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ABSTRACT

C.mmp is a multi{mini) processor with up to sixleen processors. This baper presents and

discusses measurements of the Cimmp system at several levels:

1. Basic hardware performance measurementis
2. Runtime performance of Hydra, C.mmp’s operating system

3. Overall perforrnance_of_a particular applicalion: a parallel rootfinding algorithm.

The purpose ot this paper is to get a detailed look at the performance of an Implementation
of a parallel program on C.mmp. The rootfinding algorithm was chosen because It meets two
constraints: it Is a parallel algorithm with significant interprocess communication; and It is of
relativé!y low complexity, enabling us to focus on implementation issues rather than suf:tleﬂes

tn the algorithm itseis.

Variations in processor speeds and asynchronously executing operating system functions
are shown to have a detrimental effect on the rootfinder’s performance. However, the most
important implementation decision affecting the performance of the rootfinding program Is the
type of synchronization semaphore used. We define the threshold for practical application of
‘a semaphore to be. when 507 t;f the execution time s attriﬁuled to semaphore related
overheads. 'Using the 507 criteria, we measured thresholds for Inter-synchronization times
from two milliseconds for the most primitive locks, to 200 milliseconds for the most
sophisticated and flexible semaphore. During the course of these measurements, Hydra
underwent several revisions and the 200 millisecond threshold was reduced to 33
milliseconds,  The principal concept responsible . for this pertormance Improvement is

discussed in the paper.
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1. Iniroduction

"Most papers that extol the virtues of multiprocessor compuier.systems cite the higher
throughput and cost/performance {e.g. Sauer 1977, Fuller 1976] over the more traditional
uniprocessor. However, both of these performance advantages can be realized only if the
software effectively exploils the parallelism in the machine. To dale, the task of writing
effective parallel software is still an ad-hoc procedure of constructing code for a one of a
kind machine. Since multiprocessors are almost as different from one another as they are
from uniprocessors it is difficult to apply insigh! gained from writing parallel software for one
‘multiprocessor to anolher totally different machine. Yet by documenting the pertormance of
various implementations of several algorithms on one machine we can shed some light on how

etffective various stralegies are al capturing paralielism.

The purpose of this paper then is to provide a first-hand look at the implementation of
parallel algorithms on a multiprocessor. The nature of this investigation Is experimental
rather than theoretical in that the results we present are derived from the measurement of

real programs running on a real multiprocessor -~ C.mmp.

The basic structure of C.mmp, as shown in the PMS diagram of Figure 1.1 is that of the
‘canonical multiprocessor. A detailed description of C.mmp is provided in the original article on
C.mmp by Bell and Wulf [1972], but the following description should provide -a sufficient

background for this Investigation.

C.mmp is orgarﬁzed as a system of 16 central processors (Pc’s) that share a centrally
located large primary memory that presently consisls of 2.5 Megabytes. The 16 Pc’s are
completely asynchronous computing elements: 5 are PDP-11/20’s and the remaining 11 are
PDOP-11/40's, They are coﬁnecled to the shared primary memory via a 16 x 16 crosspoint
switch. The operation of the swilch is similar to a 16 ported memory in that up to 16
memo-ry transactions can be performed simullaneously. /O devices, unlike memory, are
associaied with an individual pracessor. Thus for example, an 1/O request to a device on
Pc{0], perhaps a disk, Is performed by the requesting Pc sending an interprocessor interrupt

to Pc[0] causing initiation of the appropriale 1/0 inlerrupt service routine on Pc[0]

Hydra is C.mmp’s general-purpose multiprogramming operaling system [Wull et ol, 1974;
Wulf et al, 1975; Levin et al, 1375] Il is a collection of basic or kernel mechanisms such as

memory management, process dispatching, and message passing. Upon this core an arbitrary
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number of systems created from these mechanisms can co-exist simultaneously. Hydra is
organized as a set of re-enterant procedures lhat can be executed by any of the processors,
In fact, several processors can simultaneously execute the same procedure. This concurrency
is accomplished by placing locks around the operating system’s critical data structures. These
‘locks maintain mutual exclusion where necessary. Throughout this paper we will refer. to

Hydra as the Kernel or the Operating System.

In the following seclions we develop a parallel aigorithm to be used as a case study and
derive ils theoretical performance. We enumerate the contributions to performance
fluctuation and degradation from several sources and quantify the magnitude of each source
in terms of the program’s performance. One dominant influence on performance is the process
synchronization mechanism. We compare several alternative synchronization mechanisms and
conclude with a graph showing the range of inter-synchronizatlon times for which each

mechanism |s preferabie.
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2. Description of the Rootfinding Algorithm

The purpose of this study is to present quantitative performance results for Implementing
parallel algorithms on a multiprocessor. Rather than attempting to measure a broad spectrum
of problems we have chosen to study various implementations of a single problem in order to

observe and measure In depth the performance tradeolfs in the implementation process.

Two criteria that our case study problem had to meet were: the problem must be complex
enough to have Interesting implementation tradeofts and low enough complexity to permit the
focus of atiention on implementation issues rather than algorithm issues. The candidate

problem we finally selected is the rootfinding task.

We have chosen lo consider this problem not because it particutarly well-suited tor parallel
solution, but rather because it is a relatively straight forward task that requires a significant
amount of inter-process communication.  According to Slone[1973), algorithms like the
rootfinding algorithm that exhibit speed-up gains proportional to the logarithm of the number
of processes fall Inlo a class of problems at best considered poor candidates for parallel
processing. However, the underlying control structure present in this procedure, that of the
synchronous parallel algorithm, is representative of many parallel decompositions of
othelrwise serial algorithms. For this reason it is worthwhile to understand the nature of the
control structure and to study the influences on its performance. Investigations now In
progress are considering larger problems and alternative control structures better able to

exploit the available parallelism of C.mmp [Oleinick 1978]

Specifically we will consider the problem of finding the root of a monotonically increasing
function in a bounded region. If we assume no special information about the behavior of the
function, the best procedure for a uniprocessor under these circumstances is a binary seafch.
An obvious decomposition of the binary search into n parallel processes on a multiprocessor

Is to evaluate the function simullanecusly at n equidistant points within the bounded region.

