
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



v o l 1 , ^ o , T ^ n r r W O . 

Decomposable Searching Problems I: 
Static-to-Dynamic Transformations* 

Jon Louis Bentley 2 

James B. Saxe 
Department of Computer Science 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 15213 

25 October 1979 

Abstract 

In this paper we will investigate transformations that serve as tools in the design 

of new data structures. Specifically, we study general methods for converting 

static structures (in which all elements are known before any searches are 

performed) to dynamic structures (in which insertions of new elements can be mixed 

with searches). We will exhibit three classes of such transformations, each based 

on a, different counting scheme for representing the integers, and then use a 

combinatorial model to show the optimality of many of the transformations. Issues 

such as online data structures and deletion of elements are also examined* To 

demonstrate the applicability of these tools, we will study six new data structures 

that have been developed by applying the transformations. 

1 T h i s research w a s supported in part by the Off ice of Naval Research under Contract N 0 0 0 1 4 - 7 6 - C - 0 3 7 0 . 
2 

A l s o w i t h the Department of Mathematics, 



Table of Contents 

1. Introduction 
2. Definitions and Notation 
3. Transformations that Support Insertions 

3.1. The Binary Transformation 
3.2. Transformations with Fast Query Time 
3.3. Transformations with Fast Insertion Time 
3.4. Summary of the Transformations 

4. Lower Bounds on Transformations 
4.1. The Model of Computation 
4.2. Computing F and G 
4.3. Transforming History Diagrams to Trees 
4.4. Tree Properties and their Relation to Performance 
4.5. The Behavior of L^Oi) 
4.6. Allowing the Number of Static Structures to Grow 
4.7. Justification of the Restriction to Arboreal Transforms 
4.8. Limitations on the Significance of the Lower Bounds 

5. Online Transformations 
6. Transformations that Support Deletion 

6.1. A Lower Bound 
6.2. A Fast Special Case 

7. Conclusions 
Acknowledgements 
References 
I. A List of Decomposable Searching Problems 



25 October 1979 Static-to-Dynamic Transforms - 1 -

1. Introduction 

The design of efficient data structures for searching problems is an important and 

difficult problem. In this paper we will investigate a class of transformations that 

aid in the design of such data structures, and illustrate the use of those 

transformations by describing a number of new structures that have been designed 

by applying the transformations. 

Since this paper is the first of a two-part series, we will now take a moment to 

describe briefly the common thread running through the work. The work deals with a 

class of problems called the decomposable searching problems, which includes most 

of the searching problems that have been discussed in the literature (the term 

"searching problem" is used here in a precise sense which we state formally in 

Section 2) . The decomposable searching problems share the property that any data 

structure for solving them can also be applied as a "subroutine" in solving related 

problems. The objects that we will study in this work are transformations that apply 

any data structure for solving any decomposable searching problem to solve a 

closely related searching problem. 

| The specific transformations we will examine in this paper convert static 

structures (which are built once-for-all before any queries are asked) into dynamic 

structures (in which queries can be mixed with insertions, and perhaps deletions). 

In Section 2 we will examine definitions and notations necessary for discussing the 

transformations. The transformations are discussed in Section 3, and a proof of 

their optimality is given in Section 4. Online data structures and deletion are the 

subjects of Sections 5 and 6, and conclusions are offered In Section 7. 

In the second paper in this series we will study two additional types of 

transformations. The first type of transformation adds a "range variable" to a 

query; specifically, we can associate a new variable with every object in the se t 

and then restrict each query to only objects that have that variable in a certain 

range, which may vary from query to query. The second type of transformation 



25 October 1979 Static-to-Dynamic Transforms - 2 -

studied in that paper facilitates tradeoffs between the query time required by the 

structure and the time and space required to build and store it. Readers Interested 

in a preliminary description of these results are referred to Benttey [1979] . 

2. Definitions and Notation 

In this section we will review a number of basic concepts that have to do with 

searching problems and give a number of definitions that will be used throughout the 

paper. The casual reader may therefore skim most of this section; the only part he 

should read in detail is the definition of the decomposable searching problems. 

We will use the term searching problem in a fairly restricted sense throughout 

this paper. Specifically, we refer to maintaining a set F of objects so that queries 

asking the relation of a new object x to set F can be answered quickly. The best 

known example of a query is what we call a Member Query: "is x a member of F?" . 

If F were a set of reals, we might be interested in the Nearest Neighbor query of 

"what is the distance from x to the point in F closest to it?". The general query Is 

that a question containing a variable of type T1 is asked of a set of elements of 

t ype T2, with an answer that is of type T3. In a Member query, T1 and T2 are the 

same, and T3 is boolean. In a Nearest Neighbor query, both T1 and T2 are real, and 

T3 is a nonnegative real. In the general case, the query Q can be viewed as a 

function mapping a T1 and a set of T2's to a T3, or 

Q: T1 x 2 T 2 -> T3. 

Throughout this paper we will identify a searching problem by its query; a solution 

to a searching problem is a data structure that allows the query to be answered 

quickly. 

In this paper we will study data structures for a class of searching problems 

called the decomposable searching problems. A searching problem with query 

operation Q is decomposable if there exists an efficiently computable binary 

operator • satisfying the condition 

Q(x,AUB) = •[Q(x,A), Q(x,B)]. 



25,0ctober 1979 Static-to-Dynamic Transforms - 3 -

(Note that this definition implies that • is both associative and commutative.) For 

example, the member searching problem is decomposable because 

Member(x.AUB) » v[Member(x,A), Member(x,B)], 

and (distance to) nearest neighbor searching is decomposable because 

NN(x,AUB) = min[NN(x,A), NN(x,B)]. 

We will investigate a number of decomposable searching problems throughout this 

paper; a list of many of them can be found in Appendix I. All of the transformations 

that we will see later in this paper are applicable for precisely the decomposable 

searching problems. They exploit decomposability by partitioning a set into subsets, 

and answer a query by computing answers on the subsets and then using the • 

operator to combine those subanswers to yield a solution to the entire problem. 

Note that the • operator is essential In this strategy. 

There are two subclasses of the decomposable searching problems that will be of 

special interest later in the paper. The first subclass consists of those problems 

whose • operator has a "zero" (or "sticky") element; that is, there exists some 

element z such that for any element x, 

• ( z , x ) = z. 

For example, false is a zero for A, and true is a zero for V. A second class that will 

be of interest consists of the problems for which the • operator has an Inverse (for 

example, if • is addition, its inverse is subtraction). We will examine both of these 

subclasses of the general decomposable searching problems In detail later in the 

paper. 

We will make a distinction between two types of data structures for solving 

searching problems. A static structure is built once and then searched many times; 

insertions and deletions of elements are not allowed. To describe the performance 

of the static structure A we give three functions of N, the number of elements in the 

se t represented by A: 

P A ( N ) = T H E preprocessing time required to build A, 
Q A ( N ) = the query time required to perform a search in A, and 



25 October 1979 Static-to-Dynamic Transforms - 4 -

S A ( N ) A the storage required to represent A. 

(Unless explicitly noted otherwise, throughout this paper we will deal only with 

worst -case cost functions.) A second type of data structure is the dynamic 

structure. This structure is initially empty, and the three operations available on it 

are for inserting a new element, for deleting a current element, and for performing a 

search. We analyze the performance of the dynamic structure B by giving the 

functions 

lg(N) - the insertion time for B, 
D g ( N ) = the deletion time for B, 
Q Q ( N ) = the query time required to perform a search in B, and 
S Q ( N ) = the storage required to represent B. 

Later in this paper we will want to "mix apples and oranges" and compare the 

performance of the static structure A with that of the dynamic structure B. To 

facilitate such comparisons we define the "insertion" time for the static structure A 

as 

l A (N) = P A ( N ) / N, 

which is the cost of building an N-element structure amortized over the N elements 

It represents. Likewise we define the cost of "preprocessing" the dynamic 

structure B to be 

P B ( N ) = S I B W . 
1<i<N 

3 . Transformat ions that Support Insertions 

In this section we will investigate transformations that convert a static data 

structure for a decomposable searching problem into a dynamic data structure. We 

will restrict ourselves to the special case of dynamic structures that support only 

the operations of inserting a new element and searching to answer a query; we will 

return to the issue of deletion in Section 6. 



25 October 1979 Static-to-Dynamic Transforms - 5 -

3.1. The Binary Transformation 

In this subsection we will examine a static-to-dynamic transformation that is 

based on the binary representation of the integers. We will study the 

transformation by first examining its application to the particular problem of nearest 

neighbor searching in the plane, and then discussing its more general properties. 

In nearest neighbor searching we must organize a set of N points in the plane so 

that subsequent queries can tell the distance from the query point x to its nearest 

neighbor in the set. Therefore, pbjects of type T1 and T2 are points in IR , and 

those of type T3 are positive reals. (For ease of discussion we consider only the 

problem of finding the distance to the nearest neighbor and not the point realizing 

that distance.) Note that nearest neighbor searching is decomposable because it 

satisfies 

NN(x,AUB) = min[ NN(x,A), NN(x,B)]. 

Lipton and Tarjan [1977] have described an elegant static data structure for 

nearest neighbor searching (which we will call LT) with performance 

P L T ( N ) = 0(N Ig N), 
Q L T ( N ) = 0(lg N), and 
S L T ( N ) = O(N). 

Many applications, however, call for dynamic nearest neighbor searching, and the 

Lipton-Tarjan structure does not appear to be suitable for a modification that would 

facilitate insertions. We will now Investigate a new structure (called DNN for 

dynamic nearest neighbor) that uses the Lipton-Tarjan static structure only as a 

subroutine, rather than trying to modify the structure. The DNN structure that we 

[will describe is the best known structure for performing dynamic nearest neighbor 

searching in the plane. 

k The DNN structure will consist of a set of LT's; that is, the elements (points) 

currently stored in the DNN will be partitioned into subsets that are themselves 

represented by LPs. When there is one element in the DNN, there is an LT 

containing that single element. When the second element is Inserted, that LT is 



25 October 1979 Static-to-Dynamic Transforms - 6 

discarded and a new LT of size two is created. At the arrival of the third element, a 

new LT of size one is created. This process continues so that when there are N 

elements represented by the DNN, there are LPs corresponding to all of the one bits 

in the binary representation of N. For example, when there are 79 elements in the 

DNN, there are LPs of size 64, 8, 4, 2 and 1. When the 80-th element is inserted, 

the four smallest structures are discarded and a new structure of size 16 is built. 

At any time in this process the distance to the nearest neighbor of a query point x 

can be found by locating its nearest neighbors in each of the LPs (using the 0(lg N) 

algorithm) and taking the minimum of the distances; it is here that we make essential 

use of decomposability. 

This scheme is illustrated pictorially in Figure. 3.1 by a diagram commonly used to 

represent binary counting. The vertical axis in that figure denotes the number of 

elements currently in the dynamic structure. Each rectangle (square) represents a 

particular static LT structure; for example, note the four by four square that comes 

into existence at time four and is then replaced at time eight. The LT structures In 

ex istence at time T can be found by drawing a horizontal line that intersects the 

vertical a x i s - a t T; for example, at time seven there are three structures in 

ex istence — of size's four, two and one. We will find later that this type of diagram 

(which we call a "history diagram") is a handy way of representing transformations. 

D 
8 

D 
4 • 
2 
1 

D 

Figure 3.1. The binary transform. 



25 October 1979 Static-to-Dynamic Transforms - 7 -

It is easy to analyze the performance of the DNN structure given that we know 

the performance of the LT structure. Since the LT requires linear storage and the 

DNN just partitions its elements into LT's, the DNN will also require linear storage. A 

DNN of N elements will keep at most lg(N+1) LT's (each of size not greater than N ) , 

so the query time of a DNN is bounded above by lg(N+1) times the cost of querying 

an LT. The cost of inserting an element into a DNN is more difficult to analyze; note 

that while inserting the 1023-rd element is essentially free, the 1024-th element is 

v e r y expensive, since a new structure of size 1024 must be built. We will 

therefore count the cost of inserting the first N elements into an initially empty 

structure, which is exactly PQNN^ N ^ W E W I " P E R F O R M this analysis only for the case 

that N = 2 J -1 , and discuss later the value of the function for other N. If we have 

inserted 2-*-1 elements, then we have built one LT structure of size 2^~\ two LT 

structures of size 2 ^ , and 2 k ~ 1 structures of size 2^" k. (This is a trivial property 

of binary counting.) The total cost of inserting these elements is therefore 

p D N N ( 2 J - 1 ) s V P L T ( 2 J " 1 ) + 2 - P L T ( 2 J " 2 ) + ... + 2 j " 1 - P L T ( 1 ) . 

For N a power of two we can rewrite this as 

P D N N < N - 1 ) 55 V P L T W ' 2 ) + 2 - P L T ( N / 4 ) + ... + ( N / 2 ) ' P L T ( 1 ) . 

We know that P L J ( N ) = 0(N Ig N), which implies that P L J ( N ) < cN Ig N, for some 

positive constant c. Substituting this into the above equation yields 
P D N N ( n " 1 ) ^ ° t 1#(N/2 Ig N/2) + 2'(N/4 Ig N/4) + ...+(N/2)-(1 Ig 1) ] 

= (cN/2) • [ I g N/2 + Ig N/4 + ... + Ig 1 ] 
< (c/2)N Ig 2 N 
= 0(N I g 2 N). 

This completes our analysis of the DNN structure, establishing the following. 

New Data Structure 1: (Dynamic Nearest Neighbor) 
The DNN structure for dynamic nearest neighbor searching in the plane has 
performances 

P DNN< N ) ^ PLT< n> * l g ( N + D = 0 ( N l g 2 N ) , 
Q D N N ( N ) * QLT< N ) ' ' 9 < N + 1 ) = 0 ( lg 2 N) , and 
S D N N ( N ) < S L T ( N ) = O(N). 



