
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 8 4 - 1 6 4 R

A Quorum-Consensus Replication Method ^ ^
for Abstract Data Types < u

Revised Version

Maurice Herlihy
Computer Science Department

Carnegie-Mellon University
Pittsburgh, PA 15213

15 October 1985

Abstract

Replication can enhance the availability of data in distributed systems. This paper introduces a new
method for managing replicated data. Unlike many methods that support replication only for
uninterpreted files, this method systematically exploits type-specific properties of objects such as
sets, queues, or directories to provide more effective replication. Each operation requires the co­
operation of a certain number of sites for its successful completion. A quorum for an operation is any
such set of sites. Necessary and sufficient constraints on quorum intersections are derived from an
analysis of the data type's algebraic structure. A reconfiguration method is proposed that permits
quorums to be changed dynamically. By taking advantage of type-specific properties in a general and
systematic way, this method can realize a wider range of availability properties and more flexible
reconfiguration than comparable replication methods.

Copyright © 1985 Maurice Herlihy

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory Under Contract F33615-81 -K-1539.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

(-•

Ca-nïy'S** Varies
Carnegie nailon Università
Pittsburgh PA 15213-389$

1

1. Introduction
Replicated data is data that is stored redundantly at multiple locations. Replication can enhance the

availability of data in the presence of failures, increasing the likelihood that the data will be accessible

when needed. For example, the availability of a bank account might be enhanced by keeping

additional copies of the records at multiple sites. If one set of records becomes temporarily or

permanently inaccessible, activities might be able to progress using a different set. Care must be

taken that the replicated records are managed properly: enhanced availability may be of little use if

activities erroneously observe obsolete or inconsistent data. Consequently, replication is assumed to

be transparent: its only observable effect is to make the data more available.

This paper introduces general quorum consensus, a new method for managing replicated data. A

novel aspect of this method is that it systematically exploits type-specific properties of the data to

achieve better availability and more flexible reconfiguration than is possible using the conventional

read/write classification of operations. Necessary and sufficient constraints on realizable availability

properties are derived from an analysis of the data type's algebraic structure. Although our analysis

focuses on availability, the techniques introduced here can also be used to enhance reliability and

performance.

Section 2 presents a brief overview of related work, and Section 3 describes our assumptions and

terminology. Section 4 gives an informal description of our method, and Section 5 gives a formal

description with correctness arguments. Section 6 presents some examples. Section 7 proposes a

reconfiguration method, and Section 8 discusses some pragmatic considerations. Section 9

summarizes our results.

2. Related Work
Numerous proposals exist for non-transparent replication methods that permit clients to view

transient inconsistencies [1,20,31, 5, 27,12]. A discussion of the interaction between transparency

and availability appears in Section 6.1.

The replication method proposed here is a generalization of a file replication method due to Gifford

[14,15]. A discussion of Gifford's method appears in Section 4.3. Our method also encompasses a

replication method for directories proposed by Bloch, Daniels, and Spector[6]. Extensions to

quorum consensus that further enhance availability in the presence of partitions have been proposed

for files by Eager and Sevcik [10] and for arbitrary data types by the author [18]. Garcia-Molina and

Barbara [13] have proposed criteria for evaluating the fault-tolerance provided by quorum consensus

methods.

In the true-copy token scheme [25], a replicated file is represented by a collection of copies. Copies

that reflect the file's current state are called true copies, and are marked by true-copy tokens. The set

of true copies can be reconfigured to permit activities to operate on local copies of files. This method

is transparent in the presence of crashes and partitions, but the availability of a replicated file is

limited by the availability of the sites containing its true copies.

In the available copies replication method [16], failed sites are dynamically detected and configured

out of the system, and recovered sites are detected and configured back in. Clients may read from

any available copy, and must write to all available copies. Systems based on variants of this method

include SDD-1 [17], and Circus [8]. Unlike quorum consensus methods, these methods do not

prevent inconsistencies in the presence of communication link failures such as partitions.

The ISIS project [4,21] at Cornell is investigating techniques for automatically transforming

conventionally structured programs to programs that manipulate replicated data. The ISIS technique

preserves consistency in the presence of partitions, but it allows operations to be executed only in the

partition that encompasses a majority of copies.

A formal model for concurrency control in replicated databases proposed by Bernstein and Goodman

can be used to show the correctness of several replication methods [3]. This model, however, relies

on two assumptions that do not apply to the replication method proposed in this paper: that a

replicated object is represented by multiple copies, and that all information about operations is

captured by a simple read/write classification. We will see that availability is enhanced by violating

these assumptions.

A longer and more thorough discussion of replication methods for abstract data types is given in the

author's Ph.D. thesis [18], which addresses several issues that lie beyond the scope of this paper,

3

such as integrating concurrency control with replication, and techniques for further enhancing

availability in the presence of partitions. The work described in this paper was originally undertaken

as part of the Argus project at M.l.T. [24]. Other projects investigating replication methods include

TABS [30], ISIS [4], and Circus [8].

3. Assumptions and Terminology
A distributed system consists of multiple computers (called sites) that communicate through a

network. Distributed systems are typically subject to two kinds of faults: site crashes and

communication link failures. A crash renders a site's data temporarily or permanently inaccessible,

while a communication link failure causes messages to be lost. Garbled and out-of-order messages

can be detected (with high probability) and discarded. Transient communication failures may be

hidden by lower level protocols, but longer-lived failures can cause partitions, in which functioning

sites are unable to communicate. A failure is detected when a site that has sent a message fails to

receive a response after a certain duration. The absence of a response may indicate that the original

message was lost, that the reply was lost, that the recipient has crashed, or simply that the recipient is

slow to respond.

General quorum consensus relies on certain consistency constraints that must be preserved in the

presence of failures and concurrency. These constraints apply not only to individual data items, but

also to distributed sets of data. Our approach to this problem is to ensure that activities are atomic:

that is, indivisible and recoverable. Indivisible means that activities appear to execute in a serial order

[28], and recoverable means that an activity either succeeds completely or has no effect. Atomic

activities are called actions (or transactions). The replication method presented in this paper is built

on top of an atomic action mechanism which we assume is provided by the underlying system. Our

replication method is largely independent of the underlying atomicity mechanism; dependencies are

discussed in Section 8.

The basic containers for data are called objects. Each object has a type, which defines a set of

possible states and a set of primitive operations that provide the* (only) means to create and

manipulate objects of that type. For example, a FIFO queue might be represented by an object of type

Queue providing the following operations. Enq places an item at the end of the queue:

4

Enq = Operation^: Item)

and Deq returns the item at the head of the queue:

Deq = Operation() Returns(ltem) Signals (Empty).

