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ABSTRACT 

C.mmp is a multi(mini) processor with up to sixteen processors. This paper presents and 

discusses measurements of the C.mmp system at several levels: 

1. Basic hardware performance measurements 

2. Runtime performance of Hydra, C.mmp's operating system 

3. Overall performance of a particular application: a parallel rootfinding algorithm. 

The purpose ot this paper Is to get a detailed look at the performance of an implementation 

of a parallel program on C.mmp. The rootfinding algorithm was chosen because It meets two 

constraints: it is a parallel algorithm with significant interprocess communication; and It Is of 

relatively low complexity, enabling us to focus on implementation issues rather than subtleties 

In the algorithm itself. 

Variations in processor speeds and asynchronously executing operating system functions 

are shown to have a detrimental effect on the rootfinder's performance. However, the most 

important implementation decision affecting the performance of the rootfinding program is the 

t ype of synchronization semaphore used. We define the threshold for practical application of 

a semaphore to be when 507 of the execution time is attributed to semaphore related 

overheads. Using the 507, criteria, we measured thresholds for Inter-synchronization times 

from two milliseconds for the most primitive locks, to 200 milliseconds for the most 

sophisticated and flexible semaphore. During the course of these measurements. Hydra 

underwent several revisions and the 200 millisecond threshold was reduced to 33 

milliseconds. The principal concept responsible for this performance Improvement Is 

discussed In the paper. 
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1. Introduction 

'Most papers that extol the virtues of multiprocessor computer systems cite the higher 

throughput and cost/performance [e.g. Sauer 1977, Fuller 1 9 7 6 ] over the more traditional 

uniprocessor. However, both of these performance advantages can be realized only if the 

software effectively exploits the parallelism in the machine. To date, the task of writing 

effective parallel software is still an ad-hoc procedure of constructing code for a one of a 

kind machine. Since multiprocessors are almost as different from one another as they are 

from uniprocessors it is difficult to apply insight gained from writing parallel software for one 

multiprocessor to another totally different machine. Yet by documenting the performance of 

various implementations of several algorithms on one machine we can shed some light on how 

effective various strategies are at capturing parallelism. 

The purpose of this paper then is to provide a first-hand look at the implementation of 

parallel algorithms on a multiprocessor. The nature of this investigation Is experimental 

rather than theoretical in that the results we present are derived from the measurement of 

real programs running on a real multiprocessor - C.mmp. 

The basic structure of C.mmp, as shown in the PMS diagram of Figure 1.1 Is that of the 

canonical multiprocessor. A detailed description of C.mmp is provided in the original article on 

C.mmp by Bell and Wulf [ 1 9 7 2 ] , but the following description should provide a sufficient 

background for this investigation. 

C.mmp Is organized as a system of 16 central processors (Pc's) that share a centrally 

located large primary memory that presently consists of 2.5 Megabytes. The 16 Pc's are 

completely asynchronous computing elements: 5 are PDP- l l /20 's and the remaining 11 are 

PDP-11 /40 's . They are connected to the shared primary memory via a 16 x 16 crosspoint 

switch. The operation of the switch; is similar to a 16 ported memory in that up to 16 

memory transactions can be performed simultaneously. I/O devices, unlike memory, are 

associated with an individual processor. Thus for example, an I/O request to a device on 

P c [ 0 ] , perhaps a disk, Is performed by the requesting Pc sending an Interprocessor Interrupt 

to P c [ 0 ] causing initiation of the appropriate I/O interrupt service routine on Pc[Oj 

Hydra is C.mmp's general-purpose multiprogramming operating system tWulf et Q L , 1 9 7 4 ; 

Wulf et aL, 1 9 7 5 ; Levin et aL, 1 9 7 5 } It is a collection of basic or kernel mechanisms such as 

memory management, process dispatching, and message passing. Upon this core an arbitrary 
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number of systems created from these mechanisms can co-exist simultaneously. Hydra Is 

organized as a set of re-enterant procedures that can be executed by any of the processors. 

In fact, several processors can simultaneously execute the same procedure. This concurrency 

is accomplished by placing locks around the operating system's critical data structures. These 

locks maintain mutual exclusion where necessary. Throughout this paper we will refer, to 

Hydra as the Kernel or the Operating System. 

In the following sections we develop a parallel algorithm to be used as a case study and 

derive its theoretical performance. We enumerate the contributions to performance 

fluctuation and degradation from several sources and quantify the magnitude of each source 

In terms of the program's performance. One dominant influence on performance is the process 

synchronization mechanism. We compare several alternative synchronization mechanisms and 

conclude with a graph showing the range of Inter-synchronization times for which each 

mechanism is preferable. 
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2. Description of the Rootfinding Algorithm 

The purpose of this study is to present quantitative performance results for Implementing 

parallel algorithms on a multiprocessor. Rather than attempting to measure a broad spectrum 

of problems we have chosen to study various implementations of a single problem in order to 

observe and measure in depth the performance tradeoffs in the implementation process. 

T w o criteria that our case study problem had to meet were: the problem must be complex 

enough to have interesting implementation tradeoffs and low enough complexity to permit the 

focus of attention on implementation issues rather than algorithm issues. The candidate 

problem we finally selected is the rootfinding task. 

We have chosen to consider this problem not because it particularly well-suited for parallel 

solution, but rather because it is a relatively straight forward task that requires a significant 

amount of inter-process communication. According to Stone[1973], algorithms like the 

rootfinding algorithm that exhibit speed-up gains proportional to the logarithm of the number 

of processes fall into a class of problems at best considered poor candidates for parallel 

processing. However, the underlying control structure present in this procedure, that of the 

synchronous parallel algorithm, is representative of many parallel decompositions of 

otherwise serial algorithms. For this reason it is worthwhile to understand the nature of the 

control structure and to study the influences on its performance. Investigations now In 

progress are considering larger problems and alternative control structures better able to 

exploit the available parallelism of C.mmp [Oleinick 1978]. 

Specifically we will consider the problem of finding the root of a monotonically increasing 

function in a bounded region. If we assume no special information about the behavior of the 

function, the best procedure for a uniprocessor under these circumstances is a binary search. 

