK-12, AN/UYK-7, and the AN/UYK-20 

are three of the most widely used military computers. 

Although the above list of architectures is not all inclusive, most of the Army 

and Navy organizations who nominated candidates went through their own internal 

screening process, considering a much wider selection of architectures prior to making 

their nominations. As a result, the nine architectures considered by the Committee 
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represent the best candidates for a family of computers for military applications, 

according to the consensus of over two dozen Army and Navy organizations. 

6. Selection Procedure 

It was apparent to the Committee after much discussion, that there were certain 

key, critical characteristics that should be well satisfied by the selected CFA. Further, 

it became apparent that it made sense to perform an initial screening and ranking of 

the candidates, based on these characteristics, so that the obviously least acceptable 

candidates could be discarded and those with the most potential could be retained and 

investigated much more thoroughly. An initial screening process was therefore 

devised to select several "best final candidates" for more detailed evaluation. 

After the initial screening process was completed, the three final candidates 

w e r e subjected to a test program experiment to measure the efficiency of the 

architectures. The support software bases of the three architectures were studied, 

and life-cycle cost models were constructed to determine if one of the three 

architectures had a decisive economic advantage. Finally, the manufacturers were 

contacted to determine the conditions under which they would be willing to license 

their architectures for production by military vendors. This process is illustrated in 

Figure 1, and is described in more detail below. 

6 . 1 . Initial Screening 

The Selection Committee decided to select the final candidate architectures from 

the initial list by means of two kinds of criteria. The first kind of criteria, which 

served as pass/fail tests of architectural adequacy, were called "absolute criteria". 

The committee planned to eliminate all architectures which did not completely satisfy 
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these criteria. Absolute criteria included such requirements as a satisfactory 

protection mechanism, and a virtual to physical address translation mechanism. The 

second kind of criteria were caled "quantitative criteria". The quantitative criteria 

w e r e intended to provide a relative ranking of the architectures in terms of 

characteristics which the committee believed were important measures of a computer 

architecture. Quantitative criteria included such characteristics as the size of the 

physical address space, the size of the virtual address space, the number of bits which 

had to be moved to save that state of the machine under various circumstances, and 

the size of the installed user base. A listing and very brief description of the absolute 

and quantitative criteria are shown in Table 1. The reader should see Volume I I of the 

CFA Committee Final Report for a detailed discussion of these criteria. Each 

quantitative criterion was assigned a weighing factor by each committee member 

organization. An average weighing factor was computed for the entire committee for 

each criterion. The quantitative criteria scores for each candidate were normalized, 

weighted, and summed to give a composite figure of merit for each architecture. 

Subcommittees were created to evaluate each architecture, in terms of the 

absolute and quantitative criteria. A meeting of the full committee was then devoted 

principaly to verifying the consistency and correctness of the evaluations of the 

candidate architectures. In addition, the results of this evaluation were audited by a 

consultant to ensure the consistency and correctness of the evaluation. 

A principal difficulty in making the evaluations was the imprecision of most of 

the reference manuals of the candidate architectures, requiring frequent communication 

with the manufacturers in some cases. Certain of the manuals, as typified by the IBM 

S / 3 7 0 Principals of Operation Manual, appeared to be complete and precise definitions 
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of an architecture. Others left essential architectural details ambiguously defined or 

not defined at all. 

The results of the absolute and quantitative criteria evaluations are summarized 

in Table 2. The PDP-11 and the IBM S/370 were the only two architectures which 

clearly passed all the absolute criteria, and they also were among the top three in the 

quantitative criteria evaluation. The Interdata 8 /32 was also selected as a finalist on 

the basis of its very strong showing on the quantitative criteria, despite a nagging 

technical uncertainty concerning the state of the machine after interrupts, which the 

committee was never able to resolve to its own satisfaction. 

The reader is cautioned that the application of these criteria requires a great 

deal of interpretation. The Selection Committee went to some considerable effort to 

arr ive at comparable interpretations for each architecture. It may not be at all 

obvious from the simple definitions presented here, how the actual values used by the 

committee were calculated. This is documented in detail in Volume I I of the CFA 

Committee Final Report, and the interested reader should refer to Volume II . 

6.2. Final Candidates Evaluation 

Architecture Efficiency Evaluation 

A Test Program Subcommittee was appointed at the first Selection Committee 

meeting. This subcommittee proposed a set of 23 potential test programs, which were 

believed to be representative of the operations performed in military data processing 

applications. The Committee ranked these programs by their relative importance, and 

the top 12 programs were selected as the basis of the Test Program Experiment. 

These 12 programs are listed and briefly described in Table 3. 

Each of the 12 test programs was a relatively small kernel-type program, most 
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w e r e subroutines, and most were defined as "structured" programs in a Program 

Definition Language (PDL). Programmers were then asked to "hand compile" the 

programs into the assembly languages of the respective machines from their PDL 

descriptions. This procedure was followed to minimize the effects of programmer 

variations. No large scale programs from "real" military systems were coded, because 

of the excessive expense involved in coding and testing a statistically significant set of 

such programs. High level language programs were not tested, because there is no 

practical was to separate the effects of compiler efficiency from the effects of 

architecture efficiency which the experiment was intended to measure. 

Slightly over one hundred test program samples were coded by 16 programmers 

at participating organizations. The experiment was designed using analysis of variance 

techniques to give the best possible estimates of the relative efficiency of the three 

architectures. 

Three measures were defined to gauge the efficiency of the architectures, 

independently of hardware implementation features such as cycle time. These 

measures were : 

S The static storage requirement for the program in bits. 

M The number of bits of program and data which were transferred 
between the processor and main memory during execution of a 
program. The M Measure is intended to be an index of the memory 
bandwidth requirements of an architecture. 

R The number of bits of program and data which were transferred 
among the internal processor registers during execution of a 
program. The R Measure is intended to be an index of the processor 
bandwidth requirements of an architecture. 

The S, M and R measures are indicators of the relative amounts of hardware 

capability that are necessary when implementing an architecture to do a certain job. 



Summary of the Final Report 

1-11 

That is, larger S measure means that correspondingly more memory will be required to 

handle a given set of applications programs. Clearly, the architecture that can execute 

the programs with the smallest S is desirable. Similarly, M and R are indicators of the 

relat ive hardware speed/bandwidth requirements for memory and processor 

implementations. 

The S, M and R raw data were gathered with the help of a special ISP language 

compiler and simulator system. The three architectures were described in ISP 

(Instruction Set Processor), a formal language for describing computers at the 

instruction/register level. These ISP descriptions were then compiled and run on the 

ISP simulator which was designed to automatically gather statistics of register and 

memory activity during execution of the test programs on the simulated candidate 

architectures. See Volume IV of the Committee Report for a detailed treatment of the 

ISP System and its use in the CFA effort. 

The final results reflect the performance of each candidate architecture for each 

measure. Those results are shown in Table 4. This experiment is described more fully 

in Volume HI of the final Committee Report. 

The results are normalized so that unity indicated average performance; the 

lower the score on any of the measures, the better the architecture handled the set of 

test programs. In other words, the results indicate that the S/370 needs 21 percent 

more memory than the average to store the test programs, the 8 / 3 2 needs only 8 3 

percent as much memory as average, and the PDP-11 is nearly average in its use of 

memory. The differences between the S/370 results and the average of the results of 

the other two architectures were statistically significant at the 95 percent confidence 

level, but the differences between the 8 /32 and the PDP-11 results were not 
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statistically significant at this confidence level. The differences between the 8 / 3 2 and 

the S / 3 7 0 results were also statistically significant for the S and M measures at the 95 

percent confidence level. 

Support Software Evaluation 

A support Software Evaluation Subcommittee was appointed to study the 

support software bases of the three final candidate architectures. This subcommittee 

began by defining an extensive menu of support software tools, which might be useful 

in military systems development. Committee member organizations were then asked to 

rate each tool by its utility in developing software for military weapon systems. The 

2 8 most important support software tools were selected from this rating. The CFA 

candidate manufacturers and other commercial sources were investigated as to the 

availability of these 28 software tools for each architecture. Table 5 lists the basic 

tool types on the required support software menu. 

The cost to develop each item of support software was estimated. The total 

cost to develop the selected support software items was estimated to be 

approximately 41 million dollars. The estimated value of the support software bases 

for each of the final candidate architectures is summarized in Table 6 below; also 

shown is the estimated cost to eliminate deficiencies as compaed to the desired 

support software base: 

See Volume V of the Committee Report for a detailed treatment of the support 

software evaluation. 

Life Cycle Cost Evaluations 

A Final Selection Methodology Subcommittee was formed at the third Selection 

Committee meeting to investigate and pursue a methodology for combining the results 
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of the committee's evaluations into a single evaluation criterion which would be 

realistic and meaningful to DoD management. This subcommittee proposed a method of 

converting the architecture and software evaluation results to life cycle costs so that a 

final selection could be aided by data based on the comparative economics of using 

each of the candidate architectures in military computer systems. 

Two separate computer life cycle requirements models were used for the cost 

analyses. Both used the data gathered in the Architecture Efficiency Evaluation and 

the Support Software Base Evaluation described previously to convert the modeled 

requirements into dollar costs. 

The first model is a "top-down" model which represents total life cycle 

requirements for DoD computers in the 1978-1990 time period, using each of the three 

final candidate architectures for the MCF. It was based upon extrapolating trends in 

DoD wide expenditures and requirements for military computer hardware and software. 

Figure 2 summarizes results of computing CFA life cycle costs summed over the 

years 1978 to 1990 for the three candidates, for certain conditions. To simplify 

comparisons, the total assumed costs (approximately 81 billion) are normalized with 

respect to the IBM S/370. 

The results are shown for specific values of two of the model input parameters. 

The first is an expenditure rate ($2M/year) for completing development of the support 

software base of each candidate. The second is a range of values (x-axis) of the total 

cost ratio of software-to- hardware for military tactical computer systems. The results 

are plotted as a function of the software-hardware cost ratio because it is one of the 

most important parameters in the cost evaluations. Available data gives this ratio as 

about 2.5 to 3.0 for generalized ADP systems but less than that for tactical, embedded 
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computers whore many copies of a single hardware and software design are deployed. 

How much less is not clear from available data. In the lower range of sof tware / 

hardware ratios the Interdata has the lowest cost, in the upper range the S /370 is 

lowest, and the PDP-11 is lowest in the middle range and neither best nor worst 

e lsewhere. 

The second model is a "bottom-up" life cycle requirements model, which is based 

upon data gathered on 15 existing or developmental Army tactical data systems. This 

model represented the life cycle requirements for these 15 systems, using each of the 

three final candidate architectures. The cost to develop all of these systems in 1976 

and then in 1985 was estimated. The results of this analysis are shown in Table 7 

below. This table indicates that: 

a. The average total life cycle cost for all 15 systems is estimated at 
81.91B in 1976 and 8250M in 1985. The average software: hardware 
cost ratio of these systems is 1:11 in 1976 and 1:2.3 in 1985. 

b. In 1976, the number of systems in which the PDP-11 architecture 
provides the lowest cycle cost is the largest (11). The PDP-11 
architecture provides the lowest total life cycle cost by a small 
margin (3.77.) over the 8 /32 architecture and by a larger margin 
(20.07.) over the S/370 architecture. 

c. In 1985, the number of systems in which the PDP-11 architecture 
provides the lowest cost increases to 14. The PDP-11 architecture 
continues to provide the lowest total life cycle cost for all 15 
systems by margins of 8.87. and 17.67. over the 8 /32 and S /370 
architectures. 

Assumptions applicable to the results shown in Table 7 are (1) hardware cost 

reduction of a factor of 10 from 1976 to 1985, (2) hardware life cycle cost of twice 

the acquisition cost, and (3) software life cycle cost of 5.5 times the acquisition cost. 

The results shown in Table 7 are not significantly sensitive to changes in 

applications software cost or in the annual support software investment for the 

selected CFA. 
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A limited sensitivity analysis was performed with both models. If lower 

estimates are made for software development costs (relative to hardware costs), 

and/or if faster development of the support software base is projected (so that all 

three architectures rapidly acquire a complete support software base), then the 

Interdata 8 / 3 2 eventually becomes the least expensive architecture, because of its 

efficient architecture as indicated by the test program results. If very high software 

development cost estimates are made, and/or very slow support software development 

is projected, then the S/370 becomes the least expensive architecture because of its 

advantage in support software. Figure 2 illustrates this behavior. In the intermediate 

ranges of software cost estimates, where top-down and bottom-up results were in the 

best agreement, the PDP-11 appears to have a slight cost advantage. However, 

compared to the expected errors in the results due to the uncertainties in the input 

data and assumptions, the life-cycle cost differences between the two models and 

among the three candidate architectures are small. The software/hardware ratio which 

is one of the most important factors in both models is one of the hardest to pin down 

with supporting data, and the results of both models can be made to change by using 

values from different sources for the same input parameters. The strongest conclusion 

to be derived is that the results agree and that, in terms of life cycle cost, all three 

candidates would provide comparable choices for the CFA. See Volume VI of the Final 

Report for details of the life-cycle cost evaluations. 

Licensing 

Meetings were held with IBM, DEC, and Interdata to discuss the terms and 

conditions under which they would grant a non-exclusive license to the Government to 

use their architecture for militarized processors. All three manufacturers were 
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cooperative and proposed terms for such an agreement. Although the proposed 

licensing agreements were a significant factor in the final selection process, the details 

cannot be given here, due to the confidential nature of the discussions. Volume VI I of 

the Final Report, which is restricted to internal Government use, contains the details of 

the licensing proposals. 

6.3. Final Selection/Recommendations 

The Selection Committee held its fifth and final meeting on 24 to 26 August 

1976 at the Naval Underwater Systems Center, Newport, R. I., for the purpose of 

selecting the recommended aachitecture for the MCF. At this meeting, the results of 

the evaluations discussed in the preceding sections of this article were considered by 

the committee and discussed at length. Based upon that data, and upon other concerns 

specifically considered by the committee during its discussion of the final selection, the 

respective strengths and weaknesses of each architecture can be summarized as 

follows: 

A. INTERDATA 8 /32 . The 8 /32 was the highest rated architecture on 
the Quantitative Criteria, and the Test Program Results. The 8 / 3 2 
has a good interrupt structure for real-time processing. On the 
other hand, the software base is relatively weak, which consequently 
compromised its performance in the life cycle cost evaluations. 
There was a nagging question about how well the state of the 
machine was preserved after interrupts. 

B. IBM S/370. The strongest virtue of the S/370 is its large support 
software base. The S/370 performed well on the life-cycle cost 
analyses under assumptions of maximum relative cost of software 
development. The S/370 is the only architecture demonstrated as an 
easily virtualized computer in a standard product line. On the other 
hand, its interrupt structure was considered cumbersome for real 
time control applications. The test program results indicate that the 
architecture is significantly less efficient than the 8 /32 and the PDP-
11 . There was also concern that small subset versions might not 
prove cost-effective for low-end applications, and that there was 
insufficient experience with the S/370 in OEM type applications. 

1-16 
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C. PDP-11 . The PDP-11 enjoys a good support software base, 
performed relatively well on the Test Programs, and has a good 
interrupt structure for real-time control applications. It enjoys a 
slight advantage on the cost models for a range of reasonable 
assumptions. Small scale (microprocessor) implementations are 
practical and have been built. On the negative side, the 16 bit virtual 
address space is a limitation and it may be expensive to add a virtual 
machine capability to the architecture. 

The committee made four final recommendations: 

A. The DEC PDP-11 was determined by a vote of 14 to 4 to be the most 
advantageous architecture for the MCF, the IBM S/370 was ranked 
second, and the Interdata 8 /32 was ranked third. 

B. The committee unanimously agreed that a single instruction-set 
architecture should be selected for the MCF, that the selection of 
only one architecture is more important than which one of the 
candidates is selected, and that any one of the three final candidate 
architectures could provide a satisfactory basis for the MCF. 

C. The committee agreed that an effort should be made to relieve the 
limitations of the selected architecture. In the case of the PDP-11 
the major limitation is the small (16 bit) virtual address space. 

D. A single organizational structure must be established to control the 
architecture, or major incompatibilities between different 
implementations will surely result. 

See Volume VII I of the Final Report for details of the CFA final 

selection/recommendation process. 

7. Conclusions 

It is sometimes asserted that military systems have unique requirements which 

preclude the use of a general purpose commercial instruction set. Developers of 

computer based weapons systems often assert that they alone have such severe "real­

time" constraints that they compel the use of a particular processor. It is worth noting 

that the Selection Committee compared three of the most widely used military 

architectures with six of the most widely used commercial architectures and found that 
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the military architectures were deficient compared to the commercial architectures in 

terms of those architectural characteristics believed to be most important in tactical 

military applications. It is worth noting also that none of the military architectures had 

any unique features which proved advantageous, while all three were found to have 

architectural shortcomings. Moreover, the support software available for the three 

military architectures is relatively weak. Considering how easily modern 

microprogrammable processor hardware may be adapted to a given instruction-set 

architecture, there appears to be little reason to continue to use little-known or 

immature developments in future military computer systems. 

The PDP-11 is one of the most successful architectures, in terms of user 

acceptance, in the history of the computer industry. It has been manufactured in the 

tens of thousands, and is widely used in almost every sort of OEM application. An 

extensive support software base exists for it, and DEC will continue to develop and 

support the architecture for the foreseeable future. It is clearly a satisfactory choice 

for the Military Computer Family. With the MCF intelligently defined and implemented, 

it will make available a family of militarized processors with excellent software 

development tools, and the capability to develop and maintain software on less 

expensive commercial equipment. This in turn will result in substantial cost and quality 

benefits in the application of computers to military systems. 
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8. Appendix 

Table of Contents of The Final Report of the CFA Selection Committee 

A - l Volume I - Introduction 

Volume I explains the background, rational and organization of the 
Computer Family Architecture effort and the Selection Committee. 

A - 2 Volume II - Selection of Candidate Architecture and Initial Screening 

Volume II describes the initial candidate selection, and discusses 
architectural issues pertinent to CFA evaluation. The evaluation 
criteria applied to the architectural candidates for preliminary 
screening are described in detail, and the results of that evaluation 
are discussed. 

A - 3 Volume II I - Evaluation of Computer Architectures via Test Programs 

Volume HI discusses the development of the measures used to gauge 
architectural efficiency and describes the test programs selected for 
the evaluation. The method of specifying the test programs and thfe 
structure of the programming experiment to minimize programmer 
effects are also discussed. 

A - 4 Volume IV - Architecture Research Facility: ISP Description, 
Simulation, Data Collection 

Volume IV discusses the use of the ISP machine architecture 
description language in describing the candidate architectures. It 
describes the ISP interpreter facility and its application to simulation 
of the candidates and in gathering the measurements discussed in 
Volume II I . 

A - 5 Volume V - Procedure for and Results of the Evaluation of the 
Software Bases of the Candidate Architectures for the Military 
Computer Family 

Volume V describes a menu of support software tools determined to 
be important to the development of military software. It discusses 
how a subset of those tools were selected as the necessary software 
base for the Military Computer Family and the results of a study to 
determine the availability and value of these tools. 

A - 6 Volume VI - Life Cycle Cost Analyses of the Computer Family 
Architecture Candidates 

Volume VI describes the methodology used to compute and compare 
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the life cycle costs of the CFA finalists and describes two life cycle 
models (top-down and bottom-up) and the results of applying the 
methodology to those two models. 

A - 7 Volume VII - CFA/Software Licensing Discussions with the Three CFA 
Finalists (For Official Use Only) 

Volume VII addresses the technical, financial, and legal issues arising 
out of discussions with the owner/manufacturer of each candidate 
computer architecture and describes the outcome of these 
discussions. 

A - 8 Volume VII I - CFA Final Selection 

Volume VII I discusses the consideration by the Selection Committee 
of the results of the architecture evaluations described in Volumes I I 
through VII of this report. The influencessthat the various results 
had on the final selection are described. 

A - 9 Volume IX - A Consideration of Issues in the Selection of a Computer 
Family Architecture 

Volume IX addresses questions and controversial issues regarding the 
CFA Selection process that arose from both within and without the 
Selection Committee during the course of the CFA effort. 
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Table 1 - Absolute Criteria for CFA Evaluation 

(1 ) Virtual Memory Support- The architecture must support a virtual to physical 
translation mechanism. 

