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1. Introduction 
Replicated data is data that is stored redundantly at multiple locations. Replication can enhance the 

availability of data in the presence of failures, increasing the likelihood that the data will be accessible 

when needed. For example, the availability of a bank account might be enhanced by keeping 

additional copies of the records at multiple sites. If one set of records becomes temporarily or 

permanently inaccessible, activities might be able to progress using a different set. Care must be 

taken that the replicated records are managed properly: enhanced availability may be of little use if 

activities erroneously observe obsolete or inconsistent data. Consequently, replication is assumed to 

be transparent: its only observable effect is to make the data more available. 

This paper introduces general quorum consensus, a new method for managing replicated data. A 

novel aspect of this method is that it systematically exploits type-specific properties of the data to 

achieve better availability and more flexible reconfiguration than is possible using the conventional 

read/write classification of operations. Necessary and sufficient constraints on realizable availability 

properties are derived from an analysis of the data type's algebraic structure. Although our analysis 

focuses on availability, the techniques introduced here can also be used to enhance reliability and 

performance. 

Section 2 presents a brief overview of related work, and Section 3 describes our assumptions and 

terminology. Section 4 gives an informal description of our method, and Section 5 gives a formal 

description with correctness arguments. Section 6 presents some examples. Section 7 proposes a 

reconfiguration method, and Section 8 discusses some pragmatic considerations. Section 9 

summarizes our results. 

2. Related Work 
Numerous proposals exist for non-transparent replication methods that permit clients to view 

transient inconsistencies [1,20,31, 5, 27,12]. A discussion of the interaction between transparency 

and availability appears in Section 6.1. 

The replication method proposed here is a generalization of a file replication method due to Gifford 

[14,15]. A discussion of Gifford's method appears in Section 4.3. Our method also encompasses a 



replication method for directories proposed by Bloch, Daniels, and Spector[6]. Extensions to 

quorum consensus that further enhance availability in the presence of partitions have been proposed 

for files by Eager and Sevcik [10] and for arbitrary data types by the author [18]. Garcia-Molina and 

Barbara [13] have proposed criteria for evaluating the fault-tolerance provided by quorum consensus 

methods. 

In the true-copy token scheme [25], a replicated file is represented by a collection of copies. Copies 

that reflect the file's current state are called true copies, and are marked by true-copy tokens. The set 

of true copies can be reconfigured to permit activities to operate on local copies of files. This method 

is transparent in the presence of crashes and partitions, but the availability of a replicated file is 

limited by the availability of the sites containing its true copies. 

In the available copies replication method [16], failed sites are dynamically detected and configured 

out of the system, and recovered sites are detected and configured back in. Clients may read from 

any available copy, and must write to all available copies. Systems based on variants of this method 

include SDD-1 [17], and Circus [8]. Unlike quorum consensus methods, these methods do not 

prevent inconsistencies in the presence of communication link failures such as partitions. 

The ISIS project [4,21] at Cornell is investigating techniques for automatically transforming 

conventionally structured programs to programs that manipulate replicated data. The ISIS technique 

preserves consistency in the presence of partitions, but it allows operations to be executed only in the 

partition that encompasses a majority of copies. 

A formal model for concurrency control in replicated databases proposed by Bernstein and Goodman 

can be used to show the correctness of several replication methods [3]. This model, however, relies 

on two assumptions that do not apply to the replication method proposed in this paper: that a 

replicated object is represented by multiple copies, and that all information about operations is 

captured by a simple read/write classification. We will see that availability is enhanced by violating 

these assumptions. 

A longer and more thorough discussion of replication methods for abstract data types is given in the 

author's Ph.D. thesis [18], which addresses several issues that lie beyond the scope of this paper, 



3 

such as integrating concurrency control with replication, and techniques for further enhancing 

availability in the presence of partitions. The work described in this paper was originally undertaken 

as part of the Argus project at M.l.T. [24]. Other projects investigating replication methods include 

TABS [30], ISIS [4], and Circus [8]. 

3. Assumptions and Terminology 
A distributed system consists of multiple computers (called sites) that communicate through a 

network. Distributed systems are typically subject to two kinds of faults: site crashes and 

communication link failures. A crash renders a site's data temporarily or permanently inaccessible, 

while a communication link failure causes messages to be lost. Garbled and out-of-order messages 

can be detected (with high probability) and discarded. Transient communication failures may be 

hidden by lower level protocols, but longer-lived failures can cause partitions, in which functioning 

sites are unable to communicate. A failure is detected when a site that has sent a message fails to 

receive a response after a certain duration. The absence of a response may indicate that the original 

message was lost, that the reply was lost, that the recipient has crashed, or simply that the recipient is 

slow to respond. 

General quorum consensus relies on certain consistency constraints that must be preserved in the 

presence of failures and concurrency. These constraints apply not only to individual data items, but 

also to distributed sets of data. Our approach to this problem is to ensure that activities are atomic: 

that is, indivisible and recoverable. Indivisible means that activities appear to execute in a serial order 

[28], and recoverable means that an activity either succeeds completely or has no effect. Atomic 

activities are called actions (or transactions). The replication method presented in this paper is built 

on top of an atomic action mechanism which we assume is provided by the underlying system. Our 

replication method is largely independent of the underlying atomicity mechanism; dependencies are 

discussed in Section 8. 

The basic containers for data are called objects. Each object has a type, which defines a set of 

possible states and a set of primitive operations that provide the* (only) means to create and 

manipulate objects of that type. For example, a FIFO queue might be represented by an object of type 

Queue providing the following operations. Enq places an item at the end of the queue: 
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Enq = Operation^: Item) 

and Deq returns the item at the head of the queue: 

Deq = Operation() Returns(ltem) Signals (Empty). 

Deq signals an exception [23] if the queue is empty. 

An event is a paired operation invocation and response. An object's state is modeled by a sequence 

of events called a history. For example, 

Enq(x)/Ok() 
Enq(y)/Ok() 
Deq()/Ok(x) 

is a history for a Queue. A specification for an object is the set of possible histories for that object. 

