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A Semantic Network of Production Rules 

in a System for Describing Computer Structures 

Abstract. A novel implementation of the basic mechanisms of a semantic network is 
presented. This constitutes a merging, in terms of the underlying language architecture, of a 
powerful problem-solving mechanism, production-rule systems, with a proven representation 
formalism. Details are presented on the most basic aspects of the network, namely on 
representing nodes and on mechanisms for their access. Commands for definition, 
modification, and search-based displays of network information are discussed. The relations 
of the network are divided into six groups: taxonomic, structural, functional, descriptive, 
means-ends, and physical. The "further specification" relation is put forward as an 
improvement over concepts such as "ISA", superset, instantiation, individuation, and the 
type-token distinction. The importance of uniformly representing methods and network as 
rules, and the importance of distinguishing temporary from permanent states are discussed. 
Since the system is rule-based, it includes a simple but powerful augmentation capability, 
embodied in a language for expressing methods. Though evidence is noi provided here for 
advanced semantic net capabilities, there is sketched a production system position on a 
number of relevant issues for those capabilities. The domain of application is the symbolic 
description and manipulation of computer structures at the PMS (processor-memory-switch) 
level. The system will ultimately be used for computer-aided design activities. 

Keywords: production systems, semantic networks, representation of knowledge, knowledge 
acquisition, production rules, rule-based systems, symbolic description, understanding 
systems, computer-aided design. 

1. Symbolic Description and Manipulation as a task for AI 

1.1. Motivation and research context 

One aspect of computer-aided design is the manipulation of symbolic descriptions of 
physical systems. Problems in this area have been discussed by Eastman [5] and by Sussman 
[23, 24, 25]. Other artificial intelligence (AI) research has discussed mechanisms that may be 
applicable to design systems while maintaining a general viewpoint and vocabulary, eg, 
Rieger's Commonsense Algorithms [17] and Moore's MERLIN [15, 16} The present research 
aims to deal with the following problem areas: 

1. Describing objects that are the basic components in a system. 
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2. Organizing those components into structures on the basis of their internal 
attributes and external relationships. 

3. Establishing hierarchies of components and structures ranging from abstract, 
general ones to various versions of concrete realizations (instantiations) of the 
abstract components. 

4. Comparing structures and putting structures into correspondence with each 
other (mapping). 

5. Analyzing structures and determining effects of changes within them. 

6. Synthesizing structures from elementary components, with the aim of fulfilling 
functional specifications. 

7. Coordinating multiple viewpoints or descriptive hierarchies for the same system. 

8. Searching in a design space of related systems. 

9. Simulating system behavior symbolically, to ascertain dynamic properties lacking 
exact analytic formulation. 

The system presented here addresses the first three topics, with a clear intention to 

proceed soon to others. 

An approach to these problems would be applicable to a wide range of systems: buildings, 
software systems, chemical processes, cities, etc. The techniques are not restricted to the 
analysis and synthesis problems of the design area: they could provide a central mechanism 
for diagnostic, tutorial, explanatory, and theory explication systems. Such systems have been 
called "understanding systems" by Moore and Newell [16]. This is a virtually unexplored 
application area for AI research, and it appears to be rich in significant problems. Design is a 
ubiquitous phenomenon in science and engineering (see, for instance, Simon [22]). AI 
researchers need to gain more exposure to the basic concepts, and should try harder to 
develop a working familiarity and vocabulary with it. 

Computer structures cjn be explored at many levels: logic circuitry, register-transfer level, 
instruction-set processor level, and processor-memory-switch (PMS) level. The PMS level is 
the subject domain of the IPMSL (Instructable PMS Language) system. The basis is that of 
Belt and Newell [3]. In particular, the following abstract components are considered: 

C Computer 
P Processor 
M Memory 
S Switch 
K Controller 
H Port 

L Link 
D Data-operation 
N Network 
X External (non-digital) 
T Transducer 

2 



1: Symbolic Description 3 

Knudsen's [12] work in the PMS area is a direct predecessor to the present effort, with 
strong influences from Barbacci and Siewiorek [2J 

1.2. A potential specific problem domain 

A particularly important application of IPMSL is the hardware configuration problem, which 
focuses on evaluating specific configurations of peripheral and other devices for some 
computer.1 Such a problem is posed by listing a set of components that a user or customer 
requires for his facility. IPMSL must then relate the customer's specification to known 
workable configurations and determine: which components are missing from it, if any (eg, due 
to hardware or software prerequisites); which component combinations give rise to the need 
for further hardware (as a result of component interactions); which component combinations 
give rise to the possibility of failure or low reliability; and whether the concrete configuration 
is a suitable match with the user's computing requirements. This list of capabilities is not at 
all exhaustive. 

Consideration of this problem arises from the knowledge that this problem is a serious one 
for most mini-computer manufacturers. Such computers have a great deal of configurational 
flexibility, and the demands placed on such computers by customers tend to exploit that 
flexibility. This leads to problems at several locations in the computer delivery bureaucracy: 
at the sales level, where costs of final systems have to be quoted to a customer (the 
manufacturer usually absorbs the cost of mistakes here, which can be sizeable); at an 
engineering and assembly level, where configurations are built and tested out initially; and at 
the installation level, where there can be problems of supplying in timely fashion all the 
various parts and devices. 

Though alternative formulations are possible, the representation of knowledge as a 
semantic network, along with its accompanying "technology", is the basis for IPMSL A recent 
survey of this area of AI is given by Brachman [4], The following sections will discuss: the 
basic design of the network, including its novel use of the production system architecture; the 
approach taken to building the system; peculiar features of semantic networks when 
implemented as production rules; the position of the present system with respect to a number 
of traditional semantic network issues; and finally an evaluation of its significance. 

Much of the specific knowledge needed for this domain it being developed by John McDermoH. 
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2. The IPMSL system: basic semantic net representations 

IPMSL (Instructable PMS Language) is a set of production rules for building semantic net 
structures in response to user commands.* IPMSL starts out as a set of "procedural" 
productions that perform the basic net-building operations. The net itself is composed of 
"declarative" productions whose contents are the net's facts. There are a few "procedural" 
productions devoted to constructing the "declarative" ones, on command from the user and 
also as a result of other processing. Both kinds of productions are interpreted according to 
the same basic recognize-act cycle. The user sees the information he enters being 
structured into a semantic network, while underneath, that information is stored as, and 
manipulated by, rules. The uniformity of representation appears to have some advantages, 
which will be discussed further below. In order to present the details of how a net looks as 
production rules, we first review the concept of production system architecture, discuss how 
it is used in IPMSL, and mention the underlying language being used. Then we proceed to 
define the network and the operations that can be performed at the user level of IPMSL 

2.1. Underlying problem-solving architecture 

A production system architecture (PSA) [7, 19, 27] has four components: Working Memory 
(WM), Production Memory (PM), the Recognize-Act Cycle (RAC), and the Conflict Resolution 
procedure (CR). WM contains the dynamic state of the system, and is the "blackboard" where 
production rules make tests of patterns and make changes representing additions or 
modifications to the knowledge state. WM elements are transitory, so WM cannot be used for 
long-term storage of facts. PM contains the set of production rules, and is a permanent 
memory. RAC consists of an infinite repetition of three steps: testing the patterns (left-hand 
sides) of all rules in PM, to see which ones are true of the current WM (recognition step); 
deciding among the true rules which one(s) are to be executed on this cycle, which is done by 
CR; and executing the actions of the chosen rule(s) (action step). The result of an action step 
is a new WM state, and control returns to the recognition step, where a new set of rules can 
now become true, and so on. 

The production system architecture of IPMSL is 0PS2 [7J 0PS2 is a LISP-based system 
whose WM is a set of list structures (S-expressions). Each WM element has an associated 
"time tag", and 0PS2 periodically deletes from WM the oldest elements, a strategy which 
amounts to placing an upper bound on the size of WM IPMSL currently has a "retirement" 

^his paper is primarily concerned with a basic version of IPMSL In the procese of revising end submitting it, IPMSL 
has almost doubled in size, as described more fully at the end of the paper. In several pieces below, specific 
improvements made to the besic IPMSL will be pointed out. 