(2 ) Protection.- The architecture must have the capability to add new, experimental 
(i.e., not fully debugged) programs that may include I/O without endangering 
reliable operaion of existing programs. 

(3 ) Floating Point Support.- The architecture must explicitly support one or more 
floating point data types with at least one of the formats yielding more than 10 
decimal digits of significance in the mantissa. 

(4 ) Interrupts and Traps.- It must be possible to write a trap handler that is capable 
of executing a procedure to respond to any trap condition and then resume 
operation of the program. The architecture must be defined such that It is 
capable of resuming execution following any interrupt. 

(5 ) Subsotahility.- At least the following components of an architecture must be able 
to be factored out of the full architecture: 

Virtual-to-Physical Address Translation Mechanism 

Floating Point Instructions and Registers (if separate from general purpose 
registers) 

Decimal Instructions Set (if present in full architecture) 

Protection Mechanism 

(6) Multiprocessor Support.- The architecture must allow for multiprocessor 
configurations. Specifically, it must support some form of "test-and- set" 
instruction to allow the implementation of synchronization functions such as P and 
V. 

(7)Controllahility of I/O.- A processor must be able to exercise control over any I/O 
Processor and/or I/O Controller. 

(8)Extendihility.~ The architecture must have some method for adding instructions to 
the architecture consistent with existing formats. There must be at least one 
undefined code point in the existing opcode space of the instruction formats. 

(9)Rcad Only Code.- The architecture must allow programs to be kept in a read-only 
section of primary memory. 
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Table 1 (cont.) - Quantitative Criteria for CFA Evaluation 

(1 ) Virtual Address Space 

(a) V | : The size of the virtual address space in bits. 

(b) V^: Number of addressable units in the virtual address space. 

(2 ) Physical Address Space 

(a) P j : The size of the physical address space in bits. 

(b) ?2'- The number of addressable units in the physical address space. 

(3 ) Fraction of Instruction Space Unassigned 

(4 ) Size of Central Processor State 

(a) C s 2 : The number of bits in the processor state of the full 

(b) C s 2 : The number of bits in the processor state of the minimum subset of 
the architecture (i.e., without Floating Point, Decimal, Protection, or Address 
Translation Registers). 

(c) C m l : The number of bits that must be transferred between the processor 
and primary memory to first save the processor state of the full architecture 
upon interruption and then restore the processor state prior to resumption. 

(d) C m 2 : The measure analogous to C m l for the minimum subset of the 
architecture. 

( 5 ) Virtualizability 

K: is unity if the architecture is virtualizable as defined in [PopG74] otherwise K 
is zero. 

(6 ) Usage Base 

(a) B j : Number of computers delivered as of the latest date for which data 
exists prior to 1 June 1976. 

(b) Total dollar value of the installed computer base as of the latest date 
for which data exists prior to 1 June 1976. 

(7 ) I/O Initiation 

I: The minimum number of bits which must be transferred between main memory 
and any processor (central, or I/O) in order to output one 8-bit to a standard 
peripheral device. 
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(8 ) Direct Instruction Addressability 

D: The maximum number of bits of primary memory wwich one instruction can 
directly address given a single base register which may be used but not modified, 

(9 ) Maximum Interrupt Latency 

Let L be the maximum number of bits which may need to be transferred between 
memory and any processor (CP, IOC, etc.) between the time an interrupt is 
requested and the time that the computer starts processing that interrupt (given 
that interrupts are enabled). 
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Table 2 - Candidate Scores on Absolute and Quantitative Criteria 

Architecture Quantitative 
Criteria Score 

Absolute 
Criteria Score 

8 / 3 2 
PDP-11 
S / 3 7 0 
AN/GYK-12 
ROLM/NOVA 

B 6 7 0 0 
SEL-32 
AN/UYK-7 
AN /UYK-20 

1.68 (Best) 
1.43 
1.36 
.94 
.92 

.91 

.86 

.46 

.44 (worst) 

Problem with interrupts and traps 
Passed all 
Passed all 
Failed floating-point 
Failed virtual memory mapping and 
interrupts/traps 
Failed protection 
Failed virtual memory mapping 
Failed floating point 
Failed protection 
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Table 3 - Test Programs 

1. I/O kernel, four priority level*, requires the processor to field interrupts from 
four devices, each of which has its own priority level. While one device is being 
processed, interrupts from higher priority devices are allowed. 

2. I/O kernel, FIFO processing, also fields interrupts from four devices, but without 
consideration of priority level. Instead, each interrupt causes a request for 
processing to be queued; requests are processed in FIFO order. While a request 
is being processed, interrupts from other devices are allowed. 

3. I/O device handler, processes application programs* requests for I/O block 
transfers on a typical tape drive, and returns the status of the transfer upon 
completion. 

4. Large FFT, computes the fast Fourier transform of a large vector of 32 bit 
floating point numbers. This benchmark exercises the machine's floating point 
instructions, but principally tests its ability to manage a large address space. 

5. Character search, searches a potentially large character string for the first 
occurrence of a potentially large argument string. It exercises the ability to move 
through character strings sequentially. 

6. Bit test, set, or reset tests the initial value of a bit within a bit string, then 
optionally sets or resets the bit. It tests one kind of bit manipulation. 

7. Runge-Kutta integration numerically integrates a simple differential equation 
using third-order Runge-Kutta integration. It tests floating-point arithmetic. 

8. Linked list insertion inserts a new entry in a doubly-linked list. It tests pointer 
manipulation. 

9. Quicksort sorts a potentially large vector of fixed-length strings using the 
Quicksort algorithm. Like FFT, it tests the ability to manipulate a large address 
space, but it also tests the ability of the machine to support recursive routines. 

10. ASCII to floating point converts an ASCII string to a floating point number. It 
exercises character-to-numeric conversion. 

1 1 . Boolean matrix transpose transposes a square, tightly-packed bit matrix. It tests 
the ability to sequence through bit vectors by arbitrary increments. 

12. Virtual memory space exchange changes the virtual memory mapping context of 
the processor. 
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Table 4 - Test Program Experiment Results 

Architecture 

ir>\ M R 

Interdata 8 / 3 2 .83 .85 .83 
PDP-11 1.00 .93 .94 
IBM S /370 1.21 1.27 1.29 
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Table 5 - Menu of Required Software Tool Types 

Compilers 
Macro Assemblers 
Interact ive Source Language Editors 
Interact ive Symbolic Debuggers 
Extended Overlay Linker 
Test Case Design Advisors 
Integrated Library 
Text Processing System 
Data Base Management System 
GP System Simulator 
Time Sharing Operating System (TSOS) + VMM 
Language Independent Monitors 
Test Data Generator 
Non-Interact ive Symbolic Debugger 
Computer System Simulator 
Batch Source Language Editors 
Language Dependent Monitors 
TSOS + MPOS + VMM 
Basic Assembler 
RTOS + TSOS 
Test Instrumenters & Analyzers 
Automatic SW Production & Test 
Basic Linker 
Standards Enforcers 
Reformatters 
Test Data Auditor 
Simple Overlay Linker 
Data Base Design Aid 
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Table 6 - Tactical Support Software Base Evaluation 

Architecture 

8 / 3 2 
PDP-11 
S /370 

Estimated Value of 
Current SSW Base 

S15.3 M 
822.2 M 
832.3 M 

Estimated Cost 
To Eliminate 
Deficiency 

825.9 M 
819.1 M 
8 9.6 M 
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SUPPORT SOFTWARE EXPENDITURE, CL = 2 x 10 6 

1990 CURVES 

FIGURE 2 . Top Down L i f e C y c l e Cost Curves 



A. AVERAGE TOTAL LIFE CYCLE COSTS ($000.000) 

Type Cost 1976 1985 

Hardware $1750 $175 

Software 162 75 

TOTAL $1912 $250 

B. 1976 ARCHITECTURE COMPARISON 

Arch i tec tu re # System R e l a t i v e Total Cost* Arch i tec tu re Preferences HDW SW Total 

8 /32 1 .92 1.33 .96 

PDP-11 11 .91 1.00 .96 

S/370 3 1.16 " .67 1.12 

C. 1985 ARCHITECTURE COMPARISON 

Arch i tec ture # System Relal t ive Total Cost* Arch i tec ture Preferences HDW SW Total 

8 /32 - .92 1.20 1.00 

PDP-11 14.5 .91 .91 .91 

S/370 0.5 1.16 1.09 1.09 

* wi th respect to average cost ; 1.00 equals average cost 

TABLE 7. Summary: Bottom Up L i f e Cycle Cost Analysis 
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ABSTRACT 

The initial selection criteria that were developed and used by the Army/Navy 

Computer Family Architecture (CFA) committee in their evaluation of alternative 

computer architectures is presented in this article. These initial criteria were used in 

this first phase of the CFA evaluation process to reduce the number of computer 

architectures from the original set of nine to the most promising three or four 

architectures for the more intensive evaluation discussed elsewhere [FulS77; WagJ77; 

SmiW77]. The machines selected by this initial ranking and screening process for 

further evaluation were the Interdata 8 /32 , DEC PDP-11, and the IBM S/370. 

1. Introduction 

The CFA selection committee was concerned with selecting a computer 

architecture to use in future military (ruggedized) computers and hence wanted to 

evaluate the merits of the computer architecture independent of any features, or 

f laws, of existing implementations of the computer. For this reason, the following 

definition of computer architecture was used by the CFA committee: 

Computer Architecture: The structure of the computer a 
programmer needs to know in order to write any machine-
language program that will run correctly on the computer. 

With a well specified architecture, details of data bus width, technology (core 

memory versus semiconductor memory, TTL versus ECL circuits), implementation 

speedup techniques, physical size of computer, etc. need not be of concern to the 

programmer and hence are not a part of the architecture. This separation of 

architecture and implementation is not a radically new idea [AmdG64], The IBM 

S y s t e m / 3 6 0 - 3 7 0 series, the DEC PDP-11 series, and the Data General NOVA series are 
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just three examples of where this has already been successfully accomplished to a 

greater or lesser degree. 

This article first describes how the CFA selection committee chose the initial 

candidate architectures for evaluation, and then describes the criteria, the 

methodology, and the data used in ranking these architectures during the preliminary 

screening phase of the CFA project. At the point this procedure was formulated, it 

was Known that time and money limitations would preclude doing a detailed analysis on 

all nine candidates; consequently an initial screening was necessary to limit the field to 

the three or four "best" candidates that would be subjected to a much more detailed 

analysis. This more detailed analysis, based on test programs, the support software 

bases of the architectures, and life cycle cost models is discussed in the accompanying 

articles. 

Many detailed questions arose during the evaluation of these nine initial 

candidate architectures. It is impossible to review all these questions in this article, 

but we will discuss here the most important questions that arose, and interested 

readers are encouraged to refer to Volume II of the final report of the CFA committee 

for a detailed presentation of how and why each candidate architecture was evaluated 

as it was [FulS76a]. 

The mechanism for choosing the nine initial candidate architectures is discussed 

in the next section. The third and fourth sections then describe the nine absolute and 

seventeen quantitative criteria, respectively, and show how each of the candidate 

architectures was ranked on these criteria. The fifth section describes how the CFA 

committee combined the scores of the candidate architectures for each individual 

criteria to form a single, composite score for each architecture that reflected the 

relative importance of the seventeen quantitative criteria. 
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2. Initial Selection of Candidate Computer Architectures 

The CFA selection process was initiated in March and April of 1975 when letters 

w e r e sent to 35 Army and Navy organizations soliciting proposals for candidate 

computer architectures. As a result of these letters, and discussions at the first two 

CFA meetings, the following set of nine computer architectures was chosen: 

Burroughs 6 7 0 0 ROLM Corporation 1664 (AN/UYK-28) * 
DEC PDP-11 SEL 32 
IBM System/370 Univac AN/UYK-7 
Interdata 8 / 3 2 Univac AN/UYK-20 
Litton AN/GYK-12 

There were on the order of 100 viable computer architectures in 1975 that 

might have been considered by the CFA committee for selection [GMLC75]. The 

decision as to what set of architectures would be evaluated remained open from March 

through December of 1975. The nine architectures listed above were selected for 

evaluation because they met two essential criteria: (1) the CFA committee agreed the 

architecture might be a reasonable choice for future military computers and (2) there 

was a CFA committee member sufficiently convinced of the value of the computer 

architecture that he was willing to act as its advocate in the subsequent evaluation 

phase. 

3. Absolute Criteria 

The CFA selection committee specified nine absolute criteria that they felt a 

candidate computer architecture needs to satisfy if it is going to meet the 

* The AN/UYK-28 is instruction-set upward-compatible with the Data General NOVA 
computer architecture. Other ROLM computers that are also compatible with the NOVA 
architecture are the AN/UYK-19 and AN/UYK-27. The AN/UYK-28 is incompatible with 
the Data General ECLIPSE computer architecture, Data General's upward-compatible 
extension of the NOVA. 
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requirements of future military computer systems. All the absolute criteria (with the 

exception of the subsetability criterion) had to be satisfied by an implementation of 

the architecture which was operational by 1 January 1976. This eliminated speculative 

decisions based on promises or potential solutions that looked inviting, but might not 

come to fruition. Failure to satisfy any absolute criterion resulted in the elimination of 

the architecture from further consideration. The nine absolute criteria are given 

below. The formal statement of each criterion is underlined, while explanations and 

examples are not underlined. Many of the comments that follow the definition of an 

absolute criteria are the result of the experience gained when the CFA committee 

evaluated the nine candidate architectures against these criteria [StoH76]. Table 3 - 1 

shows which absolute criteria each candidate architecture passed or failed. 

Virtual Memory Supyort.-The architecture must support a virtual to physical address  

translation mechanism. 

The intent of this criterion is to take advantage of the widely used feature of 

many machines that is known as virtual memory. Many advantages accrue to 

architectures that support virtual address translation mechanisms, the most notable of 

which is the ability to simplify programming by freeing the programmer of explicit 

management of his primary memory and providing a mechanism for keeping only the 

active portions of a program in high-speed memory. 

The answers for this criterion listed in Table 3-1 are not controversial, except 

for the AN/UYK-20. This architecture provides the page registers necessary for 

relocation, but does not limit the ability to change these registers to privileged 

programs. Some members of the CFA committee felt that preventing user state access 

to the page registers was a necessary aspect of virtual memory; others disagreed. 
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The full CFA committee voted to fail the AN/UYK-20 on this criteria. The ROLM 1664 

and SEL 3 2 both failed this criterion because each of these architectures provide a 

mechanism commonly known as "bank switching", which the committee felt was not an 

adequate memory translation mechanism. 

Protoction.-The architecture must have the capability to add new, experimental (i.e..  

not fully debugged) programs that may include I/O without endangering reliable  

operation of existing programs. The intent of this criterion is to provide a mechanism 

in the hardware for aiding software development, and for preventing certain 

catastrophic software failures from occurring in the field. Architectures that use a 

privileged mode to protect vital registers and system resources generally meet this 

criterion. 

The AN/UYK-20 failed this criterion because it lacks memory protection; any 

user can modify the contents of the relocation registers, and thereby read and write 

any word in memory. Another generic way for an architecture to fail the protection 

criterion is for a program to have the ability to put the machine into a 

noninterruptable state for an indefinite time. Architectures that permitted 

nonterminating instructions were carefully examined to identify if these were, or were 

not, interruptable. 

Floating-Point Sit;jjport.-The architecture must explicitly support one or more floating­ 

point data types with a! least one of the formats yielding more than 10 decimal digits 

2 i significance in. t_he mantissa. The significance measure was determined as 

representat ive of the most stringent requirements actually encountered. 

The AN/GYK-12 failed this criterion because it does not support floating point 
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operations. The AN/UYK-7 failed because it supports a single, 64-bit floating point 

format with only 31 bits (9.2 decimal digits) of mantissa. Because this is so close to 

the borderline, one might reconsider requirements on significance to determine how 

firm the 10 decimal digit criterion is. (Had the AN/UYK-7 looked like an otherwise 

excellent architecture, it is likely that the committee would have relaxed the floating 

point absolute criterion for it.) 

Interrupts and Traps.-tt must be possible to write a trap handler that is capable of 

executing a procedure to respond to an^ trap condition and then resume operation qf 

the program. 

For example, if the processor receives a page-fault trap from the address 

translation unit, it must be able to request the appropriate page be brought in from 

secondary storage and then resume execution. If resumption of execution is logically 

impossible (e.g., an attempt to store an operand into a read-only segment of virtual 

memory or fetch an instruction with a parity error) then the trap handler should be 

able to abort the program with an indicator of which instruction and/or operand 

caused the termination. 

A similar requirement exists for interrupts: the architecture must be defined  

such that i i is capable of. resuming execution following any interrupt (e.g., power 

fai lure, disk read error, console halt). 

Another intent of this criterion is to permit extensions and subsets of an 

architecture to operate correctly so programs can be upward or downward compatible. 

The subsets and extensions may differ drastically in size, cost, and performance, but 

e v e r y program written for the native architecture can run on the subset or extended 

machine. 
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The Interdata 8 / 3 2 had difficulty satisfying this criterion since it has variable 

length instructions, and there is no way after a trap or an interrupt to tell whether the 

instruction which was being executed was a 16, 32, or 48 bit instruction. This may be 

a problem when it is desirable to correct the cause of the fault, and then re-execute 

(or resume) the instruction. Due to uncertainties in the definition of the Interdata 8 / 3 2 

architecture, the CFA committee was not able to resolve whether or not the Interdata 

8 / 3 2 satisfied this criterion. 

SubsotaI)ility.-M least the following components of an architecture must be able to be  

factored out of the full architecture: 

a. Virtual-to-Physical Address Translation Mechanism 

b. Floating Point Instructions and Registers (if separate from general  
purpose registers) 

c - Decimal Instructions Set (jtf present in fuH architecture) 

d. Protection Mechanism 

Implementations of the architectures on small machines for dedicated 

applications must not be required to include features of the architecture intended for 

use on larger, multiprogrammed, multi-application configurations. Existence of such 

subsets did not have to be demonstrated in an operational implementation of the 

architecture. 

Because there was no operational method for testing subsetability, we could not 

challenge positive replies for any of the nine candidate architectures. However, the B-

6 7 0 0 and the AN/UYK-7 have not been subsetted in the sense of the criterion, so that 

their subsetability is more speculative. 

In order to retain program compatibility across the implementations of the 



Initial Selection and Screening 

2-8 

architecture, this criterion was extended to include the following requirement: The trap  

mechanism of the architecture must be defined such that instructions in the full  

architecture, but not implemented in the subset machine, trap on th£ subset machine  

and that |t be possible to write trap routines for the subset machine that allow [t to 

interpret ivelv execute those instructions not implemented directly in hardware (or  

f i rmware) and then resume execution. (This is an elaboration of absolute criterion 4.) 

Multiprocessor Support .-The architecture must support some form of. "test-and-set"  

instruction to allow for the communication and synchronization of multiple processors. 

The intent of this criterion is to be sure that the basic architecture can support 

multiprocessor configurations. 

Input/Output Controllability.-^ processor must be able to exercise absolute control  

over any I/O processor and/or I/O controller. 

The interpretation of the criterion proved rather difficult. While all 

architectures necessarily permitted individual devices to be started and queried for 

status, there were varying degrees of control exercisable with respect to stopping the 

devices. It is reasonable to stop all input/output, or to stop selected devices. All 

architectures had some way of stopping a single device and stopping all devices, but 

how they did it varied widely in efficiency. 

Extensibility.-The architecture must have some method for adding instructions to the 

architecture consistent with existing formats. There must be at least one undefined  

code point [n the existing opcode space of the instruction formats. All nine candidate 

architectures have unused instructions, so all passed this criterion. 

Read-Only Code.-U must be possible to execute programs from read-only storage. 
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This criterion is intended to permit an added degree of reliability by permitting 

programs to be stored in a nonvolatile read-only memory. However, a program can be 

rewr i t ten to be read-only on any of the nine architectures, even if that architecture 

does not support special types of instructions to facilitate this. It might have been 

more meaningful to examine this question quantitatively. 

