
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 7 8 - 1 2 5

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM

ON C.MMP

P.N. Oleinick and S.H. Fuller

Computer Science Department

Carnegie-Mellon University

June 6, 1978

Keywords: performance evaluation, multiprocessors, synchronization, parallel algorithms,
cooperating processes.

The research described here was supported by the Defense Advanced Research Projects

Agency (Contract: F44620-73-C-0074, monitored by the Air Force Office of Scientific

Research), and in part by the Office of Naval Research (Contract: N00014-77-C-0500).

University Libraries

Pittsburgh 15213-3890

ABSTRACT

C.mmp is a multi(mini) processor with up to sixteen processors. This paper presents and

discusses measurements of the C.mmp system at several levels:

1. Basic hardware performance measurements

2. Runtime performance of Hydra, C.mmp's operating system

3. Overall performance of a particular application: a parallel rootfinding algorithm.

The purpose ot this paper Is to get a detailed look at the performance of an implementation

of a parallel program on C.mmp. The rootfinding algorithm was chosen because It meets two

constraints: it is a parallel algorithm with significant interprocess communication; and It Is of

relatively low complexity, enabling us to focus on implementation issues rather than subtleties

In the algorithm itself.

Variations in processor speeds and asynchronously executing operating system functions

are shown to have a detrimental effect on the rootfinder's performance. However, the most

important implementation decision affecting the performance of the rootfinding program is the

t ype of synchronization semaphore used. We define the threshold for practical application of

a semaphore to be when 507 of the execution time is attributed to semaphore related

overheads. Using the 507, criteria, we measured thresholds for Inter-synchronization times

from two milliseconds for the most primitive locks, to 200 milliseconds for the most

sophisticated and flexible semaphore. During the course of these measurements. Hydra

underwent several revisions and the 200 millisecond threshold was reduced to 33

milliseconds. The principal concept responsible for this performance Improvement Is

discussed In the paper.

1. Introduction
2. Description of the Rootfinding Algorithm
3. Sources of Performance Fluctuation

3.1. Introduction
3.2. The Variation in the F(x) Calculation
3.3. The Variation in Performance of Individual Hardware Elements

3.3.1. Processor Related Variations
3.3.2. Memory Related Variations
3.3.2.1. Technology Differences
3.3.2.2. Memory Bandwidth and Memory Interference

3.4. Operating System Related Performance Fluctuations
3.4.1. Introduction
3.4.2. The Kernel Tracer
3.4.3. I/O Devices and Interrupts
3.4.4. Kernel Processes and Special Functions

3.5. Summary

4. The Effect of Sychronization on Performance

4.1. Introduction
4.2. Description of Synchronization Primitives

4.2.1. The Spin Lock
4.2.2. The Kernel Semaphore
4.2.3. The Policy Module Semaphore

4.3. The Impact of Synchronization on Performance
4.3.1. Introduction
4.3.2. Comparison of Primitives When Compute Time ~ Synchronization Time
4.3.3. Comparison when Compute Time is Much Greater Than Synchronizatio

Time

5. Summary of Results: The Useful Range for Various Semaphores

6. Bibliography

1. Introduction

'Most papers that extol the virtues of multiprocessor computer systems cite the higher

throughput and cost/performance [e.g. Sauer 1977, Fuller 1 9 7 6] over the more traditional

uniprocessor. However, both of these performance advantages can be realized only if the

software effectively exploits the parallelism in the machine. To date, the task of writing

effective parallel software is still an ad-hoc procedure of constructing code for a one of a

kind machine. Since multiprocessors are almost as different from one another as they are

from uniprocessors it is difficult to apply insight gained from writing parallel software for one

multiprocessor to another totally different machine. Yet by documenting the performance of

various implementations of several algorithms on one machine we can shed some light on how

effective various strategies are at capturing parallelism.

The purpose of this paper then is to provide a first-hand look at the implementation of

parallel algorithms on a multiprocessor. The nature of this investigation Is experimental

rather than theoretical in that the results we present are derived from the measurement of

real programs running on a real multiprocessor - C.mmp.

The basic structure of C.mmp, as shown in the PMS diagram of Figure 1.1 Is that of the

canonical multiprocessor. A detailed description of C.mmp is provided in the original article on

C.mmp by Bell and Wulf [1 9 7 2] , but the following description should provide a sufficient

background for this investigation.

C.mmp Is organized as a system of 16 central processors (Pc's) that share a centrally

located large primary memory that presently consists of 2.5 Megabytes. The 16 Pc's are

completely asynchronous computing elements: 5 are PDP- l l /20 's and the remaining 11 are

PDP-11 /40 's . They are connected to the shared primary memory via a 16 x 16 crosspoint

switch. The operation of the switch; is similar to a 16 ported memory in that up to 16

memory transactions can be performed simultaneously. I/O devices, unlike memory, are

associated with an individual processor. Thus for example, an I/O request to a device on

P c [0] , perhaps a disk, Is performed by the requesting Pc sending an Interprocessor Interrupt

to P c [0] causing initiation of the appropriate I/O interrupt service routine on Pc[Oj

Hydra is C.mmp's general-purpose multiprogramming operating system tWulf et Q L , 1 9 7 4 ;

Wulf et aL, 1 9 7 5 ; Levin et aL, 1 9 7 5 } It is a collection of basic or kernel mechanisms such as

memory management, process dispatching, and message passing. Upon this core an arbitrary

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON CMMP PAGE 2

Mp(15) — — v J — ^ — ^ ^ N * 1 ^

Mp<14> N ^ <tf n — N n —

M p (l 3) N ^ ^ ^ sr- N —

K i b l l I Kibi Kibi Kibi i I K,b, M Kibi Kibi Kibi Kibi Kibi K,bi R i M IK ib i

Note; Kibi stands for
K(inler-bua interface) Kinterbu* Kcloek

F i g u r e 1.1 P M S D i a g r a m of C . m m p (1 9 7 7)

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 3

number of systems created from these mechanisms can co-exist simultaneously. Hydra Is

organized as a set of re-enterant procedures that can be executed by any of the processors.

In fact, several processors can simultaneously execute the same procedure. This concurrency

is accomplished by placing locks around the operating system's critical data structures. These

locks maintain mutual exclusion where necessary. Throughout this paper we will refer, to

Hydra as the Kernel or the Operating System.

In the following sections we develop a parallel algorithm to be used as a case study and

derive its theoretical performance. We enumerate the contributions to performance

fluctuation and degradation from several sources and quantify the magnitude of each source

In terms of the program's performance. One dominant influence on performance is the process

synchronization mechanism. We compare several alternative synchronization mechanisms and

conclude with a graph showing the range of Inter-synchronization times for which each

mechanism is preferable.

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON CMMP PAGE 4

2. Description of the Rootfinding Algorithm

The purpose of this study is to present quantitative performance results for Implementing

parallel algorithms on a multiprocessor. Rather than attempting to measure a broad spectrum

of problems we have chosen to study various implementations of a single problem in order to

observe and measure in depth the performance tradeoffs in the implementation process.

T w o criteria that our case study problem had to meet were: the problem must be complex

enough to have interesting implementation tradeoffs and low enough complexity to permit the

focus of attention on implementation issues rather than algorithm issues. The candidate

problem we finally selected is the rootfinding task.

We have chosen to consider this problem not because it particularly well-suited for parallel

solution, but rather because it is a relatively straight forward task that requires a significant

amount of inter-process communication. According to Stone[1973], algorithms like the

rootfinding algorithm that exhibit speed-up gains proportional to the logarithm of the number

of processes fall into a class of problems at best considered poor candidates for parallel

processing. However, the underlying control structure present in this procedure, that of the

synchronous parallel algorithm, is representative of many parallel decompositions of

otherwise serial algorithms. For this reason it is worthwhile to understand the nature of the

control structure and to study the influences on its performance. Investigations now In

progress are considering larger problems and alternative control structures better able to

exploit the available parallelism of C.mmp [Oleinick 1978].

