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Abstract

In this paper we will investigate transformations that serve as tools in the design _
of new data structures. Specifically, we study general methods for converting
static structures (in which all “elem.ents are known before any searches are
performed) to dynamic structures (in which insertions of new elements can be mixed
with searches). We will exhibit three classes of such transformations, each based
on a, different counting scheme for representing the integers, and then use a
combinatoriai model to show the optimality of many of the transformations. Issues
such as online data structures and deletion of elements are also examined. To
‘demonstrate the applicability of these tools, we will study six new data structures

that have been developed by applying the transformations.

1This research was supporied in part by the Office of Naval Research under Coniract NOOCM-?B—C-OS?O.

ZAJSO with the Department of Mathematiqs.
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1. Introduction

TheAdesign of efficlent data structures for searching problems is an important and
difficult problem. In this paper we will investigate a class of transformations that
ald in the design of such data structures, and illustrate the use of those
transformations by describing a number of new structures that have been designed

by applying the transformations.

Since this paper is the first of a.two-part series, we will now take a moment to
describe briefly the common thread running through the work. The work deals with a
class of problems called the decorﬁposable searching problems, which includes most .
of the searching pro'bllems- that have been discussed in the literature (the term
"searching problem" is used here in a precise sehse which we state formally in
Section 2). The decomposable searching problems share the property that any data.
structure fdr solving them can also be applied as a "subroutine" in solving related
problems. The objects that we will study in this work are transformations that apply
any data structure for solving ar;y décomposable searching problem to solve a

closely related searching problem.

The specific transformations we will examine Iin this paper convert static
structures (which are built once-for-all before any queries are asked) into dynamic
structures (in which queries cah be mixed with insertions, and perhaps deletions).
In Section 2 we will examine definitions and notations necessary for discussing the
transformations. The transformations are diécussed fn Section 3, and a proof of
their optimality is given in Section 4. Online data structures and deletion are the

subjects of Sections 5 and 6, and conclusions are offered in Section 7.

In the second paper in this series we will study two additional types of
trahsformatiqns. The first type of transformation adds a "range variable" to a
query; specifically, we can associate a new variable with every object in the set
and then restrict each query to only objects that have that variable in a certain

range, which may vary from query to query. The second type of transformation
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studigd in that paper facilitates tradeoffs between the query time required by the
structure and the time and space required to build and store it. Readers Interested

in a preliminary description of these results are referred to Bentley [1979].

2. Definitions and Notation

In this section we will review a number of basic concepts that have to do with
searching probiems and give a number of definitions that will be used throughout the
paper. The casual reader may therefore skim most of this section; the only part he

should read in detail is the definition of the decomposable'searchlng pfoblems.

Wé. will use the term searching problem in a fairly restricted sense throughout
th_is paper. Specifically, we refer to maintaining a set F of objects so that queries
asking the reiation of a new object x to set F can be answered quickly. The best
known example of a query Is what we call a Member Query: "!s X a member of F?".,
if F were a set of reals, we might be interested in the Nearest Neighbor query of
“what is the distance from x to the point in F closest to it?". The general query is
that a guestion containing a variable of type T1 is asked of a set of elements of
type T2, with an answer that is of type T3. In a Member query, T1 and T2 are the
same, and T3 is boolean. In a Nearest Neighbor query, both T1 and T2 are real, and
T3 is a nonnegative real. rln the general case, the query Q can be viewed as a
function mapping a T1 and a set of T2's to a T3, or

Q: T1 x 2725 13, |
Throughout this paper we will identify a searching problem by its query; a solution
to a searching problem is a data structure that allows the query to be answéred

quickly.

In this paper we Will study data structures for a class of searching problems.
called the decomposable searching problems. A searching problem with query
operation Q is decomposabie if there exists an efficiently computable binary

operator OO0 satisfying the condition

Q(x,AUB) = O[Q(x,A), Q(x,B)].
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(Note that this definition implies that O is both associative and commutative.) For
exz_ample, the member searching problem is decomposable because
| Member(x,AUB) = ViMember(x,A), Member(x,B)],
and (distance to) nearest neighbor searching is decomposable because

NN(x,AUB) = min[NN{x,A}, NN(x,B)]. _
We will investigate a number of decorﬁposable searching problems throughout this
paper; a tist of many of them can be found in Appendix |. All of the transformations
that we wili see later in this paper are applicable for precisely the decomposable
searching problems. They exploit decomposability by partitioning a set into subsets,
and answer a ﬁuery by computing answers on the subsets and then using the O
operqtor to combine those subanswers to yield a sclution .to the entire problem.

Note that the [J operator is essential in this strategy.

There are two subclasses of the decomposable searching problems that will be of
special interest later in the paper. The first subclass consists of those problems
whose O operator has a "zero" (or "sticky"} element; that is, there exists some

“element z such that for any element Xx,

O(z,x) = z.
For example, @ is a zero for A, and true is a zero for V. A second class that will
be of interest consists of the probiems for which the O] operator has an inverse (for
‘example, if O is addition, its inverse is subtraction). We will examine both of these
subclasses of the general decomposable searching prpblems in detait later in the

paper.

We will make a distinction between two types of data structures for solving
searching problems. A stat/c structure is built once and then searched many times;
insertions and deletions of elements are not allowed. To describe the performance

of the static structure A we give three functions of N, the number of elements in the

set represented by A:

Pa(N) = the preprocessing time required to build A,
QA(N) = the query time required to perform a search in A, and
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SA(N) = the storage required to represent A.
(Unless explicitly noted otherwise, throughout this paper we will deal only with
worst-ca.se cost func‘tions.) A second type of data structure is the dynamic
structure. This structure is initially empty, and the three operations available on it
are for inserting a new element, for deleting a current element, and for performing a
search. We analyze the performance of the dynamic structure 8 by giving the
functions

ig(N) = the /nsertion time for B,

Dp(N) = the deletion time for B, .

Qg(N) = the query time required to perform a search in B, and
Sg(N) = the storage required to represent B.

Later jn this paper we will want to "mix appies and oranges" and compare the
performance of the static structure A with that of the dynamic structure B. To
facilitate such dornparisons we define the “insertion” time for the static structure A
as |

IA(N) = PA(N) /N,
‘which is the cost of building an N-element structure amortized over the N elements
it represents. Likewise we define the cost of "preprocessing" the dynamic

structure B to be

P(N) = X 1g(D.
1<i<N

3. T'ransformations.-that Support Insertions

in this section we will investigate transformations that convert a static data
structure for a decorﬁposable searching probiem into a dynamic data structure. We
will réstrlét ourselves to the special case of dynamic structures that support only
the operations of /nserting a new element'and searching to answer a query; we will

return to the issue of deletion in Section 6.
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3.1. The Binary Transformation

In this subsection we will examine a static-to~dynamic transformation that is
based on the binafy representation of the integers. We will study the
transformation by first examining its application to the particuiar problem of nearest

neighbor searching in the plane, and then discussing Its more general properties.

In nearest neighbor searching we must organize a set of N points in the plane so
that subsequent queries can tell the distance from the query point X to its nearest
neighbor in the set. Therefore, pbjects of type T1 and T2 are points in IR2, and -
those of type T3 are positive reals. (For ease of discussion we consider only the
probiem of finding the distance to the nearest neighbor and not the point realizing
that distance.) Note that nearest neighbor searching is dgcomposable because It
satisfies |

NN(x,AUB) = min[ NN(x,A), NN(x,B)]. |
Lipton and Tarjan [1977] have described an elegant static data structure for
nearest neighbor searching (which 'we will calt LT) with performance

PLT(N) = O(N g N),
Qi 7(N) = O(ig N), and
SLT(N) = O(N).

Many applications, however, call for dynamic nearest neighbor searching, and the
Lipton-Tarjan structure does not appear to be suitable for a modification that would
facilitate insertions. We will now investigate a new structure (called DNN for
dynamic nearest neighbor) that uses the Lipton-Tarjan static structure only as a
subroutine, rather than trying to modify the structure. The DNN structure that we
|will describe is the best known structure for performing dynamic nearest neighbor

searching in the piane.

The DNN structure will consist of a set of LT's; that Is, the elements (points)
currently stored in the DNN wili be partitioned into subsets that are themselves
represented by LT's. When there is one element in the DNN, there is an LT

containing that single element. When the second eliement is inserted, that LT Is
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discarded énd a new LT of size two is created. At the arrival of the third element, a
new LT of size one is created. This process ‘contlnues_, so that when there are N
' eleménts represented by the DNN, there are LT;s corresponding to all of the one bits
in the binary repreéentation of N. For example, when there are 79 elements in the
.DNN, there are L7's of size 64, 8, 4, 2 and 1, When the 80-th element is inserted,
the four smallest structures are discarded and a new structure of size 16 is built.
At an:y time in this process the distance to the nearest neighbor of a query point x
can be found by locating its nearest neighbors in each of the LT's (using the O(ig N)
algorithm) and taking the minimum of the distances; it is here that we make essenﬂal

‘use of decomposabllity.

This scheme is illustrated pictoriaily in Figure 3.1 by a diagram comrhon!y used to
represent binary counting. The vertical axis in that 'figure denotes the number of
elements currently in the dynamic structure. Each rectangie (équare) represents a“
particular static LT structure; for example..no.te the four by four square that comes
into existence at time four and is then repla.ced at time eight. The LT structures in
exisfence at time T can be found by drawing a horizontal line that intersects the
vertical axis at T; for example, at time seven there are three structures in
existence -- of sizes four, two and one, We will find later that this type of diagram

(which we call a "history diagram") is a handy way of representing transformations.
W

|

||

1L

Figure 3.1. The blnafy transform.
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It is easy to analyze the performance of the DNN structure given that we know |
the performance of the LT structure. Since the LT requires linear storage and the
DNN just partitions its eleménts into LT's, the DNN will also require linear storage. A
DNN of N elements will keep at most Ig(N+1) LT's (each of size not greater than N),
so the query time of a DNN is bounded above by Ig(N+1) times the cost of querying
an LT. The cost of inserting an element into a DNN is more difficult to analyze; not'e
that while insefting the 1023-rd eiement is essentially free, the 1024-th element is
very expensive, since a new structure of size 1024 must be built. We will
therefore count the cost of inserting the first N eiements into an initially empty
structure, which is exactly Ppyn(N). We will perform this analysis only for the case
that N = 2j-1. and discuss later the value of the function for other N. if we have
inserted 2j-1 elements, then we have built one LT structure of size 2}'1, two LT -
structures of size 21'2. and qu structures of size 2j-k. (This is a trivial property
of binary counting.) The total cost of inserting these elements is therefore '

Ponn(2I-1) = 1P (2 Yy + 2P 122y + L+ 2 p (1),
For N a power of two we can rewrite this as -

PpNN(N-1) = 1P 1(N/2) + 2°P T(N/8) + ... + (N/2) P y(1).
We know that P_1(N) = O(NIg N), which implies that P ;(N)< cNig N, for some
positive constant c. Substituting this into the above equation yields

PonN(N-1) € o[ 17(N/2 Ig N/2) + 2(N/4 Ig N/4) + ... +(N/2)(11g 1) ]
= (cN/2) " [lgN/2+I1gN/4d + .. +ig 1]
S(c/2)NIgN
= O(N 1g% N).

- This completes our analysis of the DNN structure, establishing the following.
New Data Structure 1: (Dynamic Nearest Neighbor)

The DNN structure for dynamic nearest neighbor search_lngrln the plane has
performances

PoNN(NY € PLT(N) “Ig(N+1) = O(N 192 N),
Qpun(N) € QU T(N) *Ig(N+1) = O(IgZ N), and
< .

SDNN(N) SLT(N) = QO(N).
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Note that the cost of doing N pairs of Insert, Query operations in the DNN structure

2 N; all other known dynamic nearest neighbar étructures

require fUN?) time for the task.