The optimal placement of the n processes on the interval is known [Kung 1976), but to
minimize the complexity of the algorithm In order to focus on the synchronous control
structure we will use the less than ideal but good, technique illustrated in Figure 2.1. The n
parallel processes perform funclion evaluations at the n points that divide the Interva! into
n+{ equal subintervals. Since our function, F(x}, is a monotonic function, the sub-interval that

contains the root is the sub-interval with opposite signs for F{x) at its end paints. The other
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sub-intervals are discarded and the procedure repeats this basic Iteration until one of the
function evaiuations Is within ¢ ,ie. an acceptably small interval close to zero, of the

zero-crossing.

For the measuremenis presented here the function we are evaluating Is the normal

integral:
F(x) 327;? IS exp(-1/2¢5) dt - n | 2.1

For £ < 2.32 the following truncated power series was used to evaluate F(x):
X3 Xs x7 xg
(x+ 3+ 355+ 355 * Feserws

and for larger x we used the continued fraction:

cee ) < h (2.2)

Y ¢ x+1/¢ 242/ ( 53/ ( x+...3))) - h (2.3)

We selected this normal integral because it Is an important transcendental function that
exhibits two characteristics important to our measurement studies: it reqﬁires- an extensive

amount of computation, and the type and length of aomputation are data dependent.

In order to evaluate the performance of our implementations of the foo{finding, algorithm

we first calculate the theoretical, or overload-free, performance curves.

The basic cycle in the rootfinder is the independent evaluation of the function by each of
the cooperating processes and, upon finishing, the communication of each process with the

other processes by posting the results of its function evaluation. Notica that the new interval
is not located until all of the processes have posted their results!. When the last process

finishes its function evaluation it assumes the jobs of finding the new roct-containing interval

and waking up all of the waiting processes. This basic cycle we call a STAGE.

Under Ideal conditions the cooperating processes in the rootfinder would exhibit the
execution behavior found in Figure 2.2. Each process- performs a function evaluation
independently. They all finish at the same instant and, after a very brief bookkeeping
calculation perform a new F(x) calculation, on an interval reduced by 1/in+1). In practice, we
seldom find this to be the case. The fluctuations in pertormance stem from sources Intrinsic

to the multiprocessor as well as the rootfinding program.

Ithe new interval Is located as soon as the sub-interval is bounded but again we have
opted for a more straight-forward algorithm in order to focus on the implementation issues.
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3. Sources of Performance Fluctuation

3.1. Introduction

In this case study there are three distinet sources of performance fHuctuation: the variation
In the amount of computation required lo perform a funclion evaiuvation, the Individual
hardware elements’ performance characteristics, and the operating system. We will Identity
the nature and measure the magnitude of each of these sources starting with the vartation In

the F(x) calculation as it Is the most straight forward of the three.

3.2. The Variation in the F{x) Calculalion

The elapsed time to perform a function evaluation is data dependent. The distribution of

the. compute time is shaped approximately Normal as shown is Figure 3.1. The mean is about
100 milliseconds with aimost an equal number of samples on each side of the meanl. Thus

we might model the expected finishing time for a process performing an F{x) calculation to be
@ random variable with a Normal distribution. As other functions would have other compute
time distributions, we derive the theoretical performance for the constant and expanential

cases also.

Let the time taken By the ith stage in the rootfinding procedure be the random variable Tj-
Since all of the processes are performing the same calculation, each process executes for a
random amount of time, ¢t (see figure 3.2), laken from some distribution. Because all of the

processes must tinish their function evaluations before the new sub-interval is located

T, < MAX( t,, ¢

. tys ove 5 ) (3.1)

2’
From elementéry order statistics the expected value of the largest order statistic in random

samples of n from a parent distribution with continuous strictly Increasing cdf P(x) s
® -1
EC X)) = Jonxl P(x) 70 dpx) (3.2)

If we know nothing about the distribulion of the t; other than the mean u and standard
deviation s, the expected value of the largest order statistic T}y reduces to

1on an 11/20 processor
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n-1
ECT, ) s o+ 2D * o (3.3
This bound can be replaced In the exponential case by the equality
n-1
- n-1 i

E( Tn Yy = nu-z .y D (3.4)

= 2

j=0 3+

For the Normal case we consult TeicHroew‘s[lQSG]'lables for the expected value of the

largest order statistic drawn from the N(O,1) distribution.

When the expecied value of the compute time is a constant, equation 3.3 is replaced by the
simple equality E(T;) = u. '

If we are interested in the performance speedups obtained when we put more processes
to work finding roots, we need to estimate the average time to locale a root as a function of

the number of prbcesses. Since every iteration in the rootfinding procedure reduces the
interval of uncertainty, L, by a factor of n+! it takes Ceiling(Log, .y L) iterations to locate the

root in a bounded interval of length L. Thus in our example lel R; denote the number of
lterations necessary to arrive within ¢ of the root using i processes. For our choice of €,
R={54, 34, 27, 23, 21, 19, 18, 17, 16, 16, 15, 15,.} iterations. Notice that it takes the same
number of Herations to locate the root using nine and ten or eleven-and twelve processes.
This Is because the number of Heralions must be an integer. Thus, there s little to be gained
by incorporting many processes in the procedure. In this study the maximum number of

processes we will use is nine.