4 
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age of 1000 WM transactions. PM in 0PS2 is an unstructured set of productions. That is, the 
rules are not organized into subroutines. Rather, all rules take part equally in each 
recognition. CR in 0PS2 is done by considering the following criteria in order: (1) Refraction: 
repeated execution of the same rule using the same true pattern of WM elements is 
suppressed; (2) WM Recency: rules are preferred that use more recent WM elements (sorting 
is lexicographic by "time tag"); (3) Special Case: rules that use more WM elements, or that 
test such elements more precisely, are preferred; (4) PM Recency: the more recently created 
rule is preferred; (5) Arbitrary: if there is still a conflict, a rule instantiation is selected 
arbitrarily. This particular set of CR principles is quite instrumental in providing control 
adequate for the IPMSL task. 

The implementation language for IPMSL uses the 0PS2 architecture but extends its 
usefulness for this task by changing its external appearance. The extension is named 
OPS3RX. The primary capability afforded by 0PS3RX is the ability to represent data elements 
as sets of attribute-value pairs. This allows patterns to select more flexibly various subparts 
of elements, and enhances the expressiveness and readability of the production rules. 
0PS3RX makes things look much more like "schemas" or "frames", and it is expected that 
further development of the language will continue in this direction. In fact, production rules 
seem to be an ideal way of expressing procedures in a frame-based system. Given the 
retirement limit of 1000 mentioned above for WM elements, there are usually about 100 
attribute-value sets in WM, each containing about five attribute-value pairs. 

The architecture as it is used in IPMSL has a rather novel appearance, at least among 
semantic network implementations. Rules are used to implement both the interpreter of the 
network and the network itself. WM serves both to hold onto various processing goals and to 
accumulate temporary network structures. A network rule contains the facts for only one 
node in the network, including pointers to other nodes. When some goal* requires the 
expansion of the net in WM along some direction (eg, in order to search for some piece of 
information), a subgoal appropriate to going in that direction is formed, resulting in a rule's 
execution. This causes appropriate structures to be hooked into existing WM structures, both 
by creating new WM nodes and by using pattern matching to detect appropriate linking 

A goal is a WM object consisting of at tribute-value pairs that describe what it aims at and how it is progressing. 
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locations. How this works in detail will be explained shortly: 

2.2. Basic network design 

IPMSL divides its knowledge about computer structures, and about itself, into six subnets, 
each containing a particular sort of knowledge: 

- Structural. Parts, Partof, and Coparts relations. A component of a computer can 
be considered as a black box, or as an assemblage of known parts. Components 
are related to each other at the same structural- hierarchy level with the 
Coparts relation. In a computer, such a connection is used as a data or control 
path between components. Parts and Partof are converses of each other, and 
both are stored explicitly. 

- Taxonomic. FSs and FSof relations. MFS" stands for "further specification*, as . 
used in the Merlin system [15, 16]. An object is an FS of another if it can be 
viewed as the other object with some additional characteristics. More precisely, 
the set of attributes in the description of the FS is a superset of those that 
describe the parent, and the values of those attributes may be modifications of 
the corresponding ones in the parent. Thus FS includes formal taxonomic 
relations such as that between animal and mammal, while going further to include 
the concept that one computer further specifies some known computer 
configuration in having extra memory. 

- Descriptive. This category includes various attributes that don't fit elsewhere, 
eg, cycle time, memory size, and bandwidth. Further classification at some later 
date is not precluded, it is hoped. 

-Physical. This includes: spatial layout constraints, cabinet size, power supply 
requirements, cooling requirements, and noise, to name a few. 

- Functional. Here are collected properties having to do with how a component 
functions or behaves within an assembly of other components. Specifications of 
inputs and outputs are examples. Moore's work on MERLIN processes [15] and 
that of Freeman and Newell [9] are good starting points for this area. 

- Means-ends. Primarily used for methods in IPMSL at the present time, the 
relations here directly correspond to the language for expressing methods, to be 
discussed in detail below. 

Figure 1 depicts a fragment of a network including three of the subnets (the structural 
subnet is represented graphically; this picture is manually generated). The computer that is 
partially depicted there is the DEC VAX-11/780, a recent medium-scale computer. 

2 I don't know how this use of WM corresponds to dynamic state memory in conventional semantic net systems (due 
to ignorance of their implementation, which is rarely, if ever, discussed in the literature), but it appears that this use of 
W M provides a great deal of flexibility and breadth of focus, allowing processing of the network information in many 
useful ways. 

6 
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VAX-11 

PARTOF 

PARTS-* «-PARTOF 
<P.C VAX-U> -

DESCRIPTION: 
<«.CACHE VAX-11> 
* TAXONQJ1Y: 

(FSOF fl. CACHE) (EFFECTIVE-HP-CYCLE 
(299 MSEC)) 

(NON-CACHE-ttP-CYCLE 
(1800 NSEO) 

I-PARTS I DESCRIPTION: 
COPARTS (TECH BIPOLAR) 

| (BANDUIOTH 8) 
V (SIZE (8 KBY)) TAXONOMY: 

(FSOF P.C) «-PARTOF 
<P.ALU VAX-11> 

TAXQNOHY: 
(FSOF P.ALU) 

DESCRIPTION: 
(INTERRUPTS 32) 

. . (REGISTERS 16) 

Figure 1: A fragment of a PMS network 

The figure suppresses some details about the actual node and link structure; it is intended 
primarily to be an example of the kinds of information dealt with, and of how the six subnets 
partition them. Note that the division into subnets essentially assigns one set of nodes and 
interconnects them using six different sets of relations. (The subnets are not distinct areas; 
of the net, as may be the usage elsewhere in the semantic network literature.) As will become 
evident from details below, the implementation actually attaches six subnet nodes to each 
main node, one for each subnet, and then attaches relations emanating from that node to the 
appropriate subnet nodes. Relations coming into a node from others in the net all point at 
the one main node, however (ie, they use only the name of the node). 

Why have the network relations partitioned into these six subnets? 

- There are problems that are solvable using only one or two of the subnets. 
Thus the subnets organize the knowledge modularly according to how it will be 
accessed. However, there are problems that are expected to integrate 
information from all of the subnets. Compare a similar situation in engineering a 
building: heating, plumbing, and electrical wiring can be considered independently 
for the most part, but the finished design will have worked out the few 
interactions and exploited common structural conduits. 

- Methods for processing the network are specialized in a natural way to work 
with each subnet. The subnets demand such specialization due to different 
inferences (ie, logical properties) associated with each. 
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- It aids the production system implementation, in allowing separate productions to 
store corresponding subnet information. When data is evoked into WM, the 
separation allows it to be evoked selectively, thus economizing on WM space. 
This is a kind of automatic restriction of network search. 

- There are precedents among traditional semantic network implementations but 
sufficient detail is usually not given to display how they actually profit from or 
exploit such a division. E.g», Hayes [10] distinguishes between taxonomic and 
structural links in a similar way. Generally little attention is given to this issue, 
particularly from the standpoint of how much the decision to divide might be 
forced by the domain content rather than by the underlying language 
architecture (in the present case, there is in fact good reason to do it on 
production systems grounds alone). 

- The structuring is a conceptual aid to the user and designer of networks and of 
methods to work on them. It clarifies the overall structure of the knowledge, 
and forces knowledge coming into the net into a particular mold. This is extra 
knowledge content, in a sense, that IPMSL can exploit in treating the network 
and in solving problems. (If there is psychological validity to the production 
system model of human memory, such a division makes the information easier for 
humans to process in the same way that it is easier for IPMSL, particularly in 
economizing WM capacity.) 

- Knowledge can be added to the net unevenly, with different subnets receiving 
emphasis at different times. Since method organization (modularization) 
corresponds to the division, incomplete information, when isolated to a particular 
subnet, need not interfere with processing elsewhere. 

Now for some details on the representation. First is given a picture of how the information 
looks dynamically, in WM. Then productions are discussed. 

Nodes in WM are temporary and consist of temporary symbols with attribute-value pairs 
attached. There is a main node for each object in the network, and a subnet node for each 
subnet that is defined and evoked. Figure 2 shows the WM elements for a typical component, 
with Lisp internal formats translated to a more readable graphic arrangement 

S8123 
KNOULEDGE-ABOUT P.C 
ROLE HA IN 
STRUCTURE S8136 
TftXONOIIY S9138 

S8136 
KNOULEOGE-ABOUT P.C 
NET S8123 
SUBNET STRUCTURE 
PARTS (D.ALU M.REG) 
PARTOF C 
STRUCTURE P109 

S8138 
KNQWLEOGE-ABOUT P.C 
NET S8123 
SUBNET TAXONOffY 
FSOF P 
FSS (<P.C LS I - i l> <P.C VAX-11>> 
TRXONOHY P282 

Figure 2: WM elements for a typical component 

8 



2: The IPMSL system 9 

Figure 2 includes a main node and two subnet nodes for the P.c (central processor) 
component: SO 123 is the temporary name for the main node, SO 136, for the structure subnet 
node, and SO 138, for the taxonomy subnet node. Each node is identified by the 
"knowledge-about" attribute - this serves to name and to tie together the three nodes (all of 
which are "knowledge-about" P.c), in such a way that pattern- matching in rules can easily 
collect together the separate nodes. The main node has two pointers to its subnet nodes, 
and each subnet node has a pointer back to the main node. The two subnet nodes include^ as 
values of "structure* and "taxonomy- attributes, the names of the productions that built them, 
so that long-term modifications can be done. (The main node is built by a general production, 
so it doesn't need such a pointer.) 

