
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



CMU-CS-85-125

Automatic Verification of
Asynchronous Circuits using

Temporal Logic

David L. Dill nnd Edmund M. Clarke

Department of Computer Science

Carnegie-Mellon University

Pittsburgh PA 15213

COMWFEH SCIENCE

Abstract

We present a method for automatically verifying asynchronous sequential circuits

using temporal logic specifications. The method takes a circuit described in terms of

boolean gates and Muller elements, and derives a state graph that summarizes all possible

circuit executions resulting from any set of finite delays on the outputs of the components.

The correct behavior of the circuit is expressed in CTL, a temporal logic. This specification

is checked against the state graph using a "model checker" program. Using this method,

we discover a timing error in a published arbiter design. We give a corrected arbiter, and

verify it.

1. Introduction.

Any sequential digital circuit built from non-trivial subcircuits must ensure that timing

constraints among the subcircuits axe satisfied. The most widely used technique for doing

this is synchronous circuit design, where a global signal (e.g. a clock) is shared among

all the subcircuits. The use of such a signal simplifies circuit design, since the speeds of

component circuits do not need to be considered, provided the clock is slow enough.

An alternative is to use asynchronous design. Instead of a global signal some other

means is used to determine wrhen a subcircuit computation is complete. Asynchronous

design is more difficult than synchronous design and is much less widely used.

This research was supported by NSF Grant Number MCS-82-16706.

Eniversitv lfbr«rfe*
C a r n e g i e k i ^ . l o n ^ ^ ' r r



Dill and Clarke Asynchronous Circuit Verification 2

This is unfortunate. Distributing a global clock signal that must appear almost simul-

taneously at all parts of a circuit becomes increasingly more difficult as more components

are packed onto VLSI chips. Asynchronous designs can reduce this problem by being more

modular; for example, a subcircuit can provide an explicit completion signal only to the

other circuits that use its outputs.

Additionally, asynchronous circuits are sometimes faster than synchronous circuits.

Suppose that one circuit computes a result that is used by another. In an asynchronous

design the second circuit can proceed immediately when the result from the first circuit is

available. In a synchronous design the second circuit must wait for a clock signal, which

is timed to assume the worst-case delay for the first circuit.

Why is asynchronous design so difficult? Because the circuit may perform different

sequences of actions depending on the relative delays of its components, delays that may

not be known or may even vary with time. When even a few components are operating

concurrently, the circuit designer must consider a large number of cases in order to be

sure that the circuit works properly. This is a tedious, counterintuitive, and error-prone

process.

Methods to debug and check combinational and sequential circuits are not as help-

ful for asynchronous circuits. Building a working prototype does not adequately assure

correctness, since component delays in other instances of the same circuit may differ from

those of the prototype. The same problems plague all existing simulators: They can only

simulate the circuit under a small set of assumed delays in the components and input

signals.

This paper describes a general method for verifying asynchronous circuits. We propose

that the correct behavior of a circuit be specified using temporal logic. The specification

can be checked automatically against a gate-level description of the circuit. If no violation

of the specification is detected, the circuit designer can be confident that the circuit will

perform according to the specification for all relative gate delays. If the circuit fails to

meet its specification, the verifier provides a counter-example to help the designer isolate

the problem.

We also describe an application of this technique to a published design for an asyn-

chronous arbiter. The verifier discovered a set of relative delays which could cause the

circuit to fail. A corrected version of the same circuit has been successfully verified using

the same specification.

In section 2 of this paper we describe the language for specifying the correct behavior

of circuits. It is a propositional temporal logic, a logical system for reasoning about the

ordering of conditions in time. This section also describes a program, the model checker,



Dill and Clarke Asynchronous Circuit Verification 3

that checks temporal logic formulas against a state graph.

Section 3 describes the functional behavior of the example arbiter. This section also

presents various parts of the temporal logic specification of the arbiter and explains them

informally. For example, we specify that the arbiter interfaces obey the four-cycle signaling

convention, that the arbiter provides proper mutual exclusion between two users, and that

the arbiter is responsive to requests.

Section 4 explains the gate-level circuit descriptions. The circuit is written as a collec-

tion of primitive components connected with wires. The pre-defined primitive components

are boolean gates and two additional components: Muller C and ME elements (the second

provides mutual exclusion). A flow-table semantics for these primitives is described that

allows for arbitrary finite delays on the gate outputs. The state graph representing a cir-

cuit, which can be used as input to the model checker of section 2, is defined using these

flow tables.