Deq signals an exception [23] if the queue is empty.

An event is a paired operation invocation and response. An object's state is modeled by a sequence

of events called a history. For example,

Enq(x)/Ok()
Enq(y)/Ok()
Deq()/Ok(x)

is a history for a Queue. A specification for an object is the set of possible histories for that object.

For example, the specification for a Queue object consists of histories in which items are dequeued in

FIFO order. A legal history is one that is included in the object's specification. Specifications are

assumed to be prefix-closed: any prefix of a legal history is legal.

4. The Replication Method
This section presents an informal description of our replication method. A formal description is given

in Section 5.

4.1. Availabil ity

A replicated object is one whose state is stored redundantly at multiple sites. Replicated objects are

implemented by two kinds of modules: repositories and front-ends. Repositories provide long-term

storage for the object's state, while front-ends carry out operations for clients. In the terminology of

Bernstein and Goodman [2], front-ends correspond roughly to transaction managers and repositories

correspond roughly to data managers. Because front-ends can be replicated to an arbitrary extent,

perhaps placing one at each client's site, the availability of a replicated object is dominated by the

availability of its repositories.

Each operation requires the co-operation of a certain number of repositories for its successful

completion. A quorum for an operation is any such set of repositories. It is convenient to divide a

quorum into two parts: a front-end executing an invocation reads from an initial quorum of

5

repositories, performs a local computation to choose a response, and records the new event at a final

quorum of repositories. The initial quorum may depend on the invocation, and the final quorum may

depend on the response. Either the initial or final quorum may be empty. A quorum assignment

associates each event with a set of initial and final quorums.

Each event is associated with a logical timestamp [22], which is a value taken from a totally ordered

domain. Timestamps associated with different events reflect the order in which they are serialized.

For example, if action A is serialized before action 8, then every timestamp generated by A is less than

every timestamp generated by 8. Techniques for generating timestamps are discussed in Section 8.

A replicated object's state is represented as a log, which is a sequence of entries, each consisting of

a logical timestamp and an event. The log entries are partially replicated among a set of repositories.

For example, the following is a schematic representation of a Queue replicated among three

repositories. For readability, a "missing" entry at a repository is shown as a blank space.

Bl R2 R3

1:00Enq(x)/Ok() 1:00 Enq(x)/Ok()

1:15Enq(y)/OkO 1:15 Enq(y)/Ok()

1:30 Enq(z)/Ok() 1:30 Enq(z)/Ok()

Three items have been enqueued, but no single repository has an entry for all three events.

An operation is executed in the following steps:

1. The client sends the invocation to a front-end, which forwards it to an initial quorum of
repositories for that invocation.

2. Each repository in the initial quorum sends its log to the front-end.

3. The front-end merges the logs in timestamp order, discarding duplicates, to construct a
history called the view. The front-end reconstructs an object state from the view, and
chooses a response to the invocation. (The view may not completely reflect the object's
current state, but it will contain enough information to choose a correct response.)

4. The front-end generates a new timestamp, appends the new entry to the view, and sends
the updated view to a final quorum of repositories for the event. Each repository in the
final quorum merges the updated view with its resident log in timestamp order, discarding
duplicates, and returns an acknowledgement to the front-end.

5. When a final quorum of repositories has acknowledged the update, the front-end returns

6

the response to the client.

An action must be aborted if it is unable to complete an operation execution. If the failed operation is

executed as a nested action [29,26], however, the enclosing action need not be aborted.

We remark that logs represent a conceptual model for the replicated data, not a literal design for an

implementation. Section 8 describes some optimizations that permit more compact and efficient

representations, as well as smaller message sizes. Nevertheless, to avoid digression, we focus on the

unoptimized method for now.

4.2. An Example

To illustrate this method, we trace a brief history for a Queue replicated among three repositories. In

Section 5.1 we give a precise characterization of the constraints governing quorum intersections, but

for now we rely on informal arguments. To ascertain the item at the head of the queue, a front-end

executing a Deq must observe: (i) which items have been enqueued, and (ii) which of these items

have since been dequeued. To ensure that these entries appear in the view, each initial quorum for a

Deq invocation must intersect each final quorum for earlier Enq and Deq events. Initial Enq quorums

may empty because Enq returns no information about the queue's state.

As discussed in [14], one convenient way to characterize quorums is to assign weighted votes to

repositories so that a collection of repositories is a quorum if and only if the sum of its votes exceeds a

threshold value. Two quorums will intersect if the sum of their threshold values exceeds the sum of

the votes assigned to all repositories. Our examples use voting schemes in which repositories have

equal weight. Nevertheless, Barbara and Garcia-Molina[13] have shown that not all quorum

assignments can be characterized by weighted voting.

The following example uses Enq and Deq quorums of (0,2) and (2,2) respectively, where (m,n) means

that any m and n repositories respectively constitute an initial and final quorum. The queue is initially

empty. An item x is enqueued by appending a log entry with timestamp 7.00 to the empty logs at two

repositories, say R1 and R2:

B l R2 B2
1:00 Enq(x)/Ok() 1:00 Enq(x)/Ok()

To dequeue x, a front-end merges the logs from R2 and R3, observing that x is the only item in the

7

queue. The front-end creates a Deq entry with timestamp 1:75, and writes out the entire log to R2 and

R3:

m R2 R3

1:00 Enq(x)/Ok() 1:00 Enq(x)/Ok() 1:00 Enq(x)/Ok()

1:15 Deq()/Ok(x) 1:15 Deq()/Ok(x)

Item y is then enqueued at R1 and R2 with timestamp 1:30, and z is enqueued at R1 and R3 with

timestamp 1:45.

R l R2 R3

1:00 Enq(x)/Ok() 1:00 Enq(x)/Ok() 1:00 Enq(x)/Ok()

1:15 Deq()/Ok(x) 1:15 Deq()/Ok(x)

1:30 Enq(y)/Ok0 1:30 Enq(y)/Ok()
1:45 Enq(z)/Ok() 1:45 Enq(z)/Ok()

Although the log at each repository defines a legal queue, no single repository contains all items in

the queue. Finally, a front-end dequeues y by reading from and updating R1 and R3.

E l R2 E3
1:00 Enq(x)/Ok() 1:00 Enq(x)/Ok() 1:00 Enq(x)/Ok()

1:15Deq()/Ok(y) 1:15 Deq()/Ok(x) 1:15 Deq ()/Ok(x)

1:30 Enq(y)/Ok0 1:30 Enq(y)/Ok0 1:30 Enq(y)/Ok()

1:45Enq(z)/OkO 1:45 Enq(z)/Ok0

2:00 Deq()/Ok(y) 2:00 Deq()/Ok(y)

This example illustrates some important points. An operation's quorums determine its availability.