25 October 1979 Static-to-Dynamic Transforms 

Note that the cost of doing N pairs of Insert, Query operations in the DNN structure 

Is proportional to N Ig N; all other known dynamic nearest neighbor structures 

require fit(N ) time for the task. 

The binary transformation that we have just described for nearest neighbor 

searching is applicable to any decomposable searching problem: given a static data 

structure for a particular problem, a dynamic structure is achieved by keeping a set 

of static structures, each representing a set whose cardinality is a power of two. 

Insertion is accomplished by the same technique of binary counting. A query can be 

answered by querying all the static structures in existence at the time of the 

query, and combining the answers by repeated application of the • operator. 

A computer program implementing the binary transform is sketched In Figure 3.2. 

It assumes the existence of a static structure S with operations Queryg, Build5 and 

Unbuilds (Unbuilds returns the elements currently stored in the structure as a linked 

list) . The code implements a dynamic structure D providing routines Initp (which 

initializes the structure to be empty), InsertQ, and QueryQ. It implements the binary 

st rategy by maintaining a one-way infinite array P with the invariant that P[i ] is 

either empty or contains a static structure of size 2*. The variable High is an 

integer that is one greater than the last nonempty structure; P[High] is always 

empty. Initp initializes the structure to have this invariant. QueryQ answers a query 

by iterating through the structures and combining the answers by the • operator. 

InsertQ can be understood most easily by considering incrementing a binary integer 

by one: to do so, we scan from right to left, changing ones to zeros until we come to 

the first zero (which we then make a one). An Alphard program very similar to the 

code in Figure 3.2 has been given by Bentley and Shaw [1979]; they also provide 

both a precise specification of the transform and a proof that the program 

accomplishes it. 

Throughout this paper .we wi l l retr ieve a set of T2's from a structure by unbuilding the structure. In some 
appl icat ions it might be more efficient to store the set along with the structure. 



25 October 1979 Static-to-Dynamic Transforms - 9 -

proc Initrj «-
P[0]<-<£; High<-0 

proc Insertp(x)<-
S < - { x > 
I +- 0 
while P[i] £ <(> do 

S < - S U Unbuild s(P[i]) ; P[i] 4- <fr 
i <- i+1 

P[i] <- Build s (S) 
if i=High then 

High <- High+1; P[High] <-

func Queryrj(x) «-
A Query s ( x ,P [0 ] ) 
for i 1 to High-1 do 

A <- C3(A, Query s ( x , P[i])) 
return A 

Figure 3.2. Sketch of code for the binary transform. 

The analysis of the general transformation is quite similar to the analysis of the 

DNN st ructure . 4 Since at most lg(N+1) static structures exist for an N-element 

dynamic structure, if we assume the static query cost is monotone nondecreasing 

we have 

Q D ( N ) < Q S ( N ) -IgCN+D. 

To analyze the storage and processing costs we need the following definition: a 

In the analysis of the transformed structure w e wil l count only the costs incurred by operations on the original 
s t ructure . Examination of the code in Figure 3.2 shows that the overhead costs for both Insert and Query are a 
small constant times Ig N. 



2 5 October 1 9 7 9 Static-to-Dynamic Transforms - 10 -

function F is said to grow at least linearly if for every two positive integers. M and 

N , where M < N, 

F(M)/M < F ( N ) / N . 

A consequence of this definition is that if F is a function that grows at least linearly 

and A and Bare positive integers, then 

F(A+B) = A[F(A+B)/(A+B)] + B[F(A+B)/(A+B)] > F(A) * F(B). 

Since the dynamic structure partitions its elements among static structures without 

replication, if the storage cost Sg of the static structure grows at least linearly we 

have the relation 

S D ( N ) < S S ( N ) . 

To analyze the processing cost we will first consider the case that N is a power of 

twoy the reasoning used in our analysis of DNN shows that 

P D ( N - 1 ) = P s (N/2 ) + 2P s (N/4) + ... + (N/2)P S (1) . 

When Ps grows at least linearly, we know* that Ps(2i) > 2P5O) and we can use this 

fact inductively to show that 

P D ( N - 1 ) < P s ( N / 2 ) + P S ( N / 2 ) + ... + P S ( N / 2 ) 
= P s ( N / 2 ) • Ig N. 

We will now use a less accurate (but more general) analytic technique to 

establish the value of P q ( N ) for N not one less than a power of two. Note that after 

N elements have been inserted, any particular element has been in at most lg(N+1) 

distinct static structures. We will now show that for any transform, if every element 

has been built into at most k structures, then the static and dynamic processing 

costs are related by 

P D ( N ) < P S ( N ) • k. 

(This immediately yields the corollary that 

P D ( N ) < P S (N ) • lg(N+1) 

for the binary transform, for any positive N.) Consider the cost that any particular 

element, E, contributes to P D ( N ) . Each time E is built into a new static structure of 



25 October 1979 Static-to-Dynamic Transforms - 11 -

° T o simplify the analysis, w o wi l l count only the costs of calls to operations on the static structure, and not the 
c o s t s o f bookkeeping operations nor the cost of combining the results of queries into different static s t ructures . 
Ca re fu l examination of our algorithms wil l show that these extra costs add only a small constant factor ( w h i c h 
d o e s not depend on F or G ) to the compute times. In most cases, this constant wilt approach unity as N increases . 
S imi lar ly , the only storage w e charge to the dynamic structure is that used for storing instances o f the s tat ic 
s t ruc ture . Again, this is generally the dominant cost. 

For c a s e s w h e r e PA, Q A , and S A do not satisfy these criteria, w e may choose functions P̂ , Q A , and S ^ that 
( a ) s a t i s f y the criteria and (b) dominate PA, Q A , and S A , respectively. The relations given above will then hold 
b e t w e e n the dynamic cost functions and PJy, Q ^ , S ^ . 

size M, we can assign it a share of that cost of Ps(M)/M. Because Ps grows at 

least linearly and M is less than or equal to N, we know that 

P S (M)/M < P S (N)/N, 

and we can therefore assign E this latter cost as an upper bound. Multiplying the 

number of distinct elements (N) by the number of times each is built into a static 

structure (less than k) by this cost yields the desired result. 

I To enable us to speak more precisely about transforms on data structures for 

decomposable searching problems, we need the following definition. 

Definition 3.1: (Admissible transform) 
A transformation on decomposable searching problems is said to be an 
admissible (F(N), G(N)) transform if it converts the static structure A to the 
dynamic structure B assuming only the property of decomposability, and the 
following relations hold between the cost functions:^ 

Q B (N) < Q A (N) • F(N), 
P B (N) < P A (N) \G(N), and 
S B (N ) < S A (N) . 

We assume here that Q A is monotone nondecreasing and that both P A and S A 

grow at least linearly.® 

We can now state precisely the fact that the binary transform efficiently 

converts a static data structure to a dynamic structure as Theorem 3.1. 

- Theorem 3,1: (The binary transform) 



2 5 October 1979 Static-to-Dynamic Transforms - 1 2 -

The binary transform is an admissible (lg(N+1 ), lg(N+1)) transform. 

Proof : 
Given in the preceding text . QEO. 

To illustrate some "tricks" available in using the binary transform, let us consider 

its application to the member query problem using the data structure of a sorted 

array. Precisely, consider the static data structure for member searching that 

stores the elements in increasing order in an array (built by sorting the set ) , and 

answers a query by performing a binary search. The analysis of this structure 

(which we call SA, for sorted array) shows 

P S A = 0(N Ig N), 
S S A = °(N)» arid 
Q S A ~ 0(lg N). 

Consider the dynamic member searching structure achieved by applying the binary 

transformation to SA: we always maintain a set of sorted arrays, each of size a 

power of two. A particularly efficient representation of this structure (which we will 

call BL, for binomial list^ ) is to store these sorted arrays sequentially in one large 

array, with the largest sorted segment (which we call a run) leftmost in the array. 

Two snapshots of a BL are shown in Figure 3.3; the vertical bars in the figure 

separate the runs in the array. By the analysis of SA and the effect of the binary 

transform, we can easily describe the complexity of the BL structure as follows 

P B L = 0(N I g 2 N), 
S B L = °(N)± a n d 

QBL = °<'9 N). 

Note that very little storage is used by a BL: it requires only N array words for the 

elements, plus Ig N bits to describe the the cardinality of the represented set . 

This structure w a s invented fdr this application by the use of the binary transform, and w a s then studied in 
detai l b y Bent ley , Detig, Guibas and Saxe [1979] . The name is taken from its similarity to the binomial queue data 
st ructure o f Vuillemin [ 1 9 7 8 ] . 



25 October 1979 Static-to-Dynamic Transforms - 1 3 -
| 12 19 23 27 3 8 41 43 47 { 2 7 43 | 29 | 

a.) An 11-element binomial list. 

1 1 2 19 23 27 38 41 43 47 127 29 36 43 1 
I 1 1 — o o o 

b.) After inserting 36. 

Figure 3 . 3 . Snapshots of a binomial list. 

There is a glaring deficiency in the obvious implementation of this structure: the 

obvious insertion routine inserts the 1024-th element by ignoring all the structure 

currently in the array and re-sorting from scratch. A far superior strategy for any 

insertion is to consider the inserted element as a one-element run, and merge that 

with the rightmost one-element run giving a two-element run. We then merge that 

with its neighbor, giving a four-element run, and so forth. The amount of work in 

building a new run in this scheme is linear in the size of the run, and the cost of 

inserting N elements is therefore 0(N Ig N). We have thus avoided paying the 

logarithmic penalty factor inherent in the binary transform by observing that runs 
o 

can be efficiently merged. 

We can sometimes avoid paying the transform penalty of a logarithmic slowdown 

in query time. Specifically, we will consider the average cost of performing a 

successful member search in a BL (that is, a search that finds the element it was 

looking for). If we assume that each element in the array Is equally likely to be 

searched for, then the probability of finding the desired element in the first run is at 

least one-half. Therefore, half the time we need never search the other runs. 

Likewise, at least one-half of the remaining times we find the desired element in the 

nex t structure, so the probability of searching the third run' is less than one-fourth. 

Summing the cost of searching each run times the probability of performing the 

search, we find that a successful member search is expected to be at most twice 

Only constant ex t ra space is required to merge consecutive runs in an array — see Knuth [1973, E x e r c i s e 
5 . 2 . 4 . 1 8 ] . 



25 October 1979 Static-to-Dynamic Transforms - 14 -

as expensive in the BL as in the SA. 

The arguments that we have just sketched have been given in detail by Bentley. 

Detig, Guibas and Saxe [1979], who describe the following data structure. 

New Data Structure 2: (Binomial Lists) 
The binomial list (BL) structure for dynamic member searching has 
performances 

P B L ( N ) = 0(N Ig N), 
Q B L ( N ) = 0 ( lg 2 N), and 
S B L ( N ) = O(N). 

The linear storage used by this structure consists of exactly N array words 
and 0(lg N) additional bits, which is minirnal. 

Bentley, Detig, Guibas and Saxe [1979] have investigated this structure in detail 

and have shown that it is optimal in a certain model of minimum^storagedynamic 

member searching. The BL structure provides an interesting point of comparison 

with the minimum-storage structure described by Munro and Suwanda [1979] ; this 

structure performs substantially better than theirs by working in a different model of 

computation. 

There is yet another circumstance in which the logarithmic cost penalties of 

applying the binary transform do not have to be paid: when the original cost 

functions are fast growing. Consider, for .example, a static data structure with N 

preprocessing time. Our previous analysis shows that for N a power of two, we will 

have 

P D ( N - 1 ) = P s (N/2) + 2P s(N/4) + ... + (N/2)P(1) 
= (N/2) 2 + 2(N/4) 2 + ... + (N/2)1 2 

> (N 2 /2) ' [1/2 + 1/4 + ... + 1/N] 
= 0 ( N 2 ) . 

Similar analyses Show that the logarithmic penalty in processing cost is not incurred 

when the binary transform is applied to any static structure with preprocessing cost 

of 0 ( N 1 + € ) , for any positive €. Likewise, it can be shown that the logarithmic penalty 

in query time will not have to be paid for any static structure with query time of at 



25 October 1979 Static-to-Dynamic Transforms 1 5 -

least J2(N*). 

The concludes our study of the binary transform. In the next two subsections we 

will see that this transform is but one of many possible ways of converting a static 

structure to a dynamic structure, at the cost of penalty factors in the preprocessing 

and query costs. As we study the other transforms and their performance, it Is 

important to keep in mind that the penalty factors need not always be paid. In this 

subsection we have seen three ways of avoiding them: by merging structures 

instead of rebuilding them from scratch, by counting the average search time 

instead of the worst-case time (this is appropriate whenever the • operator has a 

zero element), and by performing separate analyses for fast-growing functions* 

3.2. Transformations with Fast Query Time 

The binary transform of the last subsection provides us with an example of an 

admissible (lg(N+1), lg(N+1)) transform, and we might wonder if we can do better. In 

this subsection we will investigate a class of transforms that have faster query 

times than the binary transform at the cost of slower insertion time. Specifically, we 

will see that an admissible (k, (k!N) 1 ^ k ) transform exists for any positive integer k. 

We will study this transform by first investigating the case k=2, and then move on to 

the general case. 

We will call the transform for the case k=2 the triangular transform, because It is 

based on the triangular numbers (that is, numbers of the form (jj?)). The transform Is 

illustrated in Figure 3.4. Note that when 5 elements are in the dynamic structure, 

there are static structures of size 3 and 2; when the 6-th element is inserted, 

those structures are destroyed and a new structure of size 6 is created. At any 

point in the history of the dynamic structure, there will be at most two static 

structures in existence. The insertion algorithm creates a new "large" static 

structure at every triangular number; otherwise it inserts an element by unbuilding 

the smaller structure and building it into a new structure with one additional element. 