Table 3 - 1 shows the score of each candidate architecture on each of the 

absolute criteria. Note that none of the nine architectures failed to meet the last five 

criteria: subsetability, multiprocessor support, I/O controllability, extensibility, and 

read-only code. This is in part the case because we limited our evaluation to 

reasonably successful architectures, but is partly the result of not defining these 

criteria precisely enough prior to applying them to the candidate architectures. For 

example, by not clearly defining how to test for the practical subsetability of an 

architecture, we made it virtually impossible for an architecture to fail this criteria. 

Subsequent studies would be well advised to consider more precise definitions of 

these (and any additional) absolute criteria before evaluating alternative architectures 

against them. 

4- Quantitative Criteria 

In addition to the absolute criteria, the CFA committee specified seventeen 

quantitative criteria that they felt would be helpful in the initial screening process. A 

number of these quantitative criteria measure attributes of a computer architecture 

better measured by benchmarks, or test programs [FulS77a]. However, the CFA 

committee recognized that it did not have the resources to run benchmarks on all nine 

candidate architectures and therefore proceeded with the use of these quantitative 
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criteria to help select three or four candidate architectures, out of the original nine 

candidate architectures, for more intensive study via test programs. 

The quantitative criteria are described below and the score of each architecture 

on the quantitative criteria is given in Table 4 - 1 . 

Virtual Address Spacc.-

V j : The size of the virtual address space in bits. 

Vg* Number of addressable units in the virtual address space. 

Two aspects of these measures were open to interpretation. The CFA 

committee settled on the following interpretation for treating bank switching: the 

virtual address for a machine with bank switching is the address within a bank. The 

effect of bank switching is to increase the size of the physical rather than the virtual 

address. 

The second interpretation centered on the notion of "addressable unit". There 

are several degrees of addressability. An item may be fully addressable in the sense 

that it can be accessed by the address produced by an effective address computation. 

The committee also decided, however, that instructions such as the IBM S /370 Test 

Under mask, and the OR Immediate allowed the testing and setting of individual bits, 

and provided a minimum addressable unit of 1 bit. 

Physical Address Space.-

P} : The size of the physical address space in bits. 

P 2 : The number of addressable units in the physical address space. 

Where bank switching has been implemented, the physical address measures 

include all the banks of memory available. For computers with virtual address 
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translation, the physical address is the address resulting from the virtual-to-physical 

address translation. The physical address space is defined apart from any 

implementation, since the physical address space size is defined by the effective 

address calculation process or the virtual address translation process and need not be 

equal to the largest memory configuration yet delivered. 

Fraction of Instruction Space Unassignod.-l\ is important to select an architecture that 

will allow reasonable growth over its expected lifetime. Let U be defined as the 

fraction of the instruction space in the architecture that is unassigned. Specifically: 

U - 5L u i - 2 " ' < 4 - D 
lli«x> 

where Uj is the number of unassigned instructions of length i. 

Size of Control Processor Statc.-The amount of information that must be stored or 

loaded upon interrupt and/or context swapping is clearly an important factor in the 

response of real time systems and in the overhead of multiprogramming systems. Let 

the processor state be defined as all the bits of information in a processor that must 

be saved in order to be able to restart an interrupted process at a later date. 

Processor states normally include the accumulators, index registers, program counter, 

condition codes, memory mapping registers, interrupt mask registers, e tc 

C s i: The number of. bi]s in the processor state of the full architecture, 

C s 2 ; The number o£ bits in the processor state of. the minimum subset of 
the architecture (i.e., without Floating Point, Decimal, Protection, or 
Address Translation Registers). 

C m i : The number of. bits that must be transferred between the processor  
and primary memory to first save the processor state of the fuH 
architecture upon interruption and then restore the processor state  
prior to resumption. This measure differs from C $ j above in that 
"register bank switching", where provided for in the candidate 

2-11 
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architectures, may eliminate the need to save some registers in 
primary memory, while the instruction fetches required to save the 
state are included in C m j but not in C s j . 

C m o « T h e measure analogous to Cml for the minimum subset of the  
architecture. 

These measures give an approximation to the complexity of the implementation 

of the architectures, as well as a measure of the responsiveness of the architectures 

to worst-case context changes for interrupt processing. 

If an architecture provides for several sets of certain registers to provide fast 

switching or multiple contexts, and if a program uses only one such register set when 

it runs in one context, then only one set of these registers is used in calculating C $ j . 

Usage Base.-

By. Number of computers delivered as of the latest date for which data  
exists prior to 1. June 1976. 

&2: Total dollar value of the installed computer base as. of the latest date  
for which data exists prior to i June 1976. 

These two measures are meant to be approximate indicators of the existing 

software and programmer experience base. A single individual determined the value of 

these measures for all candidate architectures from standard sources. 

I/O Initiation-

I: The minimum number of bits which must be transferred between main  
memory and any processor (central, or I/O) in order to output one 8^ 
bit byte to a standard peripheral device. 

Although this measure was intended to give some insight into the 

responsiveness of an architecture, it is very difficult to construct an interpretation of 

the measure that serves this purpose well. The measure counts relatively few bits for 

some architectures, and this, in turn, makes the measure very sensitive to changes of a 
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few bits. The I measure is also sensitive to several assumptions about exactly what 

actions are to be performed in doing the input/output operation, and where 

parameters for the operation are found. Unfortunately, this sensitivity made the I 

measure very arbitrary, and a rather inexact measure of input/output responsiveness. 

The precise, and somewhat lengthy, definition of I is given in [FulS76a]. 

VirtunlizahUity.-

K*. is unity the architecture is virtualizable as defined in fPopG741.  
otherwise. K [s zero. 

The intent of this criterion is to capture the concept of virtual machines that has 

been used to advantage in some commercial computer systems (e.g., IBM's VM/370) . 

An architecture that supports virtual machines provides a mechanism for a privileged, 

stand-alone program to run as an unprivileged task and produce the results identical 

to those it produces as a privileged program. The importance of this idea is that an 

operat ing system can be run in user mode as a subsystem of another operating 

system. 

The definition of virtual machine as provide by Popek and Goldberg in their 

article in CACM [PopG74] is a very strict definition that guarantees that any operating 

system that can run stand-alone on architecture X, can also run on architecture X in 

nonprivileged mode. If an architecture fails this definition it may still support virtual 

machines in a more limited sense. 

Direct Instruction Addressability.-

D: The maximum number of, bits of primary memory which one  
instruction can directly address given a single base register, which  
may be used but not modified. 

Large displacement fields in instructions generally simplify programming because 
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they reduce the need to set base registers and to maintain addressability. Because an 

architecture may have several different instruction formats, each with different 

displacement field formats, the committee required that the format selected for this 

measure be the one used for standard LOAD and STORE operations, or the equivalent 

thereof. This eliminated anomalies, like the MOVE CHARACTER LONG in the IBM S / 3 7 0 

architecture, from consideration. 

Maximum Interrupt Latency.-Let L be the maximum number of bits which may need to 

be transferred between memory and any processor (central processor. I/O controller,  

etc.) between the time an interrupt is requested and the time that the computer starts  

processing that interrupt (given that interrupts are enabled). This may be interpreted 

as a measure of the longest non-interruptable instruction or sequence of instructions. 

Architectures with nonterminating non-interruptable instructions have infinite L 

measures and are so indicated in Table 4 - 1 . 

Subroutine Linkage.-

J j : The number of bits which must be transferred between the  
processor and memory to save the user state, transfer to the called 
routine, restore the user state, and return to the calling routine, for  
the full architecture. No parameters are passed. 

The analogous measure to £1. above for the minimum architecture  
(e.g.. without Floating Point registers). 

This measure gives an indication of the size of overhead that might be 

encountered in doing subroutine calls in the worst case for the biggest and smallest 

machines in the family. The bits counted here are related to the count in C S j , CS21 

CMj^, and C M 2 . By presumption, the bits that are stored for are exactly those for 

C S j , except that it is not necessary to save the protection registers, memory map 
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registers, interrupt mask, and other registers that determine the global context for a 

program. Architectures with small processor states or that have LOAD/STORE 

MULTIPLE instructions show up well on these measures. 

5. Composite Score of the Quantitative Criteria 

After applying the quantitative criteria just discussed, the CFA committee had to 

determine how the performance of the candidate architectures on these criteria would 

be used to screen out all but three or four of the architectures for further 

consideration in the test program and software evaluation phases of the study. 

Clearly, the candidate architectures should be ordered relative to each of the 

seventeen quantitative criteria and these independent orderings studied to detect 

weaknesses and strengths of the competing architectures. However, some summary 

measure was ultimately needed to assist the committee in its selection of the final 

architectures to undergo more intensive study. A variety of thresholding and weighing 

schemes were proposed, but the particular scheme that follows was the scheme chosen 

by the CFA committee. 

5 . 1 . Relative Weighing of Criteria 

Each voting organization of the CFA committee was given 100 points to 

distribute among the various measures to indicate their relative importance to the 

organization. The weight for criterion x, W[x], was defined as the total number of 

points given criterion x by all the voting CFA organizations, divided by the total 

number of points handed out. The weights for the quantitative criteria based on 

responses from 24 voting CFA committee members is given in Table 5 - 1 . 
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5.2. Normalization 

When attempting to combine these quantitative measures into a composite 

measure we faced two problems: 

a. The measures are defined such that good computer architectures 
maximize some measures and minimize others. Specifically, the 
measures that a computer architecture should maximize are: V^, V2, 
Pj i P 2» U, K, Bj , B2, and D; while the measures that should be 
minimized are: C^, Cg, C4, I, L, J j , and J 2 . 

Let our composite measure be a maximal measure and transform all minimal 

measures to maximal measures by taking the reciprocal: X* « 1/X. 

b. Measures that inherently involve large magnitudes are not 
necessarily more important than smaller measures. For example, Vj 
is on the order of 10^ to 1 0 9 while K is either 0 or 1. 

To resolve this problem of differing scale, the values for the quantitative criteria 

w e r e normalized by dividing each value by the average value of the criterion over the 

set of nine architectures. For example, the nine measures for criteria I are (64, 16, 4 8 , 

16, 128, 64, 169, 80, 32), the average value is 68.6, and the normalized measures are 

(0 .93 , 0.23, 0.70, 0.23, 1.87, 0.93, 2.47, 1.17, 0.47). 

Normalized measures have the attractive properties that they all lie in the range 

(0,M); have a mean across the set of M architectures of unity; and the standard 

deviation of the set of normalized measures is in the interval (0, ). We could 

have taken the normalization process a step further and adjusted the spread of each 

measure so that the measure gave a standard deviation of unity (or some other 

constant) across the set of architectures being evaluated. We did not do this for all 

measures. Some measures were better "discrimination functions" than others and we 

did not want in general to lose this information by further normalization. However, the 

committee agreed that it is important to normalize the standard deviation of some of 
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the measures; specifically, V | , V2, P^, ?2 a n d D were normalized to have a mean and 

standard deviation of unity. These measures may differ by several orders of 

magnitude between candidate architectures, but the CFA Committee did not feel that 

the utility, as expressed by the measures, differ by orders of magnitude. 

5.3. Scaling and Composition of the Quantitative Measures 

In order to combine the individual measures the committee used a simple, linear 

sum of each normalized measure X scaled by its corresponding weighing coefficient 

W[X] . The weighing coefficients have been defined so that they sum to unity and 

hence the composite measure A is in fact a normalized measure with a mean of 1. 

Using the weights given in Table 5 -1 and the values of the quantitative criteria given 

in Table 4 - 1 , we get the composite measures for the candidate architectures shown in 

Table 5 - 2 . 

There was some valid concern by members of the CFA committee about the role 

of the weighing of the measures, the normalization of the measures, and the measures 

themselves in the selection of finalists. However, upon detailed examination of the 

results we found that, given the weights applied by the committee as an indication of 

the importance of idealized concepts, the finalists selected are very insensitive to the 

exact details of the selection procedure. Almost any reasonable methodology for 

measuring the key concepts quantitatively would select the same finalists. 

6. Summary 

This article has presented the nine absolute criteria and the seventeen 

quantitative criteria used by the CFA committee in their initial screening on the initial 

candidate computer architectures. The scores for each of the candidate architectures 
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are given in Tables 3 -1 and 4 -1 for the absolute and quantitative criteria, respectively. 

Only the IBM S /370 and PDP-11 architectures passed all the absolute criteria. The 

Interdata 8 / 3 2 architecture is not well defined with respect to trap handling and there 

remains some question as to whether it meets the requirements of the interrupt and 

t rap handling criteria. The remaining six candidate architectures failed one or more of 

the absolute criteria specified by the CFA committee. A weighing scheme was 

developed by the CFA committee for the quantitative criteria and the composite scores 

of the nine candidate architectures are given in Table 5-2. The quantitative criteria 

showed that the Interdata 8 /32 , PDP-11, and IBM S/370 lead the other architectures 

by comfortable margins. These results were used by the CFA committee to reduce the 

field of candidate architectures to three finalists — the IBM S/370, the PDP-11, and 

the Interdata 8 / 3 2 — for more thorough evaluation. 

This article has indicated some of the areas where we had difficulty applying the 

criteria and the final report of the CFA committee goes into these difficulties, and their 

resolution, in much greater detail [FulS76a]. The fact remains, however, that if we had 

to compare a set of computer architectures again, we would need to go through a 

similar "initial screening" process; it is just too costly and time-consuming to expect to 

be able to evaluate more than a small set of architectures via any more comprehensive 

means such as benchmarking. The absolute and quantitative criteria used by the CFA 

committee have the attractive property that they can be determined directly from the 

definition of the computer architecture (or from a survey of computer installations for 

criteria B j and B 2 ) . Reflecting back on the history of the CFA project, we estimate 

that it took from two to five man-days to evaluate each of the computer architectures 

against the criteria discussed in this article, plus a two day meeting of the entire CFA 
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committee to resolve differences of interpretation, and it took from six to nine man-

months to evaluate each of the computer architectures via the set of test programs, 

support software evaluation, and life cycle cost models in the subsequent stages of the 

CFA project. 
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CANDIDATE COMPUTER ARCHITECTURES 

ABSOLUTE 
CRITERION 

V i r t u a l Memory 

IBM 
S / 3 7 0 

INTER­
DATA 
8 / 3 2 

ROLM DEC 
PDP-
11 

UNIVAC 
AN/ 
UYK-7 

SEL 
32 

BURROUGHS 
B 6 7 0 0 

UNIVAC 
AN/ 
UYK-20 

N 

LITTON 
AN/ 
GYK-12 

P r o t e c t i o n 

F l o a t i n g P o i n t 

Y? N Y? 

N 

Y 

i / O C o n t r o l l a b i l i t y 

E x t e n s i b i l i t y 

R e a d - O n l y Code 

SUMMARY N N N 

Y Y e s , M e e t s C r i t e r i a 
N N o , F a i l s C r i t e r i a 
Y? Yes ( b u t w i t h some r e s e r v a t i o n s ) 
? U n r e s o l v e d 

N 

Y 

Y 

T a b l e 3 - 1 . C a n d i d a t e A r c h i t e c t u r e V a l u e f o r A b s o l u t e C r i t e r i a 



# 

QUANTI­
TATIVE 
CRITERIA 

CANDIDATE CFA's 

# 

QUANTI­
TATIVE 
CRITERIA 

IBM 
S / 3 7 0 

INTER­
DATA 
8 / 3 2 

ROLM DEC 
P D P - 1 1 

UNIVAC 
UYK-7 

SEL 
32 

BURROUGHS 
B 6 7 0 0 

UNIVAC 
UYK-20 

LITTC* 
GYK-12 

1 
v l 

2 7 2 7 2 0 2 0 24 22 2 4 2 0 2 0 

v 2 
2 7 27 2 0 19 24 22 2 0 17 2 0 

3 P * * 
r l 

27 27 * * * 2 2 2 5 2 3 
**•£ 
2 6 2 4 2 0 2 9 

4 r 2 
2 7 2 7 * * * 2 2 2 4 2 3 

* * * 
2 6 2 0 17 2 9 

5 U . 3 7 1 . 3 5 5 . 0 3 9 . 0 4 3 . 1 5 . 4 5 0 . 0 1 9 . 1 2 5 . 2 1 9 

6 c s 1 1 3 4 4 1 6 3 2 1 0 0 8 1 1 6 8 9 9 2 3 0 4 3 0 6 1 3 2 8 1 0 0 8 

7 c s 2 5 7 6 5 7 6 112 144 4 4 8 2 8 8 2 0 4 3 3 6 752 

8 CMX 3 1 6 8 1 1 2 0 1 8 8 2 7 3 6 1472 7 6 8 4 0 8 2 2 5 6 1344 

9 CM2 1 3 1 2 3 2 5 4 4 4 8 0 1 4 7 2 7 0 4 4 0 8 7 2 0 1 0 8 8 

10 K 1 0 0 1 0 0 0 0 0 

11 
B i 

1 7 , 3 0 0 1 8 5 
* * * * 

1 3 , 8 0 0 1 4 , 7 0 0 3 4 6 75 9 0 4 0 0 3 0 

12 V. -kkk-k-k 
*2 1 6 , 0 0 0 14 169 3 1 1 147 2 3 2 0 7 8 6 

13 I 64 16 4 8 16 128 64 1 6 9 8 0 32 

14 D 15 27 2 0 19 18 22 18 2 0 2 0 

15 L 6 1 9 2 5 6 0 114 112 2 1 1 2 2 8 8 2 5 5 1 3 7 6 

16 J i 1 9 0 4 2 3 6 8 1 3 6 0 104 0 1 2 8 0 9 6 0 4 5 9 14 08 1344 

17 
_ ... 

J 2 1 1 3 6 1 2 8 0 3 2 0 4 0 0 J 1 2 8 0 9 6 0 4 5 9 6 4 0 1 0 8 8 

**These values are of thfc form 2 where x = indicated data except tor B6700 which is 
of the form 3(2 X). 

***;*7ith memory bank switching. **** Includes Novas. * * * v r * i n *x 10 . 

Table 4-1. Candidate CFA Values for Quantitative Criteria 



ARMY 
CRITERION WEIGHTS 

v l . 0 4 1 2 

V 2 
. 0 4 3 8 

P I . 0 4 2 5 

P2 . 0 3 8 7 

U . 0 5 1 3 

CS1 . 0 5 8 7 

CS2 . 0 6 7 5 

CM1 . 0 7 0 0 

CS2 . 0 7 1 3 

K . 0 5 0 0 

B l . 0 4 5 0 

B2 . 0 2 0 0 

I . 0 8 7 5 

D . 0 9 1 2 

L . 0 8 1 2 

J l . 0 6 3 7 

J2 . 0 7 6 2 

FULL CFA 
M V Y COMMITTEE 
WEIGHTS WEIGHTS 

. 0 4 4 4 . 0 4 3 3 

. 0 5 7 5 . 0 5 2 9 

. 0 7 0 6 . 0 6 1 2 

. 0 6 3 7 . 0 5 5 4 

. 0 6 4 4 . 0 6 0 0 

. 0 3 7 5 . 0 4 6 6 

. 0 2 1 9 . 0 3 7 1 

. 0 5 4 4 . 0 5 9 6 

. 0 3 1 9 . 0 4 5 0 

. 0 5 8 7 . 0 5 5 8 

. 0 2 4 4 . 0 3 1 3 

, 0 2 8 1 . 0 2 5 4 

. 1 4 1 9 . 1 2 3 8 

. 1 0 8 1 . 1 0 2 5 

. 0 9 6 9 . 0 9 1 7 

. 0 6 2 6 . 0 6 2 9 

. 0 3 3 1 . 0 4 7 5 

T a b l e 5 - 1 . Q u a n t i t a t i v e C r i t e r i a C o m p o s i t e W e i g h t s 



al Selection and Screening 

Architecture Score 

Interdata 8 / 3 2 1.68 
PDP-11 1.43 
IBM S/370 1.36 
AN/GYK-12 0.94 
ROLM 0.92 
B6700 0.91 
SEL-32 0.86 
AN/UYK-7 0.46 
AN/UYK-20 0.44 

e 5 -2 . Ranking Based on the Quantitative Criteri 
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ABSTRACT 

This article presents the evaluation of the Computer Family Architecture (CFA) 

candidate architectures via a set of test programs. The measures used to rank the 

computer architectures were S, the size of the test program, and M and R, two 

measures designed to estimate the principal components contributing to the nominal 

execution speed of the architecture. Descriptions of the twelve test programs and 

definitions of the S, M, and R measures are included here. The statistical design of the 

assignment of test programs to programmers is also discussed. Each program was 

coded from two to four, times on each machine to minimize the uncertainty due to 

programmer variability. The final results show that for all three measures (S, M, and 

R) the Interdata 8 / 3 2 is the superior architecture, followed closely by the PDP-11 , and 

the IBM S / 3 7 0 trailed by a significant margin. 