An obvious decomposition of the binary search into n parallel processes on a multiprocessor 

is to evaluate the function simultaneously at n equidistant points within the bounded region. 

The optimal placement of the n processes on the interval is known [Kung 1976], but to 

minimize the complexity of the algorithm in order to focus on the synchronous control 

structure we will use the less than ideal ,but good, technique illustrated in Figure 2.1. The n 

parallel processes perform function evaluations at the n points that divide the Interval into 

n+1 equal subintervals. Since our function, F(x), is a monotonic function, the sub-interval that 

contains the root Is the sub-interval with opposite signs for F(x) at Its end points. The other 
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First Iteration: 

Second Iteration: 

Third Iteration: 

Fourth Iteration: 

Figure 2.1 Rootfinding Program Using Three Processors 
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hhe new interval Is located as soon as the sub-interval Is bounded but again we have 
opted for a more straight-forward algorithm In order to focus on the implementation issues. 

sub- intervals are discarded and the procedure repeats this basic Iteration until one of the 

function evaluations Is within « .i.e. an acceptably small Interval close to zero, of the 

zero-cross ing. 

For the measurements presented here the function we are evaluatlhg Is the normal 

integral: 

F ( x ) - ^ ~ £ e x p ( - l / 2 t 2 ) d t - h (2 .1 ) 

For x < 2.32 the following truncated power series was used to evaluate F(x): 

( x + 3 * f * 5 * y*t*r + 3*5*7*9 + • - > - h ( 2 - 2 ) 

and for larger % we used the continued fraction: 

l / ( x + l / ( x+2/( x+3/( x + . . . ) ) ) ) - h (2 .3 ) 

We selected this normal integral because it is an important transcendental function that 

exhibits two characteristics important to our measurement studies: it requires an extensive 

amount of computation, and the type and length of oomputation are data dependent. 

In order to evaluate the performance of our implementations of the rootfinding. algorithm 

we first calculate the theoretical, or overload-free, performance curves. 

The basic cycle in the rootfinder is the independent evaluation of the function by each of 

the cooperating processes and, upon finishing, the communication of each process with the 

other processes by posting the results of its function evaluation. Notice that the new interval 

is not located until all of the processes have posted their results*. When the last process 

finishes its function evaluation it assumes the jobs of finding the new root-containing interval 

and u/aklng up all of the waiting processes. This basic cycle we call a STAGE. 

Under Ideal conditions the cooperating processes In the rootfinder would exhibit the 

execution behavior found in Figure 2.2. Each process performs a function evaluation 

Independently. They all finish at the same instant and, after a very brief bookkeeping 

calculation perform a new F(x) calculation, on an interval reduced by l/(n+l). In practice, we 

seldom find this to be the case. The fluctuations in performance stem from sources Intrinsic 

to the multiprocessor as well as the rootfinding program. 
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Figure 2.2 Optimal Performance of the Rootfinding Algorithm 
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3. Sources of Performance Fluctuation 

3.1. Introduction 

In this case study there are three distinct sources of performance fluctuation: the variation 

in the amount of computation required to perform a function evaluation, the individual 

hardware elements' performance characteristics, and the operating system. We will Identify 

the nature and measure the magnitude of each of these sources starting with the variation Ih 

the F(x) calculation as it is the most straight forward of the three. 

3*2. T h e Variation in the F(x) Calculation 

The elapsed time to perform a function evaluation is data dependent. The distribution of 

the compute time is shaped approximately Normal as shown is Figure 3.1. The mean is about 

100 milliseconds with almost an equal number of samples on each side of the mean*. Thus 

we might model the expected.finishing time for a process performing an F(x) calculation to be 

a random variable with a Normal distribution. As other functions would have other compute 

time distributions, we derive the theoretical performance for the constant and exponential 

cases also. 

Let the time taken by the i^1 stage in the rootfinding procedure be the random variable Tj . 

Since all of the processes are performing the same calculation, each process executes for a 

random amount of time, t (see figure 3.2), taken from some distribution. Because all of the 

processes must finish their function evaluations before the new sub-interval is located 

T. - MAX( t , t , t , ... , t ) (3.1) 
i 1 2 J n 

From elementary order statistics the expected value of the largest order statistic In random 

samples of n from a parent distribution with continuous strictly increasing cdf P(x> Is 

E ( X ( n ) } " J T - ^ C P < x ) f~l d p < x > (3-2) 

If we know nothing about the distribution of the t| other than the mean a and standard 

deviation s, the expected value of the largest order statistic Tj, reduces to 

^On an 11/20 processor 
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This bound can be replaced In the exponential case by the equality 
n-1 

E ( T ) - nu Y ( n : S ( - D j ( 3 . 4 ) 
n L-J j ~ 

J - 0 

For the Normal case we consult Teichroew'sfl956] tables for the expected value of the 

largest order statistic drawn from the N(0,1) distribution. 

When the expected value of the compute time is a constant, equation 3.3 is replaced by the 

simple equality E(Tj) » u. 

If we are interested in the performance speedups obtained when we put more processes 

to work finding roots, we need to estimate the average time to locate a root as a function of 

the number of processes. Since every iteration in the rootfinding procedure reduces the 

interval of uncertainty, L, by a factor of rc+i it takes Cei/ircg(Log n +j L) iterations to locate the 

root in a bounded interval of length L Thus in our example let Rj denote the number of 

iterations necessary to arrive within « of the root using I processes. For our choice of €, 

R={54, 34, 27, 23, 21, 19, 18, 17, 16, 16, 15, 15,...} iterations. Notice that it takes the same 

number of Iterations to locate the root using nine and ten or eleven- and twelve processes. 

This is because the number of iterations must be an integer. Thus, there is little to be gained 

by incorporting many processes in the procedure. In this study the maximum number of 

processes we will use is nine. 

We can estimate the runtime of the rootfinder to be the following: 
R n 

Runtime(n) - £ T k = R n * E( T n ) ( 3 . 5 ) 

Often we will be interested in the speedup achieved through parallelism. We will use the 

following formula to calculate speedup: 

, x Runtime(1) 

Speed up(n) - R u n t i m e J n ) ( 3 > 6 ) 

Figure 3.3 Is a plot of the speedup vs. number of processes for the following three 

distributions: 
Distribution Mean Standard Deviation 

Constant 1000 0 
Normal 1000 278 

Exponential 1000 1000 
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The glitches in the curves are a result of the Ceiling function In the equation for the 

number of iterations to perform. Because the number of iterations must be an integer value, 

the curves are not smooth. 

