
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 8 5 - 1 2 9

C

Flexible Unparsing
in a Structure Editing Environment

David Garlan

D e p a r t m e n t of C o m p u t e r S c i e n c e

C a r n e g i e - M e l l o n U n i v e r s i t y

P i t t s b u r g h , P a . 1 5 2 1 3

April 1985

Abstract
Generators of structure editing-based programming environments require some form of unparse
specification language with which an implementor can describe mappings between objects in the
programming environment and concrete, visual representations of them. They must also provide an
unparser to execute those mappings in a running programming environment. We descr ibe one such
unparse specification language, called VIZ , and its unparser, called UAL . V IZ combines in a uniform
descriptive framework a variety of capabilities to descr ibe flexible views of a programming database
using a library of high-level formatting routines that can be customized and extended by the im
plementor. T h e U A L unparser allows the highly conditional unparse mappings of V IZ to be executed
efficiently. Its implementation is based on the automatic generation of explicit display views, together
with a scheme for efficient incremental updating of them in response to arbitrary changes to objects
in the programming environment.

Th is research is supported in part by the Software Engineering Division of C E N T A C S / C O R A D C O M ,
Fort Monmouth, N J .

University Libraries
Cf\r r University

Table of Contents
1. Introduction
2. System Architecture and Basic Terminology
3. T h e View Problem
4. Other Design Issues

4.1. Customization and Extension
4.2. The Inverse Map
4.3. In-place Text Editing

5. Capabilities of V IZ and U A L
6. V IZ , An Unparse Specification Language

6.1. A Bird's Eye View of V IZ
6.2. Views
6.3. Scenes
6.4. Condit ions
6.5. Schemes
6.6. Perspectives
6.7. Unparse Declarations

7. A Model of Unparsing
8. T h e U-tree
9. Incremental Updating in U A L

9.1. Stage 1: Changes to the Database
9.2. Stage 2: Propagation within the Database
9.3. Stage 3: Propagation to the u-tree
9.4. Stage 4: Resolution of the u-tree
9.5. Stage 5: Propagation to the Display
9.6. Stage 6: Updating Output Devices

10. Further Details
10.1. Formatters
10.2. Text Editing
10.3. Ellipsis
10.4. Device Independence
10.5. Backmap

11. Efficiency Considerations
12. T h e View Problem Revisited
13. Conclus ions
Acknowledgements
I. T h e Grammar for V IZ
II. Formatting Environments
11.1. System Formatting Environments
11.2. Display Attributes

II

List of Figures
F i g u re 1 -1 : Grammar Entry, Unparse Scheme, and Unparsing of an IF Node 2
F i g u re 2 -1 : The Class Hierarchy 3
F i g u r e 2 - 2 : Sample Operator Descriptions 3
F i g u re 6 -1 : The V IZ Framework 9
F i g u r e 6 - 2 : Procedure Scenes in Pascal 10
F i g u r e 6 - 3 : A Scene Declaration 11
F i g u re 6 - 4 : BNF for Condit ion Terms 12
F i g u r e 6 -5 : Unparse Condit ions 12
F i g u r e 6 - 6 : Unparse Schemes for IF 13
F i g u r e 6 - 7 : A Typical Unparse Declaration Section 15
F i g u r e 7 -1 : A Model of Unparsing 17
F i g u r e 8 - 1 : U-tree for an IF node 19
F i g u re 1 0 - 1 : Variable Ellipsis for an IF Node 28

1

1. Introduction
Programming environments frequently take as their model a structured database that is manipu

lated by a set of cooperating tools. As the user modifies the environment by invoking the tools, the

current state of the environment is displayed to the user by mapping the internal structure of the

database to concrete text/graphics, a process called unparsing [Medina-Mora 82]. Systems that al

low an implementor to define the structure of the database with a grammar description also provide a

way for the implementor to specify the unparse mapping. This is usually done by attaching to each

production of the grammar one or more unparse schemes written in some unparse specification

language. This language allows the implementor to indicate the placement of keywords, punctuation,

production subcomponents, and formatting directives necessary to produce a concrete realization of

the production. Unparse schemes are then interpreted by an unparser in the running environment to

produce an interactive display. Figure 1-1 shows an example of a production, its unparse scheme,

and an unparsed display of it.

The quality of the interaction between a user and a programming environment largely depends on

the ability of the unparser to support flexible, powerful, and insightful projections of the objects in the

environment. For that reason, much attention has been given to the nature of concrete represen

tations in providing ellipsis, graphical views, browsing windows, flexible line breaking, and so on .

Unfortunately these features have found their way into unparsers largely on the basis of their

creators' whims; there has been no attempt to analyze them as particular instances of a more general

theory for unparsing and, on a practical level, little attempt has been made to integrate the wide range

of mechanisms into a single system.

As a starting point for such a theory this author has proposed a set of principles for unparsing, and

based on them, a general framework for unparse specification languages [Garlan 85]. In this paper

we present an unparse specification language, VIZ, that is an instantiation of that general framework.

We also describe the implementation of an unparser, UAL, that efficiently interprets V IZ specifications

to support the unparsing activity of interactive structure editing-based programming environments.

Section 2 discusses the architecture of the programming environment and introduces basic terminol

ogy. Sections 3 and 4 sketch the design issues that VIZ and U A L address. Section 5 summarizes the

capabilities of V IZ and UAL. Section 6 presents the VIZ language. Sections 7 through 11 discuss the

U A L unparser. Finally, in Section 12 we evaluate the current implementation with respect to the basic

goals that have driven our approach. The conclusions reached there point to the need for a more

general theory of views and view transformations, such as the one that is currently being developed in

this author's Ph.D. thesis [Garlan 86].

2

I F - E L S E : : = c o n d - p a r t : e x p r e s s i o n t h e n - p a r t : s t a t e m e n t e l s e - p a r t : s t a t e m e n t

" I f < c o n d - p a r t > || @+(Then < t h e n - p a r t > || E l s e < e l s e - p a r t >) "

//

Then

Else

F igu re 1 - 1 : Grammar Entry, Unparse Scheme, and Unparsing of an IF Node

2. System Architecture and Basic Terminology
In this section we sketch the underlying architecture that supports the programming environments

for which the V IZ/UAL system was written. W e do this in order to introduce terminology that we will

be using in the remainder of this report, and because the object-oriented point of view taken here is

different from that adopted in most other structure editing work.

We view a programming environment as a structured database of program objects and a collection

of tools that manipulate them. Objects in the database include "source c o d e " objects (variables,

statements, procedures, etc.), "annotations" (comments, marks, error indications, etc.), and

"execut ion" objects (call stack, tracing information, etc.). Too ls include, most prominently, a syntax-

directed editor, semantic analyzers, an execution machine, a documentation manager, and a help

facility.

The database is object-oriented (in the sense of Smalltalk [Goldberg 83]). By this we mean that its

objects are instances of classes, and classes are organized in a class hierarchy. Behavior is inherited

down the hierarchy so that operations defined for one class can be used by all of its subclasses. A

simplified version of the class hierarchy is illustrated in Figure 2-1. (See [Gnome 85] for more details

about the object-oriented architecture.)

Because of the prominence of syntax-directed tools, such as the program editor and the semantic

analyzer, the database is organized as an annotated abstract syntax tree. T h e structure of the syntax

tree is determined by a grammar that defines legal operators 1 and syntactic classes. Sample operator

and syntactic class descriptions are shown below in figure 2-2. We refer to the person who writes the

grammar as the implementor.

We will use the terms "operator" and "product ion in the grammar" synonymously .

3

TreeNode
I

I I I I
NonTernrinal MetaNode Terminal Att r ibute

I I I

I I I I I I I
IF...WHILE IdUse IdOef StrConst

Figu re 2-1: The Class Hierarchy

A user creates new database objects, or as they are usually called, nodes2, in a syntax-directed way

through a program editor that guarantees the syntactic integrity of the database. Unexpanded por

tions of a syntax tree are represented by a special kind of node called a meta node. The user thus

creates programs by filling meta nodes with operators chosen from the appropriate syntactic class.

(For a fuller treatment, see [Medina-Mora 82].)

Objects in the database are manipulated by the user through a collection of display views. Views

determine the visual appearance of objects, and also translate the user's operations on visualized

objects into abstract operations on the database. The views of an environment are determined in the

grammar by unparse specifications which define a mapping between database objects and concrete

forms. This mapping is carried out by an entity called the unparser.

I F
BLOCK
I D E N T I F I E R

b o o l - p a r t : e x p r e s s i o n t h e n - p a r t : s t a t e m e n t
s t a t e m e n t s : l i s t o f (s t a t e m e n t)
i d : v a r i a b l e

s t a t e m e n t I F WHILE PROC-CALL

F igure 2 - 2 : Sample Operator Descriptions
The abstract syntax for three operators is shown here. IF is referred to as a fixed-arity node, s ince it has exactly two sons.
B L O C K is referred to as a list node and expands to a list of statements. I D E N T I F I E R is referred to as a terminal or leaf node. It
is one of the system-provided types, namely "variable". The names on the right hand side of the productions are of the form
"named-son:syntactic -c lass". A syntactic class is a set of one or more operators, any one of which can be used as an
expansion for that class. For example, as shown, the class "statement" would contain the operators IF, W H I L E , etc.

"We will use the terms "database object" and "node" synonymously.

4

3. The View Problem
A single visual representation for the program database is an insufficient basis for a powerful

programming environment. As a collection of tools that interact with the user and with each other,

the power of a programming environment depends critically on the ability of the tools to provide

appropriate and different views of the database. T o take a simple example, for any but the smallest

program, it must be possible to display the program contents at varying levels of detail.