1. Introduction 

While there are many useful parameters of a computer architecture that can be 

determined directly from the principles of operation manual, the only method known to 

be a realistic, practical test of the quality of a computer architecture is to evaluate its 

performance against a set of benchmarks, or test programs. In a previous article 

[FulS77b] , we presented a set of absolute and quantitative criteria that the CFA 

committee felt provided some indication of the quality of the candidate computer 

architectures. It is important to emphasize, however, that throughout the discussion of 

these criteria it was understood that a benchmarking phase would be needed, and that 

many of the quantitative criteria were being used to help construct a reasonable 

"prefi l ter" that would help to reduce the number of candidate computer architectures 
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from the original nine to a final set of three or four. As described in the preceding 

article, this initial screening in fact reduced the set of candidate computer 

architectures to three: the IBM S/370, the PDP-11, and the Interdata 8 / 3 2 . 

The concept of writing benchmarks or test programs, is not a new idea in the 

field of computer performance evaluation and is generally considered the best test of 

a computer system [cf. LucH71; BerN75j WicB73]. For the purpose of the CFA 

committee, we define a test program to be a relatively small program (100 to 5 0 0 

machine instructions) that was selected as representative of a class of programs. The 

CFA committee's test program evaluation study described here had to address the 

central problems facing conventional benchmarking studies: 

a. How is a representative set of test programs selected? 

b. Given limited manpower, how are programmers assigned to writing 
test programs in order to maximize the information that can be 
gained? 

We faced an additional problem because we evaluated computer architectures, 

independent of any of their specific implementations. In other words, when evaluating 

particular computers, time is the natural measure of how fast a test program can be 

executed. However, a computer architecture does not specify the execution time of 

any instructions and so an alternative to time must be chosen as a metric of execution 

speed. 

This article explains how the CFA committee addressed the above questions and 

presents the results of the test program evaluation of the three candidate 

architectures. The next section, Section 2, describes how the 12 test programs used in 

the evaluation process were selected. Section 3 explains the measures of architecture 

performance that were used in this study. Section 4 explains how 16 programmers 
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w e r e assigned from six to nine programs each, in order to get a set of slightly over 

1 0 0 test program implementations that were used to compare the relative performance 

of the candidate architectures. The principle results of the test program evaluation 

are presented in Section 5 and Appendix A contains the actual S, M, and R 

measurements of all of the test programs. For the actual specifications of the test 

programs, details of the evaluation process beyond the scope of this article, and a 

chronology of the CFA test program study see [FulS76b]. 

2. Test Program Specification 

2 . 1 . Alternative Approaches 

A number of alternative test program specifications were considered by the CFA 

committee. A tempting proposal was to use test programs written in a Higher-Order 

Language (HOL). This had the advantage of allowing a single HOL source program to be 

used for all the architectures to be tested. This also would have permitted the use of 

existing benchmark programs, which were available from several sources (FCDSSA, and 

NADC), and which were extracted from "real" military systems. One disadvantage of 

this approach was that no one language, even FORTRAN, was available on all the nine 

initial candidate architectures and those languages developed for use in tactical 

military applications (e.g., JOVIAL, CMS-2, CS-4, and TACPOL) were each available on 

only a few of the candidate architectures. There are FORTRAN IV and COBOL 

compilers available for each of the three final candidate architectures; however, 

neither FORTRAN nor COBOL are widely used in tactical military applications. The 

major disadvantage, however, was that there is no practical way to separate the 

effects of compiler quality from the effects of architectural efficiency, and the object 
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of the test program study was to measure only the architecture. The results obtained 

from HOL test programs would necessarily involve a significant undetermined 

component, which would be due to variations in the efficiency of compilers that are 

unlikely to be extensively used in tactical military applications, and because these 

unmeasurable compiler effects might well mask genuine differences in the intrinsic 

efficiencies of the architectures. 

Using standard (Machine-Oriented) assembly language for the test programs was 

the obvious alternative to the use of Higher Order languages, but it had several 

obvious disadvantages. First, each program would have to be recoded for each 

machine, adding to the effort involved. Moreover, this introduced programmer 

variabil ity into the experiment, and previous studies have shown programmer 

variability to be large (variation of factors of 4:1 or more are commonly accepted). 

Finally, it is much more expensive to code in assembly language than in Higher Order 

Languages, and this would limit the size or number of the test programs. Nevertheless, 

the committee felt that there were ways to limit, separate, and measure these 

programmer effects, while there was no practical way to limit or separate the effects 

of compiler efficiency. It was therefore decided that the test programs would, of 

necessity, be coded in assembly language. 

2.2. Guidelines for Test Programs Specification 

The Test Program Subcommittee attempted to establish a strategy for defining 

and coding the test programs that would minimize the variability due to differences in 

programmer skill. The strategy devised was as follows: 

a. The test programs would be small "kernel" type programs, of not 
more than 200 machine instructions. (In the end, a few test 
programs required more than 200 instructions.) It was felt that only 
small programs could be specified and controlled with sufficient 
precision to minimize the effects of programmer variability. 
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Moreover, resources were not available to define, code, test, and 
measure a significant set of larger programs. 

b. The programs were defined as structured programs, using a P L / H i k e 
Program Definition Language (PDL) and then "hand translated" into 
the assembly languages of the respective architectures. 

c. Programmers were not permitted to make algorithmic improvements 
or modifications, but rather were required to translate the PDL 
descriptions into assembly language. Programmers were free to 
optimize their test programs to the extent possible with highly 
optimizing compilers. This "hand translation" of strictly defined 
algorithms was expected to reduce variations due to programmer 
skill. 

d. All test programs except the I/O Interrupt test programs were coded 
as reentrant, position-independent (or self-relocating) subroutines. 
This was believed to be consistent with the best contemporary 
programming practice and provides a good test of an architecture's 
subroutine and addressing capabilities. 

2.3. Selection of the Twelve Test Programs 

The CFA committee appointed a subcommittee responsible for developing a set 

of test program specifications consistent with the guidelines just discussed. This 

subcommittee defined a set of 21 test programs that were intended to be broadly 

representat ive of the basic types of operations performed by military computer 

systems. The CFA committee reviewed these 21 test programs, committee members 

w e r e asked to rank the relevance of these test programs to the applications of their 

particular organization, and it was agreed that the top 12 programs would be the basis 

of the test program study. (The rationale for using 12 test programs is explained in 

Section 4, where the statistical design of the test program assignments is presented.) 

The full specification of the 12 selected test programs is given in [FulS76b] and a brief 

description of these test programs is given below. 

A. UQ kernel four priority levels, requires the processor to field 
interrupts from four devices, each of which has its own priority level. 
While one device is being processed, interrupts from higher priority 
devices are allowed. 

3-5 
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B. HQ Kernel, FIFO processing, also fields interrupts from four devices, 
but without consideration of priority level. Instead, each interrupt 
causes a request for processing to be queued; requests are 
processed in FIFO order. While a request is being processed, 
interrupts from other devices are allowed. 

C. I/O device handler processes application programs' requests for I/O 
block transfers on a typical tape drive, and returns the status of the 
transfer upon completion. 

D. Large FFT computes the fast Fourier transform of a large vector of 
32-b i t floating point complex numbers. This benchmark does 
exercise the machine's floating point instructions, but principally 
tests its ability to manage a large address space. (Up to one half of 
a million bytes may be required for the vector.) 

E. Character search, searches a long character string for the first 
occurrence of a potentially large argument string. It exercises the 
ability to move through character strings sequentially. 

F. B[t test, set, or reset tests the initial value of a bit within a bit string, 
then optionally sets or resets the bit. It tests one kind of bit 
manipulation. 

G- Runge-Kutta integrat ion numerically integrates a simple differential 
equation using third-order Runge-Kutta integration. It is primarily a 
test of floating-point arithmetic and iteration mechanisms. 

Linked list insert ion inserts a new entry in a doubly-linked list. It 
tests pointer manipulation. 

I. Quicksort sorts a potentially large vector of fixed-length strings 
using the Quicksort algorithm. Like FFT, it tests the ability to 
manipulate a large address space, but it also tests the ability of the 
machine to support recursive routines. 

J- ASCII to f loat ing point converts an ASCII str ing to a floating point 
number. It exercises character-to-numeric conversion. 

K. Boolean matrix transpose transposes a square, tightly- packed bit 
matrix. It tests the abil ity to sequence through bit vectors by 
arbitrary increments. 

L. Virtual memory space exchange changes the virtual memory mapping 
context of the processor. 

The specifications, written in the Program Definition Language, were intended 

3 - 6 
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completely specify the algorithm to be used, but allow a programmer the freedom to 

implement the details of the program in whatever way best suited the architecture 

involved. For example, in the ASCII-to-floating-point benchmark, program J, the PDL 

specification included the statement: 

NUMBER «- integer equivalent of characters POSITION to J - l of A l where 
character J of A l is 

This description instructs the programmer to convert the character substring 

POSITION, POSITION + 1,...,J-1, to an integer and store the result in the integer NUMBER. 

It left up to the programmer whether he would sequence through the string character-

by-character , accumulating an integer number until he found a decimal point, or 

perhaps (on the S/370) use the Translate-and-Test (TRT) instruction to find the 

decimal point, and then use PACK and Convert-to-Binary (CVB) to do the conversion.. 

It did forbid him to accumulate the result as a floating point number directly, forcing 

him to first convert to an integer and then to floating point. 

2.4. Procedures for Writing. Debugging, and Measuring the Test Programs 

The test programs were written by seventeen programmers at various Army and 

Navy laboratories and at Carnegie-Mellon University. A set of reasonably 

comprehensive instructions and conventions were needed to insure that the various 

programmers produced results that could be compared in a meaningful way. Section 4 

of this article discusses the assignments made to the programmers, and shows how 

these assignments were made to minimize the distortion of the final conclusions due to 

variations between programmers. In addition, we also agreed that it was not sufficient 

to just write the test programs in assembly language. We instructed each programmer 

that all of the test programs that he wrote had to be assembled and run on the 
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appropriate computer*. Test data was distributed to the programmers, and a test 

program was defined to be debugged for the purposes of the CFA committee's work if 

it performed correctly on the test data. 

3. S. M and R: Measures of an Architecture's Performance 

Very little has been done in the past to quantify the relative (or absolute) 

performance of computer architectures, independent of specific implementations. 

Hence, like it or not, we had little choice but to define measures of architecture 

performance for ourselves. 

Fundamentally, performance of computers is measured in units of space and time. 

The measures that were used by the CFA Committee to measure a computer 

architecture's performance on the test programs were: 

Measure of. Space 

S: Number of bytes used to represent a test program. 

Measures o£ Execution Time: 

M: Number of bytes transferred between primary memory and the 
processor during the execution of the test program. 

R: Number of bytes transferred among internal registers of the 
processor during execution of the test program. 

All of the measures described in this section are measured in units of 8-bit 

bytes. A more fundamental unit of measure might be bits, but we faced a number of 

annoying problems with respect to carry propagation and field alignment that make the 

* The exceptions were test programs A, B, C, and L since they all require the use of 
privileged instructions and it was impractical to require programmers to get stand­
alone use of all the candidate machines. In these four cases, an "expert" on a test 
program was designated and he was responsible for reading in detail all 
implementations of the test program and returning the test programs to the 
programmer for correction if he detected any errors. 
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measurement of S, M, and R in bits unduly complex. Fortunately, all the computer 

architectures under consideration by this committee are based on 8-bit bytes (rather 

than 6, 7, or 9-bit bytes) and hence the byte unit of measurement can be conveniently 

applied to all these machines. 

3 . 1 . Test Program Size 

An important indication of how well an architecture is suited for an application 

(test program) is the amount of memory needed to represent it. We define S j j ^ to be 

the number of 8-bit bytes of memory used by programmer i to represent test program 

j in the machine language of architecture k. The S measure includes all instructions, 

indirect addresses, and temporary work areas required by the program. 

The only memory requirement not included in S is the memory needed to hold 

the actual data structures, or parameters, specified for use by the test programs. For 

example, in the Fourier transform test program S did not include the space for the 

actual vector of complex floating-point numbers being transformed but it did include 

pointers used as indices into the vector, loop counters, booleans required by the 

program, and save-areas to hold the original contents of registers used in the 

computation. 

3.2. Processor Execution Rate Measures 

In selecting among computer architectures, as opposed to alternative computer 

systems, we are faced with a fundamental dilemma: one of the most basic measures of 

a computer is the speed with which it can solve problems, yet a computer architecture 

is an abstract description of a computer that does not define the time required to 

perform any operation. (In fact, it is exactly this time-independence that makes the 

concept of a computer architecture so attractive!) Given this dilemma, one reaction 
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might be to ignore performance when selecting among alternative computer 

architectures and leave it to the engineers implementing the various physical 

realizations to worry about execution speed. However, to adopt this attitude would 

invite disaster. In other words, although we were evaluating architectures, not 

implementations, it was essential that the architecture selected yield cost/effective 

implementations, i.e., the architecture must be "implementable". 

The M and R measures defined below were developed to measure those aspects 

of a computer architecture that will most directly affect the performance of its 

implementations. 

3.3. Processor Memory Transfers 

If there is any single, scalar quantity that comes close to measuring the "power" 

of a computer system, it is the bandwidth between primary memory and the central 

processor(s) [cf. BelC71; GMLC75; StoH75} 

This measure is not concerned with the internal workings of either the primary 

memory or the central processor; it is determined by the width of the bus between 

primary memory and the processor and the number of transfers per second the bus is 

capable of sustaining. Since processor/memory bandwidth is a good indicator of a 

computer's execution speed, an important measure of an architecture's effect on the 

execution speed of a program is the amount of information it must transfer between 

primary memory and the processor during the execution of the program. If one 

architecture must read or write 2x10^ bytes in primary memory in order to execute a 

test program and the second architecture must read or write 10^ bytes in order to 

execute the same test program, then, given similar implementation constraints, we 

would expect the second architecture to be substantially faster than the first. 
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The particular measure of primary-memory/central-processor transfers used by 

the CFA Committee is called the M measure. M g ^ is the number of 8-bit bytes that 

must be read or written from primary memory by the processor of computer 

architecture k during the execution of test program j as written by programmer i. 

Clearly, there are implementation techniques used in the design of processors 

and memories to improve performance by attempting to reduce processor/memory 

traff ic, i.e., cache memories, instruction lookahead (or behind) buffers, and other 

buffering schemes. However, with the intention of keeping our measure of 

processor/memory traffic as simple, clean, and implementation-independent as possible, 

none of these buffering techniques were considered. At the completion of one 

instruction, and before the initiation of the next instruction, the only information 

contained in the processor is the contents of the registers in the processor state. 

Table 3 - 1 shows an example of a small IBM S/370 instruction sequence which 

should help to illustrate the calculation of M. The instructions are the basic loop of a 

routine for calculating the inner product of two single precision floating point vectors 

of length 10. 

3.4. Registers Transfers Within the Processor 

The processor/memory traffic measure just described is our principle measure 

of a computer architecture's execution rate performance. However, it should not be 

too surprising that this M measure does not capture all we might want to know about 

the performance potential of an architecture. In this section a second measure of 

architecture performance is defined: R — register-to-register traffic within the 

processor. Whereas the M measure looks at the data traffic between primary memory 

and the central processor, R is a measure of the data traffic internal to the central 
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processor. The fundamental goal of the M and R measures was to enable the CFA 

committee to construct a processor execution rate measure from M and R (ultimately 

an additive measure: aM + bR, where the coefficients a and b can be varied to model 

projections of relative primary memory and processor speeds). An unfortunate but 

unavoidable property of the R measure is that it is very sensitive to assumptions 

about the register and bus structure internal to the processor; in other words, the 

"implementation" of the processor. 

The definition of R is based on the idealized internal structure for a processor 

shown in Figure 3 - 1 . By using the register structure in Figure 3 -1 we do not imply 

that this is the way processors ought to be built. On the contrary, the structure in 

Figure 3 - 1 has a much more regular data path structure than would be practical in 

contemporary processors. There exist both data paths of marginal utility and non­

existent data paths that, if present, could significantly speed up the processor. This 

structure was selected because the very regular data path, ALU, and register array 

structure helped simplify our analysis. 

Rj j ^ is defined as the number of 8-bit bytes that are read to and written from 

the internal processor registers during execution of test program j on architecture k 

as wri t ten by programmer i. 

ALU Operations. The ALU in Figure 3-1 is allowed to perform any common integer, 

floating point, or decimal arithmetic operation; increment or decrement; and perform 

arbi t rary shift or rotate operations. 

Only Data Traffic Measured. All data traffic is measured in R and no control traffic 

measured. Figure 3 - 1 is intended to specify what will be defined to be control traffic 
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and what will be data traffic for the purposes of the R measure. The R measure does 

not count the following "control" traffic: 

(1) The setting of the condition codes by the ALU (or control unit) and 
the use of the condition codes by the ALU. The only time that 
movement of data into or out of the Program Status Word will be 
counted in the R measure is when a Load PSW instruction is 
performed or a trap or interrupt sequence moves a new PSW into or 
out of the PSW register. 

(2) Bits transmitted by the control unit to activate or otherwise control 
the register file, ALU, or memory unit, are not counted in the R 
measure. 

(3) Reading of the Instruction Register by the control unit as it decodes 
the instruction to determine the instruction execution sequence is not 
counted in the R measure. In other words, the Instruction Register 
(with the exception of displacement fields) will be for most practical 
purposes a write-only register as far as the R measure is concerned. 

(4) Loading the Memory Address Register is counted in the R measure, 
but use of the contents of the Memory Address Register to specify 
the address of data to be accessed in primary memory is not 
counted. 

Virtual Address Translation. The virtual to real address translation process is not 

counted in the R measure. In other words, the final memory address in the MAR is a 

virtual address and the work involved in translating this virtual address to a real 

address is not included in the R measure. 

The definition of the R measure was the center of considerable discussion within 

the CFA committee. The full set of rules that are necessary to completely define the R 

measure is too voluminous to present here; readers interested in the details of the R 

measure are referred to Volume III of the CFA Selection Committee's final report 

[FulS76b]. Figure 3 - 2 illustrates the calculation of the R measure for an IBM/370 add 

instruction. 

3-13 
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4. Statistical Design of Test Program Assignments 

The test program phase of the CFA evaluation process involved comparison of 

twelve test programs on three machines. Approximately sixteen programmers were 

available for the study and a complete factorial design would have required each 

programmer to write all of the test programs on each of the machines (for a total of 

5 7 6 programs). This was clearly not feasible with the given time and resource 

constraints, and, consequently, a fractional design (or several fractional designs) had to 

be selected. Fractional factorial designs are discussed by [Dav071], e.g. The 

fractional designs to be described below incorporate balance in the way test program, 

machine, and programmer combinations are assigned. 

It was necessary to consider designs which required each programmer to wri te 

test programs for all three machines. Otherwise, comparisons among the machines 

could not be separated from comparisons among the programmers. A desirable design 

would have instructed each programmer to write a total of six or nine different test 

programs, one third of them on each of the three machines. For most of the 

programmers in the study time limitations precluded this type of design, and some 

compromise was required. The compromise design selected also had to allow fpr 

precise comparisons among the three competing architectures. A type of design that 

meets both of these objectives is the nested factorial [AndV74, e.g.]. 

The test program part of the study actually involved the use of three separate 

experimental designs, henceforth referred to as Phase I, Phase I I , and Phase I I I . 

Nested factorial designs were used for Phase I and Phase III . Phase II was a one-third 

fraction of a 3 ^ factorial design. Phase I was used to study test programs A through 

H, those deemed to be of primary interest. Phase II I was used to study test programs 
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I through L Phase II included test programs A-B, E-H, and J -L Plans of the three 

designs are depicted in Figure 4 - 1 . 