- We can estimate the runtime of the rootfinder to be the following:

R
n

Runtime(n) =z Tk = Rn * E( Tn ) (3.5)
k=l
Often we will be interested in the speedup achieved through parallelism. We will use the

foliowing formula to calculate speedup:

_ Runtime (1)
speed up(n) = g e (n) 0

Figure 3.3 Is a plot of the speedup vs. number of processes for the following. three

distributions:

Distribution Mean Standard Deviation
Constant 1000 0
Normal 1000 278

Exponential 1000 1000
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The glilches in the curves are a resull of the Ceiling funclion in the equation for the
number of iterations to perform. Because the number of llerations must be an integer value,

the curves are not smooth.

This figure contains calculated no-overhead performance curves for three sample F(x)
distributions with standard devialions ranging from 0 to u. The performance range Is fram
negligible speedup when the compute time for the function evaluation is- exponentialy
distributed to more than a factor of 3.3 speedup for nine processes when the distribution of
the Fix) calculation is a constant. The Normal curve between these extremes closely

 approximates the actual F{x) distribution and is Included for comparison,

Anot'her way to view this data is to plot speedup far the nine processes case vs. the ratio
standard deviation/mean as was done in Figure 3.4. This figure very clearly shows the Impact
of the variance on the performance of the rootfinding procedure. When the coefficient of
variation is much greater than one, né speedup can be obtained by Incorporating multiple

processes in the rootfinding task.

Now we compare the calculated no-overhead performance of the rootfinder to measured
data observed on the machine. In order to measure performance as a tunction of the
distribution of the F(x) compute time a synlhetic rootfinder was developed because we did
not want to limit our iﬁvestigalicms tp particular distributions too early In the experiment. The
nature of the calculation was still the real function evalualion, however the length of time

spent computing was adjustable to reflect the distribution under consideration.

Figure 3.5 graphs performance in ferms of elapsed time as a function of the number of
processes for three distributions of the F(x) calculation. In each case we compare theoretical
performance to measured data. Since the means of the three distributions were not identical
the data points for the single process instantiation do not coincide. Thus In this graph
com{aarisons across distributions can only be relative approximations. What is important here

is how close the measured curves are {o their thearetical curves.

For each single process instantiation the measured and theoretical curves are tar apart.
This is because any periubalion the process experiences will be additive and will lengthen

the basic cycle time.

As we incorporate more processes the constani distribution diverges the most fram the

theoretical while. the exponential diverges the least. The reason for this behavior is that
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pertubalions experienced by the processes will tend to increase the variance of the
underlying distribution. However, a small change in the variance of the constant distribution

wlll be a much larger relative change than a similar change to the exponentlal distribution.

That the observed data doesn’t agree closely with the caiculated curves Is svidence that
there are other influences on performance besides the distribution of the compute time. In
the following sections we discuss measurements that uncover the other facters Influencing

performance.

3.3. The Variation in Performance of Individual Hardware Elements

The fluctuations in performance caused by the hardware will 2lways be present because
Hydra allocates C.mmp’s resources dynamically. While a user cannot accurately predict the
exact performance of his processes, he can estimate the magnitude of the fluctuation In
performance by measuring the variation in the performance of the Individual hardware

elements.

3.3.1. Processor Related Varialions

C.mmp is a muf‘Hprocessor constructed from PDP-11 model 40 and model 20 minicomputers.
In Table 3.1 we have summarized the basic performance difference between the processors

by comparing their execution of the F(x) calculation withoul the presence of Hydra. Each
processor performed the calculation 100 times in the same memory port. The number of

MSYN's! was counted and the elapsed time measured. These figures appear in the first and

second columns. The third column of figures is the pracessor speed relative to Pc[0]

IMSYN is the DEC name for the slgnal that indicates a request is being made for the

Unibus ™. Since only the processor is makmg requests the number of MSYNs is the number
of memory requests made by the processor,
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Pc Model Elapsed Time (sec.) kMsyn's [sec Relative to Pc[O]
0 11/20 15,559 443.3 1.000
1 11740 10413 662.4 1.094
2 11/40 - 9.985 690.8 1.558
3 11/40 9.745 707.8 1.596
4 11/20 16.144 427.2 0.963
5 11740 10.060 685.7 1.546
6 11740 10.238 673.7 1.519
7 11/40 9.829 701.8 1.582
8 11/20 14.867 463.9 1.046
9 11/40 10,022 688.3 _ 1.552

10 11740 10.173 678.0 1.529

11 11740 10.001 689.7 1.555

12 11740 10.129 681.0 1.536

i3 it/a0 . 10.005 689.4 1.555

ta 1t/20 14965 460.9 1.039

15 1t/20 14.999 459.9 1.037

Table 3.1 Speed Variations Among C.mmp’s Processors

Naturally, a process on an 11/40 should execute taster than a similar process on an 11/20.
Notice thal even among processor of the same type there can be more than a 57 difference
in speed. ‘

Because there are two types of processors, the sirategy of dynamically assigning

processes o processors is complex. I is not sufficient to schedule a "ready” process to the

best processor available. The tollowing scenario clearly demonstrates why.