Different operations may have different sets of quorums, and hence different levels of availability.

Constraints on quorum intersection determine the range of availability trade-offs supported by

quorum consensus methods. Given n identical repositories, a replicated Queue permits Vn/21

distinct quorum assignments. Because Enq and Deq quorums must intersect, the availability of one

operation can be increased only if the availability of the other is correspondingly decreased.

Similarly, because pairs of Deq quorums must intersect, Deq cannot be more available than Enq.

4.3. Remarks

It is instructive to compare general quorum consensus with replication methods for files. A F/7e is a

container for an uninterpreted value. Files provide two primitive operations: Read returns the file's

current value, and Write replaces the file's current value. (An analysis of a more complex file type

permitting access individual pages appears in [18]).

Under general quorum consensus, initial Read quorums must intersect final Write quorums to ensure

8

that Read returns the most recently written value. Initial and final Write quorums need not intersect; if

actions A and B write to disjoint final quorums, then later actions would read the version with the later

timestamp. A similar technique has been used for database synchronization, where it is known as the

Thomas Write Rule [31]. As an obvious optimization, each repository may discard all but the most

recent Write entry, replacing the log with a timestamped version. A file replicated among n identical

repositories permits n distinct quorum assignments.

Gifford's replication method [14] uses version numbers instead of logical timestamps.1A front-end

writing to a file reads the version numbers from an initial Write quorum, generates a version number

higher than any it has observed, and records the new version at a final Write quorum. To ensure that

each new version number is greater than its predecessor, initial and final Write quorums must

intersect. This additional constraint reduces the number of distinct quorums assignments from n to

Vn/21 (Write requires a majority). Nevertheless, because files are typically read before they are

written, we do not believe that minority Write quorums are of major practical interest for files. A more

practical advantage of logical timestamps is that Write invocations require half as many messages,

since there is no need to ascertain the current version number.

More significant advantages of general quorum consensus emerge when we turn our attention to data

types other than files. For example, if a FIFO queue were implemented on top of a replicated file, then

Enq and Deq would each be implemented as a Read followed by a Write, reducing the number of

distinct quorum choices from Vn/21 to exactly one (both Enq and Deq require a majority). General

quorum consensus permits additional quorum assignments that facilitate Enq at the cost of Deq, a

trade-off that might be useful in applications such as spoolers. Replacing versions and version

numbers with logs and timestamps reduces the constraints on quorum intersection and increases the

range of realizable availability properties.

A file replication method proposed by Eager and Sevcik[10] does not require all Read and Write

quorums to intersect. Actions execute in one of two modes: normal or partitioned. In normal mode,

actions read from any copy of a file and write to all copies. In partitioned mode, actions use Gifford's

In his thesis [15], however, Gifford suggests that logical timestamps might replace version numbers, but no details are

presented.

9

method to read and write a majority of copies. Transparency is preserved by ensuring that

partitioned-mode actions are serialized after normal-mode actions. Elsewhere [18,19], we have

shown that general quorum consensus can be integrated with Eager and Sevcik's method to further

enhance availability by exploiting type-specific properties.

5. Correctness Arguments
In this section we identify a correct and optimal set of constraints on quorum intersection. By correct,

we mean that any replicated object whose quorum assignment is consistent with these constraints

yields only legal histories. By optimal, we mean that there exists no smaller set of constraints that also

yields only legal histories.

5.1. Quorum Intersection

Let >- be a relation between invocations and events. Informally, a subhistory is closed under >- if

whenever it contains an event e it also contains every earlier event e' such that e.inv >- e\ where e.inv

denotes the invocation part of an event e. More precisely, let h(i) denote the Mh event of h:

Definition 1: A history g is a closed subhistory of h with respect to >- if there exists an
injective order-preserving map s such that g(i) = h(s(i)) for all / in the domain of g, and if
e.inv >- e\ j >i\ h(j) = e, h{p) = e\ and s(i) = y, then there exists /' such that s(i') = /'.

Informally, >- is a serial dependency relation if a response to an invocation is legal for a complete

history whenever it is legal for a closed subhistory that includes the events on which the invocation

depends. More precisely, let " denote concatenation:

Definition 2: A relation >- is a serial dependency relation if

g • e is legal => h • e is legal

for all events e and all legal histories h, whenever g is a closed subhistory containing all
events e' such that e.inv >- e\

For example, the quorum intersection relations for queues and files given in the previous section are

serial dependency relations. Additional examples appear in Section 6.

We will show that a replicated object satisfies its specification if and only if its quorum intersection

relation is a serial dependency relation. A serial dependency relation is minimal if no smaller relation

is a serial dependency relation. Minimal relations correspond to minimal sets of constraints. As

10

illustrated in Section 6.3, a data type may have several distinct minimal serial dependency relations.

5.2. An Automaton Model

This section introduces a formalism for modeling replication. We use the following primitive domains:

INV is the set of invocations, RES is the set of responses, REPOS is the set of repositories, and

TIMESTAMP is the set of timestamps. We also use the following derived domains: EVENT = INV X RES

is the set of events, and QUORUM = 2 R E P 0 S is the set of. quorums. If x and Y are domains, (x Y)

denotes the set of partial maps from x to Y. .

A log L is a map from a finite set of timestamps to events.

L: TIMESTAMP —• EVENT

Two logs L and M are coherent if they agree at every timestamp for which they are both defined. The

merge operation U is defined on pairs of coherent logs by:

(L U M)(t) = if L(t) is defined then L{t) else M(t).

Because the merge operation is defined only for coherent logs, it is commutative and associative.

Every log corresponds to a history in the obvious way. For brevity, we sometimes refer to a log L in

place of its history, e.g. "L is legal" instead of "the history represented by L is legal." The exact

meaning should be clear from context.

A replicated object is modeled as a non-deterministic automaton that accepts certain histories. The

automaton's state has two components:

• Log: REPOS - + (TIMESTAMP EVENT)

• Clock: TIMESTAMP

The Log component associates a log (initially empty) with each repository, and the Clock component

models a system of logical clocks, establishing an unambiguous ordering for events.

The automaton's transition relation is defined using the following sets.

• A serial specification Spec € EVENT*.

• Initial: INV 2 Q U O R U M assigns initial quorums to invocations.

11

• Final: EVENT -* 2 Q U O R U M assigns final quorums to events.

Initial and Final define a quorum intersection relation >- C INV X EVENT.