Specifically we will consider the problem of finding the root of a monotonically increasing

function in a bounded region. If we assume no special information about the behavior of the

function, the best procedure for a uniprocessor under these circumstances is a binary search.

An obvious decomposition of the binary search into n parallel processes on a multiprocessor

is to evaluate the function simultaneously at n equidistant points within the bounded region.

The optimal placement of the n processes on the interval is known [Kung 1976], but to

minimize the complexity of the algorithm in order to focus on the synchronous control

structure we will use the less than ideal ,but good, technique illustrated in Figure 2.1. The n

parallel processes perform function evaluations at the n points that divide the Interval into

n+1 equal subintervals. Since our function, F(x), is a monotonic function, the sub-interval that

contains the root Is the sub-interval with opposite signs for F(x) at Its end points. The other

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 5

First Iteration:

Second Iteration:

Third Iteration:

Fourth Iteration:

Figure 2.1 Rootfinding Program Using Three Processors

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE »

hhe new interval Is located as soon as the sub-interval Is bounded but again we have
opted for a more straight-forward algorithm In order to focus on the implementation issues.

sub- intervals are discarded and the procedure repeats this basic Iteration until one of the

function evaluations Is within « .i.e. an acceptably small Interval close to zero, of the

zero-cross ing.

For the measurements presented here the function we are evaluatlhg Is the normal

integral:

F (x) - ^ ~ £ e x p (- l / 2 t 2) d t - h (2 .1)

For x < 2.32 the following truncated power series was used to evaluate F(x):

(x + 3 * f * 5 * y*t*r + 3*5*7*9 + • - > - h (2 - 2)

and for larger % we used the continued fraction:

l / (x + l / (x+2/(x+3/(x + . . .)))) - h (2 .3)

We selected this normal integral because it is an important transcendental function that

exhibits two characteristics important to our measurement studies: it requires an extensive

amount of computation, and the type and length of oomputation are data dependent.

In order to evaluate the performance of our implementations of the rootfinding. algorithm

we first calculate the theoretical, or overload-free, performance curves.

The basic cycle in the rootfinder is the independent evaluation of the function by each of

the cooperating processes and, upon finishing, the communication of each process with the

other processes by posting the results of its function evaluation. Notice that the new interval

is not located until all of the processes have posted their results*. When the last process

finishes its function evaluation it assumes the jobs of finding the new root-containing interval

and u/aklng up all of the waiting processes. This basic cycle we call a STAGE.

Under Ideal conditions the cooperating processes In the rootfinder would exhibit the

execution behavior found in Figure 2.2. Each process performs a function evaluation

Independently. They all finish at the same instant and, after a very brief bookkeeping

calculation perform a new F(x) calculation, on an interval reduced by l/(n+l). In practice, we

seldom find this to be the case. The fluctuations in performance stem from sources Intrinsic

to the multiprocessor as well as the rootfinding program.

F(x) CALCULATION F<x) CALCULATION F(x) CALCULATION o

o F(x) CALCULATION 1 F(x) CALCULATION F(x) CALCULATION o

o F(x) CALCULATION h
F(x) CALCULATION F(x) CALCULATION o

o
o
o o

o
o

o
o
o

o
o

o

o F(x) CALCULATION N Fix) CALCULATION F(x) CALCULATION o

LOCATING THE INTERVAL THAT CONTAINS THE ZERO-CROSSING AND

REDISPATCHING THE N PROCESSES

Figure 2.2 Optimal Performance of the Rootfinding Algorithm

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON CMMP PAGE 8

3. Sources of Performance Fluctuation

3.1. Introduction

In this case study there are three distinct sources of performance fluctuation: the variation

in the amount of computation required to perform a function evaluation, the individual

hardware elements' performance characteristics, and the operating system. We will Identify

the nature and measure the magnitude of each of these sources starting with the variation Ih

the F(x) calculation as it is the most straight forward of the three.

3*2. T h e Variation in the F(x) Calculation

The elapsed time to perform a function evaluation is data dependent. The distribution of

the compute time is shaped approximately Normal as shown is Figure 3.1. The mean is about

100 milliseconds with almost an equal number of samples on each side of the mean*. Thus

we might model the expected.finishing time for a process performing an F(x) calculation to be

a random variable with a Normal distribution. As other functions would have other compute

time distributions, we derive the theoretical performance for the constant and exponential

cases also.

Let the time taken by the i^1 stage in the rootfinding procedure be the random variable Tj .

Since all of the processes are performing the same calculation, each process executes for a

random amount of time, t (see figure 3.2), taken from some distribution. Because all of the

processes must finish their function evaluations before the new sub-interval is located

T. - MAX(t , t , t , ... , t) (3.1)
i 1 2 J n

From elementary order statistics the expected value of the largest order statistic In random

samples of n from a parent distribution with continuous strictly increasing cdf P(x> Is

E (X (n) } " J T - ^ C P < x) f~l d p < x > (3-2)

If we know nothing about the distribution of the t| other than the mean a and standard

deviation s, the expected value of the largest order statistic Tj, reduces to

^On an 11/20 processor

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 9

(« SAMPLES)

130

120

110

100

90

S O

70

60

50

40

30

20

10

number of samples - 1000

490
samples

510
samples

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

(ELAPSED TIME in ms.)

Figure 3.1 Distribution of the Time to Calculate F(x)

o o o F(x) CALCULATION F(x) CALCULATION F(x) CALCULATION o o o

o o o F<x) CALCULATION F(x) CALCULATION]X] F<x) CALCULATION^ o o

o o o F(x) CALCULATION

o
o
o

o o o Fix) CALCULATION

F(x) CALCULATION

o
o
o

O

o
o

EI F(x) CALCULATION

Fix) CALCULATION o o o

o
o
o

F(x) CALCULATION o o o

o o o F<x) CALCULATION F(x) CALCULATION o o o

LOCATING THE INTERVAL THAT CONTAINS THE ZERO-CROSSING AND

REDISPATCHING THE N PROCESSES

Figure 3.2 Performance Degradation Due to Variation in the F(x) Compute Time

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON CMMP PAGE 11

This bound can be replaced In the exponential case by the equality
n-1

E (T) - nu Y (n : S (- D j (3 . 4)
n L-J j ~

J - 0

For the Normal case we consult Teichroew'sfl956] tables for the expected value of the

largest order statistic drawn from the N(0,1) distribution.

When the expected value of the compute time is a constant, equation 3.3 is replaced by the

simple equality E(Tj) » u.

If we are interested in the performance speedups obtained when we put more processes

to work finding roots, we need to estimate the average time to locate a root as a function of

the number of processes. Since every iteration in the rootfinding procedure reduces the

interval of uncertainty, L, by a factor of rc+i it takes Cei/ircg(Log n +j L) iterations to locate the

root in a bounded interval of length L Thus in our example let Rj denote the number of

iterations necessary to arrive within « of the root using I processes. For our choice of €,

R={54, 34, 27, 23, 21, 19, 18, 17, 16, 16, 15, 15,...} iterations. Notice that it takes the same

number of Iterations to locate the root using nine and ten or eleven- and twelve processes.

This is because the number of iterations must be an integer. Thus, there is little to be gained

by incorporting many processes in the procedure. In this study the maximum number of

processes we will use is nine.

We can estimate the runtime of the rootfinder to be the following:
R n

Runtime(n) - £ T k = R n * E(T n) (3 . 5)

Often we will be interested in the speedup achieved through parallelism. We will use the

following formula to calculate speedup:

, x Runtime(1)

Speed up(n) - R u n t i m e J n) (3 > 6)

Figure 3.3 Is a plot of the speedup vs. number of processes for the following three

distributions:
Distribution Mean Standard Deviation

Constant 1000 0
Normal 1000 278

Exponential 1000 1000

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 12

a

Si

a

3.50r

3.25

3.00U

2.751

2.50}-

2.25V

2.00

7.75k

1.50\-

7.25

7.00,
6 7 8 9

Number of Processes
Figure 3 .3 Speed up vs. Number of Processes for Ideal Multiprocessor

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP f>AGE 13

The glitches in the curves are a result of the Ceiling function In the equation for the

number of iterations to perform. Because the number of iterations must be an integer value,

the curves are not smooth.