Suppose that the rootfinding processes are performing their function evaluations and are

finishing at random times. After several have finished one would expect to find some idle
11/40’s and computing 11/20‘51. A good scheduler should handle its resources better. The

idle 11/40’s should ".t_;ieal" the processes computing on the 11/20%. Naturally, this
philosophy assumes that a context swap can be performed quickly. This process stealing

philosophy is the scheduling policy on C.mmp,

lDuring the course of our study the number of processors running In the system varied
day to day. The processor configuration during the experiment with the synthetic roattinder
was 10 PDP-11/40's and 3 PDP-11/20%s. Since we never used more than nine processors to
perform the F(x) calculation all of our processes ran exclusively on the 11/40%s. However,
the problem is real. I we could have incorporated more than ten processes into the
rootfinding procedure we would have had to deal with it. Laler experiments In this paper
measure the Impact of the non-homogenous processor configuration s the number of
available 11/40°s frequently was less than nine.
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3.3.2. Memory Related Variations

3.3.2.1. Technology Differences

C.mmp’s centrally located primary memory is also a source of fluctuation in performance.
The memory s divided into 16 modules, or banks. Each bank can service memory requests
Independently. However, the relative speeds of the banks are different because they contain
different types of mémory. At the time of this study 5 banks ét;nlained semiconductor
ﬁemory and li contained magnetic cores. Table 3:2 summarizes the speed dlfferenées of the
memory banks. In this experiment Pc[15] performed the F{x) calculation 100 times in each

memory bank. The elapsed times appear in the table.

Mp Technology Time (sec kMsyn’s/sec  Relative to Mp[0]
0 core 15.243 4525 1.000
1 core 14.943 461.6 : 1.020
2 core 15.127 456.0 1.007
3 core 14.999 459.9 1.016
4 core 15.087 457.2 . 1.010
5 semiconductor 15,950 432.4 0.955
6 core 15.272 451.6 0.998
7 core ' 15.402 447.8 0.989
8 semiconductor 15.887 434,2 0.959
9 semiconductor 15.858 434.9 0.961

10 semiconductor 15.860 4349 0.961

1t semiconductor 15.855 435.0 0.961

12 core A 15.070 457.7 1.011

13 core 15.155 455.1 1.005

14 core 15.034 458.8 1.013

15 ‘tore 15.013 . 459.4 ‘ 1.015

Table 3.2 Speed Variation among C.mmp’s Memory Banks

Even among memory banks of the same technology, speed varies. These variations are .
small however, and are caused primarily by variations in the length of cable connecting a
memory bank to the crosspoint's.witch and In the timing circuitry for individual memory

modules.

3.3.2.2. Memm"y Bandwidth and Memory Interferance

The previous experiments show the rates at which individual processors and merﬁories can
communicate. Another important characteristic Is the maximum bandwidth of a memory bank.

This rate will determine how many processors can compete for cycles in a single memory
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bank before the bank is saturated wilh requesls. In this experiment all of the processors
- gimultaneously executed the tight loop in the same memory bank. Two banks of different

types were chosen to be representative of thelr respective lechnologies.

The results in Table 3.3 indicate that performance degradation will occur if more than two
or three processors are competing for cycles in a memory bank. This implies that sharing

code, a common practice to conserve memory space, will result in slower execution.

Semiconductor 1.49:105 ' _ memory refs/sec.
Core 1.71#10 memory refs/sec.

Table 3.3 Maximum Memory Bandwidth

In tables 3.4 through 3.6 we illustrate the performance degradation that results from
sharing code. All of the measurements were performed on Pc[0] In each case 100,000 total

cycléé were sampled. The first column, Memory Cycle Length, is the elapsed time from MSYN
to SSYN!, a complele memary cycle.

Table 3.4 is the control sample where we monilored the memory accesses while the system
was Idle. Although the vast majority of cycles were in the 500ns. to lus. range there were
some cyc!e;s that were greater than 18us. This is because a processor that doesn’t have a
process to execute runs a task called the "idle job" The idle job consists of a WAIT
instruction followed by the code that checks to see If there Is a process to execute. This
piece of code contains a critical section guarded by a mutual exciusion busy-wait loop. Since
all of the processors are sharing this code and trying to gain exclusive access to the: criti_cal.
section, a great deal of memory contention occurs and the memory cycle lengths grow longer.
We will use this table to compare the performance of the rootfinding processes when they

execute from one common code page and when they each have a private code page.

Table 3.5 contains the results for when each of the processes execules from a private
code page. CTomparing this table fo 3.4 we make two observations: while the average
memory cycle length has increased slightly, relatively little difference exists between the two

tables; the one category where a noticeable change does occur is the long (> 5.0 us.) cycles.

"155YN Is the DEC name for the signal that indicates the completion ot a bus transfer. It is
the signal the memory module uses to tell the processor that the memory access is
completed.
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Less than half as many long cycles now occur because the processors are kept busy

executing the rootfinding processes.

Compare these two tables lo the results In table 3.6 where all of the processes share one
common code page. Agaln we make two observations: the average memory cycle length has
dramatically increased by 3007; more important sliil is that the ‘percentage of long cycles (>
5.0 us.) has increased from .0867 in table 3.4 to 15.67, over two and one-half orders of
magnitude more. This degradation in the basic cycle lime will offset and eventually reverse

speedup obtained-by incorporating muitiple processes in the rootfinding procedure.

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE . WRITE-BYTE
0 -05 . 0 0 0 0
05-10 . 65662 » 7787 14089 902.
10 - 20 9470 1926 8 0
20 -5.0 63 6 2 0
5.0 -14.0 63 6 10 0
14.0-50.0 5 2 0 0]

> 50.0 0 0 0 0
Table 3.4 Histogram for Idle System ‘

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE
0 -05 0 0 0 0
05 - 1.0 65827 7461 11024 822
10-20 12705 1133 © 38 0
2.0 - 5.0 894 54 10 0
5.0 -14.0 , 28 3 0 0
14.0-50.0 1 0 0 0

> 50.0 0 0 0 0
Table 3.5 Histogram with Private Code Pages

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE
0 -05 0 0 0 0
05-10 52784 6504 9404 761
1.0-20 10810 689 102 0
20 -50 3059 201 84 0
5.0 -14.0 14291 843 287 0
14.0-50.0 174 4 3 0

> 500 0 0 0 .0

Table 3.6 Histogram with Common Code Page

Figure 3.6 captures the impact of the finite memory bandwidth problem on the rootfinding
procedure. We have graphed the elapsed time o locate 50 roots versus the number of
processes for two Implementalions of the rootfinding procedure. The dashed curve results
when a single copy of the code page is shared. The solid curve is the performance when the

cooperating processes each have a copy of the code in a private memory bank.
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Figure 3.6 Performance Degradation Due to Finite Memory Bandwidth
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This graph also can provide some insight into the speed versus space tradeofi. If we
compare the speedup over the single process instantialion for both the shared and
né—sharing versions of the rootfinder we find that the no-sharing version has @ maximum
speedup of 2.60 using nine processes while the shared verslon’s performance peaks at 1.53
using three processes. Neglecting the single global dala page we have a achieved a 1707
intrease in speed at the cost of a 3007 Increase in size. In this study memory Is plentiful and

we sgquander space for speed.