An event e is accepted if the automaton's state satisfies the following precondition: there exists an

initial quorum IQ € Initial(e.inv), such that if Log(IQ) is the merger of the logs from IQ, then Log(IQ) • e

is legal. Accepting an event has the following effects, where x' denotes the new value of component

x. The clock is advanced:

Clock' > Clock.

The new entry is appended to the view, and the updated view is merged with the log at each

repository in a final quorum FQ € Final(e):

Log'(R)(t) = If R £ FQ then Log(R)(t)
elseif t = Clock' then e

else (Log(R) U Log(IQ))(t)

5.3. Cor rectness Arguments

We use the following technical lemma..

Lemma 3: If >- is an arbitrary relation between invocations and events, the result of
merging logs closed under >- is itself closed under >~.

We now identify some invariant properties of quorum consensus automata. Each property clearly

holds in the initial state when all logs are empty; we show that each property is preserved across state

transitions.

The first step is to show that the view for each invocation is closed under the quorum intersection

relation > - Q .

Lemma 4: The result of merging logs from any set of repositories is closed under > - Q .

Proof: It suffices to show the property holds for any single repository ft; the more general
result follows from Lemma 3. The argument is by induction on the length of the accepted
history. The base case is trivial, hence the proof focuses on the induction step.

Let e be an event accepted in a state satisfying the lemma. If Ft is outside the final quorum
for e, then Log(R) = Log'(R). Otherwise,

Log'(R) = Log(R) U Log(IQ) • e

12

Log(IQ) is closed because it is the merger of closed logs (induction hypothesis and Lemma
3). Log(IQ) • e is closed by construction, and Log(R) is closed (induction hypothesis),
therefore Log'(R) is closed (Lemma 3).

Because the view for an invocation is the result of merging the logs from the repositories in an initial

quorum:

Corol lary 5: Each*invocation's view is closed under > - Q .

The next step is to show that the view for each invocation is legal.

Lemma 6: If the quorum intersection relation > - Q is a serial dependency relation, then the
result of merging logs from any collection of repositories is legal.

Proof: As before, the proof is by induction on the length of the accepted history. Let S be
an arbitrary set of repositories, and let Log(S) and Log'(S) be the results of merging the
logs from the repositories in S respectively before and after accepting a new event e. We
show that if Log(S) is legal, so is Log'(S). If S does not intersect the final quorum for e,
then Log(S) = Log YSj, and the result is immediate. Otherwise,

Log'(S) = Log(S) U Log(IQ) • e

Both Log(IQ) and (Log(IQ) U Log(S)) are closed (Corollary 5) and legal (induction
hypothesis). Log(IQ) is a closed subhistory of (Log(S) U Log(IQ)) that contains all events
e' such that e.inv > - Q e\ Because > - Q is a serial dependency relation, and Log(IQ)*e is
legal by construction, (Log(S) U Log(IQ)) • e = Log(S) U Log(IO) • e is legal.

This theorem reveals a fail-safety property of quorum consensus: even if a catastrophic failure makes

it permanently impossible to assemble a quorum for certain operations, the result of merging the

surviving logs yields a legal subhistory of the true (lost) history.

Corol lary 7: If > - Q is a a serial dependency relation, each invocation's view is legal.

We are now ready to present the basic correctness result:

Theorem 8: If the quorum intersection relation > - Q is a serial dependency relation, every
history accepted by a quorum consensus automaton is legal.

Proof: Let Log(IQ) be the view for e, and let h be the accepted history. Log(IQ) is a closed
subhistory of h under > - Q (Lemma 4), Log(IQ) is legal (Lemma 7), and Log(IQ) contains
every event e' such that e.inv > - Q e\ Because Log(IQ)9e is legal and > - Q is a serial
dependency relation, h*e is also legal.

We now show that no set of constraints on quorum intersection weaker than serial dependency

13

guarantees that all histories accepted by a quorum consensus automaton are legal.

Theorem 9: Given a relation >>- that is not a serial dependency relation, there exists an
automaton whose quorum intersection relation satisfies > - Q that accepts an illegal history.

Proof: Given such a relation, we construct a scenario in which an illegal history is

accepted.

If >- is not a serial dependency relation, there exists an event e, a legal history h having a
closed history g containing all e' of h such that e.inv >- e', with the property that:

g # e is legal but hme is illegal.

We construct an automaton with quorum intersection relation > - Q that accepts h • e.

The automaton has two repositories: R1 and R2. It accepts h% choosing the following
quorums for each event. For events in g, it chooses an initial quorum of R1 and a final
quorum of both R1 and R2. For events in h but not in g, it chooses an initial quorum of R1
and R2 and a final quorum of R2. The view for each event in g thus contains all and only
the prior events in g, and the view for every other event contains all prior events.

These quorums satisfy >^ Q , because all initial and final quorums intersect except the initial
quorums for events in g and the final quorums for events not in g. If any of these quorums
were required to intersect, then g would not be closed, a contradiction.

When a front-end assembles the view for e.inv, it reads g from R1, which is a valid initial
quorum for e.inv because it intersects the final quorum for each event in g. The front-end
then generates the event e, which by assumption is legal for g, but illegal for h.

6. Examples
This section presents three examples of serial dependency relations. In the first part, we discuss the

constraints on replicated directories, both deterministic and non-deterministic. In the second part, we

discuss a replicated counter type that will be used for reconfiguration, and in the last part we present

an example of a data type whose minimal serial dependency relation is not unique.

6.1. Directories

A Directory stores pairs of values, where one value (the key) is used to retrieve the other (the item).

Insert = Operation(k: Key, i: Item) signals (Present)

inserts a new binding in the directory, signalling if the key is already present.

14

Change = Operation(k: Key, i: Item) signals (Absent)

alters the item bound to the given key, signalling if the key is absent.

Lookup = Operation(k: Key) returns(item) signals (Absent)

returns the item bound to the given key, signalling if the key is absent.

Size = Operation() returns(int)

returns the number of key-item pairs currently in the directory.

Insert(k,*) Change(k,*) Size() Lookup(k)

lnsert(k,*)/Ok() X X X X

Change(k,*)/Ok() X

Ta ble 6-1 : Dependency Relation for Directory

The minimal serial dependency relation for Directory is shown in Table 6-1. Quorums for Directory

operations may depend on the key value. For example, one might use different sets of repositories to

store payroll records for East and West coast employees. If quorums do not depend on key values, a

simple combinatorial argument shows that a Directory replicated among n identical repositories

permits rn/212 distinct quorum assignments. If version numbers are used in place of logical

timestamps, as in [6], then Change quorums must intersect, reducing the number of distinct quorum

assignments to rn/21.