T h e need to provide multiple views in a programming environment leads to two problems: (1) it must

be possible for an implementor of an environment to describe the desired views, and (2) the unparser

for these views must be efficient enough to support multiple concurrent displays of the same objects

in different views and to propagate the changes made in one view to all concurrently active views.

There is both a global and a local component to this. Globally, it should be possible for two tools to

present different representations of a program to a user. For example, a " c o d e " view of a program

may not display all of the program documentation, while a "documentation" view may not display all

of the program code. Or , an "outline"* view of a program may show only the nested hierarchy of

procedure declarations in a program and not their bodies. Locally, it should be possible for the

display of an object to vary depending on the context in which it is shown. For example, an IF node

might be displayed on one line if there is space for it, but on multiple lines otherwise. It might appear

in the form "If a < b Then ..." if the user has asked to elide it. It might be highlighted in a particular

way if it has an associated semantic error. Or , it might appear in a separate window if the user so

indicates.

T h e use of global views, was pioneered in the multiple unparse schemes of Aloe structure

editors [Medina-Mora 82]. In that system the implementor can associate a collection of numbered

unparse schemes with every operator in the grammar. The user or the internal tools can set the

scheme number, thus determining the global view of the abstract tree. More recently, P E C A N [Reiss

84], has extended this notion in the direction of multiple graphic views of a program. In addition to

attaching multiple schemes to each operator, P E C A N provides a notification mechanism through

which the views in the system are informed whenever a significant change takes place to a node in

the program. The views themselves are then responsible for keeping their display current.

T h e use of local views has appeared in many contexts and in response to a wide variety of con

cerns. A number of environments have addressed the problem of ellipsis of programs including

Hansen's [Hansen 71] holophrasting and Mikelsons [Mikelsons 81] automatic, focus-dependent ellip

sis of programs. Others, such as Oppen [Oppen 79] and Coutaz [Coutaz 85], have explored tech-

5

niques for flexible line breaking. Still others have looked into the use of local window contexts for

browsing [Delisle 84] or to enforce scope boundaries [Garlan 84].

None of these efforts, however, has developed an unparse specification language that allows an

implementor to easily describe views to meet the varying display needs of tools. Unparse descriptions

in virtually all existing unparse specification systems are composed either of low level control con

structs or of high level black boxes. In the first case, the specification burdens the implementor with

unnecessarily complicated and often baroque detail at the level of assembly language programming.

In the second case the implementor has little control over the unparsing process and the black boxes

cannot be composed to build new unparsing features. Moreover, previous unparsing systems have

not attempted to integrate in a uniform way a wide range of view mechanisms from which the im

plementor can choose to implement particular policies. Indeed, given the apparent cost of implement

ing some of the mechanisms individually (such as ellipsis), it has been an open question whether it is

currently possible to provide an implementation of such a general integration that is efficient enough

to support an interactive environment.

4. Other Design Issues
While the goal of providing multiple display views has been a central focus in the design of the

unparse specification language and the unparser described in this report, three related goals have

been the ability to support customization and extension of view mechanisms, the ability to map a

user's actions on visible objects to operations on corresponding database objects, and the ability to

support text editing.

4.1. C u s t o m i z a t i o n a n d E x t e n s i o n

Global and local views are necessary for a flexible unparser. But they are not sufficient. The unpar

ser must also make it possible for the implementor and, in some instances, for the user to extend and

customize those views. For example, given current high resolution display devices, it should be

possible for the user to choose font, indentation levels, style of presentation of keywords and other

textual programming entities. It should be possible for the implementor to define special purpose

formatting and stylistic environments to support error presentation, varying styles of ellipsis, and

graphics.

6

4 .2 . T h e I n v e r s e M a p

An implementation of views must support both an inward and an outward component. On the one

hand, it must allow the efficient display of program objects. O n the other hand, it must allow opera

tions on the visible display to be translated into corresponding operations on the objects in the

program database. For example, when a user points to an item that is visible on the screen, the

position of the item must be mapped back to a corresponding program entity. More importantly,

commands that operate on the structure of the database must be interpreted relative to the view on

which they were applied. For instance, the command N E X T - S I B L I N G will have different meanings in

different views since the order in which objects appear to the user may not be the same order that

they are represented in the abstract syntax tree. Some components may not, in fact, appear at all.

4 .3 . I n - p l a c e T e x t Edi t ing

Structure editing-based systems have taken widely different positions on the need to incorporate

text editing as a component of the structure editor. But even the most staunch "structuralist" recog

nizes the need for some form of text editing of comments, identifiers, and other strictly textual entities.

An unparser must therefore provide some basic mechanisms for the text editing of program entities.

Ideally, that editing can occur " in-place", i.e., directly at the display site rather than in some other

window. The problem is significant in the design for the unparser s ince the representation that the

unparser uses to store unparse information may determine the way in which it can handle text editing.

This is particularly true in the face of multiple and proportional width fonts, the need to maintain

multiple concurrent views, and the possibility that the text itself may not reside in any readily editable

form.

5. Capabilities of VIZ and UAL
VIZ is an unparse specification language and U A L is an implementation of an unparser that sup

ports it. The V IZ/UAL system runs on Apple Macintosh computers and supports a family of structure

editors called GENIE environments. 3 The basic features of the V I Z / U A L system are these:

• Multiple simultaneous global views of the program database.

• Different mechanisms to support a wide class of local views including:

o Ellipsis of various kinds. V IZ/UAL mechanisms allow simple textual replacement of
objects with, say, " . . ." , or a comment (in the style of the Cornell Program Syn
thesizer [Teitelbaum 81]). They also allow node-specific ellipsis (e.g., an IF node
may be elided differently than a WHILE node), and several global ellipsis policies.

G E N I E environments are descendents of the G N O M E family of introductory programming environments. [Garlan

84, Gnome 85]

7

o Association of window boundaries with arbitrary nodes. For example, the im
plementor can indicate that he wants to see nested procedure declarations in
separate windows, and the user can place arbitrary subtrees in separate windows.

o Space-conditional formatting. For example, a statement can be displayed on one
line if it fits and on multiple lines otherwise, or a list of elements can be formatted in
a table of columns that conforms to the size of the elements.

o Context-dependent formatting. The same type of object can be represented in dif
ferent ways in different contexts. For example, a comment can be displayed one
way if it is the documentation for a procedure, and another way if it is annotating a
statement.

o Attribute-dependent formatting. A node can use the value of attributes to determine
its appearance. For example, comments in a programming language can be imple
mented as attributes of the objects they annotate.

• A library of high-level formatting environments. The implementor can specify the ap
pearance of programming entities using formatting directives in the style of Scribe [Reid
80]. Formatting environments can be used, for example, to display keywords in a pro
gramming language in a special font, to highlight errors with a special kind of high
lighting, to achieve flexible line breaking, to present layouts that depend on the amount of
space available on the screen, or to format a list as a table.

• Extensibility. The implementor can add new formatting environments to the library.

• Customization. The implementor can customize the system by specifying global
parameters of style, and by modifying the meaning of system-defined formatting environ
ments.

• Abstraction. The implementor can associate unparse descriptions of program objects
with various levels of the object hierarchy (Section 2), so that unparse behavior can be
specified in one place but be used by many types of objects.

• In-place text editing of any subtree of the syntax tree. This can be used in combination
with an incremental parser to process arbitrary textual input from the user, or it can be
restricted to strictly "textual" items such as comments and identifier names.

• Fast node selection with a pointing device, and support for mapping of both structural
(e.g., NEXT -S IBLING) and textual commands (e.g., NEXT -L INE) to operations on cor
responding program objects.

• A largely device independent representation of unparse information. A single represen
tation of a program can be written to the screen, a printer, a file, or a text buffer, without
significant regeneration costs.

8

6. VIZ, An Unparse Specification Language
VIZ is the name of the unparse specification language for G E N I E programming environments. As

part of the definition of a programming environment, V IZ descriptions specify the mappings between

each object in the database and its concrete, or visual, representations. V IZ is an instance of a more

general framework for unparse specification languages, as developed for this author's thesis [Garlan

86]. A detailed rationale for using this framework is given there. Here we present the details of the V IZ

language itself. In later sections we describe how V IZ can be implemented efficiently.

6.1. A B i r d ' s E y e V i e w of V I Z

The general form of a V IZ specification is shown in Figure 6-1. Its key components are:

• A collection of views is associated with each operator in a grammar for a programming

language.

• Each view of an operator consists of a set of unparse descriptors and optional scene

information.

• An unparse descriptor is a condition-scheme pair. T h e condition part of the pair is a
boolean expression and determines under what conditions the associated scheme will be
used. T h e scheme part of the pair determines how the operator will be displayed.

• T h e scene information associated with a view of a node is used to designate a window

boundary with an operator.

• Associated with each grammar is a single unparse declaration section. Unparse declara
tions are used to customize global unparse parameters, to modify existing formatting
environments, and to extend the unparse formatting library with new formatting environ
ments.

A VIZ specification is interpreted by an unparser as follows: The unparser is given a start node and

a view. T h e condition part of each descriptor for the start node in the given view is evaluated in order.

The first condition to succeed causes the corresponding scheme part of the unparse descriptor to be

interpreted as the concrete representation of the node. This scheme specifies how the node is to be

formatted. It consists of literal strings, subcomponent names, and formatting directives. When a

subcomponent 4 appears in a scheme the unparser is invoked recursively on it using the same view.

Thus the view names determine the global aspects of a presentation of the database, and the descrip

tors within a view determine the local aspects. T h e descriptors associated with a view behave like a

small production system [Charniak 80] in which the conditions act as triggers for schemes that cause

4 A subcomponent is either a son of a node in the database -- s u c h as the boolean-condit ion part of an IF node - or an

attribute - such as a comment or other annotation.