One solution to the speed vs. size tradeoff is to Interleave the central memory on the low
order bits rather than the high order bits. This solution would tend to scatter memary
requests more evenly across the 16 banks. To maintain availability it might be necessary to
organize the store as four banks of 4-way interleaved memory. A second solution is to give
each prbcessor a cache lo worlk with. This is the solution currently being implemented on

C.mmp.

3.4. Operating System Relaled Performance Fluctuations

3.4.1. Introduction

The operating system also perturbs the perfarmance of the rootfinding procedure.
Although C.mmp was intended to be a multi-user multi-programming facility, it Is possible to
‘use the machine in 5 dedicated single user mode. In this mode of operation the user can
minimize any interference from Hydra ‘by simply not doing anything that requires operating
system assistance. Most of the measurements in this study were performed in this way.
However, certain f_unctions, i.e, scheduling of processes and 1/O interrupts, must be performed
by Hydra and cannot be avoided. The contribution to performance fluctuation from ‘lhesé

basic operating system functions is measured and discussed in the following sections.

3.4.2. The Kernel Tracer

The Kernel Tracer is a software monitor that can obltain information about significant
activity on C.mmp under the Hydra Operaling System. Since It is a software monitor, the

Tracer does perturb the timing data it attempts to measure. However, this can be
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compensated for in the post-processor software.

The Tracer can monitor such things as: context swaps (this occurs when a prcu:eséor
changes from executing one process to execuling another), semaphore activity, process starts
and stops, 0.S. requests (Kernel Cails) and a multitude of other events. Events defined by

user programs may aisa be traced.

The data Is collected in real time and later post-processed offline. There are numerous
post-processing programs that produce various forms of output: by process or processor

dumps, time-line execution histories, and various statistical analysis packages.

All of the Tracer data that follows isin the form of a processor time-line execution history.
We use various symbols in the trace lo encode events in order .to compact the data. Table 3.7
contains these symbols and their meanings. Each row of the trace represents the activity on a
processor, The time in seconds appears along the bottom edge. We will discuss In detail the

first trace which captures the impact of 1/0 interrupts on performance.

3.4.3. 1/O Devices and Interrupts

Random Interrupts from /O devices and processors contibute to performance fluctuations
in the rootfinder processes. Unlike the memory, 1/0 devices are not centrally located and
accessable through an n‘ x m crosspaoint swilch. Devices are assoclated with a particular
processor. Thus, for example, a read or write from a disk on Pc[OTs Uﬁibus must be
performed by processor O regardless of which processor Initiated the request. Since
interrupts are serviced by stealing cycles from the currently éxeculing process large
fluctuations In compute times can be found for processes running on processors with 1/0

devices.

In Figure 3.7 interrupts associaled with 1/0 perturb the performance of the rootfinding
processes. C.mmp’s processor configuration during this trace was Pc[0, 3, 4,5, 6,7, 8, 9, 11,
12, and 13}, and appéar from bottom lo top as rows aof the trace. Pc[0, 4, and 8] are
PDP-11/20s and the rest are PDP-11/40s. Processes(35, 43-50) are the nine rootﬁ.nding
processes. Process 29 and the DAEMON are other processes that happened to be awake at
the time. These two processes are doing things that cause s substantial amount of 1/0. The

following discussion describes how this 1/0 aclivity perturbs the rootfinding processes.
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PROCESS N : PROCESS #N 1S RUNNING
- CSW - - : A CONTEXT SWAP
10T uX o : SPECIAL TYPE OF KERNEL KALL
KALL #X : KERNEL KALL #X .
RETX ~ 1 RETURN VALUE FROM A KERNEL KALL
[": "+ START OF AN INTERRUPT AT LEVEL N
T : INTERRUPT SERVICE ROUTINE EXECUTION |
] : END OF AN INTERRUPT
EVENT X . : USER DEFINED EVENT X QCCURS
P | ': P OPERATION ON A SEMAPHORE
Y : V OPERATION ON A SEMAPHORE
 DAEMON : OPERATING SYSTEM PROCESS
Hm : IDLE TIME

~ Table 3.7 Tracer Symbols
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Figure 3.7a Pertubations from Interrupts
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Figure 3.7b Pertubations from Interrupts
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A previous iteration finishes at 0.612-seconds info the trace. Process 50, P(50), on Pc.[ll]
was the lasl 1o finish Its calculation (the activity on Pc{6] is P(29)) and begins to wake its
sleeping companions by unlocking their semaphores. One by one the processes wake up and
begin to perform the next iteration. P(50) finishes waking up all the processes { P(49) was
the last fo wake up at .641 ) and begins its own funclion evaluation. One by one the
processes finish thelr calcufalions and post their results, after which they “P" their
semaphores and wait for the beginning of the next iteration. When they block on the
semaphore they are removed from the processor { e.g. CSW for P(45) on Pc[5] at .700).
Notice that four of the processors have large chunks of time shaded between brackets. This
denotes an interrupt service routine performing IfO to a device on that Pc’s Unibus.
Interrupt service routines can consume between ! and 15 milliseconds of time. This causes
the rootfinding process on that Pc to arrive al the synchronization point late, thus
lengthening the STAGE time. '

For example, P(43} on Pc[8] is interrupled at .681 for 13 milliseconds and then again at
.707 for 4 more milliseconds. Nolice however, that P(49) on Pc[8] switches to Pc[6] at .709
and finishes its function evaluation at .728 uninterrupted. Since il is the last process to finish
It assumes the jobs of finding the new root containing subinter-val and dispatching the

processes to perform the next iteration.