This figure contains calculated no-overhead performance curves for three sample F(x) 

distributions with standard deviations ranging from 0 to u. The performance range is from 

negligible speedup when the compute time for the function evaluation is exponentialy 

distr ibuted to more than a factor of 3.3 speedup for nine processes when the distribution of 

the F(x) calculation is a constant. The Normal curve between these extremes closely 

approximates the actual F(x) distribution and is Included for comparison. 

Another way to view this data is to plot speedup for the nine processes case us. the ratio 

standard deviation/mean as was done in Figure 3.4. This figure very clearly shows the impact 

of the variance on the performance of the rootfinding procedure. When the coefficient of 

variation is much greater than one, nO speedup can be obtained by incorporating multiple 

processes in the rootfinding task. 

Now we compare the calculated no-overhead performance of the rootfinder to measured 

data observed on the machine. In O r d e r to measure performance as a function of the 

distribution of the F(x) compute time a synthetic rootfinder was developed because we did 

not want to limit our investigations tp particular distributions too early in the experiment. The 

nature of the calculation was still the real function evaluation, however the length of time 

spent computing was adjustable to reflect the distribution under consideration. 

Figure 3.5 graphs performance in terms of elapsed time as a function of the number, of 

processes for three distributions of the F(x) calculation. In each case we compare theoretical 

performance to measured data. Since the means of the three distributions were not identical 

the data points for the single process instantiation do not coincide. Thus in this graph 

comparisons across distributions can only be relative approximations. What is important here 

is how close the measured curves are to their theoretical curves. 

For each single process instantiation the measured and theoretical curves are far apart. 

This is because any pertubation the process experiences will b e additive and will lengthen 

the basic cycle time. 

As we incorporate more processes the constant distribution diverges the most from the 

theoretical while the exponential diverges the least. The reason for this behavior is that 
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pertubalions experienced by the processes will tend to increase the variance of the 

underlying distribution. However, a small change in the variance of the constant distribution 

will be a much larger relative change than a similar change to the exponential distribution. 

That the observed data doesn't agree closely with the calculated curves Is evidence that 

there are other influences on performance besides the distribution of the compute time, tn 

the following sections we discuss measurements that uncover the other factors Influencing 

performance. 

3.3. T h e Variation in Performance of Individual Hardware Elements 

The fluctuations in performance caused by the hardware will always be present because 

Hydra allocates C.mmp's resources dynamically. While a user cannot accurately predict the 

exact performance of his processes, he can estimate the magnitude of the fluctuation In 

performance by Measuring the variation in the performance of the individual hardware 

elements. 

3 . 3 . L Processor Related Variations 

C.mmp is a multiprocessor constructed from PDP-11 model 40 and model 20 minicomputers. 

In Table 3.1 we have summarized the basic performance difference between the processors 

by comparing their execution of the F(x) calculation without the presence of Hydra. Each 

processor performed the calculation 100 times in the same memory port. The number of 

MSYN's^ was counted and the elapsed time measured. These figures appear In the first and 

second columns. The third column of figures is the processor speed relative to Pc [0 j 

MSYN is the DEC name for the signal that indicates a request Is being made for the 
U n i b u s ™ . Since only the processor is making requests the number of MSYNs is the number 
of memory requests made by the processor. 
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PC 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Model 
11/20 
11/40 
11/40 
11/40 
11/20 
11/40 
11/40 
11/40 
11/20 
11/40 
11/40 
11/40 
11/40 
11/40 
11/20 
11/20 

Elapsed Time (sec.) kMsyn's/sec Relative to PcfOl 
15.559 443.3 
10.413 662.4 

9.985 690.8 
9.745 707.8 

16.144 427.2 
10.060 685.7 
10.238 673.7 

9.829 701.8 
14.867 463.9 
10,022 688.3 
10;i73 678.0 
10.001 689.7 
10.129 681.0 
10.005 689.4 
14.965 460.9 
14.999 459.9 

1.000 
1.494 
1.558 
1.596 
0.963 
1.546 
1.519 
1.582 
1.046 
1.552 
1.529 
1.555 
1.536 
1.555 
1.039 
1.037 

Table 3.1 Speed Variations Among C.mmp's Processors 

Naturally, a process pn an 11/40 should execute faster than a similar process on an 11/20. 

Notice that even among processor of the same type there can be more than a 52 difference 

in speed. 

Because there are two types of processors, the strategy of dynamically assigning 

processes to processors is complex. It is not sufficient to schedule a "ready" process to the 

best processor available. The following scenario clearly demonstrates why. 

Suppose that the rootfinding processes are performing their function evaluations and are 

finishing at random times. After several have finished one would expect to find some idle 
11/40's and computing 11/20's*. A good scheduler should handle its resources better. The 

idle 11/40's should "steal" the processes computing on the 11/20's. Naturally, this 

philosophy assumes that a context swap can be performed quickly. This process stealing 

philosophy Is the scheduling policy on C.mmp. 

* During the course of our study the number of processors running in the system varied 
day to day. The processor configuration during the experiment with the synthetic rodtfinder 
was 10 PDP - l l /40 ' s and 3 PDP-l l/20's. Since we never used more than nine processors to 
perform the F(x) calculation all of our processes ran exclusively on the 11/40's. However, 
the problem is real. If we could have incorporated more than ten processes Into the 
rootfinding procedure we would have had to deal with it. Later experiments in this paper 
measure the impact of the non-homogenous processor configuration as the number of 
available 11/40's frequently was less than nine. 
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3.3.2. Memory Related Variations 

3.3.2.1. Technology Differences 

C.mmp's centrally located primary memory is also a source of fluctuation in performance. 