9

U n p a r s e D e c l a r a t i o n s :

< C u s t o m i z a t i o n s and E x t e n s i o n s >

Node x x x = component l component2 . . .

V i e w <viewname>

Scene I n f o : <scene i n f o r m a t i o n >

D e s c r i p t o r s :
c o n d i t i o n j —• scheme
c o n d i t i o n 2 scheme

TRUE scheme n

V i e w <viewname>

F igu re 6 -1 : T h e V IZ Framework

a node to be formatted for display. 5

We now consider in more detail each of the components of V IZ .

6 .2 . V i e w s

Each view in a VIZ specification determines a mapping from database objects (nodes, attributes,

etc.) to concrete structures (strings, newlines, icons, etc.). T h e mapping determines the global " look"

of a program database; the unparsing process is started in a particular view and that view remains in

force throughout the display of the visible subtree. 6 This allows the implementor to group the various

concrete representations of operators in a grammar along the lines of the tools with which they will be

associated. A documentation tool, for example, can define a "documentation" view that specifies the

representations of nodes appropriate for interaction with pieces of documentation text. The represen

tations in this view might be quite different from those used by a tool that allowed the user to manipu

late the code of a program.

^ T h e resolution of conflict between conditions that are simultaneously true is resolved by selecting the first condition to
appear in the view description.

6 T h e r e is no inherent reason that the ability to change views during the unparsing should be disallowed, but in practice it
doesn't seem to be needed.

10

An operator need not have a separate view definition for each view in the system. One view is

always designated the default view. If no specification for a particular view is given the default view

for that operator will be used. Moreover, multiple view names can be associated with the same set of

unparse descriptors.

6 .3 . S c e n e s

Frequently it is desirable to associate window boundaries with operators in grammar. In a Pascal

environment, for instance, it may be desirable to cause nested procedure declarations to be viewed in

separate windows [Garlan 84]. This is illustrated below in figure 6-2. The collection of nodes that can

be viewed contiguously on an output device is termed a scene. A view is therefore decomposable

into a collection of overlapping scenes, each scene presenting some portion of the entire view. T h e

starting node for a scene is called a scene root. Certain nodes in the scene may be designated scene

doors. These act as "doorways" into other scenes in the sense that they may be "opened" or

"entered" to produce a new scene. (Such would be the case for the "<body>" node in figure 6-2.)

P rogram

P r o c e d u r e a (. . . .)
<body>

F u n c t i o n b() : . . .
<body>

B e g i n . . . E n d .

F i g u r e 6 - 2 : Procedure Scenes in Pascal
The bodies of nested procedure declarations are not displayed, but are represented by the string "<body>" . When the user
asks to expand a body (perhaps implicitly, by trying to visit one) , the system provides a new window in which the nested
procedure declaration is fully displayed.

In a V IZ specification, scenes are designated in the Scene Info portion of a node's view description.

The specification of scene info is optional; in fact, most nodes will have no scene declarations at all.

There are two kinds of scene declaration. The first designates an operator as a scene root for a given

view. The second designates an operator as a scene door and specifies a (possibly new) view that

should be used when the door is "entered" . A typical scene declaration is shown below in figure 6-3.

Here the operator x x x is both a scene root in view aaa and a scene door in view b b b .

T h e scene root/door mechanism works as follows: When the user "enters" a scene d o o r 7 , the

7 T h e operation that the user invokes to "enter" a scene door or to "ex i t " a scene is considered a matter of user interface

policy, and is not specified at this level.

11

Node x x x : . . .

V i e w aaa
Scene I n f o : Scene Root
D e s c r i p t o r s :

V i e w bbb
Scene I n f o : Scene Door — V i e w aaa
D e s c r i p t o r s : . . .

F igu re 6 -3 : A Scene Declaration

unparser searches up the abstract syntax tree until it finds a node that has been designated a scene

root for the new view associated with the scene door. T h e unparser opens a new window, unparsing

the new scene in the new view. If the node is both a scene door and a scene root the "entered" node

becomes the root of the new scene. In the above example, when the user causes the node x x x to be

expanded in view b b b a new window will appear with the node x x x as the scene root and the scene

will be unparsed in view aaa. Each scene stores the "previous" scene root and view so that on "exit"

from a scene the previous scene can be restored.

The user may also explicitly designate an arbitrary node as a scene root. This will cause the subtree

rooted at that node to be viewed in a separate window as if the implementor had designated it as a

scene root in the grammar.

6.4. C o n d i t i o n s

The choice of unparse scheme within a view is controlled by the value of boolean expressions

called conditions. A condition in a V IZ specification is composed of boolean connectives, 1 = \ and

conditional terms. A term is either a qualified node or a perspective. A qualified node is the node itself

("self"), its father, or a named son, and the qualifier can select either its value (such as the name of an

identifier node) or its operator type (such as " IF ") . A perspective is the name of a local unparsing

context and will be described later (Section 6.6). The syntax for a conditional term is given in figure

6-4 and representative examples of conditions are shown in figure 6-5.

The choice of unparse scheme for a node thus depends on at most three things: the view in which it

is being displayed, the perspectives that apply at that node, and local properties of the node. By

"local properties" we mean the value, type, and attribute values of the node, its father or its sons (but

not its brothers). A node's physical properties - such as the amount of screen space it occupies

12

c o n d i t i o n - t e r m
node
q u a l i f i e r
named-son
a t t r i b u t e - n a m e
p e r s p e c t i v e

n o d e . q u a l i f i e r | p e r s p e c t i v e
" f a t h e r " | named-son | " s e l f " | e
" v a l u e " | " t y p e " | a t t r i b u t e - n a m e
i d e n t i f i e r
i d e n t i f i e r
i d e n t i f i e r

F i g u r e 6 - 4 : BNF for Condition Terms

- are not used to determine the scheme with which a node will be unparsed. 8 As we will see, the fact

that conditions don't name physical factors is important in making it possible for the unparser to

perform efficient incremental updates. (Section 9).

f a t h e r . t y p e = "PROCDECL" AND s e l f . v a l u e = " x x x "

s e l f . e r r <> N I L

t h e n - p a r t . t y p e = "BLOCK" OR b o o l - p a r t . t y p e = "META"

TRUE

F i g u r e 6 - 5 : Unparse Condit ions
T h e first condit ion depends on the father's type and node's value; this could be used to have special unparsing for all

procedures named "xxx" . T h e second condition is true if the "er r" attribute of a node is not NIL. T h e third condit ion depends

on the operator of the "bool -part" and "then-part" sons of a node. T h e last condit ion is, of course, always true.

Since conditions are evaluated in the order in which they are specified, an implementor usually

places the most specific conditions first. In fact, by convention the final condition in unparse

schemes is the most general condition of all, namely " t rue" .

6 .5 . S c h e m e s

A scheme determines how a node will be displayed. In particular, it indicates the placement of

keywords, punctuation, syntactic subcomponents, indentation, newlines, and so on . It also deter

mines how the pieces of concrete syntax will be formatted on an output device. Figure 6-6 shows

several unparse schemes for an IF node. The meaning of the first scheme, for example, is that the

literal "If " is to be followed by the (recursive) unparsing of its boolean condition. A newline, indicated

by '||\ separates an indented " then" part.

More formally, a scheme consists of a list of unparse phrases. A phrase is a literal string, a syntactic

8 A s described in the next section, the formatting of a node within a given scheme can, however, depend on physical

properties.

13

" I f < b o o 1 - p a r t > || @+(Then < t h e n - p a r t >) "

" @ k e y (I f) < b o o l - p a r t > || @ + (@ k e y (T h e n) < t h e n - p a r t >) "

" 8 H V (I f < b o o l - p a r t > || @+(Then < t h e n - p a r t >)) "

" @ m y h i g h l i g h t (I f < b o o l - p a r t > || @+(Then < t h e n - p a r t >)) "

F i g u r e 6 - 6 : Unparse Schemes for IF
In these unparse schemes for the IF operator, names enclosed in angle brackets are subcomponents. '||' indicates a newline.
"key" , " H V " , "myhighl ight", and " + " are formatting environments.

subcomponent, a nested phrase, or a newline.

• Literal strings consist of keywords and other syntactic "sugar" . The "If " and "Then "
strings in the schemes above are typical examples.

• A syntactic subcomponent is either a son name or an attribute name. 9 The "bool -part"
and "then-part" are syntactic subcomponents of the IF node. In general, the subcom
ponents used in a scheme need not appear in the same order as they are described in the
grammar for an operator. Some subcomponents may not appear at all, and others may
occur more than o n c e . 1 0

• A nested phrase is of the form

O X X X (u n p a r s e - p h r a s e) .

The " X X X " is the name of either a perspective or else a formatting environment.
Perspectives are described in the next section. A formatting environment determines the
way strings and newlines will be interpreted on the output device. Formatting environ
ments modify fonts, margin widths, indentation levels, etc., for the nested phrase. In the
examples above " + ", "key", "myhighlight", and " H V " are formatting environments. T h e
first increments the indentation level. The second changes the style in which keywords
are displayed. The third is an implementor-defined environment for highlighting. The
fourth formatting environment, " H V " , is the "Horizontal-Vertical" environment. It will
cause the IF statement to be displayed on one line if there is room in the target window
and on multiple lines otherwise. Other system-defined environments include "flushleft",
"outdent", "italic", "bo ld" , "underl ine", "verbatim", "table", etc. Appendix II contains a
list of the formatting environments that are available in V IZ .