The production that builds the subnet node for the structure of P.c is the following: 

P190I IF THE GOAL IS KNOWLEDGE-ABOUT THE STRUCTURE SUBNET OF P.C 
ANO THERE IS KNOWLEDGE-ABOUT THE NODE OF P.C UITH THE ttAIN ROLE, 

THEN BUILD A KNOULEOGE-ABOUT P.C SUBNODE WITH SUBNET STRUCTURE, WITH 
NET THE NODE OF P.C WITH THE MAIN ROLE, WITH PARTS (O.ALU ft.REG), 
AND WITH PARTOF C, 

AND HARK THE GOAL SATISFIED 
AND A00 TO THE NOOE OF P.C WITH THE DA IN ROLE THAT STRUCTURE IS 

THE NEW SUBNODE. 

The syntax used here is a hand translation from the list-structure version, for readability. 
Some clumsiness remains, due to the effort to retain as much of the attribute-value flavor of 
the representation as possible. "Of" and "with" denote a relation between a pair and the 
object name to which the attributes apply. 

All such network-information rules have a similar structure: a simple "if" part that detects 
the goal to access the knowledge and gets from WM existing information about the main node 
for the component desired; and a "then" part that constructs the appropriate dynamic node 
for the particular subnet, along with updating pointers back and forth. The rule P I90 is 
specific to P.c, with other objects stored in the net analogously, each with a specific set of 
rules (one for each subnet). 

Two general productions are involved in accessing network knowledge, one to build the 
"main role" node when it is absent from WM, and the other to notice that the knowledge 
desired is already in WM, and thus to mark the "knowledge-about" goal to be satisfied. Being 
general means that they apply to all objects stored in the net. These are P98 and P99, 
respectively, and are displayed below: 

9 
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P98: IF THE GOAL IS KNOULEDGE-ABOUT SOME SUBNET OF SOME OBJECT 
ANO THERE IS NO KNOULEDGE-ABOUT THE NOOE OF THAT OBJECT UITH 

THE MAIN ROLE, 
THEN BUILD A KNOULEDGE-ABOUT NOOE FOR THAT OBJECT UITH ROLE MAIN. 

P99t IF THE GOAL IS KNOULEOGE-ABOUT SOME SUBNET OF SOME OBJECT 
AND THERE IS KNOULEDGE-ABOUT THE NOOE OF THAT OBJECT UITH 
THE MAIN ROLE UITH THAT SUBNET BEING SOME SUBNOOE 
AND THERE IS KNOULEDGE-ABOUT THAT SUBNOOE, 

THEN HARK THE GOAL SATISFIED. 

Note that "some* and "that" refer to unrestricted pattern^ variables in the actual 
productions; the word following them is not a semantic restriction on values assumed by the 
variables, but enhances human readability only. The way that these three types of 
knowledge-access productions work together is dependent on the conflict resolution strategy 
of 0PS2, particularly the special-case criterion, by which the rule that matches more data is 
preferred. P98 is the least special-case of the three, and its condition is explicit enough that 
it will be true only when the others cannot be, so special-case is not so critical for it. But 
neither P190 (and all others of its type) nor P99 has any negative conditions, so PI90 can be 
true at the same time as P99, and here the special-case criterion makes the difference. 

One other form of access is used: access to a particular attribute of an object, where the 
particular subnet is not known, an example of which is PI45: 

P145: IF THE GOAL IS KNOULEDGE-ABOUT THE PARTS ATTRIBUTE OF SOME OBJECT, 
THEN ADD TO THE GOAL THAT THE SUBNET IS STRUCTURE. 

There is a production like PI45 for each attribute that is known to the system. Note that 
P I45 remains true even after it fires, but that conflict resolution prevents it from repeating 
in a couple of ways (one is sufficient, of course): the refraction principle inhibits such 
repetition explicitly; lexicographic recency will give preference to other rules whose 
conditions include the subnet information that P145 adds - the productions displayed above 
are all good candidates, so that those others will fire next. 

The kind of action done by PI45 is typical of the production system style used here: a goal 
is a symbol structure to which a variety of rules can contribute smalt pieces, until enough is 
accumulated to make the goal satisfied. It should also be noted that the ability to flexibly 
accumulate such data depends on the attribute-value set representation used in 0PS3RX. 

10 
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2.3. Basic IPMSL methods 

The above has sketched the mechanisms of basic access of information in IPMSL Now we 
turn to three central IPMSL commands, which build on the basic access to form actions with 
wider effects.* 

A user causes the construction of new network nodes with the DEFINE command. The 
method for doing this involves taking the information from the user and embedding it in the 
fixed structure common to all knowledge-access productions, of which PI90 above is an 
example. How one specifies productions to be built is the subject of section 3. An example 
of a define command follows (the V is the system's prompt character). This defines part of 
Figure 1. 

•de f ine structure (name (P.c VAX-ID) (partof VRX-li) , 
« (parts <<M.cache v a x - l i ) (P.alu VAX-ii) 

Modification of existing net structures is done with the LET command, which includes the 
attribute and the new value of the symbol to be modified. WM structures are modified 
directly. PM structures are accessed via the appropriate pointers in WM (ie, rule names that 
are kept with each node) and then their actions are edited so that future executions will 
result in the modified structures being built in WM. Usually the Let command has the proper 
subnet filled in by rules that know which attributes are part of which subnets, eg, P I45 
above. This subnot inferral is done in the process of accessing the knowledge, as part of Let. 
The purpose of this access is to check that the Let command is actually specifying a change 
to existing information. The Let command below says, "let the FSof property of P.c be P* 

• l e t FSof P.c P 

As a result of Let, there is often a need to update other pointers so that they are 
consistent with the new information. For instance, if a Partof connection is added, a change 
must be made to the corresponding converse relation, Parts. Let constructs a subgoal to 
check whether there is a converse to be updated, and that subgoal is processed by rules 
similar to the following: 

l The command examples given here are exactly as they appear for the basic IPMSL system. Subsequent chsnfss as 
IPMSL has grown have smoothed out the syntax of interaction somewhat, though making commands significantly mors 
natural-language-like haa been postponed. 
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P178. IF THE GOAL IS TO UPDATE THE CONVERSE OF THE ATTRIBUTE PARTOF 
IN A NODE UITH SUBNET STRUCTURE ANO UITH SYMBOL SOME S 
ANO UITH VALUE SOME V 

THEN SET UP A NEU GOAL TO LET THE STRUCTURE OF THE NOOE UITH SYMBOL 
THAT V HAVE ATTRIBUTE PARTS ANO VALUE THAT S 

AND MARK THE FIRST GOAL SATISFIED. 

Note that this amounts to a new Let subgoai being generated as a result of a higher-level 
Let goal, illustrating that such actions can be both user-initiated and internally goal-initiated. 
In fact, in some cases Let can lead to the construction of new Define goals, when there needs 
to be created a new node in the network to hold some information resulting from converse 
updating operations. 

The user can evoke a region of the network and have it displayed in a tree format by 
using the SHOW command, as in Figure 3. (The tree is sideways, with indentations indicating 
parent-daughter relations.) This command sets up goals to search from a starting node 
through all nodes related to it in specified ways. At each node visited, information is 
collected into a tree structure, and after the search is completed, this tree is printed. 

The Show command has other options, eg, a "with" option, which specifies what kind of 
additional information (eg, the data stored in the description subnode) is to be collected at 
each node, for display.* 

2.4. Discussion 

To summarize, the basic IPMSL commands provide access (query), definition, modification, 
and search-and-display capabilities. Given additional appropriate domain information, namely 
basic knowledge about computer structures (their taxonomic, spatial, structural, functional, 
e tc properties), the system is ready to attack the configuration problem described above. 