-In this example the interrupled process was delayed enough to become the last process to
finish thus lengthening the STAGE time. This Is not always the case. For example, P(46) on
PC[I_G] was also interrupted during its function evatuation for a approximately 21 milliseconds
yet ’it' was not the last to finish and did not cause the STAGE time to lengthen. This is
another advantage the multiprocess implementation of the rootfinding procedure has over its
uniprocess counterpart., In the single process instantiation the interrupt time Is additive and
each occurance lengthens the iteration. In the multiprocess version only the Interrupt time

associated with the last process to finish Is additive.

3.4.4. Kerne! Processes and Special Functions

Operating system requesis are frequently handled by special high priority Kernel.
processes and as such perturb the cooperating rootfinder processes by stealing processors.

Of particular interest are the processes that perform scheduling. Because synchronization of
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communicating processes can Involve rescheduling the processes, the special scheduler

processes can become boltlenecks causing performance degradations.

During the trace of Figure 3.8, C.mmp’s processor configuration was Pcl0, 2, 4, 5, 6, 7, 8, 8,
10, 11, 12, and 13]. Of these, 4 and 8 are 11/20’s (so is Pc[0]} and are the third and seventh
blank columns with no execulion history. Since enough processors of the prefered (11/40)

type were avallable the 11/20’s were never used. Similarly Pc[12] was not needed.

In this trace processes (18, 19, 20, 21, 22} are rootfinding processes. Processes 1 and 2

are Kernel scheduling processes, and process 14 is the Tracer process.

P(22) on Pc[10), the last process to finish the previous function evaluation, initializes the
necessary parameters for the next iteration. At 285 ms. into the trace {.285) it begins to V
its sleeping companion processes, and at .309 il begins its own function evaluation (event

#372),

Meanwhile P(2) on Pc[6] (scheduling process) wakes up CSW at .293 and begins to perform
the task of actually waking up the processes process 22 has Just V-ed. It is ‘a relatively
painfull task involving several semaphore operations and several Kernel calls per process.
Finally process 18 (the first to be V-ed) wakes up and begins its function evaluation at .348,

approximately 60 ms. after process 22 performed the V operation,

To expedile the costly wake up procedure processes | and 2 (scheduling processes)
cooperate to start and stop the rootfinding processes. Moreaver, by the time they get
around to starting process 21, the last process that is to wake up, three of the other
rootfinding processes have already finished their function evaluations and have gone back to
sleep (P followed by CSW). A full 130 ms. have transpired since process 22 performed the V

tc wake process 21.

Another side-effect relaled lo the 0.S. that can aftfect the performance of cooperating
processes is the round-robin scheduling of processes under Hydra. This traditional policy is
implemented using the notion of "time-sliced” inlervals of execution o provide equal service
to all tasks. Occasionally a process exhausts Hs time slices and must ask for more. This
request can take more than 150 milliseconds to execute. Whether or not the time-slice end
anomaly will perturb the performance of the cooperating processes depends upon the
average duration of the function evaluation and the frequency of the time-slice end condition.

In this study a process must consume 10 one halt second slices before encountering the
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time-slice end condition.

Figure 3.9 is the distribution of the efapsed time to perform an F(x) calculation in the
presence of Hydra. The long tail in the distribution is a result of the time-slice end condition
occurring for the process performing the function evaluation. Compare this histogram to the

~ one in Figure 3.1.

3.5. Summary

The sources of performance fluctualion we have discussed can be classified into one of
three types-- application, hardware, or operating system related. In the table below we rank
the sources of pertubation by their polential for causing performance fluctuations. Each
source Is measured and the observed range calculaled by dividing the maximum measurement
by the minimum observed value. The larger the range, the more potential for performance

fiuctuation.

In the nex! section we eliminate several sources of pertubalion In order to measure the
performance of various synchronization primitives. We do this by carefully selecting

processors and memory banks to execute the rootfinding program.

Rank Type Source Measurement Range
1 Application F(x) Calculation Function Evatuation 1:34
2 Hardware Memory Conlention Average Cycle Length 1:30
3 Operating System Kernel Processes Botllenecking of 1:28

Scheduling Processes
4 Hardware Processors Speed 1:16
5 Operating System 1/0 Devices and F(x) Calculation 1:13
Interrputs Degradation

6 Hardware Memories Speed 1:1.07

Table 3.8 The Sources of Performance Pertubation
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4, The Effect of Sychronization on Performance

4.1. Introduction

Newell and Robertson{i975] identified seven programming Issues for multiprocessor
computer systems. Since synchronization of cooperating processes Is a fundamental problem
in the implementalion of a parallel algorithm we will measure the performance and discuss the

tradeoffs of the various synchronization mechanisms available to the C.mmp user.

Up untill now we have used a very simple form of "busy-waiting™ loop to synchronize the
cooperating processes. Although synchronization using this method is extremely fést,
undesirable side effects can cause serious performance problems. We will discuss several
aiternalive synchronization mechanisms, describe their functionality and any interesting side
effects, compare their performance in the contexl of the rootfinding algarithm, and conclude

by presenting the range of usefuliness for each.