The Phase I design is a pair of nested factorials, each involving four 

programmers. Each programmer was asked to write two test programs for all three 

machines. Each of the eight test programs in Phase I appears once on each machine in 

each of the nested factorials. When this design was originally formulated, the plan 

included requiring programmers to write their six test programs in a preassigned 

randomly selected order, so as to eliminate possible biases due to learning during the 

course of completing the assignments. This procedure was discarded, however, when 

the programmers objected because of the varying availability of the three machines 

for debugging. Programmers were instructed to complete the assigned jobs in 

conformity with their typical practices and working habits with regard to order, 

consultation with other individuals, and other such considerations. Programmers in the 

study were not permitted to consult with each other, however, on any substantive 

matters concerning their designated assignments. All programmers were instructed to 

keep diaries of their work on the experiment. 

As noted above, the Phase I design was formulated with the goal of obtaining 

maximum possible information about differences between the competing architectures. 

With the given Phase I design, comparisons among the three architectures are not 

confounded by effects of either test programs or programmers. The Phase I design 

called for 4 8 observations and was viewed as the most important of the three designs 

formulated. 

The design termed Phase II I was formulated according to the same plan as was 

Phase I, except that four test programs and four programmers were utilized. The 
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Phase I I I design contains half as many observations as the Phase I design and thus 

gives statistical results of less precision. The test programs in the Phase I I I design are 

of lesser interest than those in Phase I. The four programmers in Phase I I I are distinct 

from the eight in Phase I. 

Together the Phase I and Phase II I designs provide a view of all three machines 

and the operation of all twelve test programs selected for consideration. A third 

experiment, labelled Phase I I , was also planned . This was viewed as an auxiliary effort 

and was to be completed only if it was clear that the programmers assigned to it 

would not be needed to aid in the completion of Phase I and Phase I I I . The Phase I I 

design called for three programmers to write nine different test programs, three on 

each of the three machines. The programmers assigned to Phase I I were able to 

devote enough time to the test program study to permit use of a design which 

required them to write nine different programs. Some comparisons among programs 

not possible in Phase I and Phase I I I could be made, and the statistical results of Phase 

I I could be compared to those of the other two experiments. The design used was the 

3.4.3 plan in [ConW59]. This was made possible by dividing the factor representing 

test programs, which appears at nine levels, into two pseudofactors (see [AndV74]), 

each at three levels. One of the Phase I I programmers also participated in the Phase I 

design. The only duplicate assignment, however, was test program G on the IBM 

S / 3 7 0 . 

5. Analysis of Test Program Results 

This section describes the experimental results and statistical analysis of the 

test program data. We shall first discuss the Phase I experiment, then the Phase I I I 
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experiment, and then the analysis combining data from Phase I and I I I . Finally, the 

Phase I I experiment will be described. 

5 . 1 . Phase I Models 

A possible model for the nested factorial designs in Phase I is 

Y j j k - C • Pj • Tjj • M k • P M j K * T M j j k * e i j k (5.1) 

i - 1,2,3,4 j « 1,2 k - 1,2,3 

In this equation y j j k is some response (i.e., on S, M. or R measure) generated by the 

ith programmer writing the jth test program on the kth machine. Also, 

C • constant, termed the grand mean 
Pj - effect due to the ith programmer 
Tjj - effect of the jth test program assigned to the ith programmer 
M k - effect of the kth machine 
P M j k - interaction between the ith programmer and the kth machine 
T M j j k - interaction between the jth test program written by the ith 

programmmer and the kth machine 
e j j k « a random error term, assumed to be normally distributed with 

mean 0 and variance not dependent ont the values of i, j , and k. 

The Phase I experiment may also be modelled in a manner somewhat different 

from that just described. In Phase I there are two factors at eight levels each, 

programmers and test programs, and one factor at three levels, machines. The two 

eight- level factors may each be replaced by three pseudofactors at two levels each. 

Then we are concerned with a complete factorial experiment involving 3*2** - 192 

total observations. The actual Phase I experiment is a 1/4 fraction of this. A model 

may be fit using dummy variables to account for various effects and interactions. 

5.2. Transformation of the Data 

Examination of the S, M, and R data values collected clearly shows there is wide 

variation in the data from one test program to another, e.g., especially for the M and R 

measures. Various statistical considerations suggest that some transformation of the 

3-17 
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raw data prior to analysis is desirable. A technical discussion of transformation of 

statistics is given by [RaoC73], who illustrates use of the methodology in various 

contexts. 

In the CFA study the purpose of a transformation of the data is to stabilize 

variance, so that an additive model such as (5.1) will hold for each of the designs. 

Specifically, the model (5.1) assumes that the variance of the error term e ^ is 

independent of i, j , and K. Under this assumption inferences which follow from analysis 

of variance (ANOVA) calculations, as described below, are valid. 

A variance stabilizing transformation is frequently suggested by consideration of 

the experimental situation and prior understanding of the variation to be expected in 

the data. For example, consider the M and R measures. Suppose some programmers 

each wri te two test programs and the average run time of the second one is K times 

the average run time of the first. Then if the standard deviation of the M or R 

readings is V for the first test program, it can be expected to be proportional to kV 

for the second test program. In other words, the variability (standard deviation) in run 

times is directly proportional to the average run time. The accuracy of this conjecture 

may be tested by examination of the data, but clearly there is strong intuitive support 

for it. Consider the Runge-Kutta test program. Its M and R measures are dominated 

by the computation of the inner loop performing the step-wise solution of the 

differential equation. Variations in M and R measures will be a result of alternative 

encodings of this inner loop. Average M and R measures will be doubled if the number 

of iterations requested is doubled. Moreover, doubling the number of iterations will 

also cause the differences between the different Runge- Kutta programs to double. 

When the standard deviation of the test data is directly proportional to the mean, a 
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Thus, use of the logarithmic transformation on both sides of (5.2) yields (5.1), and the 

multiplicative model (5.2) may be viewed as the meaningful basic underlying model. 

Similarly, consideration of the underlying properties of the S measure suggest a 

square root transformation is appropriate to stabilize its variance. This transformation 

arises because the variance, rather than the standard deviation, of the S measure can 

be expected to be proportional to kV (See [FulS76b]), Use of the square root 

transformation would imply use of the model in (5.1) with yy^ denoting the square root 

of the measured S value. 
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logarithmic transformation will stabilize the variance, that is, remove the dependence of 

the variance on the size of the test program [RaoC73, Section 6g. l ] . 

The model of (5.1) may be termed an additive model. When a logarithmic 

transformation is used for the data, yy^ in (5.1) becomes the logarithm of the 

response, such as the M or the R reading. In this case a multiplicative model in fact 

underlies (5.1) and we write 

* • T.2,3,*, j * 1 , 2 , K * 1 , 2 , 3 . 

The connection between (5.1) and (5.2) is 
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It should be noted that the square root and logarithmic transformations are only 

two of a large number of possible transformations. A particular family of 

transformations takes a response z and transforms it according to z a for an a > 0. 

With an appropriate interpretation, the logarithmic transformation corresponds to the 

limiting value a 0. This family of power transformations is discussed in detail by 

[BoxG64]. 

5.3. Statistical Analysis of Phase I Data 

ANOVA calculations were performed on both halves of the Phase I experiment 

for >fS, In M, and In R values. In each analysis the sample variance of the 24 values 

was decomposed into sums of squares attributable to variations among programmers 

test programs, machines, programmer- machine interactions, and test program-machine 

interactions. The proportions of the total variance due to the various sums of squares 

are given in Table 5 -1 of [FulS76]. The ANOVA calculations indicate that test program 

and programmer variations account for most of the variation in the data in the case of 

the M and R measures, and that machine differences are relatively small. Machine 

differences are more noticeable for the S measure. 

Using dummy variables, we also fit models using the formulation discussed at the 

end of Section 5 .1 . In each model 24 parameters were fit, leaving 24 degrees of 

freedom to measure experimental error. Estimates of the variance of the error term in 

the model (5.1) are 18.175, 0.377, and 0.400 for >fS, In M, and In R, respectively. The 

actual data values for the S, M, and R measures are given in the Appendix, and these 

estimates of variance reflect the magnitude of the experimental error component in the 

model (5.1). Table 5 -1 shows estimates of various machine comparisons for the Phase 

I data. A 957. confidence interval is quoted below each estimate. The 957. confidence 
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intervals which do not cover the value 0 correspond to comparisons statistically 

significant at level 0 .05 ( - l - . 95 ) . Thus at level .05 the Interdata 8 / 3 2 is superior to 

the IBM S / 3 7 0 on all measures. The PDP-11 is adjudged superior to the IBM S /370 at 

level .05 on two of the measures and barely misses being superior when >fS is 

considered. Moreover, the IBM S/370 is inferior to the average performance of the 

other two machines on all measures. It is worth noting that these comparisons among 

the competing architectures are based upon consideration of test programs A through 

H only. It is reasonable, however, to view the eight programmers in Phase I as 

representat ive of a larger population of programmers. 

Table 5 - 2 displays estimates of the effects M^ and for the various measures. 

The M k estimates are obtained by exponentiating the estimates of M k and are 

appropriate for the logarithmic models only. Estimates have been included for 

architecture comparisons obtained from the model (5.1) with the response In S. These 

are also given in Tables 5 -4 and 5-6 below. Use of the In S model leads to estimates 

which are qualitatively similar to those obtained from the >[S model, and it permits 

more convenient comparisons of the three architectures. Since the effects noted in 

Table 5 - 2 are differential values, a value of 0 is neutral for M^ and a value of 1 is 

neutral for M .̂ The figures in Table 5-2 are consistent for the different measures and 

transformations. The IBM S/370 is noticeably worse than the other two architectures. 

For all but the In R response, the Interdata 8 /32 appears to be modestly better than 

the PDP-11 . 

One may interpret the last three lines of Table 5-2 in the following way. The 

In M measure results indicate the IBM S/370 requires 155.7% as many 

processor/memory transfers to "execute" programs A through H as the average of the 
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three machines, while the PDP-11 and Interdata 8 /32 require 79.57. and 80.97., 

respectively. 

5.4. Phase I I I Models and Results 

The models for Phase I I I experiments are the same as in (5.1) and (5.2), except 

that the subscript i assumes the values 1 and 2 only. Estimates of the variance of the 

er ror term in the Phase I I I version of model (5.1) are based on eight degrees of 

freedom and are 18.606, 0.374, and 0.308 for >fS, In M, and In R, respectively. 

Table 5 - 3 is the analog of Table 5 - 1 , and Table 5 -4 the analog of Table 5 - 2 . 

None of the confidence intervals shown in Table 5-3 fails to cover the value 0. 

However, it is apparent that the PDP-11 performed noticeably worse than the other 

two machines in Phase III . Also, there is very little difference between the IBM S / 3 7 0 

and the Interdata 8 / 3 2 in Phase II I . 

The relatively poor performance of the PDP-11 in Phase I I I appears to be due 

to its inability to handle test program I, quicksort. Certainly part of the explanation 

for the poor performance of the IBM S/370 in Phase I can be attributed to test 

program A, I/O kernel with four priority levels. In the next section results from Phase 

I and Phase I I I are combined to produce overall estimates of machine effects and 

overall comparisons of the machines. 

5.5. Combination of Phase I and Phase III Results 

Let 9j denote an estimate of a machine effect or comparison, such as M j or M3-

M j , in Phase I. Let 6JH denote the estimate of the same effect or comparison in Phase 

I I I . In the previous two sections such estimates were given, as well as some 

confidence intervals. The purpose of this section is to present estimates of the form 

uQl •( l-od)ejn <5-3) 
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where oc is chosen to minimize the variance of the resulting linear combination and 0 < 

oc < 1. Table 5 -5 shows estimates of machine comparisons and 952 confidence 

intervals. The value of u for each column in the table is given along the top border. 

In all columns more weight is given to the Phase I data. Table 5 -6 gives estimates of 

machine effects with Phase I and Phase II I data combined. 

All of the confidence intervals for M3-M2 in Table 5 -5 fail to cover the value 

zero . Thus, the evidence suggests that the Interdata 8 /32 performs better than the 

IBM S / 3 7 0 on all three measures, S, M, and R. Also, the IBM S/370 tends to be worse 

than the average of the other two machines. 

The estimates of M k in Table 5-6 provide a summary of the Phase I and Phase I I I 

data. The IBM S/370 requires 120.82 as much storage as the average of all three 

machines for the twelve test programs studied. According to the In M measure 

estimate, the IBM S /370 required 126.67, as many processor/memory transfers to 

"execute" the test programs as the average of the three machines. The other figures 

in the lower part of Table 5 -6 are interpreted similarly. 

5.6. Phase I I Models and Results 

Analysis of variance calculations were performed on data arising from the Phase 

I I design. Some of the results for responses >[S, In R, and In M are summarized in 

Table 5 -7 . This table indicates the proportions of the total variance attributable to 

various sums of squares. The variance was split into sums of squares each with two 

degrees of freedom. Since two of the factors in the design were in fact pseudofactors 

at three levels each to account for the nine test programs, several sets of sums of 

squares were combined. There is some aliasing in the design involving the second-

order interactions. 
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Estimates of differential effects in a model comparable to (5.1) for the three 

machines can also be given. For the measure they are - .952 for the PDP-11 , 1.605 

for the IBM S /370 , and - .653 for the Interdata 8 /32 . For the In M measure the values 

are - 0 . 6 9 1 , 0.508, and 0.183 for the machines quoted in the same order, and the 

figures are - .662 , .538, and .123 for the In R measure. Thus, the experimental results 

for this phase tend to rank the machines with the PDP-11 first by a substantial margin, 

and the Interdata 8 / 3 2 ranks second. However, it should be noted that test program A 

was included in the Phase I I design, and test programs D and I were not. 

6. Summary 

This article has described how the test program phase of the CFA study was 

developed, what methodologies were used, and what were the results of the study. 

We began with a discussion of the twelve test programs used in this study and how 

the CFA committee selected these twelve from a larger set of test programs as most 

representat ive of the expected applications of military computers. A Program Definition 

Language (PDL) was used to clearly specify these test programs so that it was clear to 

the programmers exactly what algorithm was to be implemented yet also indicate to 

what extent we expected the programmer to optimize the coding of the test programs 

to take advantage of the features of the architecture under test. 

Section 3 of this article defined the three measures of performance used to 

evaluate the candidate computer architectures on each test program: 

S: The number of bytes used to represent a test program 

M: The Number of bytes transfered between primary memory and the 
processor during execution of the test program 

R: The number of bytes transfered among internal registers of the 
processor during execution of the test program 
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The test programs were assigned to programmers based on a statistical design 

involving three phases, denoted as I, I I , and I I I In Phase I eight programmers were 

assigned two test programs to implement on each of the three machines. Phase III was 

a smaller version of Phase I, involving only four programmers. Phase I I was a 

somewhat more complex design that involved each of three programmers writting nine 

dif ferent test programs, three on each machine. Phase I I was intended to give some 

information on the interaction between particular test programs and machines that was 

not available with much precision from Phases I and III. 

The principal results of the test program study that were passed along to the 

l i fe-cycle cost models [CorJ77] was the composite performance of the candidate 

architectures for phases I and III on the set of 12 test programs. An analysis of 

Variance (ANOVA) procedure was used to determine the overall relative performance 

of the three candidate machines, as shown in Table 6 - 1 . Unity indicates average 

performance and the lower the score on any of the measures, the better the machine 

handled the set of test programs. 

In other words, the test program results indicate that the IBM S/370 needs 46% 

more memory than the Interdata 8 /32 to represent the set of test programs (or 2 1 % 

more than the average of the three architectures) and the PDP-11 is essentially 

average in its use of memory. 

Considering the test program results in a little more detail, in Phase I the data 

revealed the IBM S/370 to be significantly worse than the other two machines on S, M, 

and R measures at a significance level of 0.05 (i.e. the 95% confidence intervals all 

failed to include the point where the IBM S/370 equals the performance of the other 

machines). Moreover, the overall performance of the PDP-11 was virtually identical to 
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that of the Interdata 8 /32 . Some part of the poor performance of the IBM S / 3 7 0 can 

be traced to test program A (the priority I/O Kernel). In Phase I I I alone, none of the 

comparisons among the three machines was significant at the 0.05 level because of the 

small number of data points (24). However, the PDP-11 was noticeably the worst of 

the three machines on all three measures. The IBM S/370 dominated the Interdata 

8 / 3 2 with regard to the M measure, the Interdata was better for the S measure, and 

there was little difference between the two for the R measure. The relatively poor 

performance of the PDP-11 appeared to be due to the quicksort test program, test 

program I, which worked with a list much larger than the 64k byte virtual address 

space of the PDP-11. 

Statistical results from Phases I and III were combined. In this analysis the 

ranking of the three machines from best to worst on the three measures was: 

Interdata 8 / 3 2 , PDP-11, and IBM S/370. The average performance of the three 

architectures in Phases I and III is given in Table 6 - 1 . 

The outcome of Phase II largely corroborates the results of the other two 

experiments. The ranking of the three machines, from best to worst is: PDP-11 , 

Interdata 8 / 3 2 , IBM S/370. This ranking prevails for all three measures, S, M, and R. 

It is important to recall (See Table 4-1) that Phase II included test program A, for 

which the IBM S/370 performs relatively poorly, and does not include test programs D 

and I, which are relatively difficult to implement on the PDP-11, because they have 

large data structures. Because of the magnitude of the experimental error in these 

test programs and the relatively small number of data points in Phase I I (27), we wero 

not able to detect any test program/architecture interactions that were statistically 

significant. 
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7. Appendix A - S. M. and R Measures for Each Test Program 

On the following pages are actual measurements for each of the test programs 

wr i t ten for the CFA program. The unit of measurement for all data is (8-bit) bytes. 

The number in brackets following each measurement is the identifying number of the 

programmer who wrote and debugged the particular test program. Data followed by 

an "A" are auxiliary data points. Data followed by a V were associated with 

programming assignments not completed in time to be used by the CFA Committee and 

the pseudo-values shown were used in the ANOVA calculation (when the actual data 

points became available at a latter date, insertion of the real values for these 

programs had no significant effect on the results). 
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A. Priority I/O Kernel 

B. FIFO I/O Kernel 

C. I/O Device Handler 

•D. Large FFT 

E. Character Search 

F. Bit Test, Set, Reset 

GL Runge-Kutta Int. 