For example, the specification for a Queue object consists of histories in which items are dequeued in 

FIFO order. A legal history is one that is included in the object's specification. Specifications are 

assumed to be prefix-closed: any prefix of a legal history is legal. 

4. The Replication Method 
This section presents an informal description of our replication method. A formal description is given 

in Section 5. 

4.1. Availabil ity 

A replicated object is one whose state is stored redundantly at multiple sites. Replicated objects are 

implemented by two kinds of modules: repositories and front-ends. Repositories provide long-term 

storage for the object's state, while front-ends carry out operations for clients. In the terminology of 

Bernstein and Goodman [2], front-ends correspond roughly to transaction managers and repositories 

correspond roughly to data managers. Because front-ends can be replicated to an arbitrary extent, 

perhaps placing one at each client's site, the availability of a replicated object is dominated by the 

availability of its repositories. 

Each operation requires the co-operation of a certain number of repositories for its successful 

completion. A quorum for an operation is any such set of repositories. It is convenient to divide a 

quorum into two parts: a front-end executing an invocation reads from an initial quorum of 
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repositories, performs a local computation to choose a response, and records the new event at a final 

quorum of repositories. The initial quorum may depend on the invocation, and the final quorum may 

depend on the response. Either the initial or final quorum may be empty. A quorum assignment 

associates each event with a set of initial and final quorums. 

Each event is associated with a logical timestamp [22], which is a value taken from a totally ordered 

domain. Timestamps associated with different events reflect the order in which they are serialized. 

For example, if action A is serialized before action 8, then every timestamp generated by A is less than 

every timestamp generated by 8. Techniques for generating timestamps are discussed in Section 8. 

A replicated object's state is represented as a log, which is a sequence of entries, each consisting of 

a logical timestamp and an event. The log entries are partially replicated among a set of repositories. 

For example, the following is a schematic representation of a Queue replicated among three 

repositories. For readability, a "missing" entry at a repository is shown as a blank space. 

Bl R2 R3 

1:00Enq(x)/Ok() 1:00 Enq(x)/Ok() 

1:15Enq(y)/OkO 1:15 Enq(y)/Ok() 

1:30 Enq(z)/Ok() 1:30 Enq(z)/Ok() 

Three items have been enqueued, but no single repository has an entry for all three events. 

An operation is executed in the following steps: 

1. The client sends the invocation to a front-end, which forwards it to an initial quorum of 
repositories for that invocation. 

2. Each repository in the initial quorum sends its log to the front-end. 

3. The front-end merges the logs in timestamp order, discarding duplicates, to construct a 
history called the view. The front-end reconstructs an object state from the view, and 
chooses a response to the invocation. (The view may not completely reflect the object's 
current state, but it will contain enough information to choose a correct response.) 

4. The front-end generates a new timestamp, appends the new entry to the view, and sends 
the updated view to a final quorum of repositories for the event. Each repository in the 
final quorum merges the updated view with its resident log in timestamp order, discarding 
duplicates, and returns an acknowledgement to the front-end. 

5. When a final quorum of repositories has acknowledged the update, the front-end returns 
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the response to the client. 

An action must be aborted if it is unable to complete an operation execution. If the failed operation is 

executed as a nested action [29,26], however, the enclosing action need not be aborted. 

We remark that logs represent a conceptual model for the replicated data, not a literal design for an 

implementation. Section 8 describes some optimizations that permit more compact and efficient 

representations, as well as smaller message sizes. Nevertheless, to avoid digression, we focus on the 

unoptimized method for now. 

4.2. An Example 

To illustrate this method, we trace a brief history for a Queue replicated among three repositories. In 

Section 5.1 we give a precise characterization of the constraints governing quorum intersections, but 

for now we rely on informal arguments. To ascertain the item at the head of the queue, a front-end 

executing a Deq must observe: (i) which items have been enqueued, and (ii) which of these items 

have since been dequeued. To ensure that these entries appear in the view, each initial quorum for a 

Deq invocation must intersect each final quorum for earlier Enq and Deq events. Initial Enq quorums 

may empty because Enq returns no information about the queue's state. 

As discussed in [14], one convenient way to characterize quorums is to assign weighted votes to 

repositories so that a collection of repositories is a quorum if and only if the sum of its votes exceeds a 

threshold value. Two quorums will intersect if the sum of their threshold values exceeds the sum of 

the votes assigned to all repositories. Our examples use voting schemes in which repositories have 

equal weight. Nevertheless, Barbara and Garcia-Molina[13] have shown that not all quorum 

assignments can be characterized by weighted voting. 

The following example uses Enq and Deq quorums of (0,2) and (2,2) respectively, where (m,n) means 

that any m and n repositories respectively constitute an initial and final quorum. The queue is initially 

empty. An item x is enqueued by appending a log entry with timestamp 7.00 to the empty logs at two 

repositories, say R1 and R2: 

B l R2 B2 
1:00 Enq(x)/Ok() 1:00 Enq(x)/Ok() 

To dequeue x, a front-end merges the logs from R2 and R3, observing that x is the only item in the 



7 

queue. The front-end creates a Deq entry with timestamp 1:75, and writes out the entire log to R2 and 

R3: 

m R2 R3 

1:00 Enq(x)/Ok() 1:00 Enq(x)/Ok() 1:00 Enq(x)/Ok() 

1:15 Deq()/Ok(x) 1:15 Deq()/Ok(x) 

Item y is then enqueued at R1 and R2 with timestamp 1:30, and z is enqueued at R1 and R3 with 

timestamp 1:45. 

R l R2 R3 

1:00 Enq(x)/Ok() 1:00 Enq(x)/Ok() 1:00 Enq(x)/Ok() 

1:15 Deq()/Ok(x) 1:15 Deq()/Ok(x) 

1:30 Enq(y)/Ok0 1:30 Enq(y)/Ok() 
1:45 Enq(z)/Ok() 1:45 Enq(z)/Ok() 

Although the log at each repository defines a legal queue, no single repository contains all items in 

the queue. Finally, a front-end dequeues y by reading from and updating R1 and R3. 