The memory Is divided into 16 modules, or banks. Each bank can service memory requests 

independently. However, the relative speeds of the banks are different because they contain 

different types of memory. At the time of this study 5 banks contained semiconductor 

memory and 11 contained magnetic cores. Table 3:2 summarizes the speed differences of the 

memory banks. In this experiment Pc[15] performed the F{x) calculation 100 times in each 

memory bank. The elapsed times appear in the table. 
Mp Technology Time (sec.) kMsyn's/sec Relative to Mp[0] 

0 core 15.243 452.5 1.000 
1 core 14.943 461.6 1.020 
2 core- 15.127 456.0 1.007 
3 core 14.999 459.9 1.016 
4 core 15.087 457.2 1.010 
5 semiconductor 15.950 432.4 0.955 
6 core 15.272 451.6 0.998 
7 core 15.402 447.8 0.989 
8 semiconductor 15.887 434,2 0.959 
9 semiconductor 15.858 434.9 0.961 

10 semiconductor 15.860 434.9 0.961 
11 semiconductor 15.855 435.0 0.961 
12 core 15.070 457.7 1.011 
13 core 15.155 455.1 1.005 
14 core 15.034 458,8 1.013 
15 core 15.013 . 459.4 1.015 

Table 3.2 Speed Variation among C.mmp's Memory Banks 

Even among memory banks of the same technology, speed varies. These variations are 

small however, and are caused primarily by variations in the length of cable connecting a 

memory bank to the crosspoint switch and In the timing circuitry for Individual memory 

modules. 

3.3.2.2. Memory Bandwidth and Memory Interference 

The previous experiments show the rates at which individual processors and memories can 

communicate. Another Important characteristic is the maximum bandwidth of a memory bank. 

This rate will determine how many processors can compete for cycles in a single memory 
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bank before the bank is saturated with requests. In this experiment all of the processors 

simultaneously executed the tight loop in the same memory bank. Two banks of different 

types were chosen to be representative of their respective technologies. 

The results in Table 3.3. indicate that performance degradation will occur if more than two 

or three processors are competing for cycles in a memory bank. This implies that sharing 

code, a common practice to conserve memory space, will result In slower execution. 

Semiconductor 1.49*10® memory refs/sec. 
Core i.71*10 6 memory refs/sec. 

Table 3.3 Maximum Memory Bandwidth 

In tables 3.4 through 3.6 we illustrate the performance degradation that results from 

sharing code. All of the measurements were performed on Pc[0]. In each case 100,000 total 

cycles were sampled. The first column, Memory Cycle Length, is the elapsed time from MSYN 

to S S Y N 1 , a complete memory cycle. 

Table 3.4 is the control sample where we monitored the memory accesses while the system 

was idle. Although the vast majority of cycles were in the 500n*. to las. range there were 

some cycles that were greater than 14u*. This is because a processor that doesn't have a 

process to execute runs a task called the "idle job". The idle job consists of a WAIT 

Instruction followed by the code that checks to see if there is a process to execute. This 

piece of code contains a critical section guarded by a mutual exclusion busy-wait loop. Since 

all of the processors are sharing this code and trying to gain exclusive access to the critical 

section, a great deal Of memory contention occurs and the memory cycle lengths grow longer. 

We will use this table to compare the performance of the rootfinding processes When they 

execute from one common code page and when they each have a private code page. 

Table 3.5 contains the results for when each of the processes executes from a private 

code page. Comparing this table to 3.4 we make two observations: while the average 

memory cycle length has increased slightly, relatively little difference exists between the two 

tables; the one category where a noticeable change does occur is the long (> 5.0 us.) cycles. 

*SSYN is the DEC name for the signal that indicates the completion of a bus transfer. It is 
the signal the memory module uses to tell the processor that the memory access is 
completed. 
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Less than half as many long cycles now occur because the processors are kept busy 

executing the rootfinding processes. 

Compare these two tables to the results in table 3.6 where all of the processes share one 

common code page. Again we make two observations: the average memory cycle length has 

dramatically increased by 3007; more important still is that the percentage of long cycles (> 

5.0 us.) has increased from .0867 in table 3.4 to 15.67, over two and one-haff orders of 

magnitude more. This degradation in the basic cycle time will offset and eventually reverse 

speedup obtained by incorporating multiple processes in the rootfinding procedure. 

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE 
0 - 0 . 5 • 0 0 0 0 
0.5 - 1.0 65652 . 7787 14089 902. 
1.0 - 2.0 9470 1926 8 0 
2.0 - 5.0 63 6 2 0 

5.0 -14.0 63 6 10 0 
14.0-50.0 5 2 0 0 

> 50.0 0 0 0 0 
Table 3.4 Histogram for Idle System 

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE 
0 - 0.5 0 0 0 0 
0.5 - 1.0 65827 7461 11024 822 
1.0 - 2.0 12705 1133 38 0 
2.0 - 5.0 894 54 10 0 

5.0 -14.0 28 3 0 0 
14.0-50.0 1 0 0 0 

> 50.0 0 0 0 0 
Table 3.5 Histogram with Private Code Pagi es 

MEMORY CYCLE LENGTH READ READ-PAUSE WRITE WRITE-BYTE 
0 - 0.5 0 0 0 0 
0.5 - 1.0 52784 6504 9404 761 
1.0 - 2.0 10810 689 102 0 
2.0 - 5.0 3059 201 84 0 

5.0 -14.0 14291 843 287 0 
14.0-50.0 174 4 3 0 

> 50.0 0 0 0 0 
Table 3.6 Histogram with Common Code Page 

Figure 3.6 captures the impact of the finite memory bandwidth problem on the rootfinding 

prociedure. We have graphed the elapsed time to locate 50 roots versus the number of 

processes for two implementations of the rootfinding procedure. The dashed curve results 

when a single copy of the code page is shared. The solid curve is the performance when the 

cooperating processes each have a copy of the code in a private memory bank. 
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Figure 3.6 Performance Degradation Due to Finite Memory Bandwidth 
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This graph also can provide some insight into the speed versus space tradeoff. If we 

compare the speedup over the single process instantiation for both the shared and 

no-sharing versions of the rootfinder we find that the no-sharing version has a maximum 

speedup of 2.60 using nine processes while the shared version's performance peaks at 1.53 

using three processes. Neglecting the single global data page we have a achieved a 1702 

Infcrease in speed at the cost of a 3007, increase in size. In this study memory Is plentiful and 

we squander space for speed. 