The binary transformation that we have _jﬁst described for nearest neighbor:
searching Is. applicable to any decorﬁposab!e searching problem: given a static data
structure for a particular problem, a dynamic structure is achieved by keeping a sef
of static structures, each representing a set whose cardinality is a poWer of two.
Insertion is accomplished by the same technique of binary counting. A query can be
answered by querying all the static structures Iq existence at the time of the

query, and combining the answers by repeated application of the O operator,

A computer program impiementing the binary transform is sketched in Figure 3.2.

It assumes the existence of a static structure S with operations Queryg, Buildg and
Unbuildg (Unbuitdg returns the elements currently stored in the structure as a linked
iis't)s.‘ The code implements a dynamic structure D providing routines initp {which
initializes the structure to be empty), Insertp, and Queryp. It ihplements the binary
_ stra'tegy'by maintaining a one-way Infinite array P with the invariant that P[i] is
~ either empty or contains a static structure of size 2*. The variable High is an

integer that is one Qrea‘ter than the last nonempty structure; P[High] Is always

empty. Initp initializes the structure to have this invariant. Queryp answers a query

by iterating through the structures and combining the answers by the a operato-r.
Insertp can be understocd most easily by considering incrementing a binary integer

by one: to do so, we scan from right to left, changing ones to zeros until we come to

the first zero (which we then make a one). An -Alphard program very similar to the

code in Figure 3.2 has been given by Bentley and Shaw [1979]; they also provide

both a precise specification of the transform and a proof that the program

accomplishes it.

3Throughout this paper we will retrieve a set of T2's from a structure by unbuilding the structure. In soma
applications it might be more efficient to store the set along with the structure.
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proc Initp «
P[O] « ¢; High « O

proc Insertp(x) «
Se{x}
ieO
while P[i] # ¢ do

S « S U Unbuildg(P[i]) ; Plile¢

|« i+
P[i] « Buiidg(5)
if i=High then

High « High+1; P[High] « ¢

func Queryp(x) «
A « Queryg(x,P[0])
for i « 1 to High-1 do
A « (A, Queryg(x, P[i]))
return A

| Figure 3.2. Sketch of code for the binary transform.

The. analysis of the general transformation is quite similar to the analysis of the

DNN structure.4 Since at most Ig(N+1) static structures exist for an N-element

dynamic structure, if we assume the static query cost is monotone nondecreasing '

we have
Qp(N) £ Qg(N) * tg(N+1).

To analyze the siorage and processing costs we need the following definition: a

aln the analysis of the transformed structurs we will count only the costs incurred by operations on the original
structure. Examination of the code in Figure 3.2 shows that the overhead costs for both Insert and Query are a

small constant times Ig N.
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function F is said to grow at /east linearly if for every two pésitlve integers, M and
N, where M { N, -
F(M}/M £ F(N)/N.
A consequence of this defiﬁition is that if F is a function that grows at least linearly
and A and B-are positive integers, then |
F(A+B) = A[F(A+B)/(A+B)] + B[F(A+B)/(A+B)] 2 F(A) + F(B).
Since the dynamlc structure partitions its elements among static structures without
replication, if the storage cost Sg of the static structure grows at least linearly we
have the relation |
Sp(N) £ Sg(N). | o
To analyze the processing cost we will first consider the case that N is a'power of
‘two; the reasoning used in our analysis of DNN shows that |
Pp(N=1) = Pg(N/2) + 2Pg(N/4) + ... + (N/2)Pg(1).
When Pg grows at least linearly, we know that Pg(2i) 2 2Pg(i) and we can use this
fact inductively to show that | -

Pp(N-1) £ P5(N/2) + Pg(N/2) + ... + PS(N/2)
= pg(N/2) * Ig N.

We will now use a less accurate (but more general) analytic technique to
establish the value of PD(N) for N not one less than a power of two. Note that affer .
N elements have been inserted, any particular element has been in at most Ig{N+1)
distinct static structures. We wiil.now show that for any transform, if every eleme.nt
has been built into at most k structures, then the static and dynamic processlag
costs are related by |

Pp(N) £ Pg(N) " k.
| (This immediately vields the corollary that
PD(N) < Pg(N) " ig(N+1)
for the binary transform, for any positive N.) Consider the cost that any partlcular

element, E, contributes to Pg{N). Each time E is built into a new static structure of
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size M, we can assign It a share of that cost of Pg(M)/M. Because Pg grows at
least linearly and M is less than or equal to N, we know that

Pg(M)/M < Pg(N)/N,
and we can therefore assign E this latter cost as an upper bound. Multiplying the
number of distinct elements (N) by the number of times each Is built into a static

structure (less than k) by this cost yields the desired resuit.

To enable us to speak more precisely about transforms on data structures for

decomposabie searching problems, we need the following definition.

Definition 3.1: (Admissible transform) .
A transformation on decomposable searching problems is said to be an
admissible (F(N), G(N)} transform if it converts the static structure A to the
- dynamic structure B assuming only the property of decomposability, and the '

following relations hold between the cost functions:5

Qg(N) < QpAN) - F(N),
. Pg(N) £ PA(N) * G(N), and
SB(N) < SA(N).

We assume here. that Qp is monotone nondecreasing and that both Py and Sp

grow at least linearly.6

We can now state precisely the fact that the binary transform efficiently

converts a static data structure to a dynamic structure as Theorem 3.1.

.Theorem 3.1: (The binary transform)

5To simplify the analysis, we will count only the costs of calls te eperations on the static structure, and not the
cosls of bookkeeping operations nor the cost of combining the resuits of queries into different static structures.
Careful examination of our algorithms will show that these extra costs add only a small constant factor (which
does not depend on F or G) to the compute limes. In most cases, this constant will approach unity as N increases.
Similarly, the only storage we charge to the dynamic structure is that used for storing instances of the static
structure. Again, this is generally the dominant cost.

s|=c>r cases where PA' Q A and 5, do not satisfy these criteria, we may choose functions P4, Qh. and S’A that
(a) satisty the criteria and (b) dominate Py, Q,, and Sy, respectively. The relations given above will then hoid
betwesn the dynamic cost functions and Py, Q) Si.
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The binary transform is an admissible (Ig(N+1), Ig(N+1)) transform.

Proof:
Given Iin the preceding text. QED.

- To lllustrate same "tricks" available in using the binary transform, let us cdnslder
its application to the member query problem using the data structure of a sorted
array. Precisely, consider the static data structure for member searching that_
stores the elements jn Increasing order in an arr'ay (built by sorting the set),' and
answers a query by"performing a binary search. The a.nalysis of this structure
(which we call SA, for sorted array) shows '

PSA = O(N Ig N),
SSA = Q(N), and
Qgp = O(lg N).

Consider the dynamic member searching structure achieved by applying the binary
transformation to SA: wé always maintain a set of sorted arrays, each of size a
power of two. A partic'ular_.ly efficient repres.entation of this structure (which we will
call BL, for binomial Ilst?' ') is to store these sorted arrays sequentially in one large
array, with the largest sorted segment (which we call a run) leftmost in the array.
Two snapshots of a BL are shown in Figure 3.3; the vertical bars in the figure
séparate the runs in the array. By the analysis of SA and the effect of the binary
transform, we can easily describe the complexity of the BL structure as follows

PaL = O(N 1g2 N),
QBL 0('9 N).

Note that very little storage is used by a BL: it requires only N-array words for the

elements, pius Ig N bits to describe the the cardinality of the represented se_t.

7Thls structure was invented for this application by the use of the binary transform, and was then studied in
detail by Bentley, Detig, Guibas and Saxe [1979]. Ths name is taken from its similarity to the binomial queue data
structure of Vuiltemin [1978].
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|12 19 23 27 38 41 43 47 |27 43 [29 |

0 O 0Q

~a.) An ll-element bincmial iist.

[12 19 23 27 38 41 43 47|27 29 36 43 |

b.) After inserting 36.

Figure 3.3. Snapshots of a binomial iist.

There is a glaring deficiency in the obvious implementation of this structure: the
obvious insertion routine inserts the 1024-th element by ignorihg all the structure
-currently in the array and re-sorting from scratch. A far superior strétegy for any
insertion is to consider the inserted element as a one-element run, and merge that
with the rightmost'one»ele_ment run giving a two-element run. We then merge that .
with its neighbor, giving a four-eiement run, and so fqrth. The amount of work in
building a new run in this scheme is linear in the size of the run, and tﬁe cost of
inserting N elements is therefore O(NIg N). We have thus avoided paying the.
logarithmic penaity factor inherent in the binary transform- by observing that runs

-can be efficiently merged.8

We can sometimes avoid paying the transform penalty of a logarithmic slowdown
in query time., Specifically, we will consider the avérage cost of performing a.
successful member search in a BL (that is, a search that finds the element It was
looking for). If we assume that each element in the array is equally likely to be
searched for, then the probability of finding the desired element In the first run is at
ieast one-half. Therefore, half the time we need never search the other runs.
Likewise, at least one-half of the remaining times we find the desired element in the
next structure, so the probability of searching the third run'is less than one~fourth.
Summing the cost of searching each run times the probability of performing the:

search, we find that a successful -m’ember search is expected to be at most twice

BC!nly constant extra spacé is required to merge consecutive runs in an array -- see Knuth [1973, Exercise
5.2.4.18]. -
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as expensive in the BL as in the SA.

1

The arguments that we have just sketched have been given in detail by Bentley,

Detig, Guibas and Saxe [1978], who describe the following data structure.

New Data Structure 2: (Binomial Lists)

The binomial list (BL) structure for dynamic member searching has
performances ' |

PgL(N) = O(N Ig N},
Qg (N) = O(lg? N), and
SBL(N) = O(N).

The linear storage used by this structure consists of exactly N array words
and O(lg N) additional bits, which is minimal. ‘

Bentley, Detig, Guibas and Saxe [1979] have investigated this structure in detail
and have shown that it is optimal In a certain modei of minlmum—;toragé dynamic
member se-arching. The BL structure provides an interesting point of comparison
with the minimum-stofage structure described by Munro and Suwanda [1978]; this
structure perforrﬁs substantially better than theirs by working in a different model 6f

compitation,

- There is yet another circumstance in which the logarithmic cost penalties of
applying the b'inary. transform do not have to be paid: when the original cost
functfons are fast growing. Consider, for.example, a static data structure with N2 '
preprocessmg time. Our prevnous analysis shows that for N a power of two, we will
have

Po(N-1) = Pg(N/2) + 2P3(N/4) $ot (N/2)P(1)
(N/2)2 + 2N/BI2 + o v (N/2)12
= (N%/2) [1/72 + 1/4 + .o+ 1/N]

= O(N?).

Similar analyses show that the logarithmic penalty in processing cost is not incurred

when the binary transform is applied to any static structure with preprocessing cost
of O(N? +€), for any positive €. Likewise, it can be shown that the logarithmic penaity
in query time will not have to be paid for any static structure with query time of at

e



25 October 1979 Static-to-Dynamic Transforms -15 -

least 2(N®).

The conciudes our study of the binary transform. In the next two subsections we.
will see that this transform is but one of many possible ways of cpnvertlng a static
structure to a dynamic structure, at the cost of penaity factors in the preprocessing _
and query costs. As we study the other transforms and their perforniance, it Is
important to keep in mind that the penalty factors need not always be paid. In this

. subsection we have seen thfee ways of avoiding them: by merging structures

instead of rebuilding them from scratch, by counting the average search time

instead of the worst-ca_sé time (this is appropriate whenever the [0 operator has a

zero element), and by performing separate analyses for fast~growing functions.

3.2. Transformations with Fast Query Time

|

The binary transform of the last subsection provides us with an example of an
~admissible (Ig(N+1), Ig(N+1)) transform, and we might wonder if we can do better. In
~this subsection we will investigate a class of transforms that have faster query

times than the hinary traﬁsform at the cost of slower Insertion time. Specifically, we
will see that an admissible {k, (k!N)”k) transform exists for any positive integer K.
We will study this transform by first investigating the case k=2, and then move on to

the general case.