A qu£ry can be answered by searching the two static structures and combining the 

answers by the • operator. 



25 October 1979 Static-to-Dynamic Transforms - 1 6 -

10 

6 

3 

1 

Figure 3.4. The triangular transform. 

The triangular structure is very easy to analyze. Because at most two static 

structures exist at any time, the dynamic query cost Is given by 

Q D ( N ) < 2Q S (N) . 

If we assume that the static storage requirements grow at least linearly, we know 

that the dynamic structure does not use more storage. To analyze the insertion 

time, consider the case that a total of (jg) elements have been inserted. It is easy 

to prove by induction that no element has been built into more than M structures 

(the proof is based on the recurrence for the triangular numbers). In general, if N 

elements have been inserted, no single element has been built into more than 

( 2 N ) 1 / f 2 static structures. By the arguments in the previous subsection, this implies 

P D ( N ) < P S (N ) - ( 2 N ) 1 / 2 . 

These arguments together establish the following theorem. 

Theorem 3.2: (The triangular transform) 
1 /? 

The triangular transform Is an admissible (2, (2N) ' ^ ) transform. 

tr 

Proof : 

15 



25 October 1979 Static-to-Dynamic Transforms - 17 -

Given in the preceding text . QED. 

Just as the binary transform is isomorphic to the binary representation of the 

integers, so is the triangular transform isomorphic to a representation of the 

integers based on triangular numbers. (This system is called the "binomial number 

system" by Knuth [1968, Exercise 1.2.6.56].) Specifically, an integer N Is 

represented by a pair of integers i and j (with i>j) by the expression 

Note that both i and j are less than twice the square root of N; this explains the 

processing cost of the transform. The general transform, which we will call the 

k-binomial transform, is based on a straightforward generalization of this scheme, in 

which an integer is (uniquely) represented as the sum of k binomial coefficients, 

whose lower parts are the integers 1 through k. This counting scheme is illustrated 

for the cases k=2 and k=3 in Figure 3.5. Row 15 of the table is interpreted as 

follows: in the 2-binomial representation, 15 is the sum of 15 and 0, or ( ? ) and ( ^ ) . 

In the 3-binomial representation, 15 is the sum of 10, 3 and 2, or ( 3 ) , ( | ) and ( f ) . 

With the example of Figure 3.5 as background, we can now describe k-binomial 

counting more precisely. We will use an array D[1..k] to store the upper parts of 

the binomial coefficients. The invariant of this counting scheme has two parts: first, 

the represented integer is given by 

and secondly, each coefficient D[i] satisfies the condition 

D [ i ] > D [ i - 1 ] 

for 2<i<k. We can initialize the array to represent zero by assigning each D[i] to 

have the value i-1; we will also find it handy to assume that the value of D[k+1] is 

"infinity". The code for incrementing an integer by one is then as follows. 

M - < y • ( ' , ) . 



25 October 1979 Static-to-Dynamic Transforms - 1 8 

In teger ( 2 ) ( j ) Integer < 3 ) ( 2 ) ( j ) 
0 0 + 0 1 0 0 = 0 + 0 + 0 2 1 0 

1 = 1 + 0 2 0 1 = 1 + 0 + 0 3 1 0 

2 s 1 + 1 2 1 2 s 1 + 1 + 0 3 2 0 

3 B 3 + 0 3 0 3 s 1 + 1 + 1 3 2 1 

4 - 3 + 1 3 1 4 = 4 + 0 + 0 4 1 0 

5 3 + 2 3 2 5 4 + 1 + 0 4 2 ' 0 

6 = 6 + 0 4 0 6 = 4 + 1 + 1 4 2 1 

7 6 + 1 4 1 7 = 4 + 3 + 0 4 3 0 

8 = 6 + 2 4 2 8 = 4 + 3 + 1 4 3 1 

9 = 6 + 3 4 3 9 s 4 + 3 + 2 4 3 2 

1 0 = 1 0 + 0 5 0 1 0 = 1 0 + 0 + 0 5 1 0 

1 1 S 1 0 + 1 5 1 11 = 1 0 + 1 + 0 5 2 0 

1 2 a. 1 0 + 2 5 2 1 2 = 1 0 + 1 + 1 5 2 1 

1 3 = 1 0 + 3 5 3 1 3 s 1 0 + 3 + 0 5 3 0 

1 4 1 0 + 4 5 4 1 4 s 1 0 + 3 + 1 5 3 1 

1 5 1 5 + 0 6 0 1 5 s 1 0 + 3 + 2 5 3 2 

1 6 = 1 5 + 1 6 1 1 6 s 1 0 + 6 + 0 5 4 0 

1 7 s 1 5 + 2 6 2 1 7 s 1 0 + 6 + 1 5 4 1 

1 8 ' = 1 5 + 3 6 3 1 8 s 1 0 + 6 + 2 5 4 2 

1 9 = 1 5 + 4 6 4 1 9 = 1 0 + 6 + 3 5 4 3 

2 0 s 1 5 + 5 6 5 2 0 = 2 0 + 0 + 0 6 1 0 

2 1 s 2 1 + 0 7 0 21 s 2 0 + 1 + 0 6 2 0 

2 2 = 2 1 + 1 7 1 2 2 s 2 0 + 1 + 1 6 2 1 

Figure 3.5. 2-binomial and 3-binomial counting. 

D[1]*-D[1]+1 

' *• 1 

while D[i] = D[i+1] do 
D[i+1] <- D[i+1] + 1 
D[i] *- i-1 
i *- i+1 

It is easy to prove by induction that this code correctly implements the above 

counting scheme. 

It is straightforward to modify the above counting scheme to yield an admissible 

transform. To do so we will retain the array D (with the same invariant as above), 



25 October 1979 Static-to-Dynamic Transforms - 1 9 -

and add an array P[1..k] of static structures. The number of elements in P[i] is 

always (^ ' - t y . The code for this k-binomial transform is given in Figure 3.6, and 

Figure 3.7 illustrates the 3-binomial transform. 

proc Initp «~ 
for i *- 1 to k do 

D [ i ] « - i - 1 ; P[i]<-<*> 
D[k+1] < -oo 

proc InsertQ(x) «- , 
D[1] <-D[1]+1; S <-Unbuild s(P[1]) U { x } ; P[1]*-<£ 
i <- 1 
while D[i] = D[i+1] do 

D [ > 1 ] <-D[i+1] • 1; S S U Unbuild s(P[i]) 
D [ i ]< - i -1 ; P[i] <- <f> 
i <- i+1 

P[i ] 4- Bui ld s (S) 

func Queryo(x ) «-
A < -Query s ( x , P[1]) 
for i 4- 2 to k do 

A *- D(A, Querys(x, P[i])) 
return A 

Figure 3.6. Code for the k-binomial transform. 

The correctness of the code can be proven by induction, and its analysis 

establishes the following theorem. 

Theorem 3.3: (The k-binomial transform) 
1 /k 

The k-binomial transform is an admissible (k, (k!N) ' ) transform. 

Proof : 

IMWERSfTY LIBRARIES 
CARNEGIE-MELLOW UNIVERSITY 

PITTSBURGH, PENNSYLVANIA 15213 



2 5 October 1979 Static-to-Dynamic Transforms - 2 0 -

20 

10 

OF 

F 
F 

F 

Figure 3.7 The 3-binomial transform. 

Since at most k structures exist at any one time, we have 

Q D (N ) < Q S (N ) • k. 

Since the space requirement for the static structure grows at least linearly 
with the number of elements, the dynamic structure can be no more expensive. 

To bound the processing time of the dynamic structure, we will investigate the 
maximum number of structures into which any element may be built during the 
first N insertions. Note that after N insertions, we have 

N > ( D ^ ) 
>(D[k]-k+1) k/k!, 

implying 

D[k] < (k !N ) 1 / k +k -1 . 

This, together with the invariant that 

D[k] > D[k-1] > ... > D[1]> 1 

implies that each D[i] satisfies 

0 < D[i] - I < ( k ! N ) 1 / k - 1 
for 1<i<k. Finally, we note that whenever a structure is discarded and its 
elements rebuilt into a new structure, the difference between the upper and 
lower parts of the binomial coefficient giving the size of the structure 



25 October 1979 Static-to-Dynamic Transforms - 2 1 -

W e use the notation, f , A " B" as a shorthand for M|A-B| = o ( B ) M . 

1 0 l n order to implement (multiset) union as a constant-time operation, w e ask that a query return a t ree w h o s e 
l e a v e s are the points within the specified range. T w o such trees can be combined in constant time by allocating a 
n e w root node containing pointers to the two trees. 

increases by one; that is, a structure of size 

<r) 
is always replaced by a structure of size 

or1) 
or of size 

fm+2\ 

This implies that no element is ever built into more than ( k ! N ) ^ k static 
structures, from which it follows that 

P D < N > * P S ( N ) * ( k ! N ) 1 / K . 

QED. 

Note that for all positive k, k!^^ < k. For large k, Stirling's approximation gives® 

k ! 1 / k ~ k/e. 

To illustrate the application of the binomial transforms, we will consider the 

problem of range searching. In this problem, the stored set contains points in a 

d-dimensional space, and a query asks for all points with each dimension in a 

specified range. (Note that this problem is decomposable with the • operator 

interpreted as U . 1 0 ) Bentley and Maurer [1978] give a structure for static range 

searching (SRS) with performances 

Q S RS(N) = °('g N). 
P S R S ( N ) 88 0 (N 1 + *) ,and 
S S RS< N > s °<N1 ) 



25 October 1979 Static-to-Dynamic Transforms 22 

for any f ixed 5 > 0. By choosing, for example, k - T2Al and 8 » €/2, we can apply 

the k-binomial transform to achieve the following structure. 

New Data Structure 3: (Dynamic Range Searching) 
A dynamic range searching (DRS) structure supporting insertions and queries 
for point sets in d-space with performance 

Q D R S ( N ) = 0(lg N), 
P D R S ( N ) s < X N 1 + € ) , and 
S D R S ( N ) = 0 ( N 1 + € ) 

can be achieved for any fixed € > 0 and positive integer d. 

Such a structure is useful for range searching in a situation in which the number of 

queries is known to exceed greatly the number of insertions. Specifically, if the 

number of insertions in a set of N insertions and queries were known to be 0 ( N P ) for 
some p < 1, then this structure would allow the operations to be processed In 

^ ( N Ig N) time. The best performance for this task prior to this structure was 
H 

achieved by Lueker [1978]; his structure required 6(N Ig N) time. 

It is important to observe that the penalties incurred by the k-binomial transform 

need not always be paid. Just as in the binomial transform, they can occasionally be 

avoided by merging static structures, by counting the expected query cost, or by 

performing separate analyses for fast-growing functions. 

3.3. Transformations with Fast Insertion Time 

In the last subsection we investigated a set of transforms that only slightly 

increase the query time at the cost of greatly increasing the processing time. In 

this subsection we will study a class of structures dual to those, which only slightly 

increase the processing time and greatly increase the query time. Specifically, we 

will see that there exists an admissible (k(k!N)1 k) transform for any positive 

integer k. As before, we will first investigate the case that k=2, and then turn to 

the general case. 

The dual triangular transform is illustrated pictorially in Figure 3.8(a). At time 9, 



25 October 1979 Static-to-Dynamic Transforms - 23 -

there are 6 structures (of sizes 1, 2, 3, 1, 1, and 1); when the 10-th element is 

inserted it is combined with the last three structures to create a new static 

structure of size 4. In general, when the (jg )-th element is inserted, M elements are 

combined together to form a static structure of size M; other elements are kept in 

singleton structures as they are inserted. Since each element is built into only two 

static structures (the large and the singleton), we know that 

P D ( N ) < 2P S (N ) . 

It is easy to show that at most 2 ( 2 N ) ^ ^ static structures exist at any time, so we 

have 

Q D ( N ) < Q S ( N ) * 2 ( 2 N ) 1 / 2 . 

These facts together imply the following theorem. 

Theorem 3.4: (The dual triangular transform) 
1 /P 

The dual triangular transform is an admissible (2(2N) ' , 2) transform. 

Proof : 
Given in the preceding text . QED. 

That this transform is dual to the triangular transform of Subsection 3.2 is 

intuitively clear from Figure 3.8(a). To make the duality more precise we will study 

the dual triangular transform from the viewpoint of the triangular-number counting 

scheme of the last subsection. The history of the dynamic structure is shown in a 

tabular form in Figure 3.9. The eighth row shows that when 8 elements are in the 

dynamic structure, there are 5 static structures: three "large" structures (of size 1, 

2, and 3) and two "small" structures (each of only one element). In general, if the 

number in the "large" column is (2) , then there are large structures of size 

1, 2, 3, M-1. The number in the "small" column gives the number of unit-sized 

static structures. Note that the entries in the number column are identical to the 

2-binomial counting depicted in Figure 3.5. 



25 October 1979 Static-to-Dynamic Transforms 

(a) The dual triangular transform. 

10 

F 

- 24 -

F 

F 

(b) The-dual 3-binomial transform. 

Figure 3.8. Dual binomial transforms. 

Structures Number 
Large Small Large Small 
0 0 0 0 
(1) 0 1 0 
(1) (1) 1 1 
(1,2) 0 3 0 
(1,2) (1) 3 1 
(1,2) (1,1) 3 2 
(1,2,3) 0 6 0 
(1,2,3) (1) 6 1 
(1,2,3) (1,1) 6 2 
(1,2,3) (1,1,1) 6 3 
(1,2,3,4) 0 10 o 
(1,2,3,4) (1) 10 1 
(1,2,3,4) (1,1) 10 2 

Figure 3.9. History of the dual triangular transform. 