E l R2 E3 
1:00 Enq(x)/Ok() 1:00 Enq(x)/Ok() 1:00 Enq(x)/Ok() 

1:15Deq()/Ok(y) 1:15 Deq()/Ok(x) 1:15 Deq ()/Ok(x) 

1:30 Enq(y)/Ok0 1:30 Enq(y)/Ok0 1:30 Enq(y)/Ok() 

1:45Enq(z)/OkO 1:45 Enq(z)/Ok0 

2:00 Deq()/Ok(y) 2:00 Deq()/Ok(y) 

This example illustrates some important points. An operation's quorums determine its availability. 

Different operations may have different sets of quorums, and hence different levels of availability. 

Constraints on quorum intersection determine the range of availability trade-offs supported by 

quorum consensus methods. Given n identical repositories, a replicated Queue permits Vn/21 

distinct quorum assignments. Because Enq and Deq quorums must intersect, the availability of one 

operation can be increased only if the availability of the other is correspondingly decreased. 

Similarly, because pairs of Deq quorums must intersect, Deq cannot be more available than Enq. 

4.3. Remarks 

It is instructive to compare general quorum consensus with replication methods for files. A F/7e is a 

container for an uninterpreted value. Files provide two primitive operations: Read returns the file's 

current value, and Write replaces the file's current value. (An analysis of a more complex file type 

permitting access individual pages appears in [18]). 

Under general quorum consensus, initial Read quorums must intersect final Write quorums to ensure 
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that Read returns the most recently written value. Initial and final Write quorums need not intersect; if 

actions A and B write to disjoint final quorums, then later actions would read the version with the later 

timestamp. A similar technique has been used for database synchronization, where it is known as the 

Thomas Write Rule [31]. As an obvious optimization, each repository may discard all but the most 

recent Write entry, replacing the log with a timestamped version. A file replicated among n identical 

repositories permits n distinct quorum assignments. 

Gifford's replication method [14] uses version numbers instead of logical timestamps.1A front-end 

writing to a file reads the version numbers from an initial Write quorum, generates a version number 

higher than any it has observed, and records the new version at a final Write quorum. To ensure that 

each new version number is greater than its predecessor, initial and final Write quorums must 

intersect. This additional constraint reduces the number of distinct quorums assignments from n to 

Vn/21 (Write requires a majority). Nevertheless, because files are typically read before they are 

written, we do not believe that minority Write quorums are of major practical interest for files. A more 

practical advantage of logical timestamps is that Write invocations require half as many messages, 

since there is no need to ascertain the current version number. 

More significant advantages of general quorum consensus emerge when we turn our attention to data 

types other than files. For example, if a FIFO queue were implemented on top of a replicated file, then 

Enq and Deq would each be implemented as a Read followed by a Write, reducing the number of 

distinct quorum choices from Vn/21 to exactly one (both Enq and Deq require a majority). General 

quorum consensus permits additional quorum assignments that facilitate Enq at the cost of Deq, a 

trade-off that might be useful in applications such as spoolers. Replacing versions and version 

numbers with logs and timestamps reduces the constraints on quorum intersection and increases the 

range of realizable availability properties. 

A file replication method proposed by Eager and Sevcik[10] does not require all Read and Write 

quorums to intersect. Actions execute in one of two modes: normal or partitioned. In normal mode, 

actions read from any copy of a file and write to all copies. In partitioned mode, actions use Gifford's 

In his thesis [15], however, Gifford suggests that logical timestamps might replace version numbers, but no details are 

presented. 
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method to read and write a majority of copies. Transparency is preserved by ensuring that 

partitioned-mode actions are serialized after normal-mode actions. Elsewhere [18,19], we have 

shown that general quorum consensus can be integrated with Eager and Sevcik's method to further 

enhance availability by exploiting type-specific properties. 

5. Correctness Arguments 
In this section we identify a correct and optimal set of constraints on quorum intersection. By correct, 

we mean that any replicated object whose quorum assignment is consistent with these constraints 

yields only legal histories. By optimal, we mean that there exists no smaller set of constraints that also 

yields only legal histories. 

5.1. Quorum Intersection 

Let >- be a relation between invocations and events. Informally, a subhistory is closed under >- if 

whenever it contains an event e it also contains every earlier event e' such that e.inv >- e\ where e.inv 

denotes the invocation part of an event e. More precisely, let h(i) denote the Mh event of h: 

Definition 1: A history g is a closed subhistory of h with respect to >- if there exists an 
injective order-preserving map s such that g(i) = h(s(i)) for all / in the domain of g, and if 
e.inv >- e\ j >i\ h(j) = e, h{p) = e\ and s(i) = y, then there exists /' such that s(i') = /'. 

Informally, >- is a serial dependency relation if a response to an invocation is legal for a complete 

history whenever it is legal for a closed subhistory that includes the events on which the invocation 

depends. More precisely, let " denote concatenation: 

Definition 2: A relation >- is a serial dependency relation if 

g • e is legal => h • e is legal 

for all events e and all legal histories h, whenever g is a closed subhistory containing all 
events e' such that e.inv >- e\ 

For example, the quorum intersection relations for queues and files given in the previous section are 

serial dependency relations. Additional examples appear in Section 6. 

We will show that a replicated object satisfies its specification if and only if its quorum intersection 

relation is a serial dependency relation. A serial dependency relation is minimal if no smaller relation 

is a serial dependency relation. Minimal relations correspond to minimal sets of constraints. As 
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illustrated in Section 6.3, a data type may have several distinct minimal serial dependency relations. 