We will call the transform for the case k=2 the triangular transform, hecause it is
based on the trianguiar numbers (that is, numbers of the form (E)). The transform is
ilustrated in Figure 3.4. Note that when 5 elements are in the dynamic structure,
there are static structures of size 3 and 2; when the 6-th element is inserted,
those structures are destroyed and a new structure of size 6 is created. At any
point in the history of the dynamic structure, there will be at most two static
structures in existence. The insertion algorithm creates a new "lérge" static
structure ét every triangular number; otherwise it inserts an element by unbuilding

. the smatler structure and bullding it into a new structure with one additional element.

A query can be answered by searching the two static structures and combining the

-answers by the [J operator.
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Figure 3.4. The triangular transform.

The triangular structure is very easy to analyzé. Because at most two static

structures exist at any time, the dynamic query cost is given by‘ |

Qp(N) £ 2Qg(N).
If we assume that the static storage requirements grow. at least linearly, wle know
that the dynamic structure does not use more storage. To analyze the insertion
time, consider the case that a total of ('\2") elements have been inserted. It is easy
to prove by induction that no element has been built into more than M structures:
(the proof is based on the recurren'ce for the triangular aumbers). In general, if N
elements have been inserted, no single element has been built into more than
(2N),1 /2 static structures. By the arguments in the previous subsection, fhls implies

Pp(N) S Pg(N) " (2N) /2, |

These arguments together establish the following theorem.

Theorem 3.2: (The triangular transform)
The triangular transform is an admissible (2, (2N)”2) transform.

Proof:
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Given in the preceding text. QED.

Just as. the binary transform is- isomorphic to the binary representation of the
integers, so is the tnangular transform |somorphic to a representatlon of the
integers based on triangular numbers. (This system is called the "hinomial number
system"” by Knuth [1968, Exercise 1.2.6.56].) Specifically, an integer N s

represented by a pair of integers | and j (with 1>]) by the expression

N =(5) + (q).

Note that both i and j are less than twice the square root of N; this explains the
processing cost of the transform. The general transform, which we will call the
k-binomial transform, is based on a straightforward generalization of this scheme, in
Iwhich an integer is {uniquely) represented as the sum of k binomial coefficients,
whose lower parts are the integers 1 through k. This counting scheme is illustrated
for the cases k=2 and k=3 in Figure 3.5. Row 15 of the table Is interpreted as
follows: in the 2-binomial representation, 15 is the sum of 15 and Q, or (g) and (?)
In the 3-binomial representation, 15 is the sum of 10, 3 and 2, or (g), (‘3) and (%)

With the example of Figure 3.5 as background, wé can now déscribe k-binomial
counting more precisely. We will use an array D[1.k] to store the upper parts of
the binomial coefficients. The invariant 6f this counting scheme has two parts: first,
the represented inte_ger is given by

ve R« O v (U,
and secondly, each coefficient D[I] satisfies the condition

D[i] > D[i-1]
for 2<i<k. We can initialize the array to represent zero by assigning each D[I] to
have the value {-1; we will also find it handy to assume that the value of D{k+1] Is

"infinity". The code for incrementing an integer by one Is then as foilows.
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Integer - (2)(p Integer (3) (3)(p)

0= 040 1 0 0= 04040 2 1 0
1= 140 2 0 1= 14040 3 1 O
2= 1+ 2 1 2= 1+1+0 3 2 0
3= 3+0 3 0 3= 1+141 3 2 1
4 = 3+1 3 1 4= 4+0+0 4 1 0
S= 3+2 3 2 5= 4+140 4 2° 0
6 = 640 4 0 6= 44141 4 2 1
7?7 = 641 9 1 7= 443+0 4 3 O
8= 642 4 2 8= 4+3+1 4 3 1%
9= 6+43 4 3 9= 4+43+2 4 3 2
10 = 1040 5 0 10 =10+0+40 5 1 0
11 = 10+1 5 1 11 = 104140 5 2 0
‘ 12 = 10+2 5 2 12=10+1+41 5 2 1
13 =10+43 5 3 13=1043¢0 S 3 0
14 = 1044 5 4 14 = 104341 5 3 1
15 =15+0 6 0 15 =10+3+2 5 3 2
16 = 15+1 6 1 16 = 10+640 5 4 0
17 = 1542 6 2 17 = 104641 5 4 1
18 = 1543 6 3 18 = 104642 S5 4 2
19 =15+4 6 4 19 =104643 5 4 3
20 = 15+5 6 5 20 = 204040 6 1 O
21 = 21+0 7 O 21 = 20+140 6 2 O
22 = 21+1 7 1 22 = 20+1+1 6 2 1

Figure 3.5. 2-binomial and 3-binomial counting.

D[1] « D{1]+1
ie1
while D[i] = D[i+1] do
 D[i+1] « D[i+1] + 1
D{i] « i-1
|« i+1

It is 'easy to prove by induction that this code correctly implements the above

counting scheme.

It is straightforward to modify the above counting scheme to yield an admissibie

transform. To do so we will retain the array D (with the same invariant as above),
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and add an array P[1.Kk] of static structures. The number of elements in P[i] is
always (Di['}). The code for this k-binomiai transform is given in Figure 3.6, and

Figure 3.7 illustrates the 3-binomial transform.

proc Initp «
fori« 1 tok do
D[i] «i=1; P[i]« ¢
Dik+1] « oo

proc insertp(x) «

D[1]« D[1]+1; S « Unbuildg(P[1]) U {x}; P[1]« ¢

i1

while D[i] = D[i+1] do .
D[i+1] « D[i+1] + 1; S « S U Unbuildg(P[i])
D[i]« i-1; P[i] « ¢
iei+l

P[i] « Buildg(S)

func Queryp(x) «
A « Queryg(x, P[1])
forie 2 to k do

A « (A, Queryg(x, P[1]))
return A

Figure 3.6. Code for the k-binomiat transform.

The correctness of the code can be proven by induction, and its analysis

establishes the foliowing theorem.

v

Theorem 3.3: (The k-binomial transform) .
The k-binomial transform is an admissible {k, (k!N)1 /k) transform.

Proof:

UNIVERSITY L1pRARIES
C_A‘R?fEG!E-MELLOH UMIVERSITY
PITTSBURGH, PENRSYLVANIA 15213
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Figure 3.7 The 3-binomial transform.

Since at most k structures exist at any one time, we have
Qp{N) < Qg(N) * k.

Since the space requirement for the static structure grows at least linearly
with the number of elements, the dyhamic structure can be no more expensive.

To bound the processing time of the dynamic structure, we will investigate the
maximum number of structures into which any eiement may be bullt during the
first N insertions. Note that after N insertions, we have

N2 (PR))

>(D[k]-k+1)K/k!,
implying
DIk] £ (kIN) T Rek-1,
This, together with the invariant that
D[k] > D[k-11> ...> D[1]21
implies that each D[i] satisfies
0 < D[il-i € (k)P Req

for 1<i<k. Flnélly, we note that whenever a structure is discarded and its
elements rebuiit into a new structure, the difference between the upper and
lower parts of the binomial coefficient giving the size of the structure .
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increases by one; that is, a structure of size

™
is always replaced by a structure of size
1
("1
or of size
m+2
(l+1 )
This implies that no element is ever bulit into more than (k!N)”k static
structures, from which it follows that )
Pp(N) S P5(N) - (kiN) 17K,
QED.

Note that for all positive k, k!”k < k. For large k, Stirling's approximation givesg
kK ~ ke,

To illustrate .the application of the binomial transforms, we will -consider the
probl't‘am of range searching. In this problem, the stored set contains points in a
d-dimensional space, and a qgquery asks for all points with each 'dimension in a
specified range. (Note that this problem is decomposabie with the O operator
»lnterpreted as U. 10) Bentley and Maurer [1978] gwe a structure for static range

searchmg (SRS) with performances

Qgprs(N) = O(lg Ng,
PSRs(N) = O(N }, and
SSRS(N) = O(N 5)

gWe use the notation, "A * B" as a shorthand for "|A-B| = o(B)".

ln order to implement (muitiset) union as a constant- ume‘operatuon. we ask that a query raturn a tres whose
leaves are the points within the specified range. Two such trees can be combined in constant time by allocating a
new root node containing pointers to the two traes,
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for any fixed 8 > 0. By choosing, for example, k = [2/¢] and § = ¢/2, we can apply

the k-binomial transform to achieve the following structure. '

New Data Structure 3: (Dynamic Range Searching)
A dynamic range searching (DRS) structure supporting insertions and queries
for point sets in d-space with performance

QpRrsiN) = Oflg N),
Pprs(N) = O(N'*€), and
Sprs(N) = O(N'*)

can be achieved for any fixed € > O and positive integer d.

Such a structure is useful for range searching in a situation in which the number of
queries is known to exceed greatly the number of insertions. Specifically, if the

number of insertions in a set of N insertions and queries were known to be O(NP) for
some p < 1, then this structure wouid allow the operations to be praocessed In

|

(N Ig N} time. The best performance for this task prior to this structure was

achieved by Lueker [1978]; his structure required 9(N !gd N) time.

it is important to observe that the penaities incurred by the k-binomial transform
need not always be paid. Just as In the binomial transform, they can occasionally be
avoided by merging static structures, by counting the expected query cost, or by

performing separate analyses for fast-growing functions.

3.3. Transformations with Fast Insertion Time

In the last subsection we Investigated a set of transforms tl_iat only slightly
increase the query time at the cost of greatly increasing the prdcessing time. In
this subsection we will study a class of structures dual to those, which only slightly
increase the processing time and greatly increase the query time. Spectﬂc-aﬂy_, we
will see that there exists an admissible (k(k!N)”k', k) transform for any positive

' integer k. As before, we will first investigate the case that k=2, and then turn to

the general case.

The dual triangular transform is illustrated pictorially in Figure 3.8(a). At time 9,
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there are 6 structures (of sizes 1, 2, 3, 1, 1, and 1); when fhe 10-th element is
inserted it is combined with the last three structures to create a new static
structure of size 4. In general, when the (g')-"ch element is inserted, M elements are .
combined together to form a static structure of size M; other elements are kept in
singleton structures as they are inserted. Since each element is built Into only two
static structures (the large and the singieton}, we know that

Po(N) € 2Pg(N). |
It is easy to show that at most 2(21\1)1/2 static structures exist at any time, so we
have |

ap(N) £ ag(N) - 2(2N) 172,

These facts together imply the following theorem.

Theorem 3.4: (The dual triangular transform)
The dual triangular transform is an admissible (2(2N)”2, 2) transform.

Proof:
Given in the preceding text. QED.

That this transform is dual to the triangular transform of Subsection 3.2 is
intuitively clear from Figure 3.8{(a). lTo make the duality more precise we will stu‘dy'
the dual triangular transform from the viewpoint of the triangular-number counting
scheme of the last subsection. The history of the dynamic structure is shown in
tabular form in Figure 3.8. The eighth row shows that when 8 elements are in the |
dynamic structure, there are 5 static structures: three "large" structures (of size 1,
2, and 3) and two "small" structures (each of only one element). In general, if the
number in the "large" coiumn is (“2"). then there are large structures of size
1, 2, 3, ..., M-1. The number in the "small" column gives the number of unit-sized
static structures. Note that the entries in the number column are identical to the

2-binomial counting depicted in Figure 3.5,
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{a) The dual triangular transform. - (b} The dual 3-binomial transform.

Figure 3.8. Dual binomial transforms.

Structures Number

Large Smalj Large Small
O 0 0 0
() -0 : 1 0
(1M ‘ (1) 1 1
(1,2) Q0 3 0
(1,2) (1) 3 1
- (1,2) . (1,1) 3 2
(1,2,3) 0 6 . 0
{1,2,3) (1) 6 1
(1,2,3) (1,1 6 2
(1,2,3) (1,1,1) 6 3
(1,2,3,8) 0O ' 10 0
(1,2,3,4) (1) 10 1
2

1,2,3,4) (1,1 10

Figure 3.9. History of the dual triangular transform.