This duality carries through to the k-binomial transform. For the case of the dual 

IF 
20 21 



25 October 1979 Static-to-Dynamic Transforms - 25 

3-binomial transform, each element will be built into at most three static structures 

(which we call small, medium and large). All small structures have exact ly one 

element, medium structures have an integer number of elements, and large 

structures contain a triangular number of elements. At any point in the history of 

the transform, each set of existing small, medium and large structures contains 

structures of adjacent sizes. The following table shows the history.of the dual 

3-binomial transform from the insertion of the fourth through the tenth elements; a 

history diagram of the dual 3-binomial transform appears in Figure 3.8(b). 

N Structures Populations 
Large Med Small Large Med Small 

4 (1,3) 0 0 4 0 0 
5 (1,3) (1) ! 0 4 1 0 
6 (1,3) (1) (1) 4 1 1 
7 (1,3) (1,2) 0 ,: 4 3 0 
8 (1,3) (1,2) (1) 4 3 1 
9 (1,3) (1,2) (1,1) 4 3 2 
10 (1,3,6) 0 0 10 0 0 

The extension of this strategy from the dual 3-binomial transform to the dual 

k-binomial transform is straightforward. The code of Figure 3.6 is modified so that 

instead of containing a static structure of elements, P[i] now contains a list 

of structures of sizes 

mi),(DM-2).-- <£!>•. 
Note that the sum of the sizes of the structures is This allows us to 

establish the following theorem. 

Theorem 3.5: (The dual k-binomial transform) 
1 /k 

The dual k-binomial transform is an admissible (k(k!N) ' , k) transform. 

Proof : 

Because each element is built into at most k static structures, it is clear that 
the processing cost increases by at most a factor of k. The analysis used in 



25 October 1979 Static-to-Dynamic Transforms - 26 -

the proof of Theorem 3.3 shows that each of the k classes of structures 
1 /k 

contains at most (k!N) distinct structures at any point. Therefore at most 
1 /k 

k(k!N) static structures exist at any time, providing the upper bound on the 
query time penalty. QED. 

To illustrate the application of this transformation we will again consider the 

problem of range searching in a d-dimensipnal point set. Bentley and Maurer [1978] 

describe a second structure for range searching (which we will call SRS') with 

properties 
QSRS'W) s 0(N 6 ) , 
P SRS' (N) = 0(N Ig N), and 
S S R S i ( N ) = O(N), 

for any f ixed 8 > 0. By choosing, for example, k = fe/cl and 8 = */2f we can apply 

the dual k-binomial transform to achieve the following structure. 

N e w Data Structure 4: (Dual Dynamic Range Searching) 
A dynamic range searching (DRS') structure supporting insertions and queries 
for point sets in d-space with performance 

Q D RS'(N) = O(i^), 
P D R S ' ( N ) = 0(N Ig N), and 
S D R S i ( N ) = 0(N) 

can be achieved for any fixed € > 0 and positive integer d. 

Note that this structure is appropriate when there are many more Insertions than 

queries; it reduces the cost of the computation of certain sequences of N insert and 

query operations (analogous to those discussed at the end of Subsection 3.2) from 

| the 0(N l g d N) time required by Lueker's [1978] method to 0(N Ig N). 

3.4. Summary of the Transformations 

In this section we have seen a number of different static-to-dynamic 

transformations on data structures for decomposable searching problems. We will 

now spend just a moment reviewing these transformations. The transformations 



25 October 1979 Static-to-Dynamic Transforms - 27 -

themselves are summarized in Figure 3.10. 

Transformation Query Factor Processing Factor 

k-binomial 
Binary 
Dual k-binomial 

k 
l*|(N+1) 
k(k!N)1 

1/k 

(k !N) 1 / l 

lg(N+1) 
k 

Figure 3.10. Summary of transformations. 

There are many other transformations besides those that we have already 

investigated. A simple way of achieving a new transformation is by isomorphism to a 

particular number system (counting scheme). This is illustrated in Figure 3.11 for 

the radix -3 number system (ternary counting). Part (a) of that figure shows the 

ternary transform: each static structure is of size either a power of three or twice a 

power of three, and corresponds to either a one or a two in the ternary 

representation of the number of elements in the dynamic structure. This transform 

is an admissible (\\OQQ NT, 2flog3 Nl) transform. 1 1 Its dual is shown in part (b) of the 

figure; every structure in the dual is of size a power of three, and there are O, 1 or 

2 structures for any power of three, corresponding to the appropriate digit in the 
ternary expression of the integer size of the structure. This is an admissible 

(2flog3 Nl, \\OQQ Nl) transform. This scheme can be extended to radix-k counting to 

yield a primary (Hog^ Nl, (k-ltflog^ Nl) transform and a dual ((k-1 tflog^ Nl, Tlog^ Nl) 

transform. An interesting open problem is to examine other counting schemes (such 

as Fibonacci counting) for their properties as transforms. 

It is now easy to state formally the relationship of the primary and dual 

transforms derived from a particular counting scheme. In the primary transform, 

there is a single structure corresponding to each digit, whereas in the dual 

Th is and the fol lowing claims about radix-k transforms assume N>1. 

file:////oqq
file:////oqq


25 October 1979 Static-to-Dynamic Transforms - 28 -

n 
3 

9 9 

• P 
3 3 

i • 1 

(a) The ternary transform. (b) The dual ternary transform. 

Figure 3.11. Radlx-3 transformations. 

transform each digit corresponds to a set of structures that are the "carries" from 

its right neighbor (the units digit is a set of structures of size one). 

The transformations of this section together provide a powerful set of tools for 

designing new data structures for both particular applications and as a component In 

larger algorithms. To design a dynamic structure in a given context, the algorithm 

designer first designs a static structure (which is usually much easier than 

designing a dynamic structure), and then applies one of the transformations to 

achieve an efficient dynamic structure. Which transformation he uses depends on 

the relative efficiency of the static preprocessing and query costs and on the 

expected frequency of insertions and queries. 

As we mentioned before, the cost penalties of the transformations need not 

always be paid. One can often avoid them by merging static structures, by 

analyzing the average query time, or by performing separate analyses for 

fast-growing cost functions. 

4. Lower Bounds on Transformations 

Our main goal in this section is to prove the optimality, in a certain sense, of some 

of the transformations discussed in Section 3. Our path to this goal will have many 

steps , and the reasons for each step might not be clear in advance. To aid the 



25 October 1979 Static-to-Dynamic Transforms - 29 

reader, we now briefly sketch the contents of this section. 

In Subsection 4.1 we define the model of computation which we will use 

throughout the rest of the section. We also advise the reader that the use of this 

model implies certain limitations on the applicability of the results we will obtain. In 

Subsections 4.2 through 4.4 we show a method for representing an initial sequence 

of insertions under some transform as a binary tree, and show how the efficiencies 

of transformations are related to properties of the corresponding trees. To achieve 

the correspondence between transforms and trees, we restrict our attention to a 

class of transforms which we call the arboreal transforms. In Subsection 4.5 w e 

state and solve a recurrence relating the various tree properties defined in 

Subsection 4.4, and interpret this result as it applies to the k-binomial 

transformations. We then extend the basic result to answer questions about other 

transformations (including the binary transformation) in Subsection 4.6. In 

Subsection 4.7 we discuss the justification of the restriction to arboreal strategies, 

and in Subsection 4.8 we return to explore the limitations (implied by our model) of 

the preceding results, showing a number of cases in which our "lower bounds11 can 

be beaten by going outside the model. 

4.1. The Model of Computation 

The most important assumption of our model is that the transformations under 

consideration are not allowed to use any specific knowledge about the original 

problem or static structure except for the fact that the problem is decomposable. It 

therefore remains plausible for any particular decomposable searching problem, P, 

that there exists a dynamic data structure for P having performance better than 

that produced by applying any optimal static-to-dynamic transform to any static 

structure for P. For example, AVL trees (see Knuth [1973]) provide a dynamic data 

structure for member searching with 

P A V L = ° < N '9 N>> 
S A V L = ° ( N )> A N D 

QAVL = °(>g N). 



25 October 1979 Static-to-Dynamic Transforms - 30 -

The results of this section imply that no dynamic structure with this efficiency can 

be obtained (in the worst case) by applying a general transform to a static 

structure for member searching; the efficiency of AVL trees depends on particular 

properties of the member searching problem other than decomposability (in 

particular, the ability to maintain the structural invariant under rotation). 

Our model of computation is that we have three operations, Build, Query, and • , 

whose inner workings we may not examine. Build works with performance P§ to 

create static structures. Query works with performance Q§ to search the 

structures created by Build. The • operator is guaranteed to have the property 

•(Query(x,Build(A)),Query(x,Build(B)) - Query(Buiid(A U B)) 

The only way to answer a query is by applying Query one or more times to 

structures created by Build and then combining the results using •. It is assumed 

that Ps grows at least linearly and that Q§ is monotone non-decreasing. 

To measure the computation costs (PQ and QQ) associated with a dynamic 

structure, we will charge only for the computation time of calls to Build and Query. It 

should be noted that these costs will generally be the dominant parts of the total 

costs of the dynamic algorithms. In any case, this approximation is certainly 

acceptable for the purpose of establishing lower bounds 6n the costs of dynamic 

algorithms. 

Our goal in the search for efficient transformations is to minimize simultaneously 

the penalty functions 

F(N) = Max Q D( i)/QsO) and 
1<i<N 

G(N) = P D ( N ) / P S ( N ) . 

The bulk of this section will be devoted to showing limits on just how far this 

process may be carried in the worst case. Our interpretation of the term "worst 

case" in this context is a bit tricky. We have already mentioned that we may 

assume no specific knowledge about the problem or the original static structure 

e x c e p t for decomposability. It is also important to note that we do not allow 



25 October 1979 Static-to-Dynamic Transforms - 31 -

ourselves to assume any specific knowledge about the efficiency of the underlying 

static structure, except that P is at least linear and Q is monotone non-decreasing. 

(Note, for example, that the improvements in F and G which occur for fast-growing P 

and Q are not examples of worst-case behavior, so there is no contradiction in the 

fact that our lower bounds deny the possibility of such improvements in the general 

case. ) 

The reader may find it helpful to think of the worst case as that in which P is 

linear and Q is constant, the intuition being that it is hardest for the dynamic 

structure's costs to approach the static structure's costs when the latter are as 

small as possible. Since we may not use any specific knowledge about the original 

static problem or data structure, any solution to the dynamic problem must work by 

maintaining a collection of static structures. Whenever an element is inserted, a 
12 

new structure must be created containing that element and possibly some other 

elements. Also, some existing static structures may be thrown away. When a query 

is made to the dynamic structure, it is necessary to search some set of static 

structures which together contain all the elements inserted so far. 

For the following analysis, we will place a few restrictions on the nature of the 

dynamic structures we will consider. We will return later to the problem of justifying 

these restrictions. Our first restriction is as follows: 

Restr ict ion 4.1: (Dynamic structures partition elements into static structures) 
We assume that at any time there exists exactly one static structure 
containing eaqh element which has been inserted so far. That is, the static 
structures partition the set of elements represented by the dynamic structure. 

With the preceding assumptions in mind, we are now ready to move on to the first 

steps of our analysis. 

W h i l e w e may conce ive of strategies in which new static structures are created by queries into the dynamic 
s t ructure , w e need not consider this possibility for this wors t - case analysis, since could g r o w much more 
rapidly than Q s . \ 



25 October 1979 Static-to-Dynamic Transforms - 32 

4.2. Computing F and G 

We now give some rules for determining the worst-case values of the penalty 

functions F and G associated with a particular strategy. 

Definitions: (f and g) 
Consider the history of a dynamic structure over the course of any number of 
insertions starting when the structure is empty. We define f(N) as the 
maximum number of static structures existing after one of the first N 
insertions. We define g(N) as the sum of the cardinalities of all sets of 
elements built into static structures created over the course of the first N 
insertions. 

Note that, while the definitions of f and g actually depend on the specific 

transform used, the identity of the transform under consideration will always be 

clear from context. We may now bound F and G as follows: 

Theorem 4.1: (f bounds F) 
For any positive integer N, F(N) < f(N). 

Proof : 
After any of the first N insertions (say the i-th), at most f(N).static structures 
exist . To compute the cost of answering a query, we charge precisely for 
querying these structures. Since each of these structures has cardinality no 
larger than i, and since Q5 is monotone non-decreasing, the total cost is at 
most f (N)Q s ( i ) . QED. 

Theorem 4.2: (g/N bounds G) 
For any positive integer, N, G(N) < g(N)/N. 

Proof : 
We note that any static structure built during the first N insertions will have 
cardinality no larger than N. Consider such a structure, S, having cardinality L 



25 October 1979 Static-to-Dynamic Transforms - 3 3 

By the fact that Pg grows at least linearly, we may bound the cost of building 
S by the inequality 

P s ( i ) < iP s(N)/N 

Summing over all static structure, we get 

P D (N) < g(N)P s(N)/N, 

implying 

G(N) = P D (N)/P S (N) < g(N)/N. 

QED. 

By the assumptions in Subsection 4.1, the preceding bounds are the tightest 

possible for the general case. We will therefore concern ourselves henceforth with 

the problem of minimizing f and g rather than F and G. 

4.3. Transforming History Diagrams to Trees 

The transforms we discussed in Section 3 are all representable by history 

diagrams, such as those in Figures 3.1, 3.4, 3.7, 3.8, and 3.11. It is not the case, 

however, that all transforms are so representable; in order for a static structure to 

be represented as a (contiguous) rectangle in a history diagram, it is necessary that 

it be built from a set of elements which were inserted consecutively during the 

history of the structure. We now impose our second restriction on the class of 

dynamic structures to be considered: 

Restr ict ion 4.2: (Contiguity of static structures) 
We will restrict our attention to transforms whose histories are representable 
by history diagrams. 