K Linked List Insertion 

I. Quicksort 

J. ASCII to Float-Pt. 

K. Boolean Matrix 

L. Virtual Memory Exchange 

INDIVIDUAL S MEASURES 

IBM S/370 PDP-11 Interdata 8 / 3 2 

216 [3] 
286 [12] 
742 [14] 

48 [4] 
32 [12] 
32 [14] 

26 [12 ] 
28 [14 ] 
26 [17 ] 

372 [2] 
465 [13] 
308 [17] 

133 [2] 
124 [3] 
246 [13] 

144 [2 ] 
142 [4 ] 
98 [13 ] 

192 [1] 
252 [17] 

132 [1] 
216 [17] 

176 [1 ] 
241 [17 ] 

454 [11] 
454 [ 9 > 

766 [11] 
766 [ 9 > 

550 [11 ] 
402 [9 ] 
402 [17]A 

104 [1] 
92 [4] 
154 [11] 

88 [1] 
136 [11] 
90 [17] 

120 [1 ] 
144 [3 ] 
168 [11 ] 

144 [9] 
122 [12] 
116 [17] 

68 [3] 
78 [9] 
86 [12] 

82 [4] 
90 [9] 
98 [11]A 
98 [12 ] 

202 [2] 
238 [17] 

184 [2] 
172 [3] 
248 [17] 

166 [12 ] 
158 [4 ] 
232 [11]A 
190 [17 ] 

144 [4] 
228 [13] 
176 [14] 

162 [13] 
182 [14] 
194 [17] 

148 [3 ] 
198 [13 ] 
164 [14 ] 

340 [6] 
407 [5] 

940 [6] 
1534 [5] 

426 [6] 
524 [5] 

256 [4] 
441 [5] 
241 [7] 

164 [5] 
208 [7] 
172 [17] 

206 [3 ] 
238 [5 ] 
204 [7 ] 

224 [3] 
267 [6] 
284 [8] 

174 [4] 
232 [6] 
284 [8] 

156 [17 ] 
130 [6 ] 
180 [8 ] 

292 [3] 
382 [7] 
414 [8] 

254 [4] 
250 [7] 
378 [8] 

328 [17 ] 
310 [7] 
334 [8 ] 

Computer Architecture 
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Test Program 

A. Priority I /O Kernel 

B. FIFO I/O Kernel 

C. I /O Device Handler 

D. Large FFT 

E. Character Search 

F. Bit Test, Set, Reset 

G. Runge-Kutta Int. 

K Linked List Insertion 

I. Quicksort 

J. ASCII to Float-Pt. 

K. Boolean Matrix 

L. Virtual Memory Exchange 

INDIVIDUAL M MEASURE 

IBM S/370 PDP-11 Interdata 8 / 3 2 

212 [3] 
354 [12] 
522 [14] 

28 [4] 
24 [12] 
24 [14] 

28 [12 ] 
32 [14 ] 
28 [17 ] 

424 [2] 
920 [13] 
434 [17] 

208 [2] 
188 [3] 
296 [13] 

192 [2] 
226 [4 ] 
114 [13 ] 

328 [1] 
304 [17] 

309 [1] 
290 [17] 

426 [1 ] 
279 [17 ] 

10810 [11] 
10810 [ 9 > 

14746 [11] 
14746 [ 9 > 

10886 [11 ] 
8560 [ 9 > 
8560 [17]A 

854 [1] 
940 [4] 
1724 [11] 

730 [1] 
770 [11] 
520 [17] 

958 [1 ] 
1044 [3 ] 
1021 [11 ] 

378 [9] 
358 [12] 
238 [17] 

162 [3] 
178 [9] 
152 [12] 

222 [4 ] 
176 [9] 
296 [11]A 
276 [12 ] 

141074 [2] 
228056 [17] 

102662 [2] 
94960 [3] 
176960 [17] 

100062 [2 ] 
100042 [4 ] 
117984 [ l l ] A 
138414 [17 ] 

228 [4] 
304 [13] 
264 [14] 

204 [13] 
218 [14] 
240 [17] 

224 [3 ] 
260 [13 ] 
238 [14 ] 

1024 [5] 
1008 [6] 

14960 [5] 
2756 [6] 

2968 [5 ] 
1732 [6 ] 

241 [4] 
437 [5] 
433 [7] 

292 [5] 
275 [7] 
283 [17] 

363 [3] 
423 [5] 
334 [7] 

832 [3] 
909 [6] 
896 [8] 

582 [4] 
776 [6] 
932 [8] 

384 [6] 
566 [8 ] 
640 [17 ] 

532 [3] 
532 [7] 
645 [8] 

541 [4] 
566 [7] 
945 [8] 

721 [7 ] 
1058 [8 ] 
780 [17 ] 

Computer Architecture 
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INDIVIDUAL R MEASURES 

Test Program 
IBM S/370 

Comouter Architecture 
PDP-11 Interdata 8 / 3 2 

A. Priority I /O Kernel 947 [3] 
2146 [12] 
3052 [14] 

108 [4] 
106 [12] 
106 [14] 

166 [12 ] 
166 [17 ] 
214 [14 ] 

B. FIFO I/O Kernel 2222 [2] 
4583 [13] 
2226 [17] 

1096 [2] 
810 [3] 
1419 [13] 

698 [2 ] 
937 [4 ] 
482 [13 ] 

C. I /O Device Handler 1789 [1] 
1729 [17] 

1480 [1] 
1416 [17] 

1902 [1 ] 
1391 [17 ] 

D. Large FFT 62904 [11] 
62904 [ 9 > 

70512 [11] 
70512 [ 9 > 

60446 [ 1 1 ] 
50045 [ 9 > 
50045 [17]A 

E. Character Search 5603 [1] 
5549 [4] 
10239 [11] 

4348 [1] 
4326 [11] 
3091 [17] 

5885 [1 ] 
3139 [3 ] 
5767 [11 ] 

F. Bit Test, Set, Reset 1674 [9] 
1542 [12] 
1212 [17] 

832 [3] 
917 [9] 
8 0 1 [ 1 2 ] 

891 [4 ] 
887 [9 ] 
1167 [12 ] 
1281 [11]A 

G. Runge-Kutta Int. 845966 [2] 
1203952 [17] 

724372 [2] 
665529 [3] 
1012727 [17] 

696085 [2 ] 
696049 [4 ] 
777846 [ l i ] A 
874923 [ 1 7 ] 

K Linked List Insertion 950 [4] 
1741 [13] 
1137 [14] 

1025 [13] 
1087 [14] 
1210 [17] 

834 [3 ] 
1049 [13 ] 
965 [14 ] 

I. Quicksort 7618 [5] 
7540 [6] 

74278 [5] 
15205 [6] 

13315 [5] 
9609 [6 ] 

J. ASCII to Float-Pt. 1330 [4] 
2578 [5] 
2226 [7] 

1726 [5] 
1512 [7] 
1716 [17] 

2100 [3 ] 
2270 [5 ] 
1897 [17 ] 

K. Boolean Matrix 5576 [3] 
5661 [6] 
5277 [8] 

3180 [4] 
3905 [6] 
4446 [8] 

2216 [6 ] 
3154 [8 ] 
3945 [17 ] 

L. Virtual Memory Exchange 1931 [3] 
1934 [7] 
2529 [8] 

2616 [4] 
2911 [7] 
4226 [8] 

2539 [7 ] 
4573 [8 ] 
2643 [17 ] 
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(1) LA 2,10(0,0) 
(2 ) LA 3,XVEC 
<3> LA 4.YVEC 
(4 ) SDR 2,2 

(5 ) SR 7,7 

(6) LOOP LE 4,0(7,3) 
(7) ME 4,0(7,4) 
<8> ADR 2,4 
(9 ) LA 7,4(0,7) 
( 1 0 ) BCT 2.L00P 

(11 ) STO 2.SUM 

R Comments 

4 Set R2 to 10, the length of the vectors. 
4 Load R3 with starting address of X vector. 
4 Load R2 with starting address of Y vector. 
2 Clear floating point reg. 2. 

Use it to accumulate inner product. 
2 Clear R7 

Use it as index into floating point vectors. 

8 Load X(i) into floating point register 4. 
8 Multiply X(i) by Y(i). 
2 Sum Sum • X(i) * Y(i). 
4 Increment index by 4 bytes. 
4 Decrement loop count and branch back if not done 

26 (Loop Total) 
260 (Loop (6 -10)* 10) 
12 Store double precision result in SUM. 

288 Grand Total 

Table 3 - 1 . M Measure for IBM 370 Inner Product Example 



Primary 

Memory 

Reed date 
from memory 

Write delis 
to memory 

General Purpose 
Register File 

Accumulators, 
Bast? Registers, 
Index regiptors, 
Temporaries, 

etc. 
L A,B Inputs to 
*~ALlTei>d'3ostH 

Instruction Rog 

Mp Address Rog 

Program Countor 

Program Status 

LEGEND 

Data Path 

Control Path 

condition 
codo 
lines 

Arithmetic & 
Logic Unit 

z 

Processor's 
Control 

Unit 

Specify ALU oporation 

Control Momory Operations 

Figure ^ j : Canonical Processor Architecture 
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RX. RS. & SI INSTRUCTION INTERPRETATION 

R Comment 

IR<0:15> <- Mh[MAR] 
MAR «- MAR + 2 
IR<15:31> «- Mh[MAR] 
PC <- PC + 4 
address interpretation 
instruction execution 

MAR «- PC 

TOTAL 

2 
3 
2 
3 

6 

16 

Get halfword in instruction register 
Incrementation counts only 1 byte 
Get rest of instruction in IR 
Increasing Program Counter 

Set up MAR for next instruction 

RX ADDRESS CALCULATION 

R Comment 

1. B2 - 0, X2 - 0 
MAR <- IR<20:31> 5 Read 12 bits from the IR 

2 . B2 - 0 , X2 > 0 
MAR «- IR<20:31> + R[x2]<8:31> 8 

3. 8 2 > 0, X2 - 0 
MAR «- IR<20:31> + R[B2]<8:31> 8 

4. B2 > 0, X2 > 0 
MAR <- IR<20:31> + R[B2]<8:31> 8 
MAR «- R[x2] + MAR 9 

TOTAL 17 

Add 12 bits from IR to 24 bits from index 

Full 24 bit (3 byte) addition 

EXAMPLE INSTRUCTION: A R4,DISP(R2,R7) 

RX Add Instruction R 

RX instruction interpretation 16 
address interpretation 17 
MBR <- MwfMAR] 4 
R[R1] «- R[R1] + MBR 12 

TOTAL 49 

Figure 3-2 . IBM S/370 R Measure Example 



T e s t P r o g r a m 
P h a s e Programmer A B C D E F G H I J K L 

I 14 a l l a l l 

1 a l l a l l 

2 a l l a l l 

9 a l l a l l 

11 a l l a l l 

12 a l l a l l 

13 a l l a l l 

17 a l l a l l 

3 3 7 0 11 8 3 2 11 1 1 8 3 2 8 3 2 3 7 0 3 7 0 

I I 4 11 8 3 2 3 7 0 8 3 2 8 3 2 3 7 0 3 7 0 11 11 

17 8 3 2 3 7 0 11 3 7 0 3 7 0 11 11 8 3 2 8 3 2 

5 a l l a l l 

00 a l l a l l 
I I I 

6 a l l a l l 

7 a l l a l l 

F i g u r e 4 - 1 . L a y o u t s o f P h a s e I , I I , a n d I I I Des i g n s 

" a l l " d e s i g n a t e s a l l t h r e e m a c h i n e s 



^ ^ v ^ Measure 
Comparison o r * * ^ . 
Machines ^ s * v * ^ In M In R 

M 3 - Mj - . 5 8 6 . 0 1 8 . 0 1 2 

( - 3 . 6 9 6 , 2 . 5 2 4 ) ( - . 4 3 0 , . 4 6 6 ) ( - . 4 4 9 , . 4 7 4 ) 

M3 - - 3 . 5 3 5 - . 6 5 5 - . 7 1 7 

( - 6 . 6 4 5 , - . 4 2 5 ) ( - 1 . 1 0 3 , - . 2 0 7 ) ( - 1 . 1 7 8 , - . 2 5 5 ) 

M 2 - M 1 2 . 9 4 9 . 6 7 3 . 7 2 9 

( - . 1 6 1 , 6 . 0 5 9 ) ( . 2 2 5 , 1 . 1 2 1 ) ( . 2 6 7 , 1 . 1 9 1 ) 

^ ( M ^ ) - ^ - 3 . 2 4 2 - . 6 6 4 - . 7 2 3 

( - 5 . 9 3 6 , - . 5 4 8 ) ( - 1 . 0 5 2 , - . 2 7 6 ) ( - 1 . 1 2 2 , - . 3 2 3 ) 

Mj: e f f e c t of PDP-11 

model ( 5 . 1 ) : M^. e f f e c t o f IBM s / 3 7 0 

hij : e f f e c t o f I n t e r d a t a 8 / 3 2 

T a b l e 5 - 1 . E s t i m a t e s o f Machine Comparisons and 
9 5 $ C o n f i d e n c e I n t e r v a l s , Phase I 



Measure ^ i n s 

M a c h i n e E f f e c t s 

M l 

» * 1 

*2 

^ 3 

- . 7 8 8 - . 1 4 8 - . 2 3 0 - . 2 4 7 

2 . 1 6 1 . 3 5 4 . 4 4 3 . 4 8 2 

- 1 . 3 7 4 - . 2 0 5 - . 2 1 2 - . 2 3 5 

. 8 6 2 . 7 9 5 . 7 8 1 

1 . 4 2 5 1 . 5 5 7 1 . 6 1 9 

. 8 1 5 . 8 0 9 . 7 9 1 

e f f e c t s f o r P D P - 1 1 

M j , : e f f e c t s f o r IBM S / 3 7 0 

Mg, u 3 : e f f e c t s f o r I n t e r d a t a 8 / 3 2 

T a b l e 5 - 2 . E s t i m a t e s o f M a c h i n e E f f e c t s i n M o d e l s ( 5 . 1 ) a n d ( 5 . 2 ) , P h a s e I 



Measure 
Compar ison o f 
Machines I n M I n R 

- 3 . 8 0 6 - . 2 9 5 - . 3 4 8 

( - 8 . 7 8 0 , 1 . 1 6 8 ) (- 1 . 0 0 0 , . 4 1 0 ) (- . 9 8 8 , . 2 9 1 ) 

- 1 . 5 8 5 . 0 9 9 - . 0 2 7 

( - 6 . 5 5 9 , 3 . 3 8 9 ) (- . 6 0 6 , . 8 0 4 ) (- . 6 6 6 , . 6 1 3 ) 

- 2 . 2 2 1 - . 3 9 4 - . 3 2 1 

( - 7 . 1 9 5 , 2 . 7 5 3 ) (- 1 . 0 9 9 , . 3 1 1 ) (- . 9 6 0 , . 3 1 8 ) 

1< M 1 + M 3 ) - M 2 . 3 1 8 . 247 .147 

( - 3 . 9 9 0 , 4 . 6 2 6 ) (- . 3 6 4 , . 8 5 8 ) (- . 4 0 7 , . 7 0 1 ) 

M j : e f f e c t o f PDP-11 

K^: e f f e c t o f IBM s/370 

M 3 : e f f e c t o f I n t e r d a t a 8 / 3 2 

T a b l e 5 - 3 . E s t i m a t e s of Machine Comparisons and 9 5 * Conf idence I n t e r v a l s , Phase I I I 



M e a s u r e */s I n S I n M I n R 

M a c h i n e E f f e c t s 

M l 

" 2 

»3 

M j , \Xy e f f e c t s f o r PDP-11 

M j , u ^ : e f f e c t s f o r IBM s / 3 7 0 

H j , u 3 : e f f e c t s f o r I n t e r d a t a 8 / 3 2 

2 . 0 0 9 . 1 3 3 . 2 2 9 . 2 2 3 

- . 2 1 2 . 0 4 2 - . 1 6 5 - . 0 9 8 

- 1 . 7 9 7 - . 1 7 4 - . 0 6 6 - . 1 2 5 

1 . 1 4 2 1 . 2 5 7 1 . 2 5 0 

1 . 0 4 3 . 8 4 8 . 9 0 7 

. 8 4 0 . 9 3 6 . 8 8 2 

T a b l e 5 - 4 . E s t i m a t e s o f M a c h i n e E f f e c t s i n M o d e l s ( 5 . 1 ) a n d ( 5 . 2 ) , P h a s e I I I 



C o m p a r i s o n 
o f M a c h i n e s 

^•Heasure 

a = . 6 7 

I n M 

a " . 6 6 

I n R 

a - . 6 1 

- 1 . 6 4 9 - . 0 8 8 - . 1 2 8 

( - A . 1 1 9 , . 8 2 1 ) (- . 4 4 2 , . 2 6 6 ) (- . 5 1 7 , . 2 6 1 ) 

- 2 . 8 9 2 - . 3 9 9 - . 4 4 8 

( - 5 . 3 6 2 , - . 4 2 2 ) (- . 7 5 3 , - . 0 4 5 ) (- . 8 3 7 , - . 0 5 9 ) 

1 . 2 4 3 . 3 1 0 . 3 2 0 

( - 1 . 2 2 7 , 3 . 7 1 3 ) (- . 0 4 4 , - 6 6 4 ) (- . 0 6 9 , . 7 0 8 ) 

^ ( M ^ ) - ^ - 2 . 0 6 7 - . 3 5 4 - . 3 8 4 

( - 4 . 2 0 7 , . 0 7 3 ) (- . 6 6 1 , - . 0 4 7 ) (- . 7 2 1 , - . 0 4 7 ) 

M ^ e f f e c t o f P D P - 1 1 

h ^ : e f f e c t o f IBM s / 3 7 0 

M~: e f f e c t o f I n t e r d a t a 8 / 3 2 

T a b l e 5 - 5 . E s t i m a t e s o f M a c h i n e C o m p a r i s o n s a n d 9 5 $ C o n f i d e n c e I n t e r v a l s , 
P h a s e I and P h a s e I I I D a t a C o m b i n e d 



M e a s u r e I n S I n M I n R 

M a c h i n e E f f e c t s a • . 6 7 a m . 4 7 y - . 6 6 a - . 6 1 

M i . 1 3 5 . 0 0 1 . 0 7 5 . 0 6 4 

1 . 3 7 8 . 1 8 9 . 2 3 6 . 2 5 6 

M 3 - 1 . 5 1 4 - . 1 8 9 - . 1 6 3 - . 1 9 2 

1 . 0 0 1 . 9 2 8 . 9 3 8 

^ 1 . 2 0 8 1 . 2 6 6 1 . 2 9 2 

»2 . 8 2 8 . 8 5 0 . 8 2 5 

^2$ e f f e c t s f o r I B M S / 3 7 0 

K j , M-3- e f f e c t s f o r I n t e r d a t a 8 / 3 2 

T a b l e 5 - 6 . E s t i m a t e s o f M a c h i n e E f f e c t s i n M o d e l s ( 5 - 1 ) a n d ( 5 - 2 ) , 
P h a s e I a n d P h a s e I I I D a t a C o m b i n e d 



M e a s u r e Js I n M I n R 

Sum o f S q u a r e s D e g r e e s o f f r e e d o m 

P r o g r a m m e r s 

CM
 . 0 2 7 . 0 1 8 . 0 2 6 

T e s t P r o g r a m s 8 . 6 2 3 . 6 5 3 . 6 6 0 

M a c h i n e s 

CM
 . 1 3 2 . 0 7 6 . 0 6 8 

P r o g r a m m e r s 
X M a c h i n e s 

2 . 0 3 9 . 0 5 3 . 0 4 7 

T e s t P r o g r a m s 
X M a c h i n e s 

8 . 1 3 2 . 1 2 4 . 1 2 1 

T e s t P r o g r a m s 4 . 0 4 7 . 0 7 6 . 0 7 8 
X P r o g r a m m e r s 

T a b l e 5 - 7 . P h a s e I I ANOVA C a l c u l a t i o n s 
P r o p o r t i o n o f V a r i a n c e A t t r i b u t a b l e t o E a c h Sum o f S q u a r e s 



Evaluation via Test Programs 

ARCHITECTURE S M R 

PDP-11 1.00 0.93 0.94 
IBM S /370 1.21 1.27 1.29 
Interdata 8 / 3 2 0.83 0.85 0.83 

Table 6 - 1 Average Performance of the Architectures on the 12 test Programs. 



AN ARCHITECTURAL RESEARCH FACILITY: 
ISP DESCRIPTIONS, SIMULATION, DATA COLLECTION 

Mario R. Barbacci 
Carnegie-Mellon University and 

Naval Research Laboratory 

Daniel P. Siewiorek 
Carnegie-Mellon University and 

Naval Research Laboratory 

Robert Gordon 
Naval Underwater Systems Center 

Rosemary Howbrigg 
Naval Underwater Systems Center 

and 

Susan Zuckerman 
Naval Research Laboratory 



Architectural Research Facility 

T A B L E O F C O N T E N T S 

SECTION PAGE 

1 Introduction 1 

2 A Typical ISP Description 3 

3 Abstractions and Implementation Dependencies 5 

3.1 Abstractions 5 

3.2 Implementation Dependencies 7 

4 The Architecture Research Facility 9 

4.1 Debugging 10 

4.2 Preparation of Simulation Tests 10 

4.3 Instrumentation 11 

4.4 Artificial Labels in the ISP Descriptions 12 

5 Architecture Parameters 13 

6 Advantages of an Architectural Research Facility 17 

6.1 A Simulator as a Training Tool 17 

6.2 Architecture Evaluation 17 

6.3 Experimentation 18 

6.4 Machine Relative Software 18 



Architectural Research Facility 

ABSTRACT 

The objectives of this paper are twofold. In the first place we discuss some 

issues related to the formal description of computer systems and how these issues 

w e r e handled in a specific project, the selection of a standard computer architecture 

for the Army/Navy Computer Family Architecture (CFA) project. The second purpose 

is to present a methodology for automatically gathering architectural data which can be 

used for evaluation and comparison purposes. We will not discuss the rationale behind 

the selection of specific test programs and the statistical experiment set up to 

ascertain the influence of the programmers, the test programs, and the machine 

architecture on the results. These issues belong in a companion paper. 