This duality carries through to the k-binomial transform. For the case of the dual
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3-binomial transform, each element will be buillt into at most three static structures
(whlch_ we call small, medium and large). All smali structures have exactly one
element, medium structures have an integer number of elements, and large
structures contain a triahgular number of elements. At any point in the history of
the transform, each set of existing small, medium and large structures contains
structures of a.djac;ant sizes. The following table shows the history of the duat
3-binomial transform from the insertion of the fourth through the tenth elements; a

history diagram of the dual 3-binomial transform appears in Figure 3.8(b).

N Structures Populations
Large Med  Small Large Med Small

4 1,3 O - 0 4 0 0
5 1,3 (1 0 4 1 0
6 (1,3) (1) (1) : 4 1 1
8 (1,3) (1,2 (1) 4 3 1
9 {1,3) 1,2y (1,1) 4 3 2
10 (1,3,6) () 0 10 0 0

The extension of this strategy from the dual 3-binomial transform to the dual
k~binomial transform is straightforward. The code of Figure 3.6 is modified so that
instead of containing a static structure of (qm) eiements, P[i] now contains a list

of structures of sizes

(OF "), (PHF2), ... (1)
Note that the sum of the sizes of the structures is (?[']), This allows us to

establish the following theorem.

Theorem 3.5: (The dual k-binomial transform)
‘The dual k-binomial transform is an admissibie (k(k!N)“k, k) transform.

Proof: . : ‘
Because each element is built into at most k static structures, it Is clear that
the processing cost Increases by at most a factor of k. The analysis used in

#
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the proof of Theorem 3.3 shows that each of the k classes of structures
contains at most (k!N)”k distinct structures at any point. Therefore at most
k(k!N)1 /K static stn}cturés exist at any time, providing the upper bound on the
guery time penaity. QED. '

To iHustrate the application of this transformation we will again consider the
probiem of range searching in a d-dimensional point set. Bentley and Maurer [1978]
describe a second structure for range searching (which we will call SRS') with
properties _

QSRS'(N) = O(Ns),
pSRS'(N) = O(N ig N), and
Ssps!(N) = O(N),
for any fixed § > 0. By choosing, for example, k = [27¢€] and § = ¢/2, we can apply

the dual k-binomial transform to achieve the following”s'tructure.

New Data Structure 4: (Dual Dynarmc Range Searching)
A dynamic range searching (DRS’) structure supportmg lnsertlons and queries
for point sets in d space with performance '

QpRrsH(N) = (),
Pprst(N) = O(N.ig N), and
__SDRS'(N) = O(N)

can be achieved for any fixed € > 0 and positive integer d.

Note that this structure is appropriate when there are many more insertions than
queries; it reduces the cost of the computation of certain sequences of N insert and
query operations (analogous to those discussed at the end of Subsection 3.2) from

Ithe O(N Igd N) time required by Lueker’'s [1978] method to O(N Ig N).

3.4, Summary of the Transformations

In this section we "“have seen a number of different static-to-dynamic
transformations on data structures for decomposable searching problems. We will

now spend just a moment reviewing these transformations. The transformations
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themse|veé are summarized in Figure 3.10.

Transformation Query Factor Processing Factor
k-binomial K (kin) /K ‘
Binary lg(N+1) ig(N+1)

Dual k-binomial  k(k!N)1/K k

Figure 3.10. Summary of transformations.

There are many other transformations besides those that we have already
investigated. A simple way of achieving a new transfbrmation is by isomorphism to a
_particular humber system (counting scheme). This is illustrated in Figure 3.11 for
the radix-3 number system {ternary counting). Part (a) of that figure shows the
ternary transform: each static structure is of size either a power of three or twice a
power of three, and c;arresponds to either a one or a two In the ternary
representation of the number of elements in the dynamic structure. This transform
Is an admissible (llogg N1, 2llogz N1} transform.? Its dual is shown in part (b) of the
figure; every structure in the dual is of .éize-a power of three, and there are 0, 1 or

2 structures for any power of three, corresponding to the appropriate digit in the
ternary expression of the integer size of the structure. This is an admissible

(2llogz N1, floggz N1) transform. This scheme can be extended to radix-k counting to
yield a primary (flogk NI, (k-1)rlogk N1) transform and a dual ((k-i)rlogk'hﬂ, flogk NT)
transform. An interesting open problem is to examine other counting schemes (such

as Fibonacci counting) for their properties as transforms.

It is now easy to state formally the relationship of the primary and dual
transforms derived from a particular counting scheme. In the primary transform,

there is a single structure corresponding to each digit, whereas in the dual

1 ’This and the following claims about radix-k transforms assume N>1,
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‘(a) The ternary transform, (b) The dual ternary transform.

Figure 3.11. Radix-3 transformations.

transform each digit corresponds to a set of structures that are the "“carries" from

its right neighbor (the units digit is a set of structures of size one).

The transformations of this section together provide a powerful set of tools for
.designing new data-structures for both particular applications and as a componént in
larger algorithms. To design a dynamic structure in a given context, the algorithm
designer first designs a static structure (which is usually much easigr than
',designing a 'dynamic structure), and then applies one of the transformations to
achieve an efficient dyna!ﬁlc strdct‘ure. Which transformation he uses depends on
the relative efficiency of the static preprocessing and query costs and onr the

‘expected frequency of insertions and queries.

As' we mentioned before, the cost penélties of the transformations need not
always be paid. One can often avoid them by merging static structures, by
‘analyzing the average query time, or by performing separate analyses for

.- fast-growing cost functions.

4. Lower Bounds on Transformations

Our main goal in this section is to prove the optimality, In a certain sense, of some
of the transformations discussed in Section 3. Our path to this goal will have many

steps, and the reasons for each step might not be clear in advance. To aid the
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reader, we now briéfly sketch the contents of this section.

In Subsection 4.1 we define the model of computation which - we will use
throughout the rest of the section. We also advise the reader that the use of this
model impl;es certain limitations on the applicability of the results we will obtain. In_
Subsectlons 4.2 through 4.4 we show a method for representing an initial sequence
of insertions under some transform as a binary tree, and show how the efficiencies
of transformations are related to p.ropertles of the corresponding trees. To achieve .
the correspondence bgtween transforms and trees, we restrict our attention to a
class of tfansforms which we call the arboreal transforms. In Subsection 4.5‘we
state and sol;ue a recurrence relating the various tree properties defined in
Subsection 4.4, and Interpret this result as it applies ‘. to the K-binomial
transformations. We then extend the basic result to answer questions about other
transformations (including the binary transformation) in Subsection 4.8. In
Subsection 4.7 we discuss the justification of the restriction to arboreal strategies;
and in Subsection 4.8 we return to expiore the limitations (implied by our model) of
the preceding resuits, showing a number of cases in which our "lower bounds" can

be beaten by going outside the modet.

4.1, The Model of Computation

The most important assumption of our model is that the transformations under
.consideration are not allowed to use any specific knowledge about the original
problem or static structure except for the fact that the problem Is decomposable. It
the.refore remains plausible for any particular decomposable searching problem, P,
that there exists a dynamic data structure for P having performance better than
that produced by applying any optimal static-to-dynamic transform to any static
structure for P, For example, AVL trees (see Knuth [19?3]) provide a dynamic data
structure for member searching with |

PAVL = O(N Ig N),
SAVL = O(N), apd
QAVL = O(Ig N).
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The results of this section imply that no dynamic structure with this efficiency can
‘be obtained (in the worst case) by applying a general transform to a statlc
.. étructure for member searchi_ng; the efficiency of AVL trees d'epends‘ on particuilar
‘properties of the member searching problem other than decomposability (in

parﬁcular, the ability to maintain the structur_ai'in'variant under rotation).

Our model of computation is that we have three operatidns, Buiid, Query, and O,
whose inner workings we may not examine. Build works with performance Pg to
create static structures. Query works with performance Qg to search the

structures created by Build. The J operator is guaranteed to have the property

CI(Query(x,Buiid(A)),Query(x,Build(B)) = Query(Build(A V B))
The only way to answer a query is by applying Query one or more times to
structures created by Build and then combining the results using 0. It is assumed

 that Pg grows at least linearly and that Qg is monotone non-decreasing.

To measure the computation costs (Pp and Qp) associated with a dynamic
structure, we will charge only for the computation time of callé to Build‘and Query. It |
shodld be noted that these costs will generally be ti'le dominant parts of the total
costs qf the dynamic algorithms. In any case, this approximation is certainly
acceptable for the purpose of establishing fower bounds on the costs of dynamic

ajgorithms.

OQur goal in the search for efficient transformations is to minimize simultaneously
the penalty functions
F(N) = Max Qp(1)/Qg(l) and
(N) = Mox 9o)7Cs

~ G(N) = Pp(N)/Pg(N). |

The bulk of this section will be devoted to showing limits on just how far this
process may be carried in the worst case. Our interpretation df the term "worst
case" in this context is a bit tricky. We have.already mentioned that we may
assume no specific knowledge about the problem or the original static structure

except for decomposability. It is aiso important to note that we do not allow
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ourselves to assume any specific knowledge about the efficiency of the underlying
static structure, except that P is at least linear and G is monotone non-decreasing.
(Note, for exampie, that the improvements in F and G which occur for fast-growing P
and Q are not examples of worst-case behavior, so there is no contradiction in the
fact that our lower bounds deny the possibility of such improvements in the general

case.)

The reader may find it heAlpful to think of the worst case as that in which P is
linear and Q is constant, the intuition being that it is hardest for the dynamic
structure’s costs to approach the static structure’s costs when the latter are as
smail as possible. Since we may not use any specific knowledge about the original
static problem or data structure, any solution to the dynah\ic problem must work by
‘maintaining a collection of static structures. Whenever an element is inserted, a
new structuré must be created containing that element12 and possibly some other
elements. Also, some existing static structures may be thrown away. When a query |
is made to the dynamic structure, it is necessary to search some set of static

structures which together contain all the elements inserted so far.

For the following analysis, we will place a few restrictions on the nature of the
dynamic structures we wilt consider. We will return later to the problem of justifying

these restrictions. OUr first restriction is as follows:

Restriction 4.1: (Dynamic structures partition elements into static structures)
We assume that at any time there exists exactly one static structure
containing each element which has been inserted so far. That is, the static
structures partition the set of elements represented by the dynamic structure.

‘With the preceding assumptions in mind, we are now ready to move on to the first

steps of our analysis.

12While we may conceive of strategies in which new static structures are created by queries into the dynamic

structure, we need not consider this possibility for this worst-case analysis, since Pg could grow much more
rapidly than Qg. . !
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4.2, Computing F and G

We now give some ruies for determining the worst-case values of the penaity
functions F and G associated with a particular strategy.

Definitioné: (f and g) ,
Consider the history of a dynamic structure over the course of any number of

insertions starting when the structure is empty. We define f(N) as the
maximum number of static structures existing after one of the first N
insertions. We define g(N) as the sum of the cardinalities of all sets of
elements built into static structures created over the course of the first N
insertions. '

Note that, while the definitions of f and g actually depend on the specific
transform used, the identity of the transform under consideration will always be

clear from context. We may now bound F and G as follows:

Theorem 4.1: (f bounds F)
For any positive integer N, F(N) £ f(N).

Proof:
After any of the first N insertions (say the i-th), at most f(N).static structures

exist. To compute the cost of answering a query, we charge precisely for '

querying these structures. Since each of these structures has cardinality no
larger than i, and since Qg is monotone non-decreasing, the total cost is at
most f(N)Qg(i). QED. :

Theorem 4,2: (g/N bounds G)
For any positive integer, N, G(N) £ g(N)/N.

Proof: . :
We note that any static structure built during the first N insertions will have
cardinality no larger than N. Consider such a structure, S, having cardinality 1.
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By the fact that Pg grows at least linearly, we may bound the cost of building
S by the inequality

Pg(i) £ iPg(N)/N

Summing over all static structure, we get
Pp(N} < g{N)Pg(N)/N,

implying
G(N) = PpN)/P5(N) § g(N)/N.

QED.

By the assumptions in Subsection 4.1, the preceding bounds are the tightest
possible for the general case. We will therefore concern ourselves henceforth with

the problem of minimizing f and g rather than F and G.