This figure contains calculated no-overhead performance curves for three sample F(x)

distributions with standard deviations ranging from 0 to u. The performance range is from

negligible speedup when the compute time for the function evaluation is exponentialy

distr ibuted to more than a factor of 3.3 speedup for nine processes when the distribution of

the F(x) calculation is a constant. The Normal curve between these extremes closely

approximates the actual F(x) distribution and is Included for comparison.

Another way to view this data is to plot speedup for the nine processes case us. the ratio

standard deviation/mean as was done in Figure 3.4. This figure very clearly shows the impact

of the variance on the performance of the rootfinding procedure. When the coefficient of

variation is much greater than one, nO speedup can be obtained by incorporating multiple

processes in the rootfinding task.

Now we compare the calculated no-overhead performance of the rootfinder to measured

data observed on the machine. In O r d e r to measure performance as a function of the

distribution of the F(x) compute time a synthetic rootfinder was developed because we did

not want to limit our investigations tp particular distributions too early in the experiment. The

nature of the calculation was still the real function evaluation, however the length of time

spent computing was adjustable to reflect the distribution under consideration.

Figure 3.5 graphs performance in terms of elapsed time as a function of the number, of

processes for three distributions of the F(x) calculation. In each case we compare theoretical

performance to measured data. Since the means of the three distributions were not identical

the data points for the single process instantiation do not coincide. Thus in this graph

comparisons across distributions can only be relative approximations. What is important here

is how close the measured curves are to their theoretical curves.

For each single process instantiation the measured and theoretical curves are far apart.

This is because any pertubation the process experiences will b e additive and will lengthen

the basic cycle time.

As we incorporate more processes the constant distribution diverges the most from the

theoretical while the exponential diverges the least. The reason for this behavior is that

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON CMMP PAGE 14

3.50r

6 7 8 9
Standard Deviation/Mean

Figure 3 . 4 Speed Up vs. Coefficient of Variation for Nine Processes

10

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 15

225

O Calculated

* Measured

7 2 5

100

75

50.

Exponential Distribution

B

X

Normal Distribution
— x

-X-...

Constant Distribution

O ...

£ 5 % 5 6 7 S 9
Number of Processes

Figure 3.5 Measured Performance Compared to Calculated Performance

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 16

pertubalions experienced by the processes will tend to increase the variance of the

underlying distribution. However, a small change in the variance of the constant distribution

will be a much larger relative change than a similar change to the exponential distribution.

That the observed data doesn't agree closely with the calculated curves Is evidence that

there are other influences on performance besides the distribution of the compute time, tn

the following sections we discuss measurements that uncover the other factors Influencing

performance.

3.3. T h e Variation in Performance of Individual Hardware Elements

The fluctuations in performance caused by the hardware will always be present because

Hydra allocates C.mmp's resources dynamically. While a user cannot accurately predict the

exact performance of his processes, he can estimate the magnitude of the fluctuation In

performance by Measuring the variation in the performance of the individual hardware

elements.

3 . 3 . L Processor Related Variations

C.mmp is a multiprocessor constructed from PDP-11 model 40 and model 20 minicomputers.

In Table 3.1 we have summarized the basic performance difference between the processors

by comparing their execution of the F(x) calculation without the presence of Hydra. Each

processor performed the calculation 100 times in the same memory port. The number of

MSYN's^ was counted and the elapsed time measured. These figures appear In the first and

second columns. The third column of figures is the processor speed relative to Pc [0 j

MSYN is the DEC name for the signal that indicates a request Is being made for the
U n i b u s ™ . Since only the processor is making requests the number of MSYNs is the number
of memory requests made by the processor.

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 17

PC
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Model
11/20
11/40
11/40
11/40
11/20
11/40
11/40
11/40
11/20
11/40
11/40
11/40
11/40
11/40
11/20
11/20

Elapsed Time (sec.) kMsyn's/sec Relative to PcfOl
15.559 443.3
10.413 662.4

9.985 690.8
9.745 707.8

16.144 427.2
10.060 685.7
10.238 673.7

9.829 701.8
14.867 463.9
10,022 688.3
10;i73 678.0
10.001 689.7
10.129 681.0
10.005 689.4
14.965 460.9
14.999 459.9

1.000
1.494
1.558
1.596
0.963
1.546
1.519
1.582
1.046
1.552
1.529
1.555
1.536
1.555
1.039
1.037

Table 3.1 Speed Variations Among C.mmp's Processors

Naturally, a process pn an 11/40 should execute faster than a similar process on an 11/20.

Notice that even among processor of the same type there can be more than a 52 difference

in speed.

Because there are two types of processors, the strategy of dynamically assigning

processes to processors is complex. It is not sufficient to schedule a "ready" process to the

best processor available. The following scenario clearly demonstrates why.

Suppose that the rootfinding processes are performing their function evaluations and are

finishing at random times. After several have finished one would expect to find some idle
11/40's and computing 11/20's*. A good scheduler should handle its resources better. The

idle 11/40's should "steal" the processes computing on the 11/20's. Naturally, this

philosophy assumes that a context swap can be performed quickly. This process stealing

philosophy Is the scheduling policy on C.mmp.

* During the course of our study the number of processors running in the system varied
day to day. The processor configuration during the experiment with the synthetic rodtfinder
was 10 PDP - l l /40 ' s and 3 PDP-l l/20's. Since we never used more than nine processors to
perform the F(x) calculation all of our processes ran exclusively on the 11/40's. However,
the problem is real. If we could have incorporated more than ten processes Into the
rootfinding procedure we would have had to deal with it. Later experiments in this paper
measure the impact of the non-homogenous processor configuration as the number of
available 11/40's frequently was less than nine.

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON CMMP PAGE 18

3.3.2. Memory Related Variations

3.3.2.1. Technology Differences

C.mmp's centrally located primary memory is also a source of fluctuation in performance.

The memory Is divided into 16 modules, or banks. Each bank can service memory requests

independently. However, the relative speeds of the banks are different because they contain

different types of memory. At the time of this study 5 banks contained semiconductor

memory and 11 contained magnetic cores. Table 3:2 summarizes the speed differences of the

memory banks. In this experiment Pc[15] performed the F{x) calculation 100 times in each

memory bank. The elapsed times appear in the table.
Mp Technology Time (sec.) kMsyn's/sec Relative to Mp[0]

0 core 15.243 452.5 1.000
1 core 14.943 461.6 1.020
2 core- 15.127 456.0 1.007
3 core 14.999 459.9 1.016
4 core 15.087 457.2 1.010
5 semiconductor 15.950 432.4 0.955
6 core 15.272 451.6 0.998
7 core 15.402 447.8 0.989
8 semiconductor 15.887 434,2 0.959
9 semiconductor 15.858 434.9 0.961

10 semiconductor 15.860 434.9 0.961
11 semiconductor 15.855 435.0 0.961
12 core 15.070 457.7 1.011
13 core 15.155 455.1 1.005
14 core 15.034 458,8 1.013
15 core 15.013 . 459.4 1.015

Table 3.2 Speed Variation among C.mmp's Memory Banks

Even among memory banks of the same technology, speed varies. These variations are

small however, and are caused primarily by variations in the length of cable connecting a

memory bank to the crosspoint switch and In the timing circuitry for Individual memory

modules.

3.3.2.2. Memory Bandwidth and Memory Interference

The previous experiments show the rates at which individual processors and memories can

communicate. Another Important characteristic is the maximum bandwidth of a memory bank.