1. Introduction 

There have been many attempts to specify computer architectures in some 

formal notation. The CFA project included, to our knowledge, the first attempt to 

describe the complete instruction set of several large, commercially available 

architectures. The candidate architectures were the IBM S/370, DEC PDP-11, and the 

Interdata 8 / 3 2 . The experiment described in this paper involved the preparation of 

formal computer descriptions, the execution of machine language programs under an 

instrumented simulator, and the collection of data used to evaluate the architectures. 

Three aspects of the experiment are important to observe: 1) We did not implement 

specific simulators, tailored for each architecture; the system used in this project is a 

general purpose computer simulator driven by a formal machine description, 2) We 

executed a large number of test programs *, each ranging from less than a dozen 

* A total of 114 simulation runs were executed. They correspond to a total of 70 
dif ferent programs (some of which called for several test cases, in other instances a 
test case had to be divided into separated sub-cases.) The 70 programs were divided 
as follows: 26 for the PDP-11, 22 for each of the IBM S/370 and Interdata 8 / 3 2 . 

4-1 
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instructions to several hundred instructions, 3) We used real programs that had been 

executed on actual physical machines and then used to initialize the simulators. 

The Naval Research Laboratory selected ISP [BelC71] as the notation to formally 

describe the candidate machines. This decision was based on the availability of 

expert ise and software support at CMU and in the fact that ISP was better suited than 

other candidate notations for describing a computer architecture, independently of 

timing and other implementation issues * . This however, does not imply that ISP is 

f ree of blemishes. Some of its virtues and defects are discussed in [BarM75], In this 

paper we will point out some characteristics of the notation that prevent a complete 

separation between architectural and implementation details. 

Volume IV of the final report of the CFA committee [BarM76b] includes the ISP 

descriptions of the three candidate architectures and more information about the 

writ ing and debugging of ISP descriptions. It also discusses the issue of the 

correctness of the ISP descriptions and other matters which could not be covered in a 

short paper. 

Section 2 presents a brief introduction to ISP through a simplified version of the 

IBM S / 3 7 0 ISP description. Section 3 discusses the separation of architecture vs. 

implementation details. Section 4 describes the Architectural Research Facility. 

Section 5 describes the collection of architectural data from the simulation of ISP 

descriptions. Section 6 concludes the paper by outlining the areas in which future 

work could benefit from the use of the Architecture Research Facility. 

* The CFA selection committee adopted the definition of architecture proposed by the 
designers of the IBM S/360: "The term architecture is used here to describe the 
attributes of a system as seen by the programmer, i.e., the conceptual structure and 
functional behavior, as distinct from the organization of the data flow and control, the 
logical design, and the physical implementation"[AmdG64]. 
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2. A Typical ISP Description 

The ISP notation was developed to formalize the information normally given in 

basic machine manuals and to supplement or, if possible, eventually replace the 

"programming reference manuals'1. Hence its essential requirements were readability, 

completeness, flexibility, and brevity. 

The original notation was introduced for descriptive purposes and, in the context 

of a book [BelC71], certain ambigueties were permitted. For more formal uses, the 

notation had to be revised and a language named ISPL was developed between 1 9 7 3 -

1975 [BarM76a]. Further developments on the notation continue at CMU, and a 

language tentatively named ISPS is being implemented. For the remainder of this 

paper we shall refer exclusively to ISPL, the dialect used in the description of the CFA 

architectures. 

The example shown in Figure 1 is derived from the IBM S/370 ISP description. 

We will only present the main declarations and the instruction interpretation cycle *. 

The control flow for all instructions in Figure 1 follows a well defined path. The 

main body of the ISP description is defined by the Run procedure which continuously 

performs a loop of instruction cycles (IFetch followed by IExec). After an instruction 

has been executed, a special section of code (INT) is executed. INT checks for the 

presence of exceptional conditions (errors or external interrupts) and performs the 

proper context switching to handle these conditions. 

The instruction fetch section (IFetch) reads the first half-word of the instructions 

and from the first two bits (Instr<8> and Instr<l>) it computes the length of the 

* In order to keep the examples within the space limitations of this paper, we have 
taken some minor liberties with the syntax of ISPL. These alterations should not 
over ly confuse readers familiar with ISPL. 
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instruction (PSW<32:33>) and updates the program counter (PSW<48:63>). IFetch then 

proceeds to read one or two more half-words, the rest of the instruction. 

The instruction execution section (IExec) uses the first two bits of the instruction 

(Instr<8:l>) to select an instruction-type specific section. The RR, RX, RSSI, and SS 

sections handle the corresponding instruction types. RX, RSSI, and SS begin by 

computing the effective address of the operand(s). After this step is completed the 

next 6 bits of the instruction (Instr<2:7>) are used to select a "routine" which describes 

the behavior of the instruction. 

If any errors are detected during the instruction cycle (address boundary 

errors , illegal operations, storage protections, etc) the rest of the instruction is 

aborted and the proper error code is set in the PSW. This premature termination 

allows the interrupt handler (INT) to take care of the situation (the usual mechanism is 

to switch PSWs thus automatically starting the execution of interrupt specific system 

routines). 

We have tried to keep the example as simple as possible by avoiding any details 

beyond those extrictly necessary to follow the example. In particular, the reader 

might have noticed that we were making explicit references to fields of the Instruction 

Register (InRtr) and the Program Status Word (PSW). It is clear that when we deal with 

large descriptions such explicit references tend to become cumbersome and error 

prone *. The following section deals with the issues of how to improve the readability 

and writeability of ISP descriptions by using abstractions like pseudo-registers, 

procedures, temporary registers, etc. 

* Even though some portions of the Architectures were left out of the ISP 
descriptions, notably the Floating-Point Instructions, the ISP descriptions used in this 
project are non-trivial computer programs. Each description takes between 30 and 40 
pages of code. The size of the descriptions (1445 lines for the PDP-11, 2345 lines for 
the Interdata 8 / 3 2 , and 2132 lines for the IBM S/370) reflects the size of the 
instruction set, not necessarily the complexity of the architecture. 
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ISP can be viewed as a programming language for a specific class of algorithms, 

i.e. Instruction Set Processors or Architectures. Ideally, a language to describe 

architectures should avoid the specification of any implementation details. Any 

components introduced beyond these are unnecessary for the programmer of the 

machine and might even bias the implementor working from the description. While 

these items must appear in a description of an implementation, the problem arises 

when describing a family of machines where the abstractions and/or algorithms may 

vary across members of the family. The rest of this section illustrates this problem. 

3 . 1 . Abstractions 

An ISP description written using only the architectural components would not 

only be unreadable but also unwritable. Some form of abstraction is required. The 

following subsections demonstrate this point by introducing pseudo-registers, 

procedures, and temporary registers. These abstractions may or may not have a 

counterpart in some or all physical implementations of the ISP description. 

Pseudo-Registers.- When writing an ISP description for a real machine it immediately 

becomes apparent that describing everything in terms of just the components of the 

architecture would lead to a cumbersome and unreadable description. The concept of 

a pseudo-register to rename a frequently used field of a register greatly relieves this 

problem. For example, consider the PDP-11 which has an autoincrement addressing 

mode. During the address computation an architecture register, pointed to by a 

subfield of the current instruction, must be incremented. Dealing only with components 

of the architecture would yield an expression like: R[M[Pc]<2:8>] <- R[M[Pc]<2:8>] + 2 

where M[Pc] represents the current instruction in memory, pointed to by the program 

4-5 
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counter. Introducing the pseudo-register Ir (instruction register) for the current 

instruction would yield: R[Ir<2:0>] <- R[Ir<2:8>] + 2. We could further define a pseudo-

register, Dr (for destination register), for the frequently used three bit subfield Ir<2:8>, 

as in: R[Dr] <- R[Dr] + 2 

The pseudo-registers may suggest a register (e.g.: Ir ) or a set of wires (e.g.: Dr) 

in some physical implementation. In reality they may have no physical correspondence 

at all. In any event, pseudo-registers are a useful and necessary abstraction for 

readable (and writable) ISP descriptions. However creating pseudo-registers for 

infrequently used fields or using obscure names may defeat the usefulness of this 

abstraction leading to reader confusion and excessive page flipping to find definitions. 

Procedures.- Just as there are frequently used register fields in a machine description, 

there are frequently used sequences of operations. Forming these operations into 

procedures greatly enhances readability. 

For example, consider operand fetching. Every machine has a more or less 

complicated effective address calculation that is performed when accessing these 

operands. A memory reference to a destination operand might appear as; M[DeBt] 

where Dest is a procedure for calculating the effective address of the destination 

operand. Without procedures the same reference for the PDP-11 would appear as 

shown in Figure 2. The situation would further be aggravated if the effective address 

had to be processed by some form of memory management which provides for address 

translation and rights checking. These operations would have to be performed in the 

description on top of the effective address calculation. It should be noted that many 

minicomputers and all larger computers have some form of memory management. 

Temporaries.- Occasionally readability is improved by introducing a temporary register 



Architectural Research Facility 

4-7 

in cases where the operands before and after the operation are required or a complex 

result is used repeatedly. Figure 3 shows a portion of the memory management 

procedures for the PDP-11. 

The Read procedure shows the translation of a virtual address into a physical 

address. A temporary Memory Address Register (Mar) initially contains the virtual 

address (the result of the effective address calculation) which is then translated into a 

physical address in the line that reads: 

Mar <- (PAR[Temp]<ll:8> + Mar<12:B>) © Mar<5:8> next 

The PAR (Page Address Register) and PDR (Page Data Register) arrays contain 

the necessary address translation information. A bounds check is performed before 

the actual memory fetch from physical memory. Without the temporary variable Mar 

the Read procedure would be substantially complicated by having to replace every 

appearance of the temporary by the complex expression given above. Of course, the 

temporary variable may or may not have a counterpart in some implementation. 

3.2. Implementation Dependencies 

There are multiple examples of details that must be specified in an 

implementation description but do not belong in an architecture description. Typically, 

these are features that exhibit model dependencies. For instance, in the specification 

of the interrupt handling facility of a computer system, it could be the case that 

because of cost/performance requirements, different models must respond to 

simultaneous interrupts in different orders. An ISP description must by its very nature 

describe a specific order of interrupt trapping, thus losing a degree of freedom that 

one might wish to provide the machine implementors. 

Figure 4 shows how the specific order in which simultaneous interrupts are 
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fielded is build into an ISP description. Individual bits of INTVEC indicate the presence 

of a pending interrupt of a given priority. When only one interrupt is pending the 

proper context switching will take place. When more than one is pending there will be 

multiple context swaps and lower priority interrupts will be delayed to be processed 

later (the "new PSW" associated with a low priority interrupt will be stored into the 

"old PSW" position associated with a higher level interrupt). 

It is not clear whether having to be specific about ordering of interrupts or 

similar events is a bad practice. Although one can claim that machine designers will be 

constrained in their choice of designs, the fact still remains that somebody must write 

the interrupt handling software, and for these programmers the order of interrupt 

fielding is important. This type of dilemma occurs quite often when dealing with ISP 

descriptions. The solution might be simply to write model-dependent ISP procedures 

whenever this conflict arises and then indicate in the ISP description which version of 

a given procedure must be implemented for a given model. 

Another problem with implementation dependencies is that the definition of the 

input/output behavior of an instruction might actually imply a particular 

implementation. For example, consider the PDP-11 Subtract instruction. The carry 

condition code (C) is set according to the borrow during the subtraction. The PDP-11 

Processor Handbooks describes the setting of the C bit as: 

"C condition code is cleared if there was a carry from the most significant bit of 

the result, set otherwise." 

This definition implicitly assumes that subtraction is implemented by forming the 

two's complement and adding. Figure 5 illustrates the situation. Consider four-bit 

numbers and the two methods to perform subtractions, by using a subtractor, and by 

using an adder after forming the two's complement. 
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In the adder case, the carry is the complement of the borrow which is exactly 

the definition given by the PDP-11 Processor Handbook. The ISP description of the 

setting of C becomes: 

C 4 - (dest - source)<16>; ! Subtraction 

C NOT (dest + NOT(source) • 1)<16>j ! Addition 

As in the previous example (the order of interrupt handling), a complete 

algorithm had to be given. In this case, the subtractor/borrow algorithm is preferred 

since it presupposes only the properties of the two's complement number system. 

However, if an alternate implementation (such as forming the two's complement and 

adding) is utilized, then the implementor should be aware of possible changes in other 

algorithms in the ISP description. 

4. The Architecture Research Facility 

The facility used for the data collection phase of the CFA project is depicted in 

Figure 6. Reference [BarM76a] explains in full detail the features of the ISP compiler 

and simulator. Some familiarity with their capabilities is needed in order to understand 

the data collection phase described later. The following paragraphs attempt to satisfy 

this need. 

The ISP compiler produces code for a hypothetical machine, dubbed the Register 

Transfer Machine (RTM). The "object code" produced by the compiler can be linked 

together with a program which is capable of interpreting RTM instructions. This 

separation between the ISP description, the RTM code, and the RTM interpreter allows 

the simulation of arbitrary, user defined architectures. The result of linking the RTM 

code with the RTM interpreter is a running program, a simulator. 
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The simulator accepts commands from a teletype or user designated command 

file. The state of the simulator can be dumped to a command file which can be read at 

a future date when the simulation is continued. Command files can also be used to load 

programs and data into the simulated target machine memory and registers. 

4 . 1 . Debugging 

Most of the test programs were debugged and run on the real machines, other 

programs were executed exclusively under the simulator. The latter included those 

programs using privileged instructions that were not directly available to non-system 

programmers (e.g. interrupt and I/O handlers.) Results from the actual runs, whenever 

available, were used to check the simulated execution. 

Only minor modifications and corrections were performed during the data 

collection phase. The largest unforeseen problem was presented by the memory 

management feature of the PDP-11 which was based on the PDP-11/40. The test 

programs which made use of this feature had been tested on a PDP-11/45 which uses 

different Unibus addresses for the memory management registers. This difference 

required minor modifications in the test programs. Most other problems were of a 

simpler nature and required only a few minutes to correct. It should be noted here 

that the simulator facility was also used to debug some programs for the Interdata 

8 / 3 2 before they were executed on the real machine. This was dictated by the fact 

that no 8 / 3 2 was available near CMU and a large turn-around time (several days) 

would have complicated the debugging of the test programs. 

4.2. Preparation of Simulation Tests 

The ISP simulator provides commands for the loading and initialization of the 

simulated machine memory and internal registers. The single most important feature of 
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the command language which permitted the fast execution and collection of statistics 

was the ability to read command files containing the test programs to be executed. 

The command language cannot handle programs in symbolic form (assembly language); 

it requires the preassembly of the programs into absolute, numeric, code. To get 

around this problem, a set of utilities was developed at CMU which permitted the 

transformation of assembly listings prepared by the real machine's assembler into 

simulation command files. This operation was performed off-line as shown in Figure 6. 

Figures 7 and 8 show the transcript of a typical session using the ISP simulator. 

The session consists of running one of the test programs (Bit Test, Set, and Reset) on 

the PDP-11 . The input for a simulation session consists of several files prepared off­

line. These files include: The test program (derived from the assembly listing), a driver 

(simulation commands used to initialize the parameters for the test program), and 

finally, a command file with a list of those ISP procedures which must be "opaqued" 

(these are the procedures during which the activity counters are disabled). A typical 

command file, derived from an assembler listing is shown in Figure 9. This was the test 

program used in the sample simulator session shown in Figures 7 and 8. 

4.3. Instrumentation 

The ISP simulator permits the instrumentation of an ISP description by 

associating activity counters with each of the machine registers and memories. These 

counters allow the collection of statistics indicating the number of times each 

component of the machine is read from or written into. A separate counter is kept for 

each label in the ISP description. Labels are included in the ISP descriptions to 

identify machine instructions, addressing modes, loops (used to describe vector-like 

instructions like move character on the S/370), as well as other ISP procedures. 
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During the execution of the test programs, a data base was created by collecting 

dumps of the counters after each test case was completed. The files containing the 

counters were then processed by other, off-line, programs in order to arrive at the M 

and R measures. 

4.4. Artificial Labels in the ISP Descriptions 

Certain modifications not normally needed were made to the ISP descriptions to 

aid in the collection of data during the running of the test programs for the CFA 

project. Several labels and "do-nothing" procedures were added to identify certain 

phases in the instruction interpretation algorithm and to measure selected events (e.g., 

dif ferent addressing modes). The labels added to count these events are clearly not 

part of the architecture or even the implementation. 

Figure 10 shows an example extracted from the S/370 ISP Description. It shows 

the use of artificial labels to identify different addressing modes for the RX instruction 

set. According to the definition of the S/360 and S/370 architectures, The RX 

instructions can specify both a base and an index register to be added together with 

the displacement field of the instruction to compute the address of the memory 

operand. The architecture further specifies that R[8], when specified as either a base 

or index register does not take place in the effective address calculation, i.e., R [8 ] 

should be specified whenever one of these two components (base or index) is missing. 

In the above example four dummy in-line procedures where introduced to count the 

number of times each possible combination of base/index modes occurs. Thus RX8888 

is "executed" whenever R[8] is specified as both the base and the index register. 

RX80X2 is "executed" whenever R[8] is used as the base register and any of R[l:15] is 

used as the Index register. RXB180 is "executed" whenever R[8] is specified as the 
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index register and any of R[l:15] is specified as the base register. Finally, RXB1X2 is 

"executed" whenever R[8] is not specified as either the base or index registers. NOP 

is a dummy procedure which does not have any side effects. 

5. Architecture Parameters 

As a means of comparing architectures, three measures were defined for the 

CFA project [FulS77a]: 

Measure of Space 

S The number of bytes used to represent a test program. 

Measures of Execution Time 

M The number of bytes transferred between primary memory and the 
processor during the execution of the test programs. 

R The number of bytes transferred among internal registers of the 
processor during execution of the test program. 

The S measure is a static parameter which can be computed independently of 

the ISP description. For the purposes of this paper we will restrict the discussion to 

the other two measures. The actual computation of the M and R measures was done 

through a semiautomatic process. The raw data collected from the simulator was used 

to count frequencies of instructions and addressing modes. These counters were 

multiplied by certain hand calculated factors in order to arrive at the M and R 

measures for each test program. Ideally, the ISP simulator should perform the entire 

operation and this would be a better approach, less subject to human errors. We had 

to use the hand computed factors due to our inability to determine the influence of the 

ISP writing style on the architecture parameters as defined above. 

The exact methodology for writing ISP descriptions so that the M and R 
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measures can be calculated automatically has yet to be developed. It is clear, 

however , that a careful control of the counting mechanism is paramount to the 

collection of meaningful data. During the data collection phase we made use of the 

following techniques towards this goal. 

Qpaqued Procedures.- A Simulator command allows the selective masking of in-line and 

off- l ine procedures. Masking or opaquing a procedure inhibits all activity counts inside 

the body of the procedure. 

Certain operations, such as incrementing the program counter after an 

instruction, or the setting of the condition codes as a result of an instruction do not 

affect the R measure and should not be counted. This is typical of those actions which, 

in a reasonable implementation, would be done using ad-hoc circuitry, separate from 

the main operational units of the machine. These operations could be implemented by 

combinational logic (e.g.: setting condition codes from ALU lines), special registers (e.g.: 

using a counter instead of a simple register for the program counter), or even complex 

sequential networks (e.g.: the virtual address translation can be performed using its 

own arithmetic units and data paths). 

Operations like those described above can be easily marked by adding artificial 

labels to the ISP description and then disabling the counters while the selected 

operation is being performed. 

Pseudo-Register Chains.- Every component declared in an ISP description has activity 

counters associated with it. When a register is defined in terms of another register, 

such as: Pc<15:8> R[7]<15:B>; a redefinition chain is established. Accesses higher up 

in the chain increment all counters lower in the chain but not vice-versa. In the above 

example an access of the Pc causes the register file counter for R to be incremented 
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but accessing R[7] does not increment the program counter (Pc). By establishing 

appropriate redefinition chains, distinction between access types can be maintained. 