4.3. Transforming History Diagrams to Trees

The transforms we discussed in Section 3 are all representable by history
diagrams, such as those in Figures 3.1, 3.4, 3.7, 3.8, and 3.11. It is not the case,
however, that all transforms are so representable; in order for a static structure to
be represented as a (contiguous) rectangle in a history diagram, it is necessary that
it be built from a set of elements which were inserted coﬁsecutively during the
history of the structure. We now impose our second restriction on the class of

dynamic structures to be considered:

*Restriction 4.2: {Contiguity of static structures)
We will restrict our attention to transforms whose histories are'representable
by history diagrams.

Indeed, we will further restrict our attention to those history diagrams (such as the
ones in Section 3) in which every rectangle reaches to the "diagonal* of the

diagram. We may state this otherwise as

Restriction 4.3: {(Eagerness of static structures)
We will restrict our attention to transforms in which each static structure is
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built as soon as all its elements have been inserted, and in which the elements
of any discarded static structure are always built into a single new static
structure (along with some additional elements).

Strategies which satisfy Restrictions 4.1, 4.2, and 4.3 will be called arboreal '

strategies for a reason that will soon become obvious.

Consider the history diagram for the first N insertions into a dynamic structure
which is maintained by én arboreal strategy. Any such diagram induces a binary
tree, as shown in Figure 4.1. We may draw this tree by tracing the left and upper
edges of each rectangle in the diagram. The internal nodes of the tree will thus be
‘at- the upper left corners of the various rectangles; each internal node of the tree
corresponds to a (unique) static structure. We w'Ill now go oh to study some

‘relationships between the efficiencles of arboreal strategies and properties of their

_ ._ . —
J—l - fison(a)| rson(a) ' .
A

15 | | - al- ‘\I/II l

Induced trees.

‘{rson(a)|
10
J—l_l Ison(a) I l |
6
3 .
T

s

(a) A partial history diagram ' (b) The induced +ree 7

Figure 4.1. A history diagram and its induced tree,
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4.4, Tree Properties and their Relation to Performance

} We now introduce some basic vocabulary for discussing properties of binary

trees.

Definitions: (Tree properties)

Let T be a binary tree. Then leaves(T) denotes the set of all leaves of T and
nodes(T) denotes the set of all internal nodes of T. The weight of T, denoted
|T], is defined as the cardinality of leaves(T). For any internal node, a, of T the
left and right sons of a are denoted Ison(a) and rson(a), respectively. If ais a
leaf of T, then the right depth of a, written rd(a), is defined as the number of
right branches along the path from the root of T to a. The right'height of T,
rh(T), is the maximum right depth of any leaf of T. The right path length of T,
R(T), is defined as the sum of the right depths of all leaves of T. .Left depth,
ieft height, and left path iength are defined analogously.

We will sometimes identify a (not necessarily internal) node, x, of a tree with the
subtree rooted at x. For example, we may write |x| to indicate the number of

leaves which are descendants of x.

We now make the following observation:

Theorem 4.3: (Alternate characterization of left path length)
Let T be a tree. Then,

L(TY= 2 |ison(n)|
n € nodes(T)

Proof:
Consider any leaf, x, of T. We need 6niy note that the left branches along the:
path from the root of T to x emanate precisely from those nodes of T whose
left sons contain x. QED.

With this characterization of left path length in mind, we may now relate the trees
induced by arboreal strategies to the penalty functions associated with those

strategies.
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Consider the tree in Figure 4.1(b). To each static structure created during the
partial history represented by that tree, there corresponds a right (horizontal in the
diagram) branch whose length (in the diagram) is proportional to the cardinality of
that static structure. Moreover, for any Intémal node, n, of the tree, the length (in
the diagram) of the right branch from n corresponds precisely to the number of
ljeaves in the left son of n. By summing over all internal nodes of the tree, we:

establish the following resuit:

Theorem 4.4: (Relatlon of g to left path length)
Let N be a positive integer and let T be the tree induced from the history
diagram representing the first N insertions into a dynamic structure maintained
by some arboreal strategy. Then, L(T) = g(N). '

Proof:
Given in the preceding text. QED.

We may also characterize N and f in terms of tree properties:

Theorem 4.5: (Relation of N and f to tree properties)

1 Let N be a positive integer and let T be the tree induced from the history
dlagram representing the first N insertions into a dynamic structure maintained
by some arboreal strategy Then,

. IT} =N+ 1 and
rh(T) = f(N).

Proof:
Inspection of Figure 4.1 will reveal that these results are obvious. QED.

The theorems proven so far in this section aliow us to address the problem of
"simultaneously minimizing® F and G by investigating a closely related problem about
trees, namely that of “simultaneously minimizing" the right height and left path

length of a tree with a fixed number of nodes. To discuss this more precisely, we
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make the following definition:

Definition: (Minimal left path length)
Let n and k be positive integers. We define

Lk(n) = Min {L(T) | T is a tree such that |T} = n and rh(T) £ k}.

Since the only tree with zero right height is the tree of one node (whléh also
has zero left path length), we aiso define

Lo(1) =0
By convention, we will regard Lg(n) as "positive infinity" whenever n>1. A tree

with n leaves, right path length k, and left path iength Lk(n) will be called an
economical tree.

In the next few pages, we will investigate the behavior of Ly (n) as k and n vary,
and then restate our findings in terms of lower bounds on worst-case penalty

functions. .

4.5. The Behavior of Li(n)

Consider a binary tree, T, with root node t. Let A and B be the subtrees rooted at
a=lson(t) and b=rson(T), respectively. The weight, right height, and left path length
of T may be recursively computed from properties of A and B by the relations

IT] = |A] + |8}, ,
rh(T) = max(rh(A), rh(B)+1), and
L(T) = L(A) + |A] + L(B).

From this, we obtain the following recurrence for Ly(n):

Theorem 4.6: {Recurrence for L (n))
Let n and k be any positive integers. Then,

o - n=1
Li(n) = {n-1+L4(n-1) = (1) k=1, n>1
Min [Ly (i) # T+ L_q(n-)] k>1, n>1

3%isn=1
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- Proof:
' The resuits for k=1 follow by considering the unique binary tree of any weight
which has right height £ 1. For the case k)'1, we consider a tree, T (with root
t) having weight n>1 and height k. Let t be the root of T. And let A and 8 be
. the subtrees rooted at a=zison(t) and b=rson(t), respectively. Then we must
have: '
1 < JAl €,
1Al + 18] =,
rh{A) £ k, and
rh(B) £ k-1. o :
Moreover, if the left path length of T is to be minimal, the left path lengths of A
"and B must be minimal. That is, we must have o
L(A) = Lk(lAl) and
L(B) = Ly.-1(|B].

These requirements are precisely captured by our recurrence. QED,

We now come to the principal theorem of this section, wherein the behévlor of

Lk(n) is precisely characterized in terms of binomial coefficients. -

Theorem 4.7: {Characterization of L (n)) .
Let k and m he non-negative integers such that k £ m, and let n be a positive
integer satisfying

()< ns (%)

- Then,
< (i24) + (ke |
Lk(n) = kK\get/ * (m-k~1)N, _ (1]
where
N=n- (ﬂ’)
Proof:

Our proof will proceed by induction on k and, for each fixed poSItlve value of k,
by induction on n. '

Base Step: (k = 0)
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in this case, we have

= (Mm+1
R =1=(%").
This implies that n = 1, so the right hand side of [1] reduces to

o{g™4) + (m-0-1)(n-(M)) = 0 + (m-13(1-1).
=0
= Lg(1)

Inductive Step: (k > O)
We now must show that the theorem holds for any k>O assuming it holds
for all smaller k., We proceed by induction on n. In doing this, we must

take note of the interaction between m and n. Since k is positive, {{)
increases monotonically with m. Thus, the minimum possible value of n is

(E) = 1, and for any positive value of n, there is at least one possible
value for m (and occasionally there will be two).

Base Step: (n = 1) ‘
| In this case, we must have m = k, so the right hand side of [i]
reduces to

k(i Xq) + k=1 1-()] = k(0) + -1)C1-1)
=0
= Lk(1).

Inductive Step: (n > 1)

We first show that the right hand side of {I] gives an upper bound
on Li(n). Note that

(%)« (1) = (@) < n < (BF1) = () + (™).

We now pick a and b such that

() <as (M), [
m-<o< (™) and |
a+b=n,

By Theorem 4.6, we have
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L(n) € L(a) + a + L_q(b)
=k ]) ¢ (me1)-k-1)(R) +
(W1)+as -
k-1 1) + ((m=-1)-(k-1)-1)(B)
= K[+ (1)) + (mk-1)(A+B)
T s k(M) + (mek-1)N,

where,

This establishes that our expression is an upper bound on Lk(n).. To
establish that this is also a lower bound,-'we must show that no
other way of expressing n as the sum of two positive numbers, a
and b, will give a smaller value for ' '

Le(a) + a + Ly-1(b) L]
To show 'this, we consider the effect on the value of expression ,
[11] of increasing or decreasing a by steps of one.13 Suppose we
start ‘with a and b chosen to satisfy [H], and then start
incrementing a and decrementing b by steps of 1. So long as a
remains less than (E‘) and b remains greater than (w:fj), the effect
of each increment will be to increase Li(a)+a by
((m=-1)-k-1) + 1 = m-k-1 and to decrease  Li.¢(b) by
(m=-1)-(k-1)-1 = m-k-1, leaving the total value of [I!] unchanged.1 4
However, as soon as either a or b exceeds the stated bound, one or
more of the following things will happen:

1. The incremental growth of L (a) will increase while the
incremental shrinkage of L, ._1(b) decreases or remains

v

13
Lo(b) defined.
14

In the following, we assume that k > 1. if k = 1 we must always take b = 1 {and a = n-;1). since only then is

The incremental changes given here are found by substitution into the second term of the right hand side of
(1], under the induction hypothesis.- ' :
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the same,

2. The incremental shrinkage of L,_4(b) will decrease
while the incremental growth of Li(a) increases or
remains the same, or

3. b will diminish to O.

In any case, a smaller value for [lil] will not be obtained. Similarly,
if we start with a and b as in [Il] and decrease the value of a while
increasing b, then we will have zero or more steps at which [lil]
remains unchanged, zero or more steps wheére the Increase in
Lk-1(b) exceeds the decrease in 'Lk(a) + a, and finally the step at
which a diminishes to zero. Thus, the rules given in [HI] give an
optimal partitioning of n into a and b. This completes the induction
step and the proof. '

QED.

The use of‘the auxiliary variable, m, in expression [|I] makes It a bit difficult to
grasp intuitively what is being said about the effects of n and k on Lk(n). To make
the picture ciearer, we will briefiy study the asymptotic behavior of Li(n) as k
remains fixed and n grows without bound. Consider first what happens as n ranges

only over binomial coefficients of the form ( ) We note that
ns (k) = m-k+1 < (k)X < m.

SO',
Lk(n) = k(kn,:.-I)

=kn(m-k)/(k+1)
~k/Ck+ 1)kt kT /K

Since the growth of Ly (n) is very well behaved.15 the preceding may be extended

15 . ) .
5G|ven the values where n is of the form "m choose k", we can find the exact values at all other n by linear
interpolation,
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to cover all values of n.

Theorem 4.8: (Asymptotic behavior of L\ (n))
Let k be any positive integer. Then,

Le(m) ~ [k/(k+ D10 THT7K,

Proof: _
The result follows directly from the preceding text. QED.

By precisely characterizing L (n), Theorem 4.7 gives us a bound on the
efficiencies of arboreal static-to-dynamic transforms. Any such strategy which has
f(N) < k for ali N must always have g{N) 2 L (N+1). The asymptotic behavior of Ly(n)
given by Theorem 4.8, and our knowledge that Theorems 4.1 and 4.2 are 'the best
possible within our model, tell us that whenever we have

F(N) < k
for any positive integer k, we must also have

GIN) 2 L (N+1)/N ~ (k) 17K,
This is the precisely behavior achieved by the k-binomial transforms, up to lower
order terms. Note, however, that the exact lower bound is not aiways achievable.
The _r'eason for this is the consideration of immutability of history. If we know in
advance that there will be exactly N inéertions, then an optimal strategy can be
‘devised by working backwards from an economical tree of weight N+1 and right
height k. But if the total number of insertions to be made turns out to be larger,
then ‘a different 'strategy for the first N .insertions may have been called for.
Fortunately, the resuits of this restriction turn out not to be too severe, since the
k-binomial strategies have efficiency very close to this theoretical limit. The
following theorem shows that, for any k, the G(N) achieved by the k-binomial
‘transform is optimai (for F(N) € k) not only to within lower order terms but actually to

'within an addive constant of 1.