5.2. An Automaton Model 

This section introduces a formalism for modeling replication. We use the following primitive domains: 

INV is the set of invocations, RES is the set of responses, REPOS is the set of repositories, and 

TIMESTAMP is the set of timestamps. We also use the following derived domains: EVENT = INV X RES 

is the set of events, and QUORUM = 2 R E P 0 S is the set of. quorums. If x and Y are domains, (x Y) 

denotes the set of partial maps from x to Y. . 

A log L is a map from a finite set of timestamps to events. 

L: TIMESTAMP —• EVENT 

Two logs L and M are coherent if they agree at every timestamp for which they are both defined. The 

merge operation U is defined on pairs of coherent logs by: 

(L U M)(t) = if L(t) is defined then L{t) else M(t). 

Because the merge operation is defined only for coherent logs, it is commutative and associative. 

Every log corresponds to a history in the obvious way. For brevity, we sometimes refer to a log L in 

place of its history, e.g. "L is legal" instead of "the history represented by L is legal." The exact 

meaning should be clear from context. 

A replicated object is modeled as a non-deterministic automaton that accepts certain histories. The 

automaton's state has two components: 

• Log: REPOS - + (TIMESTAMP EVENT) 

• Clock: TIMESTAMP 

The Log component associates a log (initially empty) with each repository, and the Clock component 

models a system of logical clocks, establishing an unambiguous ordering for events. 

The automaton's transition relation is defined using the following sets. 

• A serial specification Spec € EVENT*. 

• Initial: INV 2 Q U O R U M assigns initial quorums to invocations. 
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• Final: EVENT -* 2 Q U O R U M assigns final quorums to events. 

Initial and Final define a quorum intersection relation >- C INV X EVENT. 

An event e is accepted if the automaton's state satisfies the following precondition: there exists an 

initial quorum IQ € Initial(e.inv), such that if Log(IQ) is the merger of the logs from IQ, then Log(IQ) • e 

is legal. Accepting an event has the following effects, where x' denotes the new value of component 

x. The clock is advanced: 

Clock' > Clock. 

The new entry is appended to the view, and the updated view is merged with the log at each 

repository in a final quorum FQ € Final(e): 

Log'(R)(t) = If R £ FQ then Log(R)(t) 
elseif t = Clock' then e 

else (Log(R) U Log(IQ))(t) 

5.3. Cor rectness Arguments 

We use the following technical lemma.. 

Lemma 3: If >- is an arbitrary relation between invocations and events, the result of 
merging logs closed under >- is itself closed under >~. 

We now identify some invariant properties of quorum consensus automata. Each property clearly 

holds in the initial state when all logs are empty; we show that each property is preserved across state 

transitions. 

The first step is to show that the view for each invocation is closed under the quorum intersection 

relation > - Q . 

Lemma 4: The result of merging logs from any set of repositories is closed under > - Q . 

Proof: It suffices to show the property holds for any single repository ft; the more general 
result follows from Lemma 3. The argument is by induction on the length of the accepted 
history. The base case is trivial, hence the proof focuses on the induction step. 

Let e be an event accepted in a state satisfying the lemma. If Ft is outside the final quorum 
for e, then Log(R) = Log'(R). Otherwise, 

Log'(R) = Log(R) U Log(IQ) • e 
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Log(IQ) is closed because it is the merger of closed logs (induction hypothesis and Lemma 
3). Log(IQ) • e is closed by construction, and Log(R) is closed (induction hypothesis), 
therefore Log'(R) is closed (Lemma 3). 

Because the view for an invocation is the result of merging the logs from the repositories in an initial 

quorum: 

Corol lary 5: Each*invocation's view is closed under > - Q . 

The next step is to show that the view for each invocation is legal. 

Lemma 6: If the quorum intersection relation > - Q is a serial dependency relation, then the 
result of merging logs from any collection of repositories is legal. 

Proof: As before, the proof is by induction on the length of the accepted history. Let S be 
an arbitrary set of repositories, and let Log(S) and Log'(S) be the results of merging the 
logs from the repositories in S respectively before and after accepting a new event e. We 
show that if Log(S) is legal, so is Log'(S). If S does not intersect the final quorum for e, 
then Log(S) = Log YSj, and the result is immediate. Otherwise, 

Log'(S) = Log(S) U Log(IQ) • e 

Both Log(IQ) and (Log(IQ) U Log(S)) are closed (Corollary 5) and legal (induction 
hypothesis). Log(IQ) is a closed subhistory of (Log(S) U Log(IQ)) that contains all events 
e' such that e.inv > - Q e\ Because > - Q is a serial dependency relation, and Log(IQ)*e is 
legal by construction, (Log(S) U Log(IQ)) • e = Log(S) U Log(IO) • e is legal. 

This theorem reveals a fail-safety property of quorum consensus: even if a catastrophic failure makes 

it permanently impossible to assemble a quorum for certain operations, the result of merging the 

surviving logs yields a legal subhistory of the true (lost) history. 

Corol lary 7: If > - Q is a a serial dependency relation, each invocation's view is legal. 

We are now ready to present the basic correctness result: 

Theorem 8: If the quorum intersection relation > - Q is a serial dependency relation, every 
history accepted by a quorum consensus automaton is legal. 

Proof: Let Log(IQ) be the view for e, and let h be the accepted history. Log(IQ) is a closed 
subhistory of h under > - Q (Lemma 4), Log(IQ) is legal (Lemma 7), and Log(IQ) contains 
every event e' such that e.inv > - Q e\ Because Log(IQ)9e is legal and > - Q is a serial 
dependency relation, h*e is also legal. 

We now show that no set of constraints on quorum intersection weaker than serial dependency 
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guarantees that all histories accepted by a quorum consensus automaton are legal. 

Theorem 9: Given a relation >>- that is not a serial dependency relation, there exists an 
automaton whose quorum intersection relation satisfies > - Q that accepts an illegal history. 

Proof: Given such a relation, we construct a scenario in which an illegal history is 

accepted. 

If >- is not a serial dependency relation, there exists an event e, a legal history h having a 
closed history g containing all e' of h such that e.inv >- e', with the property that: 

g # e is legal but hme is illegal. 