One variation of this technique is the use of "shadow" registers. For example twp 

instruction registers can be defined: Ir<15:8> Irl<15:8>; where I r l is the shadow 

register. The loading of the Ir from memory is to be counted in the R measure, 

however, the combinational logic decoding of the instruction and effective addressing 

mode is not to be counted. The former is performed on Ir, the latter on I r l thus 

distinguishing the two different types of accesses. 

Memory Access Procedures.- Modern machines provide the user with an address space 

defined in terms of small units of information, typically 8-bit bytes. For convenience, 

however, the architectures also define larger access units in multiples of bytes. Thus, 

the IBM S / 3 7 0 provides bytes, half-words, full-words, and double-words. Since the 

physical memory is the same, the ISP description must declare the different address 

spaces by building a redefinition chain in which the different address spaces are 

declared as "pseudo-memories" so that the M measure component of each address 

space is properly accounted for. 

Machines like the PDP-11 add some more complexity to the issue of having 

multiple address spaces. The PDP-11 architecture defines the concept of an I/O page 

as a reserved portion of the address space, not necessarily implemented as a physical 

memory. Addresses in the upper 4K bytes of the PDP-11 are used to address I/O 

devices, machine registers, etc. Addresses in the I/O page must be handled differently 

when computing the M measure. If one attempts to include in-line address checks in 

the ISP description, the description quickly becomes bulky and unreadable. A 

satisfactory solution is simply to define memory access procedures (Read and Write), 
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which can then be properly instrumented, thus enabling the automatic computation of 

the M measure. 

Temporary Registers.- The automatic computation of the R measure is more difficult. In 

an ISP description there are three types of registers to consider: architectural, 

standard implementation, and temporaries. Architectural registers and certain standard 

implementation registers (instruction register, memory address register, and memory 

buffer register) can be handled using the same techniques used to automate the M 

measure (declaration chains and encapsulating procedures). Handling temporary 

registers presents a more difficult problem. The number, type, and manipulation of 

temporary registers are a matter of writing style. 

Architecture parameters which are based solely on architecture registers while 

ignoring temporary registers introduced for clarity might overlook hidden computations 

performed on these registers. Unlike the memory, architectural registers, and standard 

implementation registers, a tightly defined writing style cannot be developed for 

temporary registers. One solution would be to use well known expression optimization 

techniques [WulW75] on the ISP description to uniformly minimize the temporary 

register activity. Hopefully the optimization would lead to similar results for equivalent 

algorithms. 

Architectural parameters should be independent of the experience, style, and 

objectives of the ISP writer. This will then guarantee that the ISP descriptions which 

make use of abstractions (pseudo-registers, procedures, and temporary registers, etc) 

to enhance clarity and readability will not be penalized. By the same token, no 

advantage should be derived from the use of "clever" programming tricks which might 

attempt to bias the measurements. 
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6. Advantages of an Architectural Research Facility 

Although for the purposes of this paper we have presented the uses of the ISPL 

compiler and simulator in the context of a specific project, we should point out the 

wider range of applications in which a system like ARF can be of great value. 

6 . 1 . A Simulator as a Training Tool 

In this paper we described how machine language test programs can be 

executed under the simulator. The implied assumption during the data collection phase 

was that we were dealing with correct, finished programs. With no extra effort the 

ISP simulator can be a powerful training device for novice programmers. Speed of 

simulation is not an issue in this application. Programmers learning a new machine 

language tend to spend long hours single-stepping via the machine console. An 

interactive simulator can easily satisfy the needs of these users, while providing much 

better diagnostic and debugging facilities than a computer console (did you ever see a 

"help'* button on a machine?.) ISP descriptions exist for the following machines: DEC 

PDP-8, PDP-10, PDP-11, IBM S/370, Interdata 8 /32 , and Intel 8080. 

6.2. Architecture Evaluation 

The S, M, and R measures are by no means the only set of architecture 

parameters one might wish to evaluate. Nothing in the ISP simulator depends upon 

this particular set of parameters. The instrumentation in the simulator allows counting 

e v e r y event we care to define by simply labelling the event. There is no need to 

create new procedures which might impact the organization or readability of the 

description; even a single register transfer operation can be labelled and counted. 
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6.3. Experimentation 

Once the initial effort of writing an ISP description is accomplished, only 

moderate effort is required to perturb it to reflect proposed or actual changes in the 

architecture. Thus the effect of a modification in an architecture can be measured and 

studied before any funds are commited to the development of a new machine. By a 

careful design of the ISP description it is possible to pattern a description along the 

lines of the organization of the physical machine. Thus one would be able to measure 

and evaluate different models of the architecture. For instance, functional units and 

data paths can be represented by separate procedures in the ISP description. An ISP 

description could then be parameterized to invoke these procedures in different order, 

concurrently or sequentially, with or without intermediate steps, etc. as the different 

models differ in their implementation. An example might be determining the effect of a 

cache memory on the apparent instruction execution speed in high performance 

implementations. 

6.4. Machine Relative Software 

As the number of different architectures coming into existence increases every 

year , it is becoming more and more expensive to develop the necessary software 

support base that allows the effective use of these machines. The availability of user 

micro-programmable machines enlarges the space of possible architectures to the point 

that automatic software generation systems will become a necessity. Tools that 

operate relative to a computer description could represent a significant breakthrough 

in the manner that computer systems (hardware/software) are designed and evaluated. 

The Advanced Research Projects Agency (ARPA) of the Department of Defense is 

current ly sponsoring this area of research at CMU and elsewhere [BarM74]. 



Architectural Research Facility 

4-19 

In the future one can foresee hardware and software automation systems that 

take as input computer descriptions, and language and problem specifications; and from 

these, generate operating systems, compilers, and other support and application 

software automatically. Other areas of current research include automatic diagnostic 

generation, microcode generation, machine verification, etc. 

Formal computer descriptions will play an increasing and important role in the 

evaluation, procurement, verification, and programming of computers. The ARF facility 

is a step in this direction. 
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S378: 
begin dcclurc 

Memory[0:"FFFFFF]<B:7>; 
R[8:15]<B:31>; 
PSW<8:63>; 

eralced 

! Primary Memory 
! General Purponn Registers 

! Program Status Word 
! Auxiliary Registers (Instr, Mar, Mbr, etc.) 

! End of Declarations 

Run: begin 
IFetch:- begin 

Mar«-PSW<4B:B3> next 
Instr<8:15>«-Mcmory[Mar:Mar+l] next 
PSW<32:33>*-Inatr<B>+Instr<l>+l next 

IExec: 

INT:« 
Run 
end 

! Main Executable Program 
! Instruction Fetch Section 

! Initial Instruction Address 
! Read First Half-Word of Instruction 

! Instruction Length 
PSW<48:B3>*-PSW<48:63>+PSW<32:33>*2 next Program Counter 

! Fetch the rest of the Instruction 
end; 
begin 
decade Instr<B:l> «=> 
RR:« 

! Instruction Execution Section 
! Select Instruction Type; 

! RR Instruction Decode Table 
! Select RR Instructions 

begin 
(decade Instr<2:7> «> ) 
end; 

RX:« begin ! RX Instruction Decode Table 
Mar<-Instr<2B:31> next ! Displacement 
(if Instr<lS;19> «> Mar<-Mar+R[Instr<16:19>]) next ! Base 
(if Instr<12:15> => Mar«-Mar+R[Instr<12:l5>]) next ! Index 
(decode Instr<2:7> «> ) ! Select RX Instructions 
end; 

RSSI:- begin ! RS.SI Instruction Decode Table 
Mar <- Instr<28:31> next ! Displacement 
(if Instr<16:19> «> Mar <- Mar+R[Instr<16:19>]) next ! Base 
(decade Instr<2:7> «> ) ! Select RS, SI Instructions 
end; 

SS:« begin ! SS Instruction Decade Table 
AMarl«-Instr<2B:31>; AMar2<-Instr<36:47> next ! Displacements 
(if Inntr<lB:19> «> AMarl«-AMarl+R[Instr<16:19>]); ! Base 
(if Instr<32:35> •> AMar2*-AMar2+R[Instr<32:35>]) next ! Base 
(decade Instr<2:7> -> ) ! Select SS Instructions 
end; 

end; 
begin end next ! Interrupt Handling Section 

! Repeat Main Procedure 

end 

Figure 1 - A Simplified Version of the IBM S/370 ISP Description 
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M [ decodp Dd => 
(decade Dm ~> 

#37480£>Dr; 
R[Dr]<-R[Dr]+2 next R[Dr]-2; 
R[Dr].-R[Dr]-2 next R[Dr]; 
M[Pc+2] + R[Dr] 
); 

(decade Dm >•=> 
M[*37480s>Dr]; 
R[Dr] . -R[Dr>2 next M[R[Dr]-2]j 
R[Dr].-R[Dr]-2 next M[R[Dr]£ 
M[M[Pc+2] + R[Dr]] 
) 

! Direct Addressing 
! Register Mode 

! Autoincrement Made 
! Autadecrement Made 

! Index made 

! Deferred Made 
! Register made 

! Autoincrement Mode 
! Autadecrement made 

! Index made 

Figure 2 - Inline Effective Address Calculation 
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Read:»bnyin 
Temp <- Mar<15:13> next 
Mar <- (PAR[Temp]<ll:8> + Mar<12:B>) @ Mar<5:8> next ! Compute Physical Address 
(if not PDR[Temp]<2:l> => Aborl) next 
(if (Mar<12:6> gtr PDR[Temp]<14:8>) and not PDR[Temp]<3> »> Abort) next 
(if (Mar<12:B> lss PDR[Temp]<14:8>) and PDR[Temp]<3> -> Abort) next 

! Read from Physical Memory 
end; 

Figure 3 - A Portion of the PDP-11 Memory Management 
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In t : - begin 
Temp«-PSW<32:33> next 
(if INTVEC<8> AND PSW<13> «> 

) ncxl 
(if INTVEC<1> «> 

) next 
(if INTVEC<2> «> 

) next 
(if INTVEC<3> AND PSW<8:7> «> 

) next 
(if INTVEC<4> AND IOMSK -> 

) next 
PSW<16;31>*-8; PSW<32:33>*-Temp ! 
end; 

Figure 4 - Explicit Interrupt Processi 

! Save Instruction Length 
! Handle Priority (1) Interrupts 

! Handle Priority (2) Interrrupts 

! Handle Priority (3) Interrupts 

! Handle Priority (4) Interrupts 

set Instruction Length & Interrupt Code 

Order in the IBM S/370 
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0 1 0 1 0011 Subtracting 
0 0 1 1 0101 

0 0 0 1 0 1 1110 
borrow borrow 

0 1 0 1 0011 Adding Two's Complement 
1101 1011 

1 0 0 1 0 0 1110 
carry carry 

Figure 5 - Implementation Dependant Condition Code Setting 
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5 - 3 - 2 (no borrow) 3 - 5 - -2 (borrow) 
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Figure 6 - Test Program Execution Under ARF 
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r u p d p l l n 
ISP SIMULATOR V3 - NRL ARF STAGE 2 
F r i d a y 18 Sop 76 1 7 : 1 3 : 5 8 PDP11M. ISP IL418MB25) 
SERIALIZATION COMPLETED 
SPACE ALLOCATED 
TYPE HELP FOR HELP 
TYPE <ESC> TO INTERRUPT SIMULATION LOOPS 

> r e a d f a d l . s i m 
>>Rnnix OCTAL 
»DECHO 

! Read in the benchmark: f i l e 

! The benchnark f i l e d i s a b l e s the l i s t i n g 
! on the user t e r m i n a l . 

» 1 8 0 LINES RERD 
> r e a d f a . d r 3 ! Read in the d r i v e r f i l e 
» ! HERE COMES THE DRIVER (CALLS) 
» S E T V A L MM (30001 .-013746 005202 ! MOV 6*5282,-<SP> ; F 
» S E T V A L MM (30021 .-013746 005204 ! MOV 8*5204,-<SP> • $ N 
>>SETVflL MM (30041 -812746 004000 ! MOV *4000,~<SP> j Al 
» S E T V A L MM (30061 .-012746 005200 ! MOV *5200,-<SP> j RC 
» S E T V A L MM (30101 .-012746 005206 ! MOV *5286,-<SP> j U 
>>SETVAL MM(30121-804737 881800 ! JSR PC,8*1808 j BTSR 
>>SETVAL MM(30141-000000 ! HLT 
>> ! The above sequence of PDP-11 i n s t r u c t i o n s pushos the parameters 

! on to tho s t a c l : , c a l l the benchmark as a r o u t i n e , and h a l t . 
» S E T V A L MM(20001-123457 871234 167806 145670 ! BIT STRING 
>>SETVflL MM (21)003 - 0 ! RETURN CODE 
» S E T V A L MM(2! iQl l -2 ! F 
» S E T V A L MM (21)02)-25 ! N 
»SETVML MM(2l i031-8 ! WORK AREA 
» S E T V A L PC-6000 
» S E T V A L SP-280 

! The abovo coquonr.o i n i t i a l tzes the data (parameters ) , the stacU 
! p o i n t e r and tho program countor (which now points to the code 
! sequonco tha t puchon tho parameters and c a l l the r o u t i n e , 

>>SETVAL A-0 ! Th is is an ISP i n t e r n a l v a r i a b l e - ind ica tes whether the 
! machine is r u n n i n g , h a l t e d , or w a i t i n g . 

>>SETCTR ALL 0,0 
>>READ 0PQ11.SIMIL410MB25J 
>>>nrcno 
» > 5 3 LINES READ 
»RF.nn UUO11.SIMIL410MB25) 
» > D E C H 0 
> » 1 5 LINES RERD 
>>TRflCE IR,PC,R,MMI0 

» B R E A i : JSR,RTS 
» 2 6 LINES READ 

! Roset a c t i v i t y counters 
! PDP11 Opaquod ProcoduroB 

! UNIMPLEMENTEO OPERATION BREAKS 

Trace a few se lec ted r o g i s t e r s 
IR is the I n s t r u c t i o n R o g i s t e r , 
PC is the Program Counter ( R I 7 ) ) , 
R (8:71 are the gonoral r e g i s t e r s , 
MMIO is the I/O P A G E (R is N A P P B D onto MHIO) 
Breal: on se lec ted i n s t r u c t i o n s 

Figure 7 - Initialization of a Simulation Run 
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> s t a r t i n t e r Here N O B T A R T T H E S I M U L A T I O N 

6 I N T E R 
8 I N T E R 
S S I N C O 
e ODECRD 
t I N T E R 

15 
26 
22 
21 
I S 

IR 
PC 
R 
R 
IR 

13746 
6002 
7 ) . 6004 
6J« 176 
13746 

e I N T E R 4 
6 I N T E R + 
e S I N C O + 
9 DDECRD 4 
6 I N T E R 4 
e I N T E R + 
BREAK AFTER JSR 
• s e t c t r a l l 6 , 8 

• c o n t 

15 
26 
22 
2 1 
15 
26 

I Pushing Parameters 

IR « 12746 
PC « 6822 
R i 7 ) . 6824 
R C 6 ) « 166 
IR » 4737 
PC ° 6826 

! The s i m u l a t i o n stops on a breakpoint 
! The r e a l benchmark s t a r t s h e r e , H O must 
! r e s e t a l l counters ( they M E R E M o d i f i e d 
! dur ing the benchmark c a l l i n g sequence) 
! H E cont inue the s i m u l a t i o n 

e DINCRO 4 22 R t 73 = 6030 
e JSR 4 14 R [ 73x 6030 
e JSR 4 15 PC n 1000 
e INTER • 15 IR = 16046 
e INTER 4 26 PC « 1602 

1 Program Execut ion 

a INTER 4 26 PC a 1872 
e SINCD 4 22 R [ 6 3 * 164 
e WRITE 4 131 MWIO [ 3748881» 6 
e INTER 4 15 IR « 287 
e INTER 4 26 PC » 1674 
BREAK AFTER RTS ! the s i m u l a t i o n stopB at the end of the 

! benchnarfc ( the r e t u r n i n s t r u c t i o n ) 

• o u t c t r 
*co?it 
6 RTS 
3 RTS 
e INTER 
e INTER 

< a d l . r m 3 

4 2 
4 7 
4 15 
4 28 

PC 
R 
IR 
PC 

SIMULATION C0MPLETE0 
RUN T I M E ( 1 8 usoc u n i t s ) « 8 3 1 6 7 8 
RTM OPS EXECUTE0«4535 
>ox i t 
E X I T 

! we duup a I I 
! H E cont inue 

1874 
7 3 * 6830 
0 
6032 

! ne executed 

the counters into 
the s i m u l a t i o n 

a f i le 

the Ha 11 i n s t r u c t ion 

! He f in ish the B O S S ion 

Figure 8 - Program Execution Trace 
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RADIX OCTAL 
DECHO 
ICFAF MACN11 V863F 5-JUL-76 12:54 PAGE 1 
IBTSR1 f i l l 
! 

! Program, Programmer I d e n t i f i c a t i o n (SuproBsed) 

13 81360 ; O f f s e t s of parameters from s tack p 

14 81400 ; 
15 000004 61500 SAVE»4 ; ye need to save 2 

16 61600 > 

17 800016 01780 F*12+SAVE j f u n c t i o n code 

18 000014 61800 NniO+SAVE ; r e l a t i v e b i t numbe 

19 000012 01900 Aln6*SAVE ; address of b i t s t r 

28 000010 02000 RCn4*SAVE ) address of r e t u r n 

2 1 000000 82100 W0RKB2*SAVE ; address of H o r k a r 

22 02200 » 

23 800000 ' 02300 BTSR: 
24 800000 ' 010040 02400 MOV R 0 ^ ( S P > 

25 800002 ' 010146 02500 MOV R1, - (SP> 

26 800000 ' 005076 000010 02600 CLR eRC(SP) 

27 800010 ' 016600 000014 O27O0 MOV N(SP>,R8 j g« 

. ! R e l o c a t a b l e Object Codo L i s t i n g 

41 8000C6* 012601 04100 QUIT: MOV <SP)+,R1 j ex 

42 000070 ' 012600 04200 MOV <SP)+,R6 

43 8 0 0 0 7 2 ' 000207 04300 RTS PC 
J FC 44 800074 ' 1S0118 04400 SET: BISB Rl,eR6 J FC 

45 800076 ' 000773 04500 BR QUIT 

46 000001 04600 .END 

! Cross -Reference L i s t i n g 

! Here bogin the s imu la t ion commands 
! de r ived from the abovo l i s t i n g 
! r e l o c a t i o n addross a nord 400 ( o c t a l ) • by te 1866 

f 

SETVflL MIU400I .-018046 
SETVflL MIH4O1J-810146 
SETVflL MIH4021 - 0 0 5 0 7 6 000010 
SETVflL MWC404J-016600 000014 

! Target Machine Program Loading 

SETVflL M H ( 4 3 3 ) - 0 1 2 6 0 1 
SETVflL MM ( 4 3 4 ) - 0 1 2 6 0 0 
SETVflL MU ( 4 3 5 1 - 0 0 0 2 0 7 
SETVflL M I H 4 3 6 } - 1 5 0 1 1 0 
SETVflL MW(437)^800773 

ECHO 
Figure 9 - A Command File Derived from an Assembly Listing 
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RX:« beyin 
Mar«-Instr<2B:31> next 
(dccadu (Inslr<lG:19> NEO 8)@(Instr<12:15> NEQ B)-> 
\BB RX8BB8:- (NOP): 
\B1 RX80X2:* (NOP) 
\1B RXB1B8:« (NOP) 
\11 RXB1X2:- (NOP) 

) next 
(if Instr<lB:19> «> Mar<-Mar+R[Instr<lB:19>]) next 
(if Instr<12:15> «> Mar^Mar+R[Instr<12:l5>]) next 
(decade Instr<2:7> «> 

end; 
) 

! Na Base, No Index 
! No Base, Indexing 

! Base, No Index 
! Base, Indexing 

! Select RX Instructions 

Figure 10 - Use of Artificial Labels 
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