Section 5 describes the gate-level implementation of the original arbiter. The ver-

ification of the arbiter and the timing problem we discovered axe discussed. We give a

corrected circuit that can be verified.

We conclude with a discussion of the role we envision for this technique and some

directions for future research.

2. The Logic and the Model Checker.

In order to verify a circuit, we need a language in which to specify the correct behavior.

We have chosen to use a propositional temporal logic called CTL. Propositional logic is

well established as a good formalism for specifying digital systems. CTL is traditional

propositional logic with additional connectives for talking about the future states of a

circuit. The additional connectives provide a means for specifying sequential behavior.

There is a program for checking CTL specifications against a finite state graph, called

EMC (for "extended model checker"). If the CTL formula is false in the state graph, EMC

will show a counterexample, if possible, in the form of a sequence of states that violates it

[3].
EMC is a general-purpose CTL verifier. There are several preprocessors that trans-

late various special-purpose representations into state graphs which are used as input to

EMC. There are translators for a CSP-like language for describing finite-state programs,

a language for behavioral descriptions of synchronous sequential circuits, and a gate-level

language for structural descriptions of asynchronous circuits. The results reported here

were obtained using the last of these.

In this paper we use a subset of CTL and somewhat different notation from that



Dill and Clarke Asynchronous Circuit Verification 4

actually used in the model checker. We now describe the syntax and semantics of our

dialect. We assume the existence of an underlying set of atomic propositions AP. The

formulas of CTL are

1. Any atomic proposition p G AP is a CTL formula.

2. If / and g axe CTL formulas - . / , / A g] f U g} G /, and F / are CTL formulas.

The symbols -> and A have their usual meanings. In addition to these formulas, we use

the abbreviations / V g and / —> g for -»(-•/ A -^g) and -<(/ A ~^g). Intuitively, / U g (read

"/ until <j") means that / must always be true until g becomes true. It is permissible for

g never to be true if / remains true forever — this is "weak" rather than "strong" until.

G / means that / is true in every state (Globally true), and F / means that / is eventually

true somewhere along every sequence of states (true at some Future time).

The semantics of CTL are defined more precisely in terms of truth in a structure. A

CTL structure is a state graph consisting of:

1. A finite set of states £;

2. A function L E[S —> P(AP)], which labels the states with atomic propositions;

3. A transition relation R 6 S x 5;

4. A start state, SQ.

We require that every state have at least one successor.

A path from 5t5 where st G 5, is an infinite sequence of states that starts with st and

in which R holds between every state and its successor. We define formally what it means

for a formula / to be true in a state s t. This is written st \= f.

*t |= P iff P e Lfa) (for p e AP).
si \= f ^ g iff s% N / ^ d st |= 9-

Si N - / iff ^ £ / .
Si; f= / U g iff for every path from st either (i) there exists a state s* such that Sfc f= g

and for all states Sj preceding Sfc, Sj \= /, or (ii) for all states Sj on the path Sj \= f.

S{ \= G f iff for every state s3 on every path from s t, Sj f= /.

S{ \= F / iff there exists a state s3 on every path from st such that Sj f= /.

A formula is true in a state graph iff the formula is true in SQ. Figure 1 shows some

examples of CTL formulas and state graphs in which they are true.

EMC is a program that checks whether a formula is true in a state graph. The algo-

rithm processes a formula bottom up, checking the shortest subformulas before checking

the subformulas that contain them. When it checks each subformula /, it labels every

state in the graph with / if / is true in the state. Thus, when EMC is processing a for-

mula it can treat the subformulas as atomic propositions. Processing any of the modal or

propositional connectives requires at most a single depth-first traversal of the state graph,



Dill and Clarke Asynchronous Circuit Verification

Figure 1. CTL Formulas and State Graphs in which They Are True

so the time to check a formula is proportional to the size of the state graph and size of the

formula. In practice, EMC can check formulas on graphs with several hundred states in

less than 10 seconds.

Frequently, we want to consider only fair execution sequences. For example, we may

wish to consider only those executions in which some process that is continuously enabled

eventually fires. The semantics of CTL have been modified slightly to allow this. The user

can provide a set of fairness constraints^ each of which is an arbitrary CTL formula. A

path is defined to be fair with respect to a set of fairness constraints if each constraint

holds infinitely often along the states of the path. The path quantifiers are restricted to

fair paths. The addition of fairness constraints does not significantly reduce the speed of

EMC [3]. In section 4, we use fairness constraints to limit the fair paths to those in which

all gates exhibit finite switching delays.