• A newline is either optional or required, and is indicated by "||" or by "!!", respectively.
Required newlines will always be displayed. Optional newlines, however, are used to
guide the formatting environments. For example, the " H V " environment in the examples
above will ignore optional newlines if by doing so the IF statement could be formatted on
a single line.

For list operators there is also a way to indicate "unparse all the sons in my list", and to specify a scheme that is used to
separate the elements of the list.

1 0 F o r example, in Pascal it is sometimes useful for a procedure name to appear with the closing " E n d " in the form:
"Procedure xxx(. . .) Begin End; { x x x } " .

14

O n e way of looking at schemes is that they provide an "interactive Scr ibe" for programming lan

guages. Indeed, the choice of formatting environments, the definition and modification of these en

vironments (Section 6.7), and even the phrase "formatting environment" has been borrowed directly

from Scribe [Reid 80]. But V IZ is not simply an interactive document formatter. T h e use of multiple

views, perspectives, and unparse conditions give it a conditional flavor that is not present in the

current systems for displaying formatted documents (such as [Gutknecht 84] or [Lampson 78]).

Using V IZ , programs are not viewed simply as static arrangements of text, but as dynamically chang

ing, context-dependent, and history-sensitive visualizations of a program database.

6 . 6 . P e r s p e c t i v e s

While a view determines global context for display, perspectives are used to determine local c o n

text. Like views, perspectives are logical names defined by the implementor. But unlike views, they

can be used in unparse conditions and they can be set or unset in unparse schemes. An example

should help to clarify their use.

A typical perspective is "ell ipsis". Nodes that fall within that perspective can be displayed in a

variety of truncated forms. For example, an IF node might appear in the form "If a < b Then ..".

Alternatively, it could be replaced by a user-supplied comment . 1 1 T o use the ellipsis perspective the

implementor would declare "ellipsis" to be a perspective in the unparse declarations (see Section

6.7). He could then set the perspective by using it in a scheme, such as:

S e l l i p s i s (. . . .)

A perspective applies throughout the unparsed subtree unless it is explicitly unset by a subcom

ponent. An implementor can use that perspective to choose an appropriate scheme for an operator

by including the perspective in its unparse conditions. For example, an implementor would select

schemes that should apply within the "ell ipsis" perspective but not within the "error" perspective

using the condit ion:

e l l i p s i s AND NOT e r r o r —• . . .

Occasional ly it is useful to set a perspective whenever a corresponding attribute value has a non

empty value. For example, an "error" perspective might be desired whenever a node has a value for

its "error" attribute. This could be accomplished by having each operator check for the attribute in

its condition parts. This would look like:

s e l f . e r r o r <> N I L —• 8 e r r o r (. . . .)

But this would have to be done for every operator in the grammar! V I Z allows the implementor to

Other mechanisms to support ellipsis are d iscussed later.

15

achieve the same effect by designating a perspective as "automatic". T h e system guarantees that

the "automatic" perspective will be set whenever an attribute of the same name is set.

A perspective can be explicitly turned off in a scheme. For example,

marked - * @ ! e l l i p s i s (. . . .) .

uses the existence of a "marked" perspective to turn off the "ellipsis" perspective.

Perspectives resemble views in that both are used as logical names for partitioning schemes.

Perspectives are unlike views in that they apply locally within a scene; while all nodes in the scene are

in the same view, perspectives can be set and unset in local subtrees. Perspectives allow nodes to

influence the behavior of the nodes in the subtree below them. But they do so in a non-binding kind of

way. When a node sets a perspective it makes a certain condit ion known to its subcomponents; these

subcomponents can either choose to make use of the perspective, or they can ignore it.

6 .7 . U n p a r s e D e c l a r a t i o n s

T h e implementor customizes and extends the unparse environment using unparse declarations.

There are four kinds of declaration: style, modify, define, and perspective declarations. Style declara

tions set the system's global default display parameters. Modify declarations are used to customize

system-defined formatting environments. Define declarations declare new formatting environments.

Perspective declarations make perspective names known to the system.

We have characterized formatting environments in terms of their behavior in controlling the display

of text (Section 6.5). In fact, a formatting environment is simply a collection of attributes that deter

mine the way text will be interpreted on an output device. T h u s , a new formatting environment can be

defined by associating a set of attribute-value pairs with a name. Similarly, an existing environment

can be modified simply by changing the values of previously defined attributes.

U n p a r s e D e c l a r a t i o n s :

S t y l e f o n t = H e l v e t i c a 9 , i n d e n t - 5 s p a c e s , f a c e = b o l d ,
s p a c i n g = 2 l i n e s , w r a p s on

D e f i n e — m y t a b l e : f a c e = (u n d e r l i n e d) , c o l u m n i z e = t r u e ,
s p a c i n g = 1 l i n e

M o d i f y — k e y : f a c e = (u n d e r l i n e d , i t a l i c)
P e r s p e c t i v e s e l l i p s i s (a u t o) , e r r o r (a u t o) , marked

F i g u r e 6 - 7 : A Typical Unparse Declaration Sect ion

There are two kinds of display attributes. Unconditional attributes determine the current state of the

16

output device. V IZ recognizes the following unconditional attributes: font (e.g., Helvetica9), face (e.g.,

bold, italic, underlined), left-margin, r ight-margin, indent-increment, and spacing (between lines).

Conditional attributes determine the way strings are formatted with respect to each other and with

respect to the output device. V IZ supports the following conditional attributes: horiz-vert (format on

one line if possible, otherwise on multiple lines), wrap (break long lines), columnize (format a list as a

table), and center (position text in the center of a line), . Appendix II provides a complete list of the

attributes that determine a formatting environment in V IZ . T h e distinction between conditional and

unconditional attributes is, in fact, irrelevant to the implementor who only needs to know what at

tributes exist and what values they can take. T h e distinction is, however, of great importance to the

implementation of formatting environments (discussed in Sect ion 8), and so we briefly mention it here.

T h e use of unparse declarations is illustrated above. T h e style declaration will cause a program to

be displayed using the Helvetica9 font family, with an indentation increment of 5 spaces, in bold face,

double spaced, and wrapping long lines. T h e define declaration defines the "mytable" formatting

environment. It will columnize a list, underline the elements, and use single spacing between lines.

T h e modify declaration changes the system-defined "key" formatting environment so that it will use

italics and underlining in displaying program keywords. Finally, the perspective declarations define

"ell ipsis", "error" , and "marked" perspectives. T h e first two are marked automatic, meaning that the

perspective will be set by the system automatically whenever a node has a non-nil value for an

attribute of the same name.(See Section 6.6).

7. A Model of Unparsing
U A L is an implementation of an unparser that efficiently executes the mappings descr ibed in a V I Z

specification. Before discussing this implementation we first present the model on which U A L is

based.

Figure 7-1 represents a diagramatic view of the principal components of U A L . The model consists

of three kinds of structures, and two active agents. T h e structures are:

1. the database, represented as an abstract syntax tree,

2. a collection of unparse trees, or u-frees, that represent current scenes ,

3. a collection of output devices, such as screen windows, files, printers.

In order to produce a display the database is mapped into the current active scenes and the current

scenes are mapped onto output devices. T h e active agents that cause these two mappings to o c c u r

are:

17

Figu re 7 -1 : A Model of Unparsing
Views determine a mapping between the database (represented as an abstract syntax tree) and a collection of unparse trees
[u-trees]. Each view may associate database objects with several u-trees and each u-tree can be mapped to zero, one, or many
output devices. The mapping between abstract syntax tree and u-trees is carried out by an unparse machine [U-machine], and
the mapping between u-trees and output devices is carried out by a display machine [D-machine].

1. the U-machine, or unparse machine, and

2. the D-machine, or display machine.

The U-machine translates objects in the program database into U-tokens that are used to build

u-trees. The D-machine translates u-trees into D-tokens that are used to drive output devices.

The data structures representing a u-tree are described in the next section. For the time being,

however, a u-tree can be thought of as a concrete syntax tree (as opposed to an abstract syntax tree).

In other words, it contains in tree form all of the elements of concrete syntax needed to display the

abstract syntax tree, including literal strings, newlines, and formatting information.

Thus the U A L model the process of unparsing consists of 6 stages.

1. The database is changed. A tool modifies the program database directly or a user
modifies it through a displayed view of it.

2. "Affected" nodes in the database are marked Because of the dependencies between
nodes introduced by the condition clauses of unparse descriptors, a change to one node
can affect the scheme chosen by others. For example, consider a node that uses the
descriptor "father.xxx = yyy ...". If the father's " xxx " attribute changes, the son's
unparse specification must be reevaluated. That is to say, a change to the father cause a
change to the son .

3. Changes are propagated to the u-trees bv the U-machine. Nodes that have been dirtied in
the database (either directly or through the dependencies just mentioned) are
reevaluated. The reevaluation consists of recalculating the scheme for each dirtied node
and reinstantiating the new scheme as concrete syntax in the appropriate u-trees. This is
done by the U-machine.

18

4. U-trees are resolved. Each modified u-tree is now traversed to resolve the space-
dependent formatting of the conditional attributes of formatting environments (wrap,
horiz-vert, center, columnize). This consists of annotating the u-tree with newlines and
padding strings to satisfy the constraints imposed by limitations in physical space. During
this stage certain kinds of size information are calculated. Size information is used (a) by
the formatters in determining the "fit" of the u-tree, (b) by the D-machine to determine
what part of the u-tree is will be used to generate D-tokens, (c) to map display coor
dinates to nodes in the u-tree, and (d) to highlight the user's current focus of attention.