One solution to the speed us. size tradeoff is to interleave the central memory on the low 

order bits rather than the high order bits. This solution would tend to scatter memory 

requests more evenly across the 16 banks. To maintain availability It might be necessary to 

organize the store as four banks of 4-way interleaved memory. A second solution is to give 

each processor a cache to work with. This is the solution currently being implemented on 

C.mmp. 

3.4. Operating System Related Performance Fluctuations 

3.4.1. Introduction 

The operating system also perturbs the performance of the rootfinding procedure. 

Although C.mmp was intended to be a multi-user multi-programming facility, it is possible to 

U s e the machine in a dedicated single user mode. In this mode of operation the user can 

minimize any interference from Hydra by simply not doing anything that requires operating 

system assistance. Most of the measurements in this study were performed in this way. 

However , certain functions, i.e. scheduling of processes and I/O interrupts, must be performed 

by Hydra and cannot be avoided. The contribution to performance fluctuation from these 

basic operating system functions is measured and discussed in the following sections. 

3.4.2. T h e Kernel Tracer 

The Kernel Tracer is a software monitor that can obtain Information about significant 

activity on C.mmp under the Hydra Operating System. Since It is a software monitor, the 

Tracer does perturb the timing data it attempts to measure. However, this can be 
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compensated for in the post-processor software. 

The Tracer can monitor such things as: context swaps (this occurs when a processor 

changes from executing one process to executing another), semaphore activity, process starts 

and stops, O.S. requests (Kernel Calls) and a multitude of other events. Events defined by 

user, programs may also be traced. 

The data is collected in real time and later post-processed offline. There are numerous 

post-processing programs that produce various forms of output: by process or processor 

dumps, time-line execution histories, and various statistical analysis packages. 

All of the Tracer data that follows is in the form of a processor time-line execution history. 

We use various symbols in the trace to encode events in order to compact the data. Table 3.7 

contains these symbols and their meanings. Each row of the trace represents the activity on a 

processor. The time in seconds appears along the bottom edge. We will discuss In detail the 

first trace which captures the impact of 1/0 interrupts on performance. 

3.4.3. I/O Devices and Interrupts 

Random interrupts from I/O devices and processors contibute to performance fluctuations 

in the rootfinder processes. Unlike the memory, 1/0 devices are not centrally located and 

accessable through an n x rn crosspoint switch. Devices are associated with a particular 

processor. Thus, for example, a read or write from a disk on Pc[0ps Unibus must be 

performed by processor 0 regardless of which processor initiated the request. Since 

interrupts are serviced by stealing cycles from the currently executing process large 

fluctuations in compute times can be found for processes running on processors with I/O 

devices. 

In Figure 3.7 interrupts associated with I/O perturb the performance of the rootfinding 

processes. C.mmp*s processor configuration during this trace was Pc[0, 3, 4, 5, 6, 7, 8, 9, 11, 

12, and 13]; and appear from bottom to top as rows of the trace. Pc[0, 4, and 8] are 

P D P - l l / 2 0 s and the rest are PDP-l l/40s. Processes(35, 43-50) are the nine rootfinding 

processes. Process 29 and the DAEMON are other processes that happened to be awake at 

the time. These two processes are doing things that cause a substantial amount of I/O. The 

following discussion describes how this I/O activity perturbs the rootfinding processes. 
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PROCESS N 

- CSW - • 

IOT *X 

KAIL *X 

RET X 
n c 
I 1 

EVENT X 

P 

V 

DAEMON 

Hill 

PROCESS *N IS RUNNING 

A CONTEXT SWAP 

SPECIAL TYPE OF KERNEL KALL 

KERNEL KALL *X 

RETURN VALUE FROM A KERNEL KALL 

START OF AN INTERRUPT AT LEVEL N 

INTERRUPT SERVICE ROUTINE EXECUTION . 

END OF AN INTERRUPT 

USER DEFINED EVENT X OCCURS 

P OPERATION ON A SEMAPHORE 

V OPERATION ON A SEMAPHORE 

OPERATING SYSTEM PROCESS 

IDLE TIME 

Table 3.7 Tracer Symbols 
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Figure 3.7b Pertubations from Interrupts 
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A previous Iteration finishes at 0.612-seconds info the trace. Process 50, P(50), on P c [ l l ] 

was the last to finish its calculation (the activity on Pc[6] is P(29)) and begins to wake its 

sleeping companions by unlocking their semaphores* One by one the processes wake up and 

begin to perform the next iteration. P(50) finishes waking up all the processes ( P(49) was 

the last to wake up at .641 ) and begins its own function evaluation. One by one the 

processes finish their calcufations and post their results, after which they M P M their 

semaphores and wait for the beginning of the next iteration. When they block on the 

semaphore they are removed from the processor ( e.g. CSW for P(45) on Pc[5] at .700). 

Notice that four of the processors have large chunks of time shaded between brackets. This 

denotes an interrupt service routine performing I/O to a device on that Pc's Unibus. 

Interrupt service routines can consume between 1 and 15 milliseconds of time. This causes 

the rootfinding process on that Pc to arrive at the synchronization point late, thus 

lengthening the STAGE time. 

For example, P(49) on Pc[8] is interrupted at .681 for 13 milliseconds and then again at 

.707 for 4 more milliseconds. Notice however, that P(49) on Pc[8] switches to Pc[6] at .709 

and finishes its function evaluation at .728 uninterrupted. Since it is the last process to finish 

it assumes the jobs of finding the new root containing subinterval and dispatching the 

processes to perform the next iteration. 

• In this example the interrupted process was delayed enough to become the last process to 

finish thus lengthening the STAGE time. This is not always the case. For example, P(46) on 

Pc[13] was also interrupted during its function evaluation for a approximately 21 milliseconds 

yet it was not the last to finish and did not cause the STAGE time to lengthen. This is 

another advantage the multiprocess implementation of the rootfinding procedure has over its 

uniprocess counterpart. In the single process instantiation the interrupt time is additive and 

each occurence lengthens the iteration. In the multiprocess version only the Interrupt time 

associated with the last process to finish is additive. 