3. Specification of the Arbi ter .

This section explains the function of the arbiter and gives a temporal logic specification

for it. An arbiter grants a resource to no more than one of several "users" in case they

request the resource simultaneously. A typical use of such a device is to negotiate access

to a memory shared among several processors. The arbiter design used in this paper is a

modification of one originally proposed by Seitz [6]. Seitz's design was later specified with

temporal logic and verified by hand by Bochman [l], who found some potential timing

errors resulting from misprints in the original paper.

The arbiter is intended to coordinate two users (see figure 2). When it grants the

resource to one of the two users, it first activates a "transfer module" associated with that

user. The transfer module prepares parameters for a single "resource module" (represent-

ing the shared resource) which is activated after the transfer module has finished.

Many of the verification conditions below appear in some form in the Bochman paper

mentioned above. There is no direct correspondence because different logics and circuit



Dill and Clarke Asynchronous Circuit Verification

Tl

TR1

Ul

UR1

UA1

U2

UR2

>

UA2

TA1

ARBITER

TR2 TA2

SA

SR

T2

Figure 2. Arbiter Block Diagram.

semantics are used.

We only require that the arbiter meet its specification when it is properly used. In

particular, all circuits connected to the arbiter must conform to a specific signaling conven-

tion. Each module explicitly signals requests and completion by use of four-cycle signaling

(also called Muller signaling). There are five four-cycle interfaces in the block diagram of

figure 2.

In this protocol, two wires, r ("request") and a ("acknowledge"), are used to connect

a client module to a server module. (These are generic signal names; we leave it to the

reader to substitute the signal names for each of the interfaces.) Initially the signal on both

wires is 0. The client makes a request by raising r. Eventually the server acknowledges

the request by raising a. The client then lowers r and the server lowers a. At this point

the interface is back in the original state awaiting a request from the user (see figure 3).

We do not require the user modules, Ul and U2, to make a request, but we do require

that they respond to an acknowledge: When the server raises a in response to r going high



Dill and Clarke Asynchronous Circuit Verification

Request

Acknowledge

Figure 3. Four-cycle Timing Diagram.

the user must inevitably lower r. The server modules, Tl, T2 and S, must inevitably raise
and lower a in response to the raising and lowering of r.

When the arbiter acts as a server (as it does for Ul and U2), it must satisfy

G (a -> (a U -nr)) and

G(-ia-> (ioUr)).

When it is acting as a client (as with Tl, T2, and S), it must satisfy

G ( r - > ( r U a ) ) and

G(-nr->(-.rU-«a)).

We also wish to ensure that once the arbiter has acknowledged a request or has had a
request acknowledged the rest of the four-cycle convention will inevitably be carried out:

G((r A a) -*F(-ir A-»a)).

In the remainder of this section, we sometimes omit trailing l's and 2's on signal
names. Any formula with such names represents two formulas: one in which 1 has been
appended to all the short names, and one in which 2 has been appended.

We require that every request to Tl or T2 be properly motivated by a request from
Ul or U2; it is unacceptable for there to be an activation of Tl or T2 without a request
from the corresponding user module, or for there to be multiple activations of Tl and T2
to service a single request. Furthermore, we require that the users wait if they have not
been granted the resource; the arbiter must not acknowledge a user unless the arbiter has
committed to activating the corresponding T module.

G {{~^ur A ->ua) —> ->ir),

G {{ur A tr) -> (tr U (itr U -»ur))), and

G {{iur A -<ua) —> (->ua U tr)).



Dill and Clarke Asynchronous Circuit Verification 8

The first formula says that tr is 0 if there is no user request in progress. The second requires
that tr stay 0 until there is a user request. (At first, it may appear that this formula is
implied by the first formula. It is not: The second formula covers the case where ua is high
because a previous request has not been completely processed.) The third formula states
that if tr has gone to 1 in response to ur going to 1, then tr will not go to 0 and to 1 again
until after ur has gone to 0 (at most one request to the appropriate T module for each
user request). The final condition requires the arbiter not to acknowledge the user until
tr has been raised (i.e. the resource has been granted to the user). (These four properties
are not given in the Bochman paper.)