5. Changes to the u-trees are propagated to virtual output devices. Output devices are
virtual in the sense that several output devices may be mapped to the same physical
device (say, appearing as several windows). Propagation to output devices is handled by
the D-machine which calculates the correct portion of each u-tree to map to the output
device and then generates D-tokens for it. D-tokens are strings, newlines, or tokens used
to control the behavior of the output device (e.g., setting margin widths).

6. Actual output devices are updated. Display tokens must be interpreted for each active
physical output device. This involves updating bitmaps, opening files, etc.

The important implementation issue in this paradigm is efficiency. In particular, changes must be

propagated incrementally because it is too costly to regenerate the entire visible representation of the

database for every view each time the database changes. Also, a user's operations on the visible

representation of the database must be mapped to operations on the database itself. We will now

describe how this is done. First we look more closely at the structure of the u-tree as it is the pivotal

structure in the model. Next we look at each of the six stages and show how the propagations and

resolutions can be done efficiently.

8. The U-tree
A u-tree is a concrete instantiation of the schemes associated with a s c e n e 1 2 in some view of the

database. It is a tree composed of unparse nodes, or u-nodes, that can be interpreted on demand to

produce displayable tokens.

T o illustrate the structure of a u-tree consider the following scheme for an IF node

. . . — w @ k e y (I f) < b o o l - p a r t > || @ k e y (T h e n) < t h e n - p a r t > "

The corresponding abstract syntax tree and u-tree are shown below in figure 8-1.

There are six types of u-nodes: scene, ref, environment, formatter, string, and newline. All u-nodes

have father, left-brother, and right-brother fields for linking into the u-tree. Additionally each u-node

1 2 R e c a l l that a scene Is the portion of the database that can be viewed contiguously in one window, starting at a given

(the scene root) in a given view.

19

[b o o l - p a r t] [t h e n - p a r t] [" I f "] [b o o l - p a r t] [||] ["Then "] [t h e n - p a r t]

Figu re 8 -1 : U-tree for an IF node

has a status field used for bookkeeping.

Each u-tree has scene u-node as its topmost node. Scene u-nodes link together all active scenes of

the database. They also contain status ^information such as the user's focus of attention (described

later), whether the u-tree has been modified since the last redisplay, and so on. Ref u-nodes point

back to a corresponding object in the database. In the figure below, the top u-node is a ref u-node; it

points back to the corresponding IF node in the abstract syntax tree. The u-nodes for the b o o l - p a r t

and t h e n - p a r t are similarly ref u-nodes. String u-nodes point to a literal string. In the example, string

literals "If " and "Then " are associated with string nodes.

U-nodes that represent newlines are of three types: optional, required, and annotated. The first two

types correspond to the use of optional and required newlines in unparse schemes (see Section 6.5).

Optional newlines can be turned either " o n " or "off" during the resolution of conditional formatting

environments. Required newlines are always displayed. Annotated newlines are added to the u-tree

by routines associated with conditional formatting. Setting the "wrap" attribute, for example, will

cause newlines to be placed in lines that would otherwise extend past the right margin of the output

device.

Environment and formatter u-nodes encode information associated with formatting environments.

Recall that a formatting environment consists of a collection of attribute-value pairs and that at

tributes are either conditional or unconditional (Section 6.7). At the level of the u-tree the treatment of

these two kinds of attributes is quite different. An unconditional attribute primarily affects the state of

the output device itself. A conditional attribute, however, affects the relationship between strings and

newlines in the u-tree. For example, setting the unconditional font face attribute to "italic" requires

that the current font for the output device be set during the process of generating D-tokens. Setting

the conditional attribute "wrap" to " o n " , however, requires that a function be called to modify the

20

placement of newlines in the u-tree before any D-tokens are generated. Consequently, in the u-tree

the setting of a conditional attribute is represented by a formatter u-node and the setting of a collec

tion of unconditional attributes is represented by an environment u-node. The former is associated

with a function that is called to resolve the space-conditional formatting of the u-tree. The latter

contains a pointer to a display vector that contains the current values of the unconditional display

attributes.

T o see how the u-tree behaves during unparsing it is useful to consider each u-node in a u-tree as

progressing through three stages: creation, resolution, and interpretation. These correspond to

stages 3, 4, and 5 of the 6-stage unparse process outlined above. In the creation stage the U-

machine generates tokens that cause a u-node to be allocated, linked into a u-tree and given initial

values that will depend on the kind of u-node. In the resolution stage functions associated with

conditional formatters annotate the u-tree with newlines, and sizes of nodes are generated. In the

interpretation stage u-nodes are interpreted to produce D-tokens that are used to display strings or

control the behavior of display devices.

During these stages the behavior of each type of u-node is as follows:

• root: A root serves primarily to link together all active scenes and has no function during
resolution and interpretation stages.

• rgf: A ref node's primary purpose is to point back to an object in the database, and to
store size information. Each object in the database that appears in a scene will have a
corresponding ref node for each appearance in a scene. In this way an operation per
formed on a u-node can be mapped back to an operation on the corresponding node in
the database. The size associated with the ref u-node is used to map display coordinates
to nodes in the database and is also used to know the region of display that must be
highlighted when the user's cursor moves to that node. We call this size the "actual s ize"
of the node and calculate it as part of the resolution phase. We also store a "desired
s ize" at the node that represents the size the node would occupy in the absence of
optional line breaks. Desired size can be calculated when the u-tree is created since it
depends only on the existence of required newlines and the display size of strings in a
subtree; it is used by the formatters during resolution (see Section 10.1). During the
interpretation phase ref nodes do not require any special activity on the part of the
D-machine since they do not themselves generate any concrete syntax, and the size
information associated with them has already been calculated in the resolution phase.
However, the subtree rooted at a ref node will, in general, contain nodes that generate
D-tokens, and so this subtree is traversed by the D-machine.

• environment: O n creation we associate a display vector with each environment u-node.
During interpretation the D-machine uses that display vector to reset a target output
device with new parameters. T h e node's display vector is derived from the display vector
stored at the closest enclosing environment u-node. For example, if an unparse scheme
uses a formatting environment that sets line spacing to 2 lines, the "spacing" value of the

21

new display vector will have the "spacing" field set to 2. Below the root u-node for a
scene is an environment u-node that establishes the default display characteristics. Its
display vector is determined by system-defined default values that can be modified by the
implementor in his "style" declarations (Section 6.7).

• formatter: Formatter u-nodes are responsible for implementing conditional attributes.
There is one formatter u-node for each setting of a conditional attribute caused by the
invocation of a formatting environment. During the resolution phase routines associated
with formatter u-nodes massage the u-tree below them by annotating them with newlines
and padding strings or by disabling existing newlines. The algorithms that the formatters
use are sketched later (Section 10). Formatter u-nodes have no function during the
interpretation phase.

• string: String u-nodes contain a string "display size" and a pointer to the text that they
represent. The display size of the string will depend on the enclosing environment since
this environment determines the font size for strings below it. This size is calculated
during the creation phase. In the resolution phase string u-nodes have no function.
During the interpretation phase a string emits a "string" D-token.

• newline: Optional and required newlines are inserted in the u-tree as schemes are instan
tiated. Subsequently, in the resolution stage some optional newlines will be turned "off" ,
and annotated newlines may be added to the u-tree. During the interpretation phase
newlines produce a "newline" D-token.

In the current implementation there is at least one u-tree for each "active" scene. Scenes are

considered to be active until they are explicitly deactivated. This usually occurs if a window is

removed, a tool is finished unparsing to file, or a printer finishes printing a scene. The same scene

may be represented by more than one u-tree if it appears in different windows. In general the same

u-tree cannot be used for two virtual output devices (such as two windows on the screen) since the

resolution of conditional formatting environments may depend on the width of the device. However,

in some situations, such as printing the contents of a window on the printer, it may be desirable to use

the same u-tree for multiple devices. UAL allows this.

Viewed as an abstract data type, the important properties of a u-tree are these:

• Line-oriented textual operations. These include: "move back k lines from a given u-
node" ; "generate n lines of text"; "calculate the number of lines between two nodes" .
These operations are possible because newlines are explicitly represented in a u-tree.
The u-tree does not, however, support textual commands at the character level - such as
"insert character". (SeeSect ion 10.2.)

• Structure-oriented tree operations. A user's commands N E X T - S I B L I N G , or G O T O -
F A T H E R , must be interpreted relative to the representation given in the u-tree since
unparse schemes can reorder, repeat, and eliminate nodes that appear in the abstract
syntax tree. This is done by ignoring all but the ref u-nodes in the u-tree.

22

• Screen-to-node mapping. When the user points to a position on the screen it is necessary
to determine the appropriate selected object. The u-tree makes this possible because
node display sizes are kept explicitly as fields of the ref nodes.

• Incremental updating. As we will see, random changes to the database can be interpreted
as replacement and reevaluation of u-node subtrees; the other information in the u-tree
can be used without regeneration. In other words, it serves as a cache of display infor
mation.

9. Incremental Updating in UAL
We presented the model on which the UAL implementation is based and we decomposed the

process of unparsing into six stages. T h e n we described the key data structure in the model, the

u-tree. Now we return to the six stages and show how the u-tree is used to implement incremental

updating of the display.

9 .1. S t a g e 1: C h a n g e s to t h e D a t a b a s e

As we have pointed out, a user's operations on a database must be interpreted relative to the u-tree

representation. A user's operation can be decomposed into the steps:

• The user applies a command to a current focus of attention.

• The user's focus of attention is translated into an object or objects in the database.

• The current command is translated into a sequence of database operations.