3 . 4 , 4 , Kernel Processes and Special Functions 

Operating system requests are frequently handled by special high priority Kernel 

processes and as such perturb the cooperating rootfinder processes by stealing processors. 

Of particular Interest are the processes that perform scheduling. Because synchronization of 
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communicating processes can involve rescheduling the processes, the special scheduler 

processes can become bottlenecks causing performance degradations. 

During the trace of Figure 3.8, C.mmp's processor configuration was Pc[0, 2, 4, 5, 6, 7, 8, 9, 

10, 11, 12, and 13]. Of these, 4 and 8 are 11/20's (so is Pc[0]) and are the third and seventh 

blank columns with no execution history. Since enough processors of the prefered (11/40) 

type were available the 11/20's were never used. Similarly Pc[12] was not needed. 

In this trace processes (18, 19, 20, 21, 22) are rootfinding processes. Processes 1 and 2 

are Kernel scheduling processes, and process 14 is the Tracer process. 

P(22) on Pc[10], the last process to finish the previous function evaluation, initializes the 

necessary parameters for the next iteration. At 285 ms. into the trace (.285) it begins to V 

its sleeping companion processes, and at .309 it begins its own function evaluation (event 

*372). 

Meanwhile P(2) on Pc[6] (scheduling process) wakes up CSW at .293 and begins to perform 

the task of actually waking up the processes process 22 has Just V-ed. It Is a relatively 

painfull task involving several semaphore operations and several Kernel calls per process. 

Finally process 18 (the first to be V-ed) wakes up and begins its function evaluation at .348, 

approximately 60 ms. after process 22 performed the V operation. 

To expedite the costly wake up procedure processes 1 and 2 (scheduling processes) 

cooperate to start and stop the rootfinding processes. Moreover, by the time they get 

around to starting process 21, the last process that is to wake up, three of the other 

rootfinding processes have already finished their function evaluations and have gone back to 

sleep (P followed by CSW). A full 130 ms. have transpired since process 22 performed the V 

to wake process 21. 

Another side-effect related to the O.S. that can affect the performance of cooperating 

processes is the round-robin scheduling of processes under Hydra. This traditional policy is 

implemented Using the notion of "time-sliced" intervals of execution to provide equal service 

to all tasks. Occasionally a process exhausts its time slices and must ask for more. This 

request can take more than 150 milliseconds to execute. Whether or not the time-slice end 

anomaly will perturb the performance of the cooperating processes depends upon the 

average duration of the function evaluation and the frequency of the time-slice end condition. 

In this study a process must consume 10 one half second slices before encountering the 
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Figure 3.8b Pertubations Induced by Operating System Processes 
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time-slice end condition. 

Figure 3.9 is the distribution of the elapsed time to perform an F(x) calculation in the 

presence of Hydra. The long tail in the distribution is a result of the time-slice end condition 

occurring for the process performing the function evaluation. Compare this histogram to the 

one In Figure 3.1. 

3.5. Summary 

The sources of performance fluctuation we have discussed can be classified into one of 

three t y p e s — application, hardware, or operating system related. In the table below we rank 

the sources of pertubation by their potential for causing performance fluctuations. Each 

source is measured and the observed range calculated by dividing the maximum measurement 

by the minimum observed value. The larger the range, the more potential for performance 

fluctuation. 

In the next section we eliminate several sources of pertubation in order to measure the 

performance of various synchronization primitives. We do this by carefully selecting 

processors and memory banks to execute the rootfinding program. 

Rank Type 

1 Application 

2 Hardware 

3 Operating System 

4 Hardware 

5 Operating System 

6 Hardware 

Source Measurement 

Function Evaluation F(x) Calculation 

Memory Contention Average Cycle Length 

Kernel Processes 

Processors 

I/O Devices and 
Interrputs 

Memories 

Bottlenecking of 
Scheduling Processes 

Speed 

F(x) Calculation 
Degradation 

Speed 

Range 

1 t 3.4 

1 i 3.0 

1 : 2.8 

1 : 1.6 

1 s 1.3 

1 : 1.07 

Table 3.8 The Sources of Performance Pertubation 
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Figure 3.9 Distribution of the Time to Calculate F(x) in the Presence of HYDRA 
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4. T h e Effect of Synchronization on Performance 

4.1. Introduction 

Newell and Robertson[1975] identified seven programming Issues for multiprocessor 

computer systems. Since synchronization of cooperating processes is a fundamental problem 

in the implementation of a parallel algorithm we will measure the performance and discuss the 

tradeoffs of the various synchronization mechanisms available to the C.mmp user. 

Up until! now we have used a very simple form of "busy-waiting" loop to synchronize the 

cooperating processes. Although synchronization using this method is extremely fast, 

undesirable side effects can cause serious performance problems. We will discuss several 

alternative synchronization mechanisms, describe their functionality and any interesting side 

effects, compare their performance in the context of the rootfinding algorithm, and conclude 

by presenting the range of usefullness for each. 

4.2. Description of Synchronization Primitives 

We first examine the nature of the Synchronization problem for the rootfinding processes. 

In figure 4.1 we present a more detailed view of the STAGE time and in particular focus on 

the mechanics of synchronization. The segment labeled FIND is the time spent locating the 

new root containing sub-interval. The VtiTs correspond to waking up each of the rootfinding 

processes. One quickly notices that the overhead of synchronization can be a significant part 

of the STAGE time in certain instances. Because we have used a spin lock, a form of busy 

waiting, to synchronize the processes, the overhead of synchronization has been negligable. 

However , it is not always desirable to implement synchronization with this mechanism. 

4-2.1. The Spin Lock 

Of the three synchronization primitives considered in this study, the spin lock is the. most 

rudimentary. This primitive Is actually implemented Independently of any Hydra support and 

is* only a tight loop in which the process continually tests a semaphore until It can set it 

successfully. The P and ^operations are the following PDP-11 code sequences: 
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P: CMP SEMAPHORE, *1 
BNE P 
DEC SEMAPHORE 
BNE P 

{SEMAPHORE = 1 ? 
jloop until it is = 1 
jdecrement SEMAPHORE 
;if SEMAPHORE neq 0 then go to P 

V: MOV # i , SEMAPHORE jreset SEMAPHORE - 1 

The repeated polling of the semaphore, although extremely fast, has two very nasty 

characteristics. 