How general is this basic portion of IPMSL? That is, can it be applied readily to Other 
domains? Yes, for the following reasons. 

- Define and Let are coded to be general. They don't incorporate knowledge 
about specific subnets (taxonomy, et al), so that the user can divide up his 
domain knowledge along other lines. The use of subnets, however, and the 
accompanying node structures, is built in. The user of new subnets can provide 
information about them in the form of simple rules such as P145 (saying which 
subnet an attribute belongs to) and PI70 (for converse relation updating). 

1 Several features have been added to Show during the growth beyond the basic IPMSL, eg, more graphical output end 
new kinds of searches for useful extre information. 

12 
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•shoM taxonomy pms.top 

* * * * * 
PflS.TOP 0 <0.CLOCKS VAX - l i> 

T <T.0IAG.REMOTE VAX-ii> 

<T.CONSOLE VAX-I1> 
L <L.UB VAX-11> 

<L.f1B VAX-il> 
<L.SBI VAX-il> 

H <H.DIAG VAX-ii> 
<H.SBI VAX-11> 

K <K.PC-SBI VAX-1I> 
<K.PC-OIAG VAX-ll> 
<K.FLOPPY VAX-ii> 
<K.CONSOLE VAX-U> 
<K.HP VAX-ii> 
<K.UBA VAX-il> 
<K.I1BA VRX-ii> 
K.IO 

P P. ALU <P.ALU VAX-11> 
P.C <P.C LSI-11> <P.DIAG VAX-11> 

<P.C VAX-ii> 

n rt.rticRocooE <M.OIAG VAX-n> 
(1.CACHE <I1.CACHE VAX - i l> 
11.BUFFER <H.A0RCACHE VAX-U> 

<H.INSTR VAX-li> 
H.S <ft.FLOPPY VAX-ii> 
M.P <f1.P VAX-11> 

C VAX-II 
***** 

Figure 3s A display of part of the network 

- It is easy to augment the existing Show methods to work with new net 
structures. Eg, the "with" option is already somewhat general. Further 
generality might be added, and other features can be added in by analogy with 
existing rules. 

- Throughout the basic commands, there is included no assumption about anything 
related to the PMS domain. IPMSL is thus a basic semantic network engine that 
can be applied to problems in a number of domains (but see Sections 4 and 5). 

What have been the major implementation and design issues for IPMSL? 

- How to use the production system architecture? Besides the alternative chosen 
and discussed above, there are other ways. The most important one involves not 
using rules to store knowledge, but having another separate memory for the net, 
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and allowing both patterns and actions to test and have effects on that memory, 
as in Anderson's ACT system [1]. The present approach is preferred primarily 
because it makes more contact with techniques and software developed already 
for "pure" production systems, ie, it doesn't make significant additions to the 
existing and well-understood architecture. Thus we can proceed immediately to 
domain content issues. Some aspects of Anderson's system seem inappropriate 
for our domain, and some issues in his system are not central to ours. 

- How does this use of the PSA compare with others that are equally 
straightforward, eg, having a rule represent each attribute-value pair associated 
with a node, which in some cases amounts to having the "arrow" in the rule 
correspond directly with a semantic network arc? In a sense, the approach here 
is more controlled, ie, there is less chance that information will develop from 
given information in an unguided way - goals are required in all cases to evoke 
new facts. One can, however, set up a method that results in such unguided 
evocations, because the needed goals are expressed uniformly. In addition, more 
control is added to the knowledge structure due to the partitioning of facts into 
subnets. In another sense, the approach here is less controlled: one gets all the 
facts in a subnet at once, rather than evoking a single precisely-requested fact. 
Thus at any time one can obtain unexpected data items that could, for instance, 
satisfy any one of a number of pending goals. The present position, thus, strikes 
a balance between strict control and absence of control. 

The decision to partition the net into subnets is important, for the reasons stated 
above. 

Some issues with respect to taxonomy, naming, contexts, the six subnets chosen, 
etc. are discussed in Section 5. 

Efficiency is a concern, since IPMSL is intended to be worked with interactively. 
Response times for network definition commands are in the range of one to two 
minutes on our time-shared DEC KL-10. This usually is significantly exceeded by 
the time it takes a user to decide how to formulate the next piece of network to 
be added, and is therefore a tolerable response delay. Having the system run 
interactively seems critical due to the complex effects that can occur with each 
addition or change to the network. 

The use of symbolization is a key issue in IPMSL. Nodes in the network are 
arbitrary symbols (GENSYMs) to which names are attached (via the 
Mknowledge-aboutM attribute) along with other attribute-value pairs, rather than 
being sets of pairs attached to the name itself. Another occurrence of the same 
principle is in having separate symbolized nodes for the six subnets. Goals and 
other data structures in IPMSL, due to their being symbolized, can flexibly 
accumulate records of changes in state and growth in basic facts relevant to 
their solution. The network itself is directly amenable to dynamic 
re-organization in WM, by hooking together symbols in new ways. This easily 
gives, for instance, dynamic "frames", "depictions" [10], and other higher-level 
structures. Symbols are important at a low level in this implementation because 
of the permanent-temporary dichotomy induced by having PM and WM. When 
one transfers information from WM to PM, as in building up new parts of the net, 
it is very clumsy to have to deal with a named structure in WM of which only 
part of its attribute-value pairs are right for transfer. PM reflects the same 
distinction in not containing the actual symbols or any other arbitrary names, but 
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simply pattern variables - symbol names are either matched to the variables 
during recognition or are created anew during action execution, and it is all the 
same to the system. In a sense, then, symbolization is ubiquitous while being so 
natural a part of the rules that symbols become invisible to a reader or coder -
an important advantage to using rules. 

3* The IPMSL approach to instruction and augmentation 

IPMSL started out as a small set of productions (less than 50) called Kernl2 (Kernel, version 
2). Kernl2 allows simple kinds of interaction to take place, including interaction that leads to 
adding new rules. The first interactions with Kernl2 involved adding to and improving 
Kernl2's capabilities, while later ones were increasingly devoted to adding the basic IPMSL 
commands. Kernl2's essence is a set of methods for interpreting and executing user inputs 
that are expressions in a simple method language. This method language allows the user to 
designate elementary components of a method. After a number of such designations, the user 
gives a command essentially saying that the method is ready to be formed into productions, 
and Kernl2 does the rest of the work: keeping track of what is designated and finally putting 
it together into rules. Kernl2 also includes rules that describe itself in a declarative way, ie, 
there is an IPMSL-style network describing Kernl2 methods. Thus, a user can both construct 
methods of his own for new goals and access the Kernl2 network to understand and augment 
Kernl2 itself. Both of these operations have in fact taken place as IPMSL has grown. The 
existence of the self-describing network in Kernl2 aims at the possibility that techniques (to 
be developed) for describing and manipulating external systems (eg, computer structures) will 
ultimately find application in the understanding by the system of itself. 

The approach to growing a system, ie to instruction, that i& presented here builds on two 
previous independent approaches: that of the Instructable Production System project [20] 
and that of Waterman's Exemplary Programming [26]. It is beyond the scope of this paper to 
give a detailed comparison to these approaches or to others for augmenting rule-based 
systems. 

The idea behind having Kernl2 be a part of what is basically a semantic network system 
has three aspects. First, the method language of Kernl2 allows a user to easily build up new 
system behavior, ie, it is a means to making the system fully extensible. In addition, Kernl2*s 
self-describing "help" network makes it possible for a user to change the kernel itself. 
Second, the nature of the method language and of the way it is used is designed to provide a 
better way of coding and debugging the rules, thus maximizing as much as possible the speed 
of system growth. The critical aspect of the language that allows this is that method 
construction takes place within a dynamic WM context that is similar to that in which the 
method will work after it is finished. Thus in a sense a user is hand-simulating the method's 

15 
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operation while building it up, so that by examining WM the user can easily note those items 
of information that the method should take into account and also determine in a natural way 
those actions that the method should perform plus their proper sequence. This will be 
explained more in the following. Third, all of the method language facilities are available both 
to the user and to internal methods built from rules. That is, they are all considered goals 
internally, and can be set up by other rules and asserted into WM in the usual recognize-act 
cycle in order to obtain the desired effects. In particular, one can compose methods that go 
through the various steps to build up further methods - the Define command of IPMSL does 
precisely this. Note that the method language itself is thus extensible. 

The method language of Kernl2 consists of four main commands plus several other 
operations. As a collection, these constitute the way that rules are added. (Other parts of 
Kernl2 are discussed below.) The four main commands are as follows. 