Indeed, we will further restrict our attention to those history diagrams (such as the 

ones in Section 3) in which every rectangle reaches to the "diagonal" of the 

diagram. We may state this otherwise as 

Restr ict ion 4.3: (Eagerness of static structures) 
We will restrict our attention to transforms in which each static structure is 



25 October 1979 Static-to-Dynamic Transforms - 34 -

built as soon as all its elements have been inserted, and in which the elements 
of any discarded static structure are always built into a single new static 
structure (along with some additional elements). 

Strategies which satisfy Restrictions 4.1, 4.2, and 4.3 will be called arboreal 

strategies for a reason that will soon become obvious. 

Consider the history diagram for the first N insertions into a dynamic structure 

which is maintained by an arboreal strategy. Any such diagram induces a binary 

t ree, as shown in Figure 4.1. We may draw this tree by tracing the left and upper 

edges of each rectangle in the diagram. The internal nodes of the tree will thus be 

at the upper left corners of the various rectangles; each internal node of the tree 

corresponds to a (unique) static structure. We will now go on to study some 

relationships between the efficiencies of arboreal strategies and properties of their 

induced trees. 

|lson(a)| rson(a) p 
15 a 

P 
10 

1 

(a) A partial history diagram (b) The induced ¥ree 

Figure 4.1. A history diagram and its induced tree. 



25 October 1979 Static-to-Dynamic Transforms - 35 -

4.4. T ree Properties and their Relation to Performance 

We now introduce some basic vocabulary for discussing properties of binary 

t rees. 

Definit ions: (Tree properties) 
Let T be a binary tree. Then leaves(T) denotes the set of all leaves of T and 
nodes(T) denotes the set of all internal nodes of T. The weight of T t denoted 
|T|, is defined as the cardinality of leaves(T). For any internal node, a, of T the 
left and right sons of a are denoted lson(a) and rson(a), respectively. If a is a 
leaf of T, then the right depth of a, written rd(a), is defined as the number of 
right branches along the path from the root of T to a. The right height of T, 
rh(T), is the maximum right depth of any leaf of T. The right path length of T, 
R(T), is defined as the sum of the right depths of all leaves of T. Left depth, 
left height, and left path length are defined analogously. 

We will sometimes identify a (not necessarily internal) node, x , of a tree with the 

subtree rooted at x . For example, we may write |x| to indicate the number of 

leaves which are descendants of x . 

We now make the following observation: 

Theorem 4.3: (Alternate characterization of left path length) 
Let T be a tree. Then, 

L(T) = 2 |lson(n)| 
n e nodes(T) 

Proof : 
Consider any leaf, x, of T. We need only note that the left branches along the 
path from the root of T to x emanate precisely from those nodes of T whose 
left sons contain x . QED. 

With this characterization of left path length in mind, we may now relate the trees 

induced by arboreal strategies to the penalty functions associated with those 

strategies. 



25 October 1979 Static-to-Dynamic Transforms - 36 

Consider the tree in Figure 4.1(b), To each static structure created during the 

partial history represented by that tree, there corresponds a right (horizontal in the 

diagram) branch whose length (in the diagram) is proportional to the cardinality of 

that static structure. Moreover, for any internal node, n, of the tree, the length (in 

the diagram) of the right branch from n corresponds precisely to the number of 

leaves in the left son of n. By summing over all internal nodes of the tree, we 

establish the following result: 

Theorem 4.4: (Relation of g to left path length) 
Let N be a positive integer and let T be the tree induced from the history 
diagram representing the first N insertions into a dynamic structure maintained 
by some arboreal strategy. Then, L(T) = g(N). 

Proof : 

Given in the preceding text . QED. 

We may also characterize N and f in terms of tree properties: 

Theorem 4.5: (Relation of N and f to tree properties) 

| Let N be a positive integer and let T be the tree induced from the history 
diagram representing the first N insertions into a dynamic structure maintained 
by some arboreal strategy. Then, 

|T| - N + 1 and 
rh(T) = f(N). 

Proof : 
Inspection of Figure 4.1 will reveal that these results are obvious. QED. 

The theorems proven so far in this section allow us to address the problem of 

"simultaneously minimizing" F and G by investigating a closely related problem about 

t rees, namely that of "simultaneously minimizing" the right height and left path 

length of a tree with a fixed number of nodes. To discuss this more precisely, we 



25 October 1979 Static-to-Dynamic Transforms - 37 -

make the following definition: 

Definit ion: (Minimal left path length) 
Let n and k be positive integers. We define 

L k (n ) = Min {L(T) | T is a tree such that |T| = n and rh(T) £ k} . 

Since the only tree with zero right height is the tree of one node (which also 
has zero left path length), we also define 

L 0 ( D = 0. 

By convention, we will regard Lg(n) as "positive infinity" whenever n>1. A tree 
with n leaves, right path length k, and left path length Ljc(n) will be called an 
economical tree. 

In the next few pages, we will investigate the behavior of L^n) as k and n vary , 

and then restate our findings in terms of lower bounds on worst-case penalty 

functions. 

4.5. The Behavior of L^(n) 

Consider a binary tree, T, with root node t. Let A and B be the subtrees rooted at 

a=lson(t) and b=rson(T), respectively. The weight, right height, and left path length 

of T may be recursively computed from properties of A and B by the relations 

|T|-|A| + |B|, 
rh(T) = max(rh(A), rh(B)+1), and 
L(T) = L(A) + |A| + L(B). 

From this, we obtain the following recurrence for L^(n): 

Theorem 4.6: (Recurrence for L^Cn)) 
Let n and k be any positive integers. Then, 

k=1, n>1 
Min [Lj<(i) + i + L^-jCn-i)] 

ll*i<n-1 
k>1,n>1 



25 October 1979 Static-to-Dynamic Transforms - 38 -

Base Step: (k = 0) 

Proof : 

The results for k=1 follow by considering the unique binary tree of any weight 
which has right height < 1. For the case k>1, we consider a tree, T (with root 
t ) having weight n> 1 and height k. Let t be the root of T. And let A and B be 
the subtrees rooted at a=?lson(t) and b=rson(t), respectively. Then we must 
have: 

1 < |A| £ n, 
|A| + |B| = n, 
rh(A) < k, and 
rh(B) < k-1. 

Moreover, if the left path length of T is to be minimal, the left path lengths of A 
and B must be minimal. That is, we must have 

L(A) = Lk(|A|) and 
L(B) = Lk_-,(|B|). 

These requirements are precisely captured by our recurrence. QED. 

We now come to the principal theorem of this section, wherein the behavior of 

L k ( n ) is precisely characterized in terms of binomial coefficients. 

Theorem 4.7: (Characterization of L k(n)) 
Let k and m be non-negative integers such that k < m, and let n be a positive 
integer satisfying 

( j ? ) * n < ( r 1 ) 

Then, 

L k (n ) = k(^) + (m-k-1)N, [ I ] 

where 

N = n - ( | ? ) . 

Proof : 
Our proof will proceed by induction on k and, for each fixed positive value of k, 
by induction on n. 



25 October 1979 Static-to-Dynamic Transforms 39 

In this case, we have 

<p) = i = ( r 1 ) . 
This implies that n = 1, so the right hand side of [ I ] reduces to 

.0(0+1) + M . 1 ) ( n - ( f ) ) » 0 • 
= 0 
= L 0 (1) 

Inductive Step: (k > 0) 
We now must show that the theorem holds for any k>0 assuming it holds 
for all smaller k. We proceed by induction on n. In doing this, we must 
take note of the interaction between m and n. Since k is positive, ( j? ) 
increases monotonically with m. Thus, the minimum possible value of n is 

( k ) «• 1, and for any positive value of n, there is at least one possible 
value for m (and occasionally there will be two). 

Base Step: (n = 1) 
In this case, we must have m = k, so the right hand side of [ I ] 
reduces to 

k(kW + (k-k~1)[l-(k)] = k(°) + ( - 1 ) 0 - 1 ) 
= 0 
* L k ( 1 ) . 

Inductive Step: (n > 1) 
We first show that the right hand side of [ I ] gives an upper bound 
on L k (n) . Note that 

(T1) * •(*) * " * (T1) • (i?) * ( R ^ I ) -
We now pick a and b such that 

( m
k - 1 ) ^ a < ( p ) , [||] 

and 

a + b = n. 

By Theorem 4.6, we have 



25 October 1979 Static-to-Dynamic Transforms - 40 -

L k (n) £ L k (a) + a + L k_-,(b) 
= k(k+l) + ((m-1)-k-1)(A) + 
(T 1)*A + 

(k-1)(T1) + ( ( m - D - ( k - 1 ) - 1 ) ( B ) 

.•fcC(P̂ WTr1)) + Cm.k.1)(A+B) 
sk(k+l) + 0" -k -1)N, 

where, 

B = b - (kJ-j 1), and 
N = n - ( f ) . 

This establishes that our expression is an upper bound on L k (n ) . To 
establish that this is also a lower bound,, we must show that no 
other way of expressing n as the sum of two positive numbers, a 
and b, will give a smaller value for 

L k (a) + a + L H ( b ) [ I I I ] 

To show this, we consider the effect on the value of expression 
1 3 

[III] of increasing or decreasing a by steps of one. Suppose we 
start with a and b chosen to satisfy [ I I ] , and then start 
incrementing a and decrementing b by steps of 1. So long as a 
remains less than (j?) and b remains greater than ) , the ef fect 
of each increment will be to increase L k (a ) + a by 
((m-1 ) -k -1) + 1 = m-k-1 and to decrease Lk..-|(b) by 
(m-1 )-(k-1 )-1 = m-k-1, leaving the total value of [III] u n c h a n g e d . 1 4 

However, as soon as either a or b exceeds the stated bound, one or 
more of the following things will happen: 

1. The incremental growth of L|<(a) will increase while the 
incremental shrinkage of L^.-jCb) decreases or remains 

In the fo l lowing, w e assume that k > 1. If k = 1 w e must always take b = 1 (and a = n - 1 ) , since only then is 
L 0 ( b ) def ined. 

1 4 T h e incremental changes given here are found by substitution into the second term of the right hand side o f 
[ l ] , under the induction hypothesis. 



25 October 1979 Static-to-Dynamic Transforms - 41 -

the same, 

2. The incremental shrinkage of L ^ C h ) will decrease 
while the incremental growth of L^Ca) increases or . 
remains the same, or 

3. b will diminish to 0. 

In any case, a smaller value for [III] will not be obtained. Similarly, 
if we start with a and b as in [II] and decrease the value of a while 
increasing b, then we will have zero or more steps at which [ I I I ] 
remains unchanged, zero or more steps wh^re the increase in 
L ^ f (b) exceeds the decrease in L^Ca) + a, and finally the step at 
which a diminishes to zero. Thus, the rules given in [ I I ] give an 
optimal partitioning of n into a and b. This completes the induction 
step and the proof. 

QED. 

The use of the auxiliary variable, m, in expression [ I ] makes it a bit difficult to 

grasp intuitively what is being said about the effects of n and k on L^Cn). To make 

the picture clearer, we will briefly study the asymptotic behavior of L^Cn) as k 

remains f ixed and n grows without bound. Consider first what happens as n ranges 

only over binomial coefficients of the form (™). We note that 

n = ( f ) => m-k+1 < ( n / k ! ) 1 / k < m. 

So, 

4c<"> « k(k!M) 
=kn(m-k)/(k+1) 

^ [ k / ( k « H ) ] k ! 1 / k n 1 + 1 / k . 

Since the growth of Lj^n) is very well behaved , 1 5 the preceding may be extended 

G i v e n the values where n is of the form Mm choose k", w e can find the exact values at all other n b y l inear 
interpolat ion. 



25 October 1979 Static-to-Dynamic Transforms - 42 -

to cover all values of n. 

Theorem 4.8: (Asymptotic behavior of L k(n)) 
Let k be any positive integer. Then, 

L k (n ) ~ [k/ (k+1) ]k ! (1/k)n 1 + 1 / k . 

Proof : 
The result follows directly from the preceding text . QED. 

By precisely characterizing L^n), Theorem 4.7 gives us a bound on the 

efficiencies of arboreal static-to-dynamic transforms. Any such strategy which has 

f(N) < k for all N must always have g(N) > L|<(N+1). The asymptotic behavior of L^Cn) 

given by Theorem 4.8, and our knowledge that Theorems 4.1 and 4.2 are the best 

possible within our model, tell us that whenever we have 

F(N) < k 

for any positive integer k, we must also have 

G(N) > L k(N+1)/N ~ ( k ! N ) 1 / k . 

This is the precisely behavior achieved by the k-binomial transforms, up to lower 

order terms. Note, however, that the exact lower bound is not always achievable. 

The reason for this is the consideration of immutability of history. If we know In 

advance that there will be exactly N insertions, then an optimal strategy can be 

devised by working backwards from an economical tree of weight N+1 and right 

height k. But if the total number of insertions to be made turns out to be larger, 

then a different strategy for the first N insertions may have been called for. 

Fortunately, the results of this restriction turn out not to be too severe* since the 

k-binomial strategies have efficiency very close to this theoretical limit. The 

following theorem shows that, for any k, the G(N) achieved by the k-binomial 

transform is optimal (for F(N) < k) not only to within lower order terms but actually to 

within an addive constant of 1. 

Theorem 4.9: (Optimality of k-binomial transforms) 



25 October 1979 Static-to-Dynamic Transforms 43 -

For any positive integer, k, the k-binomial transform achieves 

f(N) < k and 
g(N) < L k(N+1) + N 

for all positive N. 

Proof: 

Examination of the optimal construction given in the proof of Theorem 4.7 
shows that the k-binomial strategy achieves the optimal value of 

f(N) = L k(N+1) 
when N is of the form 

N = ( f ) " 1 

for some m>k. For intermediate values of N, we need only note that, after the 
first N insertions under the k-binomial strategy, the sum of the cardinalities of 
all structures formed so far except those in existence after the N-th insertion 
(note that these latter must have a total cardinality of N) wilt never be greater 
than L k (n ) . This fact may be established by induction on k, using the fact that 
values of L k (n) are given exactly by linear interpolation between points at 
which the k-binomial transform gives absolutely minimal values of f(N). QED. 