We construct an automaton with quorum intersection relation > - Q that accepts h • e. 

The automaton has two repositories: R1 and R2. It accepts h% choosing the following 
quorums for each event. For events in g, it chooses an initial quorum of R1 and a final 
quorum of both R1 and R2. For events in h but not in g, it chooses an initial quorum of R1 
and R2 and a final quorum of R2. The view for each event in g thus contains all and only 
the prior events in g, and the view for every other event contains all prior events. 

These quorums satisfy >^ Q , because all initial and final quorums intersect except the initial 
quorums for events in g and the final quorums for events not in g. If any of these quorums 
were required to intersect, then g would not be closed, a contradiction. 

When a front-end assembles the view for e.inv, it reads g from R1, which is a valid initial 
quorum for e.inv because it intersects the final quorum for each event in g. The front-end 
then generates the event e, which by assumption is legal for g, but illegal for h. 

6. Examples 
This section presents three examples of serial dependency relations. In the first part, we discuss the 

constraints on replicated directories, both deterministic and non-deterministic. In the second part, we 

discuss a replicated counter type that will be used for reconfiguration, and in the last part we present 

an example of a data type whose minimal serial dependency relation is not unique. 

6.1. Directories 

A Directory stores pairs of values, where one value (the key) is used to retrieve the other (the item). 

Insert = Operation(k: Key, i: Item) signals (Present) 

inserts a new binding in the directory, signalling if the key is already present. 
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Change = Operation(k: Key, i: Item) signals (Absent) 

alters the item bound to the given key, signalling if the key is absent. 

Lookup = Operation(k: Key) returns(item) signals (Absent) 

returns the item bound to the given key, signalling if the key is absent. 

Size = Operation() returns(int) 

returns the number of key-item pairs currently in the directory. 

Insert(k,*) Change(k,*) Size() Lookup(k) 

lnsert(k,*)/Ok() X X X X 

Change(k,*)/Ok() X 

Ta ble 6-1 : Dependency Relation for Directory 

The minimal serial dependency relation for Directory is shown in Table 6-1. Quorums for Directory 

operations may depend on the key value. For example, one might use different sets of repositories to 

store payroll records for East and West coast employees. If quorums do not depend on key values, a 

simple combinatorial argument shows that a Directory replicated among n identical repositories 

permits rn/212 distinct quorum assignments. If version numbers are used in place of logical 

timestamps, as in [6], then Change quorums must intersect, reducing the number of distinct quorum 

assignments to rn/21. 

For the Directory type, the levels of availability of Lookup and Insert for a particular key are inversely 

related. For example, if a binding is replicated among n repositories, and if the initial quorum for 

Lookup consists of a single repository, then the final quorum for Insert must consist of all n 

repositories. To circumvent this trade-off, several proposals for replicated directories have chosen to 

rely on probabilistic guarantees of correctness [20,31, 5, 27,12]. A binding is inserted or altered at a 

single repository, and the update is later propagated to the other repositories. This approach has the 

advantage that updates complete more quickly and are more likely to succeed, but it has the 

disadvantage that the behavior of the server becomes considerably more complex because clients 

may observe transient "inconsistencies" in the directory, and concurrent conflicting updates must 
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somehow be resolved. 

There are two ways to view such "transient inconsistencies/' One view is that atomicity has been 

sacrificed for increased availability. The other view holds that the resulting data type continues to be 

atomic, but that it can no longer be considered a deterministic rhap from keys to items. We prefer the 

second view for its economy of mechanism: serializability still characterizes the properties upon 

which the programmer may rely, and general quorum consensus can be used to implement a 

replicated non-deterministic directory having the same advantages as the "non-atomic" methods 

cited above. 

A SemiDirectory is a map from keys to multisets of items. When the directory is created, it contains 

(conceptually, at least) a binding between every key and a multiset containing only the distinguished 

item Absent. The invocation lnsert(k,i) adds the item /' to the multiset associated with /c, and the 

invocation Lookup(k) returns some item previously bound to k, or signals Absent. There is a 

probabilistic guarantee that any item returned is likely to be the most recently inserted one. 

The minimal serial dependency relation for SemiDirectory is degenerate: no invocation depends on 

any event, and thus no quorums are required to intersect. The view constructed for Lookup(k) will 

include the most recent binding for that key if the initial quorum for Lookup happens to intersect the 

final quorum for the Insert or Change. The probability that Lookup will observe an item is thus the 

probability that the quorums will intersect. That probability is unity for the Directory type, and would 

be less for a non-deterministic implementation. If both Insert and Lookup choose quorums of single 

repositories, then the probability of intersection may be small. To cause the probability of intersection 

to rise with time, the log entry for Insert can be propagated by a background activity, effectively 

causing the final quorum for Insert to grow. In a satisfactory implementation of SemiDirectory, a 

Lookup invocation would choose the most recently inserted item from the view, and insertions would 

be propagated quickly enough so that the view is sufficiently likely to contain the most recently 

inserted item. 

( - • 
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6.2. Counters 

The Counter data type will be used in the reconfiguration method proposed in Section 7. A Counter 

stores an integer value, initially zero. The Inc operation increments the value by one: 

Inc = Operation() 

and the Dec operation decrements the value by one: 

Dec = Operation(). 

The Value operation returns the counter's current value: 

Value = Operation() Returns(lnt) 

Initial quorums for Value must intersect final quorums for Inc and Dec, but initial quorums for Inc and 

Dec may be empty, because neither operation returns any information. A Counter replicated among n 

identical repositories permits n distinct quorum assignments. (Just as for queues, a file-based 

implementation would permit only one quorum assignment.) 