4.2. Description of Synchronization Primilives

We first examine the nature of the synchronization problem for the rootfinding processes.
In figure 4.1 we present a more detailed view of the STAGE time and in particular facus on
the mechanics of synchronizalion. The segment labeled FIND is the time spent locating the
new root containing sub-interval. The V(i)s correspond lo waking up each of the rootfinding
processes. One quickly notices that the overhead of synchronization can be a significant part
of the STAGE time in certain inslances. Because we have used a spin lock, a form of busy
waiting, to synchronize the processes, the overhead of synchronization has been negligable.

However, it Is not always desirable 1o implement synchronization with this mechanism.

4.2.1, The Spin Lock

Of the three synchronization primitives considered in this study, the spin lock Is the most
rudimentary. This primitive Is actually implemented independently of any Hydra support and
is-only a tight loop in which the process continually tests a semaphore untit It can set it

successfully. The P and ¥ operations are the following POP-11 code sequences:
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P: CMP SEMAPHORE, =1 ISEMAPHORE = | 7

BNE P ’ doop untif it is = 1

DEC SEMAPHORE idecrement SEMAPHORE

'BNE P ;it SEMAPHORE neq O then go to P
Vi MOV #1, SEMAPHORE sreset SEMAPHORE = |

The repeated polling of the semaphore, although extremely fast, has two very nasty

characteristics.

The first Is that when the process completes ils function evaluation and starts to poll the
semaphore while waiting for its counterparts for finish, the processor Is not free to perform

useful work.

The second major drawback is that the polling process consumes many cycles in the
memory bank that contains the semaphore. As more process finish their function evaluations
and begin to poll the semaphore, the .b'andwidth of the memory bank Is quickly consumed.
The process that has ils code page located in the bank with the semaphore will be competing
for cycles with many "busy” processors. This second problem can be circumvented by
inserting a tiny delay loop in the semaphore code, i.e., decrement a register to zero before
checking the semaphore. This delay will decrease the frequency of memory requests in the
semaphore memory bank, but nol slow the sychronization primitive appreciably. However,
the primary problem still remains: a "spinning™ process prevents a processor from doing

useful work,

4.2.2. The Kernel Semaphore

The Kernel semaphore (K-SEM) is implemenled by the Hydra operating system. 1t is the
low level synchronization mechanism used by sysliem processes. When a process blocks or
wakes up, a state change for thal process Is made inside the Kernel. Because It Is
impiemenied within the domain of the Kernel the user evokes operations on the semaphore (P
and V} by issulng Kernel calls. If the process blocks while trying to P the semaphore, the
Kernel swaps the process from lhe processor and places the process in the semaphore’s
blocked-queue, where It remains until another process V's the semaphore. When the process
can proceed again, it is swapped back onto an available processor and continues execution 7

from the point where it was blocked. The important attribules of the Kernel semaphore are:

- A blocked process is swapped from a processor.
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- When a process blocks ils pages are kept In primary memory. This ensures that
the process will quickly resume execulion when it is swapped back onto a
processor.

- The Kernel semaphore is approximalely two orders of magnitude slower than the
spin lock.

4.2.3. The Policy Module Semaphore

The policy module semaphore (P-SEM) is Implemented by the scheduling subsystem called
the Policy Module (PM). This primitive is inlended as the user’s primary mechanism for

performing synchronization.

Because the synchronization is performed within the context of a system process, more
flexibility is available in handling a blocking/waking process. The first policy that was

adopted to handle blocking/waking processes was the following:

- Two PM processes would cooperate o perform synchronization operations for
users; one would start and siop processes and the other would handle
communication between the Kernel and user.

- When a process blocked on a semaphore it would be context -swapped from the
processor.

- Any ‘dirty’ pages belonging to the process would be updated on secondary
storage.

- When a process was to wake up it would be restarted by one of the PM
processes after all the swapped oul pages belonging to the process were
brought back in to central memory.

This policy has evolved into a much faster arrangement of muitiple processes in the current

version of the PM.

One modification to the PM that was found to improve performance substantially was to
delay the updating of a process’ dirty pages onto secondary storage. Often a process is
blocked for very short amounts of time and will quickly resume execution after only several
milliseconds of waiting for a certain condition to be true, However, when a page Is to be
updated onio secondary storage it is .wri‘lten' onto one of several IMS™™ fixed head disks
which will take at least 32 milliseconds per page. The swapping disks revolve once every
16.67 milliseconds. It takes two revolutions to update a page: one to write It out and the

second to perform a read-check operation to validate the copy. Thus it Is quite possible for
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a process to spend most of its time blocking and unblocking if the inter-synchronizalion
interval is small enough. The problem would be even more severe [f there were a task force
of cooperating processes, e.g. the roottinding processes, blocking and unblocking every few

milliseconds.

The current version of the PM initializes the delay lime parameter, €, to 300 milliseconds.
Table 4.1 is a summary of the time it takes to perform the basic semaphore operations on the

various primitives.

Measurement Spin Lock K-SEM PMO PM1{c=0) PM1(€=300)
Time for a process

to do a V {us.) 30 3000 6000 5000 5000
Time till a process ) '
wakes up from a V {us.) 30 5000 . 55000 50000 < 13000
Time from P to CSW {us.) na 3000 9000 6600 6000

Time spent in PM while
waking a process (us.) ha na 652000 20000 0

Table 4.1 Comparison of Execution Times for

Semaphore Primitive Operations

4,3. The Impact of Synchronizalion on Performance

4.3.1;_ Introduction

Now that we have described the functionality and presented the Individual performance
statistics tor Vthe basic primilive operalions, we can observe the impacl of synchronization on
the performance of the rootfinder., We have eliminated meost of the overheads associated
with synchronization by using the spin lock primitive. The remainder of the paper examines

the roolfinder’s performance as we employ the alternative synchronization primitives.