For the Directory type, the levels of availability of Lookup and Insert for a particular key are inversely

related. For example, if a binding is replicated among n repositories, and if the initial quorum for

Lookup consists of a single repository, then the final quorum for Insert must consist of all n

repositories. To circumvent this trade-off, several proposals for replicated directories have chosen to

rely on probabilistic guarantees of correctness [20,31, 5, 27,12]. A binding is inserted or altered at a

single repository, and the update is later propagated to the other repositories. This approach has the

advantage that updates complete more quickly and are more likely to succeed, but it has the

disadvantage that the behavior of the server becomes considerably more complex because clients

may observe transient "inconsistencies" in the directory, and concurrent conflicting updates must

15

somehow be resolved.

There are two ways to view such "transient inconsistencies/' One view is that atomicity has been

sacrificed for increased availability. The other view holds that the resulting data type continues to be

atomic, but that it can no longer be considered a deterministic rhap from keys to items. We prefer the

second view for its economy of mechanism: serializability still characterizes the properties upon

which the programmer may rely, and general quorum consensus can be used to implement a

replicated non-deterministic directory having the same advantages as the "non-atomic" methods

cited above.

A SemiDirectory is a map from keys to multisets of items. When the directory is created, it contains

(conceptually, at least) a binding between every key and a multiset containing only the distinguished

item Absent. The invocation lnsert(k,i) adds the item /' to the multiset associated with /c, and the

invocation Lookup(k) returns some item previously bound to k, or signals Absent. There is a

probabilistic guarantee that any item returned is likely to be the most recently inserted one.

The minimal serial dependency relation for SemiDirectory is degenerate: no invocation depends on

any event, and thus no quorums are required to intersect. The view constructed for Lookup(k) will

include the most recent binding for that key if the initial quorum for Lookup happens to intersect the

final quorum for the Insert or Change. The probability that Lookup will observe an item is thus the

probability that the quorums will intersect. That probability is unity for the Directory type, and would

be less for a non-deterministic implementation. If both Insert and Lookup choose quorums of single

repositories, then the probability of intersection may be small. To cause the probability of intersection

to rise with time, the log entry for Insert can be propagated by a background activity, effectively

causing the final quorum for Insert to grow. In a satisfactory implementation of SemiDirectory, a

Lookup invocation would choose the most recently inserted item from the view, and insertions would

be propagated quickly enough so that the view is sufficiently likely to contain the most recently

inserted item.

(- •

16

6.2. Counters

The Counter data type will be used in the reconfiguration method proposed in Section 7. A Counter

stores an integer value, initially zero. The Inc operation increments the value by one:

Inc = Operation()

and the Dec operation decrements the value by one:

Dec = Operation().

The Value operation returns the counter's current value:

Value = Operation() Returns(lnt)

Initial quorums for Value must intersect final quorums for Inc and Dec, but initial quorums for Inc and

Dec may be empty, because neither operation returns any information. A Counter replicated among n

identical repositories permits n distinct quorum assignments. (Just as for queues, a file-based

implementation would permit only one quorum assignment.)

6.3. The DoubleBuffer T y p e

The DoubleBuffer type illustrates that a data type's minimal serial dependency relation need not be

unique. A DoubleBuffer consists of a producer buffer and a consumer buffer, each capable of

holding a single item. The object is initialized with a default item in each buffer. The DoubleBuffer

type provides three operations:

Produce = Operation(ltem)

copies an item into the producer buffer,

Transfer = Operation)

copies the item currently in the producer buffer to the consumer buffer, and

Consume = OperationQ Returns (Item)

returns a copy of the item currently in the consumer buffer.

The DoubleBuffer type supports two distinct serial dependency relations. In the first relation, shown

in Table 6-2, Consume invocations depend on both Transfer and Produce events. In the second,

shown in Table 6-3, Consume invocations depend on Transfer events, and Transfer invocations

depend on Produce events.

17

Transferí) ConsumeO

Produce(x)/Ok() X

Transfer()/Ok() X

Table 6-2: First Dependency Relation for DoubleBuffer

Transferí) ConsumeO

Produce(x)/Ok() X

Transfer()/Ok() X

Table 6-3: Second Dependency Relation for DoubleBuffer

The alternatives arise because Produce events affect later Consume invocations only if there has

been an intermediate Transfer. Consequently, Produce entries can appear in the view constructed for

a Consume invocation either because the final and initial quorums of Produce and Consume intersect

directly, or because they intersect indirectly through Transfer. Quorums for this type may be chosen

with two degrees of freedom: one first chooses a serial dependency relation, and then one chooses

particular quorums subject to the constraints imposed by the serial dependency relation.

Neither serial dependency relation is strictly preferable to the other. For example, if Produce has

quorums of (1,0), quorums for Consume and Transfer are (5,0) and (0,1) under the first relation, and

(5,0) and (5,1) under the second. The first relation is thus preferable for maximizing the availability of

Produce. On the other hand, if Consume has quorums of (1,0), quorums for Produce and Transfer are

(0,5) and (0,5) under the first relation, and (0,1) and (5,5) under the second. The second relation is

thus preferable for maximizing the availability of Consume. A DoubleBuffer replicated among n

identical repositories permits 2n distinct quorum assignments, n for each relation. A DoubleBuffer

implemented as a pair of replicated files with version numbers would permit Vn/21 distinct quorum

choices.

18

7. Reconfiguration
In this section we extend general quorum consensus to support on-the-fly reconfiguration: changing

the quorum assignment for an existing object. Reconfiguration may be used to change the trade-offs

among the levels of availability provided by an object's operations. For example, a census data base

might be configured to facilitate updates while the census is in progress, and reconfigured to facilitate

queries once the census is complete. Reconfiguration may also be used to move an object from one

collection of sites to another, perhaps to replace malfunctioning or obsolescent hardware. A benefit

of the reconfiguration method proposed here is that it incurs a negligible cost when it is not used.

Reconfiguration results in a temporary period of decreased availability and increased message traffic

as front-ends learn of the new configuration.

This reconfiguration scheme can be viewed as a generalization of a scheme proposed by Gifford [14].

Our scheme gains flexibility both by taking advantage of type information, and by incorporating a

novel replicated reference counting scheme that facilitates the movement of objects from one set of

sites to another.

A reconfigurable object is implemented by two kinds of components: a resource state and a chain of

configuration states. Although these components are logically distinct, they are replicated at the

same repositories. The resource state records information of direct interest to clients (e.g. the items

in a queue), while the configuration states record information about quorum assignments (e.g. Enq

and Deq quorums). A newly-created configuration state is marked current, and is used to store the

quorum assignment for the resource state. A new configuration state is created each time the object

is reconfigured, and the previous configuration state is marked obsolete, and is used to store the

quorum assignment for the newer configuration state. Each configuration state provides GetQuorum

and SetQuorum operations.