6.3. The DoubleBuffer T y p e 

The DoubleBuffer type illustrates that a data type's minimal serial dependency relation need not be 

unique. A DoubleBuffer consists of a producer buffer and a consumer buffer, each capable of 

holding a single item. The object is initialized with a default item in each buffer. The DoubleBuffer 

type provides three operations: 

Produce = Operation(ltem) 

copies an item into the producer buffer, 

Transfer = Operation) 

copies the item currently in the producer buffer to the consumer buffer, and 

Consume = OperationQ Returns (Item) 

returns a copy of the item currently in the consumer buffer. 

The DoubleBuffer type supports two distinct serial dependency relations. In the first relation, shown 

in Table 6-2, Consume invocations depend on both Transfer and Produce events. In the second, 

shown in Table 6-3, Consume invocations depend on Transfer events, and Transfer invocations 

depend on Produce events. 
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Transferí) ConsumeO 

Produce(x)/Ok() X 

Transfer()/Ok() X 

Table 6-2: First Dependency Relation for DoubleBuffer 

Transferí) ConsumeO 

Produce(x)/Ok() X 

Transfer()/Ok() X 

Table 6-3: Second Dependency Relation for DoubleBuffer 

The alternatives arise because Produce events affect later Consume invocations only if there has 

been an intermediate Transfer. Consequently, Produce entries can appear in the view constructed for 

a Consume invocation either because the final and initial quorums of Produce and Consume intersect 

directly, or because they intersect indirectly through Transfer. Quorums for this type may be chosen 

with two degrees of freedom: one first chooses a serial dependency relation, and then one chooses 

particular quorums subject to the constraints imposed by the serial dependency relation. 

Neither serial dependency relation is strictly preferable to the other. For example, if Produce has 

quorums of (1,0), quorums for Consume and Transfer are (5,0) and (0,1) under the first relation, and 

(5,0) and (5,1) under the second. The first relation is thus preferable for maximizing the availability of 

Produce. On the other hand, if Consume has quorums of (1,0), quorums for Produce and Transfer are 

(0,5) and (0,5) under the first relation, and (0,1) and (5,5) under the second. The second relation is 

thus preferable for maximizing the availability of Consume. A DoubleBuffer replicated among n 

identical repositories permits 2n distinct quorum assignments, n for each relation. A DoubleBuffer 

implemented as a pair of replicated files with version numbers would permit Vn/21 distinct quorum 

choices. 
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7. Reconfiguration 
In this section we extend general quorum consensus to support on-the-fly reconfiguration: changing 

the quorum assignment for an existing object. Reconfiguration may be used to change the trade-offs 

among the levels of availability provided by an object's operations. For example, a census data base 

might be configured to facilitate updates while the census is in progress, and reconfigured to facilitate 

queries once the census is complete. Reconfiguration may also be used to move an object from one 

collection of sites to another, perhaps to replace malfunctioning or obsolescent hardware. A benefit 

of the reconfiguration method proposed here is that it incurs a negligible cost when it is not used. 

Reconfiguration results in a temporary period of decreased availability and increased message traffic 

as front-ends learn of the new configuration. 

This reconfiguration scheme can be viewed as a generalization of a scheme proposed by Gifford [14]. 

Our scheme gains flexibility both by taking advantage of type information, and by incorporating a 

novel replicated reference counting scheme that facilitates the movement of objects from one set of 

sites to another. 

A reconfigurable object is implemented by two kinds of components: a resource state and a chain of 

configuration states. Although these components are logically distinct, they are replicated at the 

same repositories. The resource state records information of direct interest to clients (e.g. the items 

in a queue), while the configuration states record information about quorum assignments (e.g. Enq 

and Deq quorums). A newly-created configuration state is marked current, and is used to store the 

quorum assignment for the resource state. A new configuration state is created each time the object 

is reconfigured, and the previous configuration state is marked obsolete, and is used to store the 

quorum assignment for the newer configuration state. Each configuration state provides GetQuorum 

and SetQuorum operations. 

An object is reconfigured in the following steps: 
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1. Construct a view of the old resource state by merging the logs from an old initial quorum 
for each operation. 

2. Initialize the new resource state by writing out the view to a new final quorum for each 
operation. 

3. Initialize the new configuration state by writing out the new resource state quorum 
assignments to a new SetQuorum quorum. 

4. Update the old configuration state by writing out the new configuration state quorum 
assignments to an old SetQuorum quorum. 

A quorum for reconfiguring the object must include a quorum for each of these steps. 

Each front-end keeps a local cache containing the quorum information for both the configuration 

state and the resource state. An operation is normally executed in two logical steps, although we will 

see that only one exchange of physical messages is required. 

• Verify that the cached configuration state is current. 

• Operate directly on the resource state using the cached quorums. 

If the front-end discovers that its cached configuration state is out of date, it reads the quorum 

information for the new configuration state, reads the new configuration state into its cache, and 

starts over. If several reconfigurations have taken place, a front-end may have to follow a chain of 

configuration states to locate the resource state. 

Because the configuration and resource states are replicated among the same set of repositories, the 

number of messages needed for this protocol can be kept to a minimum if each quorum for each 

resource state operation is also a GetQuorum quorum for the associated configuration state. Each 

front-end includes a timestamp for its cached configuration state in every message directed to a 

repository. When a repository receives a message, it compares the cache timestamp with its local 

configuration state timestamp. If they are the same, the repository carries out the front-end's request, 

otherwise it responds with an exception identifying the newer configuration state. 

A shortcoming of the scheme described so far is that there is no mechanism for safely discarding 

obsolete configuration states. For example, if a replicated object is moved from one set of 

repositories to another, the configuration state at the old set of repositories cannot be discarded as 
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long as there is a possibility that some front-end's cache is still out of date. To remedy this problem, 

we propose a reference counting scheme that enables the object's maintainers to detect when all 

front-ends have updated their configuration states. This scheme has the desirable property that it 

does not affect the availability of the replicated object, although it does require extra messages 

immediately following a reconfiguration. 