4.6. Allowing the Number of Static Structures to Grow 

So far in this section we have only considered minimizing g(N) where f(N) is 

bounded by a constant. In other words, we have considered only strategies which 

allow some fixed maximum number of static structures to exist at one time. In 

Section 3, however, we also investigated strategies (the binary and the dual 

k-binomial transforms) which allow the the number of static structures to grow 

without limit as the total number of elements in the dynamic structure increases. 

We will now, therefore, briefly investigate transforms which allow f(n) to grow 

without bound. 

To study the efficiency of transforms in which f(N) is unbounded, we may 



25 October 1979 Static-to-Dynamic Transforms - 4 4 -

In accordance wi th the notational conventions of this section, w e have k = f (n) 5 5 f ( N + 1 ) , since the f i rst N 
insert ions a l w a y s g ive a history diagram which induces a tree of weight N+1. 

consider the behavior of Lj^n), where k is allowed to vary with n.1® We must be 

aware of two possible consequences of allowing k to grow: 

(1) For any particular k, n may never grow large enough for L k (n) to 
approach the asymptotic behavior given by Theorem 4.9. 

(2) Our previous caveat about the immutability of history may become more 
significant. 

Since the asymptotic approach of L k(n) / [k/(k+1 )]k! 1 ' k n 1 + 1 ' k to unity (as n grows 

and k remains constant) is from below, (1) may be ignored for the purpose of 

investigating upper bounds. Since the immutability of history can never make it 

easier to devise efficient transforms, this consideration may be ignored for the 

investigation of lower bounds. Because of these complicating factors, our results 

for transforms with unbounded f are less precise than those for bounded f. A few 

results are nonetheless worth noting. The first of these is the following. 

Theorem 4.10a: (Optimality of the binary transform) 

For any arboreal transform such that f(N) = 0(lg N), g(N) = 0(N Ig N). 

Proof : 
Since constraining the growth of f can only increase and never decrease the 
necessary growth of g, we need only consider the case where f(N) = 0(lg N ) . 
We must show that Lf(N)(N+1) - Q(N Ig N). We define the function M by 

M(n,k) = Max {m | ( f ) < n}. 

From the fact that f(N) = B(\g N), it follows that M(N,f(N)) - f(n) = 0(lg N). This 
gives us 



25 October 1979 Static-to-Dynamic Transforms - 45 -

Th is f o l l o w s from the fact that Theorems 4.1 and 4,2 are the tightest results possible within our model. 

That is, consideration (1 ) may be disregarded. 

UNIVERSITY LIBRARIES 
CARN£Gi£-MEUOH UNIVERSITY 

PITTSBURGH. PENNSYLVANIA 15213 

g(N)> L f ( N ) ( N + 1 ) 

> L f ( N ) ( N ) 

> f(N)(T ' l f ( N ) )) 
= [f(N)/(f(N)-1 )][M(N,f(N))-f(N)]N 
= 0(N Ig N) = fi(N Ig N). 

QED. 

This result tells us that the binary transform is optimal in the sense that any 

transform that pays as small a penalty in search cost (within a constant factor) 

must pay at least as large a penalty in insertion (again within a constant factor) ; 

any arboreal transform which achieves F(N) = 0(lg N) in the worst case must also 

pay G(N) = J2(lg N ) . 1 7 The binary transform is also optimal in the sense that any 

transform which is actually cheaper (by more than a constant factor) for searches 

must be strictly more expensive (again by more than a constant factor) for 

insertions. We state this result more formally in the following theorem. 

Theorem 4.10b: (Optimality of the binary transform) 

For any arboreal transform such that f(N) = o(ig N), g(N) = co(N Ig N). 

P r o o f : 

Let the function h be defined by 

h(N) = (Ig N)/f(N). 

From the hypothesis that f(N) = o(lg N), it follows that h(N) - w(1). Moreover, 
since M(N,f(N)) < Ig N, we have f(N) = o(M(N,f(N)), which means that the 
approximation in Theorem 4.8 remains valid. This gives us 



25 October 1979 Static-to-Dynamic Transforms - 46 -

g (N)> L f ( N ) ( N + 1 ) 

> L f ( N ) ( N ) 

~ C f ( N ) / ( f ( N ) + 1 ) ] f ( N ) ! 1 / f ( N ) N 1 + 1 / f < N ) 

~ [ 1 ] ( f ( N ) / e ) N 1 / f ( N ) N 

= [Og N)/(e h ( N ) ) ] 2 h ( N ) N 

= w(N Ig N). 

| QED. 

This implies that any arboreal transform which achieves F(N) = o(lg N) in the worst 

case must also pay G(N) = co(lg N). 

In the preceding proof, we saw that the approximation given in Theorem 4.8 still 

serves to provide a lower bound on the growth of g even when*f Is allowed to grow 

without bound, provided that f(N) = o(lg N). The next natural question is whether 

this bound can always be achieved. It turns out that this is not always possible. If 

f grows in a very irregular manner, having sudden spurts of growth separated by 

intervals of aimost no change, then the immutability of history will cause g(N) to be 

much larger than Lf(N+i)(N+1) for values of N immediately following the sudden 

increases. If f grows "smoothly" (the precise meaning of this term is implicit in the 

following theorem), however, this lower bound for g(N) is very nearly obtainable. We 

state this result formally as follows. 

Theorem 4.11 (Optimizing g for slowly growing f) 
Let h be a differentiable function such that 

h(x ) a cod) and 
h'(x) = o(1/x). 

Then, there exists a transform having 

f(N) < rh(N)l and [ I ] 
g ( N ) ^ ( h ( N ) / e ) N 1 + 1 / h ( N ) . [ I I ] 

Moreover, given [ I ] , [ I I] is optimal up to lower order terms. 



25 October 1979 Static-to-Dynamic Transforms - 47 -

Proof : 
A structure having the performance described may be formed by a process of 
"cutting and pasting" from the history diagrams of the various k-binomial 
strategies. We omit the details for brevity and for the sake of keeping the 
reader awake. The optimality of [II], given [ I ] , is implicit in the proof of 
Theorem 4.10b. QED. 

Our results for transforms in which f(N) = o>(lg N) are much less complete. In 

particular, we know that the performance of the dual k-binomial transforms falls 

substantially short of the bound given by the inequality 

g (N )> L f ( N ) ( N + 1 ) . 

We conjecture that this is an inevitable penalty of the immutability of history, and 

that the dual binomial transforms are in fact optimal in some strong sense, similar to 

that of Theorem 4.9 for the ordinary binomial transforms. The problem of finding 

optimal transforms in which f(N) grows faster than Ig N but slower than n* for any 

positive * remains open. 

4.7. Justif ication of the Restriction to Arboreal Transforms 

In Subsections 4.1 and 4.3, we introduced three restrictions which together 

constrained our investigation to arboreal transforms. While we conjecture that 

arboreal strategies are optimal, in the sense that for any non-arboreal transform 

there exists an arboreal transform which is at least as good (given the "black box" 

model described in Subsection 4.1), we have not yet found a rigorous proof. In this 

subsection, we will summarize our reasons for considering each of the restrictions 

reasonable. 

Restriction 4.1 forbids the existence of multiple structures containing the same 

element. Our intuition is that any strategy which permits such overlapping 

W e may v i e w equiva lent^ v i e w this as the problem of optimizing f when g (N) g rows asymptotical ly fas ter 
than N but s l o w e r than N Ig N. 



25 October 1979 Static-to-Dynamic Transforms - 4 8 -

structures can be improved by omitting the shared elements from all but one of the 

overlapping structures. To justify this intuition would require careful examination of 

the consequences of this omission when that one structure is finally destroyed. We 

may also forbid overlapping structures on the grounds that transformations which 

allow them cannot be optimal for space in the worst case. An even more serious 

objection is that there are a number of .problems which satisfy the definition of 

decomposability only when the unions involved are of disjoint sets. 

Our intuitive justification for Restriction 4.2 (contiguity of static structures) is the 

belief that a partial history which does not satisfy this restriction can be turned into 

one that does, at no cost in f(N) or g(N), by a kind of "permutation of the names of 

the elements.'1 To show this would justify the restriction at least for the cases 

where f is bounded or grows slowly and smoothly, so that the immutability of history 

is not a significant problem. 

For Restriction 4.3, we can actually give a rigorous justification, at least over the 

class of transforms which already satisfy Restrictions 4.1 and 4.2. We express this 

in the following theorem: 

Theorem 4.12: (Optimality of eager strategies) 
Let N be a positive integer. For any partial history consisting of the first N 
insertions and satisfying Restrictions 4.1 and 4.2, there exist a partial history 
which also satisfies Restriction 4.3 and which has f(N) and g(N) no greater 
than those for the original partial history. 

Proof : 
Any partial history which satisfies the first two restrictions may be 
represented by a history diagram. We may insure that the rectangle in the 
upper left corner of the diagram represents a structure which is formed as 
soon as all its elements become available, for any diagram which does not have 
this property can be transformed at no cost into one that does. The 
construction is as follows: 

Let R be the upper left rectangle in the diagram. Consider the leftmost 
rectangle immediately below R. If it is wider than R, then we extend it 



25 October 1979 Static-to-Dynamic Transforms - 49 -

upwards to the top of the diagram, obliterating R; if it is narrower than R, 
then we extend R downwards by one step. This process is repeated 
until the property holds. 

But now the rest of the diagram (excluding the upper-left rectangle) must 
consist of zero, one, or two staircase-shaped pieces to which the same 
process may be applied recursively, finally yielding a diagram satisfying 
Restriction 4.3. No step in this process increases either the total 
preprocessing cost or the maximum number of simultaneously existing 
structures, so Restriction 4.3 has been formally justified. QED. 

4.8. Limitations on the Significance of the Lower Bounds 

The lower bounds we have derived in this section are based on the model of 

computation given in Subsection 4.1. Before concluding the section, we will mention 

some of the limitations which this implies for the applicability of our results. 

We have already mentioned that it is often possible to obtain superior dynamic 

data structures for individual decomposable problems (e.g., Member) by using 

specif ic properties of those problems. Another assumption on which our lower 

bounds depend is that Theorems 4.1 and 4.2 are the strongest possible results of 

their kind, because we assume no knowledge about the performance of the original 

static algorithm. As we saw at the end of Subsection 3.1 the penalty factors, F ( N ) 

and G(N), may be greatly reduced (from B(\g N) to 0(1) in the example of Subsection 

3.1 if the cost functions of the static structure are already fast-growing. We now 

present some results concerning a slightly different way of lowering the penalty 

functions given fast-growing cost functions for the original static structure. 

Suppose we are given a static structure for a decomposable searching problem 

having preprocessing cost Ps(N) and query cost QS(N). We will make only the usual 

assumption about Qs " that it is monotone non-decreasing. We will, however, make 
the assumption that Ps(N) not only grows at least linearly with N, but is actually 

0(N ). If we apply the 2-binomial (triangular) transform, will obtain a dynamic 

structure having cost functions, Pp and QQ, which satisfy 



25 October 1979 Static-to-Dynamic Transforms - 50 -

Q Q ( N ) < 2 Q S ( N ) and 

P D ( N ) = 0 ( N 5 / 2 ) . 

The reader is advised to go through the exercise of verifying the latter assertion. 

The penalty factor in preprocessing is given by 

G(N) = P D ( N ) / P S ( N ) = 5 ( N 1 / 2 X 

which is at most a constant factor improvement over the worst-case result given in 

Theorem 3 . 2 . We appear to get negligible compensation for the fact that the 

preprocessing cost is already much more than linear. If we look a little more 

carefully, however, we may notice an interesting phenomenon. 

In the triangular strategy, we maintain two structures, a large one, having 

cardinality O(N), and a small one, having cardinality 0 ( N 1 ^ 2 ) . If we break down 

PpCN) into the cost of forming all the large structures built during the first N 

insertions and the cost of forming all the small structures built during the first N 

insertions, we find that the large structures have a total cost of 0 ( N 5 ^ 2 ) , while the 

total cost of the small structures is only 0(N ). If Pg had been linear, then the 

costs of the two families of structures would have been equal within a constant 

factor, each being 0 ( N 3 ^ 2 ) . The present disparity suggests that it might be better 

to merge the small structures into the large ones less frequently. And, indeed, if we 

adopt the strategy of rebuilding all the elements into a single structure only when 

the size of the small structure would exceed N 2 ^ 3 , we achieve a dynamic structure 

having 

Q D ( N ) < 2 Q Q ( N ) and 

P D (N ) = 0 ( N 7 / 3 ) = 0 ( N 1 / 3 P ( N ) ) 

(as the reader may again wish to verify), the total preprocessing cost being split 

evenly (within a constant factor) between the two families of structures. The 

preceding results may be generalized to arbitrary polynomial preprocessing costs 

and arbitrary binomial transforms, as shown in the following theorem. 



25 October 1979 Static-to-Dynamic Transforms - 51 -

Theorem 4.13: (Shift-of-strategy speed-ups) 
or) 

Let k be an arbitrary positive integer and let r be a real number ^ greater than 
1. Suppose that we are given a static structure for a decomposable searching 
problem with cost functions satisfying the following criteria: 

Q g ( N ) is monotone non-decreasing, 
P § ( N ) grows at least linearly, and 
P S ( N ) = co (N r ) . 

Then, a dynamic data structure can be constructed such that 

Q D ( N ) < k Q c ( N ) and 

P D ( N ) = 0 ( N * P s ( N ) ) , 

where 

R = ( r -1 )/ ( r k -1 ) . 

Proof : 
We maintain a set of structures satisfying the following invariants: 

(1) After any insertion there are at most k static structures. 