This rate will determine how many processors can compete for cycles in a single memory

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON CMMP PAGE 19

bank before the bank is saturated with requests. In this experiment all of the processors

simultaneously executed the tight loop in the same memory bank. Two banks of different

types were chosen to be representative of their respective technologies.

The results in Table 3.3. indicate that performance degradation will occur if more than two

or three processors are competing for cycles in a memory bank. This implies that sharing

code, a common practice to conserve memory space, will result In slower execution.

Semiconductor 1.49*10® memory refs/sec.
Core i.71*10 6 memory refs/sec.

Table 3.3 Maximum Memory Bandwidth

In tables 3.4 through 3.6 we illustrate the performance degradation that results from

sharing code. All of the measurements were performed on Pc[0]. In each case 100,000 total

cycles were sampled. The first column, Memory Cycle Length, is the elapsed time from MSYN

to S S Y N 1 , a complete memory cycle.

Table 3.4 is the control sample where we monitored the memory accesses while the system

was idle. Although the vast majority of cycles were in the 500n*. to las. range there were

some cycles that were greater than 14u*. This is because a processor that doesn't have a

process to execute runs a task called the "idle job". The idle job consists of a WAIT

Instruction followed by the code that checks to see if there is a process to execute. This

piece of code contains a critical section guarded by a mutual exclusion busy-wait loop. Since

all of the processors are sharing this code and trying to gain exclusive access to the critical

section, a great deal Of memory contention occurs and the memory cycle lengths grow longer.

We will use this table to compare the performance of the rootfinding processes When they

execute from one common code page and when they each have a private code page.

Table 3.5 contains the results for when each of the processes executes from a private

code page. Comparing this table to 3.4 we make two observations: while the average

memory cycle length has increased slightly, relatively little difference exists between the two

tables; the one category where a noticeable change does occur is the long (> 5.0 us.) cycles.

*SSYN is the DEC name for the signal that indicates the completion of a bus transfer. It is
the signal the memory module uses to tell the processor that the memory access is
completed.

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 20

Less than half as many long cycles now occur because the processors are kept busy

executing the rootfinding processes.

Compare these two tables to the results in table 3.6 where all of the processes share one

common code page. Again we make two observations: the average memory cycle length has

dramatically increased by 3007; more important still is that the percentage of long cycles (>

5.0 us.) has increased from .0867 in table 3.4 to 15.67, over two and one-haff orders of

magnitude more. This degradation in the basic cycle time will offset and eventually reverse

speedup obtained by incorporating multiple processes in the rootfinding procedure.

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE
0 - 0 . 5 • 0 0 0 0
0.5 - 1.0 65652 . 7787 14089 902.
1.0 - 2.0 9470 1926 8 0
2.0 - 5.0 63 6 2 0

5.0 -14.0 63 6 10 0
14.0-50.0 5 2 0 0

> 50.0 0 0 0 0
Table 3.4 Histogram for Idle System

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE
0 - 0.5 0 0 0 0
0.5 - 1.0 65827 7461 11024 822
1.0 - 2.0 12705 1133 38 0
2.0 - 5.0 894 54 10 0

5.0 -14.0 28 3 0 0
14.0-50.0 1 0 0 0

> 50.0 0 0 0 0
Table 3.5 Histogram with Private Code Pagi es

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE
0 - 0.5 0 0 0 0
0.5 - 1.0 52784 6504 9404 761
1.0 - 2.0 10810 689 102 0
2.0 - 5.0 3059 201 84 0

5.0 -14.0 14291 843 287 0
14.0-50.0 174 4 3 0

> 50.0 0 0 0 0
Table 3.6 Histogram with Common Code Page

Figure 3.6 captures the impact of the finite memory bandwidth problem on the rootfinding

prociedure. We have graphed the elapsed time to locate 50 roots versus the number of

processes for two implementations of the rootfinding procedure. The dashed curve results

when a single copy of the code page is shared. The solid curve is the performance when the

cooperating processes each have a copy of the code in a private memory bank.

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON CMMP PAGE 21

^ 3 2 5 r
o

S 3 0 0

I 2 7 5

250

225

200

175

150

125

100

75

50.

Shared Code Page

Private Code Pages

, £ % % 5 6 7 8 9
Number of Processes

Figure 3.6 Performance Degradation Due to Finite Memory Bandwidth

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON CMMP PAGE 22

This graph also can provide some insight into the speed versus space tradeoff. If we

compare the speedup over the single process instantiation for both the shared and

no-sharing versions of the rootfinder we find that the no-sharing version has a maximum

speedup of 2.60 using nine processes while the shared version's performance peaks at 1.53

using three processes. Neglecting the single global data page we have a achieved a 1702

Infcrease in speed at the cost of a 3007, increase in size. In this study memory Is plentiful and

we squander space for speed.

One solution to the speed us. size tradeoff is to interleave the central memory on the low

order bits rather than the high order bits. This solution would tend to scatter memory

requests more evenly across the 16 banks. To maintain availability It might be necessary to

organize the store as four banks of 4-way interleaved memory. A second solution is to give

each processor a cache to work with. This is the solution currently being implemented on

C.mmp.

3.4. Operating System Related Performance Fluctuations

3.4.1. Introduction

The operating system also perturbs the performance of the rootfinding procedure.

Although C.mmp was intended to be a multi-user multi-programming facility, it is possible to

U s e the machine in a dedicated single user mode. In this mode of operation the user can

minimize any interference from Hydra by simply not doing anything that requires operating

system assistance. Most of the measurements in this study were performed in this way.

However , certain functions, i.e. scheduling of processes and I/O interrupts, must be performed

by Hydra and cannot be avoided. The contribution to performance fluctuation from these

basic operating system functions is measured and discussed in the following sections.

3.4.2. T h e Kernel Tracer

The Kernel Tracer is a software monitor that can obtain Information about significant

activity on C.mmp under the Hydra Operating System. Since It is a software monitor, the

Tracer does perturb the timing data it attempts to measure. However, this can be

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 23

compensated for in the post-processor software.

The Tracer can monitor such things as: context swaps (this occurs when a processor

changes from executing one process to executing another), semaphore activity, process starts

and stops, O.S. requests (Kernel Calls) and a multitude of other events. Events defined by

user, programs may also be traced.

The data is collected in real time and later post-processed offline. There are numerous

post-processing programs that produce various forms of output: by process or processor

dumps, time-line execution histories, and various statistical analysis packages.

All of the Tracer data that follows is in the form of a processor time-line execution history.

We use various symbols in the trace to encode events in order to compact the data. Table 3.7

contains these symbols and their meanings. Each row of the trace represents the activity on a

processor. The time in seconds appears along the bottom edge. We will discuss In detail the

first trace which captures the impact of 1/0 interrupts on performance.

3.4.3. I/O Devices and Interrupts

Random interrupts from I/O devices and processors contibute to performance fluctuations

in the rootfinder processes. Unlike the memory, 1/0 devices are not centrally located and

accessable through an n x rn crosspoint switch. Devices are associated with a particular

processor. Thus, for example, a read or write from a disk on Pc[0ps Unibus must be

performed by processor 0 regardless of which processor initiated the request. Since

interrupts are serviced by stealing cycles from the currently executing process large

fluctuations in compute times can be found for processes running on processors with I/O

devices.

In Figure 3.7 interrupts associated with I/O perturb the performance of the rootfinding

processes. C.mmp*s processor configuration during this trace was Pc[0, 3, 4, 5, 6, 7, 8, 9, 11,

12, and 13]; and appear from bottom to top as rows of the trace. Pc[0, 4, and 8] are

P D P - l l / 2 0 s and the rest are PDP-l l/40s. Processes(35, 43-50) are the nine rootfinding

processes. Process 29 and the DAEMON are other processes that happened to be awake at

the time. These two processes are doing things that cause a substantial amount of I/O. The

following discussion describes how this I/O activity perturbs the rootfinding processes.