An object is reconfigured in the following steps:

19

1. Construct a view of the old resource state by merging the logs from an old initial quorum
for each operation.

2. Initialize the new resource state by writing out the view to a new final quorum for each
operation.

3. Initialize the new configuration state by writing out the new resource state quorum
assignments to a new SetQuorum quorum.

4. Update the old configuration state by writing out the new configuration state quorum
assignments to an old SetQuorum quorum.

A quorum for reconfiguring the object must include a quorum for each of these steps.

Each front-end keeps a local cache containing the quorum information for both the configuration

state and the resource state. An operation is normally executed in two logical steps, although we will

see that only one exchange of physical messages is required.

• Verify that the cached configuration state is current.

• Operate directly on the resource state using the cached quorums.

If the front-end discovers that its cached configuration state is out of date, it reads the quorum

information for the new configuration state, reads the new configuration state into its cache, and

starts over. If several reconfigurations have taken place, a front-end may have to follow a chain of

configuration states to locate the resource state.

Because the configuration and resource states are replicated among the same set of repositories, the

number of messages needed for this protocol can be kept to a minimum if each quorum for each

resource state operation is also a GetQuorum quorum for the associated configuration state. Each

front-end includes a timestamp for its cached configuration state in every message directed to a

repository. When a repository receives a message, it compares the cache timestamp with its local

configuration state timestamp. If they are the same, the repository carries out the front-end's request,

otherwise it responds with an exception identifying the newer configuration state.

A shortcoming of the scheme described so far is that there is no mechanism for safely discarding

obsolete configuration states. For example, if a replicated object is moved from one set of

repositories to another, the configuration state at the old set of repositories cannot be discarded as

20

long as there is a possibility that some front-end's cache is still out of date. To remedy this problem,

we propose a reference counting scheme that enables the object's maintainers to detect when all

front-ends have updated their configuration states. This scheme has the desirable property that it

does not affect the availability of the replicated object, although it does require extra messages

immediately following a reconfiguration.

A Counter as defined above in Section 6.2 is replicated at the object's repositories. When a front-end

first records the configuration state in its cache, it records an Inc entry at a quorum of the

configuration state's repositories. When a front-end observes that the configuration state has been

rendered obsolete, it records a Dec entry at a quorum of repositories. Once a configuration state has

been rendered obsolete, the object's maintainers may invoke the Value operation, merging the Inc

and Dec entries to count the front-ends whose caches are still out of date. A configuration state may

be discarded when its reference count and the reference counts of all earlier configuration states

have reached zero. (Because there are no cycles of reference between configuration states, an

unneeded configuration state will always have a reference count of zero.)

Reference counting need not reduce the object's availability if quorums are assigned so that every

quorum for GetQuorum is also a quorum for Inc and Dec. A front-end must locate an initial

GetQuorum quorum for a configuration state to discover that it has become obsolete. That same

quorum can be used to decrement the old configuration state's reference counter, although a second

round of messages is necessary. Before the front-end can use the new configuration state, it must

check its currency by locating an initial GetQuorum quorum. That same quorum can be used to

increment the new configuration state's reference counter.

We close this section with an example illustrating how a replicated queue might be reconfigured.

Initially, the queue is replicated among R1, R2, and R3, having respective Enq and Deq quorums of

(0,2) and (2,2). As described above, the resource state quorums determine the configuration state

quorums: GetQuorum and Value have quorums of (2,0), while SetQuorum, Inc,and Dec each have

quorums of (0,2). After reconfiguration, the queue is replicated among R1\ R2', and R3', having Enq

quorums of (0,1) and Deq quorums of (3,1). GetQuorum and SetQuorum must have respective

quorums of (1,0) and (0,3), while Inc, Dec, and Value must have respective quorums of (0,1), (0,1), and

21

(3,0).

The queue's original configuration state is schematically represented as follows. (The resource state

is not shown.)

m R2 R3

1:00 1:00 1:00

{R1,R2,R3} {R1,R2,R3}

Enq = (0,2) Enq = (0,2)

Deq = (2,2) Deq = (2,2)

1:15 lnc()/Ok() 1:15 lnc()/Ok()

1:30 lnc()/Ok() 1:30 lnc()/Ok()

1:45 lnc()/Ok() 1:45 lnc()/Ok()

The first line indicates that each configuration state has a timestamp of 1:00. The next three lines

represent the quorum information for the resource state. The resource state's quorum information is

recorded at only two repositories, since these constitute a SetQuorum quorum. The final three lines

record the status of the configuration state's reference count. In this example, the counter has been

incremented by three front-ends, although no single repository records all three increments. Each

front-end includes the cache timestamp 1:00 with every message it sends to a repository.

The queue is reconfigured as follows.

• Merge the logs from any two repositories in the old resource state.

• Write out the resulting view to all three repositories in the new resource state.

• Record the new resource state quorums at all three repositories in the new configuration
state.

• Record the new configuration state's quorums at any two repositories from the old
configuration state.

Following reconfiguration, the old and new configuration states might appear as follows.

22

El R2 S3
1:00 2:00 2:00

{R1,R2,R3} {R1\R2\R3'} {R1\R2\R3'}

Enq = (0,2) GetQ = (1,0) GetQ = (1,0)

Deq = (2,2) SetQ = (0,3) SetQ = (0,3)

1:15lnc()/Ok() 1:15lnc()/Ok()

1:30 Inc0/Ok() 1:30 lnc()/Ok()

1:45 lnc()/Ok() 1:45 lnc()/Ok()

El' R2! B3'
2:15 2:15 2:15

{R1\R2\R3'} {R1\R2\R3'} {R1\R2\R3'}

Enq = (0,3) Enq = (0,3) Enq = (0,3)

Deq = (3,1) Deq = (3,1) Deq = (3,1).

Now suppose a front-end whose cache is out of date attempts to enqueue or dequeue an item. The

front-end's message includes a cache timestamp, and any quorum it chooses must include at least

one repository that will detect that the timestamp is obsolete. That repository will return an exception

identifying the new configuration state. The front-end decrements the old configuration state's

reference count at two repositories, and uses a single exchange of messages to read the new

configuration state into its cache and to increment the new configuration state's reference count.