4.3.2. Comparison of Primilives When Compute Time ~ Synchronization Time

The first graph, Figure 4.2, compares the performance of the various implementations of

the rootfinder using different primilives to perform the process synchronization. We have
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plotted the elapsed time lo find 50 rools as a function of the number of processes. This data

was generated by the authentic, not synthelle, roootfinder. The distribution of the F(x)

computation is approximalely Normal with mean 72 milliseconds and standard deviation 18
1

milliseconds®. We compare the performance of four alternative synchronization primitives:

spin lock, K-SEM, PM1{¢=300), and PMO semaphores.

The curve for the PMO semaphore Iimplementation exhibits degradation as we increase
parallelism. The reason for this behavior is thal the overhead of synchronization Is greater
than the average compute time. A process spends more time synchronizing than computing. In

this instance we would be better off using a single process.

The curve for the PMI{(=300) semaphore implementalion depicts substantially better
performance than its predecessor. Performance reaches a maximum speedup of 2.00 at six
processes. No additional speedup is gained by employing more processes. Moreover, a
noticeable degradation occurs at nine processes. This sudden degradation occurs because of
the non-homogenous processor configuration (NHPC).  During this experiment C.mmp’s
processor configuration was eight 11/40’s and one 11/20. Thus when we incorporated the
ninth process, it ran on the slower 11/20 type processor. The STAGE time lengthed, thus

yielding an overall slower performance.

The K-SEM implementalion has its peak performance of 2.4 at eight processes. It too is
affected by the NHPC problem and performance degrades slightly at nine processes. The
overall performance of the K-SEM implementation is about midway between the PM{{¢=300)

and the spin lock versions.

The spin lock implementatlion has by far the best speed up maximum of about 2.8 for eight

processes. The NHPC problem causes a much more severe performance degradation for this
semaphore than for the others?. The reason is that the processes blocked on the spin lock

semaphore remain on their processors, whereas the other Implementations free the {faster
11/60 type processors to steal the process that is still running on the slower 11/20

processofr.

Lon an 11/80 processor

2The PMO Implementation performance curve has a greater degradation than the spin lock
version. However, the reason is nol merely the NHPC problem. The primary reason is that
the two PM processes that perform the semaphore operations are almost constantly running.
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4.3.3. Comparison when Compute Time is Much Greater Than Synchronization

Time

In the previous experimen! the overhead of synchronization was In some cases a
considerabie fraction of the STAGE time. 1f we make the compute time for the function
- evalualion much larger, thus reducing the percentage of time spent synchronizing, the
performance differences between the various implementations is also reduced. Figure 4.3
graphs perfor‘mance in terms of speed up as a function of the number of processes. We used
‘the synthetic rootfinder again to generate F(x) computations that take 375 milliseconds to
compute with the distribution a constant. The dashed curve is the performance obtained using

the PMO semaphore and the solid curve the performance obtained using the spin lock.

We expected the curves to be closer together yet the spin lock version outperforms the
PMO semaphore 2.8 to 2.1 at maximum speed up. The reason for the large difference is that
the PM processes must perform the semaphore operations serially, each V operation taking
about fifty-five milliseconds. Thus the nth rootfinder process Is not started until 55#n
milliseconds into the STAGE time. In this manner the ninth rootfinder process does not
complete its function evalualion until 870 milliseconds have past. Similarly, when the
rootfinder processes complete their F(x} calculalians, the PM processes again sericlly perform

the P operalions on the semaphores causing still further performance degradations.

The severe performance degradation that occurs at eight and at nine processes for the
spin-iock implementalion is another inslance of the NHPC problem. This time, with only seven
11/40 type processors, performance peaks at seven processes, declines slightly at eight, and
then plummets from a speed up of more than 2.7 to slightly more than 2.0. The performance

of the two implementations is nearly identical at nine processes,

However, in Figure 4.4, where the distribution is exponential, relatively little difference
exists between the performances of the two implementations. Because the distribution of the
compute phase causes the processes to arrive at random times, the PM does not become a
bottleneck when the processes finish their work. When they are restarted, the last one to be
started is still delayed by B55:#n milliseconds. However, since the distribution is exponential,
the process that must compute the funclion evaluation with a compute time that lies in the
long tail of the distribution always finishes last. Thus the overhead of synchronization |s

again hidden by the MAX tunction that governs the STAGE time.
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5. Summary of Results: The Useful Range for Various Semaphores

In Figure 4.5 we have summarized the results of this investigation by graphing the useful
range for each of the synchronization primitives. We have graphed the pertormance of the
rootfinder using each primitive as we vary the size of the computation phase between
synchronization points. For each point, five cooperating processes performed 1000 total
fqnclion evaluations to find 50 roots. The distribulion of the funclion evaluation was a

constant and ranged In size from 2 milliseconds to 375 milliseconds.

The NO-OVERHEAD curve Is the ideal performance we would see {f no degradation occured

due to hardware, operating system or synchronization overheads.

The 507 line represents our threshold for adequate performance. 1t parallels the
NO-OVERHEAD curve but represents exactly half of the performance that would be achieved
in the best case. The point at which a performance curve crosses the 507 line is the

threshold of usability for that synchronization primitive.

From these results we see that the spin lock is the only primitive that performs adequately
when the length of the compute phase is less than 15 ms. Al the other exireme, all of the
primitives with the exception of the initial version of the policy-module semaphore, become
indistinguishable beyond 400 ms. In the region belween these two endpoints the user can
seleet the appropriate primitive to malch the length of the computation phase, The cross-over

points for the various semaphores appear in the table below.

Semaphore Type Cross-over Point {msecs.)
Spin Lock 2
K-Sem 18
PM1{¢=300) 33
PM1{¢=0}) 20
PMOD 200

Table 4.2 Cross-over Poinls tor the Varlous Semaphores
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