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 24

PROCESS N

- CSW - •

IOT *X

KAIL *X

RET X
n c
I 1

EVENT X

P

V

DAEMON

Hill

PROCESS *N IS RUNNING

A CONTEXT SWAP

SPECIAL TYPE OF KERNEL KALL

KERNEL KALL *X

RETURN VALUE FROM A KERNEL KALL

START OF AN INTERRUPT AT LEVEL N

INTERRUPT SERVICE ROUTINE EXECUTION .

END OF AN INTERRUPT

USER DEFINED EVENT X OCCURS

P OPERATION ON A SEMAPHORE

V OPERATION ON A SEMAPHORE

OPERATING SYSTEM PROCESS

IDLE TIME

Table 3.7 Tracer Symbols

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 25

' B u m

i ! i i !

! i !

J

11

i i
i i
! |

! ! I

i !
. t I I
I ' l l
M M
M i l

I ' 1

> 1 !

! i i

! !

fcfOI

m

i !

m n
Morrtl sn
••arm so
••nrm so
• •nrm so
Mi » (f « so
••nrm so

••ntf'

••off'
Morrfi

>»ntri
Mornl
•mrm 45

MOtTtt 4R
I O T • OlO
« t o

- c s w -

bcni 4R
••nrm 4«
••BUtt
••arm 4R
••nrrtt 4«
••orm 4R
•form « «
••Off*! 4R
M0(t4f 4R

I]

KM
•fOfrti 4R
••orm 4 «
•rami 4R
Mf i rn i 4*
MOrfM 4fc
n o r m 4R

Figure 3.7a Pertubations from Interrupts

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 28

promt %n r romt 4R
ffncrtf
froit
r r o a . . _..
M n m j sn rmr —
Prof
rrni
• »m
MfH
rrn{
prof
rrnr..
rrout 1

r m m t so
promt so
r m m t so
rrncnt sn

tltcci *
»POt
>f0(
»Mtl_. _
promt 4%
promt
m"
m\
tin
MBti .
PrOCMl
promt
r r o r
frnt
M»f
Mf»i

PP*\
•tni
prorc..
r m m t
promt
r r o m t
promt
promt
r r o r r r
rrom<
ppomt
r r o m t
Promt
promt
Mfirm
promt
ppornt
prom'

Mot
prof;
pror

pro'

PPA
rror pfnt
Prof PPM PPMt
•tnr
rrnf pint B
rror
PFfU
rrnc
rror Pf or
rror
PPBr

tt 4R
t{ 4 *

4R
tt 4fl
" 4R

4R
4R
4R

promt 4M
promt 4R
promt 4R
promt 4R
promt 4R
r r o r r "
prorf
rrom<

4R
4R
4R
4R
4R
4R

rvTWTt37?

m :
promt 4R
promt 4K
f r o m t 4 *

Point 4i;
M o m t 4R
r r o m t 41;
promt 4R
p r o m 4 *
Prom 4K

zm q
B\ i
r r o m 4K
Pr«Kft 4fi
Promt 4K
promt 4 r
promt 4H
promt 4R
prorrtl 4R
promt 4R
promt 4R
Promt 4*
promt 4A
promt 4$;
r r o m t 4*
promt 4*
promt 4R

IIP I
B P : l

BS
p r o m t
rrorc t
r rnr r t
r r o m
r r o m
f * nr f f

f : i
r r n m
r ror rv
r r n m
rrncct-
prom* 4R

E Z 3 1

11

p r o m t 44
promt 4«
r r n r m 44
M O f h l 44
r r o m i 44
ptntfM 44

4ft r » 0 { | « 44
•fflffU 44
p r o m t 44
p r o m t 44
p r o m t 44

r r o r
prnr
PfOfi

ii 4 <

B\\ n
ppnrhf 44
p»ncrtt 44
p m m t 44
ppnrrtt 44
promt 44
Promt 44
prnfftt 44
promt 44
promt 44
promt 44
promt 44
promt 44
promt 44
promt 44
promt 44 P*omt 44
promt 44
p r o m t 44
profftt 44
Promt 44

Figure 3.7b Pertubations from Interrupts

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON CMMP PAGE 27

A previous Iteration finishes at 0.612-seconds info the trace. Process 50, P(50), on P c [l l]

was the last to finish its calculation (the activity on Pc[6] is P(29)) and begins to wake its

sleeping companions by unlocking their semaphores* One by one the processes wake up and

begin to perform the next iteration. P(50) finishes waking up all the processes (P(49) was

the last to wake up at .641) and begins its own function evaluation. One by one the

processes finish their calcufations and post their results, after which they M P M their

semaphores and wait for the beginning of the next iteration. When they block on the

semaphore they are removed from the processor (e.g. CSW for P(45) on Pc[5] at .700).

Notice that four of the processors have large chunks of time shaded between brackets. This

denotes an interrupt service routine performing I/O to a device on that Pc's Unibus.

Interrupt service routines can consume between 1 and 15 milliseconds of time. This causes

the rootfinding process on that Pc to arrive at the synchronization point late, thus

lengthening the STAGE time.

For example, P(49) on Pc[8] is interrupted at .681 for 13 milliseconds and then again at

.707 for 4 more milliseconds. Notice however, that P(49) on Pc[8] switches to Pc[6] at .709

and finishes its function evaluation at .728 uninterrupted. Since it is the last process to finish

it assumes the jobs of finding the new root containing subinterval and dispatching the

processes to perform the next iteration.

• In this example the interrupted process was delayed enough to become the last process to

finish thus lengthening the STAGE time. This is not always the case. For example, P(46) on

Pc[13] was also interrupted during its function evaluation for a approximately 21 milliseconds

yet it was not the last to finish and did not cause the STAGE time to lengthen. This is

another advantage the multiprocess implementation of the rootfinding procedure has over its

uniprocess counterpart. In the single process instantiation the interrupt time is additive and

each occurence lengthens the iteration. In the multiprocess version only the Interrupt time

associated with the last process to finish is additive.

3 . 4 , 4 , Kernel Processes and Special Functions

Operating system requests are frequently handled by special high priority Kernel

processes and as such perturb the cooperating rootfinder processes by stealing processors.

Of particular Interest are the processes that perform scheduling. Because synchronization of

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 28

communicating processes can involve rescheduling the processes, the special scheduler

processes can become bottlenecks causing performance degradations.

During the trace of Figure 3.8, C.mmp's processor configuration was Pc[0, 2, 4, 5, 6, 7, 8, 9,

10, 11, 12, and 13]. Of these, 4 and 8 are 11/20's (so is Pc[0]) and are the third and seventh

blank columns with no execution history. Since enough processors of the prefered (11/40)

type were available the 11/20's were never used. Similarly Pc[12] was not needed.

In this trace processes (18, 19, 20, 21, 22) are rootfinding processes. Processes 1 and 2

are Kernel scheduling processes, and process 14 is the Tracer process.

P(22) on Pc[10], the last process to finish the previous function evaluation, initializes the

necessary parameters for the next iteration. At 285 ms. into the trace (.285) it begins to V

its sleeping companion processes, and at .309 it begins its own function evaluation (event

*372).

Meanwhile P(2) on Pc[6] (scheduling process) wakes up CSW at .293 and begins to perform

the task of actually waking up the processes process 22 has Just V-ed. It Is a relatively

painfull task involving several semaphore operations and several Kernel calls per process.

Finally process 18 (the first to be V-ed) wakes up and begins its function evaluation at .348,

approximately 60 ms. after process 22 performed the V operation.

To expedite the costly wake up procedure processes 1 and 2 (scheduling processes)

cooperate to start and stop the rootfinding processes. Moreover, by the time they get

around to starting process 21, the last process that is to wake up, three of the other

rootfinding processes have already finished their function evaluations and have gone back to

sleep (P followed by CSW). A full 130 ms. have transpired since process 22 performed the V

to wake process 21.