T h e user's current focus of attention is indicated externally by highlighting. Internally a separate

focus is maintained for each u - t ree. 1 3 A focus is either a single ref node or a pair of ref nodes. In the

first case, the ref node points back to a node in the abstract syntax tree, or an attribute of a node. In

the second case the two ref nodes refer to elements of a list in the abstract syntax tree, and represent

a selection of the nodes in a list between the two nodes (inclusive).

The choice of legal operations available to the user will, in general, depend on the current focus.

For example, at a meta node for representing a statement, the user has the option of constructing a

W H I L E , IF, etc., but not a variable declaration. The currently legal operations are primarily determined

by consulting grammar tables for the language being generated . 1 4 T h e way in which the commands

are presented to the user and the way in which the user indicates the choice of command is not

1 3 A focus is often called the cursor in other structure editors. Some u-trees, such as a u-tree for printer, may not have a

focus.

1 4 l t would be possible to present the legal operations as a view of the grammar entry for the node that represents the current

focus (see, e.g., [Feiler 83]), but we have not done this in the current implementation.

23

discussed here. (See [Gnome 85] for more details.)

The translation of operations on the u-tree to operations on the database is straightforward. Typi

cally the operation is either one that can be executed by the u-tree directly (such as scroll, redisplay,

text edit), or else it can simply be passed on to the abstract syntax tree.

Operations that change the database, such as deleting or inserting a node, cause immediate

propagations to all u-trees in which the changed node(s) have some representation. 1 5 To make this

updating efficient each node in the syntax tree has a "scene chain" . This is a list of pointers threaded

through corresponding ref u-nodes in the u-trees. The U-machine walks this list updating the occur

rences of the corresponding u-nodes in a way to be explained presently.

9 .2 . S t a g e 2: P r o p a g a t i o n w i th in the D a t a b a s e

Direct changes to a node or attribute in the syntax tree may have consequent effects on other nodes

whose unparse schemes depend on the changed node. In this stage we handle these side effects. In

general, such propagations can be handled by an attribute propagation mechanism such as the one

proposed by Kaiser [Kaiser 85]. In VIZ , however, the dependencies between nodes are sufficiently

constrained that a more elementary mechanism can be used. Recall that the choice of unparse

scheme for a node can only depend on the value or type of the node itself, its father, or its sons. It is

sufficient, therefore, to reevaluate each of the immediate neighbors of a changed node. Thus, when

the user changes a node the U-machine is called to update the u-nodes corresponding to the father 1 6

and each son of the changed node.

9 .3 . S t a g e 3: P r o p a g a t i o n to the u - t ree

During this stage changes to the database must cause corresponding changes to the u-trees. For

the purposes of unparsing, any operation on a program database is equivalent to a sequence of three

elementary operations:

1. Delete: a node is deleted from the database.

2. Insert: a meta node is inserted into the database.

3. Replace: one subtree is replaced by another subtree.

The first and second operations can only occur in a list or attribute list, since a son of a fixed-arity

node can not be removed from or added to a node in the database. The third operation covers a wide

T h e changes will not, however, be visible to the user until the display devices are updated.

'The "father" of an attribute is taken to be its "owner " .

24

class of events including: replacing a meta node by an operator, transforming some portion of a tree

into another tree, and replacing a subtree by a meta node. T h e operations on the u-tree for each of

these actions consists of a corresponding deletion, insertion, or replacement of u-nodes.

As we have already discussed, unparse scheme-related dependencies between nodes in the

abstract syntax tree may require the r e v a l u a t i o n of unparse scheme for neighboring nodes. One way

to accomplish this would be to treat each of the secondary effects as an instance of the "replace"

operation, replacing a node by itself. But this would be extremely expensive. Changing an attribute of

the scene root, for example, would require a complete recalculation of the entire view. Instead, we

introduce a fourth operation on a u-node, "Reevaluate". The effect of the operation is to reevaluate

the u-node subtree as incrementally and minimally as possible. We now explain how this is done.

Recall that the choice of scheme for a node depends on exactly three things:

1. The current view.

2. The structural context of the abstract syntax (namely, a node's value or type of itself, its
attributes, its father, and its sons) .

3. Inherited perspectives.

To facilitate incremental reevaluation of a node's scheme, a ref node stores the view and scheme that

were used to produce it and set of perspectives that were in force when its scheme was calculated.

This information is used to determine if the changes to the database result in a new unparse scheme

for a node. We reevaluate the node's unparse conditions using the previous view and perspective set.

If the resulting unparse scheme is the same as it was before the changes to the database, we can

ignore the changes. Otherwise, we replace the corresponding u-subtree with the new version of the

scheme.

9.4. S t a g e 4: R e s o l u t i o n of the u - t r e e

At the end of the previous stage, schemes have been transformed into corresponding u-nodes in

the u-trees; from this point on we can ignore the abstract syntax tree and the unparse schemes

altogether. Within the u-tree, however, there is still work to be done to resolve conditional formatting

and recalculate node sizes.

As nodes are modified in the previous stage, we mark them as "new" . When a node is marked w e

also mark its ancestors as "dirty". W e now use these marks to "resolve" the u-tree in a walk of the

"dirty" portion. Starting at the root we walk all "dirty" paths applying formatters and recalculating

"actual" sizes. The action of a formatter depends on the kind of formatter involved and is sketched

25

later in Section 10.1. Incrementality at this stage is gained by only having to reprocess the "dirty"

paths of the u-tree.

9 .5. S t a g e 5: P r o p a g a t i o n to the D i s p l a y

During this phase u-nodes are interpreted by the D-machine to produce D-tokens suitable for dis

play on an output device. It is important to note that we need not update all output devices con

tinuously. While the U-machine keeps all "active" scenes current, it is likely that at any given time

only a subset of the output devices will need to be kept completely up-to-date. Thus D-tokens are

typically generated for only some of the scenes.

We have already described the action of each type of u-node during "interpretation". What remains

to be discussed is how the D-machine calculates which u-nodes to interpret for a given device.

Typically this is done in terms of lines and the current focus. Recall that a u-tree stores a " focus"

which represents the users focus of attention. In addition, with each output device we store the first

and last u-nodes currently displayed. The output device can thus make the following kinds of re

quests of the D-machine:

• generate display tokens for k lines above the top u-node currently displayed.

• generate display tokens for k lines following the bottom u-node currently displayed.

• generate display tokens for k lines starting n lines above the current focus.

• generate display tokens for k lines starting at the scene root.

9.6. S t a g e 6: U p d a t i n g O u t p u t D e v i c e s

There are three kinds of D-tokens: strings, newlines, and parameter-settings. It is up to the U A L

display module to interpret these appropriately for the intended output device. To accomplish this the

display module consists of a collection of high level device drivers. D-tokens are multiplexed to the

correct driver(s) as they are received. Each device maintains a vector of parameters which completely

characterizes the current state of the output device. These parameters correspond to the uncon

ditional attributes of formatting environments discussed earlier (namely, font, margins, indentation,

etc.). They are set and reset using "parameter-setting" D-tokens. "Str ing" and "newline" tokens are

then interpreted relative to the current parameter settings of the output device.

26

10. Further Details
In this section we tie up a collection of loose ends. First, we describe how the system formatters

work. Second, we describe how UAL supports in-place editing. Thi rd , we briefly indicate how various

policies of ellipsis can be implemented with the mechanisms in UAL . Fourth, we consider the issue of

device independence. Finally, we discuss the algorithm used to map from display coordinates to

objects in the database.

10.1. F o r m a t t e r s

Formatters are responsible for resolving the space-conditional aspects of unparsing. As we

described (Section.6.7), V IZ/UAL currently supports four conditional attributes: horiz-vert, wrap,

columnize, and center. Each of these has an associated formatting routine. The "horiz -vert" formatter

adds up the desired sizes of each node in its subtree. If that sum is greater than the space left on the

line it does nothing. Otherwise, it traverses the subtree marking newlines as inactive. T h e "wrap"

formatter traverses the subtree annotating it with newlines whenever sizes exceed the available line

width. The "columnize" formatter is restricted to lists of terminal nodes. It scans the list to find the

maximum element size. Then it annotates the list with blank padding strings so that items line up in

multiple columns the size of the maximum width. The "center" formatter acts like the "wrap" format

ter except that it annotates the u-tree with blank padding strings so that text is positioned in the

center of the line.

W e are planning to add a number of other formatters to the system. A smarter "columnize" will be

able to format using variable width columns. We are also looking into using a "matrix" formatter

which can format a list of lists of elements. Finally there are a number of graphic formatters that will

be added including a "box" formatter for drawing boxes around subtrees, and various "line'' format

ters for drawing lines.

10 .2 . T e x t Ed i t ing

From the user's point of view, text editing occurs as follows: T h e user selects a subtree to edit. He

invokes the "edit" command. The editable region is redrawn using a distinctive font, indicating the

boundaries of the editable region. The user then edits that region. T h e system complains if an attempt

is made to edit anything outside this region, although the user is allowed to browse through the entire

scene. When he is finished editing the user gives a "done-edit ing" command. The editable region is

then redrawn using the standard method of displaying schemes.

T o implement this, UAL uses an auxiliary buffer structure. As we have pointed out, the u-tree

supports line-oriented operations, but not the usual character-oriented operations required by text

27

editors (such as to insert or to delete character). Moreover, the presence of multiple and proportional

width fonts makes it difficult to add this capability directly to the u-tree mechanisms. Thus we do the

following: when the user invokes the text editor on a subtree U A L unparses the entire scene into a

text buffer. The text buffer supports multiple fonts. However, the portion of the u-tree that is to be

edited is unparsed using a special, non-proportional width font. This delimits the editable region

visually from the surrounding text and also makes incremental screen updating eas ier . 1 7 Two markers

are kept in the text buffer to indicate the editable boundaries. Changes to the buffer are updated

directly by the buffer mechanism; they do not involve U A L or the u-tree at all. Long lines can be

wrapped at this stage, but otherwise no automatic formatting is done. When editing is finished, the

editable region is given to an incremental parser 1 8 which transforms the text into a new abstract

syntax subtree. This subtree replaces the previous one in the syntax tree, and UAL is then called to

reunparse it onto the screen.