(2) Let j be a positive integer. After the N-th insertion, the 
cardinality, Cj, of the j - th largest structure (if there are at least 
j structures in existence) satisfies 

c < N ( r k - r j ) / ( r k - 0 

When an element is inserted, we see how many structures already exist . If 
there are fewer than k, we simply build the new element into a static structure 
of cardinality one. If k structures already exist, we rebuild the smallest 
structure to include the new element. We then repeatedly (zero or more 
times) merge the smallest two structures until (2) is satisfied. We leave it to 
the reader to verify that this strategy achieves the advertised performance. 
Q E D . 

T h e nit -picking reader wil l delight in noting that it is not quite correct to al low r to be an arbitrary real number. 
( In order for the desired transform to be implementable, r must be Turing computable. E v e n then, if r is v e r y 
I e x p e n s i v e to compute, the bookkeeping costs may kill us. Similar considerations apply to the function h in 
T h e o r e m 4.11. 



25 October 1979 Static-to-Dynamic Transforms - 52 -

In any strategy based on the construction in the previous proof, the total 

preprocessing will be divided evenly (up to constant factors) among k families of 

structures. We conjecture that this gives optimal PQ within a constant factor 

(which may depend on r and k). Needless to say, similar improvements are available, 

both in preprocessing time and in query time, for a number of other transformations, 

given sufficiently fast-growing cost functions. Only a small fraction of the 

possibilities have been explored. 

5. Onl ine Transformations 

All of the transforms in Section 3 have the property that some insertions are very 

cheap while others are very expensive. For example, in the binary transform the 

1023-rd insertion is much less costly than the 1024-th. While this situation is quite 

acceptable in certain applications (such as when the total cost of accessing a 

structure throughout an entire algorithm is counted), it is prohibitive in others (such 

as online data bases). In this section we will show how the transforms in Section 3 

can be modified to amortize the cost of building static structures over the time of 

many insertions. 

1 In Section 4, we worked on the principle that any static structure might as well 

be formed as soon as all its elements became available, since the cost of building it 

would eventually have to be paid anyway. While this is reasonable if we are 

concerned only with the total cost of all insertions, it is inappropriate if we wish to 

make sure that no individual insertion is inordinately expensive. Figure 5.1 shows a 

strategy which is similar to the binary strategy of Subsection 3.1, except that each 

structure of cardinality C is completed at the end of the C-th insertion that all its 

elements are available, rather than at the end of the first such insertion. A 

structure, s, is said to be pending during the N-th insertion if the ail elements of s 

become available at or before the beginning of the N-th insertion and s is completed 

during the N-th insertion pr later. (The x's in Figure 5.1 denote the structures that 

are pending during the eighth insertion). A structure of cardinality C will therefore 

be pending during exactly C insertions. 



25 October 1979 Static-to-Dynamic Transforms - 53 -
20 x a 3 
19 
18 
17 
16 
15 
14 
13 
12 
11 

To limit the work done in any insertion step, we require that 1 /C of the work 

required to build any structure of size C be performed during each of the C steps in 

which that structure is pending. 2 1 We call the resulting transformation the online 

binary transformation. Analysis of this transform's performance yields the following 

theorem. 

Theorem 5.1: (The on-line binary transformation) 
Suppose we are given a static structure, S, for a decomposable problem such 

(1) Qg(N) is monotone non-decreasing, 

(2) A structure of cardinality N may be built by N calls, each of cost 
l s ( N ) (recall that l s (N) is defined as P S(N)/N), 

(3) lg(N) is monotone non-decreasing, 

T h e e x a c t means by which this is ensured are left unspecified. W e may modify the static algorithm to include 
appropriate breakpoints (general ly an easier task than totally reworking the algorithm into a dynamic algorithm b y 
ad hoc methods) , or w e could assume that w e can determine the required computation time in advance (a t 
negligible c o s t ) and set a hardware interrupt. For our present purposes, w e wil l assume that the ability to part it ion 
the compute time of a call to Insert is available by magic. It should also be noted that the partitioning of the w o r k 
into equal parts w i l l not be exact in in practice; this will lead to slightly greater insertion times than those w e a re 
about to adver t i se . 

10 
9 
8 
7 
6 
5 
4 
3 

x 

x 

Figure 5.1. The online binary transform. 

that 



25 October 1979 Static-to-Dynamic Transforms - 54 -

(4) The space used at any point during the formation of a static 
structure is at most S§(N), and 

(5) S g ( N ) grows at least linearly. 
• • . 

Then, there exists a dynamic structure, D, such that 

Q D ( N ) < 2Llg(N+1)jQ S(N), 
l D ( N ) < Tig N l l S ( N ) , and 
S D ( N ) < 3 S S ( N ) 

(recall that IQ(N) is the worst-case time to insert the N- th element in a 
dynamic structure). 

Proof: 
By assumption (2), application of the online binary transform Is well -defined. 
We will now show that the1 resulting dynamic algorithm has the stated 
performance. We first note that all structures which are either active 
(completed but not yet discarded) after the N-th insertion or pending during 
the N-th insertion have cardinalities which are exact powers of two and which 
are < N. Moreover, there are never more than two active structures of any 
given cardinality. This and assumption (1) justify the claim about Q Q . Similarly, 
assumption (3) and the fact that there is never more than one pending 
structure of any cardinality together justify the claim about IQ. Finally, we 
note that the sum of the cardinalities of ail structures active and pending after 
the N-th insertion is no more than 3N (N for the active structures and no more 
than 2N for the pending structures). Together with assumptions (4) and (5) , 
this fact justifies the claim about SQ. QED. 

^ To illustrate the application of the online binary transformation, we will consider 

the problem of d-dimensional maxima searching. A vector is said to be maximal with 

respect to a set of vectors if no vector in the set is greater than the given vector 

in all coordinates. Preparata [1978] has given a data structure SMS for 

d-dimensional maxima searching with performances 

PSMS(N) = OW lg*J-2 N), 
S S M S < n > = °< N ig 2 N)> a n d 



25 October 1979 Static-to-Dynamic Transforms - 5 5 -

Q S M S ( N ) = 0 ( l g d " 2 N) F 

for any d>3. 

following. 

Applying the online binary transform to this structure yields the 

N e w Data Structure 5: (Dynamic Maxima Searching) 
For any fixed d > 3 there exists a dynamic data structure DMS for 
d-dimensional maxima searching with performance 

'DMS(N) = ° ( ' g d ; 1 N>, 
Q DMSW> = O d g ^ 1 N), and 
S D M S ( N ) = 0(N l g d " 2 N). 

This structure has the same performance as Lueker's [1979], but is substantially 

easier to code and prove correct; his structure, however, also supports deletions. 

(The two structures were discovered independently.) 
21 

15 

10 

— - H 

- r 1 

J 

J 

15 

10 

Figure 5.2. Online triangular transforms. 

The other transforms we have studied may also be modified to give online 

versions, as shown by the examples in Figure 5.2. The online triangular transform, 

shown in Figure 5.2(a), gives the performance 

l D ( N ) < ( 2 N ) 1 / 2 I S ( N ) , 
Q D ( N ) < 3Q S (N) , and 
S D ( N ) < 2S S (N ) . 



25 October 1979 Static-to-Dynamic Transforms 56 -

Similarly, the online dual triangular transform, shown In Figure 5.2(b), achieves 

l D ( N ) < 2 I S ( N ) 

Q Q ( N ) < 3(2N) ' Q s ( N ) F and 
S D ( N ) ~ S S ( N ) . 

Determination of good lower bounds for the penalty factors associated with online 

transformations remains an open problem. 

6. Transformations that Support Deletion 

So far in this paper we have considered dynamic data structures that support 

only insertions and queries. In this section we will present two results dealing with 

data structures that support deletions and their realization by decomposable 

transforms. In Subsection 6.1 we present a negative result that says that, in 

general, it is impossible to achieve by a transform a data structure that efficiently 

supports deletions. In Subsection 6.2 we will examine a transformation that 

efficiently achieves deletion, but is applicable only to a subset of the decomposable 

searching problems. 

6 . 1 . A Lower Bound 

In this subsection we will study a lower bound on the efficiency of performing 

deletion in a structure achieved by a decomposable transformation. As with all 

lower bound proofs, it is important that we accurately define our model of 

computation, which is very similar to that used in Section 4. We assume that there 

is a static structure S with operations Build and Query, which have performances P§ 

and Qs, respectively. The function P§ grows at least linearly, and Q$ is positive 

and monotone nondecreasing. There is no way to answer a query other than by 

using the Query subroutine (on a structure built by Build) and the • operator. The 

only costs that we will count are those of Ps, Qs> a n c * a constant cost for 

computing • . 

To state the lower bound precisely, we need some definitions. For a dynamic 

structure with deletions (which we call DD) we will define the functions I Q D ( N ) , 



25 October 1979 Static-to-Dynamic Transforms - 57 -

D Q Q ( N ) , and QQD(N) for the insertion, deletion and query costs, respectively. To 

strengthen our result, we let these costs denote not the worst-case times, but 

rather the average cost (over a distribution that we will make precise in the proof of 

the theorem). We are now ready to state and prove the primary theorem of this 

subsection. 

Theorem 6.1: (Expense of deletion) 
For any dynamic structure with deletions (which we call D D ) obtained by a 
transformation applicable to all decomposable searching problems, there ex ists 
a sequence of insertions, deletions and queries for which 

[QDD(N) ] * PDD<N> • D D D ( N ) + QDD<N>] = N < N > -
Note that this implies that at least one of the insertion, deletion and query 
costs requires at least J2(N ' ) time. 

Proof: 
We will prove this theorem by considering a "steady state" in which there is a 
structure of size N, and a sufficiently long string of repeated query, delete, 
and insert operations is performed. After M repetitions of these operations, 
the structure will still be of size N, and a total of M queries will have been 
performed. Each query that is performed must examine some collection of 
static structures whose total size is at least N (so that each element of the. 
set is represented in the query); assume that C*(N) such structures are 
examined on the average. We therefore know that at least half the queries 
examine no more than 2C*(N) static structures each (if more were examined, 
then the average would be too high), and in these cases the largest structure 
examined must contain at least N/(2C*(N)) elements. 

Consider now an adversary who causes each deletion in the sequence to be 
deleted from the largest existing static structure ~ because of our model of 
computation, this structure must now be discarded. For sufficiently long 
sequences of operations, static structures must be created as often as they 
are deleted. The costs of building the static structure must therefore be paid 
in insertion, deletion, and query costs, yielding 

l£ D (N) + DDD(N) + Q D D M * ( 1 ' 2 ) Ps<N/2C*(N)). 

(The right hand side is from the fact that at least one-half of the queries 



25 October 1 979 Static-to-Dynamic Transforms - 5 8 -

access a structure of size N/2C (N), and the adversary always deletes that 
structure.) We also know that 

Q D D M s fi(C*(N)), 

because each structure queried costs at least some constant. Multiplying 
these two inequalities yields 

C ^ D D ^ ) ] * D D D ^ ) + DQQ(N) + QQD(N)] 
= 0 ( C*(N) • P S (N/2C*(N) ) ) 
= fi(Ps(N)) 
= fi(N). 

The last two inequalities both follow from the fact that Pg grows at least 
linearly. QED. 

Maurer and Ottmann [1979] describe a static-to-dynamic transformation with 

deletion that comes close to achieving this lower bound by always keeping 
1/2 1/2 approximately N ' static structures, each of size approximately IM ' . 

Fortunately, however, additional information can often be used to achieve more rapid 

deletion outside the model for which this lower bound holds. (Any such transform, 

however, is not applicable to all decomposable searching problems.) 

6.2. A Fast Special Case 

Theorem 6.1 shows that any search for an efficient deletion transformation for all 

decomposable searching problems must be in vain. In this section we will see a 

transformation that does in fact efficiently support deletions as well as insertions, 

but is not applicable to all decomposable searching problems. We will investigate 

this transform by first studying a particular example, and then turn to the general 

case . 

The particular problem that we will study is that of counting the number of times a 

given element occurs in a multiset. A suitable static structure for this problem is the 

sorted array, which we discussed in Subsection 3.1; it has performances 



25 October 1979 Static-to-Dynamic Transforms - 59 -

S S A ( N ) = O(N), and 
Q S A ( N ) = 0(lg N). 

We saw in that subsection that this structure can be transformed to yield the 

binomial list data structure that efficiently supports both insertions and member 

queries. It is a trivial modification to have it support count queries as well; the • 

operator is now plus rather than or. 

Binomial lists can be modified to support deletion by keeping two binomial lists at 

all times, which we will call the real and the ghost structures. Each time an element 

is inserted, it is inserted into the real structure. When an element is deleted, we 

insert it into the ghost structure. To count the number of times an element occurs in 

the set , we count the number of times it occurs In the real structure and subtract 

from that the number of times it occurs in the ghost structure. We maintain the 

further invariant that the ghost structure always holds less than half as many 

elements as the real structure; when deletion of an element violates this invariant 

we destroy the ghost structure, unbuild the set of elements in the real structure 

and subtract all deleted elements from it, and finally rebuild that set into a new real 

structure (giving an empty ghost structure). 

We must now analyze the performance of binomial lists with deletions. The cost 

of inserting an element and of performing a count search remain the same; they are 

respectively 0(lg N) and 0(lg N). The "immediate" cost of deleting an element is 

0(lg N) (for performing the insertion into the ghost structure); we must also count, 

however, the cost of rebuilding the structure. The cost of rebuilding an 

M/2-element real structure is incurred only after M/2 elements have been deleted; 

since the total cost is 0(M Ig M), we can assign each element a share proportional 

to Ig M. Thus the cost of deletion in an N-element set can be amortized to 0(lg N). 