Another side-effect related to the O.S. that can affect the performance of cooperating

processes is the round-robin scheduling of processes under Hydra. This traditional policy is

implemented Using the notion of "time-sliced" intervals of execution to provide equal service

to all tasks. Occasionally a process exhausts its time slices and must ask for more. This

request can take more than 150 milliseconds to execute. Whether or not the time-slice end

anomaly will perturb the performance of the cooperating processes depends upon the

average duration of the function evaluation and the frequency of the time-slice end condition.

In this study a process must consume 10 one half second slices before encountering the

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 29

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C > M >

Figure 3.8b Pertubations Induced by Operating System Processes

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 31

time-slice end condition.

Figure 3.9 is the distribution of the elapsed time to perform an F(x) calculation in the

presence of Hydra. The long tail in the distribution is a result of the time-slice end condition

occurring for the process performing the function evaluation. Compare this histogram to the

one In Figure 3.1.

3.5. Summary

The sources of performance fluctuation we have discussed can be classified into one of

three t y p e s — application, hardware, or operating system related. In the table below we rank

the sources of pertubation by their potential for causing performance fluctuations. Each

source is measured and the observed range calculated by dividing the maximum measurement

by the minimum observed value. The larger the range, the more potential for performance

fluctuation.

In the next section we eliminate several sources of pertubation in order to measure the

performance of various synchronization primitives. We do this by carefully selecting

processors and memory banks to execute the rootfinding program.

Rank Type

1 Application

2 Hardware

3 Operating System

4 Hardware

5 Operating System

6 Hardware

Source Measurement

Function Evaluation F(x) Calculation

Memory Contention Average Cycle Length

Kernel Processes

Processors

I/O Devices and
Interrputs

Memories

Bottlenecking of
Scheduling Processes

Speed

F(x) Calculation
Degradation

Speed

Range

1 t 3.4

1 i 3.0

1 : 2.8

1 : 1.6

1 s 1.3

1 : 1.07

Table 3.8 The Sources of Performance Pertubation

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON CMMP PAGE 32

(» SAMPLES)

1 3 0

1 2 0

1 1 0

1 0 0

9 0

S O

7 0

6 0

5 0

4 0

3 0

2 0

1 0

number of sample* • 1000

m*an

4 9 0
samples

510
samples

4 0 5 0 6 0 7 0 8 0 9 0 100 110 120 130 140 150 160 170 1 8 0 190 2 0 0 2 1 0 o r , r . t » « r

(ELAPSED TIME in m*>

Figure 3.9 Distribution of the Time to Calculate F(x) in the Presence of HYDRA

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 33

4. T h e Effect of Synchronization on Performance

4.1. Introduction

Newell and Robertson[1975] identified seven programming Issues for multiprocessor

computer systems. Since synchronization of cooperating processes is a fundamental problem

in the implementation of a parallel algorithm we will measure the performance and discuss the

tradeoffs of the various synchronization mechanisms available to the C.mmp user.

Up until! now we have used a very simple form of "busy-waiting" loop to synchronize the

cooperating processes. Although synchronization using this method is extremely fast,

undesirable side effects can cause serious performance problems. We will discuss several

alternative synchronization mechanisms, describe their functionality and any interesting side

effects, compare their performance in the context of the rootfinding algorithm, and conclude

by presenting the range of usefullness for each.

4.2. Description of Synchronization Primitives

We first examine the nature of the Synchronization problem for the rootfinding processes.

In figure 4.1 we present a more detailed view of the STAGE time and in particular focus on

the mechanics of synchronization. The segment labeled FIND is the time spent locating the

new root containing sub-interval. The VtiTs correspond to waking up each of the rootfinding

processes. One quickly notices that the overhead of synchronization can be a significant part

of the STAGE time in certain instances. Because we have used a spin lock, a form of busy

waiting, to synchronize the processes, the overhead of synchronization has been negligable.

However , it is not always desirable to implement synchronization with this mechanism.

4-2.1. The Spin Lock

Of the three synchronization primitives considered in this study, the spin lock is the. most

rudimentary. This primitive Is actually implemented Independently of any Hydra support and

is* only a tight loop in which the process continually tests a semaphore until It can set it

successfully. The P and ^operations are the following PDP-11 code sequences:

PROCESS «1
o o o F(X) CALC.

(idle time)

PROCESS «2

o o o F(X) CALCULATION

PROCESS »3

o o o F(X) CALCULATION

o
o
o

F(X) CALCULATION o o o

F(X) CALCULATION

F(X) CALCULATION

o
o
o

r"
m

m
Z
—»
>
—4
o
2:
>
z
a
m
<
>

C
>

o
z

PROCESS i-n-2
o o o FOO CALCULATION

>
>

F(X) CALCULATION FIND V(l) 0 0 0

PROCESS « n - l

0 0 0 FOO CALCULATION

PROCESS «n
0 0 0 F(X) CALC.

V(t) V(2) v(«-2) V(n) F(X) CALCULATION

F(X) CALCULATION

STAGE TIME

a
o
2
-H

o
z
o
r
2:
TO

Figure 4.1 A Detailed View of the STAGE Time
>

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON CMMP PAGE 35

P: CMP SEMAPHORE, *1
BNE P
DEC SEMAPHORE
BNE P

{SEMAPHORE = 1 ?
jloop until it is = 1
jdecrement SEMAPHORE
;if SEMAPHORE neq 0 then go to P

V: MOV # i , SEMAPHORE jreset SEMAPHORE - 1

The repeated polling of the semaphore, although extremely fast, has two very nasty

characteristics.

The first is that when the process completes its function evaluation and starts to poll the

semaphore while waiting for its counterparts for finish, the processor Is not free to perform

useful work.

The second major drawback is that the polling process consumes many cycles in the

memory bank that contains the semaphore. As more process finish their function evaluations

and begin to poll the semaphore, the bandwidth of the memory bank is quickly consumed.

The process .that has its code page located in the bank with the semaphore will be competing

for cycles with many "busy" processors. This second problem can be circumvented by

inserting a tiny delay loop in the semaphore code, i.e., decrement a register to zero before

checking the semaphore. This delay will decrease the frequency of memory requests in the

semaphore memory bank, but not slow the sychronization primitive appreciably. However,

the primary problem still remains: a Spinning" process prevents a processor from doing

useful work.

4.2.2. T h e Kernel Semaphore

The Kernel semaphore (K-SEM) is implemented by the Hydra operating system. It is the

low level synchronization mechanism used by system processes. When a process blocks or

wakes up, a state change for that process is made inside the Kernel. Because it is

implemented within the domain of the Kernel the user evokes operations on the semaphore (P

and 10 by issuing Kernel calls. If the process blocks while trying to P the semaphore, the

Kernel swaps the process from the processor and places the process in the semaphore's

blocked-queue, where it remains until another process V*s the semaphore. When the process

can proceed again, it is swapped back onto an available processor and continues execution

from the point where it was blocked. The important attributes of the Kernel semaphore are:

- A blocked process is swapped from a processor.

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 36

- When a process blocks its pages are kept in primary memory. This ensures that
the process will quickly resume execution when it is swapped back onto a
processor.

- The Kernel semaphore is approximately two orders of magnitude slower than the
spin lock.

4.2.3. T h e Policy Module Semaphore

The policy module semaphore (P-SEM) is implemented by the scheduling subsystem called

the Policy Module (PM). This primitive is intended as the user's primary mechanism for

performing synchronization.

Because the synchronization is performed within the context of a system process, more

flexibil ity is available in handling a blocking/waking process. The first policy that was

adopted to handle blocking/waking processes was the following:

- Two PM processes would cooperate to perform synchronization operations for
users; one would start and stop processes and the other would handle
communication between the Kernel and user.