We assume that the T modules compute inputs for S, and that the arbiter must wait
until T has finished computing these signals before sending a request to S. We also assume
that the T modules signal the completion of the parameter computation by raising ta and
that T will keep the parameters stable until tr is lowered. Hence, the arbiter must raise
try wait until T raises £a, raise sr, and wait until S raises 5a before lowering tr. These
conditions axe expressed by

G (-«sr -> (-nsr U {tal V ta2))), and

G{tr->[trVsa)).

These conditions also imply that requests to S cannot occur without a request to Tl or
T2, and that a new request to Tl or T2 cannot occur until S has dealt with the previous
request on that module.

The essential property of the arbiter is that at most one of Ul and U2 may be granted
the resource at the same time. We write this as

G [trl -+ (^tr2 U {^trl A ^sa))) and

G (*r2 -» (ifrl U (-»tr2 A -*a))).

With the exception of the last four-cycle condition, none of the properties so far require
the arbiter to make progress at any point in processing a request; they merely require that
if the arbiter does attempt to respond to a request it do so correctly. We would like to be
able to show that every user request will eventually be acknowledged:

G{(ur A-^ua) -> F ua).

Unfortunately, it seems that proving this property for arbiters similar to this example
requires stricter timing assumptions than we use. It always appears to be possible for one
user to be denied service forever because the arbiter choses to process repeated requests



Dill and Clarke Asynchronous Circuit Verification 9

from the other user. It may be able to verify this property using another circuit model (e.g.

a model that gives explicit delays for various components), but for this model we must be

satisfied with the weaker requirement that one of the requesting users will inevitably be

served:

G {{{url A -*ual) V (urS A ~^ua2)) -> F {ual V ua2)).

Coupled with the four-cycle convention and the requirement that a user not be acknowl-

edged until it is served, this suffices to guarantee that some user will inevitably be served.

Note that if U2 stops making requests after being served, requests from Ul will inevitably

be served. Thus, pre-emption by U2 is the only way that Ul can be permanently denied

service.

3. Circuit Semantics.

This section discusses the formal model of gate-level circuits used in the verification

technique. Our model is a modified version of the flow tables traditionally used in the

analysis of asynchronous sequential circuits.

At any time a circuit has a set of input values, an internal state, and a set of output

values. If the input values change, the circuit may change to another state after an arbitrary

delay. The output signals reflect the internal state immediately. Thus, boolean gates act

like boolean functions with arbitrary non-zero delays on the outputs.

The input to the circuit-to-state-graph translator is a syntactic description of the

circuit. The description gives the names of the wires and gates and indicates how the

wires are connected to the inputs and outputs of the gates. Each of the gates has a

prototypical flow table which is instantiated by substituting the actual wire names for

the appropriate inputs and outputs. This process is straightforward and is not discussed

further. The flow tables are then "glued together" into a global state graph.

Given a finite set W of names of wires, a flow table consists of

1. A set of input wires I C W\

2. A set of output wires O CW]

3. A set of states C;

4. A transition function T G [[I -> {0, l}] x C -> P{C))\

5. A stability predicate P G [[/ -+ {0, 1 } ] X C ^ {t, /}] ;

6. An output function N e[C -> [O -+ {0,1}]].

For every x G [I —> {0,1}] and every y G C we require that y G T(x, y). This provides the

arbitrary delay property since the circuit always has the option of staying in its current

state.



Dill and Clarke Asynchronous Circuit Verification 10

State

A B 00 01 10 11

0 i

State
1

OR gate

00 01 10

State

AND gate

AB 00 01 10 11

0 i A
B

C element

C D

0

0

1

0

1

0

ME

ME element

0

©

(!)

I

I
R

0

1

A >
U

R

0

1

0 1

[
(!)

A

0

1

R *

A *
S

USER SERVER

Figure 4. Flow tables.

Flow tables can be summarized in diagrams such as those in figure 4, which gives the
complete set of flow tables used in the arbiter example. The left-hand box in each diagram
represents the transition function: Input assignments axe labeled on the top, and states
(numbered arbitrarily) are labeled on the left side. There is a circle in a box if the stability
predicate is true for that input assignment and state. The output box has states along the
lefthand side and outputs along the top.