Theorem 4.9: (Optimality of k-binomial transforms)
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For any positive integer, k, the k-binomial transform achieves

f(N) £ k and
g(N) £ L(N+1) + N

for all positive N.

Proof: ,
Examination of the optimal construction given in the proof of Theorem 4.7
shows that the k-binomiai strategy achieves the optimal value of

f(N) = Li(N+1)

when N is of the form

N= () -1

for some m2k. For intermediate values of N, we need only note that, after the
first N insertions under the k-binomial strategy, the sum of the cardinalities of
all structures formed so far except those in existence after the N-th insertion
(note that these latter must have a total cardinality of N) will never be greater
than Lig(n). This fact may be established by induction on k, using the fact that -
vaiues of Li{(n) are given exactly by linear interpolation between points at
which the k-binomial transform gives absolutely minimal values of f(N). QED.

4,6. Allowing the Number of Static Structures to Grow

So far in this section we have only considered minimizing g(N) where f(N) is
bounded by a constant. in other words, we have considered only strategies which
allow some fixed maximum number of static structures to exist at one time. In
Section 3, however, we also investigated strategies (the binary and the dual
k-binomial transforms) which allow the the number of static structufes to grow
without limit as the total number of elements in the dynamic structure increases.
we will now, therefore, briefly Investigate transforms which allow f(n) to grow

without bound.

To study the efficiency of transforms in which f(N) is unbounded, we may
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consider the behavior of.Lk(n), where k is allowed to vary with n.-16 We must be
‘aware of two possible consequences of allowing k to Qrow:

(1) For any particular k, n may never grow large enough fc;r Lk(n). to
approach the asymptotic behavior given by Theorem 4.9, '

(2) Our previous caveat about the immutability 61‘ history may become more
significant. '
Since the asymptatic approach of Ly(n) / [k/(k+1 )]k!1 Tkpt+1/k ¢4 unity (as n grows
and k remains constant) is from below, (1} may be ignored for the purpose of
investigating upper bounds. Since the immutability of history can never make it.
easier to devise efficient transforms, this consideration may be ignored for the
investigation of lower bopnds. ‘Becau-se of these complicating factors, our results
for transforms with unbot;nded f -are less precise than those for bounded f. A few

results are nonetheless worth noting. The first of these Is the following.
Theorem 4,10a: (Optimality of the binary transform)

For any arboreal transform such that f(N) = O(lg N), g(N) = {(N ig N).

Proof:
Since constraining the growth of f can only increase and never decfease the
necessary growth of g, we need only consider the case where f(N) = 8(lg N)..
We must show that Lf(N)(NH) = §2(N.1g N). We define the function M by

M(nk) = Max {m | (E‘) < n}.

From the fact that f(N) = 8(ig N), it follows that M(N,f(N)) = #(n) = 8(ig N). This
gives us - |

i

In- accordance with the notational conventions of this section, we have X = #(n) = f(N+1), sinee the first N
insertions always give a history diagram which induces a tree of wenght N+1

16
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g(N) 2 LNy (N+1)

Leny(N)

f(N)(MiEEﬁf(N)))

[FNY/CECND=1 ) JIM(N,F(ND-F(N)IN
= §(N Ig N) = (N Ig N).

v v

QED.

1

' This resﬁit tells us thét the binary transform is optimal in the sense that any
transform that pays as Ismall a penalty in search cost (within a constant chtor)
must pay at least as Iérge a penalty in insertion (again within a constant factor);
any arboreal transform which achieves F(N) = O(lg N) in the worst case must also
pay G(N) = Qg N).1? The binary transform is also optinial in the sense that any
Itransform which Is actually cheaper (by more than a constant factor} for searches
must be strictly more expensive (again byh more than a constant factor) for

insertions. We state this result more forméliy in the following theorem.
Theorem 4.10b: (Optimality of the binary transform)

For any arboreal transform such that f(N) = o{lg N), g(N) = w(N Ig N).

Proof:
Let the function h be defined by

h(N) = (Ig N)/f(N).

From the hypothesis that f(N) = o(lg N}, it follows that h(N) = w(1). Moreover,
since M(N,f(N)) £ Ig N, we have f(N} = o(M(N,f(N)), which means that the
approximation in Theorem 4.8 remains vaiid. '8 This gives us

17This follows from the fact that Theorems 4.1 and 4.2 are the tightest results possibis within our model.

18Tha1 is, consideration (1) may be disregarded.
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g(N) 2 Lf(N)(N+1)
2 Le(nytN) -
~ LHNY/CEN+ 1) TN T FNI T+ 76(N)
~ L1307 eN /TNy

[(g N)/(e hiNy)J2P NIy

w(N Ig N).

QED.

This implies that any arboreal transform which achieves F(N) = o(lg N) in the worst

case must also pay G(N) = w(ig N).

in the préceding proofA, we saw that the approximation given in Theo.rem 4.8 still
serves to provide a lower bound on the growth of g even when-f is allowed to grow -
without bound, provided that f(N) = o(ig N). The next naturai question is whethe'r
this bound can always be achieved. It turns out that this is not always possible. if
f grows in a very irreguiar manner, having sudden spurts of growth separated by
.intérvals of atmost no change, then .the immutability of history will cause g(N) to be
much larger than Lf(N+1)(N+1) for values of N immediately following the sudden
increases. If f grows "smoothly” (the precise meaning of this term Is implicit in the
following theorem), howe(:er. this lower bound for g(N) is very nearly obtainable. We

state this resuit formally as follows.

Theorem 4.11 (Optimizing g for slowly growing f)
Let h be a differentiable function such that

hi{x) = w(1}. and
h'(x) = o(1/x).

Then, there exists a tra-nsform having

£#(N) < Th(W)1 and | 1]
g(N) ~ (h(N)/e)N 1+ 1/hN), ‘ | [113

Moreover, given [1], [1I] is optimal up to lower order terms.
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Proof:
A structure having the performance described may be formed by a process of .
- "cutting and pasting" from the history diagrams of the various k-binomial
strategies. We omit the details for brevity and for the sake of keeping the
reader awake. The optimality of [il], given [I], is implicit In the proof of
Theorem 4.10b. QED.

Our results for transforms in which f(N) = w{lg N} are much less compiete. In
particilar, we know that the performance of the dual k-binomial transforms falls
substantially short of the bound given by the inequality

g(N) 2 Lypy(N+1).
We conjecture that this is an inevitabie penaity of the immutability of history, and
that the duai binomial transforms are in fact optimal in some strong sense, similar to
that of Theorem 4.9 for the ordinary binomial transforms. The problem of findlng
optimal transforms in which f(N) grows faster than Ig N but siower thesm'rnE for any

positive € remains open.19

4,7, Justification of the Restriction to Arboreal Transforms

in Subsections 4.1 and 4.3, we introduced three restrictions which together
constrained our investigation to arboreal transforms. While we conjecture that
arboreal strategies are optimal, in the sense that for any non-arboreal transform
there exists an arboreal transform which is at least as good (given the "black box"
Jmodel described in Subsection 4.1), we have not yet found a rigorous proof, In this
subsection, we will summarize our reasons for considering each of the restrictions

reasonable,

1

Restriction 4.1 forbids the existence of multiple-structu'res containing the same

element. Our intuition is that any strategy which permits such overlapping

1QWe may view equivalently view this as the problem ot optimizing { when g(N) grows asymptotically faster
than N but slower than N Ig N.
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structures can be improved by omitting the shared elements from all but one of the
overlapping structures. To justify this intuition would require careful examination of
the consequences of this omission when that one structure is finally destroyed. We
‘may also forbid overlapping structures on the grounds that tfansformations which
allow them cannot be optimal for space in the worst case. An even more serious
objection is that there are a number of problems which satisfy the definition of

decomposability only when the unions involved are of disjoint sets.

Our intuitive justification for Restriction 4.2 (contiguity of static structures) is the
belief that a partial history which does not satisfy this restriction can be turned Into
‘one that does, at no cost in f(N) or g(N), by a kind of "permutation. of the names of
the elements." To show this would justify the restriction at ieast for the cases
where f is bounded or gréws slowly and smoothly, so that the immutability of history _

is not a significant problem.

For Restriction 4.3, we can actually give a rigorous justification, at least over the
class of transforms which alrea'dy satisfy Restrictions 4.1 and 4.2. We express this

in the following theorem:

Theorem 4.12: (Optimality of eager strategies)
Let N be a positive integer. For any partial history consisting of the first N
insertions and satisfying Restrictions 4.1 and 4.2, there exist a partial history
which aliso satisfies Restriction 4.3 and which has f(N) and g(N) no greater
than those for the original partial history.

Proof: _
Any partial history which satisfies the first two restrictions may be
represented by a history diagram. We may insure that the rectangle in the
upper left corner of the diagram represents a structure which is formed as
soon as all its elements become available, for any diagram which does not have.
_this property can be transformed at no cost into one that does. The
construction is as follows:
Let R be the upper left rectangle in the diagram. Consider the leftmost
rectangle immediately below R. If it is wider than R, then we extend it |

v
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upwards to the top of the diagram, abliterating R; if it is narrower than R,
then we extend R downwards by one step. This process is repeated
until the property holds. _
But now the rest of the diagram (excluding the upper-left rectangle) must
consist of zero, one, or two staircase-shaped pieces to which the same
process may be applied recursively, finaily yieiding a diagram satisfying
Restriction 4.3. No step in this process increases either the total
preprocessing cost or the maximum number of simultaneously existing
- . structures, so Restriction 4.3 has been formally justified. QED.

4.8. Limitations on the Significance of the Lower Bounds

The lower bounds we have derived in this section are based on the model of
computation given in Subsection 4.1. Before concluding the section, we will mention

some of the limitations which thiS implies for the applicability of our results.

We have already mentioned that it is often possible to obtain superior dynamic
data 'stfuctures for individual decomposable problems (e.g., Member) by using
specific properties of those problems. Another assumption on which our lower
bounds depend is that Theorems 4.1 and 4.2 are the st{rongest possible results of
fthei.r kind, because we assume no knowledge about the performance of the original
static algorithm. As we saw at the end of Subsection 3.1 the penalty factors, F(N)
and G(N), may be greatiy reduced (from 8(Ig N) to O(1) in the exampie of Subsection -
3.1 if the cost functions of the static structure are already fast-growing. We now
present some results concerning a slightly different way of lowering the penalty

functions given fast-growing cost functions for the original static structure.

Suppose we are given a static structure for a decomposab!e searching problem
‘having preprocessing cost Pg(N) and query cost Qg(N). We will make only the usual
assumption about Qg--that it is monotone nan-decreasing. We will, however, make
the assumption that Pg(N) not only grows at least linearly with N, but is actually
'B(Nz). If we apply the 2-binomial (triangular) transform, will obtain a dynamic

structure having cost functions, Pp and Qp, which satisfy
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Qp(N) £ 2Qg(N) and
Pp(N) = o(NS/2), '

The reader is advised to go through the exercise of verifying the latter assertlon..

The penalty factor in preprocessing is given by

G(N) = Pp(N)/P5(N) = 6(N"/ 2),
which is at most a constant factor improvement over the worst -case result given in
Theorem 3.2. We appear to get negligible compensa_tlon for the fact that the
preprocessing cost is already much more than linear. If we ook a little more

carefully, however, we may notice an interesting phenomenon.