10.3 . E l l ips is

UAL supports three general types of ellipsis: "windowing", node-specific ellipsis, and global ellipsis.

We have already described how windows can be attached to nodes to produce scenes (Section 6.3).

This is a form of ellipsis since it hides details of nested subtrees by placing them in another window.

The second form of ellipsis depends on the use of an "ellipsis" perspective. As discussed earlier, the

implementor can indicate in a node-specific way how each node is to behave in the presence of

ellipsis using the condition "ellipsis" (Section 6.6). The third form of ellipsis can be achieved in

conjunction with the setting of attributes. Since the scheme in which a node is unparsed can depend

on the value of an attribute, a variety of global policies of ellipsis based on properties of the abstract

syntax tree can be implemented by assigning an ellipsis "weight" to each node. Weights can be

assigned on the basis of a variety of policies including those derived from the distance from current

focus of attention and from flow analysis . 1 9 Nodes can then use the value of their ellipsis weight to

determine their formatting as shown in the example below. UAL does not provide the style of ellipsis

that automatically elides a program based on sizes stored in the u-tree (as in Mikelsons [Mikelsons

81], for example), although it would be possible to do this using an "ellipsis" formatting environment.

But there is no inherent reason why multiple font and multi-font editing could not take place using this buffer mechanism.

18
Th is assumes, of course, that the implementor is willing to invest effort in building or generating an incremental parser for

the language of the environment. If not, the implementor can restrict the text editing to identifiers, comments, and other string
nodes.

19
It may be desirable, for example, to show all nodes on the path from the root to the current focus of attention that could

influence the flow of control in an executing program.

28

e l l i p s i s < 5 " I f <cond-part> Then <then-part>"
e l l i p s i s < 10 - * " I f <cond-part> Then . . . "
e l l i p s i s < 15 " I f . . . Then . . . "
TRUE — ""

F igu re 10 -1 : Variable Ellipsis for an IF Node

10.4 . D e v i c e I n d e p e n d e n c e

It is decidedly not the case that all u-trees are device independent. The formatting of schemes that

use conditional formatting environments will usually depend on the width of the target output device.

On the other hand, once the formatting information in a u-tree has been resolved, the tokens

generated by the D-machine are device independent. This allows the display module to multiplex the

same tokens across a variety of output devices, provided they do not depend on the width of the lines

produced. For example, a u-tree that is to be displayed in one window can also be written to a file, a

printer, or a text buffer without change. Moreover, even in the worst case, an existing u-tree can be

retargeted for a new device by reresolving the u-tree; it is not necessary to regenerate the u-tree from

scratch.

10.5 . B a c k m a p

T o support a pointing device it is necessary to be able to map screen coordinates to an object in the

abstract syntax tree. T o do this UAL uses the sizes of nodes stored at the ref u-nodes, and the fact

that each output device stores the top u-node that is currently displayed. The algorithm attempts to

match display coordinates with a "closest" ref node in the u-tree. It goes roughly as follows: given

coordinates (x,y) and a starting u-node, we walk the list of ref sons below it. If a son's "s ize" contains

the (x,y) pair we continue the process recursively on that son . The recursion stops when (x,y) is

found to lie (a) within the display of a terminal node (b) between two sons, (c) before the list of sons,

or (d) after the list of sons. In case (a) the terminal node is the desired node. In case (b) the desired

node is either the father or the left son, depending on whether the father is a fixed-arity node or a list

node in the abstract syntax t r e e . 2 0 In case (c) or (d) the desired node is the father.

^ F o r example, if the user selects a semicolon separating two statements, the algorithm will select the statement preceding

the semicolon. However, if the user selects t h e ' •' separating an expression s u c h as "a + b", the algorithm selects the "p lus"

node.

29

11. Efficiency Considerations
UAL has been designed with intent of allowing efficient and random updates to unparsing infor

mation in the presence of multiple views and highly conditional unparsing. There are, however, three

aspects of UAL that may lead to problems with efficiency.

The first concerns the problem of start up. In the current implementation the u-tree for the entire

scene is generated as soon as that scene becomes active (appears in a window on the screen, for

instance). If the scene is large (textually speaking), then the time to create the u-tree can be sig

nificant, although at worst, it is proportional to the number of nodes in the scene.

The second concerns the problem of u-tree deletion. The cost of deleting a u-tree is proportional to

the number of u-nodes in the u-tree, since we must free each node and for each ref node unlink it

from its "scene chain" (Section 9.1). Again, this cost can be significant if the u-tree is particularly

large.

The third concerns the problem of space utilization. Since all active views are maintained concur

rently (whether or not their display is continuously updated), and since each view contains many more

nodes than the portion of the abstract syntax tree that it represents, a large amount of space may be

required for the u-trees.

We have partial solutions to each of these problems. The first problem can be ameliorated in two

ways. First, we can make the instantiation of new u-nodes relatively fast. To do this we compile the

unparse schemes for each operator into blocks of pre-initialized u-nodes. When an operator is to be

instantiated in the u-tree we insert the block of u-nodes as a unit, "relocating" internal pointers to

point to absolute u-node addresses. Second, we can make use of the notion of "pseudo-scenes" to

limit the amount of u-tree that we have to build at one time. A pseudo-scene is an operator in the

grammar that acts like a scene root, except that no window is attached to it. In particular, we assume

that there are no formatting interactions between pseudo-scenes so that a pseudo-scene can be

unparsed in isolation from all others. Thus we can unparse a particularly large portion of the database

in blocks of pseudo-scenes as they are needed.

The second problem, that of u-tree deletion, is alleviated in the same way. Using blocks of u-nodes,

the cost of deleting a u-tree is proportional to the number of ref nodes . 2 1 And, if pseudo scenes are

used to limit the size of a u-tree, the cost of deleting it will decrease proportionally.

T h e number of ref u-nodes will, in general, be 3-4 times less than the total number of u-nodes.

30

A solution to the third problem, that of space utilization, rests on a solution to the two previous

problems. Rather than incrementally maintaining all active scenes, whether or not they are actually

being updated on the screen, the U-machine need only maintain all scenes that are currently needed

by the display manager. Other scenes can be freed and regenerated as they are needed. Of course,

this is an acceptable solution only if the cost of creating and deleting a u-tree is not high.

12. The View Problem Revisited
We return now to the central issue that has motivated the development of V IZ and UAL , namely, the

view problem. It seems fair to ask, at this point, just how well have we solved the basic problem of

providing multiple, powerful, flexible, and efficient views to support the collection of tools that com

pose a programming environment.

V IZ and U A L are currently being used to build a variety of programming language environments.

One of these is a novice learning environment for Pascal [Gnome 85]. In this environment U A L sup

ports a number of global views including several " c o d e " views, an "outl ine" view, and a variety of

"execut ion" views. In the code views, the user can interact with a program using scoped scenes (see

Section 6.3), or as a single textual entity. In the outline view the user is shown a hierarchical outline of

the procedure declaration structure. In the execution views the user can observe dynamically chang

ing values of monitored variables, the call stack, or the value of arbitrary arithmetic expressions. At

the local view level, the views take advantage of all of V IZ 's capabilities for supporting multiple fonts,

styles, highlighting, ellipsis, windowing, space-efficient unparsing, in-place editing, etc. The user has

considerable control over the appearance of his programs and can dynamically change many of

stylistic parameters available to the implementor.

Given the impressive combination of capabilities, can it be said that V IZ solves the view problem for

these programming environments? The answer, we believe, is " N o " . Despite its flexibility, power, and

efficiency, there are some fundamental shortcomings in this approach, and indeed, in all approaches

to views taken to date, including Aloe [Medina-Mora 82] and P E C A N [Reiss 84] environments.

T h e shortcomings of current approaches to views arise from two assumptions:

• views exist to provide multiple visual representations for the user of a programming en

vironment, and

• the database is organized as an abstract syntax tree.

T h e first assumption has led to a situation in which tools in a programming environment can present

multiple abstractions of the database to the user, but cannot partake of these abstractions directly

31

themselves. Every tool is thus required either to use the abstract syntax tree as it stands, or to build

and maintain specialized data structures outside the database for its own needs. The symbol table

used by a semantic tool for type checking illustrates the problem. A symbol table can be thought of as

a "semantic" view of the database. T h e information needed in a symbol table is already in the

abstract syntax tree, but it is not in a suitable "tabular" form. It should be possible for a tool to define

a "table" view of the database that would let the tool manipulate objects as if they were part of a

symbol table. If a semantic tool cannot define such a view it has to use the tree itself as a symbol

table or else copy duplicate information into its own special s t ructures . 2 2 Neither solution is ideal.

The second assumption puts severe limits in the ability to provide flexible projections of the

database. In particular, it is difficult or impossible for a mapping directly from the syntax tree alone to

produce:

• views that collect all nodes satisfying some property,

• views that use non-hierarchical data representations, such as graphs, sets, hash tables,
etc.,

• views that are hierarchical but have significantly different structure from the abstract
syntax tree.