The strategy of using real and ghost structures can be generalized to give a 

dynamic structure supporting deletions for any decomposable searching problem 

whose • operator has an inverse. The most common case is when • is plus, for 

which D " 1 is minus. If • is and or or, then one can often transform the problem to 

involve plus instead (for instance, we could transform member queries to count 



25 October 1979 3tatic-to-Dynamic Transforms - 6 0 -

queries, whose • operator is invertible). If • is multiset union, then this scheme 

works only when the size of the answer set for the ghost structure is much smaller 

than the size of the total answer set (and this is often not the case). Finally, if • is 

min or max, this scheme is usually impossible to apply. 

To describe the strategy more precisely we will need some notation to describe 

the efficiency of structures with deletions. If DD is a dynamic structure supporting 

deletions, we let PQQ(M,N) denote the total insertion cost involved in a sequence of 

N insertions and M deletions in an initially empty structure. The function Q Q Q ( M , N ) 

denotes the cost of answering a query in a structure built by N insertions and M 

deletions. Finally, DQQ(M,N) denotes the total time spent in processing deletions in 

a series of N insertions and M deletions, and SQQ(M,N) denotes the maximum space 

required by the structure during the sequence. With this background we can 

describe the transformation supporting deletions precisely in the following theorem. 

Theorem 6.2: (Transformations supporting deletions) 
Assume that there exists an admissible (F(N) , G (N ) ) transformation. Then, 
given any static structure S for a decomposable searching problem P such that 
the inverse of the • operator for P is computable in constant time, it is 
possible to achieve a new structure DD with performances 

S D D ( M , N ) < S S ( 2 ( N - M ) ) + S g ( N - M ) , 
P D D ( M , N ) < G ( N ) • P S ( N ) , 
Q D D W ' W * P ( 2 ( N - M ) ) ' Q S ( 2 ( N - M ) ) + F ( N - M ) • Q g ( N - M ) , and 

D D D ( M , N ) < G ( M ) '• P S ( M ) + P S (2M) . 

We assume here that Qg is monotone nondecreasing and that both Pg and Sg 

grow at least linearly. 

Proof : 
The DD structure maintains two dynamic structures (each achieved by applying 
the admissible (F (N) ,G(N) ) transform.to S): the real structure and the ghost 
structure. Both structures are initially empty. To insert a new element into DD, 
insert it into the real structure. To answer a query, answer it on the real 
structure and subtract from that the answer on the ghost structure (using 

C r 1 ) . To delete an element, insert it into the ghost structure. If the ghost 



25 October 1979 Static-to-Dynamic Transforms - 61 -

structure ever becomes half the size of the real structure, rebuild the real 
structure with only undeleted elements, and discard the current ghost 
structure. 

The storage requirements of DD follow immediately from the superlinear growth 
of Sg. If a total of N insertions and M deletions have been performed, then at 
most N-M elements are "really" stored in the structure. The ghost structure 
can therefore contain at most N-M elements, and the real structure contains at 
most twice that number. The time spent on insertion is straightforward, and so 
is the query time. The time spent on deletion is at most that for inserting M 
elements into the ghost structure and then rebuilding the real structure; this 
latter action is never carried out on more than 2M elements. These facts 
together establish the theorem. QED. 

There are two important things to note about the transformation of Theorem 6.2. 

The first is that it is not online in the sense of Section 5; as it stands, the expense 

of rebuilding the real structure and discarding the ghost structure must occasionally 

be paid in a single block of time. The second interesting thing to note is the fact 

that there is nothing magic about insisting that the ghost structure be one-half the 

size of the real structure: we could just as well use any constant A in the range 

(0 ,1) . For small A, the query time decreases and the storage utilization is higher; for 

large A, the deletion time decreases. 

As an application of this transformation, we will consider the problem of Empirical 

Cumulative Distribution Function (ECDF) searching in a set of N d-dimensional 

vectors . One vector is said to dominate another if it is greater than it In all 

components; an ECDF query asks for the number of vectors a given vector 

dominates. Bentley and Shamos [1977] describe a data structure for d-dimensional 

ECDF searching (for d>2) with performances 

P E C D F < N ) s ° < n ' 3 d ~ 1 N ) , 
S E C D F < N ) = °< N ' 9 d - 1 N ) , and 
Q E C D F ( N ) = ° ( 'g d N ) : 

We can apply the binary transform of Section 3.1 and the transform of Theorem 6.2 

to their structure to achieve the following. 



25 October 1979 Static-to-Dynamic Transforms - 62 -

New Data Structure 6: (Dynamic ECDF Searching) 
It is possible to achieve a data structure for dynamic ECDF searching in which 
performing a sequence of N insertions and deletions requires 0(N Ig** N) time. 
When containing N elements, the structure requires 0(N Ig N) space, and an 
ECDF query can be answered in 0(lg N) time. 

Lueker [1979] later used a different transformation on decomposable searching 

problems to achieve an (online) structure with performance identical to this, but with 

a logarithmic factor removed from the query time; his structure is more difficult to 

code and to prove correct, however. 

7 . Conclusions 

We will now briefly review the contributions of this paper. The subject 

throughout has been general methods for converting static data structures to 

dynamic data structures. In Section 3 we saw three distinct classes of 

transformations, each based on a combinatorial representation of the integers. In 

Section 4 we saw that many of those transformations are optimal, in a very strong 

sense. In Section 5 we considered structures in which each insertion must be 

handled very quickly; this is important in "online" applications. Our study of dynamic 

structures up to this point concentrated on structures that supported only insertions 

and queries; in Section 6 we investigated structures that also support deletions. 

We saw that although it is impossible to achieve efficient deletions in the general 

case, they can be achieved for an important subclass of the decomposable 

searching problems. 

The contributions of this paper can be classified on three distinct levels. On the 

first level are the new data structures that we have seen. Each one is currently 

the best known structure for its task (with the exception of New Data Structure 6) , 

and each was discovered by conscious application of the transforms described in 

this paper. On a second level are the transformations themselves; they are ve ry 

interesting from a combinatorial viewpoint, and provide a useful addition to the 

algorithm designer's tool bag. On the third and final level is the new kind of result 



! 

represented by the transformations: they are not just a single solution to a single 

problem, but rather a set of solutions to a broad ciass of problems. This aspect of 

the work will be further emphasized in Part II of this paper, Bentley and Saxe 

[ 1 9 8 0 ] . 

Acknowledgements 

The helpful comments of Kevin Brown, Michael Shamos and Andrew and Frances 

Yao are gratefully acknowledged. 

References 

Bentley, J . L. [1979]. "Decomposable searching problems," Information Processing 
Letters 8, 5 (June 1979), pp. 244-251. 

Bentley, J . L., D. Detig, L. Guibas and J . B. Saxe [1979]. An optimal data structure 
for minimal-storage dynamic member searching, in preparation. 

Bentley, J . L. and H. A. Maurer [1978]. "Efficient worst-case data structures for 
range searching," to appear in Acta Informatica. 

Bentley, J . L. and J . B. Saxe [1980]. "Decomposable searching problems I I , " in 
preparation. (For a preliminary version see Bentley [1979].) 

Bentley, J . L. and M. \. Shamos [1977]. "A problem in multivariate statistics: 
algorithm, data structure, and applications," Proceedings of the Fifteenth 
Allerton Conference on Communication, Control and Computing, pp. 193-201, 
September 1977. 

Bentley, J . L. and M.Shaw [1979]. "An Alphard specification of a correct and 
efficient transformation on data structures," Specifications of Reliable 
Software Conference, pp. 222-237, April 1979, IEEE. 

Dobkin, D. and R . J . Lipton [1976]. "Multidimensional searching problems," SIAM 
J. Comp. 5, 2 (June 1976), pp. 181-186. 

Knuth, D. E. [1968]. The Art of Computer Programming, vol. 1: Fundamental 
Algorithms, Addison-Wesley, Reading, Mass. 

25 October 1979 Static-to-Dynamic Transforms - 63 -



25 October 1979 Static-to-Dynamic Transforms - 64 -
» 

Knuth, D. E. [1973]. The Art of Computer Programming, vol. 3: Sorting and 
Searching, Addison-Wesley, Reading, Mass. 

Lipton, R. J . and R. E. Tarjan [1977]. "Applications of a planar separator theorem," 
Eighteenth Symposium on the Foundation of Computer Science, pp. 162-170, 
October 1977, IEEE. 

Lueker, G. [1978]. "A data structure for orthogonal range queries," Nineteenth 

Symposium on the Foundations of Computer Science, pp. 28-34, October 1978, 

IEEE. 

Lueker, G . [1979] . "A transformation for adding range restriction capability to 
dynamic data structures for decomposable searching problems," UCI Technical 

j Report #129, February 1979, 34 pp. 

Maurer, H. A. and T. Ottmann [1979]. "Dynamic solutions of decomposable searching 
problems," Report 33, Institut fur Informationsverabeitung, Technische 
Universitat Graz, June 1979. 

Munro, J . I. and H. Suwanda [1979]. "Implicit data structures," Eleventh Symposium 
on the Theory of Computing, pp. 108-11 7, April 1979, ACM. 

Preparata, F. P. [1978]. A new approach to planar point location, University of 
Illinois Coordinated Science Laboratory Report R-829, September 1 978, 24 pp. 

Rivest, R. L. [1976]. "Partial match retrieval algorithms," SIAM J. Comp. 5, 1 (March 

1976), pp. 19-50. 

Shamos, M. I . [1978]. Computational Geometry, unpublished Ph.D. Thesis, Yale 

University, New Haven, Connecticut. 

Vuillemtn, J . [1978] . "A data structure for manipulating priority queues," Comm. of 

the ACM 21, 4, April 1978, pp. 309-315. 

Willard, D. [1978]. Predicate-oriented Database Search Algorithms, Harvard Aiken 
Computation Laboratory Report TR-20-78. 



25 October 1979 Static-to-Dynamic Transforms * 65 -

I. A List of Decomposable Searching Problems 

Throughout the body of this paper we have examined a number of operations on 

decomposable searching problems. In this appendix we will list some (twenty-three) 

searching problems that have the property of decomposability. For each problem we 

will note its • operator in square brackets. 

The most common kind of searching problems are those defined on totally-ordered 

sets . We already saw that Member searching (which asks "is x an element of F ? M ) 

is decomposable with • operator V. Other examples are Successor (what is the 

least element in F greater than x?) [min], Predecessor [max], Rank (how many 

elements in F are less than x?) [+], and Count (how many elements in multiset F 

have value x ? ) [+] . Two queries on ordered sets that have no query element are 

the priority queue operations Min [min] and Max [max]. These problems, their 

applications, and data structures for their solutions are discussed in depth by Knuth 

[ 1 9 7 3 ] . 

Many of the problems that arise in database applications are decomposable. In 

this context , the set of elements is usually a file of records, each of which contains 

certain keys. An Exact Match query calls for a list of all records that have all keys 

equal to specified values [U] . A Partial Match query asks for all records that match 

on some subset of the keys [U]. Range queries ask for all records that have each 

key in a specified range of values [U]. Intersection queries specify a subset of the 

key space and ask for a list of all records in that subset (thus asking for the 

intersection of the query space and the record set) [U]. Finally, Best Match queries 

speci fy an "ideal" record and a distance function (often the Hamming distance), and 

ask for the record in the set closest to the ideal [min]. These queries and data 

structures for answering them are discussed by Rivest [1976]. 

We saw in the body of the paper two decomposable searching problems that 

arise in statistics. Both of the problems are defined in terms of vectors domination 

(one vector is said to dominate another if it is greater in all coordinates). A Maxima 



25 October 1979 Static-to-Dynamic Transforms - 66 -

query asks whether the query vector is dominated by any in the set [ V ] . The 

Empirical Cumulative Distribution Function (ECDF) query asks how many vectors a 

given vector dominates [+]. 

Examples of decomposable searching problems abound in computational geometry. 

Many queries are asked of sets of points in the plane or Euclidean k-space, 

including Nearest Neighbor (which point in the set is nearest the query point?) [min], 

Furthest Neighbor [max], and Near Neighbor (list all points within distance d of the 

query point) [U] queries. Other queries deal with more complicated objects. For 

example, we might wish to know whether a given point is in the intersection of a set 

of half-planes (this problem arises in linear programming); Feasible Region queries 

are decomposable with the A operator. Other queries include Rectangle Intersection 

(what rectangles in the set does this rectangle intersect?) [U] and Circle 

Intersection [U ] . These queries and many others have been discussed in detail by 

Shamos [1978] . Dobkin and Lipton [1976] investigate a number of decomposable 

searching problems in multidimensional space; these include such queries as "is this 

point on any of the lines" [V ] and "is this point on any of the hyperplanes" [ V ] . 

Many of the other problems that we have already mentioned can be cast in 

geometric terms; these include ECDF, Maxima and Range searching. 

Convex Hull searching is a very interesting problem from the viewpoint of 

decomposability. In its simplest form—"is point x within the convex hull of point set 

F ? " ~ i t is simple to prove that it is not decomposable, since whenever F contains at 

least two points we can partition F and specify x so that x is not in the hull of 

either part but either is or is not in the hull of the union. If we ask instead the 

query "what does the hull of the set look like from here?" (the answer being either 

an assertion that the query point is within the hull or a pair of angles giving the 

extremal points of the hull as "viewed" from the query point), the problem is now 

decomposable. The transforms described in this paper are therefore applicable to 

any data structure for Convex Hull searching, provided that that structure can be 

cheaply modified to answer the more complicated query. While this result is not of 

particular interest in itself (since it is easy to develop a fast ad hoc algorithm for 



25 October 1979 Static-to-Dynamic Transforms - 6 7 -

dynamic Convex Hull searching), it indicates a possibly fruitful technique for 

extending the domain of applicability of the transforms, namely the identification of 

any searching problem P such that (1) P may be made decomposable by having the 

query provide some extra information and (2) known static algorithms for P can be 

altered to yield that extra information at low cost. The identification of other such 

"pseudo-decomposable" problems (and other decomposable problems in general) 

remains an open problem. 