A Counter as defined above in Section 6.2 is replicated at the object's repositories. When a front-end 

first records the configuration state in its cache, it records an Inc entry at a quorum of the 

configuration state's repositories. When a front-end observes that the configuration state has been 

rendered obsolete, it records a Dec entry at a quorum of repositories. Once a configuration state has 

been rendered obsolete, the object's maintainers may invoke the Value operation, merging the Inc 

and Dec entries to count the front-ends whose caches are still out of date. A configuration state may 

be discarded when its reference count and the reference counts of all earlier configuration states 

have reached zero. (Because there are no cycles of reference between configuration states, an 

unneeded configuration state will always have a reference count of zero.) 

Reference counting need not reduce the object's availability if quorums are assigned so that every 

quorum for GetQuorum is also a quorum for Inc and Dec. A front-end must locate an initial 

GetQuorum quorum for a configuration state to discover that it has become obsolete. That same 

quorum can be used to decrement the old configuration state's reference counter, although a second 

round of messages is necessary. Before the front-end can use the new configuration state, it must 

check its currency by locating an initial GetQuorum quorum. That same quorum can be used to 

increment the new configuration state's reference counter. 

We close this section with an example illustrating how a replicated queue might be reconfigured. 

Initially, the queue is replicated among R1, R2, and R3, having respective Enq and Deq quorums of 

(0,2) and (2,2). As described above, the resource state quorums determine the configuration state 

quorums: GetQuorum and Value have quorums of (2,0), while SetQuorum, Inc,and Dec each have 

quorums of (0,2). After reconfiguration, the queue is replicated among R1\ R2', and R3', having Enq 

quorums of (0,1) and Deq quorums of (3,1). GetQuorum and SetQuorum must have respective 

quorums of (1,0) and (0,3), while Inc, Dec, and Value must have respective quorums of (0,1), (0,1), and 
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(3,0). 

The queue's original configuration state is schematically represented as follows. (The resource state 

is not shown.) 

m R2 R3 

1:00 1:00 1:00 

{R1,R2,R3} {R1,R2,R3} 

Enq = (0,2) Enq = (0,2) 

Deq = (2,2) Deq = (2,2) 

1:15 lnc()/Ok() 1:15 lnc()/Ok() 

1:30 lnc()/Ok() 1:30 lnc()/Ok() 

1:45 lnc()/Ok() 1:45 lnc()/Ok() 

The first line indicates that each configuration state has a timestamp of 1:00. The next three lines 

represent the quorum information for the resource state. The resource state's quorum information is 

recorded at only two repositories, since these constitute a SetQuorum quorum. The final three lines 

record the status of the configuration state's reference count. In this example, the counter has been 

incremented by three front-ends, although no single repository records all three increments. Each 

front-end includes the cache timestamp 1:00 with every message it sends to a repository. 

The queue is reconfigured as follows. 

• Merge the logs from any two repositories in the old resource state. 

• Write out the resulting view to all three repositories in the new resource state. 

• Record the new resource state quorums at all three repositories in the new configuration 
state. 

• Record the new configuration state's quorums at any two repositories from the old 
configuration state. 

Following reconfiguration, the old and new configuration states might appear as follows. 
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El R2 S3 
1:00 2:00 2:00 

{R1,R2,R3} {R1\R2\R3'} {R1\R2\R3'} 

Enq = (0,2) GetQ = (1,0) GetQ = (1,0) 

Deq = (2,2) SetQ = (0,3) SetQ = (0,3) 

1:15lnc()/Ok() 1:15lnc()/Ok() 

1:30 Inc0/Ok() 1:30 lnc()/Ok() 

1:45 lnc()/Ok() 1:45 lnc()/Ok() 

El' R2! B3' 
2:15 2:15 2:15 

{R1\R2\R3'} {R1\R2\R3'} {R1\R2\R3'} 

Enq = (0,3) Enq = (0,3) Enq = (0,3) 

Deq = (3,1) Deq = (3,1) Deq = (3,1). 

Now suppose a front-end whose cache is out of date attempts to enqueue or dequeue an item. The 

front-end's message includes a cache timestamp, and any quorum it chooses must include at least 

one repository that will detect that the timestamp is obsolete. That repository will return an exception 

identifying the new configuration state. The front-end decrements the old configuration state's 

reference count at two repositories, and uses a single exchange of messages to read the new 

configuration state into its cache and to increment the new configuration state's reference count. 

El E2 B2 
1:00 2:00 2:00 

{R1,R2,R3} {R1\R2\R3'} {R1\R2\R3'} 

Enq = (0,2) GetQ = (1,0) GetQ = (1,0) 

Deq = (2,2) SetQ = (0,3) SetQ = (0,3) 

1:15lncO/Ok() 1:15lncO/OkO 

1:30 IncO/OkO 1:30 Inc0/Ok() 

1:45lnc()/OkO 1:45 Inc0/Ok() 

2:30 Dec()/Ok0 2:30 Dec()/Ok0 

El' B2* B2' 
2:15 2:15 2:15 

{R1\R2\R3'} {R1\R2\R3'} 

Enq = (0,3) Enq = (0,3) Enq = (0,3) 

Deq = (3,1) Deq = (3,1) Deq = (3,1) 

2:45 IncQ/OkO 

Here, the system maintainer can determine that it is not yet safe to discard the old configuration state 

because its reference count indicates that there are still two front-ends that have not updated their 

caches. 

In summary, the reconfiguration method described here incurs a non-negligible cost only when 
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reconfiguration actually takes place. Under normal circumstances, availability is unaffected because 

each quorum for operating on the resource state alone is a quorum for the operation as a whole. No 

additional messages are needed because a front-end can use the same physical messages for two 

logically distinct tasks: to establish the currency of its cached configuration state, and to apply the 

operation to the resource state. Reconfiguration does impose a one-time penalty on a front-end 

whose cache is out of date: the next time it attempts to execute an operation it must conduct an 

additional exchange of messages and locate an additional quorum, and an extra round of messages 

is needed to update the configuration state's reference counter. 

8. Pragmatic Issues 
This section addresses two pragmatic issues raised by replication: logical timestamp generation, and 

log and message compaction. 