COAL This specifies that some symbol in WM, given as an argument to the command, is the 
main goal for a new method, or the goal for a new rule within a method already partially 
completed. Goals are the primary control-organizing feature in IPMSL methods: they state 
what is to be accomplished, record progress towards that desired state, and finally also 
record the outcome. A goal is an ordinary WM element in most respects, the exception being 
a special marker that specifies its "goal" nature. It has a number of attribute-value pairs, and 
the various functions that a goal serves are represented as an accumulation and modification 
of the goaPs set of pairs. 

The following shows a new goal being given to the system, with the intention next to start 
to instruct it on how to achieve it. Throughout the rest of this section, lines starting with V 
are inputs from the user to the system. The fragments of input and output from the system 
given here are not a continuous stream of everything done, but rather a selection of the most 
relevant information. 

• t e l l something (about c) 

S0624 (ABOUT C) 
<%MF M I — TELL SOMETHING) 
(MS INTERPRET) 

This goal (created for this demonstration, but similar in spirit to goals that the system has 
been taught) means that IPMSL is to find something in WM regarding MC" to tell the user - the 
system already has goals to tell specific things, but this when completed would have IPMSL 
pick something of interest to say. "S0024" is an internal symbol created to hold information 
from the user's input. The user's input is cast into attribute-value form partially 

16 



3: Approach to instruction 17, 

automatically. In this case, the first two input words become part of the "2MF" attribute of 
the goal - 7oMF being a "header" item marker (its weird form is dictated by efficiency 
considerations). The symbol is marked as a goal by giving it the "WI--" tag within the 7MF 
attribute - "WI" standing for "want initiate". The pair "(about c)" is carried over into S0024 
directly from the input, and the "(MS interpret)" is added to S0024 to indicated that its 
source is the "interpret" method, as opposed to, say, a goal from an internal system source. I 
have omitted an output by IPMSL stating that this "tell something" goal is new to it. 

Next the user points to S0024 as being a goal for a method to be instructed. 

•goal S0024 

S0859 (P P333) 
(ANTECEDENT S0024) 
(SYMBOL S0024) 
(%riF H--T GOAL I I ) 
(IIS INTERPRET) 

From network information stored about the "Goal" command, the interpret method has 
decided that S0024 is the "symbol* attribute of a new goal. S0050 is a data structure that 
will collect information about the new method being instructed. The method for performing 
the Goal command has already "initialized" S0050 with the facts that a new production for a 
new method will be P333, that P333 will have S0024 as an antecedent (condition), that S0050 
is what I have been saying it is (the 2MF header data), and that SC050 also came from the 
interpret method. 

USE. This specifies that some WM symbol is to be taken as a condition in the rule 
currently being built up. In the following, the first command sets up some instruction context, 
so that the "Use" can point to something meaningful. 

*c 

S8066 (FUNCTION P117) 
<%I1F H-K- C I I ) 
(SUBNET FUNCTION) 
(NET S886S) 
(OUTPUTS I-UNITS) 
(INPUTS I-UNITS) 

*use S0066 

Primarily, this Use command results in adding to S0050 above the new fact that S0066 is 
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also to be an antecedent of P333, the new production. S0066 is a fragment of the network 
describing the "function" aspects of the PMS component "C" (computer}. The interpreter 
assumes that one wants functional information about something, when nothing but its name is 
given. That "C" is used here is only for instructive purposes. A little later, a command will 
be given to cause it to be generalized to any component, and the "function" subnet will also 
be generalized - thus "tell something" will ultimately pick up any network fragment for any 
component. 

The instructor now proceeds to tell the system what it is going to do with the WM 
information picked up by the pattern conditions in P333. 

ADD. This specifies that a symbol is to be taken as an action in the rule being built up. 
The following first shows a command by which the instructor gets a suitable goal into WM for 
such an action, and then shows the corresponding add command. 

•show object s8866 

S8183 (XMF 0 1 — SHOW OBJECT) 
(OBJECT S8866) 
(MS INTERPRET) 

•add S0183 

The instructor asks the system to show the object S0066, expecting to have the same 
action incorporated into the new production. Since this is a known goal, it is actually 
executed and marked old - its completion is marked with the "01—" in the 2MF header 
information. This will have to be changed later, back to "WI--", so that when the production 
fires, the goal that it produces will be an active one. The Add command puts another datum 
into the set of attribute-value pairs for S0050, stating that SO 103 will be a consequent 
(action) in P333. 

Except for a few finishing touches, the data is set up for the new production. The 
commands shown next do a few odd things to the data. These commands are basically WM 

editing commands, whose effects will soon be transferred to PM because they alter parts of 
rules being formed. 

• n o t i c e a t t r i b u t e c bvar p333 
• n o t i c e a t t r i b u t e function bvar p333 
• s t r i p a t t r i b u t e s s8866 (attr ibutes (function net outputs Inputs is ) ) 
• s t r i p a t t r ibu tes s8824 (attr ibutes (ms t : ) ) 
• s t r i p a t t r ibu tes s8183 (attr ibutes (ms s i ) ) 
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The two "notice" commands specify that "c" and "function" are going to be generalized into 
arbitrary variables in P333 - BVAR is a special WM symbol whose attributes are names to be 
made into variables and whose values are the names of the productions in which that is to be 
done. The "notice" commands thus cause the right attribute-value pairs to be added to BVAR. 
The "strip" commands cause the named attributes to be removed from the named symbols -
the odd syntax is a result of the primitiveness of the interpreter. The results of these 
commands will be evident in the rule to be displayed below. 

BUILD. This takes the pieces of a rule that have been specified with the other commands, 
and forms them into a rule. The rule then becomes part of PM. The target rule of the above 
dialog might be translated ac, 

IF THE GOAL IS TO TELL SOMETHING ABOUT SOME OBJECT 
ANO THERL la KNOULEDGE-ABOUT THAT OBJECT UITH SUBNET SOME X, 

THEM ASSERT A NEU GOAL TO SHOU THE OBJECT THAT IS THE KNOULEDGE-ABOUT 
THAT OBJECT. 

Here is the appropriate Build: 

* b u ( f d p333 

P333 ( UB802 <%MF U I — TELL SOMETHING) (ABOUT «B80S)) 
U8881 (%J1F H-K- *B805 I I ) (SUBNET *B884)) 

~ > («B803 (%HF U I — SHOU OBJECT) (OBJECT *B80D) ) 

The rule P333 is shown after a manual edit was done to change the status tag in the action 
from HOI—" to "Wi--", as explained above (the method language does not yet provide a better 
way to do this). Note that the symbols S0024, S0066, and SO 103 have been automatically 
generalized into pattern variables (prefixed by "»"), and that the other variables have been 
created as specified in the BVAR object. 

While the preceding dialog with the instruction-taking part of IPMSL may not show the full 
power of this mode of augmenting the system, and while its advantages over directly entering 
the production are not clear due to the simplicity of the example, the dialog does show some 
of the flavor of how instruction can take place in a dynamic context. Along the way, the 
instructor has been shown accessing the network and evoking subgoals, using the results of 
those commands as part of the new rule. 

In addition to the four main commands just sketched, there are a number of auxiliary 
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commands. One class of auxiliary has to do with modifying WM contents so that the rule 
being built has the right form; this class includes ways to add and modify the attributes of 
existing WM elements and ways to assert new WM elements. A second class of auxiliary uses 
the dynamic context in WM more actively, by evoking subgoals, for which methods already 
exist. The effects of such subgoals are observed, and their results noted for possible 
inclusion in the rule being built. A third class involves setting up data structures in WM that 
will bring about modifications in the way that the rule-building function (evoked by the Build 
command) works. For example, one can specify that some constant in the WM elements that 
are included should be converted into a pattern variable (a form of instant generalization). A 
fourth class of auxiliary * can be termed utility functions: they are useful for displaying the 
current state of WM, including the effects of previous commands. A particularly useful utility 
is the Hold function, by which the user can keep track of, and periodically display, a particular 
list of symbols - usually just those that the user has designated to be part of a new rule. A 
fifth class of command allows the user to edit existing rules, in practice an important part of 
each instruction session. This is greatly aided by the network of rules that describes the 
methods in the system itself. The network and the method language are coordinated ta some 
extent: when the language is used to change a method, the corresponding descriptive 
network is in many cases changed along with it. 