The solution to these problems rests on a generalization of the notion of views and is being

developed as this author's thesis work [Garlan 86]. Views are defined there as abstract mappings

from an unstructured database of objects onto a set of typed structures. One of these mappings

produces the abstract syntax tree itself. But there are many others, constrained only by the require

ments of consistency and reasonable efficiency. In particular, tools can define abstract views based

on a generalized set of structures including graphs, sets, arrays, and other views. View mechanisms

support multiple abstractions of the database, provide a language for describing these views and

sharing between views, and yield an efficient implementation that guarantees view consistency. They

are already being used to support research in providing semantic tools for structure editing environ

ments [Kaiser 85].

The model of views underlying VIZ is thus a special case of this more general notion. In particular,

u-trees supported by VIZ are an explicit representation of a special kind of view called a display view,

and the unparse descriptions of V IZ define a composite mapping from the special case of an abstract

syntax tree view to the special case of a display view. In the more general setting, however, display

Some editor systems will allow the implementor to define a symbol table with a separate grammar and manipulate it as a
syntax tree [Ambriola 84], but this does not solve the problem of duplicated information and maintenance effort.

32

views can be composed with any abstract view, not just the abstract syntax tree view. This provides a

more powerful basis for a user interface as well as yielding a uniform framework in which the benefits

of views can be reaped both by the tools and by the user.

13. Conclusions
We have described an unparse specification language, VIZ, and an implementation of an unparser,

UAL. V IZ provides a uniform descriptive framework for defining views that can take advantage of a

powerful and extensible set of facilities for flexible unparsing. UAL provides an efficient implemen

tation that supports multiple concurrent views that can be updated incrementally in response to

arbitrary changes in the programming environment. While an important measure of the value of this

system will be the success of the programming environments that are now being built using it, early

experience with prototype environments has shown that from an implementor's perspective, it

represents a quantum jump in improvement over exiting unparse mechanisms. O n a more fundamen

tal level, however, we believe that the approach taken here represents an important initial step in

providing a general framework of views for programming environments.

Acknowledgements
The current version of this report has benefited greatly from suggestions made by numerous

people. In particular, we thank Nico Habermann, Rob Chandhok, Gail Kaiser, Charles Krueger,

Barbara Staudt, Richard C o h n , Pedro Szekely, and especially V incenzo Ambriola and David Notkin for

their critical reading of earlier versions.

33

I. The Grammar for VIZ
The description for V IZ uses the following meta syntax:

b o l d f a c e
italics

{ }
[]

indicates syntactic sugar.
indicates a nonterminal symbol of the grammar.
indicates a list of one or more items.
indicates an optional symbol inside a production.
separates choices.

Views
view-spec
view

view-names

{view}
[Defau l t] V i e w wew-names

[S c e n e In fo : scene-info]
D e s c r i p t o r s : descriptors

{view-name ,}

Scenes
scene-info
scene-root
scene-door

[scene-root] [scene-door]
S c e n e root
S c e n e d o o r [-- V i e w view-name]

Descriptors
descriptors :: =
cond-scheme-pair :: =

{cond-scheme-pair}
condition —• scheme

Unparse Conditions
condition :: =

booi-op
condition-term
node
qualifier

condition-term \
(condition-term) |
condition-term bool-op condition-term
A N D | O R | N O T | =
[node]. qualifier \ perspective
f a t h e r | named-son | se l f
v a l u e | t y p e | attribute-name

Unparse Schemes
scheme :: =
phrase :: =
subcomponent :: =
newline :: =
optional-newline :: =
required-newline :: =

w {phrase } "
string \ subcomponent \ newline \ nested-phrase
< named-son > | < attribute-name >
required-newline \ optional-newline

ii

34

nested-phrase
envt

@ envt (phrase)
perspective \ formatting-envt

Identifiers
view-name
named-son
attribute-name
perspective
formatting-envt

identifier
identifier
identifier
identifier
identifier

35

II. Formatting Environments
Formatting environments determine the way an unparse phrase (Appendix I) will be displayed. Each

formatting environment consists of collection of attribute-value pairs. In the first subsection of this

appendix we list the formatting environments defined by the V I Z / U A L system. In the second subsec

tion w e list the attributes that are used to determine a formatting environment.

11.1. System Formatting Environments
Name Result

HV Display a phrase on a single line if it will fit.

T a b l e Format in a table of columns adjusted to maximum width of largest element in the
table. C a n only be applied to a list of identifiers.

C e n t e r Center the display in the middle of the output device line.

V e r b a t i m Suppress conditional formatting. Display as written.

+ , I n d e n t Indent.

O u t d e n t Outdent.

<, F l u s h l e f t Align with the left margin.

u, U n d e r l i n e Underline without breaks.

b, B o l d Display using b o l d f a c e .

s, S h a d o w Display using shadowed face.

11.2. Display Attributes
Name Type and Meaning

font Font name.Values depend on output device. Specifies font family and size.

face Set of face attributes. Values depend on output device. For the Macintosh
V IZ/UAL supports italic, bold, shadow, underline, and outline.

l e f t - m a r g i n Number of spaces, or size in pixels. Examples: "2 spaces" , "25 pixels". Deter
mines the leftmost position to which text will be written. A space has a fixed width
so the specification of left margin is guaranteed to be the same for all fonts.

r i g h t - m a r g i n Number of spaces, or size in pixels. Determines the distance from the left border
of the output device to the right hand margin. Depending on the line wrap policy
for the given device, it may or may not be the case that no characters extend
beyond this margin.

36

i n d e n t - i n c r e m e n t
Number of spaces, or size in pixels. Determines the effect of the Indent formatting

environment.

s p a c i n g Number of lines, or size in pixels. Examples: "2 lines", "25 pixels", "0 l ines". A
value of 0 lines implies single spacing. A value of 1 line implies double spacing.

37

References
[Ambriola 84]

[Charniak 80]

[Coutaz 85]

[Delisle 84]

[Feiler83]

[Garlan 84]

[Garlan 85]

[Garlan 86]

[Gnome 85]

[Goldberg 83]

[Gutknecht 84]

Vincenzo Ambriola, Gail E. Kaiser and Robert J . Ellison.
An Action Routine Model for ALOE.
Technical Report CMU-CS-84-156, Carnegie-Mellon University, Computer Science

Department, August, 1984.

Eugene Charniak, Christopher K. Riesbeck and Drew V. McDermott.
Artificial Intelligence Programming.
Lawrence Erlbaum Ass., Hilsdaie, N J , 1980.

Coutaz, Joelle.
A Paradigm for User Interface Architecture.
Technical Report CMU-CS-84-124, Carnegie-Mellon University, Computer Science

Department, May, 1985.

Delisle, Menicosy, and Schwartz.
Viewing a Programming Environment as a Single Too l .
In Proceedings of the Software Engineering Symposium on Practical Software

Development Environments. A C M - S I G S O F T / S I G P L A N , April , 1984.

Peter H. Feiler and Gail E. Kaiser.
Display-Oriented Structure Manipulation in a Multi -Purpose System.
In Proceedings of the IEEE Computer Society's Seventh International Computer

Software and Applications Conference (COMPSAC '83). November, 1983.

Garlan, David B. and Miller, Phillip L.
G N O M E : An Introductory Programming Environment Based on a Family of Struc

ture Editors.
In Proceedings of the Software Engineering Symposium on Practical Software

Development Environments. A C M - S I G S O F T / S I G P L A N , April , 1984.

Garlan, David B.
A Framework for Unparse Specification Languages.
1985.

To appear.

Garlan, David B.

Views for Tools in Software Development Environments.
PhD thesis, Carnegie-Mellon University, 1986.
In progress.
Chandhok, Garlan, Goldenson, Tucker and Miller.
Structure Editing-Based Programming Environments: The G N O M E Approach.
In Proceedings of NCC85. IFIPS, July , 1985.

Goldberg, A. J . and Robson, D.
Smalltalk-80: The Langauge and Its Implementation.
Addison-Wesley Publishing Co . , Reading, 1983.

J . Gutknecht and W. Winiger.
Andra: The Document Preparation System of the Personal Workstation Lilith.
Software-Practice and Experience :73-100, January, 1984.

38

[Hansen 71]

[Kaiser 85]

[Lampson 78]

[Medina-Mora 82]

[Mikelsons 81]

[Oppen 79]

[Reid 80]

[Reiss 84]

[Teitelbaum81]

Hansen, W. J .
Creation of Hierarchic Text with a Computer Display.
PhD thesis, Stanford University Department of Computer Sc ience, June 1971.
Also Argonne National Laboratory ANL7818, Ju ly 1971.

Kaiser, Gail E.
Semantics for Structure Editing Environments.
PhD thesis, Carnegie-Mellon University, June , 1985.

B. W. Lampson.
Bravo Manual
Xerox Corporation, Palo Alto, C A , 1978.
in Alto User's Handbook.

Medina-Mora, Raul.
Syntax-Directed Editing: Towards Integrated Programming Environments.
PhD thesis, Carnegie-Mellon University, March 1982.

Mikelsons, Martin.
Prettyprinting in an Interactive Programming Environment.
In Proceedings of the ACM SIGPLAN/SIGOA Symposium on Text Manipulation.

S I G P L A N / S I G O A , June , 1981.

Oppen , Derek C.
Pretty Printing.

Technical Report, Stanford University, 1979.

Reid, Brian K.

Scribe: A Document Specification Language and its Compiler.
PhD thesis, Carnegie-Mellon University, 1980.
Reiss, Steven P.
Graphical Program Development with P E C A N Program Development Systems.
In Proceedings of the Software Engineering Symposium on Practical Software

Development Environments. A C M - S I G S O F T / S I G P L A N , Apri l , 1984.

Teitelbaum and Reps.
T h e Cornell Program Synthesizer: A Syntax-Directed Programming Environment.
CACM 24(9), Sept. 1981.