The first is that when the process completes its function evaluation and starts to poll the 

semaphore while waiting for its counterparts for finish, the processor Is not free to perform 

useful work. 

The second major drawback is that the polling process consumes many cycles in the 

memory bank that contains the semaphore. As more process finish their function evaluations 

and begin to poll the semaphore, the bandwidth of the memory bank is quickly consumed. 

The process .that has its code page located in the bank with the semaphore will be competing 

for cycles with many "busy" processors. This second problem can be circumvented by 

inserting a tiny delay loop in the semaphore code, i.e., decrement a register to zero before 

checking the semaphore. This delay will decrease the frequency of memory requests in the 

semaphore memory bank, but not slow the sychronization primitive appreciably. However, 

the primary problem still remains: a Spinning" process prevents a processor from doing 

useful work. 

4.2.2. T h e Kernel Semaphore 

The Kernel semaphore (K-SEM) is implemented by the Hydra operating system. It is the 

low level synchronization mechanism used by system processes. When a process blocks or 

wakes up, a state change for that process is made inside the Kernel. Because it is 

implemented within the domain of the Kernel the user evokes operations on the semaphore (P 

and 10 by issuing Kernel calls. If the process blocks while trying to P the semaphore, the 

Kernel swaps the process from the processor and places the process in the semaphore's 

blocked-queue, where it remains until another process V*s the semaphore. When the process 

can proceed again, it is swapped back onto an available processor and continues execution 

from the point where it was blocked. The important attributes of the Kernel semaphore are: 

- A blocked process is swapped from a processor. 
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- When a process blocks its pages are kept in primary memory. This ensures that 
the process will quickly resume execution when it is swapped back onto a 
processor. 

- The Kernel semaphore is approximately two orders of magnitude slower than the 
spin lock. 

4.2.3. T h e Policy Module Semaphore 

The policy module semaphore (P-SEM) is implemented by the scheduling subsystem called 

the Policy Module (PM). This primitive is intended as the user's primary mechanism for 

performing synchronization. 

Because the synchronization is performed within the context of a system process, more 

flexibil ity is available in handling a blocking/waking process. The first policy that was 

adopted to handle blocking/waking processes was the following: 

- Two PM processes would cooperate to perform synchronization operations for 
users; one would start and stop processes and the other would handle 
communication between the Kernel and user. 

- When a process blocked on a semaphore It would be context swapped from the 
processor. 

- Any 'dirty 1 pages belonging to the process would be updated on secondary 
storage. 

- When a process was to wake up it would be restarted by one of the PM 
processes after all the swapped out pages belonging to the process were 
brought back in to central memory. 

This policy has evolved into a much faster arrangement of multiple processes in the current 

vers ion of the PM. 

One modification to the PM that was found to improve performance substantially was to 

delay the updating of a process' dirty pages onto secondary storage. Often a process is 

blocked for ve ry short amounts of time and will quickly resume execution after only several 

milliseconds of waiting for a certain condition to be true. However, when a page Is to be 

updated onto secondary storage it is written onto one of several IMS**"̂  fixed head disks 

which will take at least 32 milliseconds per page. The swapping disks revolve once every 

16.67 milliseconds. It takes two revolutions to update a page: one to write it out and the 

second to perform a read-check operation to validate the copy. Thus it is quite possible for 
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a process to spend most of its time blocking and unblocking if the inter-synchronization 

interval is small enough. The problem would be even more severe If there were a task force 

of cooperating processes, e.g. the rootfinding processes, blocking and unblocking every few 

milliseconds. 

The current version of the PM initializes the delay time parameter, to 300 milliseconds. 

Table 4.1 is a summary of the time it takes to perform the basic semaphore operations on the 

various primitives. 

K-SEM Measurement S&in Lock K-SEM PMO PMl(c-O) 
Time for a process 

to do a V (us.) 30 3000 6000 5000 

Time till a process 

wakes up from a V (us.) 30 5000 55000 50000 

Time from P to CSW (us.) na 3000 9000 6000 

Time spent in PM while 
waking a process (us.) na na 62000 20000 

Table 4.1 Comparison of Execution Times for 

Semaphore Primitive Operations 

PM1(€=300) 

5000 

* 13000 

6000 

4.3. The Impact of Synchronization on Performance 

4.3.1. Introduction 

Now that we have described the functionality and presented the individual performance 

statistics for the basic primitive operations, we can observe the impact of synchronization on 

the performance of the rootfinder. We have eliminated most of the overheads associated 

with synchronization by using the spin lock primitive. The remainder of the paper examines 

the rootfinder's performance as we employ the alternative synchronization primitives. 

4.3.2. Comparison of Primitives When Compute Time ~ Synchronization Time 

The first graph, Figure 4.2, compares the performance of the various implementations of 

the rootfinder using different primitives to perform the process synchronization. We have 
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Figure 4.2 A Performance Comparison of Synchronization Primitii/es 
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plotted the elapsed time to find 50 roots as a function of the number of processes. This data 

was generated by the authentic, not synthetic, roootfinder. The distribution of the F(x) 
computation is approximately Normal with mean 72 milliseconds and standard deviation 18 

milliseconds*. We compare the performance of four alternative synchronization primitives: 

spin lock, K-SEM, PM1(<=300), and PMO semaphores. 

The curve for the PMO semaphore implementation exhibits degradation as we increase 

parallelism. The reason for this behavior is that the overhead of synchronization Is greater 

than the average compute time. A process spends more time synchronizing than computing. In 

this instance we would be better off using a single process. 

The curve for the PM1(<=300) semaphore implementation depicts substantially better 

performance than its predecessor. Performance reaches a maximum speedup of 2.00 at six 

processes. No additional speedup is gained by employing more processes. Moreover, a 

noticeable degradation occurs at nine processes. This sudden degradation occurs because of 

the non-homogenous processor configuration (NHPC). During this experiment C.mmp's 

processor configuration was eight 11/40's and one 11/20. Thus when we incorporated the 

ninth process, it ran on the slower 11/20 type processor. The STAGE time lengthed, thus 

yielding an overall slower performance. 