El E2 B2
1:00 2:00 2:00

{R1,R2,R3} {R1\R2\R3'} {R1\R2\R3'}

Enq = (0,2) GetQ = (1,0) GetQ = (1,0)

Deq = (2,2) SetQ = (0,3) SetQ = (0,3)

1:15lncO/Ok() 1:15lncO/OkO

1:30 IncO/OkO 1:30 Inc0/Ok()

1:45lnc()/OkO 1:45 Inc0/Ok()

2:30 Dec()/Ok0 2:30 Dec()/Ok0

El' B2* B2'
2:15 2:15 2:15

{R1\R2\R3'} {R1\R2\R3'}

Enq = (0,3) Enq = (0,3) Enq = (0,3)

Deq = (3,1) Deq = (3,1) Deq = (3,1)

2:45 IncQ/OkO

Here, the system maintainer can determine that it is not yet safe to discard the old configuration state

because its reference count indicates that there are still two front-ends that have not updated their

caches.

In summary, the reconfiguration method described here incurs a non-negligible cost only when

23

reconfiguration actually takes place. Under normal circumstances, availability is unaffected because

each quorum for operating on the resource state alone is a quorum for the operation as a whole. No

additional messages are needed because a front-end can use the same physical messages for two

logically distinct tasks: to establish the currency of its cached configuration state, and to apply the

operation to the resource state. Reconfiguration does impose a one-time penalty on a front-end

whose cache is out of date: the next time it attempts to execute an operation it must conduct an

additional exchange of messages and locate an additional quorum, and an extra round of messages

is needed to update the configuration state's reference counter.

8. Pragmatic Issues
This section addresses two pragmatic issues raised by replication: logical timestamp generation, and

log and message compaction.

8.1. Logical Timestamp Generation

Logical timestamps are structured as follows:

• The high-order bits are occupied by an action timestamp that defines how the generating
action is serialized relative to other actions. This field is used to compare timestamps
generated by distinct actions.

• The low-order bits are occupied by values read from a logical clock private to the
generating action. This field is used to compare timestamps generated within a single
action.

We describe two timestamp generation schemes, one intended for systems in which actions are

serialized in a predetermined order, and one for systems in which actions are synchronized

dynamically through conflicts over shared data.

Under Reed's multiversion timestamp scheme [29], each action is given a pseudotime on

initialization, and scheduling constraints ensure that actions remain serializable in pseudotime order.

Under this scheme, an action's pseudotime is its timestamp.

Under two-phase locking [11], a slightly more complicated scheme is required because the eventual

serialization ordering is unknown in advance. At the time an action generates a timestamp, the

high-order field is left empty. A timestamp generated by an uncommitted action is considered later

24

than a timestamp generated by a committed action (timestamps generated by distinct uncommitted

actions are never compared). When the action commits, a value read from a logical clock [22] is used

as the action timestamp. Similar timestamp generation schemes have been proposed by Dubourdieu

[9], by Chan et al. [7], and by Weihl [33].

8.2. Log and Message Compaction

Logs have the disadvantage that they are neither compact nor efficient. For example, the size of a log

representing a Queue has no relation to the number of items present in the queue, and the item at the

head of the queue must be found by a linear search. These problems can be alleviated by replacing

logs with more compact and efficient representations. We assume each object's state can be

represented compactly and efficiently at a single site. Such a representation is called a version. For

example, a Queue might be represented as an array or linked list, a Counter as an integer cell, and a

Directory as a hash table or B-tree.

If a repository's log has gaps, it cannot be replaced by a version. Divergent logs can be reconciled by

merger, but there is no systematic way to reconcile divergent versions. Under what circumstances

may a version replace a log? Histories g and h are equivalent if g # a is legal if and only if h*a is legal,

for all event sequences a. If a repository's log has a prefix equivalent to a prefix of the object's

complete history, then that prefix may be replaced by a single version. A version that replaces a

prefix is given the timestamp of the last entry it replaces.

Each repository stores a single timestamped version together with a (potentially incomplete)

sequence of log entries with later timestamps. A front-end executing an operation collects the logs

and versions from an initial quorum, reconstructing the object's state by selecting the most recent

version and applying any later log entries, treating the entries as a differential file [32].

Logs are compacted by the following protocol. A front-end constructs a timestamped version from an

initial quorum for each operation, and sents the version to as many repositories as possible. Each

repository that receives the new version discards all earlier versions and entries. Once the new

version is recorded at a final quorum for each operation, only the version's timestamp need be

forwarded to the remaining repositories, because henceforth every invocation's initial quorum will

include at least one repository with the new version. c '

25

Logs may be compacted by background processes, or as a side-effect of certain operations. For

example, because an initial quorum for Deq is an initial quorum for any Queue operation, logs may be

compacted whenever an item is dequeued. For example, consider the following queue:

R l R2 R3

1:00 Enq(x)/Ok() 1:00 Enq(x)/Ok()

1:15 Enq(y)/Ok() 1:15 Enq(y)/Ok()

1:30 Enq(z)/Ok() 1:30 Enq(z)/Ok()

A front-end executing a Deq merges the logs from R1 and R2, creates a version, dequeues x, and

writes out the updated version to R1 and R2 with a new timestamp.

El E2 E3
1:15Enq(y)/Ok()

1:30Enq(z)/Ok()
1:45 [y,z] 1:45 [y.z]

When R1 and R2 have confirmed the update, the front-end can forward the version timestamp to R2,

which may then discard all earlier entries and versions.

Message sizes can be reduced if each repository caches its most recently observed version. When a

front-end requests a repository's log, it need only request entries or versions with later timestamps. If

the object's state can be expressed as a Cartesian product, messages sizes can be further reduced

by compacting each component independently. For example, in a proposal of Bloch, Daniels, and

Spector [6], a replicated Directory is represented as the product of key/item bindings, each with its

own version number. A type-specific compaction technique is used to prevent the accumulation of

entries for deleted bindings.

These compaction methods are probabilistic, since they can be frustrated by an inopportune

distribution of events and failures. For example, if a repository for a Queue joins Enq quorums but not

Deq quorums, and if communication failures prevent later compaction by background processes,

then that repository will continue to accumulate Enq entries. Reducing the likelihood of such

scenarios to an acceptable level is an engineering problem best addressed experimentally.

26

9. Discussion
This paper has proposed a new replication method that systematically exploits type-specific

properties to provide more effective replication in the presence of crashes and partitions. A summary

of our results follows.

• Constraints on quorum intersection are reduced by replacing versions and version

numbers by logs and logical timestamps.

• The problem of identifying an object's minimal constraints on quorum assignments (and
availability) is reduced to the algebraic problem of identifying its minimal serial
dependency relations.

• Following a catastrophic failure, the surviving data represents a legal subhistory of the

complete (lost) history.

• Dynamic reconfiguration can be accomplished without reducing availability by replicating
an object's resource and configuration states so that each quorum for a resource state
operation is also a quorum for reading the configuration state.