- When a process blocked on a semaphore It would be context swapped from the
processor.

- Any 'dirty 1 pages belonging to the process would be updated on secondary
storage.

- When a process was to wake up it would be restarted by one of the PM
processes after all the swapped out pages belonging to the process were
brought back in to central memory.

This policy has evolved into a much faster arrangement of multiple processes in the current

vers ion of the PM.

One modification to the PM that was found to improve performance substantially was to

delay the updating of a process' dirty pages onto secondary storage. Often a process is

blocked for ve ry short amounts of time and will quickly resume execution after only several

milliseconds of waiting for a certain condition to be true. However, when a page Is to be

updated onto secondary storage it is written onto one of several IMS**"̂ fixed head disks

which will take at least 32 milliseconds per page. The swapping disks revolve once every

16.67 milliseconds. It takes two revolutions to update a page: one to write it out and the

second to perform a read-check operation to validate the copy. Thus it is quite possible for

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 37

a process to spend most of its time blocking and unblocking if the inter-synchronization

interval is small enough. The problem would be even more severe If there were a task force

of cooperating processes, e.g. the rootfinding processes, blocking and unblocking every few

milliseconds.

The current version of the PM initializes the delay time parameter, to 300 milliseconds.

Table 4.1 is a summary of the time it takes to perform the basic semaphore operations on the

various primitives.

K-SEM Measurement S&in Lock K-SEM PMO PMl(c-O)
Time for a process

to do a V (us.) 30 3000 6000 5000

Time till a process

wakes up from a V (us.) 30 5000 55000 50000

Time from P to CSW (us.) na 3000 9000 6000

Time spent in PM while
waking a process (us.) na na 62000 20000

Table 4.1 Comparison of Execution Times for

Semaphore Primitive Operations

PM1(€=300)

5000

* 13000

6000

4.3. The Impact of Synchronization on Performance

4.3.1. Introduction

Now that we have described the functionality and presented the individual performance

statistics for the basic primitive operations, we can observe the impact of synchronization on

the performance of the rootfinder. We have eliminated most of the overheads associated

with synchronization by using the spin lock primitive. The remainder of the paper examines

the rootfinder's performance as we employ the alternative synchronization primitives.

4.3.2. Comparison of Primitives When Compute Time ~ Synchronization Time

The first graph, Figure 4.2, compares the performance of the various implementations of

the rootfinder using different primitives to perform the process synchronization. We have

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 38

5 5 O r

T O O

7 a 9
Number of Processes

Figure 4.2 A Performance Comparison of Synchronization Primitii/es

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 39

plotted the elapsed time to find 50 roots as a function of the number of processes. This data

was generated by the authentic, not synthetic, roootfinder. The distribution of the F(x)
computation is approximately Normal with mean 72 milliseconds and standard deviation 18

milliseconds*. We compare the performance of four alternative synchronization primitives:

spin lock, K-SEM, PM1(<=300), and PMO semaphores.

The curve for the PMO semaphore implementation exhibits degradation as we increase

parallelism. The reason for this behavior is that the overhead of synchronization Is greater

than the average compute time. A process spends more time synchronizing than computing. In

this instance we would be better off using a single process.

The curve for the PM1(<=300) semaphore implementation depicts substantially better

performance than its predecessor. Performance reaches a maximum speedup of 2.00 at six

processes. No additional speedup is gained by employing more processes. Moreover, a

noticeable degradation occurs at nine processes. This sudden degradation occurs because of

the non-homogenous processor configuration (NHPC). During this experiment C.mmp's

processor configuration was eight 11/40's and one 11/20. Thus when we incorporated the

ninth process, it ran on the slower 11/20 type processor. The STAGE time lengthed, thus

yielding an overall slower performance.

The K-SEM implementation has its peak performance of 2.4 at eight processes. It too is

affected by the NHPC problem and performance degrades slightly at nine processes. The

overall performance of the K-SEM implementation Is about midway between the PM1((=300)

and the spin lock versions.

The spin lock implementation has by far the best speed up maximum of about 2.8 for eight

processes. The NHPC problem causes a much more severe performance degradation for this
semaphore than for the others^. The reason is that the processes blocked on the spin lock

semaphore remain on their processors, whereas the other implementations free the faster

11/40 type processors to steal the process that Is still running on the slower 11/20

processor.

*On an 11/40 processor

^The PMO implementation performance curve has a greater degradation than the spin lock
version. However, the reason is not merely the NHPC problem. The primary reason is that
the two PM processes that perform the semaphore operations are almost constantly running.

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON CMMP PAGE 40

4-3.3. Comparison when Compute Time Is Much Greater Than Synchronization

Time

In the previous experiment the overhead of synchronization was In some cases a

considerable fraction of the STAGE time. If we make the compute time for the function

evaluation much larger, thus reducing the percentage of time spent synchronizing, the

performance differences between the various implementations is also reduced. Figure 4.3

graphs performance in terms of speed up as a function of the number of processes. We used

the synthetic rootfinder again to generate F(x) computations that take 375 milliseconds to

compute with the distribution a constant. The dashed curve is the performance obtained using

the PMO semaphore and the solid curve the performance obtained using the spin lock.

We expected the curves to be closer together yet the spin lock version outperforms the

PMO semaphore 2.8 to 2.1 at maximum speed up. The reason for the large difference is that

the PM processes must perform the semaphore operations serially, each V operation taking

about f i f ty - f ive milliseconds. Thus the n ^ rootfinder process is not started until 55*n

milliseconds into the STAGE time. In this manner the ninth rootfinder process does not

complete its function evaluation until 870 milliseconds have past. Similarly, when the

rootfinder processes complete their F(x) calculations, the PM processes again serially perform

the P operations on the semaphores causing still further performance degradations.

The severe performance degradation that occurs at eight and at nine processes for the

spin-lock implementation is another instance of the NHPC problem. This time, with only seven

11/40 type processors, performance peaks at seven processes, declines slightly at eight, and

then plummets from a speed up of more than 2.7 to slightly more than 2.0. The performance

of the two Implementations is nearly identical at nine processes.

However, in Figure 4.4, where the distribution is exponential, relatively little difference

exists between the performances of the two implementations. Because the distribution of the

compute phase causes the processes to arrive at random times, the PM does not become a

bottleneck when the processes finish their work. When they are restarted, the last one to be

started is still delayed by 55*n milliseconds. However, since the distribution Is exponential,

the process that must compute the function evaluation with a compute time that lies in the

long tail of the distribution always finishes last. Thus the overhead of synchronization Is

again hidden by the MAX function that governs the STAGE time.

IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 41

a
•©

4)
a

3 . 0 0 r

2.75

2.50\-

2.25Y

2.00V

1.75

6 7
Number of Processes

Figure 4.3 Comparison of Two Synchronization Primitives

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C MMP PAGE 42

.75± i i 1 1 1 J 1 1

7 2 3 4 5 6 7 8 9
Number of Processes

Figure 4.4 Comparison of Two Synchronization Primitives

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C MMP PAGE 43

5. Summary of Results: The Useful Range for Various Semaphores

In Figure 4.5 we have summarized the results of this investigation by graphing the useful

range for each of the synchronization primitives. We have graphed the performance of the

rootfinder using each primitive as we vary the size of the computation phase between

synchronization points. For each point, five cooperating processes performed 1000 total

function evaluations to find 50 roots. The distribution of the function evaluation was a

constant and ranged in size from 2 milliseconds to 375 milliseconds.

The NO-OVERHEAD curve is the ideal performance we would see if no degradation occured

due to hardware, operating system or synchronization overheads.

The 502 line represents our threshold for adequate performance. It parallels the

NO-OVERHEAD curve but represents exactly half of the performance that would be achieved

in the best case. The point at which a performance curve crosses the 507. line is the

threshold of usability for that synchronization primitive.