The K-SEM implementation has its peak performance of 2.4 at eight processes. It too is 

affected by the NHPC problem and performance degrades slightly at nine processes. The 

overall performance of the K-SEM implementation Is about midway between the PM1((=300) 

and the spin lock versions. 

The spin lock implementation has by far the best speed up maximum of about 2.8 for eight 

processes. The NHPC problem causes a much more severe performance degradation for this 
semaphore than for the others^. The reason is that the processes blocked on the spin lock 

semaphore remain on their processors, whereas the other implementations free the faster 

11/40 type processors to steal the process that Is still running on the slower 11/20 

processor. 

*On an 11/40 processor 

^The PMO implementation performance curve has a greater degradation than the spin lock 
version. However, the reason is not merely the NHPC problem. The primary reason is that 
the two PM processes that perform the semaphore operations are almost constantly running. 
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4-3.3. Comparison when Compute Time Is Much Greater Than Synchronization 

Time 

In the previous experiment the overhead of synchronization was In some cases a 

considerable fraction of the STAGE time. If we make the compute time for the function 

evaluation much larger, thus reducing the percentage of time spent synchronizing, the 

performance differences between the various implementations is also reduced. Figure 4.3 

graphs performance in terms of speed up as a function of the number of processes. We used 

the synthetic rootfinder again to generate F(x) computations that take 375 milliseconds to 

compute with the distribution a constant. The dashed curve is the performance obtained using 

the PMO semaphore and the solid curve the performance obtained using the spin lock. 

We expected the curves to be closer together yet the spin lock version outperforms the 

PMO semaphore 2.8 to 2.1 at maximum speed up. The reason for the large difference is that 

the PM processes must perform the semaphore operations serially, each V operation taking 

about f i f ty - f ive milliseconds. Thus the n ^ rootfinder process is not started until 55*n 

milliseconds into the STAGE time. In this manner the ninth rootfinder process does not 

complete its function evaluation until 870 milliseconds have past. Similarly, when the 

rootfinder processes complete their F(x) calculations, the PM processes again serially perform 

the P operations on the semaphores causing still further performance degradations. 

The severe performance degradation that occurs at eight and at nine processes for the 

spin-lock implementation is another instance of the NHPC problem. This time, with only seven 

11/40 type processors, performance peaks at seven processes, declines slightly at eight, and 

then plummets from a speed up of more than 2.7 to slightly more than 2.0. The performance 

of the two Implementations is nearly identical at nine processes. 

However, in Figure 4.4, where the distribution is exponential, relatively little difference 

exists between the performances of the two implementations. Because the distribution of the 

compute phase causes the processes to arrive at random times, the PM does not become a 

bottleneck when the processes finish their work. When they are restarted, the last one to be 

started is still delayed by 55*n milliseconds. However, since the distribution Is exponential, 

the process that must compute the function evaluation with a compute time that lies in the 

long tail of the distribution always finishes last. Thus the overhead of synchronization Is 

again hidden by the MAX function that governs the STAGE time. 
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Figure 4.3 Comparison of Two Synchronization Primitives 



THE IMPLEMENTATION AND EVALUATION OF A PARALLEL ALGORITHM ON C MMP PAGE 42 

.75± i i 1 1 1 J 1 1 

7 2 3 4 5 6 7 8 9 
Number of Processes 

Figure 4.4 Comparison of Two Synchronization Primitives 
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5. Summary of Results: The Useful Range for Various Semaphores 

In Figure 4.5 we have summarized the results of this investigation by graphing the useful 

range for each of the synchronization primitives. We have graphed the performance of the 

rootfinder using each primitive as we vary the size of the computation phase between 

synchronization points. For each point, five cooperating processes performed 1000 total 

function evaluations to find 50 roots. The distribution of the function evaluation was a 

constant and ranged in size from 2 milliseconds to 375 milliseconds. 

The NO-OVERHEAD curve is the ideal performance we would see if no degradation occured 

due to hardware, operating system or synchronization overheads. 

The 502 line represents our threshold for adequate performance. It parallels the 

NO-OVERHEAD curve but represents exactly half of the performance that would be achieved 

in the best case. The point at which a performance curve crosses the 507. line is the 

threshold of usability for that synchronization primitive. 

From these results we see that the spin lock is the only primitive that performs adequately 

when the length of the compute phase is less than 15 ms. At the other extreme, all of the 

primitives with the exception of the initial version of the policy-module semaphore, become 

indistinguishable beyond 400 ms. In the region between these two endpoints the user can 

select the appropriate primitive to match the length of the computation phase. The cross -over 

points for the various semaphores appear in the table below. 

Semaphore Type Cross-over Point (msecs.) 
Spin Lock 2 

K-Sem 18 
PMKc-300) 33 

PM1«=0) 80 
PMO 200 

Table 4.2 Cross-over Points for the Various Semaphores 
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Figure 4.5 The Range of Usefulness for the Various Semaphores 
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C.mmp is a muiti(mini) processor with up to sixteen processors. This paper presents and 

discusses measurements of the C.mmp system at several levels: 
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3 . Overall performance of a particular application: a parallel rootfinding algorithm. 

The purpose ot this paper is to get a detailed look at the performance of an implementation 

of a parallel program on C.mmp. The rootfinding algorithm was chosen because It meets two 

constraints: it is a parallel algorithm with significant interprocess communication; and it is of 

relat ively low complexity, enabling us to focus on implementation issues rather than subtleties 

In the algorithm itself. 

Variations in processor speeds and asynchronously executing operating system functions 

are shown to have a detrimental effect on the rootfinder's performance. However, the most 

i important implementation decision affecting the performance of the rootfinding program is the 

t ype of synchronization semaphore used. We define the threshold for practical application of 

| a semaphore to be when 502 of the execution time is attributed to semaphore related 

overheads. Using the 502 criteria, we measured thresholds for inter-synchronization times 

from two milliseconds for the most primitive locks, to 200 milliseconds for the most 

sophisticated and flexible semaphore. During the course of these measurements, Hydra 

underwent several revisions and the 200 millisecond threshold was reduced to 33 

milliseconds. The principal concept responsible for this performance improvement is 

discussed in the paper. 