These differ from traditional flow tables in the meaning of the stability predicate. A



Dill and Clarke Asynchronous Circuit Verification 11

particular combination of an input assignment and a state is stable if and only if the circuit

is allowed to stay in that configuration forever. If a configuration is not stable the circuit

may stay in that configuration arbitrarily long, but the delay must be finite. Hence, a

configuration which has no exiting transitions is necessarily stable. A configuration with

exiting transitions may or may not be stable. If it is not stable, the circuit must eventually

take one of these transitions unless the input changes; if the configuration is stable, the

circuit is allowed either to stay in it forever or to exit.

The stability predicate is needed to enforce reasonable circuit behavior. For example,

an AND gate with inputs 00 and output 1 must change values eventually; otherwise many

obvious circuit properties axe impossible to verify.

Another novel aspect of this flow-table model is that it allows simultaneous signal

changes in inputs and outputs. Most discussions of asynchronous circuits assume that

only one signal can change at any time. While it is unreasonable for the correct behavior

of an asynchronous circuit to depend on two signals changing simultaneously, a general

verification technique should be able to discover failures that can only occur only in the

case of simultaneous signal changes.

In figure 4, the tables for AND and OR gates should be self-explanatory. The C

element is often used in asynchronous circuits to wait for the completion of all of several

concurrent operations before proceeding to the next operation. The circuit exhibits hys-

teresis: When the inputs disagree the circuit holds its current output and does not change

until all of the inputs have values opposite to the output.

The heart of the arbiter is the ME element ("mutual exclusion element", also called

an interlock). This circuit never allows both of its outputs to be high. When the inputs axe

both low, so axe the outputs. When one of the inputs is high, the corresponding output

will eventually go high. When an input and the corresponding output are both high, the

output stays high until the input goes low. Most interestingly, when both inputs are high

and the outputs are both low the ME element has the option of raising either, but not

both, of the outputs. This is an additional source of non-determinism in the axbiter besides

the varying speeds of the gates. Also, note that the outputs of the ME element can go to

either 00 or 01 when the inputs go from 10 to 01.

Another interesting circuit is the USER. This circuit simulates the most general be-

havior of a user module. We can verify a USER circuit only when the interfaces behave

reasonably (in this case, they must obey the four-cycle protocol). Unlike the others, this

circuit has a transition leaving a stable state. With this table, the USER can either gen-

erate a request or not (note that the user must eventually lower the request if it has been

acknowledged). Aside from the stability predicate, this table is identical to that for an



Dill and Clarke Asynchronous Circuit Verification 12

inverter.
To verify a circuit we must be able to combine the behaviors of the primitive compo-

nents of the circuit into a state graph. We axe given a description of the circuit as a set of
primitive components (in this case the components of figure 4). The connections between
the components are encoded in the input and output sets for each component: Inputs and
outputs that are wired together have the same name. In a well-formed circuit at most
one gate output can be connected to a set of inputs, though any number of inputs can be
connected.

To build the state graph we further require that every input have be connected to an
output. Any circuit can be converted to this form by adding circuits to simulate input
sources. We provide circuits to simulate Ul, U2, Tl, T2, and S in our example.

We define a large state graph from which we remove irrelevant states to give the actual
state graph. We index the k component circuits by 1 < i < k. In general, we refer to
the parts of component i by subscripting their names (e.g. the transition function for
component i is Tt).

We define a state vector to be a vector of length k which has a member of Ct as its
zth element, for all z. We take the set of states S of the state graph to be the set of all
state vectors. A vector of component states is designated to represent the start state, So
(the user determines an initial state for the circuit).

Given a function / G [S —> T], we write the restriction of / to S' C S as / | s ' .
Let s be any state vector, and let st be its zth element,(a member of Ct). s determines
v G [W —• {0,1}] such that v\oi = A^(st) for all components i. This represents the
combined outputs of the component circuits, v is unique because every wire is connected
to an output. The state is labeled with the names of the wires to which v assigns 1.

We can use the wire values v and the transition functions Tt for the individual com-
ponents to find the successors in the global state graph. Formally, v\ji gives an input
assignment for each component i. The set of successors to s is the set of all state vectors
s' such that, for all z, s(- G Ti(r;|joSj), where s[ is the zth element of s'. This defines /2,
the transition relation for the state graph.

This state graph has many irrelevant states. The final equivalent and much smaller
state graph is obtained by restricting it to the states reachable from SQ.

Remember that each flow table state is a successor of itself. In any state there is a set
of active components that have the option of changing state. Because of the nature of the
computation of R there is a successor state vector for every combination of components
that changes state and every component that stays in the same state. In this way the state
graph represents all possible relative delays between changes of component states.