• A novel replicated reference counting scheme permits objects to be moved from one set

of repositories to another.

General quorum consensus is systematic, general, and effective. It is general because it is applicable

to objects of arbitrary type; it is systematic because constraints on correct implementations are

derived directly from the data type specification; it is effective because it imposes fewer constraints

on availability and more flexible reconfiguration than permitted by the conventional read/write

classification of operations.

Acknowledgments
I would like to thank Joshua Bloch, Dean Daniels, Amr El-Abbadi, Dave Gifford, Tommy Joseph, and

the referees for careful readings of earlier drafts of this paper.

References
[1] Alsberg, P. A., and Day, J . D.

A principle for resilient sharing of distributed resources.
In Proceedings, 2nd Annual Conference on Software Engineering. October, 1976.

27

Bernstein, P. A., and Goodman, N.

A survey of techniques for synchronization and recovery in decentralized computer systems.
ACM Computing Surveys 13(2):185-222, June, 1981.

Bernstein, P. A., and Goodman, N.
The failure and recovery problem for replicated databases.
In Proceedings, 2nd Annual Symposium on Principles of Distributed Computing. August,

1983.

Birman, K. P.
Replication and Fault-Tolerance in the ISIS System.
In Proc. 10th Symposium on Operating Systems Principles, dec, 1985.
Also TR 85-668, Cornell University Computer Science Dept.

Birrel, A. D., Levin, R., Needham, R., and Schroeder, M.
Grapevine: an Exercise in Distributed Computing.
Communications of the ACM 25(14):260-274, April, 1982.

Bloch, J . J . , Daniels, D. S., and Spector, A. Z.
Weighted voting for directories: ä comprehensive study.
Technical Report CMU-CS-84-114, Carnegie-Mellon University, April, 1984.

Chan, A., Fox, S., Lin, W. T., Nori, A., and Ries, D.
The implementation of an integrated concurrency control and recovery scheme.
In Proceedings of the 1982 SIGMOD Conference. ACM SIGMOD, 1982.

Cooper, E. C.
Circus: a replicated procedure call facility.
In Proceedings 4th Symposium on Reliability in Distributed Software and Database Systems,

pages 11-24. October, 1984.

Dubourdieu D. J .
Implementation of Distributed Transactions.
In Proceedings 1982 Berkeley Workshop on Distributed Data Management and Computer

Networks, pages 81.-94. 1982.

Eager, D. L., and Sevcik, K. C.
Achieving robustness in distributed database systems.
ACM Transactions on Database Systems 8(3):354-381, September, 1983.

Eswaran, K.P., Gray, J .N., Lorie, R.A., and Traiger, I.L.
The Notion of Consistency and Predicate Locks in a Database System.
Communications ACM 19(11):624-633, November, 1976.

28

Fischer, M., and Michael, A.
Sacrificing serializability to attain high availability of data in an unreliable network.

In Proceedings, ACM SIGACT-SIGMOD Symp. on Principles of Database Systems. March,

1982.

Garcia-Molina, H. and Barbara, D.
How to assign votes in a distributed system.
To appear in JACM.

Gifford,D.K.
Weighted Voting for Replicated Data.
In Proceedings of the Seventh Symposium on Operating Systems Principles. ACM SIGOPS,

December, 1979.

Gifford, D. K.
Information Storage in a Decentralized Computer System.
Technical Report CSL-81 -8, Xerox Corporation, March, 1982.

Goodman, N., Skeen, D., Chan, A., Dayal, U., Fox, S, and Ries, D.
A recovery algorithm for a distributed database system.

In Proceedings, 2nd ACM SIGACT-SIGMOD Symp. on Principles of Database Systems. March,

1983.

Hammer, M. M., and Shipman D. W.
Reliability Mechanisms in SDD-1, a System for Distributed Databases.
ACM Transactions on Database Systems 5(4):431-466, dec, 1980.

Herlihy, M. P.
Replication Methods for Abstract Data Types.
Technical Report MIT/LCS/TR-319, Massachusetts Institute of Technology Laboratory for

Computer Science, May, 1984.
Ph.D. Thesis.

Herlihy, M. P.
Using type information to enhance the availability of partitioned data..
Technical Report CMU-CS-85-119, Carnegie-Mellon University, April, 1985.

Johnson, P. R., and Thomas, R. H.
The maintenance of duplicate databases.

Technical Report RFC 677 NIC 31507, Network Working Group, January, 1975.

Joseph, T. and Birman, K. P.

Low-cost management of replicated data in distributed systems.

To appear, ACM TOCS.

29

Lamport, L.
Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7):558-565, July, 1978.

Liskov, B., and Snyder, A.
Exception handling in CLU.

IEEE Transactions on Software Engineering 5(6):546-558, November, 1979.

Liskov, B., and Scheifler, R.
Guardians and actions: linguistic support for robust, distributed programs.
ACM Transactions on Programming Languages and Systems 5(3):381-404, July, 1983.

Minoura, T., and Wiederhold, G.
Resilient extended true-copy token scheme for a distributed database system.
IEEE Transactions on Software Engineering 8(3): 173-188, May, 1982.

Moss, J . E. B.
Nested Transactions: An Approach to Reliable Distributed Computing.
Technical Report MIT/LCS/TR-260, Massachusetts Institute of Technology Laboratory for

Computer Science, April, 1981.

Oppen, D., Dalai, Y. K.
The clearinghouse: a decentralized agent for locating named objects in a distributed

environment.

Technical Report OPD-T8103, Xerox Corporation, October, 1981.

Papadimitriou, C.H.

The serializability of concurrent database updates.
Journal of the ACM 26(4):631-653, October, 1979.
Reed, D.
Implementing atomic actions on decentralized data.
ACM Transactions on Computer Systems 1(1):3-23, February, 1983.

Spector, A. Z., Butcher, J . , Daniels, D. S., Duchamp, D. J . , Eppinger, J . L., Fineman, C. E.,
Heddaya, A., Schwarz, P. M.
Support for Distributed Transactions in the TABS prototype.
TOSE 11 (6):520-530, June, 1985.

Thomas, R. H.
A solution to the concurrency control problem for multiple copy databases.
In Proc. 16th IEEE Comput. Soc. Int. Conf. (COMPCON). Spring, 1978.

Verhofstad, J . S. M.
Recovery Techniques for Database Systems.
ACM Computing Surveys 10(2): 167-196, June, 1978.

30

Weihl, W.
Specification and implementation of atomic data types.
Technical Report TR-314, Massachusetts Institute of Technology Laboratory for Computer

Science, March, 1984.