~In the triangular strategy, we maintain two structures, a large one,' having
cardinality O(N), and a small one, having cardinality O(N1 /2). if we break down
Pp(N) into the cost of forming ali the large structures built during the first N
linsertions and the cost of forming all the small structures built during the first N
insertions, we find that the large structufes have a total cost of a(NS/2), while the
total cost of the small structures is only 9(N2). If Pg had been linear, then the
;::osts of the two families of structures would have been equal within a constant
factor, each being 9(N3/2). The present disparity suggests that it might be better
to merge the small structures into the large ones less frequently. And, indeed, if we
adopt the strategy of rebuilding all the elements into a single structure only when
the size of the small structure would exceed N_2/~3’ we achieve a dynamic structure

having

Qp(N) £ 2Qp(N) and

Pp(N) = 8773y = o(n 1/ Bp(N))
(as the reader may again wish to vertfy). the total preprocessing cost bemg split
evenly (within a constant factor) between the two families of structures. .The
preceding results may be generalized to arbitrary polynomial preprocessing costs

and arbitrary binomial transforms, as shown in the following theorem.
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- Theorem 4.13: (Shift-of-strategy speed-ups) ,
Let k be an arbitrary positive integer and let r be a real number‘?0 greater than
1. Suppose that we are given a static structure for a decomposable searching -
problem with cost functions satisfying the following criteria: )
Qg(N) is monotone non-decreasing,
Pg(N) grows at least iinearly, and
Ps(N) = w(N").

Then, a dynamic data structure can be constructed such that

Qp(N) £ kQg(N) and
Pp(N) = O(NRPg(N)),

where

R = (r-1)/(rk-1).

Proof:
We maintain a set of structures satisfying the following invariants:

{1) After any insertion there are at most k static structures.

(2} Let | be a positive integer. After the N-th insertion, the
cardinality, Cj, of the j-th largest structure (if there are at least
j structures in existence) satisfies

c;j< nirk=ri)/(rk-1}

When an element is inserted, we see how many structures aiready exl'st. If
there are fewer than k, we simply build the new element into a static structure
of cardinality one. If k structures already exist, we rebuild the smallest
structure to inciude the new element. We then repeatedly (zero or more
times) merge the smallest two structures until (2) is satisfied. We leave it to

the reader to verify that this strategy achieves the advertised performance.
QED.

ZoThe nit~picking reader will delight in noting that it is not quite correct to allow r to be an arbitrary real number.

IIn order for the desired transform to be implementable, r must be Turing computable. Even then, if r is very
| expensive to computo, the bookkeeping costs may kill us. Similar considerations apply to the function h in
Theorem 4,11,
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In any strategy based on the construction in the previous proof, the total
. preprocessing will be divided evenly {Up to constant factors) among k families of
structures. We conjecture that this gives optimal Pp within a constant factor
(which may clepc_and on r and k). Needless to say, similar improvements are availéble,
both in preprocessiﬁg time and In query time, for a nurﬁber of other transformations,
given sufficiently fast-growing cost functions, Only. a small fraction of the

possibilities have been explored.

_ 5. Online Transformations

All of the transforms in Section 3 have the property that some insertions are very
cheap while others are very expensive. _‘For example, in the binary transform the
1023-rd insertion is much less costly than the 1024-th. While this situation is quite
acceptable in certain applications (such as when the total cost of accessing a
‘structure throughout an entire algorithm is counted), it is prohibitive in others (such
as online data bases). In this section we will show how the tra;nsforms in Section 3
‘can be modified to amortize the cost of building static structures over the time of

many insertions.

' In Section q, We worked on the principle that any static structure might as well
be formed as soon as all its elements became avai!ablé, since the cost of building it
would eventuaily have to be paid anyway. While this is reasonable if we are
concerned only with the total cost of ali insertions, it is inappropriate if we wish to
make Lsure that no individual insertion is inordinately expensive_. Figure 5.1 shows a
strategy which is similar to the binary strategy of Subsection 3.1, except that each _
structure of cardinality C is completed at the end of the C-th insertion that all its
elements are available, rather than at the end of the first such insertion. A
structure, s, is said to be pending during the N-th insertion if the ail elements of s
become available at or before the beginning of the N-th insertion and s Is completed
during the N-th insertion or later. (The x's in Figure 5.1 denote the structures that
are pending during the eighth insertion). A structure of cardinality C will therefore

be pending during exactly C insertions.
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Figure 5.1. The online binary transform.

To limit the work done in any insertion step, we require that 1/C of the work

required to build any structure of size C be performed during each of the C steps in

which that structure is pending.21 We call the resulting fra.nsformation the online
binary transformation. Analysis of this transform’s performance yields the following

theorem,

Theorem 5.1: (The on-line binary transformation)
Suppose we are given a static structure, S, for a decomposable problem such
that

(1) Qg(N) is monotone non-decreasing,

(2)-A structure of cardinality N may be buiit by N calls, each of cost
Is(N) (recail that Ig(N) is defined as Pg(N)/N),

(3) Is(N) is monotone non-decreasing,

21_The exact means by which this is ensured are left unspecified. We may modify the static algerithm to include

- appropriate breakpoints (generally an easier lask than totally reworking the algorithm into a dynamie algorithm by
ad hoc methods), or we could assume that we can determine the required computation time in advance (at
negligible cost) and set a hardware interrupt. For cur present purposes, we will assume that the ability to partition
the compute time of a call 1o Insert is available by magic. It should also be noted that the partitioning of the work
into equal parts will not be exact in in practice; this will fead to siightly greater insertion times than those we are
about to advertise.
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(4) The space used at any point during the formation of a static
structure is at most Sg(N), and

(5) Sg(N) grows at least linearly.

Then, therelexists a dynamic structure, D, such that

ap(N) $ 2ligiN+1)]ag(N),
In{N) < Nig Nhig(N), and
Sp(N) £ 3Sg(N)
(recall that Ip(N) is the worst-case time to insert the N-th element In a
dynamic structure).

Proof:

By assumption (2), application of the online binary transform is well-defined,
We will now show that the' resulting dynamic algorithm has the stated
performance. We first note that ail structures which are either active
(completed but not yet discarded) afte_l" the N-th insertion or pending during
the N-th insertion have cardinalities which are exact powers of two and which
are £ N. Moreover, there are never more than two active structures of any
given cardinality. This and assumption (1) justify the claim about Qp. Similarly,
assumption (3) and the fact that there is never more than one pending
structure of any cardinality together justify the claim about ipn. Finally, we
note that the sum of the cardinalities of all structures active and pending after
the N-th insertion is no more than 3N (N for the active structures and no more
than 2N for the pending structures). Together with assumptions (4) and (5),
this fact justifies the claim about Sp. QED.

To iflustrate the application of the online binary transformation, we will consider
the problem of d-dimensional maxima searching. A vector is said to be maximal with
fespect to a set of vectors if no vector in the set is greater than the given vector
in all coordinates. Preparata [1978] has given a data structure SMS for
d-dimensional maxima searching with performances

Psis(N) = O(N 19972 1),
Ssms(V) = o(N 1g972 N), and

1
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asms(N) = 00g%"2 n),
for alny dz3. Applying the online binary transform to this structure yields the

following.

'New Data Structure 5: (Dynamic Maxima Searching)

For any fixed d 2 3 there exists a dynamic data structure DMS for
d-dimensional maxima searching with performance

Ioms(N) = 0(lg?" 1 Ny,
ApmsN) = 0lg® 1 Ny, and
Spms(N) = o(N 1g972 N).

This structure has the same performance as Lueker's [1979], but is substantially
‘easier to code and prove correct; his structure, however, also supports deletions.

(The two structures were discovered independently.)

15 - ' 15
10 10| : [
o It
6 _ 6

=) | Nz

Figure 5.2. Online triangular transforms.

The other transforms we have studied may aiso be modified to give online
versions, as shown by the examples in Figure 5.2. The online triangular transform,
shown in Figure 5.2(a), gives the performance:

ip(N) < (2N 12150,
QD_(N) < 3Qs(N), and
Sp(N) £ ZSS(N)._
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Similarly, the online dual triangular transform, shown in Figure 5.2(b), achieves

IptN) € 215(N),
ap(N) < 3(2N) 1/2ag(N), and
Sp(N) ~ Sg(N).

Determination of good lower bounds for the penalty factors associated with online

transformations remains an open problem.

6. Transformations that Support Deletion

So far in this paper we have considered dynamic data structui’es that support
only insertions and queries. in this section we will present two results deallng with
data structures that support deletions and their reallzatidn.by decomposable‘
transforms. In Subsection 6.1 we present a negative result that says that, in
general, it is impos_sible to achieve by a transform a data structure that efficléntly
supports deletions. In Subsection 6.2 we will examine a transformation that
efficiently achieves deletion, but is applicable only to a subset of the decomposable

searching problems,

6.1. A Lower Bound

In this subsection we will study a lower bound on the efficiency of performing
deletion in a structure achieved by a decomposable transformation. As with ail
iovyer bound proofs, it is important that we accurately define our model of ‘
cdm_putation. which is very similar to that used in Section 4, We aésume that there
is a static structure S with operations Build and Quéry‘. which have performan..ces Ps
and Qg, respectively. The function Pg grows at least linearly, and Qg is positive
"and monotone nondecreasing. There is no way to answer a query other than by

‘using the Query subroutine (on a structure bi.lilt by Build) and the O operator. The
only costs that we will count are those of Pg, Qg, and a constant cost for

computing Ll.

To state the lower bound precisely, we need some definitions. For a dynamic

structure with deietions (which we call DB) we will define the functions IBD(N),
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DBD(N), and QBD(N) for the insertion, deletion and query costs, respectively. To
strengthen' our result, we let these costs denote not the worst-case tlr_nes, but
rather the average cost (over a distribution that we will make precise in the prdof of
the theorem). We are now ready to state and prove the primary theorem of this

subsection.

Theorem 6.1: (Expense of deietion)
For any dynamic-strueture with deletions (which we call DD) obtained by a
transformation applicable 'to all decomposabie searching problems, there exists
a sequence of insertions, deletions and queries for which

[QBD(_N)] *[IDp(N) + DPpIN) + QH(N)] = SUN).

Note that this implies that at least one of the insertion, deletion and query
costs requires at least 2N /2) time.

Proof:

We will prove this theorem by considering a "steady state" in which there is a
structure of size N, and a sufficiently long string of repeated query, delete, _
and insert operations is performed. After M repetitions of these operations,.
the structure will still be of size N, and a total of M queries will have been
performed. Each query that is performed must examine some collection of
static structures whose total size is at ieast N (so that each eliement of the
set is represented In the query); assume that C*(N) such structures are
examined on the average. We therefore know that at least half the queries
examine no more than 2C*(N) static structures each (if more were examined,
then the average would be too high}), and in these cases the largest structure
examined must contain at least N/(2C*(N)) elements.

'Consid'er now an adversary who causes each deletion in the sequence to be
deleted from the largest existing static structure -- because of our model of
combutation, this structure must now be discarded. For sufficiently long
sequences of operations, static structures must be created as often as they
are deleted. The costs of building the static structure must therefore be ‘paid
in insertion, deletion; and query costs, yielding

 Ipp(N) + DPPIN) + QBp(N) 2 (1/2) Pg(N/2C*(N)).
(The right hand side is from the fact that at least one-half of the queries
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access a structure of size NIZC*(N), and the adversary always deletes that
structure.) We also know that '

Qpp(N) = R(c*(NY),

because each structure queried costs at least some constant. Multiplying
these two inequalities yields

[Q5p(N)] * [IHp(N) + DBp(N) + Qfp(N)]
= Q(CHN) * Pg(N/2C*(N)))

2(Pg(N))

QN).

The last two inequalities both foliow from the fact that Pg grows at least
linearly. QED. ' '

Maurer and Ottmann [1979] describe a static-td-dynamic transformation with
deletion that comes close to achieving this lower bound by ailways keeping
approximately N.”2 static structures, each of size approximately N1/2.
Fortunately, however, additional information can often be used to achieve more rapid
deletion outside the mode! for which this lower bound holds. (Any such trAnsform,

however, is not applicable to all decomposable searching problems.)