From these results we see that the spin lock is the only primitive that performs adequately

when the length of the compute phase is less than 15 ms. At the other extreme, all of the

primitives with the exception of the initial version of the policy-module semaphore, become

indistinguishable beyond 400 ms. In the region between these two endpoints the user can

select the appropriate primitive to match the length of the computation phase. The cross -over

points for the various semaphores appear in the table below.

Semaphore Type Cross-over Point (msecs.)
Spin Lock 2

K-Sem 18
PMKc-300) 33

PM1«=0) 80
PMO 200

Table 4.2 Cross-over Points for the Various Semaphores

THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C MMP PAGE 44

^ 1000f

c o

71 i i ,

7 7 0 T O O 7 0 0 0

Expecied Inter-Synchronization Time (milliseconds)
Figure 4.5 The Range of Usefulness for the Various Semaphores

THE IMPLEMENTATION ANO EVALUATION OF A PARALLEL ALGORITHM ON C.MMP PAGE 45

B I B L I O G R A P H Y

[Fuller 1976] Fuller S.H., Price/Performance Comparison of C.mmp and the PDP-10, 3rd
Annual Symposium on Computer Architecture, Conference Proceedings,
Architecture News 4,4, January 1976, pp. 195-202.

[Sauer 1977] Sauer C.H., amd Chandy K.M., The Impact of Distributions and Disciplines
on Multiple Processor Systems, IBM Research Report RC 5978

[Wulf and Bell 1972] Wulf W.A., and Bell C.G., C.mmp - A Multi-Mini-Processor, Proceedings
AFIPS 1972, FJCC Vol 41. AFIPS Press, pp. 765-777.

[Wulf 1974] Wulf W.A., Cohen E., Corwin W., Jones A., Levin R., Pierson C , Pollack F.,
HYDRA: The Kernel of a Multiprocessor Operating System, Communications
of the ACM, 17,6, 1974, pp. 337-345.

[Levin 1975] Levin R., Cohen E., Corwin W., Pollack F., Wulf W.A., Policy/Mechanism
Separation in HYDRA, Proceedings of the ACM/SIGOPS Symposium on
Operating Systems Principles, Austin Texas, November 1975, pp.
132-140.

[Stone 1973] Stone KS. Problems of Parallel Computation, Complexity of Sequential
and Parallel Numerical Algorithms ed. J.F. Traub, Academic Press 1973,
pp. 1-16.

[Oleinick 1978] Oleinick P.N., The Implementation of Parallel Algorithms on a
Multiprocessor, Ph.D. Thesis Carnegie-Mellon University Computer Science
Dept., (Expected July 1978).

[Kung 1976] Kung H.T., Synchronized and Asynchronous Parallel Algorithms for
Multiprocessors, Algorithms and Complexity: Recent Results and New
Directions, ed. J.F.Traub 1976, pp. 153-200.

[Teichroew 1956] Teichroew D., Tables of Expected Values of Order'Statistics and Products
of Order Statistics for Samples of Size Twenty or Less from the Normal
Distribution, The Annals of Mathematical Statistics 27,2, June 1956, pp
410-426.

[Newell and Robertson 1975] Newell A., and Robertson G., Some Issues In Programmin
Multi-Mini-Processors, Tech. Rep., Computer Science Dept.,
Carnegie-Mellon University, Pittsburgh, Pa., January 1975

UNCLASSIFIED
S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (When Data Entered) H\ I T i . U * J S i r i v . A i l y n . • i i w ' — i '

R E P O R T D O C U M E N T A T I O N P A G E
READ INSTRUCTIONS

B E F O R E COMPLETING FORM
t. R E P O R T N U M B E R

. CMU-CS-78-125

2. G O V T A C C E S S I O N N O . 3. R E C I P I E N T ' S C A T A L O G N U M 3 E H

4. T I T L E (and Subtitle)

THE IMPLEMENTATION AND EVALUATION OF A
PARALLEL ALGORITHM ON C.MMP

5. T Y P E O F R E P O R T & P E R t O O C O V E R E D

Interim
4. T I T L E (and Subtitle)

THE IMPLEMENTATION AND EVALUATION OF A
PARALLEL ALGORITHM ON C.MMP « . P E R F O R M I N G O R G . R E P O R T N U M B E R

7. A U T H O R ^ ;

P.N. Oleinick and S.H. Fuller

3. C O N T R A C T O R G R A N T N U M B E R f *)

N00014-77-C-0500

9. P E R F O R M I N G O R G A N I Z A T I O N N A M E A N 0 A O O R E S S

Carnegie-Mellon University
Computer Science Dept.
Pittsburgh, PA 15213

10. P R O G R A M E L E M E N T P R O J E C T , T A S K
A R E A A W O R K U N I T N U M B E R S

11. C O N T R O L L I N G O F F I C E N A M E A N O A O O R E S S

Office of Naval Research
Arlington, VA 22217 •

12. R E P O R T 0 A T E

June 6. 1978
11. C O N T R O L L I N G O F F I C E N A M E A N O A O O R E S S

Office of Naval Research
Arlington, VA 22217 • 13. N U M B E R O F PAGES

50
14. M O N I T O R I N G A G E N C Y N A M E 4 A O O R E S S ^ / / dlliaront trom Controlling Oltica)

same as above
1 5 . S E C U R I T Y C L A S S , (oi thia raport)

.UNCLASSIFIED
14. M O N I T O R I N G A G E N C Y N A M E 4 A O O R E S S ^ / / dlliaront trom Controlling Oltica)

same as above
' 1S« . D E C L A S S I F I C A T I O N / D O W N G R A D I N G

S C H E D U L E

16. D I S T R I B U T I O N S T A T E M E N T (oi this Raport)

Approved for Pubiic Release; Distribution unlimited

17. D I S T R I B U T I O N S T A T E M E N T (ot tha abatrmct antarad in Slock 20, li dlttarmnt from Rapori)

I S . S U P P L E M E N T A R Y N O T E 5

19. K E Y W O R O S (Continue on ravataa aida it nacaaasry and idanttty by block numbar)

20, A B S T R A C T (Contlnua on ravmraa aida It nacaaasry and Idanttty by block number)

C.mmp is a muiti(mini) processor with up to sixteen processors. This paper presents and

discusses measurements of the C.mmp system at several levels:

1. Basic hardware performance measurements

2 . Runtime performance of Hydra, Cmmp's operating system (OVER)

D D , ^ ^ 7 3 1 47 3 " - T 1 0 N O F 1 N O V 6 5 , S O B S O L E T E UNCLASSIFIED
S / N 0 1 0 2 - 0 14 - 660 I

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (Whan Datm Sntarad)

UNCLASSIFIED

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S PAOZ(Wh»n Dmtm Entmrmd)

„ f c . U J « ? l T Y C L A S S I F I C A T I O N O F T H I S P A G g f H T f n Qmtm Enfrmd)

3 . Overall performance of a particular application: a parallel rootfinding algorithm.

The purpose ot this paper is to get a detailed look at the performance of an implementation

of a parallel program on C.mmp. The rootfinding algorithm was chosen because It meets two

constraints: it is a parallel algorithm with significant interprocess communication; and it is of

relat ively low complexity, enabling us to focus on implementation issues rather than subtleties

In the algorithm itself.

Variations in processor speeds and asynchronously executing operating system functions

are shown to have a detrimental effect on the rootfinder's performance. However, the most

i important implementation decision affecting the performance of the rootfinding program is the

t ype of synchronization semaphore used. We define the threshold for practical application of

| a semaphore to be when 502 of the execution time is attributed to semaphore related

overheads. Using the 502 criteria, we measured thresholds for inter-synchronization times

from two milliseconds for the most primitive locks, to 200 milliseconds for the most

sophisticated and flexible semaphore. During the course of these measurements, Hydra

underwent several revisions and the 200 millisecond threshold was reduced to 33

milliseconds. The principal concept responsible for this performance improvement is

discussed in the paper.