Figure 4 is a summary of all components of IPMSL, with Kernl2 methods listed first. ̂  The 
scope of the PMS and VAX networks (95 rules) is as follows: basic taxonomic information 
about the abstract single-letter components (described at the beginning of the paper); 
taxonomic information about other abstract components, eg, P.c (central processor) and M.p 
(primary memory); structural, taxonomic, and descriptive information about the VAX-11, 
except for peripheral I/O devices (these would ordinarily be given during specification of 
various saleable configurations). 

Kernl2's methods, displayed in the table, can be divided into several classes: taking in user 
sentences (input, interpret, help), displaying information (tell, show), main method language 
methods (goal, use, add, build) and auxiliary method language methods (edit, notice, strip). 
Kernl2 started out at about half its present size, with the additions done mostly using the 
method language. By most standards, Kernl2 is quite a small program, but has nevertheless 
proven to be sufficient for starting out interactively to build a much bigger system (which Is 
still in progress). 

*The fourth and fifth classes are not rule methods, but Lisp code. 

^Subsequent growth has occurred in the nets and methods, as detailed at the end of the paper, beyond this basic 
IPMSL. 
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Method Number of rules 
Input Sentence 2 
Interpret Sentence 19 
Help User 8 
Convert Help 8 
Clear display 4 
Kernl2 help net 21 
Tell Object 7 
Show Object 1 
Goal 1 
Use 2 
Add 2 
Build 1 
Build Schema 2 
Edit 1 
Notice Attribute 11 
Strip Attribute 9 
(total Kernl2) 
Define 19 
Let 33 
Union lists 9 
Update Converse 12 
Find knowledge 18 
Show (subnet) 7 
Tree (subnet) 24 
(total IPMSL basic) 
PMS (abstract) 23 
VAX-11 71 
LSI-11 1 
(total PMS nets) 95 (302) 
(total IPMSL system) 316 

99 (317.) 

122 (397.) 

Figure 4: Summary of IPMSL methods 

While the Kernl2 method language has proven effective conceptually, it is less effective in 
practice than a more direct approach of simply composing rules non-interactively and 
entering them into the system. The "less effective" refers only to time efficiency or 
productivity of an expert rule coder (the author) - the response time of our local 
time-sharing system (TOPS-10 on a DEC KL-10) running IPMSL is so slow (on the order of a 
minute or two per user input) that it is not effective to use recognize-act cycles for this 
when rules can be composed and entered directly. If run-time efficiency could be improved 
by an order of magnitude, say up to about 20 to 50 rule firings per second of machine run 
time, which would reduce response time to less than 20 seconds under normal load conditions, 
or if IPMSL could be run on a dedicated or lightly loaded computer, then the balance would 
shift back to using the method language and building the system fully interactively. Another 
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part of the present shift away from the method language is due to a change in overall goals 
to an emphasis on obtaining rapidly a fairly large system (on the order of 1000 rules). Thus 
unfortunately many interesting AI issues surrounding instruction and the use of the method 
language in more complex situations have been postponed. Even so, the method language 
might be effective and useful for a naive user, one who is not familiar with the system, and 
for a user who cannot code rules easily in the non-interactive manner. 

As a result of this strategy shift, some auxiliary software has been added to aid the 
direct-coding mode of user interaction. This includes a facility for abstracting and displaying 
all or a select part of the rules in a particular method in a relatively small screen space; more 
flexible rule entry and editing, including the ability to copy information from one rule into 
another (thus one can make a new rule "like" another, and then edit in the discriminating 
elements); and the ability to make listings of the rules organized according to method. With 
these aids, it is possible to grow and debug the system at a rate of about two to five rules 
per on-line hour.* 

4. Advantages and disadvantages of using rules for a network 

The evaluation of production rules as a basis for a semantic network system consists so far 
of a set of subjective impressions and design characteristics. The existing implementation of 
a net is an unusual mix of procedural and declarative components. The net is active in a real 
sense, though controlled by particular activation goals. Control in general for the net can be 
distributed around, as rules, but since WM is global and inspectable at all cycles by all rules, 
there can be global (centralized) control to a large extent. As yet, there has been no 
problem of searches in the net getting out of control, and in particular, unexpected rule 
firings have not interfered with processing. 

The following lists a number of specific advantages that the PSA seems to have for 
network systems. For the most part, since the scope of IPMSL's application has been limited, 
these should not be taken as soundly demonstrated as yet. 

- WM serves as a large dynamic context. It records uniformly both the state of 
methods that are being executed and the state of the network as it is searched. 
Searches and methods both respond to the same sort of event.* 

- The single shared dynamic state allows flexible control of searches. That is, 

Historically, the system has frown at a rats of about 80 to 100 rules par month. 
2 

I don't know whether conventional net implementations have a structure that corresponds in function or in 
flexibility to this WM. 
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ordinary searches can be monitored by global, general rules, by specific search 
heuristics, and by control knowledge that is distributed throughout the net - all 
expressed as rules. * 

- WM is useful for growing large, hybrid, temporary structures and mappings -
things that one would not necessarily want to become a permanent part of the 
net. 

- Rules can bring together (by recognition) complex patterns of diverse knowledge, 
thus making it possible to integrate information in new ways. 

- The rules are readily organized into an instructable structure. Growth is by 
accumulating more rules, each of which is a readily constructed and 
comprehended unit. Rather than procedural attachment, there is a more intimate 
co-existence of procedures (methods) and data (network rules). 

- Searching methods and others can themselves be described using the same 
network conventions as the subject domain. Methods are structurally quite 
simple, as is induced by the method language, consisting primarily of simple 
goal-subgoal dependencies and simple functional (input) requirements. 

- The organization and control of methods and search by goal-subgoal structures 
can, in addition to usual forms of control, offer a form of backtracking. Control 
can "fall back" to an unsatisfied goal and then go forward in a new direction in a 
further attempt to satisfy it. This control is enabled by the 0PS2 conflict 
resolution strategies. Goals are interrelated in ways that can be much more 
open (heterarchical) than conventional recursive (hierarchical) forms: the goals 
are global structures in WM that can be processed in varied orders, can be 
satisfied in accidental ways, and can be examined and re-ordered flexibly. 

- Existing efficiency techniques for production-rule systems can be immediately 
carried over to network searches. In fact, the rules in 0PS2 are compiled by 
converting their patterns into a very efficient network structure, developed by 
Forgy [8]. Efficiency has been factored off and studied independently as a 
problem in its own right, and the results of efficiency improvements in that 
general pattern-matching domain can now apply to networks of rules. The 
ability to exploit the available power is limited somewhat by the simplicity of 
patterns in existing net rules, and by the inherently serial nature of much of the 
network search when implemented as rules. 

- The recognition part of the execution cycle is amenable to simple parallel 
implementation. Thus there is a simple way for enormous databases to map onto 
one of a wide variety of parallel processors, composed of large numbers of small, 
cheap microprocessors (work on the details of this is in progress). 

- The net need not be uniformly encoded: one could do various arbitrary things, 
using rules, to evoke information (or to respond to it) in special cases. 

I doubt that a network could match this flexibility without using rules or rule-like entities (eg, "demons"). 
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The above positive features can be balanced with the following disadvantages. 

-Space usage seems high: a few attribute-value pairs require a good bit of 
surrounding rule structure.* This is offset by the fact that rules are fairly fixed 
structures, so that they are amenable to compactification and more efficient 
storage techniques than are arbitrary list structures. Also, the Forgy RETE 
network [8] causes patterns to share storage for identical subparts to a great 
extent. 

- Search is serial: nodes are developed one at a time. But as mentioned above, 
given a parallel processing architecture, production systems are just as 
favorable for exploiting it as are conventional network organizations, if not more 
so. Other possibilities for alleviating this will be discussed further below. 

5. Traditional semantic net issues 

The discussion of IPMSL so far has not touched on a number of issues and capabilities that 
have been traditionally connected with semantic networks. ̂  This section will touch on a few 
such topics, with the intention of determining whether such issues will present the IPMSL 
approach with insurmountable difficulties. In cases where there do appear to be serious 
difficulties, it can be argued that the IPMSL task domain is such that the difficulties will not 
impair IPMSL's performance or potential. That is, the task of describing and manipulating 
computer descriptions does not make the same demands as other semantic net tasks, and 
demands that might provide difficulties for IPMSL do not occur in it. 

5.1. What kind of network is IPMSL? 

A major distinction made in the literature involves the term "semantic network* itself. 
Early semantic networks (eg, Quillian's) did in fact deal with semantics: they were networks 
of dictionary-like word meanings, interconnected by meaning-association links. Other 
networks have encoded entirely different sorts of knowledge: knowledge about events, 
causes and effects, people's motivations with respect to events, etc. Examples are the 
networks of the Norman-Lindsay-Rumelhart group, Schank, and Simmons (see [4] for a 
bibliography). Following Schank's usage of "episodic", I call these episodic networks. Each Of 
these two classes of network is concerned with different phenomena and encounters 
different problems. In which category does IPMSL fall? The semantic-episodic distinction 

1 I don't know how this compares to conventional implementations, but they certsinly also must use some 
extra storage structure. 

Some of these, while drawn from a number of sources, have been discussed and clarified recently by Fshlmsn [6] 
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seems to be based on the philosophical distinction between analytical and empirical facts (this 
and other distinctions to follow are in part based on SandewalPs discussion [21]). The former 
are facts that are determined by purely definitional properties of components, while the 
latter deal with matters of observation in a real environment* Semantic nets, then, are 
analytical, while episodic ones are largely empirical. IPMSL combines both abstract 
definitional Knowledge about computer structures and knowledge about particular computers, 
though in the latter category, the knowledge is still largely definitional (eg, from hardware 
specifications rather than from observing one in operation). Thus IPMSL is a semantic 
network. But it is easy to imagine a system in the same class as IPMSL, ie, concerned with 
symbolic description and manipulation of systems, where empirical knowledge would be 
important, eg, a system for describing a city. It is possible that IPMSL, in its advanced form, 
will use empirical data or at least test its conclusions against it (eg, in the case of simulating a 
subject system's behavior). 

Another dichotomy that might serve to distinguish semantic from episodic networks is that 
between the description of events and the description of states or objects. Episodic nets 
describe primarily events, while semantic nets describe objects. Schank's approach, for 
example, contains little or no mechanism for describing objects (eg, it is not a good system in 
which to describe such facts as most humans have two arms, each arm has a hand, each hand, 
five fingers, etc.). IPMSL's status under this dichotomy is still as a semantic net, but events 
(eg, data and control flows along links) are expected to be an important part of the eventual 
system, so there is some ambiguity. 

Semantic nets can also be distinguished in containing abstract (synonyms: generic, general) 
kinds of facts, while episodic nets are mainly concerned with specific, concrete ones. IPMSL 
spans both kinds of knowledge in this dichotomy. The FSof (further specification) relation 
glides across the boundary without making any kind of fundamental change in terminology. 
Both abstract and concrete objects can be further specified, and it can be unclear when or 
whether the boundary between abstract and concrete is crossed. IPMSL shares this trait 
with MERLIN [15, 16]. The famous type-token distinction has no place in IPMSL for this 
reason. A token is usually considered a unique instance or individual of a more abstract 
"type" object; it is generally illegal to make further tokens of a token. But IPMSL has no such 
"ground" symbols: everything can have further specifications (discussed further below). This 
infinite FSof-chaining abiljty is demanded by the PMS domain, and probably by all domains in 
the same class. 

This discussion has, among other things, established a major distinction in classes of 

Woods [28] has a similar distinction: defining versus asserting properties. 
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network, in order that further discussion of IPMSL issues can restrict itself to those of the 
semantic network class and can ignore issues and phenomena of concern to builders of 
episodic networks. Thus, for instance, it suffices to discuss issues of inheritance and other 
taxonomic phenomena,, to the exclusion of issues of what case slots or action primitives to 
use. It suffices to consider searches along semantic links and spreading activation, to the 
exclusion of indexing of events to allow retrieval based on memory cues of partial graph 
patterns. 

This paper further restricts itself to basic issues of implementation and to those issues that 
bear on the novelties of the present system's approach. As an implementation of a semantic 
network with certain design features, this system will have representation problems in 
common with a number of others, with respect to contents of what goes into the net. This 
paper will not concern itself with them unless there appears to be some reason to believe 
that solutions to them might interact with the implementation as rules. Some typical problems 
in this class are mass terms and non-binary relations. The assumption here is that 
production-rules are as open and as flexible to respond to substantive problems and to 
changes in contents9 structure as are other possible implementations. 

5.2. Taxonomy 

A number of approaches have been used in semantic networks to express taxonomic 
relations: ISA, superset-subset, superconcept, generalization, specialization, set member, 
instantiation, individuation, type-token, generic-specific. Of these, ISA is probably the most 
offensive, unless some care is taken in defining it. It can suffer problems of vagueness, 
overly broad applicability, and others [14]. To meet exactly the demands of the present 
domain and to make IPMSL taxonomic meanings precise,* IPMSL uses the further-specification 
relation, as in MERLIN [15], The relation between an object and a further specification of it is 
that the latter has additional properties, or the same properties with values further specified. 
For instance, '"5 microsec" is a further specification of "microsec", VAX-11 further specifies 
the concept C (computer), the VAX-11 configuration SV-AXTVA-LA further specifies VAX-11, 
and the package delivered to a customer includes even more specifications, eg 
communications equipment. This FSof can be carried through to any number of levels, eg, by 
further specifying over the variations that occur through the lifetime of a computer 

Many of the others mentioned can also be made precise, but not without a great deal more complexity. Along with 
this complexity of definition would come difficulty in expressing and verifying the set of allowable inferences, and in 
managing searches. 
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installation.2 Many of the above-mentioned taxonomic systems appear inadequate for 
expressing such taxonomies. Of course, inheritance of properties occurs in the standard way: 
when some property is absent from a node, it can be inferred from the corresponding 
property of its ancestor (recursively). 

Having the flexibility of the FSof relation allows IPMSL to take a position on two topics 
mentioned by Woods [28] and others. It appears to solve the "morning star" vs. "evening 
star" problem, attributed by Woods to Quine, and described by Woods in connection with the 
distinction between intension and extension. Namely, both of these phrases can be 
represented as separate nodes in the net, with both being further specifications of the planet 
Venus.* Many (if not all) uses of quantifiers (another problem mentioned by Woods) can be 
captured by simply defining nodes in the net that represent the classes defined by them. 
Such nodes are FSof various nodes already existing in the net. E.g., "all computers with TTL 
logic" might be a node that further specifies the "computer" node, with an attribute-value 
pair signifying its technology; such a node would have a set of FSs consisting of those 
satisfying the property, if one chose to store the set explicitly (one might want this to be 
only a temporary node, surviving only as long as a particular application demanded it). One 
could then add to this node any properties that hold of the class of such devices.2 A phrase 
such as "some computer with TTL logic" causes the creation of a node with the appropriate 
FSof link, about which one could then assert further properties, and which one might 
eventually identify-with a known machine. Both of these solution sketches depend on the 
ability to further specify to arbitrary levels of nestedness, and on the absence of relations 
that would terminate such chains (e.g. "instance"). This discussion is meant to be illustrative 
of the potentional strength of FS as a concept, and is thus merely suggestive - no such 
usages have been required in the present domain. 

The distinction between objects and sets, and between set membership and set 
containment (subset relation), are made in many semantic net systems, but not in IPMSL The 
FSof relation is best thought of as holding between typical elements of classes. Thus the 
distinction seems superfluous. In the rare case when there is in IPMSL's domain a reference 
to a collection of components, it suffices to use an ad hoc approach, eg, to attach to the 
"typical" element an attribute indicating a replication factor (ie, set size) - analogous things 

2This has the danger of loading to rathar deep searches; but it does seem to be strongly demanded by the domain 

* I f theae "stars" can also be Mercury, minor complications arise. 
2There is an interaction here with the issue of how to, or whether to, distinguish a node representing* a class of 

object from one representing a specific object. See the next paragraph. 
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can be done for other class concepts. Convincing arguments for the need for this distinction 
have not been made in the literature, though it does-appear convenient for some domains. 
Even in those domains, however, the approach taken here seems not to sacrifice precision or 
inference capability. 

Another taxonomic device in IPMSL is the use of compound names. Eg, wP.c VAX-11" names 
the "P.c" component in the "VAX-11 context". Or, "VAX-11" could be taken as further 
specifying (speaking informally) "P.c", eg, by referring to the particular model of P.c that it is. 
Note that "P.c" is itself a compound name, referring to the "c" variety of "P" (ie, central 
processor) - this is inherited from the original PMS language [3]. The use of compound 
names for methods and goals has been my practice for some time, eg, to express such ideas 
as verb+object ("find attribute") or noun+modifier ("tree structure"). Not only is such 
compounding a natural and convenient usage, but it leaves open the possibility that the 
system itself may somehow make use of the transparent name similarities that it gives rise to. 
Further, it may lead a user to be more systematic in naming. It is discussed in some detail by 
Martin [13] in a rather different overall approach and task. The use of such compounds is 
not without dangers, however, to the naive. An early design of this PMS system confused, via 
such compounds, the naming of components with structural relations - the above example of 
"P.c VAX-11" might lead one to make the (correct) inference that the P.c referred to is Partof 
VAX-11. But this immediately leads to difficulties when structures become more complex, and 
the structure subnet of IPMSL is more appropriate. There was also some confusion between 
names and a more exact taxonomy with respect to methods in Kernl2: often names can show 
local similarities, but they can also show a similar functionality but in widely varying contexts 
(thus appearing in different branches of the taxonomic tree). Often it is clumsy to carry out 
the taxonomic naming to its logical conclusion, so its use as a sole taxonomic device has been 
replaced by the addition of explicit taxonomic (FSof) relations. That is, the use of compound 
names, though convenient, should not be the only taxonomic or structural device in a system. 

5.3. Contexts 

The approach used here provides adequate means to a number of concepts emphasized by 
other researchers. Fahlman's important concept of virtual copy [6] is captured by the normal 
use of WM: it contains or can contain a temporary node structure that incorporates 
information from a number of sources. Thus a node in WM can look as if it incorporates much 
information which has in reality been inherited from ancestors, and processing can be done 
on it as if those inherited properties were immediately attached. Similar in conception is the 
"flat" operation in MERLIN [15, 16]. But in IPMSL this aggregating operation is deliberate and 
programmer-controlled, where Fahlman's system makes the "copying" automatic when 
information is accessed. This need for deliberate control of the inheritance may be offset by 

28 



5: Semantic net issues 29 

such devices as rules that take "shortcuts" in net searching, and discrimination networks that 
could make critical properties more directly accessible, making search more affordable for 
common cases. Nevertheless, this is considered to be a serious flaw in the approach, with 
respect to principles developed by previous AI research. It remains to be seen whether the 
impact on this domain will be serious. Some modifications in the basic PSA may be required. * 

A broader meaning of the word context takes us into the area of establishing quantified 
scopes, partitions [11], depictions (frames) [10], and multiple worlds. Here again, it is hoped 
that the straightforward use of WM as a temporary, dynamic version of a portion of the 
network can serve the desired function, at least in the present domain. Symbols can be 
created in WM to bind together a number of nodes and relations, and then attributes and 
values associated with the symbols and thereby with the collections of nodes. WM could b e 2 

used for one of the possibly many worlds under consideration in some problem-solving task, 
say, with alternative worlds produced on demand by suitable context-updating methods or 
simply by evoking some other region of the permanent network and suitably modifying it to 
reflect local context. 

5.4. Searches 

Generally, control of searches in IPMSL is either by deliberate methods whose goals 
maintain it or by demons that respond to various unusual conditions. But a number of special 
topics deserve mention, since they may appear to pose peculiar search control problems. 

The detection of clashes and obvious inconsistencies (see [6]) requires rapid searches up 
the taxonomic hierarchy. Specific rules to act as shortcuts in the hierarchy are possible. 
That is, a rule may encode a jump in the hierarchy of several levels. If one sees this as 
quickly evoking information until some anomaly is detected, then it appears advantageous 
here that rules can express arbitrary patterns of such anomalies. 

Searches with multiple origin or so-called intersection searches pose extra control 
problems, such as how to alternate in reasonable ways the locus of control among the various 

One possibility is to allow conflict resolution to fire more than one rule at a time, enabling severel paths to be 
developed in a bounded breadth-first (beam) fashion. A more remote possibility is to build in some kind of backward 
chaining based on recognition-match failures, an operation common in certain applications of rule-based systems, but 
deliberately avoided in our approach. Considerations of practical need for the PMS domain will determine whether 
drastic revision in the straightforward approach will be needed. 

This discussion is speculative, but I think not unreaaonable, given paat experience with the flexibility of PSAs, 

^ h i s discussion of search is largely sn extrapolation of present experience with IPMSL 
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regions in the search. There is also a need to limit the depth of search. Again, rules provide 
explicit, recognition-based control. Their patterns can encompass various amounts of WM 
context, and can express arbitrary sorts of conditions to detect. Special searching rules with 
depth limits and alternations are easily specified, and fit in well with the existing net rules, 
essentially imposing whatever they need onto the ordinary evocation of information, 
dynamically. The organization of the net into the various subnets appears to be helpful.in 
controlling things, since it allows more selectivity of information evocation. 

Some systems have emphasized a need to come at the network in ways other than the 
usual structural and taxonomic ones. Eg, one sometimes wants to search for objects having a 
given property. If one desires this form of indexing in a network as implemented here, some 
extra mechanism is required, such as a discrimination network of properties. That such nets 
are readily implemented as rules has been established [18]. Otherwise, it is not difficult to 
envision top-down search strategies, guided by heuristics, that might be effective. Since such 
heuristics are expressed as rules, they could be developed interactively and tailored to 
particular needs (eg, avoiding life-threatening beasts, which requires rapid response). 

6. Conclusions 

In concluding, a few major points can be re-emphasized. Implementing the network as 
production rules has allowed the fruitful merging of two hitherto separate technologies: a 
problem-solving procedure formalism and a semantic net representation formalism. The 
network organizes both domain information and information about the methods of the system 
itself. The latter system network is usable both by an instructor of further methods (as 
information about existing system structures) and by the system itself in identifying items 
from an input sentence with the internal requirements of methods (ie, it infers which 
attributes to attach to values specified in an input). More advanced self-manipulation 
capabilities based on the network are subjects of further research. Using production rules 
allows the system to take advantage of recent progress in techniques for growing such 
systems, as is evident in the discussion of the method language commands above. 

The production system architecture provides a number of useful features. Methods and 
network share the same working space (WM), so that rules are readily applicable both to 
control the evocation of network information and to provide useful information for methods to 
use. The network need not be entirely of the rigid formats illustrated above, but can mix the 
access of information with arbitrary methods. The existence of the large dynamic state 
makes it convenient to build elaborate temporary structures and to dynamically organize 
network fragments into larger units, an ability emphasized as important in many recent 
network designs. Rules are a natural way to express a large variety of search control 
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strategies, an issue whose importance becomes critical in very large, diverse networks. The 
pattern-matching power of the rules allows such control to take into account much more than 
just a local search context, and affords the opportunity to integrate diverse pieces of 
information. 

Advantages of using a semantic net implemented as production rules appear to outweigh 
the disadvantages, and examination of problems that can be expected when more demands 
are made of the system supports the continuation of this line of work. IPMSL has so far 
proven effective for defining, updating, and displaying a network for the DEC VAX-11 
computer. Research is currently proceeding on using the basic ingredients presented here to 
provide IPMSL with higher-level capabilities, approaching operations That will prove useful to 
its intended domain of computer-aided design. It may eventually be able to improve or 
supplement human abilities to manipulate and maintain very complex structures, at least in 
certain problem areas. The work so far has advanced knowledge on at least two fronts: 
First, in formulating knowledge precisely so that a system such as IPMSL can encode it, one 
inevitably improves the basic knowledge of the domain, in organization, precision of detail, 
and explicitness of assumptions. Second, there is expansion of knowledge about the 
requirements that demanding intellectual tasks place on the production system architecture 
and on a larger body of AI concepts and techniques. 

6 .1 . Addendum 

As of the time of final revision of this paper, IPMSL has grown to a size of 610 rules with 
no degradation in its overall manageability, and with very little decrease in efficiency of 
interpretation. The total system size relative to the PDP-10 is becoming much more of a 

problem: it is expected that another 200-300 rules will consume all the remaining space 
addressable by a user; also the size of the present system poses a significant load for the 
time-sharing system, resulting in longer response times. Of the new rules, about 237. are 
network, as compared with 30% in the system detailed above, with the remainder being new 
methods. Additions to the functional capabilities include a number of new display, editing, 
inference, and data-checking capabilities. The system understands considerably more about 
the abstract attributes and values that are used to describe computers, and is able to' 
interactively expand and correct that body of data as new computers are described. This 
new understanding has been applied to updating parts of the VAX-11 description that was 
initially entered to test the basic capabilities described above. Additions to the network part 
of the system include a network that holds information about attributes and values (used in 
data-checking), descriptions of abstract computers, and help facilities for the new methods. 
Construction of the higher-level methods to deal with general and specific aspects of the 
hardware configuration problem will begin soon. This next phase will build to a considerable 
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extent on the existing framework. 
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