6.2. A Fast Special Case

Theorem 6.1 shows that any search for an efficient detetion transformation for alf
rdecomposable searching problems must be in vain. In this section we will see a
transformation that do'es:in fact efficiently support deletions as well as insertions,
but is not applicable to all decomposable searching problems. We will investigate
this transform by first studying a particular example, and then turn to the general

case.

The particular probiem that we will study is that of counting the number of times a
given element occurs in a multiset. A suitable static structure for this problem is the
sorted array, which we discussed in Subsection 3.1; it has performances

PsA(N) = O(N Ig N), | |
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SSA(N) = Q(N), and
OSA(N) = O(lg N).

We saw in that subsection that this structure can be transformed to yield the
binomial list data structure that efficiently supports both insertions and member
queries. It is a trivial modification to have it support count queries as well; the OJ

operator is now plus rather than or.

Binomial lists can be modified to support deletion by keeping two binomial lists at
all times, which we will cﬁll the real and the ghost structures. Each time an element
is inserted, it is inserted into the real structure. When an element is deléted, we
‘insert it into the ghost structure. To count the number of times an element occurs in
the set, we count the number of times it occurs in the real structure and subtract
from that the number of times it occurs in the ghost structure. We maintaln the
further invariant that the ghost structure always holds less than half as. many
elements as the real structure; when deletion of an element violates this invartant
we destroy the ghost structure, unbuild the set of élements in fhe real structure
~and subtract all deleted elements from it, and finailly rebuild that set into a new real

structure (giving an empty ghost structure).

We'must now analyze the performance of binomial lists with deletions. The cost
of ins’ertiﬁg an element and of performing 'a count search remain the same; they are
respectively O(lg N) and O(lg2 N). The "immediate" cost of deleting an element is
O(lg N} (for_ performing the insertion into the ghost structure); we must also .count,
however, the cost of rebuilding the structure. The cost of rebuilding an
M/2-element real structure is incurred only after M/2 elements have been deleted;

since the total cost is O(M Ig M), we can assign each element a share proportional

to Ig M. Thus the cost of deletion in an N-element set can be amortized to O(ig N).

- The strategy of using real and ghost structures can be generalized to give a
dynamic structure supporting deletions for any decomposable s'earchtn‘g probiem
whose {J Qperator has an inverse. The most common case is when [ is EE’ for
which I':i"1 is minus. If Dis_g_q_c_l or or, then one can often transform the problem to

involve plus instead (for instance, we could transform member queries to count
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queries, whose [0 operator is invertible). If 0 is multiset union, then this scheme

works 'only when the size of the answer set for the ghost structure is much smaller.
than the size of the total answer set (and this is often not the case). Finally, if U is

min or max, this scheme is usually impossible to apply.

To describe the strategy more precisely we will need some notation fc describe
the efficiency of structures with deletions. |f DD is a dynamic structure supporting
cdeletions, we let PDD(M,N) denote the total insertion cost involved in a sequence of
N insertions anci M deletions in an initially empty structure. The function QDD(M,N)
denotes the cost of answering a query iﬁ a structure built by N insertions and M
deletions. Finally, Dpp(M,N) denotes the total time spent in processing deletions in
a series of N insertions and M deletions, and Spp(M,N) denotes the maximum space
required by the structure during the sequence. With this background we can

describe the transformation supporting deletions precisely in the following theorem.

Theorem 6. 2 (Transformations supporting deletions)
Assume that there exists an admissibie (F(N), G(N)) transformation. Then,

given any static structure S for a decomposable searching problem P such that ;

the inverse of the [0 operator for P is computabie in constant time, it is
possible to achieve a new structure DD with performances '
Spp(MN) € Sg(2(N-M)) + Sg(N-M),
Ppp(M,N) € G(N) - Pg(N),
Qpp(M,N) € F(2(N- -M)) * Qg(2(N-M)) + F(N-M) * QS(N -M), and
Dpp(M,N) £ G(M) ~ PS(M) + Pg(2Mm).
We assume here that Qg is monotone nondecreasing and that both PS and Sg
grow at least linearly.

'Proof:
The DD structure maintains two dynamic structures (each achieved by applying
the admissible (F(N),G(N)) transform, to S): the real structure and the ghost -
strdcture Both structures are initially empty. To insert a new element inte DD,
insert it into the real structure. To answer a query, answer it on the real
structure and subtract from that the answer on the ghost structure (using

_1)._ To delete an element, insert it into the ghost structure. iIf the ghost
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structure ever becomes half the size of the real structure, rebulld the real
structure with only undeleted elements, and discard the current ghost
structure.

The storage requirements of DD follow immediately from the sdperlinear growth
of Sg. If a total of N insertions and M deletions have been performed, then at
most N-M elements are "really" stored in the structure. The ghost structure
can therefore contain at most N-M elements, and the real structure contains at
most twice that number. The time spent on insertion is straightforward, and so
is the query time. The time spent on deletion is at most that for inserting M
elements into the ghost structure and th’eﬁ rebuilding the real structure; this
latter action is never carried out on more than 2M elements. These facts
together establish the theorem. QED.

There are two important things to note about the transformation of Theorem 6.2.
The first is that it is ﬁot online in the sense of Section 5; as it stands, the expense
of rebuilding the real structure and discarding the ghost structure must occasianalily
be paid in a single block of time. The second interesting thing to note is the fact
that there is nothing magic about insisting that the ghost structure be one-haif the
size of the real structure: we could just as well use any constant A in the range
(0,1). For smail A, the query time decreases and the storage utilization is higher; for

large A, the deletion time decreases.

As an application of this transformation, we will consider the problem of Empirical
Cumulative Distribution Function (ECDF) searching in a set of N d-dimensional
vectors. ~ One vector is said to dominate another if it is greater than it In all
components; an ECDF query asks for the number of vectors a given vector
dominates. Bentley and Shamos [1977] describe a data structure for d-dimensional
ECDF searching (for d>2) with performances

Pecpe(N) = O(N Igd"1 N),
SecoR(N) = O(N 1991 N), and
Qeepge(N) = 0(|Qd N).

We can apply the binary transform of Section 3.1 and the transform of Theorem 6.2

to their structure to achieve the following.
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New Data Structure 6: (Dynamic ECDF Searching)

' It is possible to achieve a data structure for dynamic ECDF searchmg in which
:performmg a sequence of N insertions and deletions requures O(N Ig N) time.
When containing N elements, the structure requires O(N Igd
ECDF query can be answered in C!(Igd+1 N) time.

N) space, and an

Lueker [1979] later used a different transformation on decomposable searching
problems to achieve an (online) structure with performance Identical to this, but with
.a_logarithmic factor removed from the query time; his structure is more difficult to

code and to prove correct, however.

7. Conclusions

We will now briefly review the contributions of this paper. The subject
throughout has been general methods for converting static data structures to
dynamic data structures. In Section 3 | we saw three distinct classes of
transformations, each based on a combinatorial representation of fhe integers. In
Section 4 we saw that many of those transformations are opti'mal, in a very strong
' sense. In Section 5 we considered structures ih which each insertion must be
handled very quickly;. this is important in "online" applications. Our study of dynamic
structures up to this point concentrated on structures that supported only insertions
and queries; in ‘Section 6 we investigated structures that aiso support deletions.
We saw that although it is impossible to achieve efficient deletions in the general
case, they can be achieved for an import_ant subclass of  the decomposable

searching problems.

The contributions of this paper ca{n be classified on three distinct levels. On tﬁe
~ first level are the new data structures that we have seen. Each one is currently
the best known structure for its task {with the exception of New Data Structure 6),
and each was discovered by conscious application of the transforms described in
this paper. On a second level are the transformations themselves; they are very
interesting from a combinatorial viewpoint, and provide a useful addition to the

algorithm designer's tool bag. On the third and final level Is the new kind of resuit
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represented by the tranéformations: they are not just a single solution to a single
| problem, but rather a set of solutions to a broad class of problems. This aspect of
the work will be further emphasized in Part ii of this paper, Bentley and Saxe
[1980]. |
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Il. A List of Decomposable Searching Problems

Throughout the body of this paper we have examined a number of gperations on
dequposable searching problems. In this appendix we will list some (twenty-three)
searching problems that have the property of decomposability'. For each problem we

will note its O operator in square brackets.

The most common kind of searching problems are those defined on totally-ordered
sets. We already saw that Member searching (which asks "is x an eiement of F?")
Is decomposable with O operator V. Other examples are Successor (what is the
least element in F greater than x7)} [min], Predecessor [max], Rank (how many
elements in F are less than x?) [+], and Count (how many elements in multiset F
"~ have value x7) [+]. Two queries on ordered sets that have no query element are
the priority queue operations Min [min] and Max [max]. These problems, their
applications, and data structures for their solutions are discussed in depth by Knuth
[1973].

Mahy of the problems that arise in database applications are decbmposabie. In
this context, the set of elements is usually a file of records, each of which contains
certéin keys. An Exact Match query calls for a list of all records that have all keys
equal to specified values [U]. A Partial Match query asks. for all records that match
on some subset of the keys [U]. | Range queries ask lfor all records that have each
‘key in a specified range of values [U]. Intersection queries specify a subset of the
key space and ask for a list of all records in that subset (thus asking for the
intersection of the query space and the record set) [U]. Finally, Best Match queries
specify an "ideal” record-and a distance function (often the Hamming distance), and
ask for the record in the set closest to the ideal [min]. These queries and data

structures for answering them are discussed by Rivest [1976].

We saw in the body of the paper two decomposable searching problems that
arise in statistics. Both of the problems are defined in terms of vectors domination

(one vector is said to dominate another if it is greater in all coordinates). A Maxima



25 October 1979 Static-to-Dynamic Transforms ' | - 86 -

query asks whether the query vector is dominated by any in the set [v]. The
Empirical Cumulative Distribution Function (EC‘DF) query asks how many vectors ,é

given vector dominates [+].

Exambtés of decomposable searching problems abound in computational geometry.
Many quer'ies are asked of sets of points in the plane or Euclidean Kk-space,
including Nearest Neighbor (which point in the set is nearest the query point?) [min],
Furthest Neighbor [max], and Near Neighbor (list all points within distance d of the
query point) {U] queries. Other queries deal with more complicated objects. For
example, we mighf wish to know whether a given point is in the intersection of a set
!of haif-planes (this problem arises in linear programming); Feasible Region queries
lﬂre decomposable wilh the A operator, Other queries include Rectangle Intersection
(what rectangles in the set does this rectangle intersect?) [V] and Circle
Intersection [U]. These queries and many others have been discussed in detail by
Shamos [1978]. Dobkin and Lipton [1976] investigate a number of decomposable
searching problems in multidimensional space; these include such queries as "is this
point on any of the lines" [V] and "is this point on any of the hyperplanes" [V].
Many of thé other problems that we have already mentioned can be cast in

geometric terms; these include ECDF, Maxima and Range searching.

Convex Hull searching is a very interesting problem from the viewpoint of
decomposability. In its simpiest form--"is point x within the convex hull of point set
F?"--it is simple to prove that it is not‘decomposable, since whenever F contains at
least two points we can partition F and specify x so that x is not in the hull of
either part but either is or is not in the hull of the union. If we ask instead the
query "what does the huli of the set look like from here?" (the answer being either
an assertion that the query point is within the hull or a pair of angles giving the
extremal pbints of the hull as "viewed" from the query point), the problem Is now
decomposable. The transforms described in this paper are therefore applicéble to
any data structure for Coﬁvex Hull searching, provided that that structure can be
cheaply modified to answer the more complicated query. While this result is not of

‘particular interest in itself (since it is easy to develop a fast ad hoc algorithm for
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dynamic Convex Hull searching), it indicates a pdsslbly fruitful technique for
extending the domain of applicability of the transforms, namely the identification of
any searching problém P such that (1) P may be made decomposable by having the
query provide some extra information and (2) known static algo'rithms for P can be
altered to yield that extra information at low cost. ‘The ldentification of other such
"pseudo-decomposable" problems (and othef decomposable problems In general)

remains an open problem,