Dill and Clarke Asynchronous Circuit Verification 13

The algorithm to build the state graph starts with an initial state vector, then builds
the graph in a recursive, depth-first manner. As each state is created it is stored with its
state vector in a hash table. For each new state the algorithm finds the combined output
function (u, above), the successor states for each component, and the set of state vectors
for the successors.

There is one additional problem in the state graph. Every state has itself as a successor
(from the case where all component circuits stay in the same state). If we want to be able
to verify properties such as the last formula of section 3, we need to force the model checker
not to consider paths in which a component stays in an unstable configuration forever. For
this we find fairness constraints to be necessary.

For each state in each component machine i we invent a unique label /. Let s be
the state vector for any state, let S{ be its tth element, and let v be the combined output
function, as defined above. We label s with / if and only if Pt^l/^s,-) = /.

We then supply a fairness constraint to the model checker that requires I to be false

infinitely often. In this way, the fair paths are those in which a gate must leave an unstable
state infinitely often. The model checker will only consider these paths when checking a
formula.

We have recently become aware of work by Muller in which a similar notion of fairness,
using generalized regular expressions, is used to capture the semantics of arbitrary yet finite
delays in infinite circuit executions (although the term "fairness" is not used) [5]. Our
solution is somewhat more general than Muller's, since it allows infinite delays in states
that have outgoing transitions (such as the USER element) and applies to circuit elements
other than boolean gates (such as the C and ME elements). Of course, the application to
circuit verification is new.

5. Implementation and Verification of the Arbiter.

In this section, we present and explain the implementation of the arbiter from boolean

gates and Muller elements, describe the verification of the circuit and the problem it

detected, and present a corrected circuit.

The circuit shown in figure 5 was originally presented by Seitz, with some errors in

transcription [6]. The errors were detected by a verification attempt by Bochman [1], and

the corrections were described there. This circuit incorporates the corrections described

by Bochman.

Initially, the verification of this circuit ran into difficulties because the global state

graph was very large. When the program ran out of memory, there were more than 10,000

states in the partially constructed state graph.



Dill and Clarke Asynchronous Circuit Verification 14

UAl

Figure 5. Original Arbiter Implementation.

Before abandoning this approach, we tried to verify the model with only Ul making

requests, by substituting a dummy circuit for U2. Any failure detected under these condi-

tions would be a failure under the more general situation where both users make requests.

The resulting state graph was manageable (160 states). To our surprise, the model checker

detected a failure in the circuit even under these conditions.

The error is a violation of the four-cycle interface with Tl. Suppose that the arbiter

starts in the state where all nodes are 0, and responds to a request from Ul. After the

arbiter has almost completed processing this request, it is possible for it to be in the state

where all nodes are low except meol, which remains high (due to a long delay in the ME

element). If at this point Ul raises url again, AND1 will raise trl. Now, if meil has not

yet risen in response to url (because of a long delay in ORl), it is possible for meol to

fall and for AND1 to respond by lowering trl. But tal never goes high! EMC detects a

sequence of states exhibiting this behavior, and gives it as a counterexample to the formula

G ( r - ( r U a ) ) .

Charles Seitz has indicated to us that the arbiter was designed with the assumption

that the delay between ua going high and ur going low would be great, relative to the

internal signals of the arbiter. This assumption was not stated in the original paper due to



Dill and Clarke Asynchronous Circuit Verification 15

•

UAl

TA1

TA2

Figure 6. Corrected Arbiter Implementation.

an oversight. Although we have not attempted to verify the arbiter with this constraint,

we believe that it would meet our specifications.

How did Bochman successfully verify this circuit? He used a more forgiving circuit
model: Boolean gates were assumed to respond immediately to their inputs and the out-
put of the ME gate was assumed to fall immediately when its input falls. Under these
assumptions our failing scenario does not occur because meol could not be high when url

is raised again. (In fact, the CTL versions of verification conditions given by Bochman are
true in the state graph he gives for the circuit.) Our model is more strict; for this design
it is not too strict because the design was intended to be speed-independent.

The circuit of figure 6 has two changes: AND3 and AND4 have been added (to correct
the problem above), and C3 and C4 have been removed (because they are superfluous. We
are indebted to Ivan Sutherland for pointing this out). The signals waitl and waitS delay
raising ual and ua2 until the ME element has actually lowered meol and meoS. This
prevents any possibility of spurious requests to Tl and T2 through ANDl and AND2.