8.1. Logical Timestamp Generation 

Logical timestamps are structured as follows: 

• The high-order bits are occupied by an action timestamp that defines how the generating 
action is serialized relative to other actions. This field is used to compare timestamps 
generated by distinct actions. 

• The low-order bits are occupied by values read from a logical clock private to the 
generating action. This field is used to compare timestamps generated within a single 
action. 

We describe two timestamp generation schemes, one intended for systems in which actions are 

serialized in a predetermined order, and one for systems in which actions are synchronized 

dynamically through conflicts over shared data. 

Under Reed's multiversion timestamp scheme [29], each action is given a pseudotime on 

initialization, and scheduling constraints ensure that actions remain serializable in pseudotime order. 

Under this scheme, an action's pseudotime is its timestamp. 

Under two-phase locking [11], a slightly more complicated scheme is required because the eventual 

serialization ordering is unknown in advance. At the time an action generates a timestamp, the 

high-order field is left empty. A timestamp generated by an uncommitted action is considered later 
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than a timestamp generated by a committed action (timestamps generated by distinct uncommitted 

actions are never compared). When the action commits, a value read from a logical clock [22] is used 

as the action timestamp. Similar timestamp generation schemes have been proposed by Dubourdieu 

[9], by Chan et al. [7], and by Weihl [33]. 

8.2. Log and Message Compaction 

Logs have the disadvantage that they are neither compact nor efficient. For example, the size of a log 

representing a Queue has no relation to the number of items present in the queue, and the item at the 

head of the queue must be found by a linear search. These problems can be alleviated by replacing 

logs with more compact and efficient representations. We assume each object's state can be 

represented compactly and efficiently at a single site. Such a representation is called a version. For 

example, a Queue might be represented as an array or linked list, a Counter as an integer cell, and a 

Directory as a hash table or B-tree. 

If a repository's log has gaps, it cannot be replaced by a version. Divergent logs can be reconciled by 

merger, but there is no systematic way to reconcile divergent versions. Under what circumstances 

may a version replace a log? Histories g and h are equivalent if g # a is legal if and only if h*a is legal, 

for all event sequences a. If a repository's log has a prefix equivalent to a prefix of the object's 

complete history, then that prefix may be replaced by a single version. A version that replaces a 

prefix is given the timestamp of the last entry it replaces. 

Each repository stores a single timestamped version together with a (potentially incomplete) 

sequence of log entries with later timestamps. A front-end executing an operation collects the logs 

and versions from an initial quorum, reconstructing the object's state by selecting the most recent 

version and applying any later log entries, treating the entries as a differential file [32]. 

Logs are compacted by the following protocol. A front-end constructs a timestamped version from an 

initial quorum for each operation, and sents the version to as many repositories as possible. Each 

repository that receives the new version discards all earlier versions and entries. Once the new 

version is recorded at a final quorum for each operation, only the version's timestamp need be 

forwarded to the remaining repositories, because henceforth every invocation's initial quorum will 

include at least one repository with the new version. c ' 



25 

Logs may be compacted by background processes, or as a side-effect of certain operations. For 

example, because an initial quorum for Deq is an initial quorum for any Queue operation, logs may be 

compacted whenever an item is dequeued. For example, consider the following queue: 

R l R2 R3 

1:00 Enq(x)/Ok() 1:00 Enq(x)/Ok() 

1:15 Enq(y)/Ok() 1:15 Enq(y)/Ok() 

1:30 Enq(z)/Ok() 1:30 Enq(z)/Ok() 

A front-end executing a Deq merges the logs from R1 and R2, creates a version, dequeues x, and 

writes out the updated version to R1 and R2 with a new timestamp. 

El E2 E3 
1:15Enq(y)/Ok() 

1:30Enq(z)/Ok() 
1:45 [y,z] 1:45 [y.z] 

When R1 and R2 have confirmed the update, the front-end can forward the version timestamp to R2, 

which may then discard all earlier entries and versions. 

Message sizes can be reduced if each repository caches its most recently observed version. When a 

front-end requests a repository's log, it need only request entries or versions with later timestamps. If 

the object's state can be expressed as a Cartesian product, messages sizes can be further reduced 

by compacting each component independently. For example, in a proposal of Bloch, Daniels, and 

Spector [6], a replicated Directory is represented as the product of key/item bindings, each with its 

own version number. A type-specific compaction technique is used to prevent the accumulation of 

entries for deleted bindings. 

These compaction methods are probabilistic, since they can be frustrated by an inopportune 

distribution of events and failures. For example, if a repository for a Queue joins Enq quorums but not 

Deq quorums, and if communication failures prevent later compaction by background processes, 

then that repository will continue to accumulate Enq entries. Reducing the likelihood of such 

scenarios to an acceptable level is an engineering problem best addressed experimentally. 
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9. Discussion 
This paper has proposed a new replication method that systematically exploits type-specific 

properties to provide more effective replication in the presence of crashes and partitions. A summary 

of our results follows. 

• Constraints on quorum intersection are reduced by replacing versions and version 

numbers by logs and logical timestamps. 

• The problem of identifying an object's minimal constraints on quorum assignments (and 
availability) is reduced to the algebraic problem of identifying its minimal serial 
dependency relations. 

• Following a catastrophic failure, the surviving data represents a legal subhistory of the 

complete (lost) history. 

• Dynamic reconfiguration can be accomplished without reducing availability by replicating 
an object's resource and configuration states so that each quorum for a resource state 
operation is also a quorum for reading the configuration state. 

• A novel replicated reference counting scheme permits objects to be moved from one set 

of repositories to another. 

General quorum consensus is systematic, general, and effective. It is general because it is applicable 

to objects of arbitrary type; it is systematic because constraints on correct implementations are 

derived directly from the data type specification; it is effective because it imposes fewer constraints 

on availability and more flexible reconfiguration than permitted by the conventional read/write 

classification of operations. 
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