The modified circuit has been fully verified using the techniques here. (The model
checker proved to be an effective debugging tool — it took several iterations of modifying
the circuit and attempting to verify it before we found a correct one.) Interestingly, even
with both users intact the state graph for the second circuit consists of only 128 states.



Dill and Clarke Asynchronous Circuit Verification 16

EMC required about 10 seconds to check the last formula of the second section of this paper.

It took several minutes to construct the global state graph from the circuit description,

but we believe that this is mostly due to low-level implementation inefficiency (e.g. our

LISP system calls a procedure for every array access).

6. Conclusions and Future Research.

We have presented a practical method for assuring the correctness of small speed-
independent circuits. We believe that being able to verify small circuits is valuable in its
own right. As we hope to have demonstrated with the arbiter example, small circuits can
both be useful and difficult. Furthermore, a likely approach for larger circuits is multi-level

verification, which would have verification of small gate-level subcircuits as one component.

Nevertheless, methods for verifying larger circuits should be explored. Informally,
the size of the state graph is exponential in the number of simultaneous actions that can
occur. We have observed in this and other examples that the size of the state graph is
more of a problem for incorrect circuits than for correct circuits, which are often not highly
concurrent when implemented correctly. However, incorrect implementations frequently
exhibit highly concurrent behavior after a synchronization error, causing an explosion in
the size of the state graph. This is vividly illustrated in the example of this paper: The
state graph for the incorrect circuit has at least two orders of magnitude more states than
the graph for the modified circuit.

There is a straightforward solution to this problem, which we call lazy state creation.

The model checker and the circuit-to-state-graph translator could be structured as co-
routines. The model checker could ask for new states from the translator only when it
needs them, so that the first failure could be detected after the creation of a small number
of states. This approach is less likely to help in verifying asynchronous circuits that are
designed to be highly concurrent.

Hierarchical techniques could also help with larger circuits. Smaller subcircuits could
be replaced by simplified models to simplify the verification of the larger circuit. Part of this
process could be made fully automatic: If some of the subcircuit wires are not connected to
anything outside of the subcircuit, its behavior can be simplified by merging states in the
subcircuit state graph (the operation of hiding some of the wires is called restriction). A

restriction operation on state graphs has been proved to preserve satisfaction for a useful
subset of CTL [4].

Another area for further work is that of alternative timing models. The arbitrary gate
delay model is very conservative. The use of more liberal timing models could result in
more economical circuits, both in time and area. One such model is the "almost equal



Dill and Clarke Asynchronous Circuit Verification 17

delay" model, in which a ratio is specified between the delay of the slowest gate and the
delay of the fastest gate [2].

Finally, there are the problems of assuring the correctness and completeness of a spec-
ification. We see no full solution to this problem, although we hope that some guidelines
for important properties to check will emerge when there has been more experience with
this type of verification. As we hope our example has demonstrated, automatic verification
can be a powerful debugging technique even when there is no guarantee of the correctness
of the logical specification.

Acknowledgments t

Ivan Sutherland suggested an improvement in the modified arbiter, which we incorpo-
rated. Randy Bryant and Mary Sheeran provided valuable comments on earlier drafts of
this paper. We axe grateful to Chris Hanna for help with writing style in an earlier draft.

References

[l] Bochman, Gregor V., "Hardware Specification with Temporal Logic: An Example,"
IEEE Transactions on Computers, Vol C-31, No. 3, March 1982.

[2] Brzozowski, Janusz A., and Yoeli, Michael, Digital Networks, Prentice-Hall Inc.,

Englewood Cliffs, New Jersey, 1976.

[3] Clarke, E. M., Emerson, E. A., and Sistla, A. P., "Automatic Verification of Finite-

State Concurrent Systems using Temporal Logic Specifications: A Practical Approach,"

Tenth ACM Symposium on Principles of Programming Languages, Austin, Texas, January
1983.

[4] Mishra, B., and Clarke, E. M., Automatic and Hierarchical Veri&cation of Asyn-
chronous Circuits using Temporal Logic, CMU-CS-83-155, Department of Computer Sci-

ence, Carnegie-Mellon University, September, 1983.

[5] Muller, David E., "The General Synthesis Problem for Asynchronous Digital Net-

works," Conference Record of the Eighth Annual Symposium on Switching and Automata
Theory, 1967.

[6] Seitz, Charles L., "Ideas About Arbiters," LAMBDA, First Quarter, 